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Abstract

This article investigates the existence of a Zero-One law for Linear Temporal Logic in

random graphs. A sample statement, Always, formulated in Linear Temporal Logic is

tested in four di�erent regimes of directed as well as undirected random graphs. For

two of the regimes, the ones with the highest edge probability, the probability of an

Always statement to hold tends to zero when the number of nodes of the graph tends

to in�nity. A Zero-One Law could not be disproved. For the remaining two regimes,

when the graph has a tree-like structure, a counterexample of a Zero-One law is found

for the undirected random graph. For the directed random graph a counterexample

in this regime is assumed but not yet proven. In conclusion, a Zero-One law does not

hold for Linear Temporal Logic in at least some regimes of random graphs.

Keywords: Binomial Random Graph, Linear Temporal Logic, Zero-One Law

1 Introduction

Linear Temporal Logic statements for graphs are widely used for model checking purposes
[1]. It is used in model checking, when properties of a system, e.g. a software or a hardware
system, needs to be expressed. If a property of these system needs to be checked, the system
is modeled as a graph where a node is assigned to every state of the system. Properties are
assigned to every node, for example one can assign a property `critical' or `non-critical' to
every node, representing whether the corresponding state of the system is critical or non-
critical. The property is tested on the graph. Linear Temporal Logic covers statements as
`Always' and `Eventually'. For example, one wants to check whether a system ful�ls the
statement `Eventually critical', to check whether the system can reach a `critical' state.
Linear Temporal Logic formulae are mainly checked using algorithms on existing graphs.
However, due to the so called state-explosion problem, it is hard to model large systems
by deterministic graphs. To still get an idea about the behaviour of these large systems,
one uses random graphs with a large number of nodes. The random graphs are build on
a vertex set n. Every possible edge between every pair of vertices exists with a given
probability p(n). If one choses a random graph in the same regime, i.e. choose a matching
edge probability, as the system, the random grahp has the same behavior as the modeled
system. The properties of these large random graphs can be an indication for the behavior
of the large systems.
We know by [4, 9] that a Zero-One law for �rst order logic holds. That is, for a graph with
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a number of nodes tending to in�nity, the probability that a �rst order logic statement
holds will either tend to zero or to one. First order logic statements are of the form `Is
the graph connected? ' or `Is there a triangle in the graph? '. A more precise de�nition of
the Zero-One law and �rst order logic can be found in the remainder of this article. Of
interest is whether Linear Temporal Logic, as described in [1], satis�es a Zero-One law
as well. If this is the case, all Linear Temporal Logic statements will either occur almost
surely or almost never in large random graphs and one could draw interesting conclusions
for systems with a large number of states.
In this article we will not focus on an entire overview of Linear Temporal Logic and a
Zero-One law for this logic and we do not try to prove a Zero-One law for Linear Temporal
Logic in general. Instead, we will focus our attention on a speci�c example statement in
Linear Temporal Logic, the Always statement. We will investigate whether the Always
statement meets a Zero-One law in certain regimes of random graphs. Herewith, we hope
to achieve some insight in the behaviour of Linear Temporal Logic statements in large
random graphs and the existence of a possible Zero-One law.

Problem Description Consider a random graph with n vertices, where n tends to
in�nity. Between each of the vertices there exists an edge with probability 0 < p(n) < 1,
independently of other edges. Assign to each of the vertices in the graph a red label with
probability 0 < q(n) < 1 or a blue label with probability 1− q(n). What is the probability,
for a random vertex S, that all possible paths starting at S only contain red vertices?
That is, what is the probability of the vertex S satisfying Always Red when the number
of nodes, n, of the graph tends to in�nity? We will investigate the probability of Always
Red for four di�erent edge probabilities in undirected as well directed random graphs. The
four edge probabilities are:

• p(n) = c, where 0 < c < 1,

• p(n) = c log(n)n , where 0 < c ≤ 1,

• p(n) = λ
n where 0 < λ < 1

• p(n) = λ
n where λ > 1.

In Section 2 we de�ne structures used in the article. In Section 3 we will state preliminary
results regarding the Zero-One law for �rst order logic, the behaviour of an undirected ran-
dom graph varying its number of edges and some results on branching processes. Section 4
we will classify each of our edge probability regimes into di�erent asymptotic behaviours.
In Section 5 we determine the probability that the Always Red statement holds in the
undirected random graph for all the edge probability regimes. In Section 6 we will give
insight in the Always Red statement in directed random graphs.

2 De�nitions

In this section we will give an overview of the formal de�nitions of the regularly used
expressions in this article. We give the random graph de�nition described in [6].

De�nition 2.1 (Binomial Undirected Random Graph). The binomial undirected random
graph G(n, p) is constructed on the vertex set {1, ..., n}. Between every pair of vertices,
an undirected edge is included with probability p(n) ∈ (0, 1) and no edge is included with
probability 1 − p(n). The

(
n
2

)
possible edges are placed independently. Note that in such

random graphs parallel edges are not allowed.
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De�nition 2.2 (Binomial Directed Random Graph). The binomial directed random graph
G(n, p) is constructed on the vertex set {1, ..., n}. Between every ordered pair of vertices,
a directed edge is included with probability p(n) ∈ (0, 1) and no edge is included with
probability 1− p(n). The n(n− 1) possible edges are placed independently. [6]

Given a random graph we can assign a degree value to each of the vertices.

De�nition 2.3 (Vertex Degree). For an undirected graphs the degree of a vertex, v, denoted
by d(v), is the number of adjacent vertices of v. This number is equal to the number of
edges incident to v. For a directed graph one distinguishes between the in-degree of a vertex,
denoted by din(v), and the out-degree of a vertex, denoted by dout(v). The in-degree equals
the number of ingoing edges, e.g. edges of the form w → v, where w is any other vertex.
The out-degree equals the number of edges of the form v → w, that is edges starting at
vertex v and ending at any other vertex w.

To every vertex of a graph labels can be assigned. We only consider the labels red and
blue. The labels are assigned using random vertex colouring as de�nes as follows.

De�nition 2.4 (Random Vertex Colouring). Consider a random graph G(n, p). We say,
G(n, p) is a coloured graph with colour probability q(n), if each vertex of G(n, p) receives a
red label with probability q(n) ∈ (0, 1) and a blue label with probability 1− q(n).

To check whether a system holds a given property, we have to consider all possible states
that can be reached from a starting state. Corresponding to a graph, we have to consider
all possible paths starting at S. A path is de�ned as follows.

De�nition 2.5 (Path). A path starting at vertex v1 is a sequence of states < v1, v2, · · · vk >,
where k may be in�nite, such that (vi, vi+1) is in the edge set for all 1 ≤ i ≤ k − 1 .

Aim of this article is to investigate whether a Zero-One law holds for Linear Temporal
Logic. Linear Temporal Logic is de�ned in [1].

De�nition 2.6 (Linear Temporal Logic). Linear Temporal Logic (LTL) is constructed
from atomic propositions AP, Boolean connectors (conjunction and negation) and two basic
temporal modalities, © (pronounced `next') and ∪ (pronounced `until'). The statements
are build using the following grammar rules:

ϕ ::= true | a | ϕ1 ∧ ϕ2 | © ϕ | ϕ1 ∪ ϕ2

where a ∈ AP. A vertex S meets a statement ϕ, denoted by S � ϕ, if all vertices in all
possible paths, starting at S, meet the statement ϕ.

Statements in Linear Temporal Logic are of the form S � ϕ, where S is a vertex of a
graph. For example, the statement S � a holds if S has the property a. Thus S � red
holds if the vertex S has the label red. The statement S � ©ϕ holds if the successors of
S has the property ϕ. The statement S � ϕ1 ∪ ϕ2 holds if, starting in S, S and all it's
successor states have the property ϕ1 till the path has a vertex with property ϕ2. For a
more detailed description of Linear Temporal Logic we refer the reader to [1, Chapter 5].
We will investigate the Linear Temporal Logic statement Always in di�erent random graph
regimes. The Always statement is de�ned in [1].

De�nition 2.7 (Always). The Linear Temporal Logic statement `Always' is denoted by
�. The statement `S � �ϕ' holds if S and all its successor states have the property ϕ. The
property `S � �ϕ' fails if there is at least one vertex in a path starting at S that does not
have the property ϕ. Always ϕ is satis�ed if and only if it is not the case that (¬ϕ) holds
at some point.
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The Always Red statement for a vertex S thus describes the property that all possible
paths starting in S only pass through red vertices. The property fails if there exists a blue
vertex in a path starting at S.

3 Background

In this section we will state some preliminary results content-covering the Zero-One law
for �rst order logic, the random graph regimes of the Erd®s-Rényi random graph and some
useful theorems on branching processes. The Zero-One law for �rst order logic is of interest
since we try to investigate a Zero-One Law for Linear Temporal Logic. The random graph
regimes of the Erd®s-Rényi random graph are our object of investigation, and branching
properties help to approximate the structure of random graph in some regimes.

3.1 Zero-One Law

Fagin proved in [4] a Zero-One law for �rst order logic statements for graphs, as in Theo-
rem 3.1. Of interest is whether the Linear Temporal Logic satis�es a Zero-One law, too.
First order logic is de�ned as in [8].

De�nition 3.1 (First Order Logic for Graphs). The �rst order logic for graphs is build
up from atomic formulae of the form vi = vj and vi ∼ vj. Here, vi denote the underlying
vertices of the graph. The two binary predicates, equality (=) and adjacency (∼), are
assumed to be symmetric. Furthermore, adjacency is assumed to be anti-re�exive. A �rst
order logic statement may contain the logical connectives conjunction, disjunction, negation
and implication (∧,∨,¬,→) and quanti�ers ( ∃,∀).

The Zero-One law for �rst order logic is de�ned as follows.

Theorem 3.1 (Zero-One Law for First Order Logic statements for Graphs). Let G(n, p)
be a random graph with a number of vertices n and edge probability p ∈ [0, 1]. Let A be a
�rst order logic statement for graphs. Then, for all �xed p and statement A

lim
n→∞

P (G(n, p) |= A) = 0 or 1 .

That is, every �rst order sentence is either almost always true or almost always false for
a random graph. In our set up, the Always Red statement de�ned in Section 2 cannot be
expressed as a �rst order logic statement. Indeed, we divide the vertices in two distinct
sets, a set with red vertices and a set with blue vertices. Therefore, we need a higher order
logic to describe the Always Red property. In conclusion, Theorem 3.1 does not apply to
Linear Temporal Logic statement.

3.2 Evolution of the Erd®s-Rényi Random Graph

Erd®s and Rényi described the process of evolution of the uniform random graph [3]. The
uniform random graph is given by G(n,M(n)) where n is the number of vertices andM(n)
is the number of edges of the graph. The random graph is chosen uniformly out of all pos-
sible graphs with n vertices and M(n) edges. Erd®s and Rényi distinguished �ve phases
through which the graph passes when M(n) grows from 1 to

(
n
2

)
, the maximum number

of edges. The thresholds for the �ve phases are:
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Phase I : M(n) ∼ o(n) ,

Phase II : M(n) ∼ c̃ n with 0 < c̃ < 1
2 ,

Phase III : M(n) ∼ c̃ n with c̃ ≥ 1
2 ,

Phase IV : M(n) ∼ c̃ n log n with c̃ ≤ 1
2 ,

Phase V : M(n) ∼ (n log n)ω(n) with ω(n)→∞ .

The graph changes throughout the phases from having mostly single isolated points in
Phase I, to being completely connected in Phase V. We will describe the di�erent Phases
by explaining the behaviour of graphs in the di�erent Phases and determining the average
vertex degree, d̄. Observe, that adding an edge to the graph increases the summed vertex
degree of the graph,

∑n
i=1 d(vi), by two. We conclude

∑n
i=1 d(vi) = 2M(n). The average

vertex degree is given by d̄ =
∑n
i=1 d(vi)
n = 2M(n)

n . In Figure 1 graphs in the di�erent
regimes, i.e. in di�erent Phases, are illustrated.

(a) G(n,M(n)) with n = 50 and

M(n) = 5. The graph is an example

of a graph in Phase I.

(b) G(n,M(n)) with n = 50 and

M(n) = 20. The graph is an example

of a graph in Phase II.

(c) G(n,M(n)) with n = 50 and

M(n) = 40. The graph is an example

of a graph in Phase III.

(d) G(n,M(n)) with n = 50 and

M(n) = 60. The graph is an example

of a graph in Phase IV.

(e) G(n,M(n)) with n = 50 and

M(n) = 1000. The graph is an example

of a graph in Phase V.

Figure 1: Randomly generated Uniform Random Graphs, G(n,M(n)), with dif-
ferent values of M(n).
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Phase I : A graph in Phase I is a graph with mostly isolated points. The average degree
of a vertex tends to zero as the number of vertices tends to in�nity. All vertices with
degree larger than zero are with probability tending to one in a tree. In Figure 1a
a typical graph in Phase I is shown. Most of the vertices are isolated. The vertices
having edges are in components containing just two vertices.

Phase II : In Phase II the graph contains trees and cycles. However, almost all vertices
will be in components which are trees. The average degree of the vertices is equal
to d̄ = 2c̃. Consequently, d̄ ∈ (0, 1). Figure 1b displays a random graph in Phase II
with c̃ = 0.4. Note, that isolated points can be seen as trees with a progeny of one.
The graph in Figure 1b therefore consist of only trees.

Phase III : WhenM(n) passes the threshold of Phase III the structure of the graph changes
abruptly. The trees present in Phase II merge to one giant component. The graph
now contains one giant connected component with a complex structure and some
small trees. The giant component will contain about G(c̃)n vertices where

G(c̃) = 1− 1

2c̃

∞∑
k=1

kk−1

k!
(2c̃e−2c̃)k .

The average degree of a vertex is equal to d̄ = 2c. Consequently, d̄ ≥ 1. Figure 1c
displays a random graph in Phase III with c̃ = 0.8. In Figure 1c one can distinguish
one connected component including cycles, one tree and some remaining isolated
points.

Phase IV : A graph in Phase IV contains one giant connected component and some smaller
components. The vertices which lie outside of the giant component are either isolated
points or are in small trees. With probability tending to one, the graph consist of one
giant connected component and some isolated points when the number of nodes of
the graph tends to in�nity. The average degree of a vertex is equal to d̄ = 2c̃ log n. In
Figure 1d a graph in Phase IV with c̃ = 0.3 is displayed. One can clearly distinguish
one giant component and and some isolated points.

Phase V : When M(n) is in the range of Phase V, the entire graph is almost surely con-
nected. The average degree of a vertex equals d̄ = (2 log n)ω(n) and d̄ → ∞ when
n → ∞. Figure 1e displays a graph in Phase V. The graph consists of one giant
component.

The results of this section are used in Section 4 to classify the binomial random graphs
in di�erent phases in order to determine their di�erent behaviours. For a more detailed
description of the phases and proof of results stated in the section, we refer the reader to
[3].

3.3 Branching Process

As we will conclude later, in some regimes a random graph can be closely approximated by
a Poisson branching process. We therefore will state some useful results on branching pro-
cesses. The following section in mainly based on [10]. For an entire overview on branching
processes we therefore refer the reader to [10, Chapter 3].
Consider a branching process where each individual has independent o�spring with o�-
spring distribution X. The branching process will either die or survive in�nitely long.
Denote the extinction probability of a branching process by η and the survival probability
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by ζ, where ζ = 1− η. The total progeny of the branching process is denoted by T .
The following results are used to understand the size of components in random graphs.
For a random graph with an in�nite number of nodes it is, for example, of interest whether
all vertices are part of one giant connected component or the graph is split up in di�erent
components. When comparing to a branching process, the graph will have just one giant
component if the corresponding branching process survives almost surely. To determine
the extinction probability of a branching process, we make use of Theorem 3.2.

Theorem 3.2 (Extinction Probability). The extinction probability η is the smallest solu-
tion in [0, 1] of

η = GX(η) ,

with GX(s) being the probability generating function of the o�spring density X, i.e., GX(s) =
E[sX ].

Observe that if E[X] < 1 then η = 1. A branching process with expected o�spring smaller
than on will die out almost surely. If E[X] > 1 then η < 1. Prove of this results is given
in [10, Chapter 3]. I we want to compute the component size in a random graph, the total
progeny of a branching process is of interest. Given a certain o�spring distribution X, we
can determine the probability a branching process having a progeny of n.

Theorem 3.3 (Law of Total Progeny). For a branching process with i.i.d. o�spring dis-
tribution X,

P (T = n) =
1

n
P (X1 +X2 + . . .+Xn = n− 1),

where (Xi)
n
i=1 are i.i.d. copies of X.

Proof of this results can be found in [10]. When it is known that a random graph
consists of trees with a �nite number of nodes we compare the random graph with a
branching process based on extinction. The distributions (pk)k≥0 and (p′k)k≥0 are called
conjugate pairs if p′k = ηk−1pk.

Theorem 3.4 (Duality principle for Branching Processes). Let (pk)k≥0 and (p′k)k≥0 be a
conjugate pair of o�spring distributions. The branching process with distribution (pk)k≥0
conditioned on extinction, has the same distribution as the branching process with o�spring
distribution (pk)

′
k≥0.

The proof of this Theorem and the de�nition of conjugate pairs can be found in [10]. As
we will conclude later in this article, we can compare a random graph in some regimes
to a Poisson branching process. We therefore will state some speci�c results for Poisson
branching processes. If X is Poisson distributed, the probability distribution of the total
progeny is given in Theorem 3.5.

Theorem 3.5 (Total Progeny for Poisson Branching Process). For a branching process
with i.i.d. o�spring X, where X has a Poisson distribution with mean λ,

Pλ(T = n) =
(λn)n−1

n!
e−λn (n ≥ 1).

Proof. By Theorem 3.3

Pλ(T = n) =
1

n
P (X1 +X2 + . . .+Xn = n− 1).
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Since (Xi)
n
i+1 are independently Poisson distributed with mean λ the equation can be

rewritten by

1

n
P (X1 +X2 + . . .+Xn = n− 1) =

1

n
P (X̂ = n− 1),

where X̂ is a Poisson distributed random variable with mean nλ. Thus

P (T = n) =
1

n

(nλ)n−1e−λn

(n− 1)!
=

(λn)n−1

n!
e−λn (n ≥ 1).

For a Possion branching process conditioned on extinction we formulate the following
theorem.

Theorem 3.6 (Duality Principle for Poisson Branching Process). The branching process
with Poisson distributed o�spring with mean λ conditioned on extinction has the same
distribution as a branching process with Poisson o�spring distribution with mean µ = ηλ.

Proof. Let pk be the o�spring distribution of a Poisson branching process with mean λ.
Then the conjugate pair of pk is given by

p′k = ηk−1pk = ηke−λ(η−1)e−λ
λk

k!
= e−λη

(λη)k

k!

since pk is Poisson distributed and η = eλ(η−1), obtained from Theorem 3.2. The o�spring
distribution p′k is again Poisson distributed with mean µ = ηλ. Applying Theorem 3.4
completes the prove.

4 Evolution of a Binomial Undirected Random Graph

To use the results of Erd®s and Rényi described in Section 3.2, we have to reformulate the
�ve phases to apply them to the binomial random graph model. Thus, instead of �nding a
threshold for the number of edges of the graphM(n), we try to �nd a threshold for the edge
probability p(n). Since we consider large random graphs where n → ∞, we assume the
uniform random graph Gu(n,M(n)) to have the same behaviour as the binomial random

graph Gb(n, p(n)) with p(n) = M(n)

(n2)
. Here, p(n) is equal to the ratio between the number

of edges in the graph and the total number of possible edges. Theorem 4.1, as stated in
[5, p. 8-9], con�rms this assumption.

Theorem 4.1 (Equivalence of Uniform Random Graph and Binomial Random Graph).
Let Gb(n, p) be a binomial random graph and let Gu(n,M) be a uniform random graph.
Let 0 ≤ p0 ≤ 1, s(n) = n

√
p(1− p)→∞ and ω(n)→∞ arbitrarily slowly as n→∞.

(i) Suppose that P is a graph property such that P (Gu(n,M) ∈ P)→ p0 for all

m ∈
[(
n

2

)
p− ω(n)s(n),

(
n

2

)
p+ ω(n)s(n)

]
.

Then P (Gb(n, p) ∈ P)→ p0 as n→∞.

(ii) Let p− = p−ω(n)s(n)/n3 and p+ = p+ω(n)s(n)/n3. Suppose that P is a monotone
graph property such that P (Gb(n, p−) ∈ P)→∞ and P (Gb(n, p+) ∈ P)→ p0. Then
P (Gu(n,M) ∈ P)→ p0, as n→∞, where m = b

(
n
2

)
pc.
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Let property P be the property of a graph being in a given Phase. By Section 3.2,
P (Gu(n,M(n)) ∈ P) → 1 when n → ∞ whenever M(n) is in the corresponding range

of the Phase. If we let p(n) = M(n)

(n2)
, we can conclude from the �rst part of Theorem 4.1

that P (Gb(n, p(n)) ∈ P)→ 1 when n→∞. The binomial graph Gb(n, p(n)) with p(n) =
M(n)

(n2)
is almost surely in the same Phase as the uniform random graph Gu(n,M(n)). By

rephrasing the thresholds for the di�erent Phases using this result, we obtain:

Phase I : p(n) ∼ o(n−1) ,

Phase II : p(n) ∼ λ
n with 0 < λ < 1 ,

Phase III : p(n) ∼ λ
n with λ > 1 ,

Phase IV : p(n) ∼ c lognn with c ≤ 1 ,

Phase V : p(n) ∼ ω(n) lognn with ω(n)→∞ .

We can classify each of the scaling regimes for p(n) in one of the phases.

p(n) = c with 0 < c < 1: Let w(n) = c n
logn . As n → ∞, w(n) → ∞. Now, p(n) can be

rewritten as p(n) = w(n) lognn and thus the graph G(n, p) with p = c will be in the
regime of Phase V.

p(n) = c logn
n with 0 < c ≤ 1: A graph G(n, p) with p(n) = c logn

n will be in Phase IV.

p(n) = λ
n with 0 < λ < 1: The graph of G(n, p) with p = λ

n , 0 < λ < 1 will behave like a
graph of Phase II

p(n) = λ
n with λ > 1: The graph of G(n, p) with p = λ

n , λ > 1 will behave like a graph of
Phase III.

Using this results and the phases described in [3], a graph G(n, p) with p = c will be
almost surely connected and will consist of one giant component. A graph G(n, p) with
p(n) = c logn

n and c ≤ 1 contains one giant component and a few isolated points. For a

graph G(n, p) with p = λ
n and 0 < λ < 1, almost all vertices will be part of components

which are trees. If λ > 1 the structure of the graph changes abruptly. There will be one
giant component and some small trees. The giant component will contain about G(λ)n
vertices where

G(λ) = 1− 1

λ

∞∑
k=1

kk−1

k!
(λe−λ)k . (1)

Consequently, the fraction of vertices lying in the giant component will be equal to G(λ).
The other vertices will lie in small trees.

5 Probability of Always Red in Undirected Random Graph

In this section the probabilities of Always Red for a coloured binomial undirected random
graph, G(n, p), in di�erent regimes are computed. That is, starting at a vertex S, what
is the probability that all possible paths starting at S will contain only red vertices when
the number of vertices of the random graphs tends to in�nity. Aim is to check a possible
Zero-One law for Linear Temporal Logic. If the probability of the Always Red statement
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equals zero or one in all cases, we cannot draw any conclusions about a Zero-One law.
If, however, the probability is strictly bounded by zero and one, a counterexample of a
Zero-One law for Linear Temporal Logic is found. We know that a random graph passes
through di�erent phases as one increases the edge probability. We therefore believe that
the Always Red statement occurs with di�erent probabilities in di�erent random graph
regimes. We will compute the probability of Always Red for di�erent edge probabilities.
We will use the results of Section 4 to determine the behaviour of a random graph in the
di�erent regimes. We will start with the p(n) = c case, followed by the p(n) = c log(n)

n and

p(n) = λ
n , 0 < λ < 1 and λ > 1 cases. For the p(n) = c and the p(n) = c log(n)

n case we

will �nd analytical results of the Always Red property. For the p(n) = λ
n with 0 < λ < 1

and λ > 1 regimes we will �nd bounds for the Always Red probability as well compute
numerical results. The Always Red statement is de�ned as in De�nition 2.7. The vertex
colouring is de�ned as in De�nition 2.4, where q(n) is the probability of a vertex being red.
Let S denote the starting vertex, chosen at random.

5.1 Always Red in coloured undirected random graph G(n, p)
with p(n) = c, 0 < c < 1

A random graph with edge probability p(n) = c is almost surely connected. A typical
graph with colour probability q = 0.3 can be found in Figure 2. From any starting vertex
S all other vertices can be reached. Since the property Always Red fails if we can �nd a
path with just one blue vertex, all vertices of the graph have to be red for the property to
hold. Since we consider graphs with an in�nite number of nodes, the probability of having
only red vertices will tend to zero. We expect the probability of Always Red to tend to
zero. This corresponds to the results found in Theorem 5.1.

Figure 2: Coloured Binomial Undirected Random Graph G(n, p) with n = 50,
p = 0.7 and colour probability q = 0.3. The Graph is an example of an undirected
random graph with edge probability p = c, 0 < c < 1.

Theorem 5.1 (Always Red in coloured undirected random graph G(n, p) with p(n) = c).
For a coloured undirected random graph, G(n, p), with colour probability q ∈ (0, 1) and edge
probability p(n) = c, c ∈ (0, 1),

P (S � � red) = 0 when n→∞ .

Proof. The graph G(n, p) is connected with high probability, as described in Section 4.
That is

P (G(n, p) is conncected) = 1 for n→∞
P (G(n, p) is not conncected) = 0 for n→∞ .

10



By conditioning on G(n, p) being connected

P (S � � red) = P (S � � red|G(n, p) is conncected)P (G(n, p) is conncected )

+ P (S � � red|G(n, p) is not conncected)P (G(n, p) is not conncected)

= P (S � � red|G(n, p) is conncected) for n→∞ .

If G(n, p) is connected, all states can be reached from a starting vertex S. Thus, if there
is at least one blue state we can �nd a path for which the Always Red property does not
hold. The property only holds if there are only red vertices. So

P (S � � red|G(n, p) is conncected) = P (∀ v : v is red) = qn

which converges to zero as n tends to in�nity, since q < 1. Concluding,

P (S � red) = 0 for n→∞ .

5.2 Always Red in coloured undirected random graph G(n, p)
with p(n) = c logn

n
, 0 < c ≤ 1

When p = c lognn with 0 < c ≤ 1, the graph consist of one giant connected component and
some isolated points. A typical graph in this regime with colour probability q = 0.3 can be
found in Figure 3. If S lies in the giant connected component, we expect a equal behaviour
of the Always Red statement as in the p(n) = c edge probability regime. If S is an isolated
point, the probability of the Always Red property to hold is equal the colour probability
q. Either, S itself is red, in which case the property holds, or S is blue, in which case the
property fails. Of interest is with what probability S is an isolated point. For the Always
Red property is this regime we state Theorem 5.2.

Figure 3: Coloured Binomial Undirected Random Graph G(n, p) with n = 50,
p = 0.05 and colour probability q = 0.3. The Graph is an example of an undirected
random graph with edge probability p = c log(n)n with 0 < c < 1.

Theorem 5.2 (Always Red in coloured undirected random graphG(n, p) with p(n) = c logn
n ).

For a coloured undirected random graph, G(n, p), with colour probability q ∈ (0, 1) and edge
probability p(n) = c lognn , 0 < c ≤ 1,

P (S � � red) = 0 when n→∞ .

11



Proof. The graph is with probability tending to one a graph with one giant component
and some isolated points. Thus, S lies either in the giant component, denoted by Cmax, or
is an isolated point. By conditioning on S lying in the giant component

P (S � �red) =P (S � �red|S ∈ Cmax)P (S ∈ Cmax)

+ P (S � �red|S 6∈ Cmax)P (S 6∈ Cmax) .

The vertex S is an isolated point if d(S) = 0. Since the vertex degree of S is binomial
distributed with d(S) ∼ Bin(n − 1, p(n)), the probability of S being an isolated vertex
decreases with the number of vertices. Indeed P (d(S) = 0) = (1− c logn

n )n and P (d(S) =
0)→ 0 as n→∞. We therefore claim that the number of isolated points will be of order
O(1) when n → ∞. The number of vertices in the giant component is of order n − O(1).
We can conclude

P (S ∈ Cmax) =
n−O(1)

n
= 1 ,

P (S 6∈ Cmax) =
O(1)

n
= 0

when n tends to in�nity. Furthermore, if S lies in the giant component, all vertices in the
giant component have to be red for the Always Red statement to hold. If S is an isolated
point, only S needs to be red for the statement to hold. We conclude,

P (S � �red|S ∈ Cmax) = qn−O(1) ,

P (S � �red|S 6∈ Cmax) = q .

Thus,

P (S � �red) = qn−O(1) = 0 for n→∞ .

5.3 Always Red in coloured undirected random graph G(n, p)
with p = λ

n
, 0 < λ < 1

A graph with edge probability p(n) = λ
n , 0 < λ < 1, contains components which are

trees. See Figure 4 for a random graph in this regime. In this graph regime we expect the
probability of the Always Red property to di�er signi�cant from the previous described
random graph regimes. The random graph contains no giant component. Furthermore, we
expect all components to have a �nite number of vertices, even though the total number
of vertices will tend to in�nity. The probability of all vertices in the component of S are
red, and the Always Red property holds, will therefore be greater than zero.

Figure 4: Coloured Binomial Undirected Random Graph G(n, p) with n = 50,
p = 0.015 and colour probability q = 0.3. The Graph is an example of an undirected
random graph with edge probability p = λ

n , λ = 0.75.
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We will calculate the probability that all the vertices in the component of S are red. Note
that the set of reachable vertices from S and the set of vertices in the component of S are
equivalent. Let C(S) denote the component of S. Then,

P (S � � red) = P (∀ v ∈ C(S) : v is red).

We will calculate the above probability by conditioning on the component size of S, denoted
by |C(S)|. The components size can vary from 1, in case S is an isolated point, to n, in
case the whole graph is connected.

P (S � � red) =
n∑
i=1

P (∀ v ∈ C(S) : v is red | |C(S)| = i) P (|C(S)| = i). (2)

Clearly, P (∀ v ∈ C(S) : v is red | |C(S)| = i) = qi. To calculate the component size |C(S)|,
we approximate the random graph by a branching process, since the graph will look like
a collection of trees with high probability. Every vertex has with probability p(n) = λ

n an
edge to each of the other n − 1 vertices. Thus, the degree of every vertex vi is binomial
distributed with

d(vi) ∼ Bin(n− 1, p) .

Since the binomial distribution can be approximated by the Poisson distribution when n
tends to in�nity, we say that the degree of every vertex is distributed in the limit by

d(vi) ∼ Poi(λ) .

Since S lies in a tree, we claim that the probability P (|C(S)| = i) is equal to the probability
of a branching process with Poisson o�spring distribution with mean λ has a progeny of i.
Thus, by using the results form section 3.3, Theorem 3.3,

P (|C(S)| = i) =
(λi)i−1

i!
e−λi (i ≥ 1) .

The total probability, as given in equation (2), equals

P (S � �red) =
n∑
i=1

qi
(λi)i−1

i!
e−λi

=
n∑
i=1

ii−1

i!

1

λ
(λq)ie−λi . (3)

Equation (3) gives the probability for the limiting object. We will continue by giving a sim-
pler approximation for this equation to gain more insight in it's value and it's dependency
on λ and q. To approximate equation (3) we use Stirling's inequality given in Lemma 5.3.
We obtained Lemma 5.3 by simplifying the error bounds given in [7].

Lemma 5.3 (Stirlings Inequality). For n ∈ N \ {0}, Stirling's inequality is given by

√
2πnn+

1
2 e−n ≤ n! ≤ nn+

1
2 e−n+1 . (4)

Proof. By the error bounds given in [7] we know

n! =
√

2πnn+
1
2 e−n · ern , where

1

12n+ 1
< rn <

1

12n
.
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It remains to prove that

1 < ern <
e√
2π

⇐⇒ 0 < rn < 1− log(
√

2π) ,

by monotonicity of the exponential function. Clearly, rn > 0 for all n, wherefore the
correctness of the lower bound is proven. For the upper bound observe that the maximum
value of rn is given at n = 1, and thus,

rn < r1 =
1

12
< 1− log(

√
2π) ,

which proves the upper bound.

By substituting the results of Lemma 5.3 into equation (3) we can bound the probability
by

n∑
i=1

ii−1

ii+
1
2 e−i+1

1

λ
(λq)ie−λi ≤ P (S � �red) ≤

n∑
i=1

ii−1
√

2πii+
1
2 e−i

1

λ
(λq)ie−λi .

This can be rewritten as

1

eλ

n∑
i=1

e−Iλ,q ·i

i
3
2

≤ P (S � �red) ≤ 1√
2πλ

n∑
i=1

e−Iλ,q ·i

i
3
2

, (5)

where we de�ne the variable Iλ,q by Iλ,q = λ − 1 − log(λq). Observe that Iλ,q is positive
for all 0 < q < 1 and λ > 0. The summation in equation (5) for n → ∞ is equal to the
polygarithm function

Lis(z) =
∞∑
i=1

zi

is
,

where z = e−Iλ,q and s = 3
2 . According to [2] the polygarithm function has a integral

representation of

Lis(z) =
z

Γ(s)

∫ ∞
0

ts−1

et − z
dt (6)

for all z, except z lying on the segment of the real axis from 1 to ∞. Since, in our case,
z = e−Iλ,q is bounded by zero and one, 0 < e−Iλ,q < 1, the integral representation is valid
and the summation equals

Li 3
2
(e−Iλ,q) =

e−Iλ,q

Γ(1.5)

∫ ∞
0

t0.5

et − e−Iλ,q
dt . (7)

Here, Γ(s) is the Gamma-function with Γ(1.5) =
√
π
2 . With equation (5), equation (7) and

Iλ,q = λ− 1− log(λq) we can formulate following Lemma:

Lemma 5.4 (Always Red in coloured undirected random graph G(n, p) with p(n) = λ
n ,

0 < λ < 1). For a coloured undirected random graph, G(n, p), with colour probability
q ∈ (0, 1) and edge probability p(n) = λ

n , 0 < λ < 1,

2q√
π
e−λ

∫ ∞
0

√
t

et − λqe1−λ
dt ≤ P (S � �red) ≤ 2q√

2π
e1−λ

∫ ∞
0

√
t

et − λqe1−λ
dt . (8)

Observe that the upper and lower bound only di�er by a factor of k = e√
2π
≈ 1.0844,

obtained by Stirling's approximation. We cannot solve the integral of equation (8) ana-
lytically. Therefore, we will calculate the integral numerically as well �nd an analytical
bound for the integral.
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Numerical Solution of Equation (8) To solve equation (8) numerically, we use Mat-

lab's implemented integral function. Graphs of the numerical results of equation (8) can
be found below. The zero and one bounds are displayed blue. The Lower bound is displayed
green, the upper bound is displayed red.

Figure 5: Numercial Results for P (S � � red) in the coloured undirected random
graph, G(n, p), with p = λ

n for 0 < λ < 1. The Zero and One bounds are displayed
blue. The lower bound is displayed green, the upper bound is displayed red.

The probability is increasing with q. As one can conclude from the numerical data, both,
upper and lower bound are larger than zero for all values of q and λ. The lower bound
does not exceed one. The upper bound, however, exceeds one for large values of q.

Analytical Solution of Solving Equation (8) We will bound the integral of equa-

tion (8),
∫∞
0

√
t

et−e−Iλ,q
dt, where Iλ,q = λ − 1 − log(λ, q). To estimate the integral we use

Taylor expansion on 1
et−e−λ,q . For convenience let x = et. Observe that x > 1. Then,

1

x− e−Iλ,q
=

1

x

1

(1− e
−Iλ,q
x )

=
1

x

∞∑
j=0

e−jIλ,q

xj
(9)

since 0 < e
−Iλ,q
x < 1. For the lower bound observe that

1

x

∞∑
j=0

e−jIλ,q

xj
=

1

x
(1 +

e−Iλ,q

x
+
e−2Iλ,q

x2
· · · ) > 1

x

since all terms of the sum are positive. We will estimate the lower bound of the integral
by ∫ ∞

0

√
t

et − e−Iλ,q
dt >

∫ ∞
0

√
t

et
dt . (10)

For the upper bound observe that the tail of the sum of equation 9 consist of smaller order

terms, since e
−Iλ,q
x < 1. Moreover, ( e

−Iλ,q
x + e

−2Iλ,q

x2
+ e

−3Iλ,q

x3
+ · · · ) obtains its maximum

for a minimum value of x. By substituting x = 1, the minimum value of et in t ∈ (0,∞),
we obtain

e−Iλ,q + e−2Iλ,q + e−3Iλ,q + · · · = e−Iλ,q(1 + e−2Iλ,q + e−3Iλ,q + · · · ) = e−Iλ,q(
1

1− e−Iλ,q
)

since 0 < e−Iλ,q < 1. Therefore,

1

x− e−Iλ,q
<

1

x
(1 +

e−Iλ,q

1− e−Iλ,q
) =

1

x

1

(1− e−Iλ,q)
.
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We will estimate the upper bound of the integral by∫ ∞
0

√
t

et − e−Iλ,q
dt <

1

(1− e−Iλ,q)

∫ ∞
0

√
t

et
dt . (11)

By substituting this bounds in inequality (8) and solving the integral
∫∞
−

√
t

et , we obtain

2√
π

1

eλ
e−Iλ,q

∫ ∞
0

√
t

et
dt ≤ P (S � � red) ≤

√
2

π

1

λ
e−Iλ,q

1

(1− e−Iλ,q)

∫ ∞
0

√
t

et
dt ,

e−Iλ,q

eλ
≤ P (S � � red) ≤ 1√

2π

1

λ

1

(eIλ,q − 1)
.

By substituting Iλ,q = λ− 1− log(λq) we obtain

q

eλ
< P (S � � red) <

1√
2π

q

eλ−1 − λq
.

First observe that the lower bound of P (S � � red) is larger than zero for all λ > 0 and
q > 0. However, for particular values of λ, it is possible for the upper bound to exceed
one. The upper bound for P (S � � red) is smaller than one whenever

1√
2π

1

eIλ,qλ− λ
< 1 ⇐⇒ 0 < eλ − eqλ− eq√

2π
.

Now let

fq(λ) = eλ − eqλ− eq√
2π

.

From the �rst and second derivative of fq(λ) we can conclude that fq(λ) has a local
minimum at λ = log(eq). From the de�nition of fq(λ) we can conclude that

fq(log(eq)) = eq(1− log(eq)− 1√
2π

)

which is larger than zero whenever e
− 1√

2π ≈ 0.67 < q . Whenever the local minimum of
fq(λ) is greater than zero, fq(λ) is greater than zero for all values of 0 < λ < 1. Thus,

0 < eλ − eqλ− eq√
2π

whenever e
− 1√

2π < q .

We can conclude that

1

eλ
< P (S � � red) <

1√
2π

q

eλ−1 − λq
for 0 < λ < 1 . (12)

Furthermore

0 < P (S � � red) < 1 for 0 < λ < 1 and e
− 1√

2π < q . (13)

Observe that these results correspond to the numerical results found in Figure 5 since the
lower bound is always greater than zero and the upper bound only exceeds one for large
values of q.

Using the results stated in equation (12) and Lemma 5.4 we formulate the following The-
orem.
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Theorem 5.5 (Always Red in coloured undirected random graph with p(n) = λ
n with

0 < λ < 1). For a coloured undirected random graph G(n, p) with edge probability p(n) = λ
n

with 0 < λ < 1 and colour probability q ∈ (0, 1),

1

eλ
< P (S � � red) <

1√
2π

q

eλ−1 − λq
when n→∞ .

Moreover, 0 < P (S � � red) for all values of q, and 0 < P (S � � red) < 1 for e
− 1√

2π < q.

Theorem 5.5 is a powerful result in investigating a possible the Zero-One law. Theorem 5.5
contradicts a possible Zero-One law for at least some values of λ and q. Moreover, as, we
can conclude from the numerical results presented earlier this section, the Zero-One law
does not hold for almost all values of q and λ since the probability of P (S � � red) is strictly
bounded by zero and one. Only for large values of q we cannot draw any conclusions.

5.4 Always Red in coloured undirected random graph G(n, p)
with p = λ

n
, λ > 1

When p(n) = λ
n with λ > 1, a random graph G(n, p) consists almost surely of one giant

component and some small trees. Figure 6 shows a typical graph in this regime. For
the probability of Always Red we assume to �nd similar results as for 0 < λ < 1 values
whenever S is in one of the trees. When S is in the giant component, we expect the
probability of Always Red to occur to tend to zero when the number of nodes tend to
in�nity since the number of nodes in the giant component will tend to in�nity too.

Figure 6: Coloured Binomial Undirected Random Graph G(n, p) with n = 50,
p = 0.03 and colour probability q = 0.3. The Graph is an example of an undirected
random graph with edge probability p = λ

n , λ = 1.5.

For λ > 1, the starting vertex S lies either in one giant connected component or in a
small tree. We will calculate P (S � �red) by conditioning on whether S lies in the giant
component or not. Let Cmax denote the giant component. Then,

P (S � � red) =P (S � � red|S ∈ Cmax) P (S ∈ Cmax)

+ P (S � � red|S 6∈ Cmax) P (S 6∈ Cmax) .

Whenever S lies in the giant component the statement (S � � red) will only hold if all
vertices in the giant component are red. As described in Section 4, we know that the number
of vertices in the giant component equals G(λ)n, where G(λ) is given in equation (1). The
number of vertices in the giant component grows linearly with the number of vertices of
the graph and the number of vertices in the giant component tends to in�nity whenever
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the number of vertices of the graph tends to in�nity. The probability of all vertices in the
giant component being red, will tend, as in the p(n) = c case, to zero as n→∞. Thus

P (S � � red) = P (S � � red|S 6∈ Cmax) P (S 6∈ Cmax) . (14)

For the probability P (S 6∈ Cmax) we state the following lemma:

Lemma 5.6 (Vertices outside of the Giant Component in an Undirected Random Graph
G(n, p) with p(n) = λ

n and λ > 1). Given an undirected random graph G(n, p) with p(n) =
λ
n and λ > 1 where n→∞. The probability for a vertex, v, chosen at random, to be outside
of the giant component is bounded by

2e−λ√
π

∫ ∞
0

t0.5

et − λe1−λ
≤ P (v 6∈ Cmax) ≤

√
2e1−λ

π

∫ ∞
0

t0.5

et − λe1−λ
. (15)

Proof. By [3] we know that the fraction of vertices inside of the giant component equals

G(λ) = 1− 1

λ

∞∑
k=1

kk−1

k!
(λe−λ)k ,

and accordingly, the fraction of vertices outside of the giant component equals

P (S 6∈ Cmax) =
1

λ

∞∑
k=1

kk−1

k!
(λe−λ)k . (16)

Using Stirling's inequality stated in Lemma 5.3, we can rewrite equation (16) by

1

eλ

∞∑
k=1

(λe1−λ)k

k
3
2

≤ P (v 6∈ Cmax) ≤ 1√
2πλ

∞∑
k=1

(λe1−λ)k

k
3
2

.

We will make use of the integral representation of the poligarithm function Lis(z) =∑∞
i=1

zi

is given in equation (6) for s = 3
2 and z = λe1−λ. The integral representation of the

polygarithm function is valid since λe1−λ < 1. By substituting the integral representation
of the polygarithm function, we obtain the required result:

2e−λ√
π

∫ ∞
0

t0.5

et − λe1−λ
≤ P (v 6∈ Cmax) ≤

√
2e1−λ

π

∫ ∞
0

t0.5

et − λe1−λ
.

When S is outside of the giant component, the component of S can be represented by a
branching process with mean o�spring λ conditioned on extinction. With Theorem 3.4,
this equals a branching process with mean o�spring µ = λη , where η is the extinction
probability of a branching process with mean o�spring λ. Observe that 0 < µ < 1 and
a branching process with Poisson o�spring distribution µ is described in Section 5.3. By
Theorem 5.5

2q√
π
e−ηλ

∫ ∞
0

√
t

et − ηλqe1−ηλ
dt ≤ P (S � �red|S 6∈ Cmax)

≤ 2q√
2π
e1−ηλ

∫ ∞
0

√
t

et − ηλqe1−ηλ
dt . (17)
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To compute the probability P (S � � red), we substitute equation (17) and the result of
Lemma 5.6 into equation (14) and obtain

(
2q√
π
e−ηλ

∫ ∞
0

√
t

et − ηλqe1−ηλ
dt)(

2e−λ√
π

∫ ∞
0

t0.5

et − λe1−λ
dt) ≤ P (S � �red)

≤ (
2q√
2π
e1−ηλ

∫ ∞
0

√
t

et − ηλqe1−ηλ
dt)(

√
2e1−λ

π

∫ ∞
0

t0.5

et − λe1−λ
dt)

By simplifying aboves equation we can state follwoing Lemma:

Lemma 5.7 (Always Red in coloured undirected random graph G(n, p) with p(n) = λ
n ,

λ > 1). For a coloured undirected random graph, G(n, p), with colour probability q ∈ (0, 1)
and edge probability p(n) = λ

n , λ > 1,

4qe−λ−ηλ

π
(

∫ ∞
0

t0.5

et − λe1−λ
dt)(

∫ ∞
0

t0.5

et − ηλqe1−ηλ
dt) ≤ P (S � �red)

≤ 2qe2−λ−ηλ

π2
(

∫ ∞
0

t0.5

et − ηλqe1−ηλ
dt)(

∫ ∞
0

t0.5

et − λe1−λ
dt) as n→∞ .

Here, η is the extinction probability of a Poisson Branching Process with mean o�spring λ.

To �nd η, the extinction probability of a branching process with mean o�spring λ, we use
the relation given in Theorem 3.2.

η = GX(η) , (18)

where GX(s) is the probability generating function of the o�spring distribution X. Since
the o�spring distribution is a Poisson distribution with parameter λ, η is given by the
smallest solution of

η = eλ(η−1) .

We will obtain numerical results of the inequality in Lemma 5.7. To �nd η we will determine
the roots of

f(x) = eλ(x−1) − x

in the interval (0, 1) numerically, using Matlab's fzero function. The integrals are deter-
mined numerically using Matlab's integral function. Plots of the numerical results can
be found in Figure 7. The zero and one bound are displayed blue, the upper bound red
and the lower bound green. When λ increases, the probability approaches zero, but never
reaches zero. This seems logical since the large connected component will grow when λ
increases and the probability of S lying in the connected component will grow. If S lies in
the connected component, the probability of Always Red will tend to zero when the num-
ber of states tend to in�nity, since the probability of a reachable blue state will increase to
one. For small λ and large q the probability of always red tends to one, where the upper
bound exceeds one. For large λ the probability decreases with q. When λ is small, the
probability of S lying in a small component grows. When S lies in a small component
with �nite reachable states, it is clear that the probability of always red increases with the
probability of a state being red. In conclusion, P (S � �red) with p = λ

n , λ > 1 does not
obey the Zero-One law for almost all values of λ and q. For λ close to one and large q we
cannot draw any conclusions since P (S � �red) could be equal to one.
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Figure 7: Numercial Results for P (S � � red) in the coloured undirected random
graph, G(n, p), with p = λ

n , λ > 1. The Zero and One bounds are displayed blue.
The lower bound is displayed green, the upper bound is displayed red.

As a result of the numerical results found in this section we will state the following theorem.

Theorem 5.8 (Always Red in coloured undirected random graph with p(n) = λ
n , λ > 1).

For a coloured undirected random graph G(n, p) with edge probability p(n) = λ
n , λ > 1 and

colour probability q ∈ (0, 1), there exists values for λ and q, such that

P (S � � red) 6= 0 and

P (S � � red) 6= 1 as n→∞ .

The theorem states that there exist values of λ and q that refute a possible Zero-One law.

6 Probability of Always Red in Directed Random Graph

In the following section, let G(n, p) be a coloured binomial directed random graph with
colour probability q(n), as described in De�ntion 2.2. The probability of the Always Red
statement will be computed for di�erent types of edge probabilities. The di�erence with
the previous section is the directedness of the random graph. We know that a random
graph passes through di�erent phases as one increases the edge probability. We therefore
will consider di�erent edge probabilities to determine the Always Red statement. Again,
we will start with the p(n) = c edge probability case, followed by the p(n) = log(n)

n and

p(n) = cλ
n for 0 < λ < 1 and λ > 1 cases. For the p(n) = c case we will �nd analytical

results of the Always Red property. The p(n) = log(n)
n , p(n) = cλ

n with 0 < λ < and λ > 1
cases will need further investigation since we were not able to �nd any speci�c results in
this article. However, we will try to give insight these regimes and formulate conjectures
about the probability of the Always Red statement.

6.1 Always Red in coloured directed random graph G(n, p)
with p(n) = c, 0 < c < 1

To get a better understanding of a directed random graph in this regime we will �rst state
a theorem about strong connectivity in directed random graphs as stated in [6].

Theorem 6.1 (Strong Connectivity in Directed Binomial Random Graphs). Given a bi-
nomial random graph G(n, p). For any �xed c ∈ R, if p = p(n) is a function of n, then
p̂ = logn+c

n is a threshold for strong connectivity.

The proof of this theorem can be found in [6]. The theorem states that

lim
n→∞

P (G(n, p) is strongly connected) =

{
0 if p� p̂

1 if p� p̂ .
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By Theorem 6.1, a directed random graph G(n, p) with p(n) = c is strongly connected.
Since we then, again, consider a giant connected component, we assume the Always Red
statement to occur almost never. Figure 8 shows a typical graph in this regime.

Figure 8: Coloured Binomial Directed Random Graph G(n, p) with n = 50,
p = 0.7 and colour probability q = 0.3. The Graph is an example of a directed
random graph with edge probability p = c.

For the Always Red property in the p(n) = c regime, we will prove the following theorem.

Theorem 6.2 (Always Red in coloured directed random graph G(n, p) with p(n) = c).
For a coloured directed random graph, G(n, p), with colour probability q ∈ (0, 1) and edge
probability p(n) = c, c ∈ (0, 1),

P (S � � red) = 0 when n→∞ .

Proof. With Theorem 6.1, we can conclude that a directed graph with p(n) = c is strongly
connected with high probability. That means, all vertices can be reached from a starting
vertex S and the Always Red property does only hold if there are only red states.

P (S � �red) = P (∀ v : v is red) = qn

which tends to zero as n tends to in�nity, since q < 1.

6.2 Always Red in coloured directed random graph G(n, p)

with p(n) = c log(n)

n
, 0 < c ≤ 1

Figure 9: Coloured Binomial Directed Random Graph G(n, p) with n = 50,
p = 0.05 and colour probability q = 0.3. The Graph is an example of a directed
random graph with edge probability p = c log(n)

n .
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As one can see in Figure 9, the graph in the regime of p = c log(n)n consists of one giant,
weakly connected component. However, some of the vertices have only outgoing edges and
cannot be reached from any other vertex. Consider this vertices to be isolated vertices.
then, the graph consists, as in the undirected case, of some isolated vertices and one giant
component.
Since p(n) = c log(n)n is in the regime of the threshold given in Theorem 6.1, we cannot
conclude whether the graph G(n, p) is strongly connected or not. Neither can we make
statements about strong connectivity in the giant component. We can only conclude that
the the giant connected component is weakly connected. However, by Section 3.2, we know
that the average degree of a vertex is given by d̄ = c log n. Thus, the average in-degree, as
well the average out-degree grows with the number of nodes. Since this number grows, we
expect the number of reachable vertices, from a starting vertex S in the giant component,
to tend to in�nity when the number of nodes of the graph tends to in�nity. We formulate
this assumption in the following conjecture.

Conjecture 6.3 (Number of reachable vertices in a directed random graph G(n, p) with

p(n) = c log(n)n ). Given a directed random graph, G(n, p) with edge probability p(n) = c log(n)n ,
0 < c ≤ 1. Let the giant component be the set of all vertices with at least one incoming
edge. The number of reachable vertices from any starting vertex v in the giant component
of the graph tends to in�nity, whenever the number of nodes of the graph tends to in�nity.

Using this conjecture we will compute the probability of the Always Red statement.

Conjecture 6.4 (Always Red in coloured directed random graphG(n, p) with p(n) = c logn
n ).

For a coloured directed random graph, G(n, p), with colour probability q ∈ (0, 1) and edge
probability p(n) = c lognn , 0 < c ≤ 1,

P (S � � red) = 0 when n→∞ .

Proof. We divide the graph into two di�erent sets. One set contains all the vertices with
no incoming edge. These vertices are called isolated points. The other set, named the giant
component, contains all other vertices and is denoted by Cmax. We condition on whether
S lies in the giant component, denoted by Cmax, or is an isolated point.

P (S � �red) =P (S � �red|S ∈ Cmax)P (S ∈ Cmax)

+ P (S � �red|S 6∈ Cmax)P (S 6∈ Cmax) .

Since the in-degree of a vertex is binomial distributed with din(vi) ∼ Bin(n− 1, p(n), the
number of isolated vertices decreases with the number of vertices. Indeed, P (din(vi) =
0) = (1− c logn

n )n → 0 as n→∞. We claim that the number of isolated points will be of
order O(1) when n→∞. We can conclude

P (S ∈ Cmax) =
n−O(1)

n
= 1

P (S 6∈ Cmax) =
O(1)

n
= 0

when n tends to in�nity. According to Conjecture 6.3, an in�nite amount of vertices can
be reached if S is part of the giant component. The property holds if all vertices reachable
from S are red. Since an in�nite amount of vertices can be reached, the property of all
vertices being red tends to zero. In conclusion,

P (S � �red) = 0 when n→∞ .
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6.3 Always Red in coloured directed random graph G(n, p)
with p = λ

n
, 0 < λ < 1

Figure 10 shows a typical directed random graph in the p(n) = λ
n , 0 < λ < 1, regime.

One can see one weakly connected component and some small trees and isolated points.
The undirected graph in this regime consists exclusively of trees and a weakly connected
component seems unlikely at �rst. If one, however, considers the possible paths from any
vertex in the graph, one comes to the conclusion that the graph still has a treelike structure.
We will elaborate this thought further.

Figure 10: Coloured Binomial Directed Random Graph G(n, p) with n = 50,
p = 0.015 and colour probability q = 0.3. The Graph is an example of a directed
random graph with edge probability p = λ

n with λ = 0.75.

Every vertex i in a directed graph has incoming and outgoing edges with degrees distributed
independently with

Incomming Degree: din(vi) ∼ Bin(n− 1, p(n))

Outgoing Degree: dout(vi) ∼ Bin(n− 1, p(n)) .

For p(n) = λ
n , this can be approximated in the limit by a Poisson distribution with

din(vi) ∼ Poi(λ) ,

dout(vi) ∼ Poi(λ) .

Assume we want to explore the random graph, starting at vertex S. Starting at S, we only
consider outgoing edges of S to reach it's k neighbours. In each of it's k neighbours, we
again consider only outgoing edges to investigate new vertices. Continuing this step till
no more new vertices can be found, equates to exploring all reachable vertices starting at
vertex S. Observe that we only used outgoing edges to explore the graph. The distribution
of outgoing edges is equal to the distribution of edges in a undirected random graph in
the same regime. The number of reachable vertices from a starting vertex S in a directed
random graph in the p = λ

n , 0 < λ < 1, regime is equal to the number of reachable vertices

in a undirected random graph in the p = λ
n , 0 < λ < 1, regime. We assume the Always

Red statement to hold with the same probability. Using Theorem 5.5 we formulate the
following conjecture:

Conjecture 6.5 (Always Red in coloured directed random graph with p(n) = λ
n , 0 < λ < 1).

For a coloured directed random graph G(n, p) with edge probability p(n) = λ
n , 0 < λ < 1,

and colour probability q ∈ (0, 1),

1

eλ
< P (S � � red) <

1√
2π

q

eλ−1 − λq
when n→∞ .

Moreover, 0 < P (S � � red) for all values of q, and 0 < P (S � � red) < 1 for e
− 1√

2π < q.
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6.4 Always Red in coloured directed random graph G(n, p)
with p = λ

n
, λ > 1

Figure 11 shows a typical random graph in the λ
n , λ > 1, regime. There is one weakly

connected giant component. At �rst sight, the random graph looks nothing like the treelike
structure present in the undirected graph in this regime. However, if we consider all possible
path from a starting vertex S, we recognize the treelike structure.

Figure 11: Coloured Binomial Directed Random Graph G(n, p) with n = 50,
p = 0.03 and colour probability q = 0.3. The Graph is an example of a directed
random graph with edge probability p = λ

n with λ = 1.5.

If we start to explore the graph, starting at a starting vertex S, we assume to �nd exactly
the graph structure present in the undirected graph in the same regime. Then, S lies
either in a tree or in a giant connected component. Using this reasoning we formulate the
following conjecture.

Conjecture 6.6 (Always Red in coloured directed random graph with p(n) = λ
n , λ > 1).

For a coloured directed random graph G(n, p) with edge probability p(n) = λ
n , λ > 1, and

colour probability q ∈ (0, 1), there exists values for λ and q, such that

P (S � � red) 6= 0 and

P (S � � red) 6= 1 when n→∞ .

Proof. We will condition on whether S lies in the giant component or not:

P (S � �red) =P (S � �red|S ∈ Cmax) P (S ∈ Cmax)

+ P (S � �red|S 6∈ Cmax) P (S 6∈ Cmax) .

By Theorem 6.1, we know that the entire graph is not strongly connected and we conclude
that with positive probability, S is outside of the giant component. When S is outside
of the giant component, the component of S can be described as a branching process
conditioned on extinction. The probability ofAlways Red conditioned on S being outside
of the the giant component is described in Conjecture 6.5. This probability is strict greater
than zero. We conclude

P (S � �red) ≥P (S � �red|S ∈ Cmax) P (S ∈ Cmax) > 0 .

The upper bound is harder to compute, since the entire graph is at most weakly connected
by Theorem 6.1. We will try to bound the probability by comparing the directed graph with
it's corresponding undirected graph. Consider the undirected graph G?U (p, n) obtained by
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replacing all the directed edges of a directed random graph GD(p, n) by undirected edges.
Parallel edges will be reduced to one edge. The degree of a vertex vi of the graph G

?
U (p, n)

will hold

d_GD(p, n)(vi) ≤ d_G?U (p, n)(vi) ≤ 2d_GD(p, n)(vi) .

The lower bound is obtained if every edge of vertex i in GD(p, n) has a reversed edge.
The upper bound is obtained if none of the edges has a reversed edge. We claim that the
number of reachable states from a starting vertex S is higher in the graph of G?U (p, n) than
in the graph of GD(p, n), due to the undirectedness of the edges. Subsequent more vertices
can be reached in the graph of G?U (p, n) than in the graph of GD(p, n) and (S � �red) has
a lower probability in the graph of G?U (p, n) than in the graph of GD(p, n). That is

PG_D(S � �red) ≤ PG?_U (S � �red) .

Due to its average degree given by λ ≤ d̄? ≤ 2λ, we claim that the graph G?U (p, n) behaves
like a binomial undirected graph GU (p?, n) with p(n) < p?(n) < 2p(n). The probability of
(S � �red) in GU (p?, n) is given in Section 5.4 and Theorem 5.8 states it is strictly smaller
than one for most of the values of q and λ. Thus,

P (S � �red in GD(n, p)) ≤P (S � �red in G?U (p, n)) < 1 for some values of λ and q.

7 Conclusions

For a binomial undirected random graph, the Always Red statement occurs with probability
tending to zero for as well the p(n) = c as the p(n) = c log(n)

n case, as n tends to in�nity. In
these regimes it is possible that Linear Temporal Logic obeys a Zero-One law. However,
in the p(n) = λ

n regime we found a counterexample for the Zero-One law for most of the
values of λ and q. Theorem 5.5 and Theorem 5.8 disprove a Zero-One law for Linear
Temporal Logic in undirected random graphs. For a binomial directed random graph the
probability of Always Red will tend to zero for the p(n) = c and p(n) = c log(n)

n regimes,

as in the undirected case. A Zero-One law could exist in these regimes. For the p(n) = λ
n

regimes, we do not have any concrete probabilities yet, however, we have reasons to accept
the probability of Always Red to be strictly bounded by zero and one for most values of
λ and q, as stated in Conjecture 6.5 and Conjecture 6.6. We therefore assume the Always
Red statement to be a counterexample for a Zero-One Law for Linear Temporal Logic in
directed random graphs. In conclusion, we disproved a Zero-One law for Linear Temporal
Logic for graphs by counterexample.
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