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Abstract

This thesis focuses on the development of algorithms for computing the threat point

in Frequency-Dependent-games, with the Endogenous Transition Probabilities (ETP)

Endogenous Stage Payoffs (ESP) game as the most complex type of game. We limit

ourselves to two-state, two-player ergodic stochastic games with or without a FD payoff.

Also incorporated into an algorithm are so-called Endogenous Transition Probabilities,

i.e., transition probabilities that depend on the history of the play. Several algorithms

have been developed, one of them (SciPy algorithm) only works on non-FD Type I

games while the other (Relative Value Iteration algorithm) is limited to use on non-FD

Type II games. The Jointly-Convergent Pure-Strategy algorithm works on the broad

spectrum of stochastic games described in this thesis, i.e., (non)-FD Type I, Type II and

Type III games. We test the algorithms in terms of speed and accuracy and reflect on

them including a disquisition of the risks surrounding some of the algorithms. We find

that the SciPy algorithm is superior to the Jointly-Convergent Pure-Strategy algorithm

in terms of accuracy and speed when computing the threat point in non-FD Type I

games. The Relative Value Iteration algorithm works better in terms of accuracy when

compared to the Jointly-Convergent Pure-Strategy algorithm but lags in terms of speed.

The Jointly-Convergent Pure-Strategy algorithm fits all types of games while finding

reasonably accurate solutions in a reasonable time.

v



VI ABSTRACT



Contents

Acknowledgements iii

Abstract v

List of acronyms ix

1 Research Design 1

1.1 Research objective and context . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Research framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Research questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.4 Thesis design and aim . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Game Theory Literature 5

2.1 The Origin of Game Theory . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 The Nash Equilibrium . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3 Repeated Games . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.4 Stochastic Games . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.5 Frequency-Dependent Games . . . . . . . . . . . . . . . . . . . . . . . 15

3 Building the algorithm 19

3.1 Earlier Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.2 From Markov Chain to Stochastic Game . . . . . . . . . . . . . . . . . . 20

3.3 Limitations game usage . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.4 Programming Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.4.1 Python . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.4.2 NumPy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.4.3 SciPy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.4.4 MDP Toolbox . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.5 Type I games . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.5.1 SciPy optimizer . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.5.2 Jointly-Convergent Pure-Strategy Algorithm . . . . . . . . . . . . 29

3.5.3 Visualizing the results . . . . . . . . . . . . . . . . . . . . . . . . 32

vii



VIII CONTENTS

3.5.4 Comparing the two algorithms . . . . . . . . . . . . . . . . . . . 34

3.6 Type II games . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.6.1 Relative Value Iteration Algorithm . . . . . . . . . . . . . . . . . . 37

3.6.2 Jointly-Convergent Pure-Strategy Algorithm . . . . . . . . . . . . 39

3.6.3 Visualizing the results . . . . . . . . . . . . . . . . . . . . . . . . 42

3.6.4 Comparing the two algorithms . . . . . . . . . . . . . . . . . . . 43

3.7 Type III games . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.7.1 Visualizing the results . . . . . . . . . . . . . . . . . . . . . . . . 53

3.8 Room for further improvements . . . . . . . . . . . . . . . . . . . . . . . 55

3.9 Practical implications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4 Conclusions and recommendations 57

4.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.2 Recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

References 59

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

Appendices

A Python Code containing the Algorithms 63

A.1 How to use the Python code - A short manual on the usage . . . . . . . 63

A.1.1 Using Python . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

A.1.2 Using the Python Code . . . . . . . . . . . . . . . . . . . . . . . 63

A.1.3 Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

A.1.4 An example of computations of a Type II game . . . . . . . . . . 64

A.2 Import packages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

A.3 Type I Game Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

A.4 Type I Example Games Code . . . . . . . . . . . . . . . . . . . . . . . . 68

A.5 Type II Game Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

A.6 Type II Example Games Code . . . . . . . . . . . . . . . . . . . . . . . . 91

A.7 Type III Game Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

A.8 Type III Example Games Code . . . . . . . . . . . . . . . . . . . . . . . 109



List of acronyms

AIT Action Independent Transition

CAIT Current Action Independent Transition

CSP Constant Stage Payoffs

CTP Constant Transition Probabilities

ESP Endogenous Stage Payoffs

ETP Endogenous Transition Probabilities

FD Frequency-Dependent

JCPS Jointly-Convergent Pure-Strategy

MDP Markov Decision Process

NaN Not a Number

RVI Relative Value Iteration

ix



X LIST OF ACRONYMS



Chapter 1

Research Design

We start by elucidating the design of our research. We use a well-known method

by Verschuren, Doorewaard, and Mellion (2010). Beginning by stating the research

objective and the surrounding context. In the second section we derive a framework

based on the research objective and context. In order to realize this framework we

state research questions (third section) used as a guideline throughout our endeavours.

Finally, we conclude by prescribing the structure of this thesis and its aim.

1.1 Research objective and context

Modern game theory is relatively new as a subject in science. Everyone with a little

background knowledge in the subject will relate game theory to persons like John Nash

Jr. and John von Neumann. The most well-known result in game theory is the Nash

equilibrium, but science has evolved and game theory has moved on. Neymann intro-

duced a new class in game theory called stochastic games. These stochastic games

have been at interest of game theorists all around the globe, but also the subject of

new discoveries. One of these discoveries was done in 2003, when Joosten, Bren-

ner, and Witt (2003) published research in the field of Frequency-Dependent games.1

Frequency-Dependent games are stochastic games in which the stage payoffs depend

on the history of the play. The major theorem in this paper involves so-called ‘threats’.

These play an important role in game-theoretical analysis in which they determine the

set of possible equilibria. Joosten (2009) stated: “Unfortunately, there exists no general

theory on (finding) threat points in FD-games, yet." During the years, more research

has been done in the domain of FD-games, e.g. (Mahohoma, 2014), (Joosten, 2015)

and (Joosten & Samuel, 2018). Even though the first and last examples focus on com-

putations within FD-games, none of these are able to state an exact threat point.

The introduction of Endogenous Transition Probabilities by Joosten and Meijboom

(2010) added a novel dimension to the framework of FD-fishery games making analysis

1See Section 2.5 for a background on FD-games.

1



2 CHAPTER 1. RESEARCH DESIGN

of such games more complex. This clearly leaves room for research on the topic of

computations of threat points in FD-games. One should see our research as the next

step into developing a general theory in finding threat points. We focus on the algorithm

building aspect of finding these threat points. Our research objective is to calculate the

threat point in ETP-ESP games by developing an algorithm.

1.2 Research framework

In order to complete our research objective we make use of a research framework. In

this research framework we describe a few important pillars on which it will rely. The

framework can be seen as a stepwise guide being followed in order to complete the

research objective. Our research framework is built on the following five pillars.

1. Gather and summarize relevant literature in the game-theoretical domain with a

focus on FD-games.

2. Search for and prepare programming tools necessary for the development of the

algorithms with a focus on speed.

3. Develop the algorithms.

4. Test the algorithms in terms of speed, accuracy and scalability.

5. Reflect and conclude on the research performed, propose possibilities for future

research.

The intended chronological element of our research framework should be clear.

We start with a literature study, continue with a search for programming tools which are

necessary for the next step: developing the algorithms. At last we test the algorithms

and conclude the research in order to give recommendations for later research.

1.3 Research questions

The research framework constructed in the last section serves as a basis for the de-

velopment of research questions. The research questions should result in knowledge

necessary for achieving the research objective (Verschuren et al., 2010). Each core-

question can be answered with the help of so-called sub-questions. In this research

we only ask one core-question which we define as the main research question. The

main research question is also a reflection of the research objective in question form.

We state the main research question as:

How do we compute threat points efficiently in ETP-ESP games?
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We answer this main research question with help of five sub-questions. These are:

1. What has been written in the literature about game theory and Frequency-Dependent

games?

2. Which programming tools are available for game-theoretical computations?

3. Which algorithms can find a threat point and how do they work?

4. How do the algorithms perform in terms of speed and accuracy when scaled to a

larger game?

5. What can we conclude and recommend based on this research?

As one can see, these sub-questions have a direct link to the research framework.

Thus, the answering of the sub-questions should result in completing the steps de-

scribed in the research framework which in its part should result in fulfillment of the

research objective.

1.4 Thesis design and aim

This chapter describes the research design. In the second chapter we elaborate on all

relevant literature surrounding the topic, we start with basic game theory in a gradual

fashion ending up at Frequency-Dependent games. Chapter 3 focuses on developing

the algorithm, starting with an explanation of the relevant programming tools and later

in the chapter the development, testing and practical implications. We conclude and

propose recommendations for future research in the fourth chapter.

Our aim of this thesis is to offer the reader a comprehensive summary of game

theory in order to cope with a potential lack of knowledge in this domain. The more

experienced reader could skip Chapter 2 and could continue at Chapter 3. Both expe-

rienced and inexperienced readers should be able to follow the main purpose of this

thesis, developing an algorithm for calculation of threat points in ETP-ESP games.
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Chapter 2

Game Theory Literature

In the previous chapter we laid a foundation for our research, but in this chapter we start

with the necessary background knowledge in the domain of game theory. We start at

the origin of game theory and progressively work towards FD-games. In between we

discuss important aspects like the Nash equilibrium, repeated games and stochastic

games in general. At the end of this chapter a non-expert reader should have the

necessary background knowledge in order to follow the steps taken in the development

of the algorithm in Chapter 3.

2.1 The Origin of Game Theory

A lot of scientific literature starts with cliché introductions on the complexity of the

world we live and breath in. Although it may be a cliché, it is true to a large extent.

In order to create structure in the chaos called life, scientists have developed theories

and models based on empirical evidence to explain the complexity of life. In social

sciences the focus is on explaining behaviour of individuals in a social context. Game

theory is a mathematical discipline which forms the (descriptive) basis of analysis of

rational decision makers in a strategic environment, in which their decisions have a

direct or indirect effect on their individual payoff. According to Hyksova (2004) the first

game-theoretical analysis was done by Charles Waldegrave in 1713 as documented in

Pierre Rémond de Montmort’s “Essay d’analyse sur les jeux de hazard”, it comprises

a strategic solution to the French card game le Her (Bellhouse, 2007).

5



6 CHAPTER 2. GAME THEORY LITERATURE

We limit ourselves in the remainder to the domain of non-cooperative games, we

start with an n players non-cooperative one-shot game in which n = 2. Players play a

game consisting of states, denoted by the state space S, a nonempty and finite set. In

a one-shot game players are limited to a game with only 1 state. Player 1 can choose

an action from a nonempty and finite action set Is when in state s ∈ S. Player 2 can

choose an action from a nonempty and finite action set Js when in state s ∈ S (Flesch,

1998).

Players can choose an action with probability 1, but they can also randomize by

using a mixed action. For player 1 we denote this mixed action by xs in state s ∈ S,

which is a probability distribution on Is. Player 2 can choose a mixed action ys in state

s ∈ S, which is a probability distribution on Js. In a one-shot game with two actions

per player, x ∈ ∆1 = {x ∈ R|xi ≥ 0 for i = 1, 2 and
∑2

i=1 xi = 1} and y ∈ ∆1 = {y ∈

R|yi ≥ 0 for i = 1, 2 and
∑2

i=1 yi = 1}. The combination of the (mixed) actions from

both players result in payoffs r1
s1
(i1

s1
, j1

s1
) for player 1 and r2

s1
(i1

s1
, j1

s1
) for player 2 (Flesch,

1998).

Now that we have a mathematical basis we look back at the year 1921. Émile Borel

published a few notes from 1921 until 1927 containing the first formalizations of pure

and mixed strategies, and even a first attempt at a minimax solution (Borel, 1927). But

the real breakthrough in game theory occured when Von Neumann and Morgenstern

in 1944 published their work. However this breakthrough was based on earlier work by

Von Neumann in 1928, this work already stated the minimax theorem, a revolution in

game theory:

Theorem Von Neumann (1928): “For a two-person zero-sum1 matrix game (denoted

by M ) in which player 1 chooses a mixed strategy denoted by p and player 2 a mixed

strategy denoted by q. There always exists a pair of mixed strategies (p∗, q∗) such that."

M(p∗, q∗) = max
p

min
q

M(p, q) = min
q

max
p

M(p, q).

1A zero-sum game is a game in which the payoff of one player is the negative payoff of the other
player and visa versa
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It is best to demonstrate this with an example, consider matrix game zero-sum M

which contains the payoffs for player 1 as2:
[

7 3

2 2

]

Figure 2.1: Matrix Game M .

Player 1 is the row player using strategy p and player 2 is the column player using

strategy q. First we look at maxp minq M(p, q). Player 1 wants to maximize his own

payoff and therefore prefers playing the first row over the second one. Given that

Player 1 uses his first action (row), Player 2, who wants to minimize the payoff of player

1, will play the right column over the left one because 3 is smaller than 7. The result

of maxp minq M(p, q) = 3. Player 2 who wants to minimize his opponents expected

payoffs uses his second action (column) because this action weakly dominates his first

action, meaning that no matter what Player 1 does, Action 2 always has a lower payoff

to 1 than the alternative3. The result of minimax is minq maxp M(p, q) = 3.

2We only show the payoffs for player 1 as a positive payoff, the payoffs for player 2 are the negative
payoff of player 1 because it is a zero-sum game.

3In general such strategies need not be pure.
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2.2 The Nash Equilibrium

Where von Neumann can be seen as one of the founding fathers of modern game the-

ory, John Nash Jr. (from here on: Nash) can be seen as an absolute rockstar in the

world of game theory. In 1951 Nash published his PhD. thesis. A major implication of

this thesis was also published in a note called “Equilibrium Points in N-Person Games"

(Nash, 1950). Nash won a Nobel Prize in Economics together with John Harsanyi and

Reinhard Selten in 1994. He received this prize for the discovery of the solution con-

cept for non-cooperative general-sum games. This discovery was later honoured by

calling it the Nash equilibrium. Nash stated the following.

Theorem Nash: “Every finite normal form game has at least one equilibrium point

in mixed strategies (Hyksova, 2004)."

Again let’s demonstrate this theorem with the help of two examples. In the first one

we demonstrate that in a non zero-sum game there exist two Nash equilibria that are

accessible by using a pure strategy for both players. Again player 1 is the row player

with payoff matrix A and player 2 is the column player with payoff matrix B.

A =

[

9 5

9 3

]

Payoff Matrix A for Player 1.

B =

[

1 5

8 5

]

Payoff Matrix B for Player 2.

We combine these matrices to end up with the bimatrix game:
[

9, 1 5, 5

9, 8 3, 5

]

Figure 2.2: Bimatrix Game [A,B], first (second) entry is the payoff to player 1(2).

In order to check whether a pure Nash equilibrium exists, we set the strategy of one

player on a fixed pure strategy and determine the best response of the other player. If

a best response of player 1 is located in the same matrix location as the best response

of player 2 then we can state that the corresponding actions for both players are a

pure Nash equilibrium. Because they are best responses for both players, no player

has the incentive to deviate from the Nash equilibrium. Applying this to bimatrix game

[A,B] gives us a new matrix in which we show the best responses of a player with a

checkmark.
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[

9, 1 5, 5

9, 8 3, 5

]

Figure 2.3: Bimatrix Game with pure best responses [A,B].

As can be seen in Figure 2.3 the bimatrix game [A,B] has two pure Nash equilibria,

one in which player 1 plays a pure strategy of playing the bottom row and player 2 the

left column. This pure Nash equilbrium is the Pareto optimal result4 in this game. The

other equilibrium is when player 1 plays the upper row with a pure strategy and player

2 the right column with a pure strategy. This equilibrium is a Pareto inferior result in

comparison to the other pure Nash equilibrium.

A pure Nash equilibrium does not have to exist in a bimatrix game, which we show.

Again we construct a bimatrix game in which player 1 is the row player with payoffs

in matrix A and player 2 is the column player with payoffs in matrix B, resulting in the

combined bimatrix game [A,B]:

[

3, 8 7, 5

8, 1 6, 2

]

Figure 2.4: Bimatrix Game [A,B].

Again we look for the pure best responses, resulting in the following bimatrix:
[

3, 8 7, 5

8, 1 6, 2

]

Figure 2.5: Bimatrix Game [A,B].

So Figure 2.5 shows that the bimatrix game [A,B] does not have a pure Nash

equilibrium. However, Nash showed that every bimatrix game in normal form has a

mixed Nash equilibrium. For example, player 1 chooses to play the upper row with

probability p and the lower row with probability (1 − p). Player 2 on the other side

chooses the left column with probability q and the right column with probability (1− q).

The solution for the mixed equilibrium is that player 1 plays strategy (1
4
, 3
4
) and player

2 strategy (1
6
, 5
6
). Player 1 receives a payoff of 61

3
and his opponent 23

4
.

4See for an explanation on Pareto efficiency Page 10.
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One of the greatest misconceptions surrounding the Nash equilibrium is that it is the

optimal outcome for both players in a game. The Nash equilibrium does not have to

be the highest possible payoff for an individual player nor for the two players. However,

it is the payoff for which each individual player has no rational incentive to unilaterally

deviate from. This is demonstrated by the use of the so-called prisoner’s dilemma.

In this dilemma two ‘future prisoners’ have the option to cooperate, i.e., not betraying

the other player by not telling about the crime, in order to avoid going to prison. The

other option is to defect, i.e., selling out the other player by telling. If both players

choose to defect, then both go to jail for nine years. If one player defects while the

other cooperates, then the player who cooperates is a free man while the other ends

up in jail for ten years, if both cooperate they will only serve a one year sentence. This

can be shown with the help of bimatrix game D representing the prisoner’s dilemma.

cooperate defect
[ ]

cooperate −1,−1 −10, 0

defect 0,−10 − 9,−9

Figure 2.6: Prisoner’s dilemma D.

As can be seen in Figure 2.6, the Nash equilibrium is pure, and implies that both

players will defect. Therefore both end up in prison for nine year while a better outcome

would be to cooperate by both. But because each individual player has an incentive

to cheat (if the other player cooperates) and to defect (the result is not ending up in

jail if the counter party does cooperate), the result is that both players end up with

a Pareto inferior result. Pareto inferiority is linked to the concept of Pareto efficiency,

in a situation in which Pareto efficiency has been achieved, no improvement in the

allocation of the payoffs of the players can be made without sacrificing the payoff of

another player. A solution is Pareto inferior if there is a possible improvement in payoffs

for a player without reducing the payoff of another player. In the case of the prisoner’s

dilemma, the players can improve their payoff bilaterally by cooperating and obtain a

Pareto optimal result, i.e., no additional Pareto improvements can be made.
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2.3 Repeated Games

In the previous section we briefly discussed so-called one-shot zero-sum games and

general-sum bimatrix games, i.e., games in which the game is only played once, re-

sulting in a single payoff. A repeated game has similarities to the one-shot game. It is

a one-shot game but now played for a finite or infinite number of times. The standard

assumption is that players are aware of all the (possible) actions and resulting payoffs

of the game until t. We call this complete information (Peters, 2015).

Repeated games have an advantage over one-shot games in the sense that they

can reach rewards5 which would normally be unattainable (Mertens, 1990). As we

stated earlier, repeated games can be played for a finite or infinite number of times.

In the first case this means that the game is played repeatedly for a finite number of

times T . The other option is to play the game forever. In game theory the infinitely

repeated type of game is studied more frequently than the finitely repeated game. A

reason for this is that it is usually unknown how long T is for a game. Also infinitely

repeated games could be more interesting because finitely repeated games can in

specific cases be rewritten as a one-shot game and lack interesting features (Vrieze,

2003b). However, both options result in cumulative payoffs, there are two common

methods for the analysis of these cumulative payoffs.

The first common method is the discounted reward criterion, with this criterion we

analyze the game by assuming that any future payoff is valued less than the same

payoff in the present. Therefore we discount future payoffs with a factor δ (0 < δ < 1).

We define the discounted criterion as follows. Player k receives a discounted reward

(γk) in a two player game in which player 1 plays strategy π and player 2 plays strategy

σ. The expected payoff of player k at time t under (π, σ) is defined by Rk
t (π, σ). The

discounted reward for player k is:

γk(π, σ) =
T
∑

t=0

δtRk
t (π, σ)

Another way to analyze repeated games is by stating that the player values the

present equally to any other period in the future. Therefore the player is indifferent with

respect to receiving a payoff now or at a future stage. In this case we are looking at an

infinite game with the limiting average reward criterion (Sorin, 2003). For player k this

is:
γk(π, σ) = lim inf

T→∞

1

T

T
∑

t=1

Rk
t (π, σ)

In this thesis we focus on the limiting average criterion. For repeated games the

use of this limiting average reward criterion could result in the same rewards as just

analyzing a single-period (bi)matrix game.
5Rewards are a result of cumulative payoffs based on a strategy pair, we introduce rewards in this

same page.
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2.4 Stochastic Games

We move on to stochastic games. Stochastic games were introducted by Shapley

(1953). Stochastic games are much more complex in comparison to repeated games.

The only thing in common is that they both are played for a(n) (in)finite number of

periods T (T ≥ 2). The difference lies within the state that game is in. In a repeated

game there is only a single state which is played for period T (T ≥ 2). In a stochastic

game the state can change, based on the transition probabilities of the state in which

the game currently is. Such transition probabilities represent the probability of moving

to the current state or going to another state. Collectively states can be seen as multiple

games that can be played but it depends on the transition probabilities whether they

are played or not. Characteristics of one-shot games, repeated games and stochastic

games are stated in Table 2.1.

Game type One-shot game Repeated game Stochastic game

T 1 ≥ 2 ≥ 2

States 1 1 ≥ 2

Table 2.1: Characteristics of different types of games.

In order to formalize the stochastic game in general we build further on the frame-

work of a non-cooperative game stated in Section 2.1. Again we have n-players

(n ≥ 2), but this time there are a multiple states denoted in the state space S. Player i

has k number of actions depending on the state being in. A strategy is stating exactly

to a player which action to play in each state at each point in time given any history of

the play. We usually denote a strategy with π for player 1 and σ for player 2. The prob-

ability of playing a state depends on the transition probabilities, denoted by matrix p. In

p the rows (r) represent the current states while the columns (c) are the possible future

states. An entry in p with row r and column c is the probability of ending up in future

state c from current state r. The rows in p should always sum up to 1 (
∑n

c=0 pr,c = 1).

The combination of states S and pair of strategies (π, σ) result together with transition

probabilities p in a reward set for players denoted by R.



2.4. STOCHASTIC GAMES 13

In order to make it conceivably we show a simplified example, taken from Samuel’s

Master Thesis (2017). The example concerns a two player, two state stochastic game.

The payoffs of both players in state 1 and state 2 are given by θS1
and θS2

.

θS1
=

[

16, 16 14, 28

28, 14 24, 24

]

θS2
=

[

4.0, 4.0 3.5, 7.0

7.0, 3.5 6.0, 6.0

]

Ending up in a certain state depends on transition probabilities p, which for both

states are given as:

pS1 =

[

0.8, 0.2 0.7, 0.3

0.7, 0.3 0.6, 0.4

]

pS2 =

[

0.5, 0.5 0.4, 0.6

0.4, 0.6 0.15, 0.85

]

This example game is a ‘commons’-type game (Hardin, 1968). In a ‘commons’

game there is a renewable common-pool resource, players share this common-pool

and use it for their individual gain which may result in depletion of the resource. A type

of game modelled as a ’commons’-type game is the fishery wars, analyzed by Levhari

and Mirman (1980) and Joosten (2007). In their fishery wars game the players catch

fish from the ocean, but overfishing can result in a depletion of the fish stock. In the

example game the depletion of the fish takes place in state S2, while state S1 represents

a higher amount of fish in the common-pool. Overfishing not only results in a higher

probability of ending up in state S2, but it also affects the transition probabilities. When

overfishing, the transition probabilities change, the transition probability of ending up in

state S2 increases while the probability of ending up in state S1 decreases.

However, the big question is now, how do we analyze these games? Shapley (1953)

proposed using the discounted criterion and proved that there is a value6 for the infinite

zero-sum game and also showed that minimax and maximin solutions exist. Gillette

(1957) introduced the limiting average criterion and showed that a value exists for infi-

nite zero-sum games with perfect information. The absolutely compelling proof came

from Mertens and Neyman (1981). They showed that a value exists for all zero-sum

stochastic games and Neyman (2003a) demonstrated that all stochastic games have

a minimax and maximin solution.

6The value of a game is the reward of the game when M(p∗, q∗) = maxp minq M(p, q) =

minq maxp M(p, q)
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Types of strategies and Folk Theorem

Finding an equilibrium, a value, a minimax or a maximin solution depends on the

type(s) of strategy being chosen by both players. In stochastic games several types

of strategies are possible, which we now describe.

Behavioral strategies are strategies in which a player takes into account the history

of play leading up to a certain state. Therefore behavioral strategies are history de-

pendent and require a player to remember the history of play in order to determine the

optimal strategy.

Markov strategies are strategies in which the player does not take the entire history

of play into account, but decides on the basis of the current state the play is in and

current period how to play.

Stationary strategies are strategies in which the decision of the player does not de-

pend on the history of play, nor on the current time, it only depends on the current state

being in. Therefore a player always plays the same (mixed) action in each state.

Behavioral strategies are the most complex strategy type described here because they

require a memory for the player. For infinite stochastic games this requires a large

memory, and therefore a lot of storage capacity. However behavioral strategies are not

always necessary. In this thesis we limit ourselves to irreducible stochastic games un-

der the limiting average criterion. Vrieze (2003a), showed that for irreducible stochastic

games stationary strategies are optimal. For reducible stochastic games, the zero-sum

game ‘Big Match’ by Blackwell and Ferguson (1968) shows that not all limiting average

stochastic games have a value that corresponds to a stationary strategy.

Another important result in literature is the Folk Theorem, stating that subgame per-

fect Nash equilibria can be reached in repeated games. When players are patient and

far-sighted (as is the case with the limiting average criterion) then, as long as the pay-

offs are feasible and strictly individually rational (Levin, 2002), any outcome satisfying

the conditions can be obtained by using a Nash equilibrium. The difference with playing

a mixed action in a one-shot game is that in practice a mixed action will be converted

to a pure action, one cannot actually randomize, but only randomize the probability that

a certain action is chosen. Therefore, the Folk Theorem and repeated games define

necessary conditions in order to actually obtain rewards. The Folk Theorem therefore

forms a basis for further analysis of equilibria in stochastic games.
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2.5 Frequency-Dependent Games

This brings us to the class of Frequency-Dependent games, introduced in 2003 by

Brenner and Witt. Frequency-Dependent games are infinitely repeated games in which

the stage payoffs depend on the frequencies of play up until that stage and including

the current period in time. The first analysis was done by Brenner & Witt (2003), but

Joosten et al. (2003) continued by deepening on feasible results and equilibria.

This was done by introducing the concept of jointly-convergent pure-strategy pairs.

An important part of this is the relative frequency vector denoted by xt. The relative

frequency vector xt states the relative frequency of play ending up at a certain payoff

cumulatively at stage t. As an example we look at a simple 2x2 bimatrix game. The

relative frequency vector at stage t for this game looks as follows:

xt =

[

xt
1 xt

2

xt
3 xt

4

]

Suppose we play this bimatrix game for a period t = 100, the strategy pair (π, σ)

results in the game ending up in x1 for 75 times, in x2 20 times and x4 5 times. The

result is the relative frequency vector x100 with:

x100 =

[

0.75 0.20

0.00 0.05

]

For which:

i=4
∑

i=1

xi = 1

The relative frequency vector xt therefore changes based on frequency of the his-

tory of play and as stated earlier plays a large role in the concept of jointly-convergent

pure-strategy pairs. A pure strategy is a strategy in which at any stage t in any state

a player chooses a certain action with probability 1. A strategy pair (π, σ) is jointly-

convergent for strategy of player 1 π, strategy of player 2 σ and relative frequency

vector x if and only if (Joosten et al., 2003):

lim sup
t→∞

Prπ,σ[|x
t
i − xi| > ε] = 0

Jointly-convergent pure-strategy pairs are strategy pairs for which the relative fre-

quency vector converges to a vector consisting of fixed numbers with probability 1

when t goes to infinity (Billingsley, 2008). Based on this it was possible to compute

the set of feasible jointly-convergent pure-strategy rewards. The main result however

of jointly-convergent pure-strategy pairs is the following:
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Theorem: “Each pair of individually-rational jointly-convergent pure-strategy re-

wards can be supported by an equilibrium. Moreover, each pair of jointly-convergent

pure-strategy rewards giving each player strictly more than the threat-point reward, can

be supported by a subgame-perfect equilibrium. (Joosten et al., 2003)"

Key in this theorem is the so-called threat point reward. The threat point v = (v1, v2)

is defined for two players as the point in which v1 = minσ maxπ γ
1(π, σ) and v2 =

minπ maxσ γ
2(π, σ). So both players can threaten each other by minimizing the pay-

off of the other player while the player under threat tries to maximize its own payoff.

The threat point is the absolute minimum players can reach as a payoff equilibrium

and therefore each individual player has an individual rational payoff if he can at least

receive the threat point reward (Joosten et al., 2003). But the major result by Joosten

et al. (2003) is the following theorem:

Theorem: “Each pair of rewards in the convex hull of all individually-rational jointly-

convergent pure-strategy rewards can be supported by an equilibrium. Moreover, each

pair of rewards in the convex hull of all jointly-convergent pure strategy rewards giving

each player strictly more than the threat-point reward, can be supported by a subgame-

perfect equilibrium (Joosten et al., 2003)."

The threat point is key in finding equilibria supported by jointly-convergent pure-strategy

rewards. Threat points can be calculated analytically (e.g.,(Joosten & Meijboom, 2018))7,

but analytical methods may be too cumbersome, and as the complexity of a game in-

creases the need for a fast algorithmic solution to compute the threat point increases

equally. Joosten and Samuel (2018) have explored the domain of stochastic games

and tried to order them. Games are divided into three major categories. Type I, Type II

and Type III games. Type I games are games in which the play is repeated and transi-

tion probabilities per state are fixed, Type II games are stochastic games with constant

transition probabilities and Type III games are stochastic games in which the transition

probabilities are endogenous, which means that they depend on the history of play.

7The first working paper by Joosten and Meijboom was released in 2010, but published for the first
time in a book in 2018.
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Within these three categories there is also a distinction in whether the payoffs

are frequency-dependent. If they are frequency-dependent we call them Endogenous

Stage Payoffs (ESP) games. Without the frequency-dependent stage payoffs they are

called Constant Stage Payoffs (CSP) games. The same goes for the transition proba-

bilities, with frequency-dependent transition probabilities they are called Endogenous

Transition Probabilities (ETP) games and Constant Transition Probabilities (CTP) games.

Combining these in a table has been done by Joosten and Samuel (2018) and gives

the following:

CTP ETP

Type I

(p0)

Type II

(x, p0)

Type III

(x, p(x))

CSP

(θ0)
AIT games Stochastic games

CAIT-games

ETP-games

ESP

(θ(x))

FD games

AIT FD games
Stochastic FD games

CAIT-ESP games

ETP-ESP games

Table 2.2: Ordering of different types of stochastic games (Joosten & Samuel, 2018).

Stochastic Frequency-Dependent (FD) games were first named this way by Mahohoma

(2014), Joosten and Samuel (2018) call this term “a tautology in the broad interpreta-

tion." Mahohoma (2014) analyzed stochastic FD games while Joosten and Meijboom

(2018) analyzed ETP-CSP games. Joosten and Samuel (2018) were the first to calcu-

late feasible rewards in ETP-ESP games. In general, the use of the term Frequency-

Dependent has been expanding over the years.

The first FD games introduced by Brenner and Witt (2003) and Joosten et al. (2003)

were additive. Later, Joosten (2007) introduced an adaptation on the Small Fish Wars

which contained FD games that are multiplicative and nonlinear. Joosten (2009) in-

troduced the first FD games which are jointly frequency dependent. In 2010, the first

FD games with Endogenous Transition Probabilities were developed by Joosten and

Meijboom. The last and most complex development in the domain of FD games was

tackled by Joosten and Samuel (2018) in the domain of ETP-ESP games.

Last but not least we clarify AIT and CAIT games. AIT stands for Action Indepen-

dent Transition (AIT) (probability) games and CAIT games are Current Action Indepen-

dent Transition (CAIT) (probability) games. AIT-games are games in which the play is

repeated and for which transition probabilities are fixed and equal in each state, i.e.,

independent from the action pair chosen. The main focus of this thesis is to develop

a threat point algorithm which is fast and suits all of these types of stochastic games.

Therefore we start at the simpler Type I games, then continue with Type II games and

finally end up with Type III games. As the complexity of the games increases, the

complexity of the computations also rises.
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Chapter 3

Building the algorithm

In this chapter we build the algorithm from the ground up, we start by introducing earlier

work which partly forms a basis for the algorithm created. Then we clarify the relation

between Markov Chains, Markov Decision Processes and Stochastic Games. We in-

troduce necessary limitations on stochastic games in order for our algorithm to work

as intended. We also introduce the programming tools used to develop the algorithm.

Once these things are clear, we start by describing the algorithm(s) for Type I games,

then continue with Type II games and end with Type III games. All code corresponding

to the algorithms can be found in Appendix A.

3.1 Earlier Work

Before we start with the building blocks of the algorithm, we look at earlier work done

in the area of computations in stochastic games. In literature, research has been con-

ducted on algorithms for stochastic games. Raghavan and Filar (1991) have conducted

a survey in which they limited to algorithms for zero-sum and non-zero-sum stochastic

games with complete information and stationary strategies. A lot of research has been

done, but mostly regarding the discounted reward criterion (Breton, Filar, Haurle, &

Schultz, 1986, e.g.). Vrieze (1981) has developed a linear programming approach to

an undiscounted stochastic game based on earlier algorithms by Filar and Raghavan

(1979). However it is unclear whether these approaches work on the broad range of

stochastic games and if they do, are they able to find the so-called threat point in every

type of game?

In 2014 Mahohoma tried to partially overcome this in his Master thesis. He analyzed

so-called stochastic FD-games (Type II, CTP-ESP). Part of his thesis is a simulation

based approach in MATLAB in order to determine equilibria, feasible rewards but also

threat points. However, one of the problems in the approach taken by Mahohoma lies

in the simulation approach and the resulting complexity of the code. As an example we

19
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look at the determination of threat points. Mahohoma simulates the stochastic game

for a fixed period t, number of times n. Therefore a total of n simulation results is

combined and gives as an average an approximation of the threat point. Not only does

this algorithm lack the ability to give an exact result, the algorithm is also of a high

computational complexity O(n4). This does not mean that the approach of Mahohoma

is useless, it could be useful in games in which non-stationary strategies are the only

way of reaching the threat point. However, when looking at stochastic games in the

broader sense, in games in which stationary strategies always cover the threat point,

we think that this could be done in an exact and more optimized matter.

The most recent work however has been done by Joosten and Samuel (2018).

Samuel (2017) did a first analysis in her thesis. There she started the work which

is also partly used for the calculation of threat points in this thesis. Samuel defines

three algorithms in MATLAB used for computing feasible rewards in Type I, Type II and

Type III games, with or without FD payoff. The basis for the computations of the set

of feasible rewards are jointly-convergent pure-strategy rewards in which the algorithm

is limited to games with communicating states.1 This work has been formalized and

analyzed more rigorously by Joosten and Samuel (2018). The algorithm works well

and the threat point is part of the set of feasible rewards found. However, the algorithm

does not explicitly find this threat point. Another potential problem with the algorithm is

that the computational running time for a large set of rewards possibly is unnecessarily

long.

3.2 From Markov Chain to Stochastic Game

In literature there is a clear link between Markov chains on one side, and stochastic

games on the other end of the spectrum. Markov chains were introduced by and named

after the Russian mathematician Andrey Markov (1971). Markov chains are stochastic

processes in which the process is memoryless. The Markov property states that it does

not matter what the history is before the present, the only thing relevant for the future

is the present. We denote a random variable in a stochastic process at time t by Xt,

the current value of the variable is denoted by x. Mathematically, memorylessness has

the following effect on a stochastic process.

Pr(Xt+1 = x|X1 = x1, X2 = x2, . . . , Xt = xt) = Pr(Xt+1 = x|Xt = xt) (3.1)

1See next paragraph on communicating states
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Definition Aperiodic Markov Chains: “A Markov chain is said to be aperiodic

if all its states are aperiodic. Otherwise the chain is said to be periodic (Häggström,

2002)."

Figure 3.1 is an aperiodic Markov chain. It is not the case that after a certain fixed

number of rainy days that there always will be a sunny day. Aperiodicity and irreducibil-

ity are two properties which form the basis of an interesting insight into Markov chains.

When an aperiodic and irreducible Markov chain is run for a long time, it is unclear

in which state the Markov chain is at a certain period in time. However, running the

Markov chain for an infinite period of time will result in the Markov chain settling in a

stationary distribution. This stationary distribution describes the probability of visiting

a certain state when time goes to infinity. Therefore with great precision we know the

frequency of being in a certain state when the Markov chain is run for an infinite period

of time. We therefore present an important resulting theorem which forms an important

part of this research:

Theorem: “For any irreducible and aperiodic Markov chain, there exists at least

one stationary distribution (Häggström, 2002)."

But how are Markov chains linked to stochastic games? Neymann described that

“Markov chains and Markov decision processes are special cases of stochastic games

(Neyman, 2003a)." Markov chains are necessary to model the dynamics of a system.

They state the transition probabilities of a stochastic game. In between the Markov

chain and the stochastic game is the Markov Decision Process (MDP). The MDP is a

reduction of the stochastic game in which there is only one player. Therefore the player

is able to control the play and hence the corresponding payoffs on his own. Filar and

Vrieze (1997) describe the stochastic game in terms of a competitive MDP.

In the case of one player under the limiting average criterion they describe the MDP

as follows. The player starts in initial state s while playing stationary strategy f , the

reward at time t is defined by Rt. The value of this irreducible limiting average MDP is

defined as (Filar & Vrieze, 1997):

vα(f) := lim
T→∞

[

( 1

T + 1

)

T
∑

t=0

Esf [Rt]

]

The individual rational player always wants to maximize his own payoff. So the

problem is an optimal control problem in which the player wants to:

max vα(f)
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This problem can also be seen as an optimal control problem in which the player

tries to control the process in such a matter that his own value is maximized (Blackwell,

1962). In literature these MDP models are not only used for stochastic games but for

a wide range of applications. They are used for decision-theoretic planning, learning

robot control and ofcourse stochastic games. MDPs are the standard for learning se-

quential decision making (Otterlo, 2009). Algorithms in order to find optimal values for

an MDP are divided into two categories. Model-free and model-based algorithms. The

first category is also known as reinforcement learning and generates approximations

while the second one is exact and uses dynamic programming as a basis (Blackwell,

1962), (Otterlo, 2009).

Because we are dealing with stochastic games in which we assume perfect infor-

mation we have all information available in order to calculate an exact result. We shall

therefore only look at model-based algorithms. These algorithms work on optimizing

value functions by either iterating over the value function (value iteration) or by chang-

ing the so-called policy (policy iteration). The policy of an MDP can be seen as a fixed

pure strategy which always is taken when in a certain state. At the heart of these algo-

rithms is the Bellman equation. The Bellman equation defines the relation between the

value function and the recursive process in order to determine the result of the value

function (Otterlo, 2009). The equation is stated as (Otterlo, 2009):

V π(s) = Eπ

{

rt + V π(st+1)|st = s
}

=
∑

s′

T (s, π(s), s′)
(

R(s, a, s′) + V π(s′)
)

In which policy is represented by π, the transitions by T , current state by s, rewards

by R and current reward by r. This Bellman equation is important when we come

to an algorithm for Type II games. But for now it is most important to acknowledge

that stochastic games can be seen as competitive MDPs in which Markov chains are

responsible for the transition dynamics between the states.

3.3 Limitations game usage

In literature on stochastic games several classes of games have been distinguished.

Flesch (1998) gives an overview of the different types of stochastic games. He defines

eight types of special classes and shows important results for these games in both the

zero-sum case and general-sum case. Without going into much detail on the char-

acteristics of these special classes we only focus on important results. The zero-sum

cases of these special classes show mostly that there are optimal stationary strategies.
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For the general-sum case there exist ε-equilibria2, but optimal stationary equilbria are

only known to exist in a select number of cases (Flesch, 1998).

We limit ourselves in the creation of the algorithm to types of games for which we

know that the algorithm works. Earlier we stated Markov chain properties which guar-

antee a stationary distribution of the chain, i.e., irreducibility and aperiodicity. There-

fore we focus on games in which the Markov chain governing the transition matrix is

ergodic.3 Games with absorbing states or more than one ergodic set are currently left

out of scope. This however, does not mean that the algorithm constructed does not

cope with any of the special classes described by Flesch (1998). We think that this

leaves room for future research. For now we focus on the above stated characteristics

and type of games displayed in Figure 2.2. We limit ourselves to two-player, two-state

games.

3.4 Programming Tools

Creating an algorithm has to be done with the help of programming languages and

tools. Earlier we stated that work has been done by Mahohoma (2014) and Samuel

(2017) in MATLAB. We choose to deviate from MATLAB and take a different approach.

First, MATLAB is a commercial programming language used mostly in the educational

domain, but because of the commercial licensing necessary to run, it limits the appli-

cability of the algorithm without a license. We are however in favor of free open-source

solutions. Secondly, because MATLAB is a commercial product we cannot always get

a grasp on what is happening under the hood of the program. In case of algorithmic

optimization this can be problematic. So a choice has been made to not continue us-

ing MATLAB but to transfer to Python. We describe Python and the other programming

tools used briefly to give the reader an impression of their possibilities.

3.4.1 Python

We first introduce the main programming language used. Python was developed in

the early 90’s by Guido van Rossum. The goal of Python is to provide easy and un-

derstandable syntax, which should result in highly readable code. Python does this by

using indentation as a major part of the programming syntax. In comparison to other

programming languages, Python has a dynamic type system, i.e., that Python does

not require the programmer to define the type of variables used. This also improves

readability a lot. On the other side, Python is an interpreted language and also a rather

slow one. In comparison to C++ or Java, Python lacks raw speed. However, Python

2ε-equilibria are equilibria that approximately satisfy the condition associated with the Nash equilib-
rium. The incentive for a player to deviate from this equilibrium is ε small.

3Ergodic Markov chain are always irreducible and aperiodic
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is a flexible language for which additional packages can be used to cope with this. A

lot of additional and highly optimized packages are developed for Python and can be

used.

3.4.2 NumPy

One of these packages is NumPy and was introduced in 2005 into Python. NumPy

is written in C and offers Python users multi-dimensional array and matrix tools. It is

seen as the go to solution for numerical computations with high-level4 mathematical

functions. Because NumPy has been written and compiled in C the operations are

comparable to MATLAB in terms of speed. NumPy is also open-source and develop-

ment is ongoing, so it is well-suited for the building of the algorithm in this thesis.

3.4.3 SciPy

Another comparable package is SciPy, SciPy is based on NumPy and uses a lot of at-

tributes from NumPy in order to provide scientific computing functions. SciPy contains

for example linear algebra functions and optimization functions using linear program-

ming.

3.4.4 MDP Toolbox

The last tool used is the Python MDP Toolbox. This toolbox contains multiple algorithms

(model-free and model-based) which can be used in order to solve an MDP. Most

algorithms are written with the help of NumPy and therefore speed should not be an

issue.

3.5 Type I games

We start building the algorithm by looking at Type I games. They are simple in essence

because the play in these games is repeated. This makes Type I games less hard to

analyze in comparison to Type II, let alone Type III games. But first we should state how

we enter a game into the algorithm(s). We use NumPy in order to declare matrices. In

Type I games, only two things are relevant when entering the game into an algorithm.

Most important are the reward matrices for each player, the reward matrices display the

payoffs that a player can achieve when playing pure strategies. Next is the frequency-

dependent function, the frequency-dependent function declares what the relation is

4High-level in this sense means that the programming language is of a higher abstraction in compar-
ison to low-level programming languages or machine language.
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between a potential change in payoff and the frequency of play of certain strategy

combinations. Because both can be defined in several ways, we adapt to the model

used by Samuel (2017). Samuel (2017) uses a game in which the Nash equilibrium is

also Pareto superior. However, she states that when playing this equilibrium this will

eventually have an impact on the renewable common-pool resource and will therefore

influence the payoff in the future (Samuel, 2017).

The combined payoff matrix used in order to test the algorithm is as follows:

θS1
=

[

16, 16 14, 28

28, 14 24, 24

]

Samuel also created a linearly decreasing function as the frequency-dependent

function. This was specifically created for the game stated above, so we also use this

function in order to test the algorithm within this thesis.5

The frequency-dependent function for the Type I game is determined by:

FDt
I = 1−

1

4
(xt

2 + 2xt
3)−

2xt
4

3

Hence, if the payoffs are frequency-dependent, they become:

θtS1
= FDt

I ·

[

16, 16 14, 28

28, 14 24, 24

]

The upper-left corner of the payoff matrix (with payoff 16 to both players) can be

seen as the responsible result of the game for which the depletion of the common-

pool resource is non-existent. The upper-right corner results in a slight depletion, while

the bottom-left corner is double the depletion compared to the upper-right corner. The

worst outcome for the common-pool resource would be the bottom-right corner, it would

result in the largest depletion effect on the renewable common-pool resource. There-

fore the players also have to take into account the long-term effect on the common-pool

resource.

But now we focus on the building of the algorithm. Because there are different ways

to skin a cat, there are also different ways to build an algorithm. We have tested two

approaches and will start with the approach which uses a SciPy optimizer. The second

approach is an adaptation of the algorithm by Joosten and Samuel (2018).

5Other games were tested by the author, but for the sake of simplicity we keep it at just one game
within the thesis
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3.5.1 SciPy optimizer

SciPy as stated earlier is home to scientific computing packages. One of these is

the optimization package. The optimization package contains several mathematical

optimizers which are used for finding local or global optima. Mostly these optimizers

rely on methods which calculate derivatives in order to find the optimum of a function.

However a problem with these methods is that they can get stuck in local optima which

could potentially not be the global optimum (Knowles, Watson, & Corne, 2001). Using

these optimizers therefore has an inherent risk, which is that they provide possible

sub-optimal solutions.

For Type I games with no frequency-dependent function this problem is redundant.

Type I games as stated earlier are simple games which are repeated for a(n) (in)finite

number of periods. Therefore optimizing over the payoffs is like optimizing a linear

function when searching for a minimum. We start by using the optimizer for non-FD

Type I games.

Because we are looking at the threat point for two players we start by restating what

the threat point is. The threat point v is the point in which player 1 plays strategy π and

player 2 plays strategy σ for which:

v = (v1, v2) with:

v1 = min
σ1

max
π1

γ1(π1, σ1)

v2 = min
π2

max
σ2

γ2(π2, σ2)

So v1 (2) is the amount which player 1(2) can guarantee himself if player 2(1) tries to

minimize the payoff of player 1(2).

In order to find the threat point we start in Python by initializing the strategy of the

player who is threatening the other player with an empty strategy (an array containing

only zeros). Then we have to set a condition for which the stationary strategy must

hold. This condition declares that the probability assigned to all possible actions within

the strategy must sum to 1. For example, if we have a game with one-state and two

possible actions for player 2, if σ1, σ2 are the representation of player 2 choosing re-

spectively action 1, action 2 then

2
∑

i=1

σi = 1

So again, the player has to choose a stationary strategy in which there is a summed

probability of 1 over all possible actions. Additionally we have to declare to the algorithm

that the bounds for assigning a probability to an action lie between 0 and 1:
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0 ≤ σi ≤ 1

We also declare a threat function, this is the function that needs to be optimized.

In this case we first multiply the rewards with the stationary strategy chosen by the

threatening player, i.e., for v1 we multiply γ1 with σ1. Therefore function v1 has the form:

v1 = max
π1

(γ1 · σ1)

And for v2:

v2 = max
σ2

(γ2 · π2)

This threat function is then applied within the optimizer, together with the sum con-

straint and the boundary conditions. The optimizer adjusts the strategy for the player

under threat in order to receive the maximum reward possible. The optimizer is run

based on sequential quadratic programming and finds a solution based on the given

input. Summarizing the algorithm works as follows:

Algorithm 1 Threat point algorithm Type I non-FD game with SciPy optimizer.

Input: Reward matrix Player 1, Player 2

Output: Threat point v = (v1, v2)

1: Declare that strategies must sum to 1

2: Declare that each action has a probability bound between 0 and 1

3:

4: Initialize strategy pair σ1

5: Declare threat function v1

6: Run SLSQP optimizer with constraints and bounds for v1

7: Print the result of v1

8:

9: Initialize strategy pair π2

10: Declare threat function v2

11: Run SLSQP optimizer with constraints and bounds for v2

12: Print the result of v2

13:

14: Return threat point v = (v1, v2)

Running this algorithm for the example game stated above finds the threat point

in 0.005 seconds6. The algorithm returns as a threat point v = (24, 24), which is the

6Running time is dependent not only on the algorithm used, but also on the CPU and RAM within the
computer
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correct threat point for this game. We have confirmed this by computing the maximin

value of the game, which was 23.9. We were not able yet to incorporate the frequency-

dependent function into the SciPy algorithm. We have looked into multiple methods but

have not found an efficient and satisfactory solution.

3.5.2 Jointly-Convergent Pure-Strategy Algorithm

As stated earlier, the previous algorithm is one way to find the threat point. We have

developed another algorithm based on earlier work by Joosten and Samuel (2018).

However, we keep in mind that the implementation of Samuel (2017) could be opti-

mized further. This algorithm also contains necessary building blocks for the algo-

rithms of Type II and Type III games. Therefore we gradually build the algorithm and

state necessary functions for all algorithms (Type I, II and III) in this section.

We start with the first element. Again we want to fix the strategy for the player who

is threatening the other player. In this algorithm however, we want to draw random

strategies from a β-distribution. We draw them from the β-distribution because the β-

distribution has nice properties. One of these is that when set accordingly (α = β = 0.5)

the β-distribution tends to draw more values at the edges of the distribution (at 0 and

1). In these ‘less likely’ values there is a higher chance that there are more interesting

things to occur (Samuel, 2017).

Function wise we built the following function:

Algorithm 2 Function: Draw Random Strategy.

Input: Total points to generate, number of total actions for player who threatens

Output: Random strategy matrix

1: Draw points number of strategies with a length of number of total actions from a

β-distribution with (α = β = 0.5)

2: Normalize the drawn strategies, such that each individual strategy sums to one

3: Return the random strategy matrix

Samuel used the β-distribution to draw frequency vectors, but she implemented this

with an unoptimized for-loop making computing time much longer than necessary. In

this version we vectorize the code as much as possible in order to improve computing

speed. Vectorization delivers a direct improvement in computing speed by reducing

complexity of code.

Now that we have a function to draw random strategies for the player who threat-

ens the other we also have to build a function which is a best reply. Hordijk, Vrieze,

and Wanrooij (1983) state that the optimal response to a mixed stationary strategy is

always a pure stationary strategy. Because the best reply is always a pure stationary
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strategy, we only consider pure stationary strategies for the player who is being threat-

ened. Therefore we have to convert the strategy of the player who is threatening into a

frequency vector based on the pure stationary strategy reply of the player under threat.

Based on this we built a function which sorts strategies into frequency vectors. For

each individual player we built a separate function, but this is due to storage differences,

in essence they are comparable. The function contains:

Algorithm 3 Function: Create Frequency Vector.

Input: Total points generated, number of total actions for both players, random strategy

matrix

Output: Frequency pairs based on pure best replies from player under threat

1: Initialize frequency vector with dimensions: (total number of points · total number of

actions Player 1 , total number of actions Player 1 · total number of actions Player

2)

2: for i in range total number of actions player under threat do

3: for j in range total number of actions threatening player do

4: if v1 is searched then frequency vector[total number of points · (i − 1):total

number of points i,(number of actions player 2 · i)+j] = random strategy matrix[:,j]

5: end if

6: if v2 is searched then frequency vector[total number of points · (i − 1):total

number of points i,(number of actions player 1 · j)+i] = random strategy matrix[:,j]

7: end if

8: end for

9: end for

10: Return frequency vector

The result is a frequency vector in which only the pure stationary best replies of

the player under threat contain a non-zero frequency of play. As an example, if a

player under threat has two pure stationary strategies (as an example: left and right)

as a reply, then if there are 200 random strategies drawn for the threatening player,

the result is 400 frequency pairs in the frequency vector. The first 200 represent the

first (left) pure stationary strategy of the player under threat, the second 200 represent

the other (right) pure stationary strategy. We visualize this with an example, suppose

the player threatening plays a mixed stationary strategy in which up is played with

probability 0.8 and down with probability 0.2. Algorithm 3 then sorts this strategy in

two best replies (left and right) for the player under threat. Resulting in the following

frequency matrix, shown in Figure 3.2:
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[

0.8 0

0.2 0

]

and

[

0 0.8

0 0.2

]

(3.2)

Figure 3.2: Best reply frequency matrices.

There is a trade-off taking place in this frequency vector function. By creating this

function it was inevitable to use a for-loop. Because we want to create a function which

can scale with larger games with more actions, we had to use a for-loop. However,

this for-loop was done with a NumPy for-loop, an optimized way of running a for-loop

in large matrices. Performance gains can be made if the number of actions for a game

is always fixed at the same number, in those cases a hard-coded function without for-

loops will result in a significant gain in computational performance.

At last we need to build a function which stores all the corresponding drawn random

mixed strategies with pure best responses into a logical matrix which makes extracting

the threat point easy. Therefore we built a function called payoff sort. This function

sorts the payoffs which are computed from the generated random mixed strategies

based on there relationship. So the function stores all pure best replies to a certain

drawn strategy in the same row. Function wise this has resulted in the following:

Algorithm 4 Function: Payoff sort.

Input: Total points generated, payoff matrix, total number of actions

Output: Sorted payoff matrix

Initialize empty sorted payoff matrix (number of points, number of actions)

for x in range total number of points do

for i in range total number of actions do

Sorted payoffs[x,i] = payoff matrix[points · i+ x]

end for

end for

Return sorted payoff matrix

Now we have all essential functions in order to construct the final algorithm which

calculates the threat point for a Type I (non)-FD game. We construct the algorithm in

such a way that it incorporates the frequency-dependent function for the payoffs. We

combine the above stated functions in order to construct the following algorithm:
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Algorithm 5 (Non)-FD Type I threat point algorithm.

Input: Type I Game, total number of points, activate FD function

Output: Threat point

1:

2: If v1 is calculated, then X = 1, Y = 2,

3: If v2 is calculated, then X = 2, Y = 1

4:

5: Turn reward matrix Player X into flattened reward vector

6: Threatening strategies Player Y = Draw Random Strategies

7: Best response Player X frequency vector = Create Frequency Vector

8: if Activate FD function = True then

9: Activate and Calculate FD payoff Function result

10: end if

11: Payoffs Player X = Sum over all columns of: (Frequency Vector per row · flattened

vector Player X)

12: if FD Function is active then

13: Element wise multiplication of FD payoff function result with Payoffs Player X

14: end if

15: Sorted payoff matrix = Payoff sort

16: Pick the maximum value of each row of the sorted payoff matrix as best response

of Player X

17: Pick the minimum value over all rows as the result of vX

18:

19: Return threat point v = (v1, v2)

Filling in a total number of points generated of 100 and the FD payoff function as

not active results in a threat point of approximately (24.009, 24.0006) in roughly 0.006

seconds. When activating the FD payoff function the algorithm finds a threat point with

100 points in roughly the same amount of time with as a result (10.506, 8.0002).

3.5.3 Visualizing the results

In order to give an impression of the threat point within these games, we visualize

both the threat point and the surrounding reachable payoffs for the players. We use

the algorithm by Joosten and Samuel to calculate the set of rewards surrounding the

threat point. We use the SciPy optimizer to calculate the threat point for the Type I

non-FD game and the Jointly-Convergent Pure-Strategy (JCPS) algorithm for the Type

I FD game.
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The effect of the depletion of the common-pool resource can clearly be seen in

Figure 3.4. In this game in which the FD payoff function is activated the players still

play the same payoff in case of the threat point, which is the bottom-right corner of

the example game resulting in the depletion of the common-pool resource. The result

of this depletion effect is that even the lowest possible pure payoff (16, 16) in the non-

FD situation is now a Pareto optimal solution. The players can threaten each other

by depleting the common-pool resource and after wards can reach several payoffs

denoted by the black lines north-east of the threat point.

3.5.4 Comparing the two algorithms

The question that still is unanswered is: which of the algorithms should we use for

Type I games? For Type I FD-games it is quite easy to choose, because the SciPy

algorithm does not incorporate FD payoff functions we cannot use this algorithm for

Type I FD-games. However, for Type I non-FD-games we have a choice between

the SciPy algorithm and the jointly-convergent pure-strategy algorithm. We test both

algorithms in terms of running time and decimal accuracy. We construct three games

to test:

1. The example game

2. A random game of size 4x4

3. A random game of size 10x10

For both algorithms these games are run, for the jointly-convergent pure-strategy

algorithm we enter multiple amounts of points in order to increase accuracy. However,

we must state that for the random games we simply do not know the exact threat

point, we could compute this by hand, but because this takes a lot of time we trust

that the algorithms should be a good approximation. We check this approximation

by calculating the maximin result, subtracting the best approximation for the maximin

result from the best approximation for the threat point should give us a reasonable

indication of the algorithm accuracy. We start by testing both algorithms on the example

game.

# points JCPS-Algorithm JCPS Algorithm Result Run-time JCPS SciPy Optimizer Result Run-time SciPy Difference JCPS - SciPy

100 (24.009, 24.0006) 0.006 seconds (24., 24.) 0.005 seconds (0.009, 0.0006)

10,000 (24.00000002, 24.00000037) 0.29 seconds (24., 24.) 0.005 seconds (2 * 10^-8, 3.7 * 10^-7)

1,000,000
(24.000000000004057,

24.000000000000398)
26.34 seconds (24., 24.) 0.005 seconds

(4.057 * 10^-12,

3.98 * 10^-13)

Table 3.1: Results of Example Game on algorithms.
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As the results show in Table 3.1 the SciPy optimizer finds the exact threat point

within 0.005 seconds while the jointly-convergent pure-strategy algorithm can find ap-

proximations with 100 points with an accuracy of two decimals. Increasing the number

of points generated also increases accuracy a lot, to seven decimals, but also increas-

ing the run-time of the algorithm to 0.29 seconds. For 1,000,000 points, the increase

in accuracy is much lower compared to the increase time necessary to compute the

algorithm. The SciPy algorithm is clearly the winner in this comparison in case of the

example game.

The second game is a 4x4 bimatrix game randomly generated. The game is run by

both algorithms and generates the following results:

# points JCPS-Algorithm JCPS Algorithm Result Run-time JCPS SciPy Optimizer Result Run-time SciPy Difference JCPS - SciPy

100 (14.662, 12.547) 0.004 seconds (13.736842, 12.49786) 0.006 seconds (0.925158, 0.04914)

10,000 (13.759, 12.502) 0.25 seconds (13.736842, 12.49786) 0.006 seconds (0.022158, 0.00414)

1,000,000 (13.73994, 12.49384) 21.69 seconds (13.736842, 12.49786) 0.006 seconds (0.003098, -0.00402)

Table 3.2: Results of 4x4 Bimatrix Game on algorithms.

The best maximin result of this random 4x4 bimatrix game is (13.7368419, 12.49205).

The SciPy optimizer yields results which are respectively of six decimal accuracy and

two decimal accuracy. As can be seen in Table 3.2 the JCPS algorithm is not very

accurate at 100 points generated, but steadily increases the accuracy when the number

of points generated increases. For 1,000,000 points generated it comes close to the

best v1 found by the SciPy optimizer, but it even finds a more accurate threat point

for v2. The downside to all of this is the computational time necessary for the JCPS

algorithm. The SciPy optimizer is able to find an accurate result in a fraction of the

time compared to the JCPS algorithm. However, the better result for v2 at the JCPS

algorithm suggests that the SciPy optimizer might have been stuck at a local optimum.

This risk does not outweigh the benefits of the increase in computational time and

accuracy when using the SciPy algorithm in this 4x4 random bimatrix situation.

Last up is a random bimatrix game of the size 10x10. We again run the algorithms

and obtain the following results:

# points JCPS-Algorithm JCPS Algorithm Result Run-time JCPS SciPy Optimizer Result Run-time SciPy Difference JCPS - SciPy

100 (14.4978, 13.5343) 0.014 seconds (12.28409, 12.12467) 0.006 seconds (2.21371, 1.40963)

10,000 (13.3521, 12.6217) 0.75 seconds (12.28409, 12.12467) 0.006 seconds (1.06801, 0.49703)

1,000,000 (12.7718, 12.3507) 139.6 seconds (12.28409, 12.12467) 0.006 seconds (0.48771, 0.22603)

Table 3.3: Results of 10x10 Bimatrix Game on algorithms.

This last run summarized in Table 3.3 clearly shows that the JCPS algorithm fails

to generate an accurate threat point. Even when ran for a large amount of points the

algorithm is even not close to the threat point computed by the SciPy optimizer. One

could improve this within the algorithm by looking at a best approximate, and then

search locally for an improvement again. This could be repeated an infinite number
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of times in order to find a good approximation. However, for now we deem this out of

scope in this research. We also ran the maximin algorithm with a best approximation

of (12.16356, 12.05364). The SciPy optimizer is close to the maximin approximation, but

a one decimal accuracy is still a bridge too far.

When only looking for the threat point, the SciPy optimizer is clearly the algorithm to

use. There still is a risk that the SciPy optimizer may get stuck in a local optimum. But

we have confirmed that the SciPy optimizer is able to get closer to the threat point in the

10x10 bimatrix game and the 4x4 bimatrix game, for the example game the optimizer

is able to find the exact threat point. However, this does not mean that the JCPS

algorithm is completely redundant. The JCPS algorithm has an advantage because it

also computes a part of the set of rewards of the game. If these results are required,

then one should favor the JCPS algorithm over the SciPy optimizer. The other case

in which the JCPS algorithm should be used is when the repeated game has a FD

payoff function incorporated. In all other cases, the SciPy optimizer is much faster and

provides more accurate results.

3.6 Type II games

Next up are the Type II games. Again we propose two algorithms, one relies on an

algorithm for solving a Markov Decision Process. The other one is again the JCPS

algorithm which we adapt to incorporate stochastic Type II games now. We limit our-

selves to Type II games with at maximum two states. Our algorithms can be adapted to

incorporate more states, but this makes the code more complicated than is necessary

for now.

As an example we again refer to the game used by Samuel (2017). But now we

add another state and end up with the following reward matrices:

θS1
=

[

16, 16 14, 28

28, 14 24, 24

]

θS2
=

[

4.0, 4.0 3.5, 7.0

7.0, 3.5 6.0, 6.0

]

And because we are now having a Type II game, we also have to deal with the

following transition probabilities:

pS1 =

[

0.8, 0.2 0.7, 0.3

0.7, 0.3 0.6, 0.4

]

pS2 =

[

0.5, 0.5 0.4, 0.6

0.4, 0.6 0.15, 0.85

]

Last but not least, we also update the FD payoff function for the ETP-ESP games.

Because we now deal with two states the FD payoff function is transformed into:

FDt
II,III = 1−

1

4
(xt

2 + xt
3)−

xt
4

3
−

1

2
(xt

6 + xt
7)−

2xt
8

3
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This is an adaptation from the earlier FD payoff function now incorporating two

states. The second state is the state in which the common-pool resource is affected

the most. So again, the bottom-right corner is resulting in the largest deterioration of

the common-pool resource. In general, when the state of the game is the second (or

the low) one, this will have a larger influence on depletion than when the game is in the

first (or the high) state.

3.6.1 Relative Value Iteration Algorithm

The first algorithm is based on the Relative Value Iteration algorithm, which, on its

turn is an adaptation of the Value Iteration algorithm for an MDP. The algorithm was

introduced by Bellman (1957). In this algorithm the value function is computed until

it converges to an optimal value V ∗. Based on the optimal value the optimal policy

is retrieved by a backup operator. The Relative Value Iteration algorithm is different

because it looks at the relative value, i.e., the limiting average reward criterion. If

convergence of the value is guaranteed then the algorithm will find a ε-optimal value,

i.e., the value found by the algorithm is the optimal value for the MDP.

Within Python we use the MDP package. But before we can apply the algorithm we

should make it suitable for a stochastic game in general. As explained in Subsection

3.2, stochastic games are comparable to an MPD, except for that in an MDP there is

only one player. In order to solve the stochastic game as an MDP we therefore have to

fix the strategy of one of the players. Because we are looking for the threat point, we

fix the strategy of the player who is threatening the other player. However, this already

has an immediate effect on the payoffs and transition probabilities that the player under

threat faces.

Therefore we build two functions in order to prepare the MDP for the player under

threat. The first function calculates the adjusted transition probabilities, the second one

adjusts the reward matrices. We start with the algorithm for the transition probabilities.

Algorithm 6 Calculate transition matrix MDP.

Input: Fixed strategy threatening player

Output: Adjusted transition probabilities player under threat

1: Transition probability matrix · fixed strategy threatening player

2: Normalize the adjusted transition probabilities per row

3: Return adjusted transition probability matrix

And we also construct a function in order to transform the reward matrix for the

player under threat.
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Algorithm 7 Calculate reward matrix MDP.

Input: Fixed strategy threatening player

Output: Adjusted reward matrix player under threat

1: Reward matrix Game 1 · Fixed strategy threatening player Game 1

2: Reward matrix Game 2 · Fixed strategy threatening player Game 2

3: Append reward matrices into one matrix

4: Return adjusted reward matrix player under threat

Now that we have these two functions, we build a function which initiates the MDP

with the Relative Value Iteration algorithm for the player under threat.

Algorithm 8 Markov Decision Process solver.

Input: Fixed strategy threatening player

Output: Optimal value V ∗, optimal policy

1: Calculate adjusted transition matrix

2: Calculate adjusted reward matrix

3: Initiate Relative Value Iteration algorithm with ε accuracy

4: Run the Relative Value Iteration algorithm

5: Return optimal value V ∗ and optimal policy

The biggest setback when using the MDP algorithm is that it can only solve the

MDP for one fixed strategy of the threatening player at a time. Therefore we are forced

to generate new strategies in a for-loop. The MDP calculates the maximum value of the

player under threat, we store the result of the MDP if it is the lowest result encountered

by the threatening player. Running for an large amount of fixed strategies should result

in the threat point v. Therefore we apply the following algorithm which should find the

threat point.
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Algorithm 9 Threat point MDP.

Input: Number of points to generate

Output: Threat point v = (v1, v2)

1: for i in number of points to generate do

2: Generate random fixed strategy Player 1/2

3: Normalize the fixed strategy for Player 1/2 per state

4: Run the Markov Decision Process solver

5: If the result of the solver is lower than earlier found results, then store the new

result and strategy

6: end for

7: Display the found result and prepare for local search

8: Repeat 1 to 6 while searching in local region of found result

9: Return threat point v = (v1, v2)

A remark has to be made on Algorithm 9. We apply a global search for a best

approximation in the first loop, later we apply a local search to find an even better ap-

proximation of the threat point. The local search works by altering the fixed strategy for

the threatening player by small margins, therefore we are able to find more precise re-

sults without computing unnecessary values which are very likely to give worse results.

For the example game we are able to find a threat point of v = (13.75003, 13.75002), in

around 32 seconds by generating 10, 000 points.

The MDP could theoretically find an exact threat point, but for this one has to gener-

ate a lot of points in order to increase accuracy. Therefore finding the threat point with

this algorithm should be a balance between accuracy and computational time. The

major problem is that the MDP currently does not have way to incorporate a FD payoff

function into the equation. Therefore the MDP algorithm is useful for stochastic games,

but for stochastic FD-games we need another solution.

3.6.2 Jointly-Convergent Pure-Strategy Algorithm

We adapt the jointly-convergent pure-strategy algorithm as it has been useful in Type

I games to incorporate the FD payoff function. We adjust the Type I Algorithm 5 so

that it incorporates stochastic games. Therefore we alter the Functions 2, 3 & 4. These

functions now scale with two states as an input. However, the most important challenge

is to deal with the uncertainty regarding the transition probabilities.

Joosten and Samuel (2018) cope with these difficulties by introducing the so-called

balance equation. But first we have to refer to the restrictions we have on the type

of games for which the algorithm works. We look at games in which the transition
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probabilities in Markov chain form are irreducible and aperiodic7. If they are both, then

they are guaranteed to converge to a stationary distribution. This stationary distribution

can be found with the balance equation. If x represents the frequency vector of play

and p represents the transition probabilities, then the balance equation is given for a

two-player two state stochastic game with two actions per state is:

4
∑

i=1

xi(1− pi) =
8

∑

i=5

xipi (3.3)

In which must hold that:
4

∑

i=1

xi(1− pi) 6= 0 (3.4)

8
∑

i=5

xipi 6= 0 (3.5)

Equations 3.4 & 3.5 state that Equation 3.3 cannot end up with absorbing states.

We limit ourselves to transition probabilities which are in Markov chain form irreducible

and aperiodic, so therefore absorbing states should not occur. In order to incorporate

Equation 3.3 into the algorithm we build a function for it.

In this function we calculate the stationary distribution of the Markov chain. We

do this in a similar way as Samuel (2017), by introducing intermediate vector y and

variable Q, such that:

yS1

i =
xS1

i
∑4

j=1 x
S1

j

(3.6)

yS2

i =
xS2

i
∑8

j=5 x
S2

j

(3.7)

Which then are used in order to calculate Q.

Q =

∑8
i=5 y

S2

i pi
∑4

i=1 y
S1

i (1− pi) +
∑8

i=5 y
S2

i pi
(3.8)

The result of Equation 3.8 is Q, and in this situation Q stands for the long term

relative frequency of play taking place in State 1. (1−Q) therefore is the frequency of

play taking place in State 2.

7Also known as ergodic Markov chains.
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Algorithm 10 Balance Equation Function.

Input: Frequency vector x, transition probabilities p

Output: Frequency vector x adjusted to stationary distribution

1: Initialize Q and y

2: Calculate y

3: Calculate Q with y and p

4: Calculate new frequency vector x based on Q and y

5: Return new frequency vector x adjusted to the stationary distribution

This new equation can then be used in order to calculate the threat point for (non)-

FD Type II games. We incorporate it within Algorithm 5, the result is the following

algorithm:

Algorithm 11 (Non)-FD Type II threat point algorithm.

Input: Type II Game, total number of points, activate FD payoff function

Output: Threat point

1:

2: If v1 is calculated, then X = 1, Y = 2,

3: If v2 is calculated, then X = 2, Y = 1

4:

5: Turn reward matrix Player X into flattened reward vector

6: Threatening strategies Player Y = Draw Random Strategies

7: Best response Player X frequency vector = Create Frequency Vector

8: Calculate adjusted frequency vector by computing the balance equation

9: if Activate FD payoff function = True then

10: Activate and Calculate FD Function result

11: end if

12: Payoffs Player X = Sum over all columns of: (Frequency Vector per row · flattened

vector Player X)

13: if FD Function is active then

14: Element wise multiplication of FD function result with Payoffs Player X

15: end if

16: Sorted payoff matrix = Payoff sort

17: Pick the maximum value of each row of the sorted payoff matrix as best response

of Player X

18: Pick the minimum value over all rows as the result of vX

19:

20: Return threat point v = (v1, v2)
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generated. Therefore we look at the example game first, we know that the threat point

is v = (13.75, 13.75). We compute the threat point for an increasing number of points to

be generated and state the decimal accuracy and run-time.

# points JCPS Decimal Accuracy Run-time JCPS RVI Decimal Accuracy Run-time RVI

100 0 decimals accurate 0.004 seconds 2 decimals accurate 0.4 seconds

10,000 2 decimals accurate 0.328 seconds 4 decimals accurate 36.36 seconds

1,000,000 4 decimals accurate 22.95 seconds 6 decimals accurate 3,250.78 seconds

10,000,000 5 decimals accurate 255.3 seconds - -

Table 3.4: Accuracy versus run-time in example stochastic game with the algorithms.

Table 3.4 clearly shows that the RVI algorithm is capable of calculating a result with

a higher accuracy while needing fewer points. A remark on the side should be made

here, because the RVI algorithm uses a local search within a rough estimation. Apply-

ing a local search within a rough estimation of the JCPS algorithm could theoretically

also increase accuracy while having a low increase in run-time. However, looking at

a larger number of points generated it is clear that the JCPS algorithm is much more

efficient in computational time due to vectorization. Aiming for 4 decimal accuracy of

the threat point means that the JCPS algorithm can do the job roughly 37% quicker

than the RVI algorithm.

With this advantage for the JCPS algorithm we look at a 4x4 stochastic game in

which we generate random payoff and transition matrices. We do not know what the

exact threat point is we search for, but we check for an approximation of the lower

boundary by calculating the maximin result. The following results are obtained from

running the algorithms.

# points JCPS Algorithm Result Run-time JCPS RVI Algorithm Result Run-time RVI Difference JCPS - RVI

100 (12.1794, 10.5948) 0.006 seconds (11.5734, 10.5313) 0.391 seconds (0.606, 0.0635)

10,000 (11.1956, 10.3064) 1.342 seconds (10.7620, 10.1679) 39.48 seconds (0.4336, 0.1385)

1,000,000 (10.8054, 10.2205) 118.125 seconds (10.6523, 10.1564) 4,323.83 seconds (0.1531, 0.0641)

Table 3.5: Threat point results on random 4x4 stochastic game from the two algo-

rithms.

Again Table 3.5 shows clearly that the JCPS algorithm is much faster and there-

fore has a shorter run-time. We were able to find a best approximation of maximin of

(10.4126, 9.9896). The RVI algorithm seems to be more accurate than the JCPS algo-

rithm but still lacks to find a decimal accurate threat point. The JCPS algorithm however

gets close to the RVI algorithm when 1, 000, 000 points are generated in less computa-

tional time necessary. In order to find gather more information about the accuracy of

the algorithms we now test both algorithms for a random 10x10 bimatrix game.
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# points JCPS Algorithm Result Run-time JCPS RVI Algorithm Result Run-time RVI Difference JCPS - RVI

100 (12.0658, 11.1363) 0.272 seconds (11.6290, 10.4773) 0.70 seconds (0.4368, 0.659)

10,000 (11.3764, 10.6083) 19.9735 seconds (10.8377, 9.3613) 56.66 seconds (0.5387, 1.247)

1,000,000 Memory Error Memory Error (10.4810, 9.2542) 5,548.46 seconds

Table 3.6: Threat point results on 10x10 stochastic game from the two algorithms.

The results in Table 3.6 again are in favor of the RVI algorithm when we focus on

the accuracy of both algorithms. The JCPS algorithm is clearly the faster algorithm, but

also finds less accurate points. When we try to run the JCPS algorithm for 1, 000, 000

points we run into a memory error. The best maximin result found was (9.0553, 7.8528),

which shows that both algorithms are in the 10x10 stochastic game case not even

close to an accurate threat point. The JCPS algorithm has a difficulty with the storage

of larger stochastic games. Therefore the vectorization applied in the JCPS algorithm

is a double-edged sword. On one hand it could produce identical accurate results

compared to the RVI algorithm within a lower amount of computational time required.

But it fails to produce accurate results when the game is getting too large and therefore

runs into memory issues. The JCPS algorithm is the best option when looking at simple

stochastic games with or without a FD payoff function. The RVI algorithm is superior for

non-FD stochastic games in terms of accuracy but this required a significantly higher

amount of computational time.
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The big question is, how does this adaptation influence the algorithm and more im-

portantly, what effect does this have on the stationary distribution? Joosten and Samuel

(2018) state in their paper: “determining a stationary distribution is like shooting at a

moving target". We determine the stationary distribution with the balance Equation 3.3

and with help of Equations 3.6, 3.7 & 3.8. However, determining the stationary distri-

bution results in a new frequency vector x∗ which again has an effect on the transition

probabilities. Therefore the system of Equation 3.3 cannot be seen as balanced as

long as a new frequency vector results in a new stationary distribution.

Algorithm wise this means we now have to compute y, Q and x∗ multiple times as

long as the system of balance equations has not converged into a steady state. Be-

cause we apply vectorization there is an inherent risk in computing all of these equa-

tions until all have converged. It would be much more efficient to only compute the

frequency vectors for which the system of balance has not ended up at a stationary dis-

tribution. We therefore look after each iteration which frequency vector has converged

into a stationary distribution and which not. All that have converged are removed from

the computations by removing their index values. We continue calculations for all other

vectors until we have convergence on a broad scale.

In order to incorporate this we alter the function that computes the balance equation

and gives back an adjusted frequency vector. We now incorporate the recalculation of

the balance equation based on the endogenous transition probabilities. We built the

following function:

Algorithm 12 Balance Equation ETP function.

Input: Frequency vector x, transition probabilities p, ETP matrix A

Output: Frequency vector x adjusted to stationary distribution

1: Initialize Q and y

2: Calculate y

3:

4: while Not all rows in frequency vector x have converged do

5: Calculate new p(x) with x · A

6: Calculate Q with y and p(x)

7: Calculate new frequency vector x based on Q and y

8: Check whether Q has converged based on earlier result

9:

10: if Q has converged then Remove frequency vector x from calculating a new Q

11: end if

12: end while

13: Return new frequency vector x adjusted to the stationary distribution
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The question with Algorithm 12 is, how long does it take for all frequency vectors to

converge? We have calculated this for 65 iterations. The result shows us that roughly

99.5% has converged after 65 iterations. Joosten and Samuel (2018) have examined

the number of iterations required for general convergence, they state that after roughly

50 − 60 iterations most frequency vectors have reached a stationary state. Our own

tests confirm this in Figure 3.7. However, even 50− 60 iterations implies still quite a lot

of time when running vectorized code. Also some entries of Q refuse to converg, even

for a large number of iterations between 100− 120.

Figure 3.7: Convergence of Q.

A solution to this is the use of a so-called accelerator. Joosten and Samuel (2018)

use Aitken’s ∆2 method. An accelerator which converges a sequence to a certain

value as long as long as this sequence in it self is linearly convergent (Burden & Faires,

2010). They describe the method with the assumption that if the sequence is described

by {pn}
∞

n=0, then Aitken’s ∆2 is given as:

p̂n = pn −
(pn+1 − pn)

2

pn+2 − 2pn+1 + pn
(3.10)

The problem with Equation 3.10 is that it is not always numerically stable. To im-

prove numerical stability, one should use the following adaptation of Aitken’s ∆2:

p̂n = pn+2 −
(pn+2 − pn+1)

2

(pn+2 − pn+1)− (pn+1 + pn)
(3.11)
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We now incorporate the numerically stable version of Aitken’s ∆2 on the conver-

gence of Q. We adapt Algorithm 12 such that convergence of Q is sped up by using

Aitken’s ∆2 while safeguarding for possible NaN’s. The result is the following adaptation

of the algorithm.

Algorithm 13 Balance Equation ETP Aitken’s function.

Input: Frequency vector x, transition probabilities p, ETP matrix A

Output: Frequency vector x adjusted to stationary distribution

1: Initialize Q and y

2: Calculate y

3:

4: for ten iterations do

5: Calculate new p(x) with x · A

6: Calculate Q with y and p(x)

7: Calculate new frequency vector x based on Q and y

8:

9: Return Q

10: end for

11:

12: while Not all rows in frequency vector x have converged do

13: Calculate new Q with Aitken ∆2

14: Compare new Q with old Q for convergence

15: if Q has converged then Remove frequency vector x from calculating a new Q

16: end if

17: end while

18: Return new frequency vector x adjusted to the stationary distribution

We now incorporate Algorithm 13 into the Type II version of the JCPS algorithm to

create a Type III version.
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Algorithm 14 (Non)-FD Type III threat point algorithm.

Input: Type III Game, total number of points, activate FD payoff function

Output: Threat point

1:

2: If v1 is calculated, then X = 1, Y = 2,

3: If v2 is calculated, then X = 2, Y = 1

4:

5: Turn reward matrix Player X into flattened reward vector

6: Threatening strategies Player Y = Draw Random Strategies

7: Best response Player X frequency vector = Create Frequency Vector

8: Calculate Q based on function 13 with Aitken’s ∆2

9: Calculate adjusted frequency vector with help of Q

10: if Activate FD payoff function = True then

11: Activate and Calculate FD Function result

12: end if

13: Payoffs Player X = Sum over all columns of: (Frequency Vector per row · flattened

vector Player X)

14: if FD payoff function is active then

15: Element wise multiplication of FD payoff function result with Payoffs Player X

16: end if

17: Sorted payoff matrix = Payoff sort

18: Pick the maximum value of each row of the sorted payoff matrix as best response

of Player X

19: Pick the minimum value over all rows as the result of vX

20:

21: Return threat point v = (v1, v2)

We now try Algorithm 14 by running it with the example game. Running the non-FD

version by generating 100, 000 points generates a threat point of v = (8.27508, 11.01180).

When applying the maximin algorithm and looking for the lower boundary we find a

result of (8.27501, 11.01176). Therefore we can say with certainty that our algorithm is

capable of finding a solution by generating 100, 000 points that is up to three decimals

accurate. The time necessary for finding the threat point is only roughly 39.03 seconds.

A significant improvement when looking at earlier calculations by Samuel (2017). We

also find a threat point for the FD version with 100, 000 points of v = (4.45906, 7.55750).

The maximin value found is (4.45870, 7.55619). The ETP-ESP version of the game

therefore has a two decimal accuracy and finds this within roughly 35.51 seconds.





54 CHAPTER 3. BUILDING THE ALGORITHM

In Figure 3.11 it is clearly visible what the effect is of the ETP matrix and the FD

payoff function. The threat point is almost near the lowest possible pure reward point

for both players, but now even rewards that were not obtainable without the ETP matrix

are obtainable. The threat point is close to the lowest pure reward possible. This gives

players the opportunity to reach a multitude of equilibria involving threats.

We have shown that it is possible to construct an algorithm which can cope with

calculating threat points in Type III games, especially ETP-ESP games, which can be

regarded as games with a high complexity. However, simplifying this down to games for

which the stationary distribution is guaranteed, our algorithm finds an accurate value

within reasonable time. Also the JCPS algorithm can be used on the broad spectrum

of games, not only does it apply to Type III games, but it is also useable on Type I and

Type II games.
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3.8 Room for further improvements

There are still possibilities for further improvements. Due to limited time one cannot

explore all options, but we think three paths are worth investing in.

Adapting the SciPy optimizer to work on (FD) Type II and Type III games. We

have used the SciPy optimizer in non-FD Type I games with good results. The SciPy

optimizer was able to find an ε-accurate result within a fraction of the time needed

for the JCPS algorithm. We think that it is able to deliver accurate results in Type II

and Type III games, with our without FD function, but currently we have not found a

working way to incorporate the SciPy optimizer at the basis of calculating the threat

point in these games. We have tried to use it on the MDP algorithm for determining the

minimizing strategy for the threatening player, but attempts at this were unsuccessful.

More research into the SciPy optimizer is needed in order to make it work for Type II

and Type III games.

Adjusting the MDP algorithm such that it can cope with ETP and ESP games.

We applied the Relative Value Iteration algorithm which is an algorithm for a Markov

Decision Process. Currently it is unable to handle endogenous transition probabilities

and endogenous stage payoffs. There is research on uncertainty in an MDP (Liu &

Sukhatme, 2018), (Delgado, Sanner, & de Barros, 2011). However most of these

adaptations to the MDP work with methods which are simulating a model-free MDP

and therefore have an approximation as a result. We think that it should be able to

adapt the model-based MDP algorithms such that they provide an exact solution to

ETP or ESP games.

Further optimization of the JCPS algorithm. Currently we have made a step in

the optimization of the general algorithm by introducing vectorization. In comparison

to Mahohoma (2014) and Samuel (2017) we have made a significant improvement

in terms of speed. However, during the research we also had a hard-coded version

of a 2x2 stochastic game, which was even faster than the current version. Due to

making the code scalable to larger games we had to make a concession in terms of

speed. There are possibilities to make another increase in speed by applying Aitken’s

∆2 method on convergence of the rewards. We are currently looking into possibilities

for this, but we are facing problems in retrieving the rewards in such a manner that

linear convergence is guaranteed. Once we overcome this problem, we think that we

can reduce computational time a lot while retrieving accurate results. An alternative to

this could be to apply local search as has been done with the RVI algorithm. Last but

not least, we should further investigate the option of a n-player algorithm.
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3.9 Practical implications

During the writing of and investigations for this thesis we went from a description of

the origin of Game Theory to Frequency-Dependent Games. This chapter contains a

more technical approach into the algorithm building which has been done in this thesis.

We think that it is essential to put this algorithm into a broader practical perspective.

Currently, there is a lot of debate and maybe even hype surrounding algorithms in

general. They are seen as secret algorithms which control information and money

and because of the black box mechanism incorporated it is unclear how an algorithm

comes to a certain decision (Pasquale, 2015).

Partly this is true in our opinion due to increasingly complex deep learning algo-

rithms which seem to exihibit characteristics of black boxes. They can only be analyzed

based on their results, the inner workings of these systems are almost inscrutable, ex-

ceptions aside. We want to mention this because we think that the algorithm produced

in this thesis is not a black box. Our vision is that an algorithm is an arithmetic represen-

tation of a more complex mathematical problem. Our algorithm is a simple artihmetic

representation that follows game theoretical logic. Algorithms are necessary because

computers only can do simple calculations on the lowest level. Therefore a lot depends

on how the mathematics are defined surrounding the algorithm.

Game theory works based on the assumptions that players are rational and that

under perfect information they are able to maximize their own interests. In practice

we think that actors in everyday life are rational in general. Surely, humans are not

completely selfish, but even when they cooperate they will try to make the most out

of a situation in their own interest. A bigger problem in practice lies within the perfect

information assumption. In everyday life it seems to us that it is almost impossible to

retrieve perfect information. The complex world we live in makes it hard to retrieve

all the data necessary, and when all data is retrieved it is still hard to analyze this in

a game-theoretical sense. Analysis of game-theoretical problems which have a high

complexity is extremely time-consuming when done by hand.

Therefore we think that this algorithm has an important role. When simplifying a

complex real-life problem in such a matter that it can be analyzed as a game theoret-

ical problem, this algorithm will prove to be useful in order come to well-found conclu-

sions or interpretations. In literature a lot of practical situations have been derived in

order to fit a game theoretical context. Well-known examples are Fishery games (e.g.

(Joosten, 2007b)), economic applications (e.g. (Aumann & Hart, 1994)), advertisement

games (e.g. (Joosten, 2015)) and political games (e.g. (Finus, 2002)) . The range of

applicability is broad and should definitely not be limited to these known situations,

but as Einstein once said “Logic will take you from A to B, imagination will take you

everywhere."
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Conclusions and recommendations

In this section we conclude our research, refer to the progress made and do recom-

mendations for future research.

4.1 Conclusion

Our research goal was to develop an algorithm which calculates threat points in Type

I, Type II and Type III games. We have shown that there are even several algorithms to

calculate threat points in these types of games. For Type I non-FD games the SciPy op-

timizer is a faster and more accurate option than the Jointly-Convergent Pure-Strategy

algorithm. The Relative Value Algorithm can cope with ε-accurate solutions in theory,

but in practice fails to cope with larger games and cannot find exact solutions. How-

ever the algorithm still performs better in terms of accuracy in non-FD Type II games in

comparison to the Jointly-Convergent Pure-Strategy algorithm. In general, the Jointly-

Convergent Pure-Strategy algorithm has proven to be fitting in all cases while also

generating obtainable rewards. By applying vectorization and programming optimiza-

tion we have also been able to increase the speed of the algorithm. For 2x2 stochastic

games the algorithm is able to find very accurate solutions in reasonable time. Larger

games seem to be problematic for all algorithms, but even more problematic for the

Jointly-Convergent Pure-Strategy algorithm. These problems could be dealt with by

employing a local search. Additionally there are limitations on the characteristics of the

games in order to protect the guaranteed working of the algorithm. In practice, the total

structure of the game should be taken into consideration in order to retrieve an optimal

working of the algorithm.

57
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4.2 Recommendations

As stated in this research, there are many ways to skin a cat. Therefore our research is

just a limited view on an endless sea of possibilities. First we advise for future research

to look at a way to cope with the SciPy optimizer in terms of Type II and Type III games.

In this research we were not able to find a programming logic which could cope with

the optimizer approach, but we think that there could be an enormous improvement in

speed. Secondly, we think that there should be a more theoretical approach to incorpo-

rate endogenous transition probabilities and endogenous stage payoffs. This research

could then lead to well-founded algorithms based on a Markov Decision Process for

Type II and Type III games. Last but not least, the Jointly-Convergent Pure-Strategy

algorithm can be optimized by looking for ways to guarantee linear convergence of the

payoffs and then calculating the payoff with Aitken’s ∆2 method. However, one should

keep in mind that this method is not without risks and that floating-point errors are

prone to occur. Another option would be to apply the Jointly-Convergent Pure-Strategy

algorithm with a global search and then search further locally.

For those who want to use this algorithm in finding a threat point in one of the

three types of games we advise the following. When using this algorithm for a broad

spectrum of games we should use the code as it is. If it is clear that games for a certain

reason are only applied on for example 2x2 stochastic games, then one should try to

alter the code by hard-coding the frequency vector. In this case the improvement in

speed is significant in favor of scalability.
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Appendix A

Python Code containing the

Algorithms

A.1 How to use the Python code - A short manual on

the usage

A.1.1 Using Python

Python is an interpreted language, therefore it has to run the code with help of the

Python interpreter. The Python interpreter is widely available, but for people with lim-

ited knowledge on Python we would advice to download the Anaconda package at

www.anaconda.com. Anaconda also includes a lot of the packages necessary, like

NumPy and SciPy. The MDP Toolbox, if not available in Anaconda, can be found on

https://pymdptoolbox.readthedocs.io/en/latest/api/mdptoolbox.html.

In order to read the Python code an application has to be used on Windows com-

puter. In this thesis we use Jupyter Notebook. If necessary, contact the author of this

thesis to receive the source code and Jupyter Notebook file which has been used.

A.1.2 Using the Python Code

One should first load the code described at the ‘Import packages’ section. This section

contains code which states the necessary Python packages for the computations done

in the algorithms. After this code has been loaded by the interpreter the user has

the option to choose from three types of game codes which are all accompanied by

example games. The game code per type of game contains all required coding in

order to receive visual results in this thesis. However, one could choose to only use

a subset of the functions within the code. We will describe them briefly in the next

section. All games are created by use of a class. Therefore we have programmed
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the games as a class, we will elaborate on this after the description of the different

functions with an example.

A.1.3 Functions

We introduce the functions of all the games. We state their names, describe them and

also state which input is necessary from the user.

Type of Game Function Name Description Input necessary

Type I plot_pure_reward_points Plots the pure reward points in a two dimensional figure -

Type I plot_all_reward_point Plot all possible rewards points in a Type I game FD function –>Yes = active, No = deactive

Type I plot_threat_point Plot’s the threat point (only after it has been found) -

Type I plot_threat_point_lines Plot the lines which define the limits for the NE -

Type I threat_point_algorithm Find the threat point with the SciPy algorithm -

Type I maximin_algorithm Find the maximin result with the SciPy algorithm -

Type I threat_point_optimized Find the threat point with the JCPS algorithm
# of points to generate,

show strategy of player 1/player 2, print text

FD function –>Yes = active, No = deactive

Type II plot_single_period_pure_rewards Plots the pure reward points in a two dimensional figure -

Type II plot_convex_hull_pure_rewards Plot a convex hull around the pure reward points -

Type II plot_threat_point Plot’s the threat point (only after it has been found) -

Type II plot_threat_point_lines Plot the threat point lines defining the NE borders -

Type II plot_all_reward_points Plot all reward points obtainable in the game FD function –>Yes = active, No = deactive

Type II threat_point_algorithm Find the threat point with the RVI algorithm
T –>Number of points to generate

sensi –>Sensitivity of the local search

Type II maximin_point Find the maximin point with the RVI algorithm T –>Number of points to generate

Type II optimized_maximin Find the maximin point with the JCPS algorithm
# of points to generate,

show strategy of player 1/player 2, print text

FD function –>Yes = active, No = deactive

Type II threat_point_optimized Find the threat point with the JCPS algorithm
# of points to generate,

show strategy of player 1/player 2, print text

FD function –>Yes = active, No = deactive

Type III plot_single_period_pure_rewards Plots the pure reward points in a two dimensional figure -

Type III plot_convex_hull_pure_rewards Plot a convex hull around the pure reward points -

Type III plot_all_rewards Plot all reward points obtainable in the game FD function –>Yes = active, No = deactive

Type III plot_threat_point Plot the threat point if found -

Type III plot_threat_point_lines Plot the threat point lines defining the NE borders -

Type III optimized_maximin Find the maximin point with the JCPS algorithm
# of points to generate,

show strategy of player 1/player 2, print text

FD function –>Yes = active, No = deactive

Type III threat_point_optimized Find the threat point with the JCPS algorithm
# of points to generate,

show strategy of player 1/player 2, print text

FD function –>Yes = active, No = deactive

A.1.4 An example of computations of a Type II game

We explain the usage of our code with a Type II non-FD game example. We need to

construct a game before we can apply functions. The Type II game is programmed

in a class called ‘StochasticGame’. The Type II game needs two types of input: The

transition probabilities and the payoffs of the game in both states. Our games are

limited to two-player, two-state games. But in general the states can contain n actions.

We define the transition probabilities and the payoffs of the game with a NumPy matrix.

See the following code:
encoding=*-60

p1_1 = np.matrix(’16 14; 28 24’)

p2_1 = np.matrix(’16 28; 14 24’)
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p1_2 = np.matrix(’4 3.5; 7 6’)

p2_2 = np.matrix(’4 7; 3.5 6’)

trans1_1 = np.matrix(’0.8 0.7; 0.7 0.6’)

trans2_1 = np.matrix(’0.5 0.4; 0.4 0.15’)

trans1_2 = np.matrix(’0.2 0.3; 0.3 0.4’)

trans2_2 = np.matrix(’0.5 0.6; 0.6 0.85’)

Then we load these transition probabilities and payoffs by creating a new class

which we attach to the variable ‘FirstTry’.
encoding=*-60

FirstTry = StochasticGame(p1_1,p2_1,p1_2,p2_2,trans1_1,trans2_1,trans1_2,trans2_2)

As a result, Python now has created a class assigned to the variable FirstTry. We

can access functions from this class by stating ‘FirstTry.functionname’. We now want

to plot all single period pure rewards, all reward points and find the maximin point and

threat point with the RVI algorithm in 10000 points with a sensitivity of 0.025. The result

is the following code:
encoding=*-60

FirstTry.plot_single_period_pure_rewards()

FirstTry.plot_all_reward_points(False)

FirstTry.maximin_point(10000)

FirstTry.threat_point_algorithm(10000,0.025)

As can be seen, we set the FD function to false in the plot_all_rewards_points

function. We also fill in 10000 points to be generated in both the maximin_point and

threat_point_algorithm function. Another way to have done this was by using the

JCPS algorithm, which needs some more input. Both the maximin point and the threat

point can be found by the following code.
encoding=*-60

FirstTry.threat_point_optimized(10000,False,False,True,False)

FirstTry.optimized_maximin(10000,False,False,False)

The result again is a maximin point and a threat point. But now we have to state

some more input, based on the input necessary described in the function table in the

previous section. Last but not least we are able to plot this found threat point. We

can do this with the plot_threat_point function and also plot the threat point lines, the

following code should be used in this example:
encoding=*-60

FirstTry.plot_threat_point()

FirstTry.plot_threat_point_lines()

And the result should be a visualization of the Type II game without FD-payoffs.
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A.2 Import packages

encoding=*-60

import numpy as np #import numpy

import scipy as sp #import scipy

from scipy import optimize #import the scipy optimize part

from scipy import linalg #import the linear algebra section

from scipy.spatial import ConvexHull #import scipy convex hull package

import matplotlib.pyplot as plt #import package to plot stuff

import msmtools as msm #import package for markov chains

from msmtools.analysis import stationary_distribution #import for calculating stationary

distributions

import mdptoolbox #import toolbox for MDP’s

import time #import time package

from itertools import permutations #import package for permutations

A.3 Type I Game Code

encoding=*-60

class RepeatedGame:

"""In this type of game we model a repeated type of game. It means that we play a

repeating game

in which the payoffs are repeated for a certain (or unlimited) amount of time."""

def __init__(self,payoff_p1,payoff_p2):

"Here we initialize the game with respective playoffs for both players"

# here below we set the payoffs as an aspect of the game, for both players each

self.payoff_p1 = payoff_p1

self.payoff_p2 = payoff_p2

# we define a set of best pure strategies

self.best_pure_strategies = np.array([[1,0,1,0],[0,1,1,0],[1,0,0,1],[0,1,0,1]])

def plot_pure_reward_points(self):

"This function plots the pure reward points in a two dimensional figure"

# set the payoffs as an array

payoff_p1_array = self.payoff_p1.A1

payoff_p2_array = self.payoff_p2.A1

plt.figure() #create a figure

plt.scatter(payoff_p1_array,payoff_p2_array, label="Pure reward points", zorder=15,

color=’b’) #simple plot which plots the possible rewards

# label the x- and y-axis

plt.xlabel("Payoff Player 1")

plt.ylabel("Payoff Player 2")

def plot_all_reward_points(self,FD_yn):

"Here we plot all reward points possible in this repeated game."

# number of times the game is played (large number)

T = 100000
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# create payoff vectors based on the number of times the game is played

Payoff1 = np.zeros(T)

Payoff2 = np.zeros(T)

x = np.zeros(4) #initialize x for frequency vector

r = np.zeros(4) #initialize r for random drawing

#loop over the number of periods and length of x

for v in range(0,T):

for i in range(0,4):

r[i] = np.random.beta(0.5,0.5) #draw r from beta distribution

norm_val = np.sum(r)

for i in range(0,4):

x[i] = r[i]/norm_val #normalize r and put it in as x

# if there is a FD type of game, then active the FD function

if FD_yn == True:

FD = 1-0.25*(x[1]+2*x[2])-(2/3)*x[3]

else:

FD = 1

# calculate the first payoffs for p1 and p2

V_p1 = x*np.transpose(self.payoff_p1.flatten())

V_p2 = x*np.transpose(self.payoff_p2.flatten())

# calculate the payoff based on the FD function

Payoff1[v] = FD*np.sum(V_p1)

Payoff2[v] = FD*np.sum(V_p2)

# store the maximal payoffs

self.maximal_payoffs = np.zeros(2)

self.maximal_payoffs[0] = np.max(Payoff1)

self.maximal_payoffs[1] = np.max(Payoff2)

all_payoffs = np.array([Payoff1,Payoff2]) #payoffs player 1 and and p2 merging

all_payoffs = np.transpose(all_payoffs) #transpose for use in convex_hull

Convex_Hull_Payoffs = ConvexHull(all_payoffs) #calculate convex_hull of the payoffs

# here below we plot the convex hull

plt.fill(all_payoffs[Convex_Hull_Payoffs.vertices,0], all_payoffs[Convex_Hull_Payoffs

.vertices,1], color=’y’, zorder=5, label="Obtainable rewards")

# plt.plot(Payoff1,Payoff2, color =’y’, zorder=2, label="Reward points") # disabled

for now

# do some nice plotting

plt.title("Reward points of Repeated game")

plt.xlabel("Payoff Player 1")

plt.ylabel("Payoff Player 2")

def plot_threat_point(self):

"Plot the threat point found (only working after the threat_point_algorithm function

has been applied)"

# here below the threat point is plotted

plt.scatter(self.threat_point[0],self.threat_point[1], color=’r’, zorder=17, label="

Threat point")

plt.legend()



68 APPENDIX A. PYTHON CODE CONTAINING THE ALGORITHMS

def plot_threat_point_lines(self):

"Plot the lines which define the limits for the NE reachable under Folk Theorem."

# plot based on the maximum payoffs and threat point

plt.plot([self.threat_point[0],self.threat_point[0]],[self.threat_point[1],self.

maximal_payoffs[1]], color=’k’, zorder=16)

plt.plot([self.threat_point[0],self.maximal_payoffs[0]],[self.threat_point[1],self.

threat_point[1]], color=’k’, zorder=16)

plt.axis(’equal’)

def threat_point_p1(self,x):

"Function in order to determinate the threat point for p1"

return np.max(np.dot(self.payoff_p1,x))

def threat_point_p2(self,x):

"Function in order to determinate the threat point for p2"

return np.max(np.dot(x,self.payoff_p2))

def maximin_p1(self,x):

"Function in order to determine the maximin strategy for p1"

return np.max(-np.dot(x,self.payoff_p1))

def maximin_p2(self,x):

"Function in order to determine the maximin strategy for p2"

return np.max(-np.dot(self.payoff_p2,x))

def threat_point_algorithm(self):

"This is the much shorter, optimized search for the threat point, not depending on

the number of actions."

start_time = time.time() # start a timer for speed measures

print("Threat point algorithm initiated")

p_initialize = np.zeros(np.size(self.payoff_p1,0)) #initialize an array for p

q_initialize = np.zeros(np.size(self.payoff_p2,1)) #initialize an array for q

A.4 Type I Example Games Code

encoding=*-60

# Here below we create a repeated game from the Llea thesis

a = RepeatedGame(np.matrix(’16 14;28 24’),np.matrix(’16 28; 14 24’))

a.threat_point_algorithm()

a.plot_pure_reward_points()

a.plot_all_reward_points(True)

a.maximin_algorithm()

a.threat_point_optimized(100000,True,True,True,True)

a.plot_threat_point()

a.plot_threat_point_lines()
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A.5 Type II Game Code

encoding=*-60

class StochasticGame:

"""[U+FFFD]nthis class we model Stochastic Games, also known in the thesis as Type II games"""

def __init__(self,payoff_p1_game1,payoff_p2_game1,payoff_p1_game2,payoff_p2_game2,

trmatrixg1,trmatrixg2,trmatrixg3,trmatrixg4):

"Here below we initialize the game by storing payoff and transition matrices

according to the upper input."

self.payoff_p1_game1 = payoff_p1_game1 #payoff p1 in game 1

self.payoff_p2_game1 = payoff_p2_game1 #payoff p2 in game 1

self.payoff_p1_game2 = payoff_p1_game2 #payoff p1 in game 2

self.payoff_p2_game2 = payoff_p2_game2 #payoff p2 in game 2

self.transition_matrix_game1_to1 = trmatrixg1 #transition matrix from game

1 to game 1

self.transition_matrix_game2_to1 = trmatrixg2 #transition matrix from game

2 to game 1

self.transition_matrix_game1_to2 = trmatrixg3 #transition matrix from game

1 to game 2

self.transition_matrix_game2_to2 = trmatrixg4 #transition matrix from game

2 to game 2

self.printing = False #set printing to False

def plot_single_period_pure_rewards(self):

"Here we plot the pure rewards possible for a single period"

plt.figure() #create a figure

payoff_p1_g1_flat = self.payoff_p1_game1.A1 #create a flattend payoff of

p1 in game 1

payoff_p2_g1_flat = self.payoff_p2_game1.A1 #create a flattend payoff of

p2 in game 1

plt.scatter(payoff_p1_g1_flat,payoff_p2_g1_flat, label="Pure reward points Game 1",

zorder = 15) #plot payoffs game 1

payoff_p1_g2_flat = self.payoff_p1_game2.A1 #create a flattend payoff of

p1 in game 2

payoff_p2_g2_flat = self.payoff_p2_game2.A1 #and for p2 in game 2

plt.scatter(payoff_p1_g2_flat,payoff_p2_g2_flat, label="Pure reward points Game 2",

zorder = 15) #plotting this again

plt.xlabel("Payoff Player 1") #giving the x-axis the label

of payoff p1

plt.ylabel("Payoff Player 2") #and the payoff of the y-axis

is that of p2

plt.title("Reward points of Stochastic game") #and we give it a nice titel

plt.legend()

def plot_convex_hull_pure_rewards(self):

"Here we plot a convex hull around the pure reward point, therefore resulting in the

total possible reward space"

payoff_p1_g1_flat = self.payoff_p1_game1.A1 #store the flattend payoff of p1

game 1

payoff_p2_g1_flat = self.payoff_p2_game1.A1 #store the flattend payoff of p2

game 1
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payoff_p1_g2_flat = self.payoff_p1_game2.A1 #store the flattend payoff of p1

game 2

payoff_p2_g2_flat = self.payoff_p2_game2.A1 #store the flattend payoff of p2

game 2

payoff_p1_merged = np.concatenate((payoff_p1_g1_flat,payoff_p1_g2_flat)) #merge p1

payoffs

payoff_p2_merged = np.concatenate((payoff_p2_g1_flat,payoff_p2_g2_flat)) #merge p2

payoffs

all_payoffs = np.array([payoff_p1_merged,payoff_p2_merged]) #create one array of

payoffs

all_payoffs = np.transpose(all_payoffs) #and rotate this one

rewards_convex_hull = ConvexHull(all_payoffs) #retain the convex hull

of the payoffs

plt.fill(all_payoffs[rewards_convex_hull.vertices,0], all_payoffs[rewards_convex_hull

.vertices,1], color=’k’)

plt.title("Convex hull of payoffs")

#here above we fill the convex hull in black

def plot_threat_point(self):

"This function plots the threat point of the game"

plt.scatter(self.threat_point[0],self.threat_point[1], zorder=10, color = ’r’, label=

’Threat point’)

plt.legend()

def plot_threat_point_lines(self):

"This function plots the threat point lines defining the NE borders"

plt.plot([self.threat_point[0],self.threat_point[0]],[self.threat_point[1],self.

maximal_payoffs[1]], color=’k’, zorder=15)

plt.plot([self.threat_point[0],self.maximal_payoffs[0]],[self.threat_point[1],self.

threat_point[1]], color=’k’, zorder=15)

def plot_all_reward_points(self,FD_yn):

"Here we use the algorithm developed in the thesis of Llea with supervision of

Joosten for Type 2 games"

###Payoffs and probabilitys

payoff_p1_g1_flat = self.payoff_p1_game1.A1 #flatten payoff p1 game 1

payoff_p2_g1_flat = self.payoff_p2_game1.A1 #flatten payoff p2 game 1

payoff_p1_g2_flat = self.payoff_p1_game2.A1 #flatten payoff p1 game 2

payoff_p2_g2_flat = self.payoff_p2_game2.A1 #flatten payoff p2 game 2

A1 = np.concatenate((payoff_p1_g1_flat,payoff_p1_g2_flat)) #A1 is payoff Player 1

B1 = np.concatenate((payoff_p2_g1_flat,payoff_p2_g2_flat)) #B1 is payoff Player 2

trans_game1_1_flat = self.transition_matrix_game1_to1.A1 #flatten transition

probabilities game 1 to 1

trans_game2_1_flat = self.transition_matrix_game2_to1.A1 #flatten transition

probabilities game 2 to 1

p = np.concatenate((trans_game1_1_flat,trans_game2_1_flat)) #merge them into one

transition array

###Intialization of variables
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T = 100000 #number of points to generate

x = np.zeros(8) #preallocate frequency array

xstar = np.zeros(8) #preallocate converged frequency array

r = np.zeros(8) #preallocate random samples from beta distribution

y = np.zeros(8) #preallocate intermediate vector

yp = np.zeros(4) #preallocate intermediate vector with transition

yp_not = np.zeros(4) #preallocate intermediate vector with transition

v_p1 = np.zeros(8) #preallocate intermediate payoffs p1

v_p2 = np.zeros(8) #preallocate intermediate payoffs p2

payoff_p1 = np.zeros(T) #preallocate definite payoffs p1

payoff_p2 = np.zeros(T) #preallocate definite payoffs p2

for t in range(0,T): #sum over the number of points to generate

for i in range(0,8):

r[i] = np.random.beta(0.5,0.5) #generate random frequency pair

for i in range(0,8):

x[i] = r[i]/np.sum(r) #normalize the frequency pair so it sums

to 1

###intermediate calculations (flow equations)

for i in range(0,4):

y[i] = x[i]/np.sum(x[0:4]) #calculate intermediate vector

for i in range(4,8):

y[i] = x[i]/np.sum(x[4:8]) #see above

for i in range(0,4):

yp_not[i] = y[i] * (1-p[i]) #prepare for Q calculations

yp[i] = y[i+4]*p[i+4]

Q = np.sum(yp)/(np.sum(yp)+np.sum(yp_not)) #calculate Q and Qnot

Q_not = 1-Q

###Solve for X

for i in range(0,4):

xstar[i] = Q*y[i] #now calculate converged frequency pairs

for i in range(4,8):

xstar[i] = Q_not*y[i] #and for second game

if FD_yn == True:

FD = 1-0.25*(xstar[1]+xstar[2])-(1/3)*xstar[3]-(1/2)*(xstar[5] + xstar[6]) -

(2/3) * xstar[7]

else:

FD = 1

for i in range(0,8):

v_p1[i] = xstar[i]*A1[i] #calculate payoffs player1

v_p2[i] = xstar[i]*B1[i] #calculate payoffs player2

### Stage payoff vectors

payoff_p1[t] = FD*np.sum(v_p1) #result is one payoff of player 1

payoff_p2[t] = FD*np.sum(v_p2) #result is one payoff of player 2

all_payoffs = np.array([payoff_p1,payoff_p2]) #payoffs player 1 and and p2 merging

all_payoffs = np.transpose(all_payoffs) #transpose for use in convex_hull

Convex_Hull_Payoffs = ConvexHull(all_payoffs) #calculate convex_hull of the payoffs
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self.maximal_payoffs = np.zeros(2)

self.maximal_payoffs[0] = np.max(payoff_p1)

self.maximal_payoffs[1] = np.max(payoff_p2)

#here below we fill the convex_hull of the payoffs and plot it

plt.fill(all_payoffs[Convex_Hull_Payoffs.vertices,0], all_payoffs[Convex_Hull_Payoffs

.vertices,1], color=’y’, zorder=5, label="Obtainable rewards")

def markov_decision_process_p1(self,x):

"Here we run the threat point algorithm for P1 with fixed strategy for the punisher

and the punished one maximizes this MDP"

def chance_multiplication(self,x):

"In this function we compute the new transition probabilities based on chosen

actions"

# store the actions of the players

actions_p1_game1 = self.payoff_p1_game1.shape[0]

actions_p1_game2 = self.payoff_p1_game2.shape[0]

actions_p2_game1 = self.payoff_p1_game1.shape[1]

actions_p2_game2 = self.payoff_p1_game2.shape[1]

length_of_actions = np.max([actions_p1_game1,actions_p1_game2]) # determine the

maximum length

p1_combined = np.zeros(length_of_actions, dtype=object) # prepare an object for

the probabilities

# in the loop below we calculate the new transition probabilities

for i in np.nditer(np.arange(length_of_actions)):

working_probs = np.zeros((2,2))

working_probs[0,0] = np.asscalar(np.dot(self.transition_matrix_game1_to1[i

,:],x[0:actions_p2_game1]))

working_probs[0,1] = np.asscalar(np.dot(self.transition_matrix_game1_to2[i

,:],x[0:actions_p2_game1]))

working_probs[1,0] = np.asscalar(np.dot(self.transition_matrix_game2_to1[i

,:],x[actions_p2_game1:actions_p2_game1+actions_p2_game2]))

working_probs[1,1] = np.asscalar(np.dot(self.transition_matrix_game2_to2[i

,:],x[actions_p2_game1:actions_p2_game1+actions_p2_game2]))

p1_combined[i] = working_probs/np.sum(working_probs,1)

return p1_combined

def reward_multiplication(self,x):

"This function calculates the adjusted rewards"

# initialize empty arrays

rewards_game1 = []

rewards_game2 = []

# store the actions for p2

actions_p2_game1 = self.payoff_p1_game1.shape[1]

actions_p2_game2 = self.payoff_p1_game2.shape[1]

# calculate the rewards for game 1

for i in np.nditer(np.arange(self.payoff_p1_game1.shape[0])):

rewards_game1.append(np.asscalar(np.dot(self.payoff_p1_game1[i,:],x[0:

actions_p2_game1])))
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# calculate the rewards for game 2

for i in np.nditer(np.arange(self.payoff_p1_game2.shape[0])):

rewards_game2.append(np.asscalar(np.dot(self.payoff_p1_game2[i,:],x[

actions_p2_game1:actions_p2_game1+actions_p2_game2])))

Reward = np.array([rewards_game1,rewards_game2]) # Combine the rewards in one

array

return Reward

p1_combined = chance_multiplication(self,x) # run the transition probability function

Reward_matrix = reward_multiplication(self,x) # run the rewards function

# Run the MDP process to find the threat point for P1

mdp_threatpointp1 = mdptoolbox.mdp.RelativeValueIteration(p1_combined, Reward_matrix,

epsilon=0.00000000001)

mdp_threatpointp1.setSilent()

mdp_threatpointp1.run()

self.threatpoint_p1_policy = mdp_threatpointp1.policy # store the policy (strategy)

found

if self.printing == True:

print("Running MDP")

print("With X as",x)

print("Resulting in:")

print(mdp_treatpointp1.average_reward)

print("With policy:")

print(mdp_treatpointp1.policy)

return mdp_threatpointp1.average_reward

def markov_decision_process_p2(self,x):

"This function creates a MDP for the second player to determine the threat point"

def chance_multiplication(self,x):

"Calculates the transitions probabilities for the MDP"

# store the actions of the players

actions_p1_game1 = self.payoff_p1_game1.shape[0]

actions_p1_game2 = self.payoff_p1_game2.shape[0]

actions_p2_game1 = self.payoff_p2_game1.shape[1]

actions_p2_game2 = self.payoff_p2_game2.shape[1]

length_of_actions = np.max([actions_p2_game1,actions_p2_game2]) # determine the

maximum length of the actions

p2_combined = np.zeros(length_of_actions, dtype=object) # initialize an object

for storing the probabilities

# in this loop we calculate the probabilities and return them

for i in np.nditer(np.arange(length_of_actions)):

working_probs = np.zeros((2,2))

working_probs[0,0] = np.asscalar(np.dot(self.transition_matrix_game1_to1[:,i

],x[0:actions_p1_game1]))

working_probs[0,1] = np.asscalar(np.dot(self.transition_matrix_game1_to2[:,i

],x[0:actions_p1_game1]))

working_probs[1,0] = np.asscalar(np.dot(self.transition_matrix_game2_to1[:,i
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],x[actions_p1_game1:actions_p1_game1+actions_p1_game2]))

working_probs[1,1] = np.asscalar(np.dot(self.transition_matrix_game2_to2[:,i

],x[actions_p1_game1:actions_p1_game1+actions_p1_game2]))

p2_combined[i] = working_probs/np.sum(working_probs,1)

return p2_combined

def reward_multiplication(self,x):

"Calculate the rewards for the game"

# initialize and store the rewards

rewards_game1 = []

rewards_game2 = []

# store the actions of p2

actions_p1_game1 = self.payoff_p2_game1.shape[0]

actions_p1_game2 = self.payoff_p2_game2.shape[0]

# calculate the rewards of the first game

for i in np.nditer(np.arange(self.payoff_p1_game1.shape[0])):

rewards_game1.append(np.asscalar(np.dot(self.payoff_p2_game1[:,i],x[0:

actions_p1_game1])))

# calculate the rewards of the second game

for i in np.nditer(np.arange(self.payoff_p1_game2.shape[0])):

rewards_game2.append(np.asscalar(np.dot(self.payoff_p2_game2[:,i],x[

actions_p1_game1:actions_p1_game1+actions_p1_game2])))

Reward = np.array([rewards_game1,rewards_game2]) # combine the rewards of both

games

return Reward

p2_combined = chance_multiplication(self,x) # run the chance function

Reward2 = reward_multiplication(self,x) # run the rewards function

# Run the MDP for P2 and calculate his threat point

mdp_threatpointp2 = mdptoolbox.mdp.RelativeValueIteration(p2_combined, Reward2,

epsilon=0.00000000001)

mdp_threatpointp2.setSilent()

mdp_threatpointp2.run()

self.threatpoint_p2_policy = mdp_threatpointp2.policy # store the policy of p2 (best

strategy)

if self.printing == True:

print("Running MDP")

print("With X as",x)

print("Resulting in:")

print(mdp_treatpointp2.average_reward)

print("With policy:")

print(mdp_treatpointp2.policy)

return mdp_threatpointp2.average_reward

def threat_point_algorithm(self,T,sensi):

"This algorithm calculates the threat point in a two-player game with"

# set the shape of the actions for p1

x_shape_p1_g1 = self.payoff_p1_game1.shape[0]
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x_shape_p1_g2 = self.payoff_p1_game2.shape[0]

# set the shape of the actions for p2

x_shape_p2_g1 = self.payoff_p2_game1.shape[1]

x_shape_p2_g2 = self.payoff_p2_game2.shape[1]

# combine the shapes

x_shape_p1 = x_shape_p1_g1 + x_shape_p1_g2

x_shape_p2 = x_shape_p2_g1 + x_shape_p2_g2

# initialiaze the strategies

xtry = np.zeros(4)

xtry_p1 = np.zeros(x_shape_p1)

xtry_p2 = np.zeros(x_shape_p2)

# initialize the MDP values

tried_mdp_p1 = 0

stored_value_p1 = 0

tried_mdp_p2 = 0

stored_value_p2 = 0

# initialize storage of best threat strategy

x_best_p1 = np.zeros(x_shape_p1)

x_best_p2 = np.zeros(x_shape_p2)

new_time = time.time() # start the timer!

for i in np.nditer(np.arange(T)): #loop over the number of to generate points

# generate random strategies for p1 and p2

xtry_p1 = np.random.beta(0.5,0.5,x_shape_p1)

xtry_p2 = np.random.beta(0.5,0.5,x_shape_p2)

# normalize these strategies for both p1 and p2

xtry_p1[0:x_shape_p1_g1] = xtry_p1[0:x_shape_p1_g1]/np.sum(xtry_p1[0:

x_shape_p1_g1])

xtry_p1[x_shape_p1_g1:x_shape_p1] = xtry_p1[x_shape_p1_g1:x_shape_p1]/np.sum(

xtry_p1[x_shape_p1_g1:x_shape_p1])

xtry_p2[0:x_shape_p2_g1] = xtry_p2[0:x_shape_p2_g1]/np.sum(xtry_p2[0:

x_shape_p2_g1])

xtry_p2[x_shape_p2_g1:x_shape_p2] = xtry_p2[x_shape_p2_g1:x_shape_p2]/np.sum(

xtry_p2[x_shape_p2_g1:x_shape_p2])

# run the MDP for both P1 and P2

tried_mdp_p1 = self.markov_decision_process_p1(xtry_p1)

tried_mdp_p2 = self.markov_decision_process_p2(xtry_p2)

if i == 0: # if it is the first run, just store the values

stored_value_p1 = tried_mdp_p1

stored_value_p2 = tried_mdp_p2

x_best_p1 = xtry_p1

x_best_p2 = xtry_p2

else: # if not, check if we have found lower values for both MDP’s and store them

if so

if tried_mdp_p1 < stored_value_p1:

stored_value_p1 = tried_mdp_p1

x_best_p1 = xtry_p1
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elif tried_mdp_p2 < stored_value_p2:

stored_value_p2 = tried_mdp_p2

x_best_p2 = xtry_p2

# print the preliminary results

print("Rough value found =",stored_value_p1)

print("With best threaten strategy:",x_best_p1)

print("For p2 =",stored_value_p2)

print("With strategy",x_best_p2)

print("Found within (seconds): ",time.time() - new_time)

print("")

print("")

print("Now let’s find a more precise point by generating more precise points in an

interval")

print("")

# again initialize the best threat strategies

updatex_p1 = np.zeros(x_shape_p1)

updatex_p2 = np.zeros(x_shape_p2)

# loop again for better results

for i in np.nditer(np.arange(T)):

# calculate updates to the found best threat strategies

updatex_p1 = x_best_p1-sensi+((x_best_p1+sensi)-x_best_p1)*np.random.beta

(0.5,0.5,x_shape_p1)

updatex_p2 = x_best_p2-sensi+((x_best_p2+sensi)-x_best_p2)*np.random.beta

(0.5,0.5,x_shape_p2)

# fail safe in case any action becomes negative

for j in np.nditer(np.arange(x_shape_p1)):

if updatex_p1[j] < 0:

updatex_p1[j] = -updatex_p1[j]

for j in np.nditer(np.arange(x_shape_p2)):

if updatex_p2[j] < 0:

updatex_p2[j] = -updatex_p2[j]

# normalize the strategies

updatex_p1[0:x_shape_p1_g1] = updatex_p1[0:x_shape_p1_g1]/np.sum(updatex_p1[0:

x_shape_p1_g1])

updatex_p1[x_shape_p1_g1:x_shape_p1] = updatex_p1[x_shape_p1_g1:x_shape_p1]/np.

sum(updatex_p1[x_shape_p1_g1:x_shape_p1])

updatex_p2[0:x_shape_p2_g1] = updatex_p2[0:x_shape_p2_g1]/np.sum(updatex_p2[0:

x_shape_p2_g1])

updatex_p2[x_shape_p2_g1:x_shape_p2] = updatex_p2[x_shape_p2_g1:x_shape_p2]/np.

sum(updatex_p2[x_shape_p2_g1:x_shape_p2])

# run the MDP for new chosen strategies

new_try_mdp_p1 = self.markov_decision_process_p1(updatex_p1)

new_try_mdp_p2 = self.markov_decision_process_p2(updatex_p2)

# if new found values are lower then store them

if new_try_mdp_p1 < stored_value_p1:

stored_value_p1 = new_try_mdp_p1

x_best_p1 = updatex_p1
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elif new_try_mdp_p2 < stored_value_p2:

stored_value_p2 = new_try_mdp_p2

x_best_p2 = updatex_p2

# print the threat point

print("New value found =",stored_value_p1)

print("With best strategy =",x_best_p1)

print("")

print("For p2 =",stored_value_p2)

print("With strategy",x_best_p2)

print("")

print("")

print("End of algorithm")

print("")

print("")

self.threat_point = [stored_value_p1,stored_value_p2] # store the threat point

def markov_try_out_max_p1(self,x):

"Maximize the payoff by using negative values"

def chance_multiplication(self,x):

"This function calculates the transition probabilities"

# this function stores the actions of the players

actions_p1_game1 = self.payoff_p1_game1.shape[0]

actions_p1_game2 = self.payoff_p1_game2.shape[0]

actions_p2_game1 = self.payoff_p2_game1.shape[1]

actions_p2_game2 = self.payoff_p2_game2.shape[1]

length_of_actions = np.max([actions_p2_game1,actions_p2_game2]) # determine the

maximum length of the actions

p2_combined = np.zeros(length_of_actions, dtype=object) # initialize an empty

object

# calculate the transition probabilities based on chosen actions

for i in np.nditer(np.arange(length_of_actions)):

working_probs = np.zeros((2,2))

working_probs[0,0] = np.asscalar(np.dot(self.transition_matrix_game1_to1[:,i

],x[0:actions_p1_game1]))

working_probs[0,1] = np.asscalar(np.dot(self.transition_matrix_game1_to2[:,i

],x[0:actions_p1_game1]))

working_probs[1,0] = np.asscalar(np.dot(self.transition_matrix_game2_to1[:,i

],x[actions_p1_game1:actions_p1_game1+actions_p1_game2]))

working_probs[1,1] = np.asscalar(np.dot(self.transition_matrix_game2_to2[:,i

],x[actions_p1_game1:actions_p1_game1+actions_p1_game2]))

p2_combined[i] = working_probs/np.sum(working_probs,1)

return p2_combined

p2_combined_max = chance_multiplication(self,x) # run the chance multiplication

function

def reward_multiplication(self,x):

"This function computes the reward matrix based on the input strategy"
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# initialize the reewards for game 1 and game 2

rewards_game1 = []

rewards_game2 = []

# store the actions for p1 in game 1 and 2

actions_p1_game1 = self.payoff_p1_game1.shape[0]

actions_p1_game2 = self.payoff_p1_game2.shape[0]

# calculate the new rewards for game 1

for i in np.nditer(np.arange(self.payoff_p1_game1.shape[0])):

rewards_game1.append(np.asscalar(-np.dot(self.payoff_p1_game1[:,i],x[0:

actions_p1_game1])))

# calculate the new rewards for game 2

for i in np.nditer(np.arange(self.payoff_p1_game2.shape[0])):

rewards_game2.append(np.asscalar(-np.dot(self.payoff_p1_game2[:,i],x[

actions_p1_game1:actions_p1_game1+actions_p1_game2])))

Reward = np.array([rewards_game1,rewards_game2]) # store them in one array

return Reward

Reward2_max = reward_multiplication(self,x) # run the reward function

# run the MDP which computes the minimax for p1

mdp_threatpoint_minp1 = mdptoolbox.mdp.RelativeValueIteration(p2_combined_max,

Reward2_max, epsilon=0.00000000001)

mdp_threatpoint_minp1.setSilent()

mdp_threatpoint_minp1.run()

self.threatpoint_p1_min_policy = mdp_threatpoint_minp1.policy # store the policy

# print the result

if self.printing == True:

print("Running MDP")

print("With X as",x)

print("Resulting in:")

print(mdp_treatpoint_minp1.average_reward)

print("With policy:")

print(mdp_treatpoint_minp1.policy)

return mdp_threatpoint_minp1.average_reward

def markov_try_out_max_p2(self,x):

"The maximin version of the MDP for P2"

def chance_multiplication(self,x):

"The transition probability function"

# store the actions for both players

actions_p1_game1 = self.payoff_p1_game1.shape[0]

actions_p1_game2 = self.payoff_p1_game2.shape[0]

actions_p2_game1 = self.payoff_p1_game1.shape[1]

actions_p2_game2 = self.payoff_p1_game2.shape[1]

length_of_actions = np.max([actions_p1_game1,actions_p1_game2]) # select the

maximal length of the actions

p1_combined = np.zeros(length_of_actions, dtype=object) # initialize the p1

transition probability
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# calculate the transition probabilities for p1

for i in np.nditer(np.arange(length_of_actions)):

working_probs = np.zeros((2,2))

working_probs[0,0] = np.asscalar(np.dot(self.transition_matrix_game1_to1[i

,:],x[0:actions_p2_game1]))

working_probs[0,1] = np.asscalar(np.dot(self.transition_matrix_game1_to2[i

,:],x[0:actions_p2_game1]))

working_probs[1,0] = np.asscalar(np.dot(self.transition_matrix_game2_to1[i

,:],x[actions_p2_game1:actions_p2_game1+actions_p2_game2]))

working_probs[1,1] = np.asscalar(np.dot(self.transition_matrix_game2_to2[i

,:],x[actions_p2_game1:actions_p2_game1+actions_p2_game2]))

p1_combined[i] = working_probs/np.sum(working_probs,1)

return p1_combined

def reward_multiplication(self,x):

"Multiply the rewards for p2’s maximin"

# initialize the array for storage

rewards_game1 = []

rewards_game2 = []

# store the actions for p2 in both games

actions_p2_game1 = self.payoff_p2_game1.shape[1]

actions_p2_game2 = self.payoff_p2_game2.shape[1]

# compute the rewards for game 1

for i in np.nditer(np.arange(self.payoff_p2_game1.shape[0])):

rewards_game1.append(-np.asscalar(np.dot(self.payoff_p2_game1[i,:],x[0:

actions_p2_game1])))

# compute the rewards for game 2

for i in np.nditer(np.arange(self.payoff_p1_game2.shape[0])):

rewards_game2.append(-np.asscalar(np.dot(self.payoff_p2_game2[i,:],x[

actions_p2_game1:actions_p2_game1+actions_p2_game2])))

Reward = np.array([rewards_game1,rewards_game2]) # combine the rewards in one

array

return Reward

p1_combined = chance_multiplication(self,x) # compute the new transition

probabilities

Reward = reward_multiplication(self,x) # compute the new rewards

# run the MDP to compute the maximin for p2

mdp_threatpointp1 = mdptoolbox.mdp.RelativeValueIteration(p1_combined, Reward,

epsilon=0.00000000001)

mdp_threatpointp1.setSilent()

mdp_threatpointp1.run()

self.threatpoint_p1_policy = mdp_threatpointp1.policy #store the policy

# print some blabla (wonder if someone ever reads this)

if self.printing == True:

print("Running MDP")

print("With X as",x)

print("Resulting in:")

print(mdp_treatpointp1.average_reward)
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print("With policy:")

print(mdp_treatpointp1.policy)

return mdp_threatpointp1.average_reward

def maximin_point(self,T):

"This part tries to find the maximin point for T points"

print("Trying to find the maximin values for both players")

# store the shape of the games for both players

x_shape_p1_g1 = self.payoff_p1_game1.shape[0]

x_shape_p1_g2 = self.payoff_p1_game2.shape[0]

x_shape_p2_g1 = self.payoff_p2_game1.shape[1]

x_shape_p2_g2 = self.payoff_p2_game2.shape[1]

# add up the shapes for both players

x_shape_p1 = x_shape_p1_g1 + x_shape_p1_g2

x_shape_p2 = x_shape_p2_g1 + x_shape_p2_g2

# initialize for trying strategies

x_try_p1_max = np.zeros(x_shape_p2)

x_try_p2_max = np.zeros(x_shape_p1)

# set all ’found’ values to zero

tried_mdp_p1_max = 0

stored_value_p1_max = 0

tried_mdp_p2_max = 0

stored_value_p2_max = 0

# loop over the number of points to generate

for i in range(0,T):

# draw new strategies

x_try_p1_max = np.random.beta(0.5,0.5,x_shape_p2)

x_try_p2_max = np.random.beta(0.5,0.5,x_shape_p1)

# normalize these strategies

x_try_p1_max[0:x_shape_p2_g1] = x_try_p1_max[0:x_shape_p2_g1]/np.sum(x_try_p1_max

[0:x_shape_p2_g1])

x_try_p1_max[x_shape_p2_g1:x_shape_p2] = x_try_p1_max[x_shape_p2_g1:x_shape_p2]/

np.sum(x_try_p1_max[x_shape_p2_g1:x_shape_p2])

x_try_p2_max[0:x_shape_p1_g1] = x_try_p2_max[0:x_shape_p1_g1]/np.sum(x_try_p2_max

[0:x_shape_p1_g1])

x_try_p2_max[x_shape_p1_g1:x_shape_p1] = x_try_p2_max[x_shape_p1_g1:x_shape_p1]/

np.sum(x_try_p2_max[x_shape_p1_g1:x_shape_p1])

# run the markov maximin problems

tried_mdp_p1_max = -self.markov_try_out_max_p1(x_try_p1_max)

tried_mdp_p2_max = -self.markov_try_out_max_p2(x_try_p2_max)

# if it is the first result, store it

if i == 0:

stored_value_p1_max = tried_mdp_p1_max

stored_value_p2_max = tried_mdp_p2_max

x_best_p1_max = x_try_p1_max

x_best_p2_max = x_try_p2_max
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# if a higher value is found and it is not the first result, then store again

else:

if tried_mdp_p1_max > stored_value_p1_max:

stored_value_p1_max = tried_mdp_p1_max

x_best_p1_max = x_try_p1_max

if tried_mdp_p2_max > stored_value_p2_max:

stored_value_p2_max = tried_mdp_p2_max

x_best_p2_max = x_try_p2_max

print("Maximin value found for P1",stored_value_p1_max)

print("With best maximization strategy:",x_best_p1_max)

print("")

print("Maximin value found for P2",stored_value_p2_max)

print("With best maximization strategy:",x_best_p2_max)

print("")

print("")

def optimized_maximin(self,points,show_strat_p1,show_strat_p2,FD_yn):

"This algorithim is a more optimized way of calculating the maximin results "

print("Start of the maximin algorithm")

def random_strategy_draw(points,number_of_actions):

"This function draws random strategies from a beta distribution, based on the

number of points and actions"

# draw the strategies and normalize them

strategies_drawn = np.random.beta(0.5,0.5,(points,number_of_actions))

strategies_drawn = strategies_drawn/np.sum(strategies_drawn, axis=1).reshape([

points,1])

return strategies_drawn

def frequency_pairs_p1(points,p2_actions,p1_actions,strategies_drawn):

"This function sorts the strategies that punish based on the best replies for p1"

# store the size of the game

game_size_1 = self.payoff_p1_game1.size

game_size_2 = self.payoff_p1_game2.size

# store the actions of the game

p1_actions_game1 = self.payoff_p1_game1.shape[0]

p1_actions_game2 = self.payoff_p1_game2.shape[0]

# calculate the combination of actions and set it in a range

p1_actions_combi = p1_actions_game1*p1_actions_game2

p1_action_range = np.arange(p1_actions_combi)

# initialize a frequency pair

frequency_pairs = np.zeros((points*(p1_actions_game1*p1_actions_game2),

game_size_1+game_size_2))

# set ranges for game 1 and 2

p1_act_game1_range = np.arange(p1_actions_game1)

p1_act_game2_range = np.arange(p1_actions_game2)

# set the frequency pairs for game 1 based on best replies

for i in np.nditer(p1_action_range):

for j in np.nditer(p1_act_game1_range):

mod_remain = np.mod(i,p1_actions_game1)

frequency_pairs[i*points:(i+1)*points,p1_actions_game1*mod_remain+j] =
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strategies_drawn[:,j]

# set the frequency pairs for game 2 based on best replies

for i in np.nditer(p1_action_range):

for j in np.nditer(p1_act_game2_range):

floor_div = np.floor_divide(i,p1_actions_game2)

frequency_pairs[i*points:(i+1)*points,j+game_size_1+(p1_actions_game1*
floor_div)] = strategies_drawn[:,p1_actions_game1+j]

return frequency_pairs

def balance_equation(self,tot_act_ut,tot_act_thr,tot_payoffs_game1,tot_payoffs,

frequency_pairs):

"Calculates the result of the balance equations in order to adjust the frequency

pairs"

# store the game size

game_size_1 = self.payoff_p1_game1.size

game_size_2 = self.payoff_p1_game2.size

# initialize yi and Q

yi = np.zeros((points*(tot_act_thr*tot_act_ut),game_size_1+game_size_2))

Q = np.zeros((1,points*(tot_act_thr*tot_act_ut)))

# calculate yi

yi[:,0:tot_payoffs_game1] = frequency_pairs[:,0:tot_payoffs_game1]/np.sum(

frequency_pairs[:,0:tot_payoffs_game1], axis=1).reshape([points*
tot_payoffs_game1,1])

yi[:,tot_payoffs_game1:tot_payoffs] = frequency_pairs[:,tot_payoffs_game1:

tot_payoffs]/np.sum(frequency_pairs[:,tot_payoffs_game1:tot_payoffs], axis=1)

.reshape([points*(tot_payoffs-tot_payoffs_game1),1])

# store px

p1_px_between = np.asarray(px)

p1_px = p1_px_between[0]

# calculate Q

Q[0,:] = (np.sum(yi[:,tot_payoffs_game1:tot_payoffs]*p1_px[tot_payoffs_game1:

tot_payoffs],axis=1))/((np.dot(yi[:,0:tot_payoffs_game1],(1-p1_px[0:

tot_payoffs_game1]))+np.dot(yi[:,tot_payoffs_game1:tot_payoffs],p1_px[

tot_payoffs_game1:tot_payoffs])))

# calculate new frequency pairs based on Q

frequency_pairs[:,0:tot_payoffs_game1] = (np.multiply(Q.transpose(),yi[:,0:

tot_payoffs_game1]))

frequency_pairs[:,tot_payoffs_game1:tot_payoffs] = np.multiply((1-Q.transpose()),

yi[:,tot_payoffs_game1:tot_payoffs])

return frequency_pairs

def frequency_pairs_p2(points,p2_actions,p1_actions,strategies_drawn):

"This function sorts the punish strategies based on the best replies of p2"

# store the game size

game_size_1 = self.payoff_p2_game1.size

game_size_2 = self.payoff_p2_game2.size

# create a range of actions of both players

p1_actions_range = np.arange(p1_actions)

p2_actions_range = np.arange(p2_actions)
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# store the shape of the both games

p2_actions_game1 = self.payoff_p2_game1.shape[1]

p2_actions_game2 = self.payoff_p2_game2.shape[1]

# calculate the range of possible actions

p2_actions_combo = p2_actions_game1*p2_actions_game2

p2_action_range = np.arange(p2_actions_combo)

# initialize the frequency pairs

frequency_pairs = np.zeros((points*(p2_actions_game1*p2_actions_game2),

game_size_1+game_size_2))

# sort the frequency pairs for the first game

for i in np.nditer(np.arange(p2_actions_game1)):

for j in np.nditer(p2_action_range):

modul = np.mod(j,p2_actions_game1)

frequency_pairs[j*points:(j+1)*points,p2_actions_game1*i+modul] =

strategies_drawn[:,i]

# sort the frequency pairs for the second game

for i in np.nditer(np.arange(p2_actions_game2)):

for j in np.nditer(p2_action_range):

divide = np.floor_divide(j,p2_actions_game2)

frequency_pairs[j*points:(j+1)*points,p2_actions_combo+divide+(i*
p2_actions_game2)] = strategies_drawn[:,i+p2_actions_game1]

return frequency_pairs

def payoffs_sorted(points,payoffs,actions):

"Sort the payoffs for use on the max and min functions"

# create two ranges based on the number of points and actions

points_range = np.arange(points)

actions_range = np.arange(actions)

payoffs_sort = np.zeros((points,actions)) # initialize the payoff_sort array

# sort the payoffs

for x in np.nditer(points_range):

for i in np.nditer(actions_range):

payoffs_sort[x,i] = payoffs[points*i+x]

return payoffs_sort

## Start of p1 maximin ##

start_time = time.time() # start the time!

# flatten the transition matrices

flatten1_1 = self.transition_matrix_game1_to1.flatten()

flatten2_1 = self.transition_matrix_game2_to1.flatten()

# save and compute the total number of actions

actions_p2_game1 = self.payoff_p1_game1.shape[1]

actions_p2_game2 = self.payoff_p1_game2.shape[1]

total_actions_p2 = actions_p2_game1 + actions_p2_game2

actions_p1_game1 = self.payoff_p1_game1.shape[0]

actions_p1_game2 = self.payoff_p1_game2.shape[0]

total_actions_p1 = actions_p1_game1 + actions_p1_game2
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# flatten the payoffs

payoff_p1_game_1flatten = self.payoff_p1_game1.flatten()

payoff_p1_game_2flatten = self.payoff_p1_game2.flatten()

total_payoffs_p1_game1 = payoff_p1_game_1flatten.size

total_payoffs_p1_game2 = payoff_p1_game_2flatten.size

total_payoffs_p1 = total_payoffs_p1_game1 + total_payoffs_p1_game2

# initialize and assign the payoffs for p1

payoff_p1 = np.zeros(total_payoffs_p1)

payoff_p1[0:total_payoffs_p1_game1] = payoff_p1_game_1flatten

payoff_p1[total_payoffs_p1_game1:total_payoffs_p1] = payoff_p1_game_2flatten

px = np.concatenate([flatten1_1,flatten2_1],axis=1) # create px

y_punisher = random_strategy_draw(points,total_actions_p1) # draw random strategies

for the punisher

frequency_pairs = frequency_pairs_p2(points,total_actions_p1,total_actions_p2,

y_punisher) # sort these

# run the balance equation

frequency_pairs = balance_equation(self,actions_p2_game1,actions_p2_game2,

total_payoffs_p1_game1,total_payoffs_p1,frequency_pairs)

# if the FD_function is available, run this (note: Only the FD function from the

thesis)

if FD_yn == True:

FD = 1-0.25*(frequency_pairs[:,1]+frequency_pairs[:,2])-(1/3)*frequency_pairs

[:,3]-(1/2)*(frequency_pairs[:,5] + frequency_pairs[:,6]) - (2/3) *
frequency_pairs[:,7]

else:

FD = 1

# calculate the payoffs with multiplication of payoffs and Fd function

payoffs = np.sum(np.multiply(frequency_pairs,payoff_p1),axis=1)

payoffs = np.multiply(FD,payoffs)

payoffs = payoffs.reshape((payoffs.size,1))

max_payoffs = payoffs_sorted(points,payoffs,(actions_p2_game1*actions_p2_game2)) #

sort the payoffs

print("")

print("")

minimax_found = np.max(np.min(max_payoffs,axis=1))

print("Maximin value for P1 is",minimax_found)

print("")

print("")

# print the results

if show_strat_p1 == True:

minimax_indices_p2 = np.where(max_payoffs == minimax_found)

found_strategy_p2 = y_punisher[minimax_indices_p2[0]]

fnd_strategy_p2 = found_strategy_p2.flatten()

fnd_strategy_p2[0:2] = fnd_strategy_p2[0:2]/np.sum(fnd_strategy_p2[0:2])

fnd_strategy_p2[2:4] = fnd_strategy_p2[2:4]/np.sum(fnd_strategy_p2[2:4])

print("Player 1 plays stationary strategy:", fnd_strategy_p2)

print("While player 2 replies with a best pure reply of:", self.

best_pure_strategies[minimax_indices_p2[1]])

end_time = time.time() # stop the time!
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print("Seconds done to generate", points, "points", end_time-start_time)

## End of P1 maximin algorithm ##

start_time_p2 = time.time() # start the time (Again!)

#flatten the payoffs

payoff_p2_game_1flatten = self.payoff_p2_game1.flatten()

payoff_p2_game_2flatten = self.payoff_p2_game2.flatten()

# store and compute the total payoffs

total_payoffs_p2_game1 = payoff_p2_game_1flatten.size

total_payoffs_p2_game2 = payoff_p2_game_2flatten.size

total_payoffs_p2 = total_payoffs_p2_game1 + total_payoffs_p2_game2

# initialize and assign the payoffs for p2

payoff_p2 = np.zeros(total_payoffs_p2)

payoff_p2[0:total_payoffs_p2_game1] = payoff_p2_game_1flatten

payoff_p2[total_payoffs_p2_game1:total_payoffs_p2] = payoff_p2_game_2flatten

px = np.concatenate([flatten1_1,flatten2_1],axis=1) # store px

x_punisher = random_strategy_draw(points,total_actions_p2) # draw punisher strategies

frequency_pairs = frequency_pairs_p1(points,total_actions_p1,total_actions_p2,

x_punisher) # best replies

# do the balance equation trick

frequency_pairs = balance_equation(self,actions_p1_game1,actions_p1_game2,

total_payoffs_p1_game1,total_payoffs_p1,frequency_pairs)

# if the FD function is on, then run it

if FD_yn == True:

FD = 1-0.25*(frequency_pairs[:,1]+frequency_pairs[:,2])-(1/3)*frequency_pairs

[:,3]-(1/2)*(frequency_pairs[:,5] + frequency_pairs[:,6]) - (2/3) *
frequency_pairs[:,7]

else:

FD = 1

# compute the payoffs with the payoffs and FD function

payoffs = np.sum(np.multiply(frequency_pairs,payoff_p2),axis=1)

payoffs = np.multiply(FD,payoffs)

payoffs = payoffs.reshape((payoffs.size,1))

max_payoffs = payoffs_sorted(points,payoffs,(actions_p1_game1*actions_p1_game2))

# sort the payoffs

print("")

print("")

minimax_found_p2 = np.max(np.min(max_payoffs,axis=1)) # find the maximin value

print("Maximin value for P2 is",minimax_found_p2)

print("")

print("")

# print the strategies

if show_strat_p2 == True:

maximin_indices_p2 = np.where(max_payoffs == minimax_found_p2)

found_strategy = x_punisher[maximin_indices_p2[0]]

fnd_strategy = found_strategy.flatten()

fnd_strategy[0:2] = fnd_strategy[0:2]/np.sum(fnd_strategy[0:2])
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fnd_strategy[2:4] = fnd_strategy[2:4]/np.sum(fnd_strategy[2:4])

print("Player 2 plays stationairy strategy:", fnd_strategy)

print("While player 2 replies with a best pure reply of:", self.

best_pure_strategies[maximin_indices_p2[1]])

end_time_p2 = time.time() # stop the time

print("Seconds done to generate", points, "points", end_time_p2-start_time_p2)

print("")

print("")

def threat_point_optimized(self,points,show_strat_p1,show_strat_p2,print_text,FD_yn):

"The optimized, super awesome threat point algorithm!"

def random_strategy_draw(points,number_of_actions):

"This function draws random strategies from a beta distribution, based on the

number of points and actions"

# draw the strategies and normalize them

strategies_drawn = np.random.beta(0.5,0.5,(points,number_of_actions))

strategies_drawn = strategies_drawn/np.sum(strategies_drawn, axis=1).reshape([

points,1])

return strategies_drawn

def frequency_pairs_p1(points,p2_actions,p1_actions,strategies_drawn):

"This function sorts the punisher strategies based on the replies for p1"

# store the game sizes

game_size_1 = self.payoff_p1_game1.size

game_size_2 = self.payoff_p1_game2.size

# store the actions of p1 for both games

p1_actions_game1 = self.payoff_p1_game1.shape[0]

p1_actions_game2 = self.payoff_p1_game2.shape[0]

# set both actions within a certain range

p1_actions_combi = p1_actions_game1*p1_actions_game2

p1_action_range = np.arange(p1_actions_combi)

# initialize the frequency pair

frequency_pairs = np.zeros((points*(p1_actions_game1*p1_actions_game2),

game_size_1+game_size_2))

# set action ranges for both games

p1_act_game1_range = np.arange(p1_actions_game1)

p1_act_game2_range = np.arange(p1_actions_game2)

# set the best replies for the first game

for i in np.nditer(p1_action_range):

for j in np.nditer(p1_act_game1_range):

mod_remain = np.mod(i,p1_actions_game1)

frequency_pairs[i*points:(i+1)*points,p1_actions_game1*mod_remain+j] =

strategies_drawn[:,j]

# set the best replies for the second game

for i in np.nditer(p1_action_range):

for j in np.nditer(p1_act_game2_range):

floor_div = np.floor_divide(i,p1_actions_game2)

frequency_pairs[i*points:(i+1)*points,j+game_size_1+(p1_actions_game1*
floor_div)] = strategies_drawn[:,p1_actions_game1+j]
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return frequency_pairs

def balance_equation(self,tot_act_ut,tot_act_thr,tot_payoffs_game1,tot_payoffs,

frequency_pairs):

"Calculates the result of the balance equations in order to adjust the frequency

pairs"

# store size of game 1 and 2

game_size_1 = self.payoff_p1_game1.size

game_size_2 = self.payoff_p1_game2.size

# initialize yi and Q

yi = np.zeros((points*(tot_act_thr*tot_act_ut),game_size_1+game_size_2))

Q = np.zeros((1,points*(tot_act_thr*tot_act_ut)))

# compute Yi

yi[:,0:tot_payoffs_game1] = frequency_pairs[:,0:tot_payoffs_game1]/np.sum(

frequency_pairs[:,0:tot_payoffs_game1], axis=1).reshape([points*
tot_payoffs_game1,1])

yi[:,tot_payoffs_game1:tot_payoffs] = frequency_pairs[:,tot_payoffs_game1:

tot_payoffs]/np.sum(frequency_pairs[:,tot_payoffs_game1:tot_payoffs], axis=1)

.reshape([points*(tot_payoffs-tot_payoffs_game1),1])

p1_px_between = np.asarray(px) # some tricks with px (ha-ha)

p1_px = p1_px_between[0]

# compute Q

Q[0,:] = (np.sum(yi[:,tot_payoffs_game1:tot_payoffs]*p1_px[tot_payoffs_game1:

tot_payoffs],axis=1))/((np.dot(yi[:,0:tot_payoffs_game1],(1-p1_px[0:

tot_payoffs_game1]))+np.dot(yi[:,tot_payoffs_game1:tot_payoffs],p1_px[

tot_payoffs_game1:tot_payoffs])))

# adjust the frequency pairs based on Q

frequency_pairs[:,0:tot_payoffs_game1] = (np.multiply(Q.transpose(),yi[:,0:

tot_payoffs_game1]))

frequency_pairs[:,tot_payoffs_game1:tot_payoffs] = np.multiply((1-Q.transpose()),

yi[:,tot_payoffs_game1:tot_payoffs])

return frequency_pairs

def frequency_pairs_p2(points,p2_actions,p1_actions,strategies_drawn):

"This function sorts the punisher strategies based on the replies for p2"

# store the sizes of both games

game_size_1 = self.payoff_p2_game1.size

game_size_2 = self.payoff_p2_game2.size

# make a nice range of the actions for both players and store them

p1_actions_range = np.arange(p1_actions)

p2_actions_range = np.arange(p2_actions)

p2_actions_game1 = self.payoff_p2_game1.shape[1]

p2_actions_game2 = self.payoff_p2_game2.shape[1]

p2_actions_combo = p2_actions_game1*p2_actions_game2

p2_action_range = np.arange(p2_actions_combo)

# initialize the frequency pairs

frequency_pairs = np.zeros((points*(p2_actions_game1*p2_actions_game2),

game_size_1+game_size_2))
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# loop over the first games best responses

for i in np.nditer(np.arange(p2_actions_game1)):

for j in np.nditer(p2_action_range):

modul = np.mod(j,p2_actions_game1)

frequency_pairs[j*points:(j+1)*points,p2_actions_game1*i+modul] =

strategies_drawn[:,i]

# loop over the second games best responses

for i in np.nditer(np.arange(p2_actions_game2)):

for j in np.nditer(p2_action_range):

divide = np.floor_divide(j,p2_actions_game2)

frequency_pairs[j*points:(j+1)*points,p2_actions_combo+divide+(i*
p2_actions_game2)] = strategies_drawn[:,i+p2_actions_game1]

return frequency_pairs

def payoffs_sorted(points,payoffs,actions):

"This function sorts the payoffs for use on the threat point function"

# set a points and actions range

points_range = np.arange(points)

actions_range = np.arange(actions)

payoffs_sort = np.zeros((points,actions)) # initialize the payoffs sorted

# and sort them in a loop

for x in np.nditer(points_range):

for i in np.nditer(actions_range):

payoffs_sort[x,i] = payoffs[points*i+x]

return payoffs_sort

if print_text == True:

print("The start of the algorithm for finding the threat point")

print("First let’s find the threat point for Player 1")

# flatten the transition probabilities

flatten1_1 = self.transition_matrix_game1_to1.flatten()

flatten2_1 = self.transition_matrix_game2_to1.flatten()

# store the actions of both players

actions_p2_game1 = self.payoff_p1_game1.shape[1]

actions_p2_game2 = self.payoff_p1_game2.shape[1]

total_actions_p2 = actions_p2_game1 + actions_p2_game2

actions_p1_game1 = self.payoff_p1_game1.shape[0]

actions_p1_game2 = self.payoff_p1_game2.shape[0]

total_actions_p1 = actions_p1_game1 + actions_p1_game2

# Start of algorithm for player 1

start_time = time.time() # and start the time!

# flatten the payoffs of both players

payoff_p1_game_1flatten = self.payoff_p1_game1.flatten()

payoff_p1_game_2flatten = self.payoff_p1_game2.flatten()

total_payoffs_p1_game1 = payoff_p1_game_1flatten.size

total_payoffs_p1_game2 = payoff_p1_game_2flatten.size

total_payoffs_p1 = total_payoffs_p1_game1 + total_payoffs_p1_game2



A.5. TYPE II GAME CODE 89

# initialize and assign the payoffs for p1

payoff_p1 = np.zeros(total_payoffs_p1)

payoff_p1[0:total_payoffs_p1_game1] = payoff_p1_game_1flatten

payoff_p1[total_payoffs_p1_game1:total_payoffs_p1] = payoff_p1_game_2flatten

px = np.concatenate([flatten1_1,flatten2_1],axis=1) # create px

y_punisher = random_strategy_draw(points,total_actions_p2) # draw strategies for the

punisher

frequency_pairs = frequency_pairs_p1(points,total_actions_p2,total_actions_p1,

y_punisher) # sort based on best replies

# calculate the adjustments based on the balance equation

frequency_pairs = balance_equation(self,actions_p1_game1,actions_p1_game2,

total_payoffs_p1_game1,total_payoffs_p1,frequency_pairs)

# if FD function is activated, activate it

if FD_yn == True:

FD = 1-0.25*(frequency_pairs[:,1]+frequency_pairs[:,2])-(1/3)*frequency_pairs

[:,3]-(1/2)*(frequency_pairs[:,5] + frequency_pairs[:,6]) - (2/3) *
frequency_pairs[:,7]

else:

FD = 1

# calculate the payoffs based on the frequency pairs and FD function

payoffs = np.sum(np.multiply(frequency_pairs,payoff_p1),axis=1)

payoffs = np.multiply(FD,payoffs)

payoffs = payoffs.reshape((payoffs.size,1))

max_payoffs = payoffs_sorted(points,payoffs,(actions_p1_game1*actions_p1_game2)) #

sort the payoffs

threat_point_p1 = np.min(np.max(max_payoffs,axis=1)) # determine the threat point

if print_text == True:

print("")

print("")

print("Threat point value is",threat_point_p1)

print("")

print("")

if show_strat_p1 == True:

threat_point_indices_p1 = np.where(max_payoffs == threat_point_p1)

found_strategy_p1 = y_punisher[threat_point_indices_p1[0]]

fnd_strategy_p1 = found_strategy_p1.flatten()

fnd_strategy_p1[0:2] = fnd_strategy_p1[0:2]/np.sum(fnd_strategy_p1[0:2])

fnd_strategy_p1[2:4] = fnd_strategy_p1[2:4]/np.sum(fnd_strategy_p1[2:4])

print("Player 2 plays stationary strategy:", fnd_strategy_p1)

print("While player 1 replies with a best pure reply of:", self.

best_pure_strategies[threat_point_indices_p1[1]])

end_time = time.time() # stop the time!

if print_text == True:

print("Seconds done to generate", points, "points", end_time-start_time)

print("")

# End of algorithm player 1

# Start of algorithm player 2
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if print_text == True:

print("")

print("")

print("First start the threat point for player 2")

start_time_p2 = time.time() # new timer, new times

# flatten the payoffs for p2

payoff_p2_game_1flatten = self.payoff_p2_game1.flatten()

payoff_p2_game_2flatten = self.payoff_p2_game2.flatten()

# assign tha payoffs for p2

total_payoffs_p2_game1 = payoff_p2_game_1flatten.size

total_payoffs_p2_game2 = payoff_p2_game_2flatten.size

total_payoffs_p2 = total_payoffs_p2_game1 + total_payoffs_p2_game2

# initialize payoffs p2 and assign them

payoff_p2 = np.zeros(total_payoffs_p2)

payoff_p2[0:total_payoffs_p2_game1] = payoff_p2_game_1flatten

payoff_p2[total_payoffs_p2_game1:total_payoffs_p2] = payoff_p2_game_2flatten

px = np.concatenate([flatten1_1,flatten2_1],axis=1) # px in the mix

x_punisher = random_strategy_draw(points,total_actions_p1) # draw strategies for the

punisher

frequency_pairs = frequency_pairs_p2(points,total_actions_p2,total_actions_p1,

x_punisher) # sort based on best replies

# adjust based on the balance equation

frequency_pairs = balance_equation(self,actions_p2_game1,actions_p2_game2,

total_payoffs_p2_game1,total_payoffs_p2,frequency_pairs)

# Activate the FD function, or not

if FD_yn == True:

FD = 1-0.25*(frequency_pairs[:,1]+frequency_pairs[:,2])-(1/3)*frequency_pairs

[:,3]-(1/2)*(frequency_pairs[:,5] + frequency_pairs[:,6]) - (2/3) *
frequency_pairs[:,7]

else:

FD = 1

# determine the payoffs based on the frequency pairs and FD function

payoffs = np.sum(np.multiply(frequency_pairs,payoff_p2),axis=1)

payoffs = np.multiply(FD,payoffs)

payoffs = payoffs.reshape((payoffs.size,1))

max_payoffs = payoffs_sorted(points,payoffs,(actions_p2_game1*actions_p2_game2)) #

sort the payoffs

threat_point_p2 = np.min(np.max(max_payoffs,axis=1)) # determine the threat point

if print_text == True:

print("")

print("")

print("Threat point value is",threat_point_p2)

print("")

print("")

if show_strat_p2 == True:

threat_point_indices_p2 = np.where(max_payoffs == threat_point_p2)

found_strategy = x_punisher[threat_point_indices_p2[0]]
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fnd_strategy = found_strategy.flatten()

fnd_strategy[0:2] = fnd_strategy[0:2]/np.sum(fnd_strategy[0:2])

fnd_strategy[2:4] = fnd_strategy[2:4]/np.sum(fnd_strategy[2:4])

print("Player 1 plays stationairy strategy:", fnd_strategy)

print("While player 2 replies with a best pure reply of:", self.

best_pure_strategies[threat_point_indices_p2[1]])

end_time_p2 = time.time() # stop the time!

if print_text == True:

print("")

print("Seconds done to generate", points, "points", end_time_p2-start_time_p2)

print("")

print("")

self.threat_point = [threat_point_p1,threat_point_p2] # store the threat point

return [threat_point_p1,threat_point_p2]

A.6 Type II Example Games Code

encoding=*-60

"The first Stochastic Game is based on a Stochastic Game described in the thesis"

p1_1 = np.matrix(’16 14; 28 24’)

p2_1 = np.matrix(’16 28; 14 24’)

p1_2 = np.matrix(’4 3.5; 7 6’)

p2_2 = np.matrix(’4 7; 3.5 6’)

trans1_1 = np.matrix(’0.8 0.7; 0.7 0.6’)

trans2_1 = np.matrix(’0.5 0.4; 0.4 0.15’)

trans1_2 = np.matrix(’0.2 0.3; 0.3 0.4’)

trans2_2 = np.matrix(’0.5 0.6; 0.6 0.85’)

FirstTry = StochasticGame(p1_1,p2_1,p1_2,p2_2,trans1_1,trans2_1,trans1_2,trans2_2)

FirstTry.plot_single_period_pure_rewards()

FirstTry.plot_all_reward_points(True)

FirstTry.maximin_point(100)

timing = time.time()

FirstTry.threat_point_algorithm(10000,0.025)

now = time.time()

print(now-timing)

FirstTry.threat_point_optimized(10000,False,False,True,True)

FirstTry.plot_threat_point()

FirstTry.plot_threat_point_lines()

FirstTry.optimized_maximin(100,False,False,True)

A.7 Type III Game Code

encoding=*-60

class ETPGame:

"The ETP Game class represents the Type III games from the thesis, with or without ESP."
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def __init__(self,payoff_p1_game1,payoff_p2_game1,payoff_p1_game2,payoff_p2_game2,

trmatrixg1,trmatrixg2,trmatrixg3,trmatrixg4,matrixA):

"Here below we initialize the game by storing payoff and transition matrices

according to the upper input."

self.payoff_p1_game1 = payoff_p1_game1 #payoff p1 in game 1

self.payoff_p2_game1 = payoff_p2_game1 #payoff p2 in game 1

self.payoff_p1_game2 = payoff_p1_game2 #payoff p1 in game 2

self.payoff_p2_game2 = payoff_p2_game2 #payoff p2 in game 2

self.transition_matrix_game1_to1 = trmatrixg1 #transition matrix from game

1 to game 1

self.transition_matrix_game2_to1 = trmatrixg2 #transition matrix from game

2 to game 1

self.transition_matrix_game1_to2 = trmatrixg3 #transition matrix from game

1 to game 2

self.transition_matrix_game2_to2 = trmatrixg4 #transition matrix from game

2 to game 2

self.etp_matrix = matrixA

self.printing = False #set printing to False

self.best_pure_strategies = np.array([[1,0,1,0],[0,1,1,0],[1,0,0,1],[0,1,0,1]])

def plot_single_period_pure_rewards(self):

"Here we plot the pure rewards possible for a single period"

plt.figure() #create a figure

payoff_p1_g1_flat = self.payoff_p1_game1.A1 #create a flattend payoff of

p1 in game 1

payoff_p2_g1_flat = self.payoff_p2_game1.A1 #create a flattend payoff of

p2 in game 1

plt.scatter(payoff_p1_g1_flat,payoff_p2_g1_flat, label="Pure reward points Game 1",

zorder = 15) #plot payoffs game 1

payoff_p1_g2_flat = self.payoff_p1_game2.A1 #create a flattend payoff of

p1 in game 2

payoff_p2_g2_flat = self.payoff_p2_game2.A1 #and for p2 in game 2

plt.scatter(payoff_p1_g2_flat,payoff_p2_g2_flat, label="Pure reward points Game 2",

zorder = 15) #plotting this again

plt.xlabel("Payoff Player 1") #giving the x-axis the label

of payoff p1

plt.ylabel("Payoff Player 2") #and the payoff of the y-axis

is that of p2

plt.title("Reward points of ETP game") #and we give it a nice titel

plt.legend()

def plot_convex_hull_pure_rewards(self):

"Here we plot a convex hull around the pure reward point, therefore resulting in the

total possible reward space"

payoff_p1_g1_flat = self.payoff_p1_game1.A1 #store the flattend payoff of p1

game 1

payoff_p2_g1_flat = self.payoff_p2_game1.A1 #store the flattend payoff of p2

game 1

payoff_p1_g2_flat = self.payoff_p1_game2.A1 #store the flattend payoff of p1
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game 2

payoff_p2_g2_flat = self.payoff_p2_game2.A1 #store the flattend payoff of p2

game 2

payoff_p1_merged = np.concatenate((payoff_p1_g1_flat,payoff_p1_g2_flat)) #merge p1

payoffs

payoff_p2_merged = np.concatenate((payoff_p2_g1_flat,payoff_p2_g2_flat)) #merge p2

payoffs

all_payoffs = np.array([payoff_p1_merged,payoff_p2_merged]) #create one array of

payoffs

all_payoffs = np.transpose(all_payoffs) #and rotate this one

rewards_convex_hull = ConvexHull(all_payoffs) #retain the convex hull

of the payoffs

plt.fill(all_payoffs[rewards_convex_hull.vertices,0], all_payoffs[rewards_convex_hull

.vertices,1], color=’k’)

#here above we fill the convex hull in black

def plot_all_rewards(self,FD_yn):

"This plots all rewards and is based on the algorithm by Llea Samuel"

"IMPORTANT NOTE!: GAME IS HARDCODED WITHIN THIS FUNCTION, DUE TO TIME ISSUES, ONE

SHOULD TAKE THIS INTO MIND"

np.seterr(all=’warn’,divide=’warn’) # this is to show some more information on

possible errors, can be excluded

## HERE BELOW IS HARDCODED GAME INFORMATION

A1 = np.array([16, 14, 28, 24, 4, 3.5, 7, 6])

B1 = np.array([16, 28, 14, 24, 4, 7, 3.5, 6])

p = np.array([0.8, 0.7, 0.7, 0.6, 0.5, 0.4, 0.4, 0.15])

## ABOVE IS HARDCODED GAME INFORMATION

# here below we initialize a lot of variables

x = np.zeros(8)

r = np.zeros(8)

y = np.zeros(8)

xstar = np.zeros(8)

x_a = np.zeros(8)

yp = np.zeros(4)

yp_not = np.zeros(4)

v_p1 = np.zeros(8)

v_p2 = np.zeros(8)

Q_vec = np.zeros(8)

T = 100000 # number of points to generate

payoff_p1 = np.zeros(T) # initialize payoffs for both players

payoff_p2 = np.zeros(T)

# store the matrix A

matrixA = np.matrix(’0.00 0.0 0.0 0.00 0.0 0.00 0.00 0.00; 0.35 0.3 0.3 0.25 0.2 0.15

0.15 0.05; 0.35 0.3 0.3 0.25 0.2 0.15 0.15 0.05; 0.7 0.6 0.6 0.5 0.4 0.3 0.3

0.1; 0 0 0 0 0 0 0 0; 0.35 0.3 0.3 0.25 0.2 0.15 0.15 0.05; 0.35 0.3 0.3 0.25 0.2

0.15 0.15 0.05; 0.7 0.6 0.6 0.5 0.4 0.3 0.3 0.1’)

# loop over the total number of points to generate

for t in range(0,T):

### BEGIN Q-CHECKER #####

for i in range(0,3):
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r[i] = np.random.beta(0.5,0.5) # generate frequencies

Norm_val = np.sum(r) # normalize them

for i in range(0,3):

x_a[i] = r[i]/Norm_val # normalize and store

# do some more fancy X calculations

x_b1 = np.array([x_a[0], x_a[2], 0 , 0])

x_b2 = np.array([x_a[1], 0, 0, 0])

x_c1 = x_b1[np.random.permutation(x_b1.size)]

x_c2 = x_b2[np.random.permutation(x_b2.size)]

for i in range(0,8):

if i < 4:

x[i] = x_c1[i]

else:

x[i] = x_c2[i-4]

# caclulate yi and yi_not

for i in range(0,4):

y[i] = x[i]/np.sum(x[0:4])

for i in range(4,8):

y[i] = x[i]/np.sum(x[4:8])

px = p - np.dot(x,matrixA) # calculate px

# start with computing Q

for w in range(0,4):

for i in range(0,4):

yp[i] = y[i+4]*px[0,i+4]

yp_not[i] = y[i]+(1-px[0,i])

Q = np.sum(yp)/(np.sum(yp_not) + np.sum(yp)) # compute Q

Q_not = 1-Q

Q_vec[w] = Q

# adjust frequency vector based on found Q

for i in range(0,4):

xstar[i] = Q*y[i]

for i in range(4,8):

xstar[i] = Q_not*y[i]

px = p - np.dot(xstar,matrixA) # adjust PX

# apply Aitken’s delta squared

Q_check_1 = Q_vec[0]-((Q_vec[1] - Q_vec[0])**2) / (Q_vec[2] - 2*Q_vec[1] + Q_vec

[0])

Q_check_2 = Q_vec[1]-((Q_vec[2]- Q_vec[1])**2) / (Q_vec[3] - 2*Q_vec[2] + Q_vec

[1])

diff = Q_check_1 - Q_check_2

# if the distribution has not settled, then infinite calculate a new Q

while diff > abs(1e-8):

Q_check_1 = Q_check_2

# new calculations of yi

for i in range(0,4):
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yp[i] = y[i+4]*px[0,i+4]

yp_not[i] = y[i]*(1-px[0,i])

Q = (np.sum(yp)) / (np.sum(yp_not) + np.sum(yp)) # again calculate Q

Q_not = 1-Q

Q_vec[w+1] = Q

# adjust frequency vector X

for i in range(0,4):

xstar[i] = Q*y[i]

for i in range(4,8):

xstar[i] = Q_not*y[i]

px = p - np.dot(xstar,matrixA) # px calculations

# compute new Q based on aitken’s

Q_check_2 = Q_vec[w-1] - ((Q_vec[w]-Q_vec[w-1])**2)/(Q_vec[w+1] - 2*Q_vec[w]

+ Q_vec[w-1])

diff = Q_check_1 - Q_check_2

w = w+1

# apply FD function if activated

if FD_yn == True:

FD = 1-0.25*(xstar[1]+xstar[2])-(1/3)*xstar[3]-(1/2)*(xstar[5] + xstar[6]) -

(2/3) * xstar[7]

else:

FD = 1

# calculate payoffs

for i in range(0,8):

v_p1[i] = xstar[i]*A1[i]

v_p2[i] = xstar[i]*B1[i]

# calculate definitive rewards based on FD function

payoff_p1[t] = FD*np.sum(v_p1)

payoff_p2[t] = FD*np.sum(v_p2)

# store maximal payoffs

self.maximal_payoffs = np.zeros(2)

self.maximal_payoffs = [np.max(payoff_p1),np.max(payoff_p2)]

all_payoffs = np.array([payoff_p1,payoff_p2]) #payoffs player 1 and and p2 merging

all_payoffs = np.transpose(all_payoffs) #transpose for use in convex_hull

Convex_Hull_Payoffs = ConvexHull(all_payoffs) #calculate convex_hull of the payoffs

# plot a nice convex hull

plt.fill(all_payoffs[Convex_Hull_Payoffs.vertices,0], all_payoffs[Convex_Hull_Payoffs

.vertices,1], color=’y’, zorder=5, label="Obtainable rewards")

def plot_threat_point(self):

"This function plots the threat point if found"

plt.scatter(self.threat_point[0],self.threat_point[1], zorder=10, color = ’r’, label=

’Threat point’)

plt.legend()

def plot_threat_point_lines(self):

"This function plots lines around the threat point indicating the limits for the NE"
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plt.plot([self.threat_point[0],self.threat_point[0]],[self.threat_point[1],self.

maximal_payoffs[1]], color=’k’, zorder=15)

plt.plot([self.threat_point[0],self.maximal_payoffs[0]],[self.threat_point[1],self.

threat_point[1]], color=’k’, zorder=15)

def aitken_delta_squared(self,q1,q2,q3):

"This is the Aitken’s Delta Squared accelerator"

x3_x2 = np.subtract(q3,q2)

x2_x1 = np.subtract(q2,q1)

x3_x2_squared = np.power(x3_x2,2)

denominator = np.subtract(x3_x2,x2_x1)

fraction = np.divide(x3_x2_squared,denominator)

return np.subtract(q3,fraction)

def optimized_maximin(self,points,show_strat_p1,show_strat_p2,FD_yn):

"This is an optimized version for determining the maximin result"

print("Start of the maximin algorithm")

def random_strategy_draw(points,number_of_actions):

"This function draws random strategies from a beta distribution, based on the

number of points and actions"

# draw some strategies and normalize them

strategies_drawn = np.random.beta(0.5,0.5,(points,number_of_actions))

strategies_drawn = strategies_drawn/np.sum(strategies_drawn, axis=1).reshape([

points,1])

return strategies_drawn

def frequency_pairs_p1(points,p2_actions,p1_actions,strategies_drawn):

"Create strategies based on the best replies for player 1"

# store the size of the games

game_size_1 = self.payoff_p1_game1.size

game_size_2 = self.payoff_p1_game2.size

# store the actions for game 1 and 2

p1_actions_game1 = self.payoff_p1_game1.shape[0]

p1_actions_game2 = self.payoff_p1_game2.shape[0]

# calculate the combination of the actions and a range

p1_actions_combi = p1_actions_game1*p1_actions_game2

p1_action_range = np.arange(p1_actions_combi)

# initialize a frequency pair

frequency_pairs = np.zeros((points*(p1_actions_game1*p1_actions_game2),

game_size_1+game_size_2))

# create actions ranges

p1_act_game1_range = np.arange(p1_actions_game1)

p1_act_game2_range = np.arange(p1_actions_game2)

# loop over best responses for game 1

for i in np.nditer(p1_action_range):

for j in np.nditer(p1_act_game1_range):
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mod_remain = np.mod(i,p1_actions_game1)

frequency_pairs[i*points:(i+1)*points,p1_actions_game1*mod_remain+j] =

strategies_drawn[:,j]

# loop over best responses for game 2

for i in np.nditer(p1_action_range):

for j in np.nditer(p1_act_game2_range):

floor_div = np.floor_divide(i,p1_actions_game2)

frequency_pairs[i*points:(i+1)*points,j+game_size_1+(p1_actions_game1*
floor_div)] = strategies_drawn[:,p1_actions_game1+j]

return frequency_pairs

def balance_equation(self,tot_act_ut,tot_act_thr,tot_payoffs_game1,tot_payoffs,

frequency_pairs):

"Calculates the result of the balance equations in order to adjust the frequency

pairs"

# store the game sizes

game_size_1 = self.payoff_p1_game1.size

game_size_2 = self.payoff_p1_game2.size

# initialize yi, Q and Q_new

yi = np.zeros((points*(tot_act_thr*tot_act_ut),game_size_1+game_size_2))

Q = np.zeros((1,points*(tot_act_thr*tot_act_ut)))

Q_new = np.zeros((1,points*(tot_act_thr*tot_act_ut)))

# compute yi

yi[:,0:tot_payoffs_game1] = frequency_pairs[:,0:tot_payoffs_game1]/np.sum(

frequency_pairs[:,0:tot_payoffs_game1], axis=1).reshape([points*
tot_payoffs_game1,1])

yi[:,tot_payoffs_game1:tot_payoffs] = frequency_pairs[:,tot_payoffs_game1:

tot_payoffs]/np.sum(frequency_pairs[:,tot_payoffs_game1:tot_payoffs], axis=1)

.reshape([points*(tot_payoffs-tot_payoffs_game1),1])

index_values = np.arange(points*(tot_act_thr*tot_act_ut)) # set a range

# set px range

p1_px_between = np.asarray(px)

p1_px = p1_px_between[0]

# loop for 35 iterations

for i in np.arange(35):

# in the first iteration we calculate the first Q and adjust X

if i == 0:

new_x = p1_px - np.dot(frequency_pairs,self.etp_matrix)

upper_part_Q = np.sum(np.multiply(yi[:,tot_payoffs_game1:tot_payoffs],

new_x[:,tot_payoffs_game1:tot_payoffs]),axis=1)

leftdown_part_Q = np.sum(np.multiply(yi[:,0:tot_payoffs_game1],(1-new_x

[:,0:tot_payoffs_game1])),axis=1)

rightdown_part_Q = np.sum(np.multiply(yi[:,tot_payoffs_game1:tot_payoffs

],new_x[:,tot_payoffs_game1:tot_payoffs]),axis=1)

Q_between = upper_part_Q/(leftdown_part_Q+rightdown_part_Q)

Q = Q_between

frequency_pairs[:,0:tot_payoffs_game1] = (np.multiply(Q,yi[:,0:

tot_payoffs_game1]))

frequency_pairs[:,tot_payoffs_game1:tot_payoffs] = np.multiply((1-Q),yi
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[:,tot_payoffs_game1:tot_payoffs])

# here we just calculate Q in order to guarantee stability

if i > 0 and i < 10:

new_x = p1_px - np.dot(frequency_pairs,self.etp_matrix)

upper_part_Q = np.sum(np.multiply(yi[:,tot_payoffs_game1:tot_payoffs],

new_x[:,tot_payoffs_game1:tot_payoffs]),axis=1)

leftdown_part_Q = np.sum(np.multiply(yi[:,0:tot_payoffs_game1],(1-new_x

[:,0:tot_payoffs_game1])),axis=1)

rightdown_part_Q = np.sum(np.multiply(yi[:,tot_payoffs_game1:tot_payoffs

],new_x[:,tot_payoffs_game1:tot_payoffs]),axis=1)

Q_between = upper_part_Q/(leftdown_part_Q+rightdown_part_Q)

Q = np.hstack((Q,Q_between))

frequency_pairs[:,0:tot_payoffs_game1] = (np.multiply(Q[:,i],yi[:,0:

tot_payoffs_game1]))

frequency_pairs[:,tot_payoffs_game1:tot_payoffs] = np.multiply((1-Q[:,i])

,yi[:,tot_payoffs_game1:tot_payoffs])

# here we calculate Q based on aitken’s delta squared

if i == 10:

Q_new = self.aitken_delta_squared(Q[:,i-3],Q[:,i-2],Q[:,i-1])

nan_org = np.where(np.isnan(Q_new)) # check where there are NaN’s

nan_indic = nan_org[0]

Q_new[nan_indic,:] = Q_between[nan_indic,:] # remove NaN’s with last

known values

Q_old = np.copy(Q_new)

Q = np.hstack((Q,Q_new))

# all remaining iterations are with Aitkens

if i > 10:

Q_new[index_values,:] = self.aitken_delta_squared(Q[index_values,i-3],Q[

index_values,i-2],Q[index_values,i-1])

Q_old2 = np.copy(Q_old)

nan_res = np.where(np.isnan(Q_new,Q_old)) # check for NaN’s

nan_indices = nan_res[0] # look where NaN’s are

# delete values which are NaN for future computations

nan_between = np.where(np.in1d(index_values,nan_indices))

nan_cands = nan_between[0]

index_values = np.delete(index_values,nan_cands)

Q_new[nan_indices,:] = Q_old2[nan_indices,:]

Q = np.hstack((Q,Q_new))

Q_old = np.copy(Q_new)

results = np.where(Q[index_values,i-1] == Q[index_values,i]) # check

where convergence has occured

remove_indices = results[0]

# remove indices which have converged

removal_between = np.where(np.in1d(index_values,remove_indices))

removal_cands = removal_between[0]

index_values = np.delete(index_values,removal_cands)



A.7. TYPE III GAME CODE 99

# compute the definitive frequency pair x

frequency_pairs[:,0:tot_payoffs_game1] = (np.multiply(Q[:,34],yi[:,0:

tot_payoffs_game1]))

frequency_pairs[:,tot_payoffs_game1:tot_payoffs] = np.multiply((1-Q[:,34]),yi[:,

tot_payoffs_game1:tot_payoffs])

return frequency_pairs

def frequency_pairs_p2(points,p2_actions,p1_actions,strategies_drawn):

"Best responses for P2 based on threaten strategies drawn"

# store the game sizes

game_size_1 = self.payoff_p2_game1.size

game_size_2 = self.payoff_p2_game2.size

# store the actions for p1 and p2 and create ranges

p1_actions_range = np.arange(p1_actions)

p2_actions_range = np.arange(p2_actions)

p2_actions_game1 = self.payoff_p2_game1.shape[1]

p2_actions_game2 = self.payoff_p2_game2.shape[1]

p2_actions_combo = p2_actions_game1*p2_actions_game2

p2_action_range = np.arange(p2_actions_combo)

# initialize the frequency pair

frequency_pairs = np.zeros((points*(p2_actions_game1*p2_actions_game2),

game_size_1+game_size_2))

# generate best responses for game 1

for i in np.nditer(np.arange(p2_actions_game1)):

for j in np.nditer(p2_action_range):

modul = np.mod(j,p2_actions_game1)

frequency_pairs[j*points:(j+1)*points,p2_actions_game1*i+modul] =

strategies_drawn[:,i]

# generate best respones for game 2

for i in np.nditer(np.arange(p2_actions_game2)):

for j in np.nditer(p2_action_range):

divide = np.floor_divide(j,p2_actions_game2)

frequency_pairs[j*points:(j+1)*points,p2_actions_combo+divide+(i*
p2_actions_game2)] = strategies_drawn[:,i+p2_actions_game1]

return frequency_pairs

def payoffs_sorted(points,payoffs,actions):

"Sort the payoffs for determination of maximin"

# store the range of points and actions

points_range = np.arange(points)

actions_range = np.arange(actions)

payoffs_sort = np.zeros((points,actions)) # initialize the payoffs sort

# sort the payoffs!

for x in np.nditer(points_range):

for i in np.nditer(actions_range):

payoffs_sort[x,i] = payoffs[points*i+x]

return payoffs_sort
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## Start of p1 maximin ##

start_time = time.time() # START TIME

# flatten the transition matrices

flatten1_1 = self.transition_matrix_game1_to1.flatten()

flatten2_1 = self.transition_matrix_game2_to1.flatten()

# store and compute some action stuff

actions_p2_game1 = self.payoff_p1_game1.shape[1]

actions_p2_game2 = self.payoff_p1_game2.shape[1]

total_actions_p2 = actions_p2_game1 + actions_p2_game2

actions_p1_game1 = self.payoff_p1_game1.shape[0]

actions_p1_game2 = self.payoff_p1_game2.shape[0]

total_actions_p1 = actions_p1_game1 + actions_p1_game2

# flatten the payoffs

payoff_p1_game_1flatten = self.payoff_p1_game1.flatten()

payoff_p1_game_2flatten = self.payoff_p1_game2.flatten()

# compute and store some payoffs stuff

total_payoffs_p1_game1 = payoff_p1_game_1flatten.size

total_payoffs_p1_game2 = payoff_p1_game_2flatten.size

total_payoffs_p1 = total_payoffs_p1_game1 + total_payoffs_p1_game2

payoff_p2_game_1flatten = self.payoff_p2_game1.flatten()

payoff_p2_game_2flatten = self.payoff_p2_game2.flatten()

total_payoffs_p2_game1 = payoff_p2_game_1flatten.size

total_payoffs_p2_game2 = payoff_p2_game_2flatten.size

total_payoffs_p2 = total_payoffs_p2_game1 + total_payoffs_p2_game2

total_payoffs_p2_game1 = payoff_p2_game_1flatten.size

total_payoffs_p2_game2 = payoff_p2_game_2flatten.size

total_payoffs_p2 = total_payoffs_p2_game1 + total_payoffs_p2_game2

# initialize the payoff stuff for p1

payoff_p1 = np.zeros(total_payoffs_p1)

payoff_p1[0:total_payoffs_p1_game1] = payoff_p1_game_1flatten

payoff_p1[total_payoffs_p1_game1:total_payoffs_p1] = payoff_p1_game_2flatten

px = np.concatenate([flatten1_1,flatten2_1],axis=1) # px for the first time

y_punisher = random_strategy_draw(points,total_actions_p1) # draw some strategies

frequency_pairs = frequency_pairs_p2(points,total_actions_p1,total_actions_p2,

y_punisher) # sort them based on best replies

# do the balance equations with Aitken’s

frequency_pairs = balance_equation(self,actions_p2_game1,actions_p2_game2,

total_payoffs_p2_game1,total_payoffs_p2,frequency_pairs)

# activate FD function if necessary

if FD_yn == True:

FD = 1-0.25*(frequency_pairs[:,1]+frequency_pairs[:,2])-(1/3)*frequency_pairs

[:,3]-(1/2)*(frequency_pairs[:,5] + frequency_pairs[:,6]) - (2/3) *
frequency_pairs[:,7]

else:

FD = 1



A.7. TYPE III GAME CODE 101

# calculate the payoffs

payoffs = np.sum(np.multiply(frequency_pairs,payoff_p1),axis=1)

payoffs = np.multiply(FD,payoffs)

payoffs = payoffs.reshape((payoffs.size,1))

max_payoffs = payoffs_sorted(points,payoffs,(actions_p2_game1*actions_p2_game2)) #

sort the payoffs

nan_delete = np.where(np.isnan(max_payoffs)) # delete results which are NaN (see

thesis why)

max_payoffs = np.delete(max_payoffs,nan_delete[0],0) # actually delete these payoffs

print("")

print("")

minimax_found = np.nanmax(np.nanmin(max_payoffs,axis=1)) # look for maximin value

print("Maximin value for P1 is",minimax_found)

print("")

print("")

if show_strat_p1 == True:

minimax_indices_p2 = np.where(max_payoffs == minimax_found)

found_strategy_p2 = y_punisher[minimax_indices_p2[0]]

fnd_strategy_p2 = found_strategy_p2.flatten()

fnd_strategy_p2[0:2] = fnd_strategy_p2[0:2]/np.sum(fnd_strategy_p2[0:2])

fnd_strategy_p2[2:4] = fnd_strategy_p2[2:4]/np.sum(fnd_strategy_p2[2:4])

print("Player 1 plays stationary strategy:", fnd_strategy_p2)

print("While player 2 replies with a best pure reply of:", self.

best_pure_strategies[minimax_indices_p2[1]])

end_time = time.time()

print("Seconds done to generate", points, "points", end_time-start_time)

## End of P1 maximin algorithm ##

start_time_p2 = time.time() # start the time

# flatten the payoffs

payoff_p2_game_1flatten = self.payoff_p2_game1.flatten()

payoff_p2_game_2flatten = self.payoff_p2_game2.flatten()

# compute and store the payoffs

total_payoffs_p2_game1 = payoff_p2_game_1flatten.size

total_payoffs_p2_game2 = payoff_p2_game_2flatten.size

total_payoffs_p2 = total_payoffs_p2_game1 + total_payoffs_p2_game2

# initialize the payoffs and store them

payoff_p2 = np.zeros(total_payoffs_p2)

payoff_p2[0:total_payoffs_p2_game1] = payoff_p2_game_1flatten

payoff_p2[total_payoffs_p2_game1:total_payoffs_p2] = payoff_p2_game_2flatten

px = np.concatenate([flatten1_1,flatten2_1],axis=1) # px store

x_punisher = random_strategy_draw(points,total_actions_p2) # generate new random

strategies for punsher

frequency_pairs = frequency_pairs_p1(points,total_actions_p1,total_actions_p2,

x_punisher) # best reponses p1

# balance equations with Delta Squared
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frequency_pairs = balance_equation(self,actions_p1_game1,actions_p1_game2,

total_payoffs_p1_game1,total_payoffs_p1,frequency_pairs)

# activate FD function if necessary

if FD_yn == True:

FD = 1-0.25*(frequency_pairs[:,1]+frequency_pairs[:,2])-(1/3)*frequency_pairs

[:,3]-(1/2)*(frequency_pairs[:,5] + frequency_pairs[:,6]) - (2/3) *
frequency_pairs[:,7]

else:

FD = 1

# compute the payoffs with payoffs and FD function

payoffs = np.sum(np.multiply(frequency_pairs,payoff_p2),axis=1)

payoffs = np.multiply(FD,payoffs)

payoffs = payoffs.reshape((payoffs.size,1))

max_payoffs = payoffs_sorted(points,payoffs,(actions_p1_game1*actions_p1_game2)) #

sort the payoffs

nan_delete = np.where(np.isnan(max_payoffs)) # check where there are nan’s

max_payoffs = np.delete(max_payoffs,nan_delete[0],0) # delete these nan’s

minimax_found_p2 = np.nanmax(np.nanmin(max_payoffs,axis=1)) # find the maximin value

for p2

print("Maximin value for P2 is",minimax_found_p2)

print("")

print("")

if show_strat_p2 == True:

maximin_indices_p2 = np.where(max_payoffs == minimax_found_p2)

found_strategy = x_punisher[maximin_indices_p2[0]]

fnd_strategy = found_strategy.flatten()

fnd_strategy[0:2] = fnd_strategy[0:2]/np.sum(fnd_strategy[0:2])

fnd_strategy[2:4] = fnd_strategy[2:4]/np.sum(fnd_strategy[2:4])

print("Player 2 plays stationairy strategy:", fnd_strategy)

print("While player 2 replies with a best pure reply of:", self.

best_pure_strategies[maximin_indices_p2[1]])

end_time_p2 = time.time() # end the timer

print("Seconds done to generate", points, "points", end_time_p2-start_time_p2)

print("")

print("")

def threat_point_optimized(self,points,show_strat_p1,show_strat_p2,print_text,FD_yn):

"OPtimized threat point algorithm for ETP games"

def random_strategy_draw(points,number_of_actions):

"This function draws random strategies from a beta distribution, based on the

number of points and actions"

# draw some strategies and normalize them

strategies_drawn = np.random.beta(0.5,0.5,(points,number_of_actions))

strategies_drawn = strategies_drawn/np.sum(strategies_drawn, axis=1).reshape([

points,1])

return strategies_drawn

def frequency_pairs_p1(points,p2_actions,p1_actions,strategies_drawn):

"This function sorts the strategies based on the responses"
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# store the game size

game_size_1 = self.payoff_p1_game1.size

game_size_2 = self.payoff_p1_game2.size

# store the actions of p1 in both game

p1_actions_game1 = self.payoff_p1_game1.shape[0]

p1_actions_game2 = self.payoff_p1_game2.shape[0]

p1_actions_combi = p1_actions_game1*p1_actions_game2

p1_action_range = np.arange(p1_actions_combi)

# initialize frequency pairs

frequency_pairs = np.zeros((points*(p1_actions_game1*p1_actions_game2),

game_size_1+game_size_2))

# set the range for both games

p1_act_game1_range = np.arange(p1_actions_game1)

p1_act_game2_range = np.arange(p1_actions_game2)

# create best response for game 1

for i in np.nditer(p1_action_range):

for j in np.nditer(p1_act_game1_range):

mod_remain = np.mod(i,p1_actions_game1)

frequency_pairs[i*points:(i+1)*points,p1_actions_game1*mod_remain+j] =

strategies_drawn[:,j]

# loop for best responses for game 2

for i in np.nditer(p1_action_range):

for j in np.nditer(p1_act_game2_range):

floor_div = np.floor_divide(i,p1_actions_game2)

frequency_pairs[i*points:(i+1)*points,j+game_size_1+(p1_actions_game1*
floor_div)] = strategies_drawn[:,p1_actions_game1+j]

return frequency_pairs

def balance_equation(self,tot_act_ut,tot_act_thr,tot_payoffs_game1,tot_payoffs,

frequency_pairs):

"Calculates the result of the balance equations in order to adjust the frequency

pairs"

# store the game sizes

game_size_1 = self.payoff_p1_game1.size

game_size_2 = self.payoff_p1_game2.size

# initialize yi, Q and Q_new

yi = np.zeros((points*(tot_act_thr*tot_act_ut),game_size_1+game_size_2))

Q = np.zeros((1,points*(tot_act_thr*tot_act_ut)))

Q_new = np.zeros((1,points*(tot_act_thr*tot_act_ut)))

# compute Yi

yi[:,0:tot_payoffs_game1] = frequency_pairs[:,0:tot_payoffs_game1]/np.sum(

frequency_pairs[:,0:tot_payoffs_game1], axis=1).reshape([points*
tot_payoffs_game1,1])

yi[:,tot_payoffs_game1:tot_payoffs] = frequency_pairs[:,tot_payoffs_game1:

tot_payoffs]/np.sum(frequency_pairs[:,tot_payoffs_game1:tot_payoffs], axis=1)

.reshape([points*(tot_payoffs-tot_payoffs_game1),1])

index_values = np.arange(points*(tot_act_thr*tot_act_ut)) # create a range of

index values

p1_px_between = np.asarray(px) # set px
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p1_px = p1_px_between[0]

# iterate for 35 iterations

for i in np.arange(35):

# first iteration, just calculate Q

if i == 0:

new_x = p1_px - np.dot(frequency_pairs,self.etp_matrix)

upper_part_Q = np.sum(np.multiply(yi[:,tot_payoffs_game1:tot_payoffs],

new_x[:,tot_payoffs_game1:tot_payoffs]),axis=1)

leftdown_part_Q = np.sum(np.multiply(yi[:,0:tot_payoffs_game1],(1-new_x

[:,0:tot_payoffs_game1])),axis=1)

rightdown_part_Q = np.sum(np.multiply(yi[:,tot_payoffs_game1:tot_payoffs

],new_x[:,tot_payoffs_game1:tot_payoffs]),axis=1)

Q_between = upper_part_Q/(leftdown_part_Q+rightdown_part_Q)

Q = Q_between

frequency_pairs[:,0:tot_payoffs_game1] = (np.multiply(Q,yi[:,0:

tot_payoffs_game1]))

frequency_pairs[:,tot_payoffs_game1:tot_payoffs] = np.multiply((1-Q),yi

[:,tot_payoffs_game1:tot_payoffs])

# for stability, calculate until iteration 9 normal Q

if i > 0 and i < 10:

new_x = p1_px - np.dot(frequency_pairs,self.etp_matrix)

upper_part_Q = np.sum(np.multiply(yi[:,tot_payoffs_game1:tot_payoffs],

new_x[:,tot_payoffs_game1:tot_payoffs]),axis=1)

leftdown_part_Q = np.sum(np.multiply(yi[:,0:tot_payoffs_game1],(1-new_x

[:,0:tot_payoffs_game1])),axis=1)

rightdown_part_Q = np.sum(np.multiply(yi[:,tot_payoffs_game1:tot_payoffs

],new_x[:,tot_payoffs_game1:tot_payoffs]),axis=1)

Q_between = upper_part_Q/(leftdown_part_Q+rightdown_part_Q)

Q = np.hstack((Q,Q_between))

frequency_pairs[:,0:tot_payoffs_game1] = (np.multiply(Q[:,i],yi[:,0:

tot_payoffs_game1]))

frequency_pairs[:,tot_payoffs_game1:tot_payoffs] = np.multiply((1-Q[:,i])

,yi[:,tot_payoffs_game1:tot_payoffs])

# apply Aitken’s

if i == 10:

Q_new = self.aitken_delta_squared(Q[:,i-3],Q[:,i-2],Q[:,i-1])

nan_org = np.where(np.isnan(Q_new)) # check whether Nan’s occur

nan_indic = nan_org[0]

Q_new[nan_indic,:] = Q_between[nan_indic,:] # replace NaN with last known

value

Q_old = np.copy(Q_new)

Q = np.hstack((Q,Q_new))

# and only Aitken’s

if i > 10:

Q_new[index_values,:] = self.aitken_delta_squared(Q[index_values,i-3],Q[
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index_values,i-2],Q[index_values,i-1])

Q_old2 = np.copy(Q_old)

nan_res = np.where(np.isnan(Q_new,Q_old)) # check for NaN’s

nan_indices = nan_res[0]

nan_between = np.where(np.in1d(index_values,nan_indices))

nan_cands = nan_between[0]

index_values = np.delete(index_values,nan_cands) # delete NaN’s after

being returned in last known

Q_new[nan_indices,:] = Q_old2[nan_indices,:]

Q = np.hstack((Q,Q_new))

Q_old = np.copy(Q_new)

results = np.where(Q[index_values,i-1] == Q[index_values,i]) # check

whether Q converged

remove_indices = results[0]

removal_between = np.where(np.in1d(index_values,remove_indices))

removal_cands = removal_between[0]

index_values = np.delete(index_values,removal_cands)

# compute definitive x

frequency_pairs[:,0:tot_payoffs_game1] = (np.multiply(Q[:,34],yi[:,0:

tot_payoffs_game1]))

frequency_pairs[:,tot_payoffs_game1:tot_payoffs] = np.multiply((1-Q[:,34]),yi[:,

tot_payoffs_game1:tot_payoffs])

return frequency_pairs

def frequency_pairs_p2(points,p2_actions,p1_actions,strategies_drawn):

"Create frequency pairs for P2 based on best responses"

# store the size of the games

game_size_1 = self.payoff_p2_game1.size

game_size_2 = self.payoff_p2_game2.size

# store the ranges of the actions of both players

p1_actions_range = np.arange(p1_actions)

p2_actions_range = np.arange(p2_actions)

p2_actions_game1 = self.payoff_p2_game1.shape[1]

p2_actions_game2 = self.payoff_p2_game2.shape[1]

p2_actions_combo = p2_actions_game1*p2_actions_game2

p2_action_range = np.arange(p2_actions_combo)

# initialize frequency pairs

frequency_pairs = np.zeros((points*(p2_actions_game1*p2_actions_game2),

game_size_1+game_size_2))

# loop over the first game

for i in np.nditer(np.arange(p2_actions_game1)):

for j in np.nditer(p2_action_range):

modul = np.mod(j,p2_actions_game1)

frequency_pairs[j*points:(j+1)*points,p2_actions_game1*i+modul] =

strategies_drawn[:,i]

# loop over the second game

for i in np.nditer(np.arange(p2_actions_game2)):
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for j in np.nditer(p2_action_range):

divide = np.floor_divide(j,p2_actions_game2)

frequency_pairs[j*points:(j+1)*points,p2_actions_combo+divide+(i*
p2_actions_game2)] = strategies_drawn[:,i+p2_actions_game1]

return frequency_pairs

def payoffs_sorted(points,payoffs,actions):

"This function sorts the payoffs in order to prepare the threat point"

# create ranges for points and actions

points_range = np.arange(points)

actions_range = np.arange(actions)

payoffs_sort = np.zeros((points,actions)) # nitialize the payoffs sort

# sort the payoffs!

for x in np.nditer(points_range):

for i in np.nditer(actions_range):

payoffs_sort[x,i] = payoffs[points*i+x]

return payoffs_sort

if print_text == True:

print("The start of the algorithm for finding the threat point")

print("First let’s find the threat point for Player 1")

# flatten the transition matrices

flatten1_1 = self.transition_matrix_game1_to1.flatten()

flatten2_1 = self.transition_matrix_game2_to1.flatten()

# store the actions for both players

actions_p2_game1 = self.payoff_p1_game1.shape[1]

actions_p2_game2 = self.payoff_p1_game2.shape[1]

total_actions_p2 = actions_p2_game1 + actions_p2_game2

actions_p1_game1 = self.payoff_p1_game1.shape[0]

actions_p1_game2 = self.payoff_p1_game2.shape[0]

total_actions_p1 = actions_p1_game1 + actions_p1_game2

# Start of algorithm for player 1

start_time = time.time() # timer start

# flatten payoffs game 1 and 2

payoff_p1_game_1flatten = self.payoff_p1_game1.flatten()

payoff_p1_game_2flatten = self.payoff_p1_game2.flatten()

# store size of the payoffs

total_payoffs_p1_game1 = payoff_p1_game_1flatten.size

total_payoffs_p1_game2 = payoff_p1_game_2flatten.size

total_payoffs_p1 = total_payoffs_p1_game1 + total_payoffs_p1_game2

# initialize and assign payoffs

payoff_p1 = np.zeros(total_payoffs_p1)

payoff_p1[0:total_payoffs_p1_game1] = payoff_p1_game_1flatten

payoff_p1[total_payoffs_p1_game1:total_payoffs_p1] = payoff_p1_game_2flatten

px = np.concatenate([flatten1_1,flatten2_1],axis=1) # store px

y_punisher = random_strategy_draw(points,total_actions_p2) # draw strategies for the
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punisher

frequency_pairs = frequency_pairs_p1(points,total_actions_p2,total_actions_p1,

y_punisher) # sort based on best reply

# do the balance equations calculations

frequency_pairs = balance_equation(self,actions_p1_game1,actions_p1_game2,

total_payoffs_p1_game1,total_payoffs_p1,frequency_pairs)

# activate the FD function

if FD_yn == True:

FD = 1-0.25*(frequency_pairs[:,1]+frequency_pairs[:,2])-(1/3)*frequency_pairs

[:,3]-(1/2)*(frequency_pairs[:,5] + frequency_pairs[:,6]) - (2/3) *
frequency_pairs[:,7]

else:

FD = 1

# calculate the payoffs with the frequency pairs and FD function

payoffs = np.sum(np.multiply(frequency_pairs,payoff_p1),axis=1)

payoffs = np.multiply(FD,payoffs)

payoffs = payoffs.reshape((payoffs.size,1))

max_payoffs = payoffs_sorted(points,payoffs,(actions_p1_game1*actions_p1_game2)) #

sort the payoffs

nan_delete = np.where(np.isnan(max_payoffs)) # delete payoffs which are a NaN

max_payoffs_p1 = np.delete(max_payoffs,nan_delete[0],0) # actually delete them

threat_point_p1 = np.nanmin(np.nanmax(max_payoffs_p1,axis=1)) # determine the threat

point

if print_text == True:

print("")

print("")

print("Threat point value is",threat_point_p1)

print("")

print("")

if show_strat_p1 == True:

threat_point_indices_p1 = np.where(max_payoffs_p1 == threat_point_p1)

found_strategy_p1 = y_punisher[threat_point_indices_p1[0]]

fnd_strategy_p1 = found_strategy_p1.flatten()

fnd_strategy_p1[0:2] = fnd_strategy_p1[0:2]/np.sum(fnd_strategy_p1[0:2])

fnd_strategy_p1[2:4] = fnd_strategy_p1[2:4]/np.sum(fnd_strategy_p1[2:4])

print("Player 2 plays stationary strategy:", fnd_strategy_p1)

print("While player 1 replies with a best pure reply of:", self.

best_pure_strategies[threat_point_indices_p1[1]])

end_time = time.time() # stop the time!

if print_text == True:

print("Seconds done to generate", points, "points", end_time-start_time)

print("")

# End of algorithm player 1

# Start of algorithm player 2

if print_text == True:

print("")

print("")

print("First start the threat point for player 2")
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start_time_p2 = time.time() # start the time (for p2)

# flatten the payoffs of the gamew

payoff_p2_game_1flatten = self.payoff_p2_game1.flatten()

payoff_p2_game_2flatten = self.payoff_p2_game2.flatten()

# check the sizes of the total payoffs

total_payoffs_p2_game1 = payoff_p2_game_1flatten.size

total_payoffs_p2_game2 = payoff_p2_game_2flatten.size

total_payoffs_p2 = total_payoffs_p2_game1 + total_payoffs_p2_game2

# initialize the payoffs for p2 and assign them

payoff_p2 = np.zeros(total_payoffs_p2)

payoff_p2[0:total_payoffs_p2_game1] = payoff_p2_game_1flatten

payoff_p2[total_payoffs_p2_game1:total_payoffs_p2] = payoff_p2_game_2flatten

px = np.concatenate([flatten1_1,flatten2_1],axis=1) # trix with px

x_punisher = random_strategy_draw(points,total_actions_p1) # draw some awesome

strategies

frequency_pairs = frequency_pairs_p2(points,total_actions_p2,total_actions_p1,

x_punisher) # sort them based on best replies

# do some balance equation accelerator magic

frequency_pairs = balance_equation(self,actions_p2_game1,actions_p2_game2,

total_payoffs_p2_game1,total_payoffs_p2,frequency_pairs)

# if the FD function must be activated, activate it

if FD_yn == True:

FD = 1-0.25*(frequency_pairs[:,1]+frequency_pairs[:,2])-(1/3)*frequency_pairs

[:,3]-(1/2)*(frequency_pairs[:,5] + frequency_pairs[:,6]) - (2/3) *
frequency_pairs[:,7]

else:

FD = 1

# payoffs are calculated

payoffs = np.sum(np.multiply(frequency_pairs,payoff_p2),axis=1)

payoffs = np.multiply(FD,payoffs)

payoffs = payoffs.reshape((payoffs.size,1))

max_payoffs = payoffs_sorted(points,payoffs,(actions_p2_game1*actions_p2_game2)) #

awesome sorting process

nan_delete = np.where(np.isnan(max_payoffs)) # look for NaN’s

max_payoffs_p2 = np.delete(max_payoffs,nan_delete[0],0) # delete them where necessary

threat_point_p2 = np.nanmin(np.nanmax(max_payoffs_p2,axis=1)) # determine the threat

point

if print_text == True:

print("")

print("")

print("Threat point value is",threat_point_p2)

print("")

print("")

if show_strat_p2 == True:

threat_point_indices_p2 = np.where(max_payoffs_p2 == threat_point_p2)

found_strategy = x_punisher[threat_point_indices_p2[0]]

fnd_strategy = found_strategy.flatten()

fnd_strategy[0:2] = fnd_strategy[0:2]/np.sum(fnd_strategy[0:2])
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fnd_strategy[2:4] = fnd_strategy[2:4]/np.sum(fnd_strategy[2:4])

print("Player 1 plays stationairy strategy:", fnd_strategy)

print("While player 2 replies with a best pure reply of:", self.

best_pure_strategies[threat_point_indices_p2[1]])

end_time_p2 = time.time() # stop the time

if print_text == True:

print("")

print("Seconds done to generate", points, "points", end_time_p2-start_time_p2)

print("")

print("")

self.threat_point = np.zeros(2)

self.threat_point = [threat_point_p1,threat_point_p2] # store the threat point!

return [threat_point_p1,threat_point_p2]

A.8 Type III Example Games Code

encoding=*-60

"ETP Example game as described in the thesis, based on a game developed by Llea Samuel"

p1_1 = np.matrix(’16 14; 28 24’)

p2_1 = np.matrix(’16 28; 14 24’)

p1_2 = np.matrix(’4 3.5; 7 6’)

p2_2 = np.matrix(’4 7; 3.5 6’)

trans1_1 = np.matrix(’0.8 0.7; 0.7 0.6’)

trans2_1 = np.matrix(’0.5 0.4; 0.4 0.15’)

trans1_2 = np.matrix(’0.2 0.3; 0.3 0.4’)

trans2_2 = np.matrix(’0.5 0.6; 0.6 0.85’)

matrixA = np.matrix(’0.00 0.0 0.0 0.00 0.0 0.00 0.00 0.00; 0.35 0.3 0.3 0.25 0.2 0.15 0.15

0.05; 0.35 0.3 0.3 0.25 0.2 0.15 0.15 0.05; 0.7 0.6 0.6 0.5 0.4 0.3 0.3 0.1; 0 0 0 0 0 0

0 0; 0.35 0.3 0.3 0.25 0.2 0.15 0.15 0.05; 0.35 0.3 0.3 0.25 0.2 0.15 0.15 0.05; 0.7 0.6

0.6 0.5 0.4 0.3 0.3 0.1’)

matrixB = np.matrix(’0.00 0.0 0.0 0.00 0.0 0.00 0.00 0.00; 0.0 0.0 0.0 0.00 0.0 0.0 0.0 0.00;

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0; 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0; 0 0 0 0 0 0 0 0; 0.0

0.0 0.0 0.00 0.0 0.00 0.00 0.0; 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.00; 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0’)

FirstTryETP = ETPGame(p1_1,p2_1,p1_2,p2_2,trans1_1,trans2_1,trans1_2,trans2_2,matrixA)

FirstTryETP.optimized_maximin(1000000,False,False,True)

FirstTryETP.threat_point_optimized(1000000,True,True,True,True)

FirstTryETP.plot_single_period_pure_rewards()

FirstTryETP.plot_all_rewards(True)

FirstTryETP.plot_threat_point()

FirstTryETP.plot_threat_point_lines()


