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Preface 

 
The growth in cars in the Netherlands have an impact on the time spent to find a parking space and on the 

quality of the traffic. ARS Traffic & Transport Technology (ARS T & TT) is a company in the Netherlands 

that is interested in solving such problems. This company focuses on Traffic planning systems and 

monitoring and operation of Intelligent Transportation System (ITS) solutions by developing software 

systems on both national and international scale, to make mobility smarter, faster, safer and more 

convenient. 

 

As an OR student at the University of Twente, the main goal for this project was to find a model to predict 

the occupation rate of the parking place in a neighborhood. Such a model will help design software to 

inform drivers of the free parking spaces in a neighborhood at a point in the future. Instead of continuing 

to cruise for parking, a driver can then opt to look for a parking space in a neighborhood, a parking garage 

or a Park and Ride area. 

 

The report resulting from this research is entitled: “A mathematical model to predict the occupancy rate of 

the parking place in a residential area”. Doing this assignment has given me much more insight into the use 

of mathematical models, and the application of the mathematical concepts such as the binomial distribution, 

the convolution, the convex function and Markov chains. Furthermore, my knowledge about the R and the 

MATLAB software has increased. 

 

Without the help of primarily the academic mentor, the business mentor, school mates and many others, 

this project could not be carried out properly. I would therefore like to thank the academic mentor, dr. 

J.C.W.van Ommeren, for being patience and calm. I really appreciate his watchful eyes and especially his 

valuable feedback and the space he offered me to be myself although within a “limited area”. Furthermore, 

my thanks also go to Okialmasamalia, MSc. Jaap Slotenbeek and the online MATLAB crew, who helped 

me to get along with the MATLAB code.  

 

For successfully finishing this master course, I owe also many thanks to: the study advisor Ms. L. Spijkers 

and the guardian of foreign students drs J. Schut, my mentor prof.dr. R.J. Boucherie, the director of the 

program dr. J.W. Polderman and many other teachers and staff members. For the external support I want 

to thank my mother and her husband for the good care here in the Netherlands and the brothers and sister 

of congregation Mekkeltholt of Jehovah's Witnesses for the many encouraging words.  

 

My thanks also go to AdeKUS who made the training possible, in particular dr. S. Venetian, drs. H. 

Antonius and drs. C. Gorison together with J. Simons-Turney, W. Valies and drs. R. Peneux who arranged 

that I could get permission from the ministry to do this study outside Suriname. Furthermore, my thanks go 

to my sister and my father for taking care of business affairs in Suriname. 
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Abstract 

Keywords: ARIMA models, data analysis with Markov chains, high order Markov chain models, occupancy rate, 

parking analysis, parking conventions, parking demand, parking modeling, parking policy, parking problems in the 

Netherlands, parking research, prediction models for Markov chains. 

 

Now a days both the population and the number of cars in the Netherlands is growing fast such that finding an empty 

parking space is hard. Lack of enough parking spaces leads to cruising, a time-consuming phenomenon that is bad for 

the environment and also for the health of people. Digital information about the number of empty parking space close 

by would be helpful for drivers especially during rush hour.  

 

Therefore ARS TT&T wants a model to predict the occupancy rate in a neighborhood such that information could be 

given to drivers who are looking for a single parking space. The main question of this research is about: To what 

extend can a Markov chain prediction model be used to predict the distribution of the occupancy rate of a parking lot 

in a neighborhood based on the ARS data files? This question was explored based on the following sub questions: 

How important is knowledge about the distribution of parking times for visitors and for permit holders? What is the 

optimum fraction of parking spaces that should be equipped with a sensor? What is the sensitivity of the fraction of 

with a sensor-equipped parking space? What is the sensitivity of the number of scans per day and the distribution of 

the scans over the day? Are there other data sources that can provide extra information? 

 

The number of cars for every minute between 9.00am and 21.00pm for 500 days on PARK200 is deduced from the 

data. Each minute a single parking space can be either empty or not. As it is not clear what happens with parkers at 

the last minute of the day it is assumed that these cars stay overnight such that the parking time of these cars is at least 

720 minutes. The short- and long-term parkers are found with the distribution of the parking time. 

 

The parking process can be described as a two-dimensional Markov process with Poisson arrivals, general service or 

parking time, c servers or parking spaces and maximum c cars in the system. An important assumption in this process 

is that parkers do decide independent from each other how long they will stay at the parking place. This idea suggests 

that the short-term parkers in the system only influences the maximum number of long-term parkers that can enter the 

system at time t. The actual number of cars that enters the system depends on the parking demand and the available 

parking space. 

 

The situation at the parking place can be modeled as a non-homogeneous two-dimensional Markov chain. Predictions 

were done for each dimension separately with the first and higher order Markov chain prediction model. The transition 

probabilities were determined with the arrival-departure behavior and with the fit distribution of the transitions. The 

non-homogeneity of the chain was tackled by estimating the transition probabilities with data coming from a time 

interval containing time t. In this time interval it is assumed that the Markov chain is homogeneous. 

 

The research reveals that the higher order models as proposed by Chin was the best mathematical model in 

combination with some mathematical techniques. These techniques do take care of the two-dimensionality of the 

process and the non-homogeneity of the chain. There were also mathematical techniques used to correct for prediction 

flaws. 

 

This report starts with a section that describes the magnitude of the parking problem, followed by the problem 

description and a discussion of the research variables. Section two zooms in on the data sets. The next section addresses 

the assumptions and restrictions needed to make this study operational, followed by a mathematical problem 

description. Section 4 contains the mathematical concepts used in this report and section 5 a discussion of the way the 

model will be applied together with techniques. The next section in this report highlights some interesting results. The 

last section in this report regards conclusions and recommendations.   
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Introduction to the Parking Problems 

The year 1958 is characterized as the beginning of the mass motorization in the Netherlands, or the starting 

period of spectacular growth of the number of cars in this country. From then on, municipalities have also 

implemented a parking policy and in the 1970’s municipalities even were "obliged" to write a parking plan 

(Stienstra, 2011, p7). Now decades later, the increase in cars is still noticeable in the Netherlands. At the 

start of 2016, the Netherlands had almost 7.2 million private passenger cars, almost 900 thousand more 

than ten years earlier. This growth is 1.125 time the population of 18 years and older, which grew by more 

than 800 thousand people in that same period. Car ownership also increased from 494 cars per thousand 

inhabitants in early 2006 to 530 in early 2016 (CBS, 2017, p 7). 

 

With this increase in cars, the need arises to place or park cars somewhere, whether people take their car to 

relocate or not (CBS, 2017, page 7). This growth therefore has far-reaching consequences for the 

organization of the country. Each one of the millions of cars in the Netherlands is parked somewhere on 

average 23 hours a day. Cars are used to travel between home, the office, the shopping center, the sports 

field or many other locations. In fact, compared with the number of cars, twice as much parking spaces are 

needed to meet this parking demand (CROWS Ede, 2014). Meijer (2018) stated that cars are parked on 

average 95% (22.8 hours) of the day, and in case a person possesses a second car, that percentage is 99% 

(23.8 hours). 

 

If there is no proper response to the demand of parking spaces, there might be an increase in cruising in 

order to park. In large cities, the effect of cruising is particularly noticeable during rush hours. Studies have 

shown that 8 percent to 74 percent of the traffic flow is cruising for parking (Shoup, 2006). Using data 

generated by Dutch National Travel Survey (MON) for the years 2005–2007 it was proven that 30% of the 

car drivers cruise before finding a parking spot, and most of this group cruised for one minute (Van 

Ommeren et, 2012). According to Gantelet (2006) the average car parking search time in three French cities 

(Grenoble, Lyon, Paris) is around 8.4 minutes. Another observation is the high variability of the search time 

for one occupancy ratio value, especially when the latter is higher than 85% (Belloche, 2015, p 6, 313-324). 

This implies larger search times when the demand for parking is high. 

 

Take for example a realistic scenario in Amsterdam to illustrate the congestion this could create for the 

traffic. Suppose that a car starts cruising at a road where the allowed speed of traffic equals 30km per hour. 

With a cruising speed of 15km per hour and a search time of one minute, it is expected to find a parking 

spot after 250 meters. This car will not hinder a next car behind him at a minimum distance of 250m when 

starting the search. But how realistic is it that the distance between two cars driving on a road in Amsterdam 

equals 250 meters? According to the yearbook 2017, this city counts 231,183 cars and a total road length 

of 1710 km under the management of the municipality (OIS, 2017b, p112, 114). That implies a ratio of 135 

cars per km, and even if 90% of the cars are parked somewhere it means 3.4 cars per 250m road length. 

This scenario pictures how easily a driver that starts to cruise might affect at least 2 cars driving after him 

with a speed of 30 km per hour.  
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Add to this the effect of the 15.7 million visitors of Amsterdam in 2016 (CBS, 2018). More than half of 

these visitors, 51%, used a car to go from one place to another. Amsterdam’s tourists also relocate 6.5 times 

a day on average (OIS, 2017). Cruising can contribute to congestion especially during peak hours. 

According to the INRIX (2018) the average time spent in peak congestion is 5.5 minutes for cities in the 

Netherlands (INRIX, 2018 p13). 

 

Cruising for parking is time consuming but costs also money and deteriorates our environment. Shoup 

(2005) conducted a ‘cruising for parking’ study in the Westwood village, a commercial district bordered 

by the UCLA campus on the north and the west, and by residential neighborhoods with a parking permit 

districts on the south and east.1 The average cruising speed was 8.5 miles (13.6km) per hour and the average 

distance driven while cruising for a free parking space in Westwood was half a mile (313m). Added across 

all cruising drivers over the year, totals 945,000 extra miles (1,520,830.08km) traveled, using 47,000 

gallons of gasoline and producing 728 tons of CO2. On the Vexpan Parking Convention, 2018, Breuner 

highlighted another dangerous situation for our health. Cruising of cars leads to deterioration of the air 

quality, because of wear of tires, and loosening rubber particles that can be inhaled. This topic is one 

researcher are now interested in. 

 

To restrict the search traffic, various apps have been developed. In 2012 and 2013, Leiden Marketing, in 

collaboration with Centrum Management and VAG/Parking Management, developed an app that not only 

provides information about the nearest parking place at the destination, but also about the number of free 

spaces at the larger parking locations (Leiden, 2014, p22). There are also apps designed for the online 

reservation of parking places (Yellowbrick BV, Parking in Rotterdam, Q-park) and apps that can be used 

while traveling to locate parking places (Driveguide Terberg Leasing B.V). 

 

Several studies have been done to find a model to predict the occupation distribution of the rate of a parking 

place. Research in Berlin (2015) shows that data mining techniques using the neural gas algorithm and 

unsupervised clustering in combination with the original temporal relations of the raw data might lead to 

good prediction results (Tiedemann et. al., 2015). Vlahogianni et. al. (2015) studied the short-term parking 

occupancy prediction in selected regions of an urban road network using neural network models. The 

models used captured the temporal evolution of the parking occupancy and may accurately predict the 

occupancy up to half an hour ahead using one-minute data. In both studies data mining techniques were 

used. These researches show that a method or algorithm can be found to predict the distribution of the 

occupancy rate for a parking place with short-term parkers. 

 

Although permit holders have a fixed pattern of parking spaces, that pattern is still subject to chance due to 

unforeseen events. For example, due to the weather, a permit holder could choose to go to his office by car, 

leaving an extra parking space empty. Furthermore, parking is also influenced by other factors such as the 

day of the week and the time of the day. It may be that there are fixed market days in the week attracting 

different visitors (Tiedemann, 2015). And there may also be holiday months in which not only permit 

holders but also others more often choose to use the car. Research should therefore ensure that the indication 

of the number of empty parking spaces in a neighborhood is reliable for any type of weather or the time of 

the year.  

 

Several studies have been done to find a model to predict the occupation distribution of the rate of a parking 

place. In this report three are mentioned. In the project “Parking Management and Modeling of Car Park 

Patron Behavior in Underground Facilities”, Caicedo et al (2006, p1) investigated the behavior of parking 

patrons in underground parking facilities, a common type of facility in Barcelona, Spain. To model patron 

behavior, commonly known desegregated models based on the random utility theory were adapted to 

                                                      
1 See for more background information about this study the book: The High Cost of Free Parking’s (Donald Shoup) 
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facilitate an understanding of how parking patrons decide to use a particular garage level and determine 

their preferences for a particular garage level. The decisions made depend on the accuracy and the 

convenience of the information offered. The study finds that an intelligent parking management system that 

tells a customer the exact locations of the available spaces is of great benefit to patrons and in the long run 

is a cost-effective alternative to operators.  

 

A research project entitled “Concept of a Data Thread Based Parking Space Occupancy Prediction in a 

Berlin Pilot Region” was done to develop a prediction for an estimated occupancy of the parking spaces in 

the pilot region for a given date and time in the future. For this project the data was collected online by 

roadside parking sensors developed within the project. This research was mostly done with data mining 

techniques. As it is assumed that the reason for a change in the parking behavior depends on hidden 

variables, an unsupervised clustering method is used to identify the best matching class. Hereto the neural 

gas algorithm is used. Then based on these results a prediction model is composed. The combination of a 

machine learning clustering method and the original temporal relations of the raw data was supposed to 

lead to good prediction results in reality (Tiedemann et., 2015). 

 

The study “A Real-Time Parking Prediction System for Smart Cities” conducted by Vlahogianni et. al. 

(2015), exploited statistical and computational intelligence methods for developing a methodology that can 

be used for multiple steps ahead on-street parking availability prediction in “smart” urban areas. This model 

takes real-time parking data, obtained by an extended parking sensor network available in the “smart” city 

of Santander, Spain. They introduced neural networks for the prediction of the time series of parking 

occupancy in different regions of an urban network, distribution. The neural networks adequately captured 

the temporal evolution of parking occupancy and may accurately predict occupancy up to half an hour 

ahead by exploiting one-minute data. A set back of this study is that the proposed approach is tested on 

limited data that may not claim to be representative of the monthly variations in parking demand. Moreover, 

a critical limitation of the present approach is the lack of traffic data that would have provided a more 

consistent formulation of the parking prediction problem to the evolution of traffic demand. 

 

In this study a mathematical model will be composed using basically mathematical concepts. For known 

data, the initial distribution of the number of cars on time t, is a canonical vector with one non-zero entries 

equal to one. If number of cars equals j, then the j+1 entry equals one; after all the probability for being is 

that state is one (Liu, 2010 p163). Since the number of cars is binomially distributed, for unknown data the 

initial distribution is estimated with the mean fraction of cars at time t. 

 

The n-step transition probability matrices are found with the probability distribution of the transfers. The 

transfer variable is found with the differenced series of the number of cars or the net added number of cars 

at time t. (Z(t)=N(t)-N(t-1)). Another way to determine the transfer variable is to define the net added 

number of cars as the difference between the number of arrivals and the number of departures (Z(t)=A(t)-

D(t)). 

For the actual predictions, three basic Markov chain models are used: First order Markov chain model 

(Ross, 2010). Higher order Markov chain prediction model as described by Ching, Ng and Wai (Ching et. 

al., 2006). Higher order Markov chain model with triples. This is a model that has a combines three states 

in one and uses one step transitions.  

The idea of taking an extra lag/factor/point into account originates from Raftery (Raftery, 1985). That model 

was extended to a more general higher order Markov chain model that takes the influence of different lags 

into account (Ching, 2006, p113). Higher order Markov chain models do assume that the current state 

depends on the last k states and are especially useful when an evolution of a series tends to be non-linear 

(Ching et al, 2013, pp. 141). The mathematical validation for this model is extensively explained by Wai-

Ki et al (2006, chapter 6); Ching et al (2008), and Liu Tie (2010). 

https://www.researchgate.net/scientific-contributions/2013734565_Liu_Tie?_sg=Jb_2ZJsdqa3-e9ZusX32QtTWQFYBzYM3Dc5cCvueuTW0yDRvGZSd-7Ql40o1P437EXnqfDE.4Ga4of0DrBocGRFOWrbrXOxti2O3cQWEayMF5lo5zaYgWJJm-Bs0kPX2BuM2aKbU2s6AGju8Evv_LvpcvOBDjg
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The normed squared column sampling techniques of random numerical linear algebra explains how to find 

a so-called “random sketch” from the original matrix. It is assumed that this sketch has the same properties 

as the original matrix (Smetana dr. K., 2018, page 61-69). In simulated annealing non-homogeneous 

Markov chains can be partitioned in homogeneous Markov chains (Hurink, 2017, Lecture 6, p15). 

Homogeneous Markov chains are time independent and just see two time points: a start time and an end 

time; the intermediate time points do not influence the transfers. Non-homogeneous Markov chains are time 

dependent and associates each transfer with a time point between the start time and the end time of a set of 

transfers (BachMaier S, 2016). 

 

.  
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1. Problem Description and the Research Variables  

This section contains the problem description, the research topic and sub research questions followed by a 

brief discussion of the research variables. In this report parking space refers to a parking area designed for 

one single car and a parking place refers to the set of parking spaces. 

 

1.1 Problem Description and Research Questions 
In busy cities like Amsterdam finding a parking place is a problem. To reduce cruising traffic ARS Traffic 

& Transport Technology (ARS T & TT) wants to develop software to inform drivers of the number of 

empty parking spaces in a nearby neighborhood. They want to have more knowledge and insight in the 

actual parking distribution of the rate.  

 

Once or twice a day a scan-vehicle passes in the whole neighborhood to scan the vehicles. So, there is some 

scan data that gives insight in the distribution of the occupancy rate of the past. At the parking place there 

are two significant types of parkers: 1) the long-term parkers, most of the times the permit-holders, and 2) 

the short-term parker, most of the time the visitors. Both types of parkers have different parking behaviors. 

Using the typical characteristics of the parking behavior the company simulated the situation at a large 

parking place in a neighborhood. This simulation is done for a smaller part of the parking place just as 

sensors would have done that. The company wants to have a mathematical prediction model for the 

distribution of the occupancy rate in a neighborhood based on the evolution of the number of short- and 

long-term parkers as conveyed in the data base of the “sensored” part of the parking place. Such a model 

should be able to use the available simulated data and the scan data to predict the number of cars at the 

parking place after a number of minutes.  

 

1.2 The Research Topic 
The company wants to know to what extent predictions could be done for the parking occupancy in a 

neighborhood based on data available to ARS T&TT. Hence, the main research topic for an OR student 

would be to find a Markov chain-based prediction model for the distribution of the occupancy rate of the 

parking place in a neighborhood. In order to find this model, the following sub questions are considered: 

What is the optimum fraction of parking spaces that should be equipped with a sensor? What fraction of 

the parking place should be equipped with sensors? How important is knowledge about the distribution of 

parking times for visitors and for permit holders? What is the sensitivity of the number of scans per day and 

the distribution of the scans over the day? Are there other data sources that can provide extra information?  

 

The answer on the first sub question could help one to determine if the data-set is well chosen. It could also 

help to estimate the a priori error and thus to determine a tolerance range for the a-posteriori error. The 

expectation is that these errors help to adjust the performance of the model. Generally, knowledge about 

the distribution of a variable gives a better picture of the location measures such as the mean and the 

expected value. Moreover, it reveals if the distribution is a joint distribution that should be split. Knowing 

how many scans are needed each day and at what time period they should be taken can help to find a data 

set that more adequate represents the detailed situation as generated by the sensor, and in this way even 

exclude a huge investment in sensors. An answer on the last sub question will only lead to a better model, 

maybe even a simpler model. 
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In this report PARK200 refers to the simulated or the “with sensors equipped part of the parking place: 

(200 parking spaces) and the term PARK1000 implies the whole parking place consisting of 1000 parking 

spaces. 

 

 

1.3 Research Variables 
The research variables in this study are the type of parker, the day, the time, the number of arrivals, the 

number of departures, the numbers of cars at the parking place and the net added number of cars at the 

parking place. These variables are deduced from the data set that describes the situation on PARK200. 

 

1.3.1 Type of Parker Based on Parking Time 
The users of this parking place are split into two groups: Long-term and short-term parkers. As it cannot be 

seen from the data set whether a parker is a permit holder or not, the parking time will be used to identify 

these two groups. The parking time or parking duration is the total number of consecutive minutes in which 

a vehicle is parked in the neighborhood. The time starts running from the moment a car is registered as an 

arrival in a parking space until the next point in time in the system that the same parking space is empty. It 

is assumed that the parking time is an integer value running from one to 1440. The parking time of a car 

that stays overnight at the parking place is at least 720 minutes. 

 

In this process a user enters the parking place, and if there is a parking space available the driver chooses 

to stay for a time period in that space, and after that time period he can choose to stay a next period or leave. 

This approach the process allows one to identify permit holders that come and go a couple of times in the 

parking place as a short-term parker and visitors who lengthen there stay a couple of times consecutively 

occupying the parking space as long-term parkers.  

 

An analysis of the parking time helps to determine to what type of user a car at the parking place belongs. 

The central tendency of a data set is mostly described using the mean, the median and the mode. The mean 

of the parking time of all parkers who ever visited the parking place according to the given data is 631 

minutes while the median equals 216 minutes. This would imply the existence of two groups of parkers 

with parking times concentrated around these two values. But, only 24% percent of the parking times are 

between 180 and 650 minutes. Hence, knowledge of the distribution of the parking time is necessary. 

 

Zooming in on the distribution of the parking times gives a better picture of the data sets. To understand 

the importance of knowledge about the distribution of parking times, one should first understand the 

definition of distribution. Rumsey (2018) describes the distribution of the parking times as a list or function 

showing all the possible values or intervals of the data and how often they occur. One way to visualize the 

distribution is to use intervals for this continuous random variable and draw a histogram. Using granularity 

and the relative frequency result in the probability density function. The area under the curve in any given 

interval tells what percentage of the data falls into the interval.  

 

The parking time is bimodal. This is also clear from figure 1.3.1a. The distribution function of the parking 

time is bimodal, indicating that the process consists of two underlying distributions. These two distributions 

appear to be centered around 89 (1.5hours) and 812 minutes(13.5hours).  

 

https://www.dummies.com/?s=&a=deborah-j-rumsey
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And using the point in between, a long-term parker can be defined as a parker with a parking time of more 

than 630 minutes and a short-term park is a parker with a parking time of 630 minutes and less. The mean 

for the short-term parkers equals 162.62 minutes and that of the long-term parkers 873.55 minutes. The 

nonparametric one-sample Kolmogorov-Smirnov test does not find enough evidence in the data to conclude 

that the distribution of the parking time is equal to the exponential distribution. Hence the hypothesis that 

the parking time has an exponential distribution is rejected. See for more details Table 1.3.1. 

 

 

  

 

 

 

 

 

Generally, it can be said that the shorter the parking time, the more parking spaces available the next minute, 

something that is welcome especially when the parking demand is high. As the parking place is limited, it 

is expected on an arbitrary time point t, that the number of occupied parking spaces by long-term parkers 

determines the maximum number of cars that can enter the system. The number of long-term parkers itself 

does not necessarily influence the number of short-term parkers. 

 

 

This is also evident in the banded shaped form of 

figure 1.3.1d. The number of each type of 

parkers depends on the demand in each one of 

the groups and the available space in the parking 

place. The mean fraction of parkers that belong 

to the group of short-term parkers equals 0.4618.  

 

A 95% confidence interval for the fraction of 

short-term parkers within the group of parkers is 

[0.4602, 0.4634] and for long-term parkers 

[0.5355, 0.5398]. From here it is clear that the 

fraction of long-term parkers is on average more 

than the fraction of short-term parkers on the 

parking place.  

 

 

 

Table 1.3.1: Summary statistics parking time short- and long-term parkers 

Type  mean SD median mad max range skew kurtosis 

Short 162.62 110.55 136 94.89 629 628 1.18 1.27 

Long 873.55 132.76 842 109.71 1438 808 1.12 1.01 
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1.3.2 The Day of the Week Based on Date 
The day of the week implies one of the 7 days in the week that an observation is done. This variable is 

deduced from the date. The date is the number of the day on which an observation is done, whether a 

parking space is empty or occupied. The number of these 500 dates ranges from 0 to 499. This number 

indicates the number of days that have elapsed since the first observation. Applying the modulo 7 

operator+1 on the date results in the numbers 1, 2, 3, 4, 5, 6 and 7, each of which can be associated with a 

day in the week.  

 

The data set contains for day 1, day 2 and day 3 each 51,840 observations and for the rest of the days each 

51,120 observations. Regular activities on a specific weekday in the area of the parking place, could 

influence the demand of parking. Tsestos et. al. (2015) have shown that distribution of the occupancy rate 

of the weekday do differ from that of a weekend day. A study in a Berlin pilot region relates in 2015 that 

the occupancy rate differs also for weekdays. In the plot here below the distribution of the number of short-

term parkers and long-term parkers reveal that there are some differences especially for the 7-th day. 
 

 
 

The boxplots show that there are both similarities and differences in days. Therefore, days will not be 

clustered in this study; the data for each day will be kept separate. 
 

1.3.3 The Time of the Observation 
Measurements are done between 9.00h and 21.00h: The time of the observation or briefly the time is the 

minute of the day on which an observation is done whether a parking space is empty or occupied. The 

time is indicated in whole units of one minute and runs from 0 to 719. If time equals for example 61 then 

the actual time is 10.01h. Based on the law of strong numbers, the number of cars is aggregated by time 

within each group such that patterns in the temporal evolution of the number of cars can be made visible. 

See figure 1.3.3. 

 

It is clear that depending on different “linear” patterns of the graph of the short-term parkers a day should 

be divided in more than two time periods; for long-term parkers two periods would be sufficient. Obviously 

one can use the next time periods: 0-30, 30-179, 179-218, 218-313, 313-420, 420-500, 500-719 to evaluate 

the process. 
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However, one can also choose another partitioning of the day (See section 3.3). Testing the hypothesis of 

no correlation with the Kendall correlation test shows that at significance of 5% one can conclude that the 

data does not proof that one can deny correlation between the time and the number of cars at the parking 

place (all p-values are zero). 

 

 

1.3.4 The Number of Arrivals and Departures 
An arrival or new parker that enters the system and choses to occupy an empty space, will be counted as an 

arrival. Each car that is in the system and chooses to leave the parking place is seen as a departure. At 

significance level of 5% a Chi-square test applied on series of the number of arrivals of the short-term 

parkers and the long-term parkers, shows that the data does not provide enough evidence to conclude that 

the series are not Poisson distributed. Hence it can be stated that the inter arrival times are exponentially 

distributed and thus memoryless. With a significance of 5%, a t-test for paired observation reveals that it 

cannot be said that the mean number of arrivals of the short-term parker does not differs from that of the 

long-term parkers. Sixty six percent of the arrivals are short-term parkers with an overall mean arrival rate 

of 0.42 per minute and 34% are long-term parkers with an overall arrival rate of 0.2 per minute. These 

figures do not take the influence of the day and time into account. 
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The departure process in both groups can be modeled as a binomial process. For each group, there is a 

number of cars at the parking place and with a probability depending on time t a car within in a specific 

group departs. As a car driver chooses with a fixed probability if (s)he would be a long-or short-term parker 

it can be expected that the long-term parkers and short-term parkers do have their own departure pattern 

and therefore the probability of departure is time dependent. What gives more insight into the need to take 

different time periods into account is the number of arrivals and departure of both groups. The different 

behavior patterns for both the short-term parkers and the long-term parkers do justify the idea to split the 

day into several time periods. See also figure 1.3.4 

 

 

1.3.5 The Net Added Number of Cars 
 

The net added number of cars is in fact the difference between the numbers of cars on two consecutive time 

units. It represents the real change in car for the next minute after arrivals and departures. The maximum 

net added number of cars equals 15, the mean 0.00009 and the minimum -55. The boxplot of this change 

in cars gives a picture of the distribution of the net added number of cars. The impression is that there are 

quite some observations with an extreme net added number of cars. Interesting is that net added number of 

cars less than -8 consists can be found most of the time at the beginning of the day (time=0, see Table 1.3.5). 

 

  

Table 1.3.5: Number of observations in 

interval of net added number of cars 

Net added 

number 

Total 

Number  

Number at 

time=0 

⟨←, -5] 527 417 

⟨←, -6] 413 402 

⟨←, -7] 388 387 

⟨←, -8] 387 377 

 

This reveals that there is an interesting time period 

that should be isolated; the so-called night time 

period or the period from 719 till 0 minutes. For 

time=0 there are 500 observations measured. 

 
 

 

1.3.6 The Occupancy Rate Based on the Number of Cars per Minute 
In this study, the dependent variable or the predicted variable is the occupancy rate. The occupancy rate is 

the fraction of the spaces at the parking place that are occupied at a specific time point t. This rate is 

expressed as the next fraction: 

 

 
(total number of occupied spaces at time 𝑡) 

(total number of parking spaces)
     (1.3.6) 

 

In this study the focus will be on predicting first the number of cars in the parking place at a certain time 

point, and then using the relationship in (1.3.6) to compute the occupancy rate. The number of cars at time 

t is a variable that is derived from the set of occupation indicators of all parking spaces at that time point. 
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The occupation indicator is a dummy variable that indicates whether a parking space is occupied or not. 

Indicator zero indicates that the parking place is free, and one means it is occupied. Noteworthy is that for 

a single minute a parking space can only have one occupancy indicator. Hence, the number of occupied 

places equals the sum of all occupation indicators at that time point.  

 

The distribution of the number of cars is bimodal, resulting mainly from the joint distribution of short-and 

the long-term parkers. The occupation rate of the number of cars is centered around 0.89 and 0.98. The 

mean fraction of spaces that are occupied by respectively the short- and the long-term parkers is 0.38 and 

0.55. The minimum numbers of cars at the parking place is 128 and yielding a minimum occupancy rate of 

0.64. See for more details about each one of the groups Table 1.3.6. 

 

Table 1.3.6: Statistics of the number short and long-term parkers per minute on PARK200 

 No Cars  No Short No Long 

 No Arrival Dep No Arrival Dep No Arrival Dep 

Minimum  128 0 0 0 0 0 2 0 0 

Mean  185.78 0.64 0.64 75.61 0.43 0.64 110.17 0.21 0.0004 

Maximum  200 159 58 184 157 58 200 6 1 

 

In table 1.3.6 the overall mean of the number of large term parkers is more than that of the short-term 

parkers. A maximum of 200 long-term parkers was observed at the parking place. In the group of the parkers 

the mean fraction of 60% exist of long-term parkers. In the remainder of this study relevant statistics will 

be linked to the time period and the day of an observation. 

 

 

 

2. The Available Data Set 

ARS T & TT made two files available for this research namely 'Sanfiles.csv' and 'Occupation.csv'. The first 

file made available by ARS contains data collected over a period of two years by the scan vehicles. The file 

with scan data ('Sanfiles.csv') contains for each line the date, the time the scan vehicle started, and in each 

one of the 1000 columns one indicator for the occupation of a parking space. 

 

The rest of the data contained in the occupation file is collected by the company by simulating the situation 

in a neighborhood partially. This file indicates for the first 200 parking spaces of PARK1000 for each line 

the day, the time and the occupation indicators as if registered by “sensors. When generating data for that 

fictive neighborhood, ARS uses actual data from Amsterdam and includes the parking behavior and the 

ratio between the number of visitors and permit holders. It contains 360,000 simulated observations for a 

period of 71 weeks and 3 days.  

 

The company wants the file with the “sensor” data, to be used to train the model proposed in this report. 

Hence, the values for the research variables as named in section 1.3 are deduced from this file. The Scan-

data files should be used to test or validate the algorithm. In the remainder of the report the simulated data 

will be referred to as the sensor data or the data coming from PARK200. The sensor rate is then the rate 

resulting from the sensor data. The data coming from PARK1000 a result from scanning the neighborhood, 

will be referred to as scan data. 
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2.1 The A-Priori Error 
The time registered for the scan data is in fact the starting time of the scan procedure and does not 

corresponds with the time registered by the sensors. So, it makes sense to focus on the a-priori error or the 

difference in the occupation rate of PARK200 (sensor data) and PARK1000 (scan data). This error varies 

from -0.054000 to 0.059. The mean error is 0.001035, the median equals 0.001, 25% of the data has an 

error less than -0.007 and 25% has an error of more than 0.008. Moreover, 5% of the differences are less 

than -0.020 and 5% exceed 0.023. Based on the latter a mean range of 0.043 will be used as an ideal upper 

bound for the mean range of the a-posteriori error. 

 
 

A closer look at the scatterplot of the occupation distribution of the rate on PARK200 and the a-priori error 

reveals some regularities. When the sensor rate is high the variability in the difference in measure is not too 

high. There seems to be a periodic relation between the sensor rate and the a-priori error. In the remainder 

of this study, it will be checked whether this relation could be detected and used to predict the number of 

cars on PARK1000 deduced from the scan data. 

 

The magnitude of the a-priori error could 

also be related to the time period or the 

time of the day. Understandably during 

busy periods when the parking place is 

full, the difference will not be too large. 

On the other side, large a-priori errors 

can be found in busy periods with a low 

occupation rate. As it is not the aim in 

this report to correct the error made in the 

measurement, the mean range for the a-

priori error will be used as a bound for 

the mean range for the predicted interval. 

The information of PARK200 is used as 

input for the model as it corresponds to 

the its scan information.  
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So, the error the scan vehicle makes is not included in the model, but the prediction is adjusted afterward 

such that the rate resulting from the scan data could be approximated better. Hereto it is assumed that the 

error is normally distributed on each one of the eight part of the days. It is also thought that all data points 

from the scan file are needed to adjust the prediction result. See for more details section 2.2.2.  

 

2.2 The Number of Parking Spaces with a Sensor 
In this section the sensitivity of the fraction of sensor-equipped parking spaces will be considered. This will 

be done using two approaches. The first approach states that the number of 200 spaces is representative for 

the parking place of 1000 spaces. The second approach is that the minimum number of parking spaces that 

should be equipped is unknown. 

 

2.2.1 The Minimum Number of Parking Spaces with a Sensor 
As PARK200 represents the total parking place it is assumed that, p(t), the fraction of occupied spaces at 

time t at PARK200 is a good estimator for the similar fraction on PARK1000 at time t. The occupation rate 

on PARK1000 should be in a 95% prediction interval of predictions done with a model based on data from 

PARK200. 

 

Suppose Y is the number of occupied parking spaces at PARK1000. Then 𝑌~𝑏𝑖𝑛(𝑛, 𝑝(𝑡)), where m equals 

the total number of parking places(n=1000) and p(t) the fraction of occupied parking spaces at time t (t=0, 

1, . . . , 719). The variable X represents the number of occupied parking spaces at PARK200, with 

𝑋~𝑏𝑖𝑛(𝑚, 𝑝(𝑡)) (m=200). Here it is he hypothesis is that the ‘success rate’ for both distributions are equal. 

The borders of the prediction interval for each time point would be: 

 

𝑝̂ ± 𝑡1

2
𝛼,(𝑛−𝑘+1)

√
𝑝(𝑡)∗(1−𝑝(𝑡))

𝑚2 +
𝑝(𝑡)∗(1−𝑝̂(𝑡))

𝑛
,     (2.2.1a) 

 

where 𝑝̂ is an estimator for the mean fraction of occupied spaces at PARK200 and k=2, the number of 

involved random variables (See appendix 1 for more details). From the 598 scanned moments 93.3% of the 

deduced rates are in the associated 95% prediction interval, with mean range 0.063. For a 90% prediction 

interval the percentage is 91.5%, and the mean range 0.053. This implies that if the ideal mean range of 

0.043 cannot be found, a mean range of 0.063 could also be tolerated. 

 

A theoretical percentage of 10.20% of the posteriori errors lies within the range deduced from the a-priori 

error into account ([-0.020, 0.023]). Under the null hypothesis that 90% of the predicted errors lies 

somewhere between -0.020 to 0.023 it can be concluded that at significance level 10% the data set does not 

provide enough proof to believe that the rates from PARK1000 lies in a prediction interval the with range 

0.0043. So, with this data set it cannot be expected theoretically to find a model that predicts the rate on 

PARK1000 without tolerating a posteriori error larger than the a priori error. 

 

Hence it can be concluded that a model based on the information given by 200 spaces is not able to predict 

the occupation rate at PARK1000. Apparently, more spaces should be equipped with sensors. More sensors 

do have another benefit for a prediction model. The more sensors in the parking place, the larger the value 

for n, the smaller the range of the prediction interval (2.2.1) the more accurate the predicted rate resulting 

from a good model. 
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Depending on the error the company wants to make the number of parking spaces (m) can be estimated 

using the ranges in 2.2.1. Suppose the absolute error the company wants to make equals error 𝜀. Then the 

difference of the range and the mean is error such that:  

 

𝑡1

2
𝛼,(𝑛−𝑘+1)

√
𝑝̂(𝑡)∗(1−𝑝̂(𝑡))

𝑚2 +
𝑝(𝑡)∗(1−𝑝(𝑡))

𝑛
= 𝜀    2.2.1b 

 

 

Under the assumptions that 𝛼 = 5%, n=200, 𝑝̂(𝑡) = 𝑝, 𝜀 is well chosen by the company, the m can be 

found by solving the equation in statement 2.2.1b. It should be remarked that the fraction 𝑝̂(𝑡), is time 

dependent. So, by deciding what error the company wants to make it should be taken that also into account. 

 

 

2.2.2 A Lower Bound for the Maximum Number of Parking Spaces with a Sensor 
Another approach to determine the sensitivity of the fraction of spaces that is equipped with sensors assumes 

that the parking place consists of maximum 1000 spaces. Equipping the whole population of parking spaces 

with sensors would be the best but most expensive choice. Can the company suffice with equipping fewer 

parking spaces? In this section the concept of random numerical linear algebra (RandNLA) and the concept 

of the rank of a matrix will be used.  

 

One main concept of RandNLA algorithms is constructing a so-called random sketch of the considered 

matrix by random sampling and then using the sketch as a surrogate for the computations (Smetana, 2018, 

section 8.2). Matrices are seen as linear operators, such that the role of rows and columns become more 

central. Based on the knowledge of the space a fixed number of columns can be chosen according to the 

simplest non-uniform distribution known as 𝑙2 sampling or norm-squared sampling, in which 𝑝𝑖 is 

proportional to the square of the Euclidean norm of the 𝑖𝑡ℎ column:  

 

𝑝𝑖 =
‖𝐴𝑖‖2

2

∑ ‖𝐴𝑖‖2
2𝑛

𝑖=1

       (2.1.1) 

 

Each time a lower number of columns is sampled. This implies that the number of parking spaces is 

gradually reduced. The occupation rate of this random sketch or reduced parking place is computed and its 

mean deviation from the universe. It is expected that the mean error would be zero on the long run. 

 

The occupation rate on the whole parking place depends on what happens each minute in each parking 

space. Hence the parking place can be seen as an m x n-dimensional space where m is the number of the 

observation and n the number of the parking space. The space dimension is represented by n and the time 

dimension by m. The data file that represents the situation at the parking place is a matrix full of indicator 

variables. A row shows for a single time for every parking space whether it is occupied. A column shows 

for one parking space for every minute whether it is occupied. In this way the parking place is set-up by 

1000 parking place vectors. 

 

Random column sampling is simulated 100 times. In each simulation the number of columns (parking 

spaces) is gradually decreased by the factor 
10

11
. For each n columns (parking space) that are sampled, the 

occupation rate is computed for both the sampled parking space and for PARK1000 together with its 

absolute difference or error. In figure 2.2.2 the mean error for the occupation rate aggregated by number of 

columns is plotted. 
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There is a negative correlation between the 

number of columns and the absolute mean 

error with respect to the universe of 1000 

parking spaces; the less column, the larger 

the error. This relation between the number 

of columns (y) and the mean error (x) could 

be approximated the with y=392.68*exp(-

63.62x). Depending on the error the 

company allows it could decide how many 

spaces should be equipped with a sensor. 

The number found with the exponential 

relation is in fact a lower bound for the 

maximum number of spaces that should be 

equipped with sensors.    

 

3. Mathematical Description of the Problem 

The total number of cars is generated over consecutive minutes of consecutive days. The resulting sequence 

of the number of cars at the parking place from minute to minute is in fact a time series. The observations 

in this time series, have a recurring pattern for measurements made on the same day and the same time, 

such that the occupancy rate is time-dependent. In this report it is the aim to find a mathematical model that 

takes not only the factor time but also the number of the short-term and long-term parkers into account. 

Designing such a model for software is a challenge because parking cars itself is a stochastic process or a 

succession of accidental outcomes. 

 

To make this research operational, the scope of the study is restricted, and assumptions are made to model 

the real-life situation. First the restrictions and assumptions are discussed in this section.   

 

The next section shows why and how this problem can be modelled as a discrete time inhomogeneous 

Markov chain. “Markov chains” is the core business of operational research. Therefore, it was decided in 

this research to predict the occupancy rate, with Markov chain prediction models. Admittedly, it should be 

remarked that research has shown that Markov chain prediction models lack accuracy when history matters 

(Wu T., Gleich D., 2017 p.1). Nevertheless, it is expected that there are enough mathematical “tools” to 

correct prediction flaws. As the use of Markov chains will be eminent the focus will be now on predicting 

the probability distribution of the number of cars at time t. The third section proceeds with a discussion of 

the time series properties that are included in this research. The last concludes with a mathematical 

description of the problem. 

 

3.1 Restriction and Assumptions Needed to Model the Problem 
The first restriction in this research is that the parking problem only addresses on-street parking in a closed 

neighborhood, or a neighborhood with a fixed number of parking spaces. This study is based on data coming 

from simulating the parking process at a part of the whole parking place. The simulation is based on the 

way sensors work in the parking garage of Schiphol airport. This study does not test how well the sensors 

do reflect reality. Nor is this research intended to ascertain whether the provided data had been correctly 

simulated. In addition, it will not be examined whether it is correct to take the starting time of scanning the 

neighborhood as the actual time for scanning an arbitrary parking space in the parking place.  
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The number of free spaces at the parking place depends largely on the parking time of the users. The shorter 

the parking time the more parking spaces available each minute. Hence this research assumes that predicting 

the number of free spaces requires acknowledging the parking time and consequently the existence of two 

distinct groups in the system: the long-term parkers and the short-term parkers. Both visitors and license 

holders can choose which open parking place they will use. Every parker is allowed to use a parking space 

for the period of time determined by him or her, provided the payment is made.  

 

It is assumed that the users of the parking place act independent from each other. It is thought that a driver 

indicates upon arrival how long (s)he will stay in the system and customers do take decisions independent 

from each other. In this way each driver that comes into the system decides for himself if he is a short-term 

parker or a long-term parker. The number of short-term parkers and the number of the long-term parkers 

that are added each minute to the system depend on the available space at the parking place, the parking 

demand and the parking behavior. The inference for each minute is therefore that the number of short-term 

parkers does not depend on the number of long-term parkers in the parking place. It is also assumed that 

the situation on PARK200 represents the situation on PARK1000. 

 

As it is not clear from the data what happens exactly between 21:00h and 9:00h it is assumed that all cars 

present at 21.00h do stay overnight. Hence, short-term parkers do not stay overnight at the parking place 

and every car present at the parking place at the end of the day (minute 719) is a long-term parker. This 

assumption tends to correspond with the reality. Generally, a neighborhood is not used for business 

activities in the evening. During the day its parking place becomes an extension of the city. As most of the 

shops and business places in the city are closed, it is expected that there are enough free parking spaces in 

the city; there is no extension of the city needed in the evening hours. It could be that short-term parkers 

occasionally use the parking place in the evening. The first time the data is recorded it is not known how 

much of the cars did stay overnight, so all the cars at that moment are treated as arrivals.  

 

3.2 A Non-Homogeneous Discrete Time Markov Chain 
 

Cars do enter the parking place to look for a free parking space. If they found one, they stay for a while; in 

case no parking place is found they ‘leave’. As it is not clear how to understand ‘leave’, it is simply used 

in this study to bring over the idea that the number of cars never exceeds its maximum. The situation at the 

parking place is in fact a M/G/c/c process. This is a process where: 1) the arrival times are exponentially 

distributed and therefore memoryless; 2) the parking time of an individual car represents the service time 

and follows a general distribution; 3) the parking place counts c servers or parking spaces and no waiting 

places, such that 4) the maximum number of cars that can be parked in the system at one time point equals, 

c, the number of servers.  

 

Every customer who enters the system is supposed to select a free server randomly. The probability that an 

arrival occurs in a certain unit of the parking place, is by assumption equal for all other units of the parking 

place. Moreover, it is assumed that the number of arrivals that occur in an arbitrary unit of the parking place 

is independent of the number of arrivals in other units. Hence it can be assumed that the Poisson properties 

for the arrival rates do hold also on PARK200. Transitions do take place each minute. The transition from 

the evening to the morning that means form minute 719 to minute 0 is considered to be a transition done in 

one minute or step. Each time period the occupation of PARK200 is registered, resulting in a dynamic 

sequence of the number of cars is known each time period. Hence, this process can be modelled as a Markov 

chain.  

 

The Markov chain can be defined basically as a stochastic process {𝑋𝑛 , n = 0, 1, 2, . . . }, with a finite 

number of possible values or states, E={0, 1, 2, . . . , 1000} and 𝑋𝑛 = k, implies that the process is in state 
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k at time n. Each state represents the number of occupied parking spaces at a certain time point. The one 

step transition probabilities are time dependent and stored in a matrix 

 

𝑃(𝑡)= {𝑝𝑖𝑗(𝑡), i, j ∈ E} 𝑝𝑖𝑗(𝑡) ≥ 0, ∑ 𝑝𝑖𝑗(𝑡)i,j ∈ E =1. 

 

This Markov chain is not homogeneous because the evolution of the system depends on time. Moreover, 

its underlying arrival process is a non-homogeneous Poisson process (see graph 1.3.3c) (Ross, 2010, p372). 

The Markov chain has different transferring behavior patterns. Having a transition probability matrix for 

every time interval of one unit, would imply having a model with hundreds of transition probability 

matrices. That is not efficient for both the user and computer programs. 

 

In simulated annealing a non-homogeneous Markov chain can be seen as an infinite number of 

homogeneous Markov chains of finite length each (Hurink, 2017, Lecture 6, p15). In this study the 

“infinite” countable number of homogeneous parts are clustered in different consecutive periods. Each one 

of his cluster of homogeneous parts is thought to be a homogeneous Markov chains of finite length. As 

Bach Maier notes that a homogeneous Markov chain sees only two time points: a starting time and an end 

time. Therefore, the transition probabilities of this non-homogeneous Markov chain will be linked to 

intervals ranging from start time, 𝑡1, till end time, 𝑡2, such that h=𝑡2 − 𝑡1, is the time span of the interval in 

which homogeneity is assumed (Bach Maier S, 2016 p 18). It is then assumed that for 𝑡𝜖[𝑡1, 𝑡2], the 

transition probabilities at time t, can be estimated by the transitions of the observations in associated time 

interval. 

 

There are different ways to define these intervals in which homogeneity is assumed. One way is by using 

the partitioning of the day d in the eight periods deduced in section 1.3.3. Another way is a partitioning of 

day d in consecutive disjoint time intervals of h minutes starting from the first minute (t=0). It can also be 

assumed that the Markov chain is homogeneous in a radius of s minutes from the actual time t, such that 

the associated interval equals [t-s, t+s]. The transitions in these time intervals will be used to estimate the 

transition behavior and probabilities at time t, on day d. Hence in this report a transition probability matrix 

P(t), is in fact a matrix containing the transition probabilities of a so-called homogeneous part of the non-

homogeneous Markov chain associated with a time interval containing time t. From now on, it will be 

referred to as 𝑷𝓙𝒕
for short-term parker and 𝑸𝓙𝒕

for long-term parkers, where 𝓙𝒕 is the time interval 

containing time t and will be used to estimate the transition probability matrix on time t at day d. No 

extra index is needed for the day in this notation; the day(s) connected to time interval 𝒥𝑡 is (are) 

automatically determined by the actual time of the process and the definition of the time interval 𝒥𝑡. 

 

Moreover, it will be assumed that these homogeneous parts of the Markov chain are irreducible. As it is not 

clear how to link groups of states from PARK200 to PARK1000, it is chosen to allow transitions for every 

state on PARK1000. 

 

Further it is assumed that the history, that is the occupation data on PARK200 is known up until the moment 

of the actual scan when a prediction starts. Consequently, depending on the value of the actual time and 

day, future values needed to find the transition probability matrix on 𝒥𝑡 , the associated homogeneous time 

interval are unknown. One way to solve this is to assume that information of all similar time periods in the 

past is needed to determine the transition probabilities associated with the current time interval. Another 

solution could be to estimate the unknown values by their expectation. A good estimator for the expected 

value is the mean value of the number of cars aggregated by time and day (See section 4 for the requirements 

for a good estimator). A t-test for paired observation shows that it cannot be concluded that the difference 

of the actual values and this aggregated value does not equal zero. For the number of cars, the number of 

short, and the number of long-term parkers the p-value equals one. Hence these values will be used to find 

the transition probabilities in 𝒥𝑡. (See also introduction of section 4) 
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3.3  A Markov Chain with Time Series Properties  
For time series it is assumed that the data consists of a systematic pattern and random noise (error). 

Generally, the systematic pattern of a time series has two components: trend and seasonality.  

 

In this study it will be assumed that the trend of the number of cars depends on the transition behavior of 

the process in a closure around the actual time. In this closure or time interval homogeneity of transferring 

behavior will be assumed. Beside this the concept of “a forward moving average” will be implemented in 

making predictions to smooth out the trend and to cancel out large differences at time t, t=0, 1, 2, …. This 

will be implemented by choosing a “forward moving interval”, [t-h, t+h] to determine a “forward moving 

transition probability matrix”.  

 

The next systematic component of the time series is the seasonal element. The time series of the number of 

cars consists of a pattern that is repeated every 720 minutes. The for seasonality adjusted number of cars or 

the number of cars minus the seasonal component was compared with the number of cars itself. A t-test for 

paired observations reveals that the difference between the series of the number of cars and the for 

seasonality adjusted number of cars is negligible (p-value=1). Hence there is no need to split the systematic 

part of the series and zoom in separately on the trend and the seasonal series.  

 

The random noise will be corrected each minute by using a convex combination of the distribution of the 

predicted value and the distribution of the expected value. The distribution for the expected value at a given 

day and time will be estimated by the distribution of the average value aggregated by day and time.  

 

 

 

3.4 Mathematical Problem Description 
In this study the focus will be on the totals per minute on PARK200. The resulting Markov chain of the 

number of cars at time t at the parking place exists of two distinct groups of users who act independently 

from each other: the short-term parkers and the long-term parkers. Consequently, this Markov chain is in 

fact a two-dimensional discrete time Markov chain. The data of the M parking spaces on PARK200 will be 

used to predict for time t, the distribution of the number of cars on PARK1000 that has a maximum of N 

parking spaces. 

 

On PARK200, 𝑀𝑠(𝑡) and 𝑀𝐿(𝑡) do represent respectively the number of short- and long-term parkers at 

time t, where 𝑡 ∈ 0,1,… ,719, 𝑀𝑠(𝑡) ∈  [ 0,𝑀 ] and 𝑀𝐿(𝑡)  ∈  [ 0,𝑀 ]. The two-dimensional state 

(𝑀𝑠(𝑡),𝑀𝐿(𝑡)) represents the number of short-and long-term parkers at time t. 

 

𝑁(𝑡 + 𝑤) represents the number of the parkers on PARK1000, w minutes later, at time t+w and k is the 

number of historical points that one would like to include in the model (0<k< 𝑡 −1- 𝑡0 ). For the distribution 

of number of cars on PARK1000 at time (t+w), given the actual state i, on PARK200 at time t, we want to 

find  ∀ 𝑗 ∈ 𝐸 the conditional probability:  

 

𝑝𝑗|𝑖, 𝑖2,,. . . 𝑖𝑘
(𝑡 + 𝑤) = 

  

𝑃{𝑁(𝑡 + 𝑤) = 𝑗|(𝑀𝑠(𝑡 − 1),𝑀𝐿(𝑡 − 1)) = (𝑣1, 𝑙1),  .  .  .  .  ,  (𝑀𝑠(𝑡 − 𝑘),𝑀𝐿(𝑡 − 𝑘)) = (𝑣𝑘 , 𝑙𝑘)} 
 

, 𝑣1 + 𝑙1=i, for i, 𝑣𝑘 , 𝑙𝑘=0, 1, 2, . . . , N, j=0,1,2, . . . , M,  
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Thus, the distributions from a two-dimensional Markov chain on PARK200 will be used to make 

predictions the distribution for a one-dimensional chain based on the condition probability stated above. 

The mathematical concepts needed to solve this mathematical problem can be found in chapter 4. 

 

 

 

 

4. The Mathematical Concepts  

This study uses many mathematical concepts based on the assumptions to validate and to sustain the 

Markov chain models. One frequently used concept is that of the convolution of two independent random 

integer variables. Independency between groups, allows applying this concept to find the probability 

distribution of the sum of integer variables. The expected number of cars (𝐿𝑡), at time t is computed with 

the next formula: E(𝐿𝑡)= ∑ 𝑥𝑖
(𝑡)

𝑖𝑡
𝑘
𝑖=0 , where i is the state or the number of cars in the parking place at time 

t and 𝑥𝑖
(𝑡)

  is the probability of being in that state at that time t. 

 

In this research the average often used as a good estimator for the expected value. This concept conveys 

the idea that the formula to estimate the mean of numbers is “pure” (E(𝑋̅)=u), efficient (var(𝑋̅) is minimal) 

and consistent (as 𝑛 → ∞ , 𝑣𝑎𝑟(𝑋̅) =  
𝜎2

𝑛
→ 0) (Bolle et. al., 1974, p28-30). In this report the average of the 

data will be aggregated by day and time. Moreover, the law of the large numbers can be applied in this data 

set because of its robustness. This law implies that as the number of observations grows, the influence of a 

single observation becomes smaller and smaller. Hence, the influence of outliers decreases, and the average 

of the observations do give a relatively good picture of the expected value of the corresponding population. 

See the appendix 2 for some more details regarding the convolution and the strong law of the large number. 

 

The discussion in this section focuses mainly on the Markov chain formulas that are used to predict the 

distribution of the states at time t. This section starts with a discussion of the Markov chain prediction 

models. It addresses concepts for the first and the higher order Markov chain prediction models and 

concepts needed for the construction of different types of transition probability matrices.  

 

The mathematical concepts quoted in this section regard a one-dimensional homogeneous Markov chains 

and will therefore be applied in the remainder of the study on parts of the Markov chain where homogeneity 

is assumed. If an application of a mathematical concept regards the aspect of the non-homogeneity of the 

chain, it will be mentioned explicitly.  

 

 

4.1 The First Order Markov Chain Prediction Model 
The simplest homogeneous Markov chain prediction model is the first order model. This model assumes 

dependency on one historical point. The Markov property of the discrete-time Markov chain, that the 

conditional distribution of 𝑋𝑛 given on the states of the past depends on these past states only through the 

state at the end of time n satisfies the following relationship:  

 

𝑃(𝑋𝑛 = 𝑖𝑛| 𝑋𝑛−1 = 𝑖𝑛−1 , 𝑋𝑛−2 = 𝑖𝑛−2 , . . . , 𝑋0 = 𝑖0 ) = 𝑃(𝑋𝑛 = 𝑖𝑛| 𝑋𝑛−1 = 𝑖𝑛−1)  (4.1.1) 

 

where Xn and 𝑖𝑛  both refer to the state of the Markov chain at time n (Ross, 2010, p192).  
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This relation determines the one-step transition probabilities of the Markov chain from time (t-1) to time t 

and can be written as 𝑝𝑖𝑗 = 𝑃(𝑋𝑛 = 𝑖| 𝑋𝑛−1 = 𝑗) for i and j in E (E is the set of states). Where 𝑝 𝑖𝑗 is the 

transition probability of going from state i to state j in one step or one minute. All these transition 

probabilities are stored in the transition probability matrix, 𝑃 . More over 0≤ 𝑝 𝑖𝑗≤1 ∀i, j ∈ E and 

∑ 𝑝𝑖𝑗 = 1, ∀ 𝑗 ∈ 𝐸𝑁
𝑖=1 , N represents the last state in set E. 

 

At this point a new matrix is introduced: 𝑃𝑛  containing all the transition probabilities of the processes 

going from state i to state j in n additional transitions. This matrix can be computed from the data but also 

estimated as the nth power of the one step probability matrix, 𝑃𝑛 , in homogeneous parts of the Markov 

chain. The entries of this matrix, 𝑝𝑖𝑗
𝑛 , do represent the transition probability of transferring from state i to 

state j in n steps. The probability that, starting in i, the process will go to state j in (n+m) transitions through 

a path which takes it into state k at the 𝑛𝑡ℎ transition is represented in the following Chapman-Kolmogorov 

equations (Ross et, 2010, p 195). 

 

 

𝑝𝑖𝑗
𝑛+𝑚 = ∑ 𝑝𝑖𝑘

𝑛 𝑝𝑘𝑗
𝑚  , ∀ 𝑛,𝑚 ≥ 0, ∀𝑖, 𝑗𝑘∈𝐸  ∈ 𝐸   (4.1.2) 

 

Applying Chapman-Kolmogorov equation in the prediction model allows a prediction model that uses the 

probability vector at time n, to predict the probability vector after m steps as follows:  

 

𝑥
(𝑛+𝑚)

= 𝑥
(𝑛)

𝑃1
(𝑚)

      (4.1.3) 

 

 

For predictions after a minute the most basic form of this Markov chain prediction model reads: 

 

𝑥
(𝑛+1)

= 𝑥
(𝑛)

𝑃1       (4.1.4) 

 

where 𝑥
(𝑛)

= (𝑥1
(𝑛)

, 𝑥2
(𝑛)

, . . . , 𝑥𝑗
(𝑛)

, . . . , 𝑥𝑘
(𝑛)

)  represents the distribution of the states at time n or the 

probability that the process will be in each one of the k states at time n.  

 

 

For the non-homogeneous Markov chains the probability matrix is in fact estimated for time t, on day d, 

the by using the data from, 𝒥𝑡 , the time interval associated with the actual time (See section 3.2 for definition 

𝒥𝑡). Taking the non-homogeneity of the chain into account doing prediction with the first order model at 

time n for time (n+m) yields: 

 

1) The probability that, starting in i, the process will go to state j in (n+m) transitions through a path which 

takes it into state k at the 𝑛𝑡ℎ transition is for represented in the following Chapman-Kolmogorov 

equations 

 

𝑝𝒥𝑡,𝑖𝑗
𝑛+𝑚 = ∑ 𝑝𝒥𝑡,𝑖𝑘

𝑛  𝑝𝒥𝑡,𝑘𝑗
𝑚  , ∀ 𝑛,𝑚 ≥ 0, ∀𝑖, 𝑗𝑘∈𝐸  ∈ 𝐸 , t∈ 𝒥𝑡, …  (4.1.5) 

 

2) The predicted distribution after m minutes starting at time n, on day d, equals: 

 

𝑥
(𝑛+𝑚)

=𝑥
(𝑛) ∏ 𝑃𝒥𝑡

𝑚−1
𝑡=𝑛     (4.1.6) 

 

 



26 

 

3) For m=1 the basic first order prediction model yields: 

 

𝑥
(𝑛+1)

= 𝑥
(𝑛)

 𝑃𝒥𝑛
    (4.1.7) 

 

4.2 Higher Order Model with a Combo of States 
This higher order model with a combo of states is in fact a special application of the first order Markov 

chain prediction model. This model is applied on homogeneous Markov chains and considers k historical 

points as one state. For simplicity k is set to three in this section, such that a combo (combination of states) 

consists of three consecutive historical time points. In the remainder of this report these combos will be 

referred to as triples. Under the Markovian property mentioned in t statement (4.1.1) a one-step transition 

probability of being in state i at time n-1 and going to state j at time n is defined as: 

 

𝑝𝑖𝑗 = 𝑃{(𝑋𝑛−2, 𝑋𝑛−1, 𝑋𝑛 ) = (𝑘, 𝑖, 𝑗)| (𝑋𝑛−3, 𝑋𝑛−2 , 𝑋𝑛−1) = (𝑚, 𝑘, 𝑖)}    (4.2.1) 

 

The probabilities are derived from the probability distribution list retrieved from the number of all possible 

events in the associated part of the chain where homogeneity is assumed. The probabilities of all transfers 

starting with (a, b, c) do sum up to one.  (𝑋𝑛−3 = 𝑎,  𝑋𝑛−2 = 𝑏 ,  𝑋𝑛−1 = 𝑐). To reflect the last state as 

transient state an extra transfer is added to the probability distribution list of the transition probabilities. 

This extra transfer connects the last event to the last event in the homogeneous part of the chain. 

 

In this context 𝑝𝑖𝑗
(𝑛+𝑤)

 denotes the probability of going from state i at time n to state j in w minutes. Starting 

at time n the predicted probability distribution at time (n+w) would be  ∀𝑖, 𝑗 ∈ 𝐸, 𝑛, 𝑤 ≥ 0 

 

𝑝𝑖𝑗
(𝑛+𝑤)

= ∑ (𝑝𝑖𝑛𝑗𝑛+1
∗ 𝑝𝑖𝑛+1𝑗𝑛+2

∗. . . . .∗ 𝑝𝑖𝑛+𝑤−1𝑗𝑛+𝑤
),𝑗      (4.2.2) 

 

where 𝑖𝑛 single state at the 𝑛𝑡ℎ minute. Hence the input for this model is the actual number of cars at three 

consecutive time points, 𝑋𝑛−1, 𝑋𝑛−2, 𝑋𝑛−3 and the transition probabilities in its associated homogenous 

interval. 

 

The expected value for the number of short-term parkers at time n,  is computed using the value of all 

possible events at time n within the triples and their transition probabilities such that: 

𝑋𝑛 ≈ E(𝑋𝑛) = ∑ 𝑗 ∗ 𝑝𝑖𝑗
(𝑛)𝑁

𝑗 , where 𝑝𝑖𝑗
(𝑛)

 as defined in statement (4.2.2).  

 

 

4.3 Higher Order Model for Markov Chains Chin et al 
This section starts with a discussion of the higher order Markov chain prediction model a proposed by Chin 

et. al.. This prediction model assumes that the next state depends on k, a fixed number of consecutive 

historical time points. Here k is strictly less than the chain length. This model could be interpreted as a 

special type of the higher order model with a combo of states. While the higher order model with a combo 

of states links the states by using a joint distribution of the combo of states, the higher order model as 

proposed by Chin, links the k consecutive states through their distinctive associated probability distribution. 

For a homogenous Markov chain, the following relationship is satisfied:  

 

𝑃(𝑋𝑛 = 𝑖𝑛| 𝑋𝑛−1 = 𝑖𝑛−1 , 𝑋𝑛−2 = 𝑖𝑛−2 , . . . , 𝑋0 = 𝑖0 )=𝑃(𝑋𝑛 = 𝑖𝑛| 𝑋𝑛−1 = 𝑖𝑛−1 ,𝑋𝑛−2 = 𝑖𝑛−2 ,. . … . . . , 𝑋𝑛−𝑘 = 𝑖𝑛−𝑘 ) (4.3.1) 

 

This relation implies that the basic property of Markov chains is extended to the idea that the conditional 

distribution of the states of the Markov chain given on the states of the past depends on these past states 
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only through the last k states at the end of time n. The 𝑘𝑡ℎ-order model for Markov chains assumes that the 

next state depends on the distribution of the previous k states at times n-1, n-2, . . . n-k and k=1, 2, . . , n-1 

(Ching et al, 2008). 

 

Assuming dependency on the last k states the distribution on time n could be modeled as a linear 

combination of the estimated distribution of the series at time n-1, n-2, . . . , n-k.  

 

𝑥
(𝑛)

= ∑ 𝜆𝑖   
𝑘
𝑖=1 𝑃𝑖 𝑥 

(𝑛−𝑖) ,     (4.3.2) 

 

where: 

𝑥
(𝑛)

 is the probability distribution of the states at time n 

 𝜆𝑖  are real numbers for the parameters of the model in (4.3.2), such that ∑ 𝜆𝑖  
𝑛
𝑖=1 = 1 and 𝜆𝑖  

≥ 0, ∀𝑖 

𝑃𝑖  is the i-step transition probability matrix  

 

To find the best possible set of parameters for the prediction model in (4.3.2) the stationary distribution for 

homogeneous part of the Markov chain which will be used. The following theorems and proposition 

validate the existence of a stationary distribution. 

 

 

 

 

Theorem 2 The Perron-Frobenious theorem (Smethana, 2018, page 54) 

Let 𝑅 = (𝑟𝑖𝑗) be an element wise non-negative (𝑟𝑖𝑗 ≥ 0) irreducible N x N matrix. Then: 

(1) R has a positive eigenvalue φ which equals the spectral radius of R (φ=𝜌(𝑅)) 

(2) The eigenvector 𝑤, corresponding to φ, can be chosen element wise strictly positive. 

 

As the probabilities in the rows of the n-step transition probability 𝑅𝑛 matrices do sum up to one, the first 

part of the theorem shows that there exist an eigenvalue φ equal to one such that the equation 𝑅𝑛
𝑇𝑤⃗⃗ = 𝑤⃗⃗   is 

solvable. The second part implies that the solution is in fact an eigenvector with non-negative entries. The 

next proposition deduced from the Perron-frobenius theorem shows that the eigenvector as mentioned in 

part 2 of the theorem is in fact the stationary distribution of the irreducible matrix R (∑ 𝜆𝑖   
𝑛
𝑖=1 𝑃𝑖 ). 

 

 

 

Proposition 1 (Ching et al, 2006b, page 114) 

If 𝑃𝑘  is irreducible and 𝜆𝑘 > 0 such that 0 ≤ 𝜆𝑖 ≤ 1 and ∑ 𝜆𝑖   
𝑘
𝑖=1 = 1, then the model in (4.3.2) has a 

stationary distribution 𝒙̅  𝑤ℎ𝑒𝑛 𝑛 → ∞ independent of the initial state vectors 𝑥
(0)

, 𝑥
(1)

, … . , 𝑥
(𝑘−1)

. The 

stationary distribution is also the unique solution of the following linear system of equations: 

(𝙸 − ∑ 𝜆𝑖   
𝑛
𝑖=1 𝑃𝑖 )𝒙̅ = 0 𝑎𝑛𝑑 𝟏𝑻𝒙̅ = 1. Where 𝙸 is the m x m identity matrix and 𝟏  is an m x 1 vector 

of ones. 

 

The vector, 𝑥̅ = (𝑥1, 𝑥2, . . . , 𝑥𝑗 , . . . , 𝑥𝑁) , represents the limiting distribution or the long run proportion of 

time that the process will be in each state. The time independent vector 𝑥  is also called the steady-state 

(stationary) probability vector. An arbitrary entry 𝑥𝑗 represents the stationary probability that the system 

will be in state j. In this research the stationary distribution of an irreducible matrix is found with the power 

iteration of Von Mises (Smetana, 2018, section 5.2 p.33).  
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If the stationary distribution is computed in a proper way with limited data it could be estimated with 

𝒙̂ . Hence, it is expected that: 𝒙̂ ≈ ∑ 𝜆𝑖   
𝑘
𝑖=1 𝑃𝑖 𝒙̂. The best model has a minimal error.  

 

Error=∑ 𝜆𝑖   
𝑘
𝑖=1 𝑃𝑖 𝒙̂ − 𝒙̂     (4.3.3) 

 

To find an optimal model one should minimize |∑ 𝜆𝑖   
𝑘
𝑖=1 𝑃𝑖 𝒙̂ − 𝒙̂|, the norm of the error. Using the 

infinity norm would imply minimizing the maximum absolute entry. If the error with the maximum absolute 

entry is the l-th entry the objective function of the optimization problem would be:  

 

min
(𝜆1 ,𝜆2 ,…,𝜆𝑘 )

max
𝑙

|[∑ 𝜆𝑖   
𝑘
𝑖=1 𝑃𝑖 𝒙̂ − 𝒙̂]

𝑙
| . 

 

This non-linear optimization problem can be transformed into a linear optimization problem. Suppose, 

∃ 𝜔 ≥ 0, , such that | ∑ 𝜆𝑖   
𝑘
𝑖=1 𝑃𝑖 𝒙̂ − 𝒙|̂ = 𝜔. Then the optimization problem is transformed into 

minimization of 𝜔 such that | ∑ 𝜆𝑖   
𝑘
𝑖=1 𝑃𝑖 𝒙̂ − 𝒙|̂ ≤ 𝜔 or -𝜔 ≤ ∑ 𝜆𝑖   

𝑘
𝑖=1 𝑃𝑖 𝒙̂ − 𝒙̂ ≤ 𝜔.  

 

The linear optimization problem equals: 

min
(𝜆1 ,𝜆2 ,…,𝜆𝑘 ,𝜔)

𝜔 

 

Subject to 

∑−𝜆𝑖   

𝑘

𝑖=1

𝑃𝑖 𝒙̂ − 𝜔 ≤ −𝒙̂  

∑𝜆𝑖   

𝑘

𝑖=1

𝑃𝑖 𝒙̂ − 𝜔 ≤ 𝒙̂  

𝜔 ≥ 0,∑𝜆𝑖   

𝑘

𝑖=1

= 1, 𝜆𝑖  ≥ 0 ∀𝑖 

 

 

(Chin et. Al., 2006, Page 117-119, Liu Tie, 2010, p164). 

 

If the optimization problem could not be solved, it will be assumed that all parameters do have the same 

value. The higher order model can be seen as an extended version of the first order model. It takes more 

historical time points into account. The distribution is predicted as a linear combination of the distributions 

of a fixed number of historical time points.  

 

The input of this model is the set of distribution vectors that can be associated with the previous k historical 

points of the process, (𝑥
(𝑛−1)

, 𝑥 
(𝑛−2) , . . . . 𝑥 

(𝑛−𝑘)), together with the set of n-step transition probability 

matrices 𝑃1 , 𝑃2 , … . . , 𝑃𝑘  . Using the optimal parameters associated with each one of the historical 

distributions (𝜆1 , 𝜆2 , … . , . 𝜆𝑘 ), can help one to find a predicted distribution on time n, 𝑥
(𝑛)

, that is closest 

to the stationary distribution. 

 

 

 

https://www.researchgate.net/scientific-contributions/2013734565_Liu_Tie?_sg=Jb_2ZJsdqa3-e9ZusX32QtTWQFYBzYM3Dc5cCvueuTW0yDRvGZSd-7Ql40o1P437EXnqfDE.4Ga4of0DrBocGRFOWrbrXOxti2O3cQWEayMF5lo5zaYgWJJm-Bs0kPX2BuM2aKbU2s6AGju8Evv_LvpcvOBDjg


29 

 

4.4 Construction of the Transition Probability Matrix P 
 

The data related to time interval 𝒥𝑡 as introduced in the last part of section 3.3 will be used to find the 

transition probability matrix on time t; this includes not only taking the actual time into account but also 

the day d. Focusing on the concept of the expression ‘transition probability’ restricts the study to finding 

the probabilities of the net change from state i to state j in one minute. The aim is now to find the probability 

that in fact k cars are added to the current number of cars. Hereto the probability distribution of the net 

number of cars that are added to the system each minute is computed. The probabilities of this distribution 

are used to construct the transition probability matrix which is finally normed such that each row sum equals 

one. If the net added number of cars is k is positive it regards and increase of k cars and for k is negative it 

is of course a decrease of cars. Probabilities linked to an increase of k cars are placed on all the entries of 

the 𝑘𝑡ℎ super diagonal; if k<0 it would count for the 𝑘𝑡ℎ sub diagonal. The matrix is normalized such that 

the row sums are one. This implies of course that the transition probability matrix equals the identity matrix 

if there is no increase or decrease in cars. 

 

The idea to construct the transition probability matrix this way comes from the assumption that the Markov 

chain is irreducible. If all transition probabilities that could not be computed from the raw data are replaced 

by zeros, the result might be a reducible transition probability matrix. Working with such a matrix would 

imply excluding realistic situations that might occur in real life. So, we simply rely on the fact that the 

transition behavior as expressed by an irreducible transition probability matrix at PARK200 is assumed to 

represent that of PARK1000. 

 

As the Markov chain is two-dimensional, transition probability matrices are needed for each one of these 

dimensions of the chain. In the remainder of this section it is explained how to construct the transition 

probability matrix for the short-term parkers given the assumption of independency of both groups. The 

same procedure should be followed if one would like to find the transition probability matrix for the long-

term parkers. 

 

4.4.1 The One Step Transition Probabilities Based on the Arrival-Departure Process 
The net change in the number short-term parkers results from the arrival-departure process. Therefore, this 

study will also consider whether it is wise to estimate the probability distribution of the net added number 

of short-term parkers each minute, with this arrival-departure process.  

 

Suppose the random variable 𝐴𝑡 is the arrival rate and 𝐷𝑡 the departure rate of this group on time t. Both 

variables are non-negative and independent. More over 𝐴𝑡 is Poisson distributed with distribution of the 

rate 𝜆𝑡 and 𝐷𝑡 is binomially distributed with n(t), the number of short-term parkers at time t and p(t), the 

fraction of departures in this group at time t. The formula used to compute this fraction of departures is 

 

p(t)=
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑒𝑝𝑎𝑟𝑡𝑢𝑟𝑒𝑑 𝑠ℎ𝑜𝑟𝑡 𝑡𝑒𝑟𝑚 𝑝𝑎𝑟𝑘𝑒𝑟𝑠 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠ℎ𝑜𝑟𝑡 𝑡𝑒𝑟𝑚 𝑝𝑎𝑟𝑘𝑒𝑟𝑠 𝑐𝑎𝑟𝑠 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡
.   (4.4.1a) 

 

Suppose random variable 𝑍𝑡 represents the net number of added short-term parkers to the system at time t 

on PARK200. The net number of added short-term parkers, 𝑍𝑡 is then defined as 𝐴𝑡 - 𝐷𝑡. The distribution 

of 𝑍𝑡  could be derived as follows:  

 

𝑃(𝑍𝑡 = 𝑧) = 𝑃(𝐴𝑡  − 𝐷𝑡 = 𝑧)=𝑃(𝐴𝑡 = 𝐷𝑡 + 𝑧)=∑ ∑ 𝑃(𝑑+𝑧
𝑎=0

∞
𝑑=0 𝐴𝑡 = a,𝐷𝑡 = 𝑑), 

 

because of independency of the arrival-departure process, this probability equals  

 

∑ ∑ 𝑃(𝑑+𝑧
𝑎=0

∞
𝑑=0 𝐴𝑡 = a)P( 𝐷𝑡 = 𝑑) =  ∑ 𝑃(∞

𝑑=0 𝐴𝑡 = d + z)P( 𝐷𝑡 = 𝑑). 
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As both 𝐴𝑡 and 𝐷𝑡, non-negative two case can be discerned for 𝐴𝑡 = d + z:  

(1) If 𝐴𝑡 ≥ 𝐷𝑡, then as z=𝐴𝑡  −  𝐷𝑡 this implies z ≥ 0.   
(2) For 𝐴𝑡 ≤ 𝐷𝑡, then z≤ 0. As z= 𝐴𝑡 − 𝐷𝑡 and 𝐴𝑡 − 𝐷𝑡 ≤ 0, it can be concluded that z≤ 0. Since both 

𝐴𝑡 ≥ 0 or 𝐷𝑡 ≥ 0,  d, the number of departures runs from –z to infinity. 

 

 

𝑃(𝑍𝑡 = 𝑧)={
 ∑ 𝑃(𝐴𝑡 = 𝑧 + 𝑑,𝐷𝑡 = 𝑑), 𝑖𝑓 𝑧 ≥ 0∞

𝑑=0

∑ 𝑃(𝐴𝑡 = 𝑧 + 𝑑,𝐷𝑡 = 𝑑) , 𝑖𝑓 𝑧 < 0∞
𝑑=−𝑧

 ,     (4.4.1b) 

 

as 𝐴𝑡 and 𝐷𝑡 are independent: 

 

𝑃(𝑍𝑡 = 𝑧)={
∑ 𝑃(𝐴𝑡 = 𝑧 + 𝑑) 𝑃(𝐷𝑡 = 𝑑) , 𝑖𝑓 𝑧 ≥ 0∞

𝑑=0

∑ 𝑃(𝐴𝑡 = 𝑧 + 𝑑) 𝑃(𝐷𝑡 = 𝑑) , 𝑖𝑓 𝑧 < 0∞
𝑑=−𝑧

 

 

In this way the transition probabilities 𝑃(𝑍𝑡 = 𝑘) can be found for having i cars at time t at the parking 

place and i+k cars at time t+1.  

 

If the information from PARK200 should be used in the non-homogeneous Markov chain to estimate for 

time t, the transition probability matrix on PARK1000 for the short-term parkers, the parameters of the 

underlying arrival and departure process in 𝒥𝑡 should be adjusted. Suppose that for PARK1000 the random 

variable 𝐿𝑡 is the arrival distribution of the rate of the short-term parkers and 𝑀𝑡 the departure distribution 

of the rate of the same group on time t. Then the random variable 𝐾𝑡 = (𝐿𝑡 - 𝑀𝑡) represents the net number 

of short-term parkers added to the system at time t on PARK1000.  

 

As it is assumed that PARK200 represents PARK1000, it’s arrival rate in every unit is also representative 

for the whole parking place. Consider units that equal PARK200 in size. Suppose 𝐿1, 𝐿2, 𝐿3, 𝐿4 and 𝐿5 

represent the number of arrivals in five disjoint at random chosen equally sized parts of PARK1000. Then 

these five arrival rates, each connected to a unit, are all Poisson distributed at time t with the same parameter 

𝜆𝑡 (Ross, 2010, p313). 

 

Lemma 1:  

Given s independent Poisson random variables, 𝑋𝑖 ~𝑃𝑜𝑖𝑠(𝛼𝑖) for i =1, 2, ., s, and Z=∑ 𝑋𝑖
𝑠
𝑖=1 , then random 

variable Z is Poisson distributed, 𝑍 ~𝑃𝑜𝑖𝑠(∑ 𝛼𝑖
𝑠
𝑖=1 ).  

 

The sum of s independent Poisson random variables is also Poisson distributed with parameter equal to the 

sum of the s associated means (See for more details appendix 3). As the arrival rates on time t, in the five 

independent equally sized units of the parking place all equal 𝜆𝑡, the number of arrivals in the group of 

short-term parkers on time t at PARK1000, 𝐿𝑡 , is Poisson distributed with parameter ∑ 𝜆𝑡
5
𝑖=1 =5𝜆𝑡. The 

number of departures among the short-term parkers, 𝑀𝑡, is binomially distributed with n(t), the number of 

short-term parkers on PARK1000 at time t and p(t), the fraction of departures at time t. The fraction of 

departures on PARK200 at time t equals p(t), is a good estimator for the fraction of departures at time t on 

the whole parking place. The number of short-term parkers at time t should be estimated for the whole 

parking place using its probability mass function. To find the probabilities needed for that probability mass 

function the law of total probabilities is applied.  

 

P(𝑁𝑠(t) =i)= ∑ P(𝑁𝑠(𝑡)  = 𝑖|𝑁(𝑡)  = 𝑗)P(𝑁(𝑡)  = 𝑗)1000
𝑗=0 ,  (4.4.1c) 

 

where i=0,1, . . . , 1000 and j= 0, 1, . . . , 1000 respectively the number of short-term parkers and the number 

of parked cars at time t. The number of short-term parkers, 𝑁𝑠(t), is binomially distributed with the actual 
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number of cars and the fraction of short-term parkers at time t. With the probabilities gained from statement 

(4.3.1b) the number of short-term parkers, n(t), is estimated at time t at the whole parking place. Using 

these parameters and statement (4.3.1a) the transition probability matrix can be constructed for the whole 

parking place of 1000 spaces. 
 

4.4.2 The One Step Transition Probabilities Based on the Net Added Number of Cars 
Suppose N(t) is the number of cars on time t, and Z(t) equals the net added number of cars at time t, then 

Z(t)=N(t)-N(t-1). To find the transition probability, 𝑝𝑖𝑗, for having i cars in the parking place and in the next 

step j, implies an increase of k=j-i cars to the parking place. Hence the differenced series of the number of 

cars is used as starting point in this approach.  

 

The probability of adding or subtracting a net number of k cars on PARK200 can be deduced from the 

density of the differenced series. Hereto, the smoothed version of the kernel distribution is used with all 

possibilities of the net added numbers per minute ranging from -200 till 200 cars. (Analogue PARK1000). 

If the values needed to find the probability distribution are very small and concentrated around zero, it is 

possible that the probability distribution turns out to be a zero vector. In that case the transition probability 

matrix equals the identity matrix, implying that the net added number of cars in the group of the short-term 

parkers is zeros in 𝒥𝑡 .  
 

4.4.3 Transition Probabilities for the Higher Order Model with Triples  
The transition probability matrix for the higher order model with a triple consists of the probabilities of 

going from one triple to another in one step. For the 201 different single states on PARK200 it would imply 

considering transfers for 2013 possible triples. The dimension of a transition probability matrix that takes 

all possibilities into account equals 8120601 x 8120601. The whole time series uses 357 of these transfers. 

One could still argue that restricting the process to these known transfers, could lead to a transition 

probability matrix with dangling states or at least two or more classes. Hence it would be good to use the 

idea to allow the system to choose at random for a next state that never occurred yet. With probability 𝜃 the 

“regular” events do happen and with probability (1-𝜃), the rare events do happen. The transition 

probabilities could be found with a matrix D as follows: 

 

D=𝜃𝑃+(1-𝜃)𝑆, where 𝜃 ∈ [0,1] 
 

The factor 𝜃 tells the prediction algorithm with what fraction it should choose for P. P is the matrix that 

contains the transition probabilities of the transfers that once occurred and deduced from the probability 

distribution of the transfers; all other transition probabilities are set to zero. Matrix S contains the transition 

probabilities from all possible transfers at PARK200. In fact, each triple can transfer to 201 different states. 

The non-zero entries in matrix S are (1-𝜃) ∗ 1/201. For 𝜃=0.85, that equals 7.4627e-04 (Smetana, 2018, 

p54).  

 

4.4.4 The n-step transition probability matrix 

As mentioned earlier in homogeneous Markov chains the n-step transition probability matrix 𝑃𝑛  could be 

computed from the data but also estimated theoretically as the nth power of the one step probability matrix, 

𝑃1
𝑛. Theoretical estimations for the n-steps transition probability matrix are not useful for the optimization 

of higher order models. Working with the theoretical approach of the n- step transition matrix would result 

in a polynomial model due to the distribution property of matrices. With the n-steps transition probability 

matrices the predicted distribution would be expressed as  

 

𝜆1 𝑃1 𝑥 
(𝑛−1)+𝜆2 𝑃2 𝑥 

(𝑛−2) + 𝜆3 𝑃3 𝑥 
(𝑛−3)+ . . . . . . . . . +𝜆𝑘 𝑃𝑘 𝑥 

(𝑛−𝑘). 
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If the Kolmogorov equation holds this linear relation would be: 

 

𝜆1 𝑃1 𝑥 
(𝑛−1)+𝜆2 𝑃1

2𝑥 
(𝑛−2) + 𝜆3 𝑃1

3𝑥 
(𝑛−3)+ . . . . . . . . . +𝜆𝑘 𝑃1

𝑘𝑥 
(𝑛−𝑘), 

 

implying that every term depends on the one-step transition probability matrix. Optimization of the latter 

will always be with respect to the one-step transitions such that the direct influence of the n-step transitions 

is might be neglected. 

 

Homogeneity is assumed in an interval, but to find the right interval where homogeneity really counts is 

not always clear. Therefore, the n-step transition probability matrix will be computed with the differenced 

series of the net added number of cars after n-steps. This implies that the n-step transition probability matrix 

can be found by applying the reasoning in section 4.4.2 on lag n such that the differenced series equals 

Z(t)=N(t)-N(t-n). 
 

 

 

 

 

5. Application of Markov chain prediction models  

Markov chain models do lack accuracy in predicting temporal data. Therefore, this section provides an 

algorithm that take the existence of two dimension in the group of parkers and the temporal evolution of 

the number of parkers into account. It combines Markov chain prediction models together with 

mathematical techniques in order to solve the mathematical problem as described in section 3.4. In making 

predictions, the algorithm assumes that the part of the Markov chain in 𝒥𝑡 is homogeneous and that therefore 

the transitions for that part of the chain can be used to estimate the transition probability matrix at time t. 

After introducing the algorithm in the first part of this section, the second part explains how and when 

Markov chain prediction model will be used in the algorithm. In doing this it also shows what mathematical 

techniques will be used to improve the results of Markov chain prediction models. The discussion ends with 

explaining how the prediction results will be evaluated.  

 

5.1 The algorithm 
The algorithm aims to predict the number of cars on PARK1000, the complete parking place, at time n 

using the number of both groups at time (n-s) with the “known” data from PARK200, a set of 200 parking 

spaces equipped with sensors on the parking space. Hence, it is tried first to train the data from PARK200 

and to find a model that works “good” on PARK200. This model is then tested with the data from 

PARK1000.  

 

To achieve that goal a basic model is applied iteratively. The main idea of this basic model is to predict the 

number of cars on PARK1000 for time n starting at current time n-1: 

1) Compute the probability distribution vector for both dimensions or groups separately using a Markov 

chain prediction model. 

2) Compute the distribution of the number of cars using the modified convolution.  

3) Calculate the expected number of cars and the ranges for the prediction interval. 

 

Predictions starting from time n-1 till time n+s, s>1, are done iteratively with the basic model. 
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Schematically the algorithm consisting of three blocks reads: 

I. Given the initials at time n-1: 

𝒥𝑛−1 = time interval that isolates a part of the Markov chain that will be used to estimate the transition 

probability matrix at the actual time 

k = the number of historical time points that are involved in the model, k=1, 2, ……, length (𝒥𝑛−1) 

 

II. Determine for each group (dimension) at time n-1: 

• the initial distributions at each historical time point. 

• the n-steps transition probability matrix for the homogeneous part of the chain in 𝒥𝑛−1 

• the optimal Markov chain prediction model 

 

III. Compute for time n 

• the predicted distribution for each group separately  

• the probability distribution for the number of cars with the convolution concept  

• the for random noise corrected predicted distribution by using a convex combination 

 

 

Technically the whole algorithm reads:  

Given the time dependent stochastic processes of the short- and long-term parkers at time t, on day d, X(t) 

and Y(t), where t=0,1,2,…..(n-1), then the probability distribution of the sum process for the next minute 

𝑢
(𝑛)

equals a for noise corrected modified convolution of the predicted distributions of each one of the basic 

processes.  

 

The modified distribution 𝑢𝑚𝑜𝑑𝑖𝑓𝑖𝑒𝑑
(𝑛)

, follows from the convolution, indicated in this report as *, 

 

𝑢
(𝑛)

= ∑ (𝜆𝑗   𝑥
(𝑛−𝑗)𝑘

𝑗=1 𝑃𝑗,𝒥(𝑛−𝑗)
 ∗   ∑ 𝜃𝑗

𝑘
𝑗=1 𝑦

(𝑛−𝑗)
𝑄𝑗,𝒥(𝑛−𝑗)

 ,   (5.1.1) 

 

and is corrected for random noise by using a convex combination of the predicted and a next distribution 

function 𝑣
(𝑛)

: 

 

 𝑤
(𝑛)

=𝛽𝑢𝑚𝑜𝑑𝑖𝑓𝑖𝑒𝑑
(𝑛)

+ (1 − 𝛽)𝑣
(𝑛)

,     (5.1.2) 

 

where 𝑣
(𝑛)

 represents the probability distribution on time n for the average rate on PARK1000 aggregated 

by time and day, 𝛽 ∈ [0.1]. 𝑤
(𝑛)

, 𝑢𝑚𝑜𝑑𝑖𝑓𝑖𝑒𝑑
(𝑛)

, 𝑣
(𝑛)

 ∈ ℝ1001. In the remainder of this report that next 

distribution, 𝑣
(𝑛)

 will be referred to as a corrector.  

 

For the first order model statement (5.1.1) is simplified to: 𝑢
(𝑛)

= 𝑥
(𝑛)

∗ 𝑦
(𝑛)

 

, where 𝑥
(𝑛)

= 𝑥
(𝑛−1)

𝑃1,𝒥(𝑛−1)
 and 𝑦

(𝑛−1)
= 𝑦

(𝑛−1)
𝑄1,𝒥(𝑛−1)

. 

 

 

 5.2 Discussion of the Prediction Algorithm 
The first part of this section discusses the three blocks of the algorithm in the light of the Markov chain 

prediction model that is used to do the actual predictions for each dimension. Higher order models with 

combo states are very laborious, due to the large state space, and will be approximated by the higher order 
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model as proposed by Chin (section 4.3). The second part of this section considers two ways the algorithm 

is applied in this research. 

 

5.2.1 The Three Blocks of the algorithm 
Generally, predictions will be done from scan moment to scan moment. Given the current date and time, a 

time interval is determined such that a part of the non-homogenous Markov chain is “declared” 

homogeneous. As mentioned in section 3.2 three types of intervals are explored in this research: 1) eight 

parts or intervals for each day, 2) disjoint consecutive parts of h minutes each day and 3) a moving interval 

of h minutes each day. In the first order model one historical point is considered and in the higher order 

models more than one. As it is assumed that time interval 𝒥𝑡 is needed to find 𝑃𝒥𝑡
, the number of historical 

timepoint, k, should be chosen such that the last historical point still lies in that time interval. The heuristic 

that is used to determine the number of historical points is: There are at least k points needed to express a 

“polynomial” relation of degree (k-1). The degree of the polynomial relation can be seen from the form of 

the plot of the number of parkers in each group by time.  

 

In block two of the algorithm, the initial distribution(s), the transition probabilities and the optimal model 

are determined. The set of initial distribution for a model that takes k historical points into account, counts 

for each group of parkers k initial probability distribution vectors each one linked to one historical point. 

The initial distribution on PARK1000 is estimated by using the data associated with time t. (See section 

5.2.2 for more explanation on the choice of the initial distribution).  

 

The transition probabilities are found using the net added number of cars each minute. The parameters 

needed to find the distribution of this series should be estimated, except at the time point (t-1) that the 

prediction algorithm starts a run. As section 3.3 concluded the transition probabilities needed for time t, are 

estimated with data coming from, 𝒥𝑡 , a time interval containing time t. This includes that a user of the 

algorithm constantly must take the actual time and actual day into account while doing predictions. 

Estimation has to be done separately on each dimension of the Markov chain. The discussion will be linked 

to that of the short-term parkers. But it is fairly similar for long-term parkers.  

 

For finding the transition probability matrix the average of the net added number of short-term parkers is 

aggregated by time and day. For the matrix based on the arrival departure behavior of short-term parkers, 

an estimation is done for the arrival rate, and the parameters of the departure distribution for the short-term 

parkers. The arrival rate on time t, 𝜆𝑡, is estimated by 𝜆̂𝒥𝑡 
, the mean arrival rate for the time interval 𝒥𝑡 , 

such that the distribution of the arrival rate in that time interval (by expansion similar time intervals) by the 

assumption of homogeneity is Poisson distributed with parameter 𝜆̂𝒥𝑡 
. The distribution for the departure 

rate is binomially distributed on time interval, 𝒥𝑡 . The fraction of departure within the group of the short-

term parkers as given in (4.4.1a) is estimated by, 𝑝̂𝒥𝑡 
, the mean fraction of departures per minute on that 

time interval. Hereto the number of departed short-term parkers and the number of short-term parkers are 

each aggregated by day and by time, such that the fraction of departures per minute can be estimated at 

time t. 

 

 

The parameter for the first order model that uses one historical time point is trivial. The parameters for the 

higher order model as proposed by Chins are optimized as explained in section 4.3. It is believed that the 

stationary distribution represents the distribution of the states on the long run, such that it could be seen as 

a good estimator for the state distribution of the Markov chain. The algorithm of the power iteration is used 

to find the stationary distribution. As this algorithm uses a starting point at random to approximate the 

eigenvector with the largest eigenvalue one, it does not always find an eigenvector. In that case all the 

parameters are equal.  



35 

 

 

In the third block of the algorithm, distributions for the next minute are predicted separately for both 

dimensions of the Markov chain. For the first order model the basic prediction model is chosen. For the 

higher order model it is chosen to explore the higher order model as proposed by Chin et. al. In the higher 

order model with the triple of states the probability distribution for transferring from triple one at time t-1, 

to triple 2 at time t, is in fact a joint distribution from triple one and triple 2. The predicted distribution is 

the marginal distribution of triple 2. Due to the large space of transition That model uses the optimal linear 

combination of the distribution of the historical points in the combo to predict the next combo. 

 

 

 

If the algorithm uses the first order Markov chain model to do the actual predictions, it will be referred to 

as Markov2D and HomcChin2D if the algorithm uses higher order Markov chain prediction models to do 

the predictions each minute. The probability distribution for the total number of cars (both the short-and 

the long-term parkers together) is computed with the convolution concept. The convolution gives the 

probability for every possible sum of the number of short- and long-term parkers, but the maximum number 

of cars that can be parked is limited. It is not clear whether the cars that could not be parked when the 

parking place is full are really lost “customers”. That is why the probabilities on these events are included 

in the probability of the parking place being full. In this way the convolution is somewhat modified such 

that it can be used as probability distribution for the number of occupied parking spaces. 

 

The algorithm prescribes correcting the predicted distribution for noise every minute. Corrections are 

always done on PARK1000. The number of cars at PARK1000 are binomially distributed with N and p. 

The average fraction, a, of cars on PARK200 aggregated by day and time is a good estimator for the 

occupation rate on PARK1000. So, the probability distribution on time t, can be estimated using a binomial 

distribution with parameters N and a. The convex combination that gives an even weight to the predicted 

distribution and the distribution deduced from the average fraction of the cars on time t is used to rectify 

prediction “flaws”. In this study the default value for 𝛽 in statement (5.1.2) is 0.5. For 𝛽 = 1 , one would 

simply rely only on the predicted values as result, and 𝛽 = 0, would mean just working with the average 

what is probably a good estimator but not sensitive to future changes in parking behavior.  

 

Markov chains predict the expected value of the number of cars at the parking place. But as the data is 

coming from a time series the realization depends mainly on the time, displaying sudden changes in reality. 

For such changes it will be considered if it is better to use another estimator to determine corrector the 

distribution vector deduced from another estimator for the number of cars. Under the assumption that the 

third quartile, 𝐾3, is a good estimator for the number of cars, the distribution of the number of cars is 

binomially distributed with the number of parking places N, and fraction 
𝐾3,

𝑁
. The same reasoning can be 

followed for choosing to correct with another distribution, based on the 95th percentile.  

 

The input for the next iteration is the resulting for noise predicted distribution on time t.  

 

5.2.2 Two approaches for applying the algorithm 
In this research the number of cars at the parking place within each dimension can be predicted in two ways 

with the algorithm such that there are two distinct ways of applying this model: 1) M2D200.200_1000 and 

2) M2D200_1000.1000. The big difference is the way the set of initial distributions is chosen. This is 

explained for the group of short-term parkers. (Analogue for long-term parkers) 

 

In the first approach (M2D200.200_1000) the number of short- and long-term parkers on PARK200 (the 

first 200 spaces of PARK1000) is used to find the initial distribution for each group at PARK200. The 
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initial distribution vector for short-term parkers contains the probabilities of the process for being in that 

state at time n. Since the state is known, the probability of being in that state equals one. Hence, the initial 

distribution is a zero-row vector with a one at the entry representing the current state. In case the number 

of short-term parkers is known and equals j (j=0, 1, . . . , 200), entry number (j+1) of this vector is one and 

the other entries zero, 𝑥̅𝑗
(𝑛)

= ((0, 0, . . . , 0, 1, 0, . . . ,0)T ( Liu Tie, 2010, p163). 

 

This initial distribution of PARK200 consists of 201 entries and is used to predict the distribution of the 

number of short-term parkers at the next minute on PARK200 using a Markov chain prediction model. 

Each minute a prediction is made for each group separately, the convolution is computed and modified for 

PARK200. The expected predicted number of cars is computed and used to find the expected predicted 

fraction of cars on PARK200. This fraction is a good estimator for the fraction of cars on PARK1000 and 

therefore used to find the expected distribution of the number of cars on PARK1000. So, in this approach 

predictions are done for PARK200 and the predicted fraction or the expected rate on PARK200 is used to 

estimate the distribution of the occupation rate at PARK1000. 

 

 

M2D200.200_1000 

(1)  Predict: 

pdf_PARK200 

at time n 

 Estimate: 

pdf_PARK1000 

at time n 

  

Intial: 

pdf_PARK200 

at time n-1 

     Correct prediction error 

pdf_PARK1000 

at time n 

  Estimate: 

pdf_PARK1000 

at time n-1 

 Predict: 

 

pdf_PARK1000 

at time n 

  

M2D200_1000.1000 

 

 

 

 

The second approach (M2D200_1000.1000) estimates first the distribution of the occupation rate on 

PARK1000 at time t with data from PARK200, before doing any prediction. The average fraction of short-

term parkers aggregated by time and day, 𝑝(𝑡), is a good estimator for the fraction of the similar group at 

PARK1000. The number of short-term parkers on PARK1000 is binomially distributed with n(t), the 

number of parkers and p(t), the fraction of short-term parkers within the group of parked cars at time t. 

(n(t)=0, 1, 2, . . . , 1000). These parameters are used to estimate the initial distribution for short-term parkers 

at PARK1000 such that predictions can be made for this group on PARK1000. (Analogue the long-term 

parkers.) The number of cars at PARK1000 is computed with the convolution of the distributions of both 

groups. In this approach predictions for PARK1000 are done with the estimated initial distributions on 

PARK1000 for both groups separately. The number of cars is found by applying the convolution concept 

on the predicted distributions. 

 

For both approaches, the for noise corrected predicted distribution is used to find the initial distribution 

needed for the next iteration.  

 

Moreover, it was considered also whether these two approaches could be combined to one model. In the 

diagram below, it can be seen that predictions are done with the first approach, and predictions are done for 

PARK1000 with data from PARK1000 (data retrieved from the scan vehicles). A weighted distribution for 

(2) 
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both prediction results is used as input for the next prediction starting from PARK1000. While the 

predictions on PARK200 are proceeded without adjusting its result. 

 

 

 
 

 

 

5.3 Model evaluation 
The main standard for evaluation of the models in this research is the prediction accuracy in a prediction 

interval at significance level alpha (in this study 5%) (Liu Tie, 2010, p164). The prediction accuracy equals 

the percentage of real values that lie in the prediction interval. The prediction accuracy will be measured 

for predictions in the first s minutes and in the 𝑠𝑡ℎminute. A good model should also have a reasonable 

mean range for the prediction interval (See section 2.1) and a reasonable running time. It’s a posteriori error 

should display a random effect, as randomness is a main component of a time series. The aim is to filter out 

a model that excels also in the percentage of good predictions both in a time period of s minutes and in the 

𝑠𝑡ℎ minute. 

 

The 95% prediction interval concerns an interval for the for noise-corrected prediction rate on PARK1000 

as resulted from (5.1.2). The ranges of the prediction interval can be found empirically or theoretically. 

Once a predicted distribution is found “that is considered to be good”, it is known which probability belong 

to which state. By filtering for the states where the cumulated sum of probabilities is respectively less than 
α

2
,  and (1-

α

2
) the lower and the upper range of the prediction interval can be found. 

 

Theoretically, the ranges for the prediction interval of the distribution of the occupation rate are: 

 

𝑝̂ ± 𝑡1

2
𝛼,(𝑛−𝑘+1)

√
𝑝(𝑡)∗(1−𝑝(𝑡))

𝑚2 +
𝑝(𝑡)∗(1−𝑝̂(𝑡))

𝑛
, 

https://www.researchgate.net/scientific-contributions/2013734565_Liu_Tie?_sg=Jb_2ZJsdqa3-e9ZusX32QtTWQFYBzYM3Dc5cCvueuTW0yDRvGZSd-7Ql40o1P437EXnqfDE.4Ga4of0DrBocGRFOWrbrXOxti2O3cQWEayMF5lo5zaYgWJJm-Bs0kPX2BuM2aKbU2s6AGju8Evv_LvpcvOBDjg


38 

 

 

 

Predictions are done from a starting point t=𝑡0 an end point t=T. This is done several times, each time 

starting at another start point. For simplicity a time from start to end point is referred to in the remainder of 

this report as a run. For each prediction it is checked whether the real measured test data lies within the 

95% prediction interval resulting from the predictions gained from the model built with the training set.  

Hereto the prediction accuracy in a period of n minutes in the 𝑗𝑡ℎ run is computed as: 

 

Prediction accuracy in n minutes= 
100%

𝑇−𝑡0
 ∑ 𝑎𝑡,𝑗

𝑇
𝑡=𝑡0

 , (n=T-𝑡0) 

 

and 𝑎𝑡,𝑗 = {
1,   𝑖𝑓 𝑜𝑐𝑐𝑢𝑝𝑎𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑒 𝑙𝑖𝑒𝑠 𝑖𝑛 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 𝑜𝑛 𝑡𝑖𝑚𝑒 𝑡 𝑖𝑛 𝑟𝑢𝑛 𝑗
0,                                                                                 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                             

  

 

 

After completion of j runs (j=1, 2, . . . ,J), the prediction accuracy can be computed in the 𝑛𝑡ℎ minute. 

 

Prediction accuracy in the 𝑛𝑡ℎ minute= 
100%

𝐽
 ∑ 𝑎𝑛,𝑗

𝐽
𝑗=1  , 

 

and 𝑎𝑛,𝑗 = {
1,   𝑖𝑓 𝑜𝑐𝑐𝑢𝑝𝑎𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑒 𝑙𝑖𝑒𝑠 𝑖𝑛 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 𝑜𝑛 𝑡𝑖𝑚𝑒 𝑛, 𝑖𝑛 𝑟𝑢𝑛 𝑗
0,                                                                                  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                             

  

 

 

 

The null hypothesis that the prediction accuracies equals 90% implies that it is assumed that 90% of the test 

data lies between the ranges of the 95% prediction interval. If the null hypothesis is not rejected at 

significance of 5%, it is thought that the data does not provide enough evidence to conclude that the 

occupation rate of the test file does not predicts the occupation the rate of the training file.  

 

As mentioned in section 2 the predictions of the training model will be adjusted after doing and correcting 

the prediction for noise. The model is able to predict the scan data if the rate retrieved from the scan data 

lies in the adjusted prediction interval. Hereto different relations between the scan rate, 𝑆𝑡, and the sensor 

rate, 𝑅𝑡, and the difference of the sensor rate and the scan rate, 𝜀𝑡, on time t are used: 

 

• 𝑆𝑡 = 𝑎𝑅𝑡 + 𝑏. The most general way to estimate data is by using the regression line, or line in the 

“middle” of the scatter plot, such that we have least sum of squared errors. This is only valid if the 

scatterplot reveals a linear relation between variables. 

• 𝜀𝑡 = ∑ 𝑎𝑖𝑅𝑡
𝑖𝑛

𝑖=0 .  A polynomial function to approximate the periodic behavior. (See figure 2.1a) 

• 𝑆𝑡 = 𝑅𝑡-𝜀𝑡. Basically, the a-priori error, 𝜀𝑡, equals the occupation rate from PARK200 (𝑅𝑡) minus the 

occupation rate from PARK1000 (𝑆𝑡). This error is corrected afterwards. But as the actual values are 

unknown, estimators will be used to approximate the error. 𝑆𝑡 ≈ 𝑅̂𝑡-𝜀𝑡̂, where 𝑅̂𝑡 equals the for noise 

corrected predicted rate and 𝜀𝑡̂, a local measure for the error. The most preferable one is the median, 

since there seem to be outliers. Nevertheless, the mean and the mean mode of the a-priori error linked 

to the intuitive partitioning of eight periods will be also considered. 

The randomness of the predicted values will be examined using the a posteriori error or Predicted rate minus 

Scan rate. If the a posteriori error of a model with a high prediction accuracy is normally distributed the 

model can be called good (Coghlan A., 2010).  
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6 The Research Results 

This section contains interesting results that could help to determine which model performs better and to 

what extend it could be relied on. The evaluation of the prediction results will be mainly focused on the 

prediction accuracy. First the results for the different varieties of Markov2D algorithms will be discussed. 

Out of these Markov2D algorithms the variant with the best performance will be chosen. The second topic 

that will be evaluated is the application of the HomcChin2D algorithm using the best variant of the 

Markov2D algorithms as base. It is important to remember that the higher order Markov chain models are 

introduced to examine whether the performance of the best variant of the first order model could be 

improved. Hence higher order models will not be explored with all varieties of applying a Markov chain 

prediction model in this study. 

 

6.1 Evaluation of the Markov2D algorithms 
The algorithm is first explored with the two approaches mentioned in section 5.2.2. For both groups the sub 

models are evaluated with transition probabilities based on the arrival-departure behavior (AD) and the fit 

distribution of the net added number of cars (Fit). Moreover, the models are all explored with the three 

ways of choosing a time interval in which homogeneity is assumed (Eight, Fix and Moving periods). These 

different aspects imply the evaluation of 12 sub models. In this research the models are explored for fixed 

periods of 30, 15, 10, 5, 3 and 1 minute(s). The best results were retrieved by using periods of 15 minutes. 

It seemed like the smaller the time span the more random noise the prediction gets. Granularity does not 

automatically improve prediction accuracy of the model. Transition probabilities needed in these sub 

models are found with 1) the whole history of similar time intervals and 2) a good estimator for the 

transitions in the actual time interval.  

 

To choose the best trained model on PARK200, the prediction results of 10 runs are compared. One run 

starts to predict from scan moment to scan moment. The intermediate results were also evaluated to compare 

the models. One way to find the start moment of a run is by selecting at random 10 scan moments. A next 

way is to select the first scan moment of a group of 10 consecutive scan moments at random. The latter is 

used for comparing all 12 sub models. The results of training the Markov2D algorithms are summarized in 

the table here below. Table 6.1a contains the prediction accuracies, the mean range of the prediction interval 

and the CPU time. 

 

 
Table 6.1a: Performance of the M2D200_200.1000 models using whole history or a good estimator on PARK200 

 All previous transitions history Good estimator 

 

 

Model 

Prediction 

accuracy 

(%) 

Mean 

range 

CPU 

time (s) 

Prediction 

accuracy 

(%) 

Mean 

range 

CPU 

time (s) 

 10 consecutive runs 

M2D200_200.1000AchtAD 52.91 0.037 3746 52.95 0.037 2743 

M2D200_200.1000FixAD 53.08 0.037 2805 53.19 0.037 2585 

M2D200_200.1000MovAD 53.13 0.037 4639 53.13 0037 2604 

M2D200_200.1000AchtFit 53.23 0.038 173 52.74 0.037 155 

M2D200_200.1000FixFit 53.06 0.038 144 52.91 0.037 137 

M2D200_200.1000MovFit 53.10 0.038 143 53.06 0.037 136 

 10 runs at random 

M2D200_200.1000AchtAD 58.44 0.037 6281 58.16 0.038 2939 

M2D200_200.1000FixAD 57.67 0.037 6076 58.52 0.037 3768 



40 

 

M2D200_200.1000MovAD 59.75 0.037 4687 55.71 0.037 2558 

M2D200_200.1000AchtFit 57.60 0.038 1987 58.77 0.037 249 

M2D200_200.1000FixFit 60.33 0.038 655 59.57 0.037 213 

M2D200_200.1000MovFit 61.53 0.038 293 62.11 0.037 190 

 

On this point of the study it is checked whether relaxing on the assumption of needing the whole history to 

determine the transition probabilities is possible. For both cases the prediction accuracies a noted in the 

Table 6.1a were compared. A t-test of paired observation that assumes equal variance was run to compare 

the prediction accuracy resulting from the models in above mentioned. With p-value 0.2921 this test 

convinces us that it cannot be said that the means are not equal (A t-test for the results of random sampling 

gave a similar result, p-value=0.7062). From this point on the heuristic will be used that the mean of 

respectively the number of cars, arrivals and departure are good estimators to determine the associated 

transition probabilities (See introduction of chapter 4). For both ways of sampling it is clear that the sub 

model in this group, M2D200_200.1000, that uses a fit distribution and assumes existence of a moving 

homogeneous Markov chain performs the best in prediction accuracy and CPU time. 

 

The performance of the M2D200.1000_1000 sub models are evaluated. The results give the same picture: 

Better performances for models using the “slowly forward moving intervals” and the fit distribution. 

 

Table 6.1b: Performance of the M2D200.1000_1000 models on PARK200 

Model Prediction 

accuracy (%) 

Mean 

range 

CPU  

time (s) 

 10 consecutive runs 

M2D200.1000_1000AchtAD 26.94 0.079 31073 

M2D200.1000_1000FixAD 67.43 0.077 44370 

M2D200.1000_1000MovAD 67.80 0.078 34476 

M2D200.1000_1000AchtFit 51.11 0.078 815 

M2D200.1000_1000FixFit 49.76 0.078 757 

M2D200.1000_1000MovFit 53.17 0.078 742 

 10 runs at random 

M2D200.1000_1000AchtAD 84.55 0.061 67201 

M2D200.1000_1000FixAD 84.67 0.060 47162 

M2D200.1000_1000MovAD 84.45 0.061 43154 

M2D200.1000_1000AchtFit 84.26 0.060 1337 

M2D200.1000_1000FixFit 84.19 0.060 905 

M2D200.1000_1000MovFit 86.56 0.060 753 

 

 

The models based on the second approach do have a larger CPU time. One reason is that each prediction 

done is of order 𝑁2 as it includes working with a transition probability matrix with N states. The larger the 

dimension of the matrix, the more time needed to finish a single prediction. Add to this all computations 

needed for finding the transition probabilities for the Poisson and the binomial distribution. Including the 

arrival-departure behavior into the model does not result necessarily into a better model. In this approach 

the percentages are higher, but the mean range exceeds the ideal range of 0.043 as deduced from the a-

priori error in this report.  

 

A combination of both approaches in one model as mentioned in section 5.2.2 gives for the same groups of 

consecutive runs a prediction accuracy of 46% and mean range 0.061 (CPU=1530sec). Combining the two 
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approaches does not necessarily lead to a better model. Hence M2D200_200.1000MovFit is chosen as the 

best of all the 12 Markov2D sub models discussed in this study. 

6.1.1 Performances of the Best Model, M2D200_200.1000MovFit 
In this section the focus will be on important results from the effort to improve the performance of the best 

model, M2D200_200.1000MovFit on PARK200. The predictions tend to “behave” like the sensor rate. To 

give the reader an idea the predictions for the first 1600 minutes are plotted in figure 6.1.1a. The green 

graph are the prediction results gained from the convolution. The red graph represents the real occupation 

rate that the algorithm tries to predict. As the figure shows, the predicted rate is most of the times less than 

the sensor rate. See for more details figure 6.1.1a. 

 

 
 

From the graph it is clear that the model fails to predict the first minute(s) of a day. The real rates are most 

of the time under estimated by the predicted rate; the predicted rate as result from the convoluted prediction 

with the Markov chain model is most of the time under the real value of the sensor rate. Generally, the 

average rate aggregated by time and day is closer to the sensor rate then the predictions. The blue graph is 

the for random noise corrected prediction, resulting from the convex combination (5.1.2). The noise 

corrected rates do improve the predictions, but they cannot do better than the a fore mentioned average rate.  

 

For the best model M2D200_200.1000MovFit the prediction accuracy of 100 consecutive samples equals 

58.10% and the mean range 0.040. The prediction accuracy is also checked in the 𝑛𝑡ℎ minute and for the 

first n minutes of the prediction. High percentage can be expected in the first minute of the sample. In the 

5th minute 69.87% of the points were correctly predicted and in the 15th minute 61.05%. The prediction 

accuracy for the first 5 minutes equals 67.53% and for the first 15 minutes it equals 60.20%. 

 

6.1.2 Improving the Performance of M2D200_200.1000MovFit 
It will be examined whether the performance of best variant of the sub model thus far, can be further trained 

to improve the prediction accuracy by relaxing on some assumptions. It regards assumptions of existence 

of two main groups at the parking place, homogeneity in an interval containing time t, irreducibility of the 

transition probability matrix and the assumption that the mean sensor rate of the known data aggregated by 

day and time is a good estimator for the sensor rate. Results are generated and compared for the same 
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periods of hundred consecutive runs. In this section, the research results from training the model further on 

PARK200 can be found. 

 

It was considered whether the best model could be simplified to a one-dimensional (1D) model such that it 

is not needed to take the behavior of short- and long-term parkers separately into account. The prediction 

accuracy of the 1D-model in the similar time periods equals 51.56% and the mean range equals 0.028. The 

period with prediction accuracy 90% is on average 11 minutes and the prediction accuracy in a period of 

30 minutes equals on average 54.40%. The prediction accuracy of the 2D-model counts 58.09%. The mean 

time with prediction accuracy of 90% equals 14.9minutes and the prediction accuracy in a period of 30 

minutes equals on average 58.94%. A t-test for paired runs shows that at significance level 5% the data 

does not let one conclude that the prediction accuracy of the 2D-model is not higher than the prediction 

accuracy of the 1D-model. So, it cannot be expected that working with one dimension will lead to a better 

model. 

 

Transition probabilities at time t are linked with the associated “moving time interval”. The last minute of 

the day (t=719), however is a special moment (section 1.3.5). For predictions at the end of the day it was 

considered whether restricting the “moving time interval” to the first minute of the day would improve the 

model. A t-test reveals that the improvement in correct predicted values is neglectable (p-value=0.217). 

Relaxing on the assumption of irreducible transition probability matrices would imply that only the 

transition probabilities for states ranging from the minimum to the maximum number of cars included in 

the transition probability matrix; all other probabilities are set to zero. A t-test of paired means convince us 

that it cannot be concluded that the prediction accuracy of the model with reduced transition probabilities 

is not less than that of the best sub model (p-value= 0.0007). The prediction accuracy for the model that 

excludes not visited states equals 57.51% and mean range 0.035. 

 

 

To understand the importance of using a corrector as 

suggested in 5.1.2, one should realize that using the 

Markov chain prediction models alone (𝛽=1) 

resulted the median of the prediction accuracies of 

35% on PARK200. As it is clear from the graph and 

the role of convex combinations, the way the 

predicted values are corrected from noise can 

perform as best as the average itself. The average 

does not approximate the real values accurately in 

every interval. Although it “brings” the predicted 

value resulting from the convolution closer to the real 

values, the model still has a lot of predictions less 

than the real values.  

 

So instead of trying to find a better weight for the convex combination between the average and the 

predicted value, it is considered to choose another distribution vector as “corrector”. The next “correctors” 

that are used are the distribution vector of the of the median, the 75th and 95th percentile. The best results 

on the same interval are found at with a distribution based on the third quantile as estimator of the number 

of cars. It resulted in a model that could predict the rate at the first minute of the day. The prediction 

accuracy equals 64.78% and a mean range of 0.037. A combination of relaxation of the moving interval at 

the end of the day and correcting prediction flaws with a distribution based on the third quantile leads to a 

better model, such that prediction accuracy equals 65.01% and mean range of 0.037. Higher percentiles do 

not automatically lead to higher percentages. Noteworthy is that the higher the percentile that is used to 

find the distribution of the corrector, the less the model is able to predict lower sensor rates.  
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This brought up the idea to use two “correctors” to reduce prediction flaws: the distribution based on a low 

and a high percentile as estimator for the expected value. Two combinations were explored: first and the 

third quartile and the 5th and the 95th percentile. On PARK200 the prediction accuracy equals 77.52% and 

the mean range 0.056 when using the distribution of the first and the third quartile to correct for prediction 

flaws. Using the distribution of the 5th and the 95th percentile to correct for prediction flaws gives a 

prediction accuracy of 95.79% and the mean range 0.092 on PARK200. 

 

Including the correction with the distribution of the 25th and 75th percentile in the algorithm gives a 

prediction accuracy of 92% and the mean range 0.058 on PARK1000. The CPU time equals 7407seconds. 

Correcting for prediction flaws with the distribution of the 5th and the 95th percentile resulted in a prediction 

accuracy on PARK1000 is 100% and the mean range equals 0.091. These adjustments are not seen as 

improvements. The a posteriori error are not normally distributed According to the Shapiro-Wilk normality 

test it cannot be said that the a posteriori error resulting from the model including correction with quartiles, 

comes from a normal distribution (p-value =0.0000). The prediction accuracy is improved if the corrections 

of the 5th and the 95th percentile are included in the algorithm, but the mean range is far from ideal.  

 

Hence the Markov2D algorithm that includes the fit distribution, the moving interval, the focus on the last 

minute of the day and the correction with the 75th percentile, will be considered as the best model thus far. 

It is able to predict on average a period of maximum 50.5minutes 90% of the data accurately. In the first 

30 minutes it prediction accuracy equals 71.62% on PARK200. In the remainder of the study it will be 

referred to as M2D200_200.1000MovFitNightQuart3.  

 

6.1.3 Adjustment to Model to Predict the Scan Data 
The model thus far, coded by: “M2D200_200. 1000MovFitNightQuart3” is able to predict 73% of the 

occupation rates on PARK1000. At this point is was checked if correcting the predicted value with the a 

priori error would lead to better predictions. Section 5.3 mentioned several ways to do that. In this research 

the linear relation and the polynomial function were not explored intensively in this research. As far as it 

could be implied the linear relation (𝑆𝑡 = 0.9774𝑅𝑡 + 0.0201) did not lead to reasonable results. The best 

fit polynomial relation is unstable and did not improve the predictions accuracy.  

 

(𝜀𝑡=1017 ∗ (−0.0552𝑅𝑡
8 + 0.3837𝑅𝑡

7 − 1.1653𝑅𝑡
6 + 2.0194𝑅𝑡

5 − 2.1843𝑅𝑡
4 + 1.5102𝑅𝑡

3 − 0.6518𝑅𝑡
2 + 0.1606𝑅𝑡 − 0.0173)  

 

The third option, 𝑆𝑡=𝑅𝑡-𝜀𝑡 ,  for adjusting the outcome of the model such that the scan rate could be 

approximated was explored. It captures the idea of the a-priori error. In each one of the eight parts of the 

day the error is estimated by the mode (in case of more, the mean mode), the mean and the median based 

on historic data. Within a 95% prediction interval the prediction accuracies are respectively 54%, 56% and 

58% with mean range 0.026, 0.027 and 0.027. The a-posterior error gives also the same picture as the a-

priori error and is right-skewed. Adjusting the prediction afterward with the a-priori error such that it 

approximates the scan data does not lead to improvements. 
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6.2 The Higher Order Model HomcChin2D 
In this section it will be considered whether the best model, M2D200_200. 1000MovFitNightQuart3, could 

perform better by replacing the basal Markov chain prediction model with the higher order model of Chin 

et. al. The latter is explored with 5 historical time points for the short-term parkers and 3 historical time 

points for the long-term parkers. As it regards improving the model this part of the research will focus only 

on the main criteria of improvement: the prediction accuracy and mean range for both PARK200 (sensor 

rate) and PARK1000 (scan rate). 

6.2.1 Results from Applying HomcChin2D to the Best Model 
To see whether HomcChin2D could lead to better performances the focus will be on predicting a scan 

moment starting 200 minutes earlier. The 100 consecutive samples starting to predict the scan value in line 

134 from the Scan file, resulted after 9862seconds in a prediction accuracy of the sensor rate of 71.55% 

and a mean range of 0.089. This model is able to predict 79.80% of the scan data and the mean range equals 

0.107.  

 

 
 

 

Although a higher mean range is not desired, it is needed to capture the large transfers of the occupation 

rate each minute. Interesting is also the fact that the model has difficulties to predict the scan data in the 

first part of the day and the lowest values for the scan rate. The result is now a sub model which will be 

referred to as: HomcChin2D200_200. 1000MovFitNightQuart3.  

 

The performances with regard to time was also examined. The maximal period of minutes that the model 

had a prediction accuracy of 90% equals on average 63.4minutes. For the HomcChin2D the performance 

of prediction accuracy is examined after n minutes and in the 𝑛𝑡ℎ minute of the run. In table 6.2.1a the 

result for the first 10 minutes can be found. 

 

Table 6.2.1: Mean Prediction accuracy after n minutes and in the 𝒏𝒕𝒉 minute of the run 

 Prediction accuracy  Prediction accuracy  Prediction accuracy 

n 

After n 

minutes 

In the 𝑛𝑡ℎ 

minute n 

After n 

minutes 

In the 𝑛𝑡ℎ 

minute n 

After n 

minutes 

In the 𝑛𝑡ℎ 

minute 

1 1.00 0.33 6 0.90 1.00 11 0.86 1.00 

2 0.96 0.67 7 0.91 1.00 12 0.86 0.67 

3 0.93 0.67 8 0.87 0.33 13 0.86 0.67 

4 0.92 1.00 9 0.86 0.33 14 0.83 0.67 

5 0.91 1.00 10 0.85 1.00 15 0.85 1.00 
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The prediction accuracy itself is a time series. For predictions after n minutes it can be said that the higher 

the prediction time, the lower the prediction accuracy until it seems to fluctuate around 77.80%. Although 

the prediction in the 𝑛𝑡ℎ minute could be reliable, that is not the case for every minute. Therefore, it will be 

considered in the next section whether the prediction accuracy of this model could be improved. 

 

6.2.2 Improvements for Model HomcChin2D200_200. 1000MovFitNightQuart3 
This section presents the results of the efforts made to improve the performance the prediction accuracy for 

PARK1000. The next adjustments regard improvements for both the CPU time and the prediction accuracy. 

First the result of relaxation of the assumption of the existence two independent groups at the parking place 

and reducing the number of historical points in the higher order model are presented. Then the effect on 

deterministically choosing the parameters for the prediction model is explored for three set of parameters. 

By relaxing on these three assumptions it was considered whether at least the same prediction accuracy 

could be reached while the CPU time is reduced. Finally, it was examined whether the idea of two correctors 

could be used to correct prediction flaws. 

 

The HomcChin2D algorithm was explored for a one-dimensional Markov chain, and resulted in a lower 

prediction accuracy of 77%, mean range 0.107 although the CPU time was reduced up till 5747sec.. 

Reducing the number of lags was explored for two cases. The sub model with 4 historical points for the 

short-term parkers and 3 for the long-term parkers resulted in a prediction accuracy of 78.79%, mean range 

0.107, CPU time=7746sec.. For 3 and 2 historical points for respectively the short- and the long-term 

parkers the prediction accuracy was 74.49%, mean range 0.107, CPU time 5744sec and a posteriori p-value 

0.07865. Although the CPU time decreased because of these adjustments, the prediction accuracies are 

lower than that of the best sub model up till now. Hence, these adjustments are not classified as 

improvements. 

 

As statement (4.3.3) suggested the optimal set of parameters in the HomcChin2D should be chosen such 

that the error with regard to the stationary distribution is minimal. Relaxation on this assumption was done 

and the parameters of each group was chosen such that the contribution of every historical point was given 

a weight that represents the contribution to the distribution to the prediction. Some of the results of 

deterministically choosing parameters can be found in the table below. 

 

Table 6.2.2a: Prediction accuracy and mean range for scan data by set of model parameters  

Model Parameters 

prediction accuracy mean range CPU time seconds Short-term parkers Long-term parkers 

Optimal set Optimal set 79.80 0.107 9862 

(
1

5
 , 

1

5
, 
1

5
,

1

5
,

1

5
) (

1

3
 , 

1

3
, 
1

3
) 77 0.106 3524 

(
2

6
 , 

1

6
, 
1

6
,
1

6
,
1

6
) (

2

4
 , 

1

4
, 
1

4
) 77 0.106 3511 

(
5

15
 , 

4

15
, 

3

15
,

2

15
,

1

15
) (

3

6
 , 

2

6
, 
1

6
) 77 0.104 3550 

 

The worst choice in parameters is the one that assumed equal influences at the different historical time 

points. The highest prediction accuracy was found for the model that uses the parameters deduced from 

solving the optimization problem. There for relaxing for the parameters being optimal is not considered to 

be a way to improve the HomcChin2D algorithm although the CPU time is reduced up till 3511 seconds.  

 

Correction with two correctors: the distributions based on the assumption that the first and the third quartile 

are estimators for the data set on 𝒥𝑡, do give for the PARK1000 a prediction accuracy of 93.94% and a 
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mean range of 0.122. For including the correctors based on the 5th and 95th percentile, the prediction 

accuracy equals 98,99% and the mean range 0.145. The prediction accuracy increases, and the mean range 

become less desirable. It is still difficult to predict the scan rate the first 30 minutes of the day.  

 

The adjusted predicted distribution (𝑤
(𝑛)

) resulting from the convex combination that is used to correct for 

prediction flaw is established now with three distribution vectors: the predicted distribution (𝑥
(𝑛)

) and two 

other distributions ( 𝑦
(𝑛)

 𝑎𝑛𝑑 𝑧
(𝑛)

)  based on respectively the 25th and the 75th percentile. Such that 

𝑤
(𝑛)

=𝛽1𝑥
(𝑛)

+ 𝛽2𝑦
(𝑛)

+ 𝛽3𝑧
(𝑛)

. The default combination uses equal coefficients (𝛽1 = 𝛽2 = 𝛽3 =1/3). 

Exploration was done on the values of the coefficient used in the convex combination. Some of the results 

can be found in table 6.2.2b. This table has also the p-value coming from the Shapiro Wilk normality test, 

used to examine whether it can be said that the a posteriori error come from a normal distribution. 

 

Table 6.2.2b: Prediction accuracy and mean range for scan data by set of coefficients for corrector  

(𝛽1, 𝛽2, 𝛽3) prediction accuracy mean range Cpu time seconds p-value for test normality 

Optimal 75 0.093 13001 0.0000 

(
1

3
 , 

1

3
, 
1

3
) 93.94 0.122 7369 0.4533 

(
2

4
 , 

1

4
, 
1

4
) 93.94 0.125 5245 0.5784 

(
5

7
 , 

1

7
, 
1

7
) 92 0.130 9419 0.3858 

 

While the optimization with respect to the error to the stationary distribution does not result in improvement 

of prediction accuracy for the same time periods, the combination (
1

3
 , 

1

3
, 

1

3
) and (

2

4
 , 

1

4
, 

1

4
) both have the 

similar prediction accuracy on PARK1000. The mean ranges do not differ too much. And the from the 

Shapiro Wilk normality test it cannot be concluded that the a posteriori error does not come from a normal 

distribution ( p-value = 0.4533).  

 

Therefore, zooming in on the performances of the prediction accuracy in the 𝑛𝑡ℎ minute and after n minutes 

was done to decide which model should be given preference. The model with equal coefficients for the 

correctors had a mean prediction accuracy in the 𝑛𝑡ℎ minute of 82.73% and in n minutes is 83.80%. The 

mean time that 100% of the data is correctly predicted from minute to minute equals 92.68 minutes. The 

prediction accuracy is the highest in the first minute. It was tested whether for both types of prediction 

accuracy equal 95% and more. At significance level 5% the null hypotheses are not rejected.  

 

The data does not convince us that the prediction accuracy 

in the 𝑛𝑡ℎ minute and the prediction accuracy after n minutes 

does not exceeds 95% for the model with equal coefficients. 

In the table 6.2.2c some prediction accuracies can be found 

 

The model with coefficients, (
2

4
 , 

1

4
, 
1

4
), for the correctors had 

a mean prediction accuracy in the 𝑛𝑡ℎ minute of 83.20% and 

in n minutes is 82.42%. The mean time that 100% of the data 

is correctly predicted equals 26.52 minutes. For both type of 

prediction accuracies, it can be concluded that it is not 

proven that it cannot be more than 90%.  

Table 6.2.2c: Prediction accuracy, 100 

runs 

Minute 𝑛𝑡ℎ minute  n minutes 

1 0.92 1.00 

5 0.85 0.92 

10 0.85 0.88 

15 0.76 0.88 

20 0.79 0.87 

30 0.85 0.84 

200 0.82 0.82 
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As the performance in minutes of predictions is better can be concluded that the with the equal coefficients 

has the best performance (CPU=6395s). Noteworthy is that the prediction accuracy in 200 minutes is a time 

series. Figure 6.2.2 give us some insight in the evolution of the prediction accuracies. 
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Discussion of the research results 

This research shows clearly that Markov chain models themselves are not sufficient to do prediction for 

this time series. Admittedly, first order Markov chain prediction models can imitate the behavior of the 

time series better than higher order model. But despite this good imitation, the predicted values do 

underestimate and sometimes even overestimate the real occupation rate. One reason could be that Markov 

chain prediction models are meant for time independent data. Basically, the same transferring behavior is 

repeated but with different variants. Markov chain prediction models do predict the distribution after s 

minutes iteratively. Doing this results in an “expectation” for the distribution; a distribution that takes the 

probabilities of all possible outcomes into account. It turns out to be a probability vector of accumulated 

probabilities that never occur at time t. In real life, not all transition probabilities are “used” to decide the 

next number of cars at time t.  

 

Therefore, additional mathematical model techniques are needed to take care of the aspects of the problem 

that are beyond the scope of Markov chain prediction models. The actual predictions are done with a 

Markov chain prediction model. The mathematical techniques help to take care of the presence of two 

distinct groups in the process. It might be the case that using the point in between where the bimodal 

distribution of the parking time tails of is too simple and might not work for future data set. Assuming 

independency between these two groups is disputable. If one chose to assume dependency, a model that 

takes the interaction between these groups would be needed. 

 

The implementation of the convolution in the algorithm has also side effects. As it is a busy parking place, 

the probabilities on large numbers of cars for both groups is high. Using at least one distribution with high 

probabilities for large numbers of cars, to find the convolution, will result in a distribution that might over 

emphasize the probabilities on large states. Such that the expected value for the prediction will be an 

occupation rate larger than the real one. 

 

On the other side, the convoluted distribution can lead to predictions for the occupation rate that under 

estimate the real values. The convoluted distribution was modified, by accumulating all the probabilities 

that the convolution computed for the number of cars equal to and higher than the maximum number of 

cars in the system. It could be that to a certain extent the convolution should be associated with the number 

of cars cruising in the neighborhood looking for an empty space. If it was clear what fraction of the loss 

probability should be included in the model each time and the day, the state space could be extended, and 

the convolution could be better modified. 

 

In this research it is thought that more points are needed to predict the next data points. This is especially 

true in case of large changes in the number of cars between two consecutive minutes. Taking more historical 

points into account when making predictions will result in a combined transfer to the next time point. This 

thought is explored by using higher order models. Despite this benefit higher order models lead to prediction 

intervals with large mean ranges such that large prediction errors are allowed. 

 

Corrections for prediction flaws were done every minute. The ideal situation is of course that the mean 

range for the predictions reflect the mean range deduced from the data before any prediction is done. Both 

ways, the mean range for the priori error and the mean range deduced from the prediction interval based 

upon the historical data way to correct for prediction flaws is to use the distribution of the ranges of the a-

priori error, could be met in the markov2D models. The higher order models and correction for prediction 

flaws both violated this ideal situation such that the ultimate model had a relatively large mean range. 

Noteworthy is that the mean range of the “best model” can be allowed as it lies somewhere between the 

minimum and the maximum net added number of cars per minute. Doing predictions with a for example 3 

historical point with large transfer in between, would imply working with a larger range. 
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Conclusion 

The company wants to know to what extent predictions could be done for the parking occupancy in a closed 

neighborhood based on data made available by ARS. A higher order models as proposed by Chin sustained 

by mathematical techniques was found. This resulted in an algorithm that acknowledges independence 

behavior of two significant groups at the parking place. For each of this dimension it predicts the distribution 

of the number of cars on PARK200 with the higher order Markov chain prediction model. This Markov 

chain prediction model uses the fit distribution of the transitions in a forward moving interval with time 

span of 15 minutes to estimate the transition probability matrix on time t. The distribution for the number 

of cars on PARK200 is found with the convolution of the predicted distributions for both dimensions of the 

chain. Corrections for random noise are done for each estimation of the distribution for PARK1000 on time 

t using a convex combination or equally weighted the distribution of the estimated number of cars on 

PARK1000 together with an estimated distribution for the 25th and the 75th percentile of the number of cars 

in the associated time interval. 

 

The mean of all the prediction accuracies in the 𝑛𝑡ℎ minute equals 82.73%. The mean of all prediction 

accuracies of all periods of n minutes equals 83.80%. The mean time that 100% of the data is correctly 

predicted equals 92.68 minutes. In the 15𝑡ℎ minute the mean prediction accuracy equal 76% and in the 30th 

minute 85%. For the 100 samples the prediction accuracy equals 93.94% and its mean range 0.107. At 

significance level of 5%, the data does not convince us that the prediction accuracy in the 𝑛𝑡ℎ minute and 

after n minutes does not exceeds 95% for the model with equal coefficients. At significance level the data 

did not give enough reasons to conclude that the a posteriori error does not come from a normal distribution. 

Hence, the model could be used by the company. 

 

In this study the optimum fraction of parking spaces that should be equipped with a sensor was also 

examined. For the sensitivity of this fraction it could be said briefly: The more with sensor rates equipped 

columns, the less the error, the better a prediction model. This relation between the number of columns (y) 

and the mean error (x) could be approximated the with y=392.68*exp(-63.62x). Given the data of the scan 

vehicles it is even clear that depending on the error the company wants to make, more spaces can be 

equipped with sensors.  

 

This study reveals that knowledge about the distribution of parking times for visitors and for permit holders 

is very important. From the study it is clear that there are two groups at the parking place. The impact of 

these groups on the occupation rate cannot be neglected; not only the parking time but also the number of 

cars have a bimodally distributed. Based on the bimodal distribution of the number of cars this group is 

split. A better split would have been possible if it was clear from the data which car was a visitor and which 

on a permit holder. The latter would be a more exact approach of the group, that could lead for example to 

better transition probabilities. 

 

The current situation is that the scan vehicles do scan the neighborhood once or twice a day, at a random 

time point. By being able to predict the scan data this data set and this model does not give us the impression 

that a change in the number of scans is needed. But as it is clear, the obvious division of the day is a 

partitioning in eight periods. So, it would be a good idea, to scan the neighborhood at least eight times a 

day; taking more scans, a day and distributing these scans over the different periods of a day, can give more 

understanding of the actual error in measurement. It can also help to detect the real a-priori error better. It 

could also help to generate data in a structured way for further study. Changing the number of the scans per 

day might help to evaluate the model performance of the model  
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There are other data sources that can provide information. As parking is not an independent phenomenon, 

more variables that influence it should be taken into account. Some other factors that influence the parking 

behavior are the parking demand, the number of available parking places, the parking price. All these factors 

are time dependent and differ from day to day. There are models developed by other researcher that include 

these variables in predicting the occupancy rate on a parking place. 

 

My advice to the company is to collect the next set of data systematically for future research. Registering 

to what group a parker belongs (long- or short-term parker) could leads to a more realistic division between 

the groups, especially if it regards the last minute of the day. The scan vehicles should start scanning the 

neighborhood at least eight times a day in the following time periods: 0-30, 30-179, 179-218, 218-313, 313-

420, 420-500, 500-719 such that differences within a day can be evaluated. As the error in measurement 

does not seem to play a big role for finding a model, it would be at least fine to register also the end time 

of scanning the neighborhood.  

 

The Markov chains lack accuracy when history matters; too much mathematical techniques should be added 

to the process of such that the prediction is accurate. Therefore, it would be good to use some other models. 

One such a group of models is the general linear mixed modelling, statistical model for multivariate data. 

These models can take the time as main predictor variable and while taking every other thinkable variable 

together with the interactions between these variables simultaneously into account. 

 

As the net added number of cars each minute is a mean zero process (section 1.3.5), it can be evaluated 

whether Brownian motions could be used to find a more straight forward prediction model. Then come the 

datamining with its deep learning based on different mathematical techniques such as the nearest neighbor 

that can be used to keep the data clustered when doing predictions.  
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Appendix  

As it is my wish to help simple people to understand the research it is chosen to put some definitions and 

derivations needed for the main mathematical concepts used in this report in the appendix.  

Appendix 1 Ranges Prediction Interval 
In this part of the appendix the ranges for a prediction interval of the occupation rate on PARK1000 at time 

t will be derived using the data from PARK200. The occupation rate equals the fraction of occupied parking 

spaces on associated time point. As, the sensored spaces are a part of the total parking place it is assumed 

that the fractions of occupied spaces for both groups are similar. In order to find the ranges for the prediction 

interval it is good to zoom in on the fundamental processes. For each parking space there are two options: 

occupied or not. Independent from what happens in other parking space, a parking spaces can be occupied 

or not at time t with fixed probability. The occupation status of each parking space is identically and 

independent distributed random variable that is Bernoulli distributed with probability p(t). A reader must 

keep in mind that all the variables do depend on the actual time point t of the process. 

 

Suppose: 

 

𝑌𝑖
(𝑡)

= {1 if the 𝑖𝑡ℎ scanned parking space is occupied on time 𝑡
0                                                                                               else

,  

 

𝑌𝑖
(𝑡)

~𝐵𝑒𝑟𝑛(𝑝(𝑡)),    𝑌𝑖  independent identically distributed random variable, i=0, 1, . . . ,m, where m is the 

total number of spaces at PARK1000. 

 

𝑋𝑖
(𝑡)

= {1 𝑖𝑓 𝑡ℎ𝑒 𝑖𝑡ℎ 𝑠ensored parking space is occupied on time 𝑡
0                                                                                                   else

,  

 

𝑋𝑖
(𝑡)

~𝐵𝑒𝑟𝑛(𝑝(𝑡)), 𝑋𝑖
(𝑡)

 independent identically distributed random variable, i=0, 1, . . . ,n, where n is the 

total number of spaces at PARK200. 

 

 

Denote 

The number occupied parking spaces on PARK1000 is represented by random variable 𝑌
(𝑡)

, with  

𝑌
(𝑡)

=∑ 𝑌𝑖
(𝑡)𝑚

𝑖=1 , and 𝑌
(𝑡)

~𝑏𝑖𝑛(𝑚, 𝑝(𝑡)), where m=1000 equals the total number of occupied parking places 

and p(t) the fraction of parking spaces at time t (t=0, 1, . . . , 719).  

 

The number occupied parking spaces on PARK200 is represented by random variable 𝑋
(𝑡)

, with  

𝑋
(𝑡)

=∑ 𝑋𝑖
(𝑡)𝑚

𝑖=1 , 𝑋
(𝑡)

~𝑏𝑖𝑛(𝑛, 𝑝(𝑡)), where n=200 equals the total number of occupied parking places and 

p(t) the fraction of parking spaces at time t (t=0, 1, . . . , 719).  

 

As n and m are large the distributions of 𝑌
(𝑡)

 and 𝑋
(𝑡)

 can be approximated by the normal distribution. 

𝑌
(𝑡)

~𝑏𝑖𝑛(𝑚, 𝑝(𝑡)) ≈ 𝑁(𝑚 ∗ 𝑝(𝑡),𝑚 ∗ 𝑝(𝑡) ∗ (1 − 𝑝(𝑡))  

𝑋
(𝑡)

~𝑏𝑖𝑛(𝑛, 𝑝(𝑡))  ≈ 𝑁(𝑛 ∗ 𝑝(𝑡), 𝑛 ∗ 𝑝(𝑡) ∗ (1 − 𝑝(𝑡)) 

 

Then the fraction of occupied parking spaces on PARK200, 𝑝̂(𝑡) =
∑ 𝑋𝑖

(𝑡)𝑛
𝑖=𝑖

𝑛
, follows a normal distribution 

with 𝜇 = 𝑝̂(𝑡) and 𝜎2 = 
𝑝(𝑡)∗(1−𝑝(𝑡))

𝑛
 .  (𝑝̂~𝑁 (𝑝̂(𝑡),

𝑝(𝑡)∗(1−𝑝(𝑡)

𝑛
) . ) 
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𝑝̂(𝑡)is a good predictor for, 
𝑌(𝑡)

𝑚
,  the fraction of occupied parking spaces at PARK1000. 

𝑌
(𝑡)

, the number of occupied parking spaces at PARK1000, can be predicted by 𝑚𝑝̂(𝑡) with 

𝑚𝑝̂(𝑡)~𝑁 (𝑚𝑝̂(𝑡),𝑚2∗ 𝑝(𝑡)∗(1−𝑝̂(𝑡)

𝑛
).  

 

The random variable 𝑌
(𝑡)

− 𝑚𝑝̂(𝑡)~𝑁 (0,𝑚 ∗ 𝑝(𝑡) ∗ (1 − 𝑝̂(𝑡) +
𝑚2

𝑛
𝑝̂(𝑡) ∗ (1 − 𝑝̂(𝑡))) and as the 

population variance can be estimated by the variance of the known data the variable 

 𝑌
(𝑡)

− 𝑚𝑝̂(t) ~𝑡1

2
𝛼,(𝑛−𝑘+1)

(0,𝑚 ∗ 𝑝̂(𝑡) ∗ (1 − 𝑝̂(𝑡) +
𝑚2

𝑛
∗ 𝑝̂(𝑡) ∗ (1 − 𝑝̂(𝑡))) 

Where 𝑝̂(t) is a good estimator for the mean fraction of occupied sensored spaces and k=2, the number of 

involved random variables. The borders for a prediction interval for 𝑌
(𝑡)

 would be:  

 

𝑚𝑝̂(𝑡) ± 𝑡1

2
𝛼,(𝑛−𝑘+1)

√𝑚𝑝̂(𝑡)(1 − 𝑝̂(𝑡)) +
𝑚2

𝑛
𝑝̂(𝑡)(1 − 𝑝̂(𝑡)), 

 

The borders of the prediction interval for the occupation distribution of the rate at each time point would 

be: 

𝑝̂(𝑡) ± 𝑡1

2
𝛼,(𝑛−𝑘+1)

√
𝑝̂(𝑡)(1−𝑝̂(𝑡))

𝑚2 +
𝑝(𝑡)(1−𝑝̂(𝑡))

𝑛
, 
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Appendix 2 Convolution and Strong Law Large Number 
Appendix 2 contains two main concepts this study heavily relies on: the convolution and strong law large 

numbers. Hence the definitions can be found here in case the reader is not acquainted with these concepts. 

 

Definition 1: The convolution of two probability mass functions 

Let 𝑁𝑆  and 𝑁𝐿  be two independent integer-valued random variables, with probability mass function 

𝑥𝑁𝑆  (𝑗) and 𝑥𝑁𝐿 (𝑗) respectively. Then the convolution of 𝑥𝑁𝑆 (𝑗)  and 𝑥𝑁𝐿 (𝑗) is the probability mass 

function  

𝑥𝑁 = 𝑥𝑁𝐿 ∗ 𝑥𝑁𝑆  given by 

 

𝑥𝑁(𝑗) = ∑ 𝑥𝑁𝑆 (𝑘) ∗ 𝑥𝑁𝐿 (𝑗 − 𝑘) 𝑀
𝑘=0 , for j = 0, 1, 2, . . ..M 

 

The function 𝑥𝑁(𝑗) is the probability mass function of the random variable N, where n represents the 

number of cars at an arbitrary time point with N=𝑁𝑆 + 𝑁𝐿 . (Grinstead et al, 1994, page 286, Mandal 

P.K., 2017, p.24, 25) 

 

 

Theorem 1: Strong law of large numbers (Weisstein, 2019) 

The sequence of variates 𝑋𝑖 with corresponding means 𝜇𝑖 obeys the strong law of large numbers if 

∃ 𝑁, ∃𝜀, 𝛿 > 0 that for every r>0, all (r+1) inequalities, 
|𝑆𝑛−𝑆̂𝑛|

𝑛
< 𝜀, for n=N, N+1, . . . , N+r will be 

satisfied where 𝑆𝑛 = ∑ 𝑋𝑖
𝑛
𝑖=1 , and 𝑆̂𝑛 = ∑ 𝜇𝑖

𝑛
𝑖=1  . 

 

 

 

 

 

  



54 

 

Appendix 3 Distribution of the Sum of Independent Poisson Variables 
For a Poison process with arrival rate λ it is generally known that the number of events in any interval of 

length t is Poisson distributed with mean λt. For the Poison process with arrival rate λ at the parking place 

it can similarly be said that the number of events in any parking space n, is Poisson distributed with mean 

λn. Here to Lemma 1 is proven: 

 

Lemma 1:  

Given s independent Poisson random variables, 𝑋𝑖 ~𝑃𝑜𝑖𝑠(𝛼𝑖) for i =1, 2, …., and Z=∑ 𝑋𝑖
𝑠
𝑖=1 , then random 

variable Z is Poisson distributed with mean E(Z)= ∑ 𝛼𝑖
𝑠
𝑖=1  , ∀s ∈ ℤ+. 

 

Proof: 

We will proof by induction that for s independent Poisson random variables, 𝑋𝑖  ~𝑃𝑜𝑖𝑠(𝛼𝑖) for i =2, ., s the 

random variable Z=∑ 𝑋𝑖
𝑠
𝑖=1  is Poisson distributed with mean ∑ 𝛼𝑖

𝑠
𝑖=1 .  

 

Proof: 

The proof is done by induction.  

 

Base case: For s=2 we have: 

𝑋1 ~𝑃𝑜𝑖𝑠(𝛼1) and 𝑋2~𝑃𝑜𝑖𝑠(𝛼2), Y=𝑋1 + 𝑋2,  

 

P(Y=y)=𝑃(𝑋1 + 𝑋2 = 𝑦) = ∑ 𝑃(𝑋1 = 𝑥, 𝑋2 = 𝑦 − 𝑥) = 
𝑦
𝑥=0 ∑ 𝑃(𝑋1 = 𝑥)𝑃( 𝑋2 = 𝑦 − 𝑥)

𝑦
𝑥=0 . 

Substituting the Poisson distribution and then multiplying with 
𝑦!

𝑦!
gives: ∑ 𝑒−𝛼1𝑦

𝑥=0
𝛼1

𝑥

𝑥!
𝑒−𝛼2

𝛼2
(𝑦−𝑥)

(𝑦−𝑥)!
 
𝑦!

𝑦!
 

P(Y=y)= 
𝑒−(𝛼1+𝛼2)

𝑦!
∑ (

𝑦
𝑥
)𝛼1

𝑥𝛼2
𝑦−𝑥𝑦

𝑥=0 =
𝑒−(𝛼1+𝛼2)

𝑦!
 (𝛼1 + 𝛼2)

𝑦 = 𝑒−(𝛼1+𝛼2)
(𝛼1+𝛼2)

𝑦

𝑦!
 . 

At this point it can be concluded that 𝑌 ~𝑃𝑜𝑖𝑠(𝛼1 + 𝛼2). 

 

Induction step: Let n ∈ ℤ+ be given and suppose Lemma 1 is true for s=n+1.  

P(Y=y)= 𝑃(∑ 𝑋𝑖
𝑛+1
𝑖=1 = 𝑦) =  𝑃(∑ 𝑋𝑖

𝑛
𝑖=1 + 𝑋𝑛+1 = 𝑦) =  

∑ 𝑃(∑ 𝑋𝑖
𝑛
𝑖=1 = 𝑥, 𝑋𝑛+1 = 𝑦 − 𝑥) = 

𝑦
𝑥=0 ∑ 𝑃(∑ 𝑋𝑖

𝑛
𝑖=1 = 𝑥)𝑃( 𝑋𝑛+1 = 𝑦 − 𝑥)

𝑦
𝑥=0 = 

∑ 𝑒−(∑ 𝛼𝑖
𝑛
𝑖=1 )𝑦

𝑥=0
(∑ 𝛼𝑖

𝑛
𝑖=1 )𝑥

𝑥!
𝑒−𝛼𝑛+1

𝛼𝑛+1
(𝑦−𝑥)

(𝑦−𝑥)!
= ∑ 𝑒−(∑ 𝛼𝑖

𝑛
𝑖=1 )𝑦

𝑥=0
(∑ 𝛼𝑖

𝑛
𝑖=1 )𝑥

𝑥!
𝑒−𝛼𝑛+1

𝛼𝑛+1
(𝑦−𝑥)

(𝑦−𝑥)!
 
𝑦!

𝑦!
= 

𝑒−(∑ 𝛼𝑖
𝑛
𝑖=1 +𝛼𝑛+1)

𝑦!
∑ (

𝑦
𝑥
 ) (∑ 𝛼𝑖

𝑛
𝑖=1 )𝑥  𝛼𝑛+1

𝑦−𝑥𝑦
𝑥=0

𝑒
−(∑ 𝛼𝑖

𝑛+1
𝑖=1 )

𝑦!
 (∑ 𝛼𝑖

𝑛
𝑖=1 + 𝛼𝑛+1)

𝑦 
𝑒−(∑ 𝛼𝑖

𝑛+1
𝑖=1 )

𝑦!
 (∑ 𝛼𝑖

𝑛+1
𝑖=1 )𝑦.  

 

Thus, Lemma (1) holds for s = n + 1, and the proof of the induction step is complete. The conclusion is that 

Lemma (1) is true ∀s ∈ ℤ+.  
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Appendix 4 Words, concepts and abbreviations 
 

ARS T & TT ARS Traffic & Transport Technology. The first part of the name ARS 

comes from the Greek (Latin) word “ars” which was related to craft, skill, 

knowledge, method, device, or even science. 

CBS Centraal Bureau voor de Statistiek 

CPU time Central Processing Unit time. The amount of time used to process the 

instructions in a central processing unit of a computer program 

Cruising Looking for a parking place while driving. Sometimes even literally circling 

in the neighborhood of the parking place. Cars that are cruising are also 

referred to as search traffic 

Distribution of scans over 

the day 

The collection of time periods that the scan vehicle passed in the 

neighborhood during the day 

Estimated rate The estimated percentage of the occupied parking spaces  

HomcChin2D  The algorithm in this report used for doing predictions with for a two-

dimensional Markov chain. The actual predictions are done with the higher 

order Markov chain model as proposed by Chin et. al.. 

Kendall's correlation A nonparametric measure of the strength and direction of association that 

exists between two variables measured on continuous or ordinal scale. It is 

considered a nonparametric alternative to the Pearson’s product-moment 

correlation. A monotonic relationship if desirable but not a strict assumption 

(Laerd Statistics, 2018). 

Long-term parkers Users of the parking place with a parking duration longer than 630 minutes 

(10.5 hours). Usually the residents and / or permit holders. 

Markov2D The algorithm in this report used for doing predictions with for a two-

dimensional Markov chain. The actual predictions are done with the first 

order Markov chain model. 

Occupation rate The percentage of the parking spaces that are occupied 

PARK1000 The whole parking place in the closed neighborhood consisting of 1000 

parking spaces. 

PARK200 The part of the parking place that is simulated as if each of these arbitrarily 

chosen 200 spaces were “equipped” with sensors. 

Parking place In this research it is the set of all the public parking spaces along the street 

or streets in a neighborhood 

Parking space A square in the parking place intended for parking exactly one vehicle. 

Predicted rate The predicted percentage of the occupied parking spaces 

Scan-rate The rate computed with the scanned data 

Search traffic See Cruising 
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Sensitivity to the 

distribution of scans  

The extent to which a change in the distribution of the number of scans per 

day influences the end results. 

Sensitivity to the fraction The extent to which a change in the fraction influences the end results. 

Sensitivity to the number 

of scans per day 

The extent to which a change in the number of scans per day influences the 

end results. 

Sensor A small smart device mounted in a parking space that gives an infra-red 

signal to an intelligent network system to indicate when the parking space 

is occupied. 

Sensor rate The percentage of the occupied parking spaces computed with the sensor 

data, or the data from PARK200 

Short-term parkers Users of the parking place with a parking duration not longer than 630 

minutes (10.5 hours). In this report the are also identified as “visitors”. 

Smirnov test A nonparametric test that is used to decide whether two samples do have a 

similar continuous distribution. The test statistic is based on the cumulative 

distribution at the point of the maximum deviation between the associated 

cumulative distributions.  
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