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Computer-aided diagnosis for CT based clinical triage of ischemic 

and hemorrhagic stroke patients: a deep learning and quantitative 

image analysis approach 
 

 

SUMMARY 

 

Stroke is a sudden development in cerebral disturbance due to insufficient blood supply and imposes one 

of highest and still increasing health related socioeconomic burdens. In ischemic stroke, large vessel 

occlusions caused by thromboembolism, lead to a necrotic core (and salvageable penumbra) in the area 

supplied by the occluded artery. Patients having a small core at the time of imaging potentially benefit 

from endovascular clot removal in addition to administration of anticoagulants. Although computed-

tomography (CT) is the diagnostic imaging workhorse used in emergency radiology, it is not able to detect 

ischemic lesions in the early hours post ictus. Only diffusion weighted imaging (DWI) is highly sensitive 

for critically ischemic brain tissue, but it usually not available for emergency situations. Ideally, DWI 

infarct core lesions should be derivable from conventional non-contrast CT (NCCT) and (multi-phase) 

CT angiography (CTA), the latter potentially capturing the underlying physiology leading to ischemic 

stroke. 

 

The first part of this research describes the development of a deep learning system that is able to predict 

DWI stroke lesions from 3-phase (dual-energy) CT data (NCCT, early and delayed phase CTA). Data 

from 293 patients have been collected and pre-processed. Results showed that predictions from a deep 

learning system based on the DeepMedic architecture reached a better Dice Similarity Coeffcient (DSC) 

with respect to segmented DWI ground truth lesions than a U-Net based architecture. Moreover, the 

predicted infarct core lesion volumes on individual patient basis led to low incorrect EVT decision rates, 

implying that the system might be useful for triaging AIS patients. 

 

In hemorrhagic stroke, blood leaks into the brain parenchyma due to vessel rupture, causing a hematoma 

and leading to serious complications, such as neurologic deterioration, increased intracranial pressure or 

death. Especially hematoma expansion in the early hours post ictus is associated with high mortality, so 

imaging based assessment of likelihood of expansion is important to select the appropriate therapy for 

individual patients (drug treatment or highly invasive craniectomy). Dual-energy CT (DECT) angiography 

allows quantification of iodine in contrast medium, and thus potentially represents the (ongoing) bleeding 

pattern causing hematoma expansion more accurately than conventional single-energy CTA. Recently, 

the I2-score, combining two iodine features, has been proposed as new DECT imaging marker to identify 

expanders with high sensitivity and specificity. Also, quantitative texture features from NCCT readily 

have been described as potential predictive imaging markers to predict hematoma expansion. 

 

The second part of this research explored if a logistic regression model including both iodine and texture 

features is able to outperform the I2-score in predicting hematoma expansion. Processing of NCCT and 

DECT angiography scans of 100 patients (38 training, 62 test) identified 6 iodine and 82 texture features. 

An extensive feature selection and ranking process showed that NCCT texture features performed 

inferior to DECT iodine features. A logistic regression model combining the three highest ranked features 

(two iodine, one texture) was not able to outperform the I2-score on the independent test set. Moreover, 

performance of both the I2-score and the combined iodine-texture model dropped in response to slight 

data modifications in this test set, indicating required validation of existing models. 

 

Future work should focus on standardizing data acquisitions and incorporating clinical parameters in the 

prediction models used in both studies. For the deep learning part on ischemic stroke, a tradeoff between 

number of CTA acquisition phases and the ability to predict DWI lesions or separating the problem in 

smaller sub steps should be investigated. For hemorrhagic stroke, the I2-score should be adjusted and 

validated on a larger cohort to avoid overfitting. Finally, the ability of deep learning to predict hematoma 

expansion based on combined NCCT and DECT images should be explored. 
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1 

Clinical background 

 
troke is a sudden development of disturbance in cerebral function caused by insufficient blood supply. 

In the United States, stroke is responsible from about 1 of every 20 deaths, and worldwide it imposes 

huge socioeconomic burden, being persistently among the top three causes of disability and premature 

mortality. Over 85% of all strokes are ischemic strokes, while only 10% are caused by intracerebral 

hemorrhage (ICH), and another 3% by subarachnoid hemorrhage.1,2 

 

1.1 ACUTE ISCHEMIC STROKE 

In acute ischemic stroke (AIS), reduced regional cerebral blood flow (CBF) leads to a series of functional, 

biochemical and structural tissue changes and eventually to irreversible neuronal death if the tissue is 

not reperfused quickly enough. Affected brain tissue can be classified into several areas. The ischemic 

core represents tissue that is irreversibly damaged. The ischemic penumbra is the area that is functionally 

impaired but structurally intact and, as such, potentially salvageable. Another compartment is called 

benign oligemia, which represents mildly hypoperfused tissue that is not at risk of infarction under normal 

circumstances.3,4  

 

Two major mechanisms are responsible for ischemia in acute stroke: thromboembolism and hemodynamic 

failure. The former usually occurs as a result of embolism or in situ thrombosis, resulting in a large vessel 

occlusion (LVO) that leads to an abrupt disruption in CBF and which is the cause of nearly half of all acute 

ischemic strokes.5 Hemodynamic failure usually occurs with a present arterial occlusion or stenosis, when 

collateral blood supply maintains CBF at levels that are sufficient for preservation of brain function under 

normal circumstances. Ischemia is then triggered by conditions that decrease perfusion proximally to the 

arterial lesion (systemic hypotension or low cardiac output) or increased metabolic demands (fever, 

acidosis).6 Subsequent stroke pathophysiology is extremely complex and involves numerous processes, 

including disruption of the blood-brain barrier (BBB), inflammation, necrosis or apoptosis.7 

 

1.1.1 TREATMENT 

The aim of AIS treatment is to reduce infarct core volume (dead tissue) and to salvage penumbra in the 

first 48 hours after stroke symptom onset by restoring blood flow to non-ischemic levels.3,8 Several 

studies have shown that final infarct volume plays a critical role in long term functional outcome.9,10 

Intravenous thrombolysis with tissue plasminogen activator (IV-tPA) became the first evidence-based 

short-term treatment for improving outcomes after AIS over 20 years ago.11 Since then, multiple 

randomized-controlled trials showed confirming evidence that IV-tPA is effective within 4.5 hours of 

stroke onset.12–14  
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Figure 1.1: Concept of ischemic core and penumbra presented after an occlusion of the of middle cerebral artery (MCA). 

Image adapted from a neuro course presentation by M. Lev.15  

The most serious complication from IV-tPA is ICH. It often occurs in the (necrotic) ischemic core and is 

caused by reperfusion injury. Although most reperfusion hemorrhages are asymptomatic, some can 

provoke neurologic decline and can be fatal. Seet et al. showed that the risk of symptomatic ICH is 5% 

to 6%.16 Others showed that there is a positive correlation between symptomatic ICH risk and baseline 

infarct volume,17,18 indicating that it mainly occurs in patients who already had an unfavorable prognosis. 

The strict therapeutic time window of 4.5 hours limits the efficacy of IV-tPA due to the fact that only a 

moderate rate of reperfusion by clot dissolving could be achieved in patients with an LVO. Moreover, the 

increased risk for ICH when using anticoagulants further decreases the rate of eligible patients for this 

treatment to less than 10% of all ischemic stroke patients reaching the emergency department.19–22 

 

Although up until 2013 IV-tPA has been shown the only proven treatment to be effective in AIS,23 intra-

arterial thrombolysis (IAT) was tested in the meanwhile in the Prolyse in Acute Cerebral 

Thromboembolism II (PROACT II) study, which found potential safety and efficacy of IAT for middle 

cerebral artery (MCA) occlusions within 6 hours of stroke symptom onset.24 Later, imaging studies found 

that a major predictor for worse IAT outcome was large baseline infarct volume (i.e. > 70-100 mL).25–28 

 

After exploring IAT, the Interventional Management of Stroke (IMS) trial investigated the feasibility and 

safety of combined IV and intra-arterial therapy in AIS.29 In subsequent years, injecting thrombolytic 

agents or saline into the thrombus evolved to endovascular thrombectomy (EVT). The first trials using 

EVT in combination with IV-tPA, such as SYNTHESIS and MR RESCUE, failed to demonstrate a beneficial 

clinical effect. This was mainly caused by early-generation thrombectomy devices, a long period between 

onset of stroke symptoms and groin puncture and a lack of adequate vessel imaging to confirm patients’ 

eligibility for these therapies.29–31 In 2015, the MR CLEAN trial in the Netherlands was the first that has 

been able to demonstrate a beneficial clinical effect of EVT in selected patients by wielding more strict 

inclusion criteria, using third-generation mechanical thrombectomy devices and ensuring imaging 

confirmed occlusion of the anterior circulation.32 These results shifted focus of triage in AIS to selecting 

the specific subset of patients who would have most clinical benefit from EVT combined with IV-tPA. 

Trials such as ESCAPE, EXTEND-IA and SWIFT PRIME showed that patients selected based on 

assessment of the collateral circulation on computed tomography angiography (CTA) or estimated size 

of the ischemic core and penumbra from computed tomography perfusion (CTP), had the benefit of an 

even larger clinical effect.33–35 
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Although EVT is more effective in the early time period after stroke onset,36 two recent trials (DAWN 

and DEFUSE III) have shown that even after 6 hours of stroke onset (up to 24 hours in the DAWN trial), 

patients with a significant clinical penumbra and small ischemic core, still benefit from EVT in addition to 

IV-tPA if selected correctly.37,38 These findings further highlight the need for individual imaging-based 

patient selection for successful and safe endovascular stroke therapy. 

 

 
Figure 1.2: Example of final lesion volume depending on reperfusion time. In case of timely reperfusion, the lesion is limited 

to the initial core, and in case of no timely reperfusion, the penumbra is also included. Images are adapted from a neuro 

course presentation by M. Lev.15  

1.1.2 IMAGING IN AIS 

Patients with a treatable occlusion confirmed on imaging depend on infarct size to determine their 

eligibility for EVT. Imaging should quickly, accurately and reliably define infarct core and ideally 

penumbra. The triage in AIS patients is based on three major imaging features: (1) exclusion of ICH and 

stroke like mimics, (2) detection of the site of arterial occlusion and (3) the determination of the extent 

of the parenchymal lesion. 

 

For exclusion of hemorrhage or stoke mimics (clinical symptoms that are difficult to distinguish from real 

strokes), conventional non-contrast computed tomography (CT) is the standard of care. It allows fast and 

accurate detection of ICH, with near perfect sensitivities and specificities.39,40 To assess whether the site 

of occlusion is accessible for EVT, CTA is performed, which is considered as level 1 evidence for the 

rapid assessment of a LVO.23,41,42 Finally, the lesion extent should be evaluated. However, there is a lot 

of controversy about which method should be used to assess the infarct. 

 

The Alberta Stroke Program Early CT Score (ASPECTS) is a 10-point scoring system for qualitative 

assessment of early ischemic changes in different brain areas that are supplied by the MCA.43 It is the 

most readily available method since a non-contrast CT (NCCT) is the standard first step in AIS patient 

triage. Since ASPECTS only roughly assesses brain areas, it does not allow for accurate baseline infarct 

volume estimation, especially in the acute phase when ischemic changes are hardly visible.44  

 

CTP utilizes dynamic CTA data consisting of multiple repeated head CT scans during IV administration 

of iodinated contrast material. Some studies claim that this technique can identify core and penumbra and 

that it is useful for identifying eligible patients with major anterior circulation occlusions (ACOs) for 

interventional therapy.45 Especially the parameter ‘mean transit time’ (MTT) of the iodinated contrast 

was found to be most predictive of at-risk tissue.46  Several trials showed a benefit in outcome in CTP 

based selected patients for EVT,34,35,47 while others have found conflicting results regarding the clinical 

usability of this imaging modality.48–50 The found beneficial effects could be caused by the exclusion of 

patients with less favorable perfusion profiles. Differences in CT scanners and post-processing 

algorithms also result in varying performance of CTP.51–53 Another major disadvantage of CTP is its high 

burden of radiation exposure. In addition, CT perfusion has limited brain coverage, is highly susceptible 
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to z-axis motion and it lacks clear guidelines for indication, acquisition methods and interpretation.54–56 

Software to automate output on extent of baseline infarct and mismatch between baseline infarct and 

salvageable penumbra could address these concerns.57  

 

Although many EVT trials relied on CTP in screening patients, magnetic resonance (MR) diffusion-

weighted imaging (DWI) is the near-perfect method for detection of infarct core in AIS.58,59 Although 

some studies state that DWI lesions incorporate both types of ischemia and therefore cannot be solely 

considered as ischemic core,60–62 others claim that DWI is more precise than CTP in measuring infarct 

core extent.63,64 Apparent diffusion coefficient (ADC) maps can further help interpreting ischemic core 

from DWI images by providing a standardized unit of diffusion for every voxel65, while not suffering from 

T2 shine through caused by other pathologies.66 Leslie-Mazwi et al. showed that using DWI as a tool for 

selection EVT eligible AIS patients results in an ‘optimal’ tradeoff between screened and treated 

patients.67 Nevertheless, DWI is used in only a few major stroke centers across the globe as standard of 

care. Although, work-flow related reasons and time delays are constraints to implementing MR in an 

acute setting, the costs and availability are in general the main reasons that DWI cannot be used at 

hospitals emergency departments. 

 

1.1.3 IMAGING OF COLLATERAL CIRCULATION 

Collateral vessels are tiny arterioles that connect the distal branches of the cerebral arteries and they 

supply the ischemic region beyond an occlusion by retrograde filling of distal arteries.68 Collaterals play 

an important role in time from vascular occlusion to symptom onset.69 Since patients with a better 

collateral circulation have smaller infarct core volumes with probably relatively large penumbra, a 

different approach to estimate infarct size is to evaluate the quality of the collaterals.70,71 The presence 

of collaterals in AIS patients has been studied since the early 2000s on interventional digital subtraction 

angiography and have shown to be an independent predictor of good clinical outcome after stroke 

therapy.72–74  Later, collateral assessment with CTA using maximum intensity projections (MIP) confirmed 

these early results.75 Moreover, CTA collateral scoring showed a strong correlation with DWI infarct 

size76, especially when combined with NCCT ASPECTS.77  

 

 
Figure 1.3: Collateral scoring: examples of axial MIPs from CTAs with (A) poor, (B) intermediate, and (C) good collaterals. 

Arrowheads denote the site of occlusion.78 

To avoid mislabeling of collateral status using single-phase CTA, multiphase CTA is used to better 

capture collaterals in a more delayed phase of contrast enhancement, since it takes longer for collaterals 

to fill up.79 Absence of collaterals at delayed phase CTA is therefore a predictor for large DWI infarct 

lesion and poor clinical outcome.80,81 Both the ESCAPE and MR CLEAN trials found that patients with 

poor collaterals on baseline CTA receive no additional benefit from EVT.32,33 Others state that multi-

phase CTA is at least equal or even better than CTP in predicting tissue fate and to use as selection tool 

for EVT in AIS.79,82 Even more advanced methods to capture the collateral circulation is by using raw 

CTP data and reconstruct these to a dynamic CTA or to a timing invariant CTA.83–85 Because of all these 



5 

 

different image acquisition methods, multiple collateral scoring systems exist.86 Automated collateral 

scoring using algorithms have the potential to replace these qualitatively assessed scoring systems.87  

 

1.1.4 THE MASSACHUSETTS GENERAL HOSPITAL ACUTE STROKE IMAGING ALGORITHM 

Clinical trials have shown that estimation of (the ratio/mismatch between) ischemic core and penumbra 

are accurate tools in selecting AIS patients that are eligible for EVT.34,35 The DAWN and DEFUSE trials 

showed that even up to 24 hours after stroke symptom onset, patients can still benefit from EVT when 

selected properly based on small ischemic core (and significant clinical penumbra).37,38 Therefore, 

ischemic core (and penumbra) volume should be considered in final clinical decision making for EVT. The 

other two important imaging features are: (1) exclusion of ICH and stroke like mimics and (2) detection 

of the site of arterial occlusion. 

 

The Massachusetts General Hospital (MGH) acute stroke imaging algorithm is designed to addresses all 

of these important features. It distinguishes between patients that arrive at the emergency department 

within and after 6 hours of stroke symptom onset. Within 6 hours, NCCT is used to assess (1) above. 

Subsequently, early and delayed phase CTA is acquired to capture both the presence and location of 

vessel occlusion (early / arterial phase) and to visualize the collaterals (delayed phase). If a patient is 

eligible for MR imaging, DWI is performed, which is the most accurate imaging modality to estimate infarct 

core in the acute phase.63,64,88 In case of retrievable occlusion and a small ischemic core (<70 mL), the 

risk of hemorrhagic conversion (due treatment) is smaller than the potential benefit of EVT, and thus 

EVT is performed. For an ischemic core between 70 and 100 mL, it is uncertain if EVT will have benefit, 

and thus will this decision depend on clinical factors. Above 100 mL, EVT is not considered as beneficial 

because of the increased risk of hemorrhagic conversion. 

After 6 hours, patients directly go to MR for DWI assessment to save time on workflow. Susceptibility-

weighted imaging (SWI) is then used to assess (1) above and to localize thrombus. Also, for every patient 

the National Institute of Health Stroke Scale (NIHSS) is derived from physical examination before imaging. 

NIHSS is a primary clinical diagnostic tool to assess stroke severity and global localization. In this imaging 

algorithm, it also helps estimating the core/penumbra ratio, by combining functional impairment with 

precise localization of the infarct on DWI. Perfusion imaging is only performed if a patient is not eligible 

for MR imaging, or if perfusion data might be desirable to evaluate the full clinical picture of a patient.54 

 

 
 

Figure 1.4: The MGH acute stroke imaging algorithm. BP = blood pressure, rFVIIa = recombinant activated factor VII. 

Illustration adapted from González et al.54 

Although DWI is most sensitive for imaging of the ischemic core in acute stroke, no 24/7 availability 

(costs) and delayed workflow are reasons for many hospitals not to use this modality for emergency 

cases. This raises the need for individual patient selection for EVT using fewer and still reliable 

resources, such as validated CT modalities. Ideally, quantitative information on the ischemic lesion size 

that is captured by DWI should be derivable from information that is available in CT. Quantification of 

iodine in dual-energy CT (DECT) angiography could serve a first step in this approach. 
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1.1.5 DUAL-ENERGY CT 

In 2017, MGH replaced conventional CTA with DECT in its AIS imaging protocol as standard of care. 

DECT utilizes scanning at two different energies to decompose tissue into three different materials based 

on differences in attribution of photoelectric and Compton scattering to X-ray attenuation.89,90 Using 

three-material decomposition, a DECT source volume can be decomposed into virtual non-contrast 

(VNC) images and iodine-only images. VNC can reliably capture any hemorrhage, while early and 

delayed-phase iodine images contain valuable information about both thrombus location, collaterals and 

(local) tissue perfusion status.91 Since collateral function has previously been shown to be related to 

ischemic lesion size,70,71 and perfusion data has been used to predict infarct volumes,92 DECT images 

theoretically hold all information required to assess the three important imaging features for AIS, ischemic 

lesion size potentially included. 

 

Another application where DECT is useful is in case of ICH. Here, quantification of iodine holds valuable 

information on the likelihood of hematoma expansion, as described in section 1.2. More background 

information on DECT post-processing is presented in Appendix A. 

 

 
Figure 1.5: Data present after imaging with MGH acute ischemic stroke protocol. Left M1 occlusion. MR 39 mins after CT. 

Delay time = 15 sec. A) NCCT; B) Simulated single-energy CTA (120 kV); C) Simulated single-energy delayed CTA (120 

kV); D) DECT iodine image; E) DECT delayed iodine image; F) DWI; G) ADC; H) Ground truth lesion segmentation 

1.2 INTRACEREBRAL HEMORRHAGE 

Only 10% of all strokes are caused by ICH, which is an acute and spontaneous bleeding into the brain 

parenchyma. The overall incidence of ICH counts 24.6 cases per 100,000 people per year, with 

approximately 63.000 cases occurring in the United States annually.93,94 Most occurrences of ICH (75%-

85%) are classified as primary ICH and include mainly spontaneous rupture of vessels, while the remaining 

occurrences are classified as secondary and include cerebral hemorrhage driven by other causes such 

as trauma.95 ICH is commonly caused by hypertension or cerebral amyloid angiopathy.96,97 Artery rupture 

comprises the primary ICH phase, while a subsequent inflammatory response triggered by the released 

blood in the parenchyma is considered as the secondary phase. The inflammatory response leads to brain 

tissue damage, blood clot degradation, edema and BBB disruption, all driving hematoma growth.98 

Complications including hydrocephalus, severe tissue shifts, increased intracranial pressure (ICP), and 

mass effect may occur, resulting in catastrophic tissue damage and neurologic deterioration.99 Hematoma 

expansion by 33% has been noted within the first 3 hours in ∼38% of patients presenting with ICH.100 

Each millimeter hematoma expansion has been associated with as 7% increased risk of long-term 

dependence.101 

 

1.2.1 TREATMENT 

A critical component in treatment of ICH is achieving hemostasis to avoid rapidly increasing ICP, and thus 

neurologic deterioration fatality. Only the procoagulant recombinant activated factor VII (rfVIIa) has been 

shown in a randomized, double-blind, placebo-controlled trial to reduce mortality (by 38%) and it was 

associated with an improvement in functional outcome at 90 days,102 although the subsequent FAST trial 

was only semi-successful, because of the risk of arterial thromboembolic events, among others.103 
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Lowering blood pressure is another approach to decrease the amount of blood leaking into the brain 

parenchyma. However, two trials (INTERACT II and ATACH II) failed to demonstrate improved clinical 

outcomes as a result of this treatment.104,105 Also early surgical treatment (decompressive craniotomy) 

versus conservative treatment was studied in the STICH trial without success for the intervention 

group,106 however, later studies showed that craniectomy may reduce mortality.107,108 The clinical effect 

of minimally invasive evacuation of the hematoma is currently still being researched in the MISTIE III 

trial.109 

 

 
Figure 1.6: Early hematoma growth after ICH. A) Initial CT scan; B) Follow-up CT scan after 6 hours showing 4 cc of 

hematoma expansion. 

1.2.2 IMAGING IN ICH 

Imaging should be expected to effectively confirm the diagnosis of ICH, for which NCCT is considered 

as the gold standard. Next, hematomas should be assessed for likelihood of expansion, since hematoma 

expansion in the early hours post-ictus is strongly associated with mortality.101 The use of CTA has also 

been introduced as a potentially viable way to characterize risk of hematoma expansion in acute 

presentations and especially ‘spot sign’ has been proposed as radiographic marker for this 

phenomena.110,111 The spot sign is defined as foci of enhancement within a hematoma, thought to 

represent areas of contrast extravasation and active bleeding.90 Although the spot sign is highly specific 

(80% - 93%) for hematoma expansion, it has relatively low sensitivity (50%-60%).112–115 In fact, results 

from the large PREDICT trial demonstrate a sensitivity only slightly greater than 50% when the spot sign 

is assessed on arterial phase imaging.116 Timing of angiographic imaging plays an important role in 

this.117,118 One of the difficulties in spot sign reading is differentiating hyperdense hemorrhage from 

contrast staining of the brain parenchyma due to spotty or diffuse contrast extravasation from leaky blood 

vessels or secondary vessel disruption, contributing to further hematoma expansion.119–122 Although 

quantitative analysis on the brightness of spot-sign on conventional single-energy CT (SECT) 

angiography to define a spot-sign score was not successful,111,123 recent work showed that quantitative 

iodine features derived from DECT can be combined to a so called ‘I2-score’ to improve prediction of 

hematoma expansion.124 The I2-score uses the total iodine content in the hematoma and total iodine 

content in the brightest spot as quantitative predictors to estimate the likelihood of expansion. However, 

despite extensive research, still 42% to 50% of patients with ICH die within the first 30 days of their 

events.125,126 Thus, early identification of patients at risk for hematoma expansion remains a topic of 

interest to select candidates for early targeted medical or surgical intervention.114 
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2 

Technical background 

 
edical imaging plays an important role in clinical decision making regarding diagnosis and therapy. 

With technological advancements and growth of imaging volumes, radiologists need to read more 

images and interpret them faster, increasing their workload.127 On one hand, this gives rise to the desire 

for automated reading and interpretation of images using computer-aided diagnosis software, to help 

radiologists in facing their potential fatigue and the tremendous variations in pathologies they have to 

assess.128 On the other hand, it offers the possibility to augment the knowledge of the radiologist with 

information from many scans together, hidden for the naked eye and human interpretation capabilities.129 

In fact, “Images are more than pictures, they are data”.130 The hidden ‘features’ in this data can be 

extracted by engineered image analysis algorithms, or learned by advanced learning algorithms. Both 

hematoma expansion prediction and AIS detection on CT may benefit from such augmented radiology, 

and so the patient will do in the end. 

 

2.1 QUANTITATIVE IMAGE TEXTURE ANALYSIS 

Texture is a form of appearance determined by the local structural composition of an object. For an 

image, this means that a group of pixels (or voxels) can have different appearances depending on their 

pixel values and spatial arrangement. When first- or higher order statistics are applied to such an image 

region, certain texture features can be computed that quantify properties of this appearance. These 

features are agnostic compared to the semantic features that radiologists use to describe lesions.130 

Nevertheless, they can hold valuable information. In oncology, for example, they are increasingly used 

in clinical decision support to quantify tumor heterogeneity, and thus classifying them as benign or 

malignant.131 Recently, texture features have also been proposed to predict hematoma expansion, 

claiming good results.132  

 

Hematoma appearance can provide radiologists with information about the bleeding pattern and the cause 

of ICH, giving them a grasp on the likelihood whether a hematoma might expand or not. Many radiographic 

signs of morphologic hematoma appearance have been proposed to predict hematoma expansion, none of 

them being able to with both a high sensitivity and specificity. The variance of interpretation between 

radiologists makes it difficult to standardize assessment of hematomas. Quantitative texture analysis may 

have the potential to replace these ‘qualitative’ semantic signs in a more abstract form by computing 

mathematically derived numbers. However, in order to be able to compare these numbers, it is desired 

to standardize both image acquisition and region of interest (ROI) selection methods.   

 

There are different methods to perform texture analysis.133 First order statistics do not address spatial 

relationships between pixels, but solely rely on properties of the image histogram, such as mean pixel 

intensity, variance, skewness and kurtosis of the histogram. Second order statistics include spatial 

M 
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relationships in different ways, depending on the used method. Texture can be calculated along one 

direction, using so called run length matrices or in multiple directions, using gray level co-occurrence 
matrices (GLCM). The latter method counts how often adjacent pixel or voxel pairs having a specific 

combination of gray levels in a specific spatial arrangement occur in a certain region (Figure 2.1), allowing 

features such as entropy, energy, homogeneity, contrast and dissimilarity to be computed. First, for every 

specified direction and combination of adjacent pixels, a separate GLCM is computed. After having 

normalized the sum of the separate GLCMs, different texture features can be computed, such as energy, 

entropy and dissimilarity (Appendix B). 

 
 

Figure 2.1: Computation of gray level co-occurence matrices (GLCM) from a 6 × 6 image grid containing 4 gray levels. Red 

highlighted areas denote the considered spatial orientations of the pixel pairs for a 2D GLCM (4-neighborhood), resulting in 

4 individual GLCMs (only 2 presented). For 3D GLCM analysis, this is extended to a 6-neighborhood. 

Pre-processing images using a Laplacian of a Gaussian (LoG) filter before performing texture analysis, 

allow both fine and coarse texture features to be computed. The Laplacian component is sensitive to 

rapid spatial changes in gray levels, enhancing texture, while the Gaussian component transforms images 

to different scale spaces, depending on the width of the filter. Moreover, it smoothens undesirable CT 

quantum noise, and makes the texture analysis less dependent of image reconstruction parameters.131  

 

Computing different texture features on different scales, rapidly results in a huge set of features that can 

be used as potential predictors, in our case, to predict hematoma expansion. Since many of these features 

will be correlated with each other, feature selection is an important aspect in the process of composing 

a predictive model. In case of a binary classification problem, the number of used features is ideally far 

less than the number of positive cases to avoid overfitting.134 Stepwise selection using regression models 

are commonly used methods to reduce these high dimensional datasets to a lower dimensional feature 

space.135  

 

2.2 DEEP LEARNING 

Predictive models can also be learned from a dataset. This is the field of supervised machine learning. 

Advanced learning algorithms (such as support-vector machines, k-nearest neighbors, and random 

forests) are trained on big datasets containing many data samples with their corresponding (often multi-

dimensional) feature space, trying to find an optimal decision boundary that is able to classify each sample 

in its ground truth category (e.g. expanding vs. non-expanding hematomas). It is the aim to learn from 

the training data in such a way, that generalizable predictions can be made to new, unseen data samples. 
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Deep learning goes one step further: instead of learning from a readily available set of features, the 

feature extraction step from the raw data is incorporated in the learning process. Features no longer 

need to be human designed, such as the texture features discussed in section 2.1. This allows to extract 

even more abstract features than humans are able to design. Deep learning is able to do this by processing 

structured, large, raw datasets, in a layered architecture, together forming an artificial neural network, 

inspired by the structure of neurons in the human brain. Each layer consists of multiple densely connected 

individual neurons, that are able to process input data points by multiplying it with a learned weight, and 

by adding a bias, followed by a non-linear activation operation. When sequentially passing processed 

data to deeper layers, this results in a hierarchical representation of learned features with increasing 

levels of abstractness.136 Supervising this process with every data sample’s ground truth ensures that 

the learned features can be used for tailored tasks (e.g. classification, regression). The learning step 

itself takes place by iteratively comparing the network’s predicted output with the ground truth using a 

loss function, and backpropagating the computed error through all network parameters to adjust the 

parameters in a direction that the loss function is minimized. Difficulties in minimizing this loss function 

are uniqueness, existence and robustness of it’s minimum. 

 

2.2.1 CONVOLUTIONAL NEURAL NETWORKS 

When spatial information in raw data plays an important role, such as pixel values in medical image data, 

artificial neurons should not process all image data points individually as one long vector. This makes 

them sensitive to subtle translations or rotations in the image input data. Instead, neighboring pixel 

information should be incorporated, preferably on different scales. Spatially grouping artificial neurons 

sharing their learned weights and bias terms, let them form sliding convolutional filters. These layers of 

convolutional filters process the image local contextual information, and form the basis of what is called 

a convolutional neural network (CNN). Combining these convolutional operations with subsequent non-

linear activation operations, allow the filtered input to be transformed into more abstract feature maps. 

Next, subsampling operations, increase the receptive field of the convolutional filters in subsequent 

layers, also allowing features to be extracted from different scales of the original input image. The 

combination of these operations in a CNN, is inspired by the organization of neurons in the visual cortex. 

 

 
Figure 2.2: Convolution operation acting as sliding filter (size 3 × 3) on a C-channel input image/feature map (C = 3 in this 

example). Arrows denote learnable weights. Dashed arrow transfers result of convolutional operation to destination in output 

feature map. Note that this basic convolutional operation is performed in both the spatial and the channel domain. Number of 

filters is denoted by N, producing N output feature maps (N = 1 in this example). 
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State-of-the-art deep CNNs advanced the performance of computer vision systems, outperforming 

humans in many image recognition, object localization and structural segmentation tasks. But why do 

these networks need to be ‘deep’? The word deep refers to the number of hierarchical layers used in a 

neural network. It is well-known that a finite number of artificial neurons is able to approximate any 

continuous function. The more neurons are involved, the more complex functions can be mapped. 

However, with increasing number of parameters (neuron’s weights and biases), the computational costs 

to find this complex mapping increases, because all parameters need to be optimized individually.137 

Similar performance can be achieved by using fewer neurons, organized in layers, successively 

processing the input data. In this way, the amount of trainable parameters in a network can be reduced, 

while better being able to optimize all parameters and especially to generalize to new, unseen data.128 

 

In medical imaging, often highly complex, local features need to be learned from relatively few variations 

in training data. And it is mainly the number of variations in a dataset to be learned that matters for 

generalization, rather than the number of parameters in a network. That is why deep learning is data 
hungry, and often data augmentation techniques need to be used. It is both the number of data samples, 

variations and the amount of learnable parameters that need to be balanced for every specific application 

in order to avoid overfitting to training data. Ideally, big datasets, containing all of the variations that 

need to be learned, should be used to train deep, complex CNNs, in order to achieve a desirable 

performance and generalizability. To do so, computational power in the form of graphical processing units 

(GPUs) is necessary to efficiently compute the many required parallel matrix multiplication operations 

(convolutions) in reasonable amount of time. 

 

2.2.2 CNN ARCHITECTURES 

Both the structure of input data (n-dimensional matrices) and desired output determine the global 

architecture of a CNN. In case of image classification tasks, a CNN architecture, acting as feature 

extractor, is combined with a subsequent classifier. This is often a conventional artificial neural network, 

consisting of (a few layers of) densely connected neurons on top of the CNN, but in theory, any kind of 

classifier could be used. However, when a spatial output is desired, a CNN in general turns into a fully 

convolutional network (FCN), where the top is replaced by (de)convolutional layers and/or upsampling 

operations, to reconstruct the extracted features back to the original image space. In this way, a CNN is 

able to perform segmentation or localization tasks. A very popular architecture in biomedical image 

segmentation is the so called U-Net, named after its U-shaped architecture.138 

 

While a CNN’s global architecture mainly determines the format how input data is mapped to desired 

output format, local architecture plays an important role in optimizing performance. Designing a CNN’s  

architecture can be very complicated given the endless possibilities of combining and connecting 

convolutional, subsampling, activation and normalization layers. Several concepts have been worked out 

that improve CNN performances on big image recognition datasets, such as MNIST, CIFAR-10 and 

ImageNet.139–141 These concepts can in fact be used as separate building blocks for CNNs in general, and 

are mainly focused on effectively optimizing extremely deep networks (> 30 convolutional layers). One 

of the most famous and commonly used concepts is the so called ‘residual’ connection, which is a shortcut 

connection between a few stacked layers using identity mappings.142 This makes it easier to optimize 

parameters in deep networks, enabling to reach higher performances. Another likewise concept is that 

of densely connected convolutional layers.143 Other approaches to increase performance focus on 

reducing the number of parameters and computational complexity, like Google’s Inception module, and 

its extreme Xception version.144–146 Also combinations of different concepts have been described, such 

as ResNeXt, which is a combination of the residual and Xception concepts.147 Other, more general 

concepts are those of dropout, randomly dropping out neurons while training a CNN (acting as 

regularization), and batch normalization, accelerating training of CNNs (Appendix D).148,149 

 

2.2.3 TRAINING CNNS 

As mentioned earlier, the advantage of deep learning and CNNs is that features no longer need to be 

designed by humans, but are learned by the computer itself, to be used in making predictions. This is 

done by using gradient descent algorithms to optimize the learnable network parameters. When comparing 

the ground truth (yt) with the predicted output of the network (yp), an error can be computed using a loss 

function g. The learnable set of network parameters (W) are adjusted in the opposite direction to the 

gradient of this loss function (∇g). The size of the adjustment steps to be taken is determined by the 
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learning rate (η). A commonly used algorithm for optimizing these weights is called stochastic gradient 
descent (SGD), in which the loss function is not computed over all data samples in the training set (epoch), 

but after a prespecified number of samples, together forming a batch. Updating the weights takes place 

iteratively after every batch, using the following equation: 

 

    (2.1) 

 

in which g(W) is the loss over a batch as function of the current set of weights. The gradient of the loss 

function is then backpropagated through all network layers to update the weight parameters. 

 

Training schemes 
Data samples used to compose a batch for training CNNs can take different forms. The most 

straightforward method is to consider data samples as whole (multi-channel) 2D images or 3D image 

volumes in case of a network architecture utilizing 2D and 3D convolutional operations respectively (This 

is what is called a dense training scheme. The network is then able to use the complete contextual 

information of an image or volume to make its predictions. An alternative strategy is to use small patches 

of the original data samples, only providing the network with local contextual information (patch-based 

training scheme). Although multiple patches are then required to predict the whole original data sample, 

it may have the advantage that the network is forced to learn local instead of global image features to 

make predictions, potentially avoiding overfitting on non-relevant global features. Architectures such as 

DeepMedic have been developed that try to implement the benefits of both dense and patch-based 

training schemes by converting input patches to multiple image scales and by predicting patches having 

a smaller field of view (FOV) than the used input patches, effectively using more (local) contextual 

information than covered by the predicted output patch.150 
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3 

Research objective 

 
n both ischemic and hemorrhagic stroke, diagnostics play an essential role in adequate therapy selection 

and thus potential outcome for patients. Serious adverse events could occur if patients are not selected 

properly. 

 

3.1 ACUTE ISCHEMIC STROKE 

For ischemic stroke, this means that the risk of hemorrhagic conversion is considered as larger than the 

potential benefit of EVT in patients having a large (>100 cc) ischemic core, and thus, these patients 

should be treated conservatively. Although DWI is able to identify patients (ischemic core < 70 mL) who 

may benefit from EVT, this modality is generally not available in the acute setting at the emergency 

department. In major stroke centers, CTP is often used as a second best option, having limited capabilities 

of identifying infarct core, and having a high radiation burden for patients. Therefore there is a need for 

a readily available imaging modality using less radiation, that is able to identify patients eligible for EVT 

by detecting and estimating stroke lesion core volumes. With MGH having one of the largest bodies of 

radiological images in the world, and having access to MR and DECT imaging at the emergency 

department, there is potential data available to train a deep learning system that is able to detect infarct 

core lesions from the initially acquired CT imaging data. In previous work, a processing pipeline including 

a deep learning algorithm based on U-Net has been developed to process NCCT, early- and delayed 

phase (3-phase CT) DECT angiography images with the aim to detect the ischemic core lesion as visible 

on DWI. Although the algorithm reached a promising performance on the training dataset in terms of Dice 

similarity coefficient (DSC), the DSC on the independent test set was practically 0. It suffered severely 

from generalization problems due to overfitting.151 Having more training data available, and improving the 

deep learning architecture may potentially close this generalization gap and thus improve performance 

on the independent test dataset. 

 

Research question AIS: 
To what extent is a deep learning system able to make clinically useful DWI infarct core lesion 

predictions based on 3-phase CT data on an individual patient basis to be used for triaging AIS 

patients? 

 

Sub-questions: 

What is the combination of deep learning architecture and (processed) 3-phase CT data that results in 

the highest DSC on the independent test set? 

- In terms of input 3-phase CT input data: 

o SECT vs. DECT angiography; 

o Augmented data vs. original data only 

I 
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o Using a dense or patch-based training scheme; 

- In terms of network architecture: 

o U-Net based vs. DeepMedic based network 

o 2D vs 3D convolutional operations 

o Separate vs. mixed modality processing 

 

3.2 INTRACEREBRAL HEMORRHAGE 

For ICH, the main decision in terms of therapy selection is to choose between targeted medical therapy 

(rFVIIa or lowering blood pressure) or to perform decompressive craniectomy, all with their own level of 

invasiveness and risk profile. Because hematoma expansion is associated with increased neurological 

deterioration, poor outcome and mortality, it is desired to prevent expansion or to tackle the 

consequences of it, by selecting a treatment strategy that fits with the patient’s (clinical) baseline situation 

and hematoma expansion likelihood. This clinical situation is readily known at the time of imaging, while 

the hematoma expansion likelihood is difficult to assess. Many radiographic imaging markers have been 

proposed to predict hematoma expansion, such as CTA spot sign, all having good specificity, but only 

moderate sensitivity. Recent work showed that quantitatively assessing spot signs using DECT iodine 

features, combined to an I2-score model, can increase sensitivity in predicting hematoma expansion. 

Alternative strategies rely on extracting quantitative hematoma texture features derived from NCCT. 

Since texture features seem not to be directly correlated to DECT iodine features, combining texture and 

iodine features, potentially brings in new information (synergy) to predict hematoma expansion. 

 

Research question ICH: 
Are NCCT texture features combined with DECT iodine features able to outperform the I2-score model 

in predicting hematoma expansion on an independent test set, without decreasing specificity? 

 

Sub-questions: 

- How do texture features rank when combined with a data set containing DECT iodine features 

during a feature selection process? 

- What is the sensitivity to noise for both the I2-score model and the combined iodine/texture model 

on the final model performance? 

 

 

The next two chapters of this thesis are focused on answering above mentioned research questions. 

Chapter 4 starts with the description of a pipeline that processes 3-phase CT and corresponding DWI 

data to be used for a deep learning system. The design of both U-Net and DeepMedic based 

architectures are highlighted and the experimental setup to find the best combination of (processed) 3-

phase CT data and network architecture is presented. Finally, the results of the top performing 

configurations on the independent test set are analyzed to see if the system is able to make clinically 

useful predictions for triaging AIS patients. 

 

In chapter 5, a short recap is given on the recently proposed I2-score based on iodine features from 

DECT scans to predict hematoma expansion. An extension of this processing pipeline incorporating 

texture analysis on NCCT is then described, followed by the design of an extensive feature selection 

and ranking method. A prediction model is constructed using a combination of top-ranked iodine and 

texture features, and is compared to the performance of the I2-score model in a noise sensitivity 

analysis on the independent test set. 

 

Finally, chapter 6 concludes this thesis by providing an answer on above mentioned research questions 

for both AIS and ICH clinical problems. 
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4 

Predicting acute ischemic stroke DWI 

lesions from 3-phase CT data using 

deep learning 

 
4.1 INTRODUCTION 

Imaging plays an important role in therapy selection for patients with AIS to maximize clinical benefits 

and minimize adverse events, such as hemorrhagic conversion. Recent large-scale clinical trials have 

shown the benefit of EVT in combination with IV-tPA for patients selected on infarct size or quality of 

the collateral circulation, even up to 24 hours after stroke symptom onset.32–35,37,38 Since DWI has a near-

perfect sensitivity to detect AIS lesions in the acute phase, it is considered as the gold standard to assess 

ischemic core volume.58,59 However, DWI is not widely available, and is in general constrained due to 

workflow issues. Alternatively, CTP is used by many major stroke centers, suffering from difficulties in 

standardized core volume assessment and a high radiation dose for the patient.50 This emerges the need 

to assess the ischemic core using readily available imaging modalities and less radiation. 

 

Other than DWI and CTP, also NCCT and (multi-phase) CTA have been studied extensively to derive 

predictive features for infarct core volume, and thus eligibility for EVT. These features are mainly 

ASPECTS, collateral scoring, or a combination of both.43,70–72,76,77,79 As an alternative to conventional 

single-energy CTA, DECT angiography is becoming more available as a diagnostic tool in the emergency 

department. It has the possibility to generate iodine-only images, that potentially contain information on 

local tissue perfusion status, and thus to detect core infarct.91 

 

The introduction of deep learning into the medical image analysis domain opened up new possibilities 

combine abstract information and insights from many scans and different modalities together to predict 

tailored information, such as infarcted brain tissue. Recently, an initial image processing pipeline including 

a deep convolutional neural network (CNN) based on the U-Net architecture has been developed to detect 

DWI lesions from 3-phase CT data (NCCT, early- and delayed phase DECT iodine-only images). 

Although the predicted DWI lesions on the training set reached a Dice similarity coefficient (DSC) of 

approximately 0.6, indicating good performance for clinical usability, the DSC on the independent test set 

was practically 0 due to severe generalization problems.151 The aim of this study is to address and 

overcome this issue by adjusting the initial CNN architecture, collecting and presenting more varied CT 

data to the CNN and find the best working combination between CNN and 3-phase input CT data that 

results in the highest DSC on the independent test set. 
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4.2 METHODS 

4.2.1 SUBJECT SELECTION AND DATA COLLECTION 

This retrospective study was approved by the local institutional review board. Required informed consent 

was waived. All patients who were referred for head CT imaging and were suspected for stroke, transient 

ischemic attack (TIA) or cerebral ischemia between January 2015 and August 2018 were evaluated on 

the availability of NCCT, early and delayed phase CTA (SECT or DECT), DWI, ADC and T2-weighted 

imaging. Patients were included only when scans from all modalities were available. In case of partially 

missing data (e.g. a scan not covering the complete brain), and when there was more than a 24 hour time 

difference between CT and MR acquisition, patients were excluded. 

 

Scans were acquired with scanners from multiple vendors. All CT images were acquired at thin slices 

(0.6 mm) and were reconstructed using a standard filtered backprojection reconstruction kernel. For the 

NCCT and conventional single-energy CTA acquisitions, the peak beam energy was 120 kV and 100 kV 

respectively. All DECT images were acquired using a Somatom Definition Force scanner (Siemens 

Healthcare, Forcheim, Germany), with tube A operating at 100 kVp and tube B at 150 kVp (including Sn-

filter). The delay time between early and delayed acquisitions was strictly 15 s in this protocol. Simulated 

single-energy early and delayed phase images were reconstructed by taking a weighted average (factor 

0.6) between the low and high energy acquisitions. MR images were acquired with vendor specific imaging 

protocols of the desired sequences (DWI/ADC and T2/T2 FLAIR). 

 

4.2.2 DATA PRE-PROCESSING 

All DICOM (Digital Imaging and Communications in Medicine) files were de-identified and all three-

dimensional (3D) volumes were converted to the NIfTI (Neuroimaging Informatics Technology Initiative) 

format. MATLAB R2018a (The Mathworks, Natick, Massachusetts, USA) was used as basic environment 

for all data pre-processing. An overview of the complete data pre-processing pipeline is depicted in 

Figure 4.1. An example of both pre-processed SECT, DECT, MR and corresponding lesion segmentation 

is presented in Figure 1.5. 

 
 

Figure 4.1: Overview of the data pre-processing pipeline. 

Creating brain masks 
On the NCCT, brain extraction was performed based using an algorithm of Muschelli et al.152. Images 

were first thresholded between 0-100 Hounsfield Units (HU) and then smoothed using a 3D Gaussian 



19 

 

filter kernel with a sigma of 1 mm3. The results were used as input for the FSL153 (Nuffield Department 

of Clinical Neurosciences, University of Oxford, UK) brain extraction tool, operated at a fractional 

intensity setting of 0.01 to create the brain masks. To make the result more robust, the resulting masks 

were post-processed by extracting the largest 3D connected component and subsequently performing a 

3D hole-filling operation. 

 

Image registration 
Subsequently, all volumes were registered to a standard Montreal Neurological Institute (MNI) space 

using SPM12 (Wellcome Trust Centre for Neuroimaging, University College London, London, United 

Kingdom) package for MATLAB.. The order of operations was; (1) Registration of DWI/ADC to T2; (2) 

Registration of (DE)CT angiography to NCCT, and subsequently to T2; (3) Normalization of T2 to MNI 

space using a template, and co-transforming all other modalities. The gray value distributions of the 3D 

volumes to be registered were smoothed before all registration steps, and the origin was set to image 

volume the center of gravity. Registration steps were performed using an iterative affine registration 

algorithm based on Collignon et al.154 to minimize the normalized mutual information criterion. The 

normalization step adopts a two-stage procedure, by first using the registration method mentioned before, 

followed by an iterative non-linear transformation (warping) step. Output volumes had a field of view 

(FOV) of 230 × 230 × 136 mm centered at the anterior commissure of the used MNI template, resliced at 

voxel dimensions of 0.45 × 0.45 × 1 mm using trilinear interpolation, resulting in an image grid of 512 × 
512 × 136 voxels. 

 

DECT Iodine-only images 
For all DECT acquisitions, the normalized 3D volumes were converted back to DICOM files and post-

processed using syngo.via (Dual-Energy CT module, Head (CA) application) to compute iodine-only 

images. The used iodine ratio (dual-energy slope) was 2.12 and the reconstruction resolution (smoothing) 

was 4 mm. For a more comprehensive explanation of DECT post-processing, see Appendix A. 

 

Stroke lesion segmentation 
Ground truth labels were created by manually segmenting stroke lesions from DWI and ADC volumes in 

MNI space. First, a volume of interest (VOI) was selected from the DWI using a slice-by-slice ROI 

selection method. Second, a patient specific threshold was used that led to a visually good segmentation 

result. All segmentations were performed by the same observer. Finally, the segmentation result was 

improved by transferring the initial segmentation mask to the ADC volume, and adding all voxels with an 

ADC value < 500 × 10-6 mm2/s that were connected to the readily existing segmentation mask. 

 

Input pre-processing 
NCCT, early and delayed phase CTA were used as 3-phase input data. All volumes were resampled to 

128 × 128 × 64 voxels, having approximately cubic shaped voxel dimensions of 2 mm3. A multi window-

level conversion was applied to enhance the visibility of stroke lesions on NCCT (0 - 80 HU), and 

(collaterals on) both CTA acquisitions (0 – 100 HU). Conventionally, data is normalized to a zero mean 

and unit variance distribution for deep learning purposes, but since all our voxels are already standardized 

in HU, we only divide all voxel values by 1000, just bringing the them to the same order of magnitude of 

this distribution. 

 

Two types of datasets were created for training, validation and testing: a SECT and a DECT set. The 

SECT set contained both SECT and DECT patients, with the simulated SECT angiography derived from 

DECT replacing the conventional single-energy CTA. For the DECT set, early and delayed phase iodine 

only images were used instead of the simulated single-energy CTAs. Both SECT and DECT sets were 

split into a training, validation and independent testing part according to the following ratio: 0.6/0.2/0.2. 

To minimize differences in stroke positive voxels between the sets, patients were sorted based on 

increasingly ground truth stroke volume and. Per group of 5 consecutive patients, they were assigned 

randomly to the training (3), validation (1) and test set (1). 

 

4.2.3 DEEP LEARNING ARCHITECTURES 

Two types of fully convolutional deep-learning models have been implemented using the Keras (F. Chollet 

et al., www.keras.io) and Tensorflow (M. Adabi et al, www.tensorflow.org) libraries based on the Python 

programming language (Python Software Foundation, www.python.org). Both models were implemented 

in a two-dimensional (2D) and 3D fashion, using 2D and 3D operations respectively. The designed models 

http://www.python.org/
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predict for every input voxel the likelihood of being infarcted. Models were trained on a NVIDIA GTX 

1080 Ti GPU with 11 GB of memory. 

 

U-Net model 
The main idea of the U-net architecture is that it can perform localization and segmentation tasks by 

combining an encoding (feature extracting) part with a successive decoding (feature reconstruction) part, 

in which high resolution features from the encoding part are reused.138 The conventional U-Net is adapted 

in several ways: (1) by replacing the convolutional layers with so-called convolutional blocks, consisting 

of a set of sequential operations and a specific connection pattern between different layers in the block; 

(2) by replacing all the pooling and up sampling operations with different (more advanced) transition 

layers. The network’s depth D is defined by the number of transition layers. The set of levels then 

becomes L with l = 0, ..., D with the transition layers T transforming the feature maps from one level to 

the other. The global architecture of the adopted U-Net then becomes as depicted in Figure 4.2. 

 

 
 

Figure 4.2: Example of global overview of the implemented U-Net architecture for D = 3. Numbers represent levels l of a 

convolutional block or transition (T) between levels of convolutional blocks. 

Convolutional block design 
Two types of convolutional blocks have been designed that use the residual, dense and Xception concepts, 

the latter using depthwise separable convolutions (Appendix D).142,143,146 The ResDense block combines 

the first two concepts, while the ResNeXt block concept combines the first and the last and is adopted 

from the block-design described in Xie et al.147 An implementation of both ResDense and ResNeXt blocks 

at an arbitrary level l in the network is depicted in Figure 4.3 and Figure 4.4 respectively. In all blocks, 

the Rectified Linear Unit (ReLU) is used as non-linear activation function. Dropout (50%) has been 

implemented to avoid co-adaptation of neurons, and batch normalization (BN) is applied for accelerated 

learning.148,149 Feature maps are zero padded before every convolutional operation to let the input and 

the output feature maps have the same size. The order of operations within a convolutional block is 

Dropout – ReLU - Conv – BN, where dropout is only used in the Dense and Xception parts of the blocks. 

Also throughout the rest of the network, this order of operations and is kept the same. Filters in the 

convolutional layers were equally shaped in all directions having size 3, and the number of filters is 2 × 

((l × cin) + cin), with cin being the number of input modalities (3 in our case). In the decoding part of the 

network, the ResNeXt configuration uses regular residual blocks without depthwise separable 

convolutions, while the ResDense configuration uses the same block types as in the encoding part. 
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Figure 4.3: Implementation of ResDense block. The subblocks highlighted in gray present the Dense concept, while the 

granite highlighted subblocks (spatially separable depthwise convolutions) are required for the residual connection. The left 

granite subblock is only present in ConvBlocks in the decoding part of the network. 

 
Figure 4.4: Implementation of ResNeXt block (only present in encoding part of network). The groupwise channel separation 

operation splits the stack of featuremaps in groups of size g in a depthwise manner. Subsequently, convolution operations 

act separately on these groups, without blending information between groups. Groupsize g = number of filters / 3. 

Transition layers 
All transition layers operate between convolutional blocks of different levels. No dropout is used in the 

transition layers. Except for the first level (l = 0), every convolutional block at level l comes with 

transition layer. In the encoding part, down sampling of the output feature maps of the convolutional block 

in level l going to level l + 1 with a factor 2 is realized by transition layer Tl  l + 1 using a convolutional 

operation with filter size 2 and stride 2 (Appendix D). This method of down sampling includes a learning 

step instead of using a sub-sampling scheme with fixed rules (e.g. max pooling). In the ResNeXt 
configuration, depthwise separable convolutions (Appendix D) are used in the transition layers.  

 

The opposite operation (so-called deconvolution) could be used to up sample the feature maps coming 

out of level l + 1going to level l in the decoding part, however they usually suffer from checkerboard 

artifacts in the final output.155 Another approach to still have a learning step involved in these layers (Tl 

+ 1  l) is to use a conventional nearest neighbor up sampling operation followed by a conventional 

convolutional layer, which is the method used in this architecture. 

 

The number of convolutional filters in a transition layer is the same as in the subsequent convolutional 

block. The order of operations is (Up –) ReLU – Conv – BN. 

 

Input and output layers 
Both input and output layers follow a different order of operations as described above. Input data is pre-

processed by a convolutional layer and batch normalized before entering the first convolutional block 

(Conv – BN). The output of the final convolutional block is processed by a ReLU activation layer and then 

passed to a convolutional layer having one filter of size 1 (spatially separable convolution). Finally, a 

sigmoid activation function is used to convert the output pixelwise to a likelihood map of being infarcted. 

ResDense 

block 

ResNeXt 
block 
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DeepMedic model 
A different approach using a fully convolutional network is adopted from the DeepMedic architecture.150 

Here, the feature extracting part consists of two parallel pathways, processing image patches of a 

different image scales and corresponding FOVs. Feature maps were not zero-padded prior to 

convolutional layers, thus leading to a decrease in size of the feature maps after every convolutional 

layer. Although no subsampling operations are used in this architecture (which increases the spatial 

localization accuracy)138, the receptive field of the filters in successive convolutional layers still increases 

(e.g. two successive 3 × 3 filters have a receptive field of 5 × 5). The combination of these aspects 

ensures that features can be learned based on local contextual information of the image area that is being 

predicted. 

 

An overview of the DeepMedic architecture is depicted in Figure 4.5. Let f be the shape of the filters in 

a certain dimension (x,y for 2D; x,y,z for 3D) used in the convolutional layers, Ph the input shape of the 

normal (high) resolution patch, and o the shape of the predicted output image patch, then the depth (# 

convolutional layers) of the feature extracting path is D = (Ph − o) ∕ (f − 1), with d = 1, ..., D. The input 

shape of the low resolution path then becomes Pl = (o ∕ 2) + (D × (f − 1)). With Ph = 32, o = 16 and f = 

5 (all based on the 128 × 128 × 64 input volumes), D = 4 and Pl = 24, and thus Pl < Ph. The dual-scale 

aspect is achieved by defining the FOV of Pl to be 2 × Pl, which requires down sampling of the original 

image input patch with a factor 2. Then the receptive field at depth d of the convolutional filters in the 

high resolution path becomes Rh = f + d × (f − 1) and Rl = (Ph ∕ Pl) × (f + d × (f − 1)) in the low resolution 

path. The number of filters in each convolutional layer is 3 + (f − 1)  × d. After D convolutional layers, 

the feature maps of the low-resolution path are up sampled to match the feature dimensions of the high 

resolution path, and are then concatenated before entering the pixel/voxel wise prediction part. This 

second part exists of two fully connected layers implemented as convolutions with filter kernels of size 

1. All convolutional layers are succeeded by a dropout (50%), batch-normalization and ReLU activation 

layer, except for the output convolutional layer (sigmoid activation). For the 3D configuration, fz is 

decreased by a factor 2, and thus also the z-dimension of all other above mentioned shapes. 

 

 
 

Figure 4.5: Implementation of DeepMedic architecture. The presented configuration (D = 4, f = 5, Ph = 32, Pl = 24 and o = 

16) is the one used in the experiments. An example of the patch-extraction process is presented on the left.  

Separate modality processing 
Since a convolutional operation acts both in the spatial and channel domain, it cancels out separate 

channel information. When separate imaging modalities are encoded as image channels, as in our case, 

this means that already after the first convolutional layer, the extracted features contain mixed 

information of all input modalities. However, extracting features solely from individual modalities and 

combine them at output end of the network is more similar to a radiologist’s approach to analyze these 

different scans. To mimic this approach, both models have also been implemented using parallel pathways 

of the same architecture for every input modality. Output feature maps of the parallel pathways were 

concatenated at the end of the feature extracting part in the DeepMedic architecture and right before the 

final convolutional layer in the U-Net architecture. 

 

4.2.4 TRAINING MODELS 

Although both models (U-Net/DeepMedic) have been implemented in several configurations (2D/3D 

operational dimensionality and mixed/separate modality processing), all models used the same loss 

function and hyperparameters. 
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Loss function 
After every feed forward predicted batch, a loss can be computed by comparing the pixel values pn (each 

individually varying between 0 and 1) of the predicted likelihood maps P (also called soft-labels) with the 

ground truth values rn from the corresponding binary ground truth segmentations R in that batch of N 

voxels in total, using a loss function. The gradient of this loss function determines in which direction the 

weights in the convolutional filters in the network should be adjusted to minimize this loss function 

iteratively and let the network fit the data properly over time. 

 

In our case, only relatively few pixels are stroke positive (1), which requires a loss function that takes 

the huge class imbalance with respect to the stroke negative pixels (0) into account. A commonly used 

loss function to deal with this problem is the so-called Dice Loss (DL), because it implicitly leaves out 

true negatives. It can be computed directly from the Dice Similarity Coefficient (DSC). Since our 

predictions are probabilities (soft-labels), the DSC and DL turn into their soft variants SDSC and SDL: 

 

 (4.1)    (4.2) 

 

The 𝜀𝜀 term (10-7) is required to avoid instability of the loss function in the case when both P and R are 

empty. This necessity is also directly the downside of the SDL, since it has no smooth gradients for being 

used in the stochastic gradient descent weight optimization algorithm. Another popular loss function is 

the (binary) cross-entropy loss function that is also used in logistic regression and tries to maximize the 

log-likelihood of P being the same as R for both classes. Since we have a class imbalance problem, we 

want to penalize false positives more than false negatives, and thus we want to have a weighted binary 

cross-entropy (WBCE) loss: 

 

  (4.3) 

 

with N the total number of pixels within a batch and w the weight attributed to the positive class and 

defined as 

     (4.4) 

 

In order to have the benefit of both loss functions, the final implemented loss function is weighted version 

of both: 

   (4.5) 

 

Hyperparameters 
All models were trained (i.e. iteratively minimizing the loss function along its gradient) with the Adam 

optimizer, using individual adaptive learning rates for different weight parameters.156 The base learning 

rate of the optimizer was set to 0.001 (default). The loss on the validation set was monitored to save the 

best model weights after every epoch where a new minimum was reached. Moreover, the loss monitor 

triggered the following actions after not reaching a new minimum after a predefined number of epochs: 

(1) the learning rate decreased with a factor 0.25 after 10 epochs; (2) training was stopped after 20 

epochs. The used weight initialization method was according to He et al.157 Batch size was maximized for 

every configuration based on the available GPU memory, with a maximum of 256 samples. 

 

Training schemes 
Two basic training schemes have been implemented: dense training and patch-based training. During 

dense training a batch consists of multiple full sized input samples, i.e. 128 × 128 × 3 images for the 2D 

case, and 128 × 128 × 64 × 3 for the 3D case. In a patch-based training scheme, local patches of a 
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predefined shape are extracted from these individual input samples to fill a batch. Two different patch-

sampling strategies have been employed: sliding-window (SW) and foreground-background (FGBG). In 

the SW approach, every input sample is split up in equally shaped patches, together covering the whole 

area of the input sample, without having overlap. In the FGBG approach, patches of a predefined shape 

were sampled with the central pixel/voxel (data points) having an equiprobability of being lesion positive 

or negative. Central data points were randomly chosen from both classes per input sample. Patches were 

padded when the central data point was near the border of the input sample. This sampling strategy 

further minimizes the class-imbalance between lesion positive and negative voxels in a batch, and it has 

the aim to more effectively learn to detect stroke. The shape of the used patches was 32 × 32 for 2D 

configurations and 32 × 32 × 16 for 3D configurations. 

 

In addition, real-time data augmentation was implemented by applying geometric transformations 

(rotations, scales, translations) to the input samples to avoid overfitting to the training data and improve 

generalizability of the models. 

 

4.2.5 EXPERIMENTS 

The following configuration parameters of deep learning architectures and forms of 3-phase CT data 

were combined to in total 128 different configurations: 

- Deep learning architecture 

o CNN type (U-Net / DeepMedic) 

 U-Net (ResDense / ResNeXt) 

o Operational dimensionality  (2D / 3D) 

o Modality processing (mixed / separate) 

- Data 

o Input modality (SECT / DECT) 

o Data augmentation (yes / no) 

o Training scheme (dense / patch-based) 

 Patch based (SW / FGBG) 

 

The SECT datasets contain both SECT and DECT cases, where the latter cases are converted to simulated 

SECT images. A complete overview of all configurations is presented in the Appendix F. 

 

4.2.6 PERFORMANCE METRIC 

Since all trained models generate likelihood maps for voxels being infarcted, the outputs were binarized 

to get a final prediction and to be able to calculate the DSC: 

 

    (4.6)  

 

with X the binarized predictions and Y the ground truth voxels. The DSC ranges from 0 (no similarity) to 

1 (complete similarity). After every experiment, DSC on the independent test set was calculated using 

the model weights with the minimum loss on the validation set, assuming this set of weights leads to best 

generalization to the test set. 

 

Since the final computed DSC depends on the chosen threshold for binarization, an algorithm similar to 

expectation maximization has been implemented to estimate the threshold resulting in the highest DSC 

for every trained model. Threshold optimization was performed on the training set using the same model 

weights (minimum loss on validation set). Subsequently, the found threshold was applied to the predictions 

on the test set to calculate the final DSC. An example of the DSC optimization process is presented in 

Appendix E. 

 

4.2.7 DATA ANALYSIS 

All statistical tests were implemented in the R programming language. Significant differences between 

groups were tested using the (Welch) Two-Sample t Test or the Mann-Whitney U test, depending on the 

normality of the input data (Shapiro-Wilk test) and equality of variances (F-test). 
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Data characteristics 
Common data acquisition parameters (CT to MR time and CTA delay time) between SECT and DECT 

datasets were assessed for significant differences. 

 

Stepwise configuration selection 
Best performing configurations were selected based on a stepwise configuration selection. In every step, 

the results of all (remaining) experiments were considered in two groups for every configuration 

parameter and groups were tested on a statistical significant difference (p < 0.05) in DSC on the 

independent test set. The configuration parameter with the lowest significant p-value was selected to be 

fixed for the next step, and thus only the configuration results of best performing alternative of that 

parameter were kept in the next step. Selection stopped at the step where there were no more significant 

differences between groups of remaining configuration parameters. 

 
Additional analyses 
For the best result of the remaining configurations, voxel-wise receiver operating characteristics (ROC) 

analysis and precision-recall (PR) analyses were done. To correct as much as possible for the huge class 

imbalance, only voxels covering the brain area in the NCCT were considered using the pre-processed 

brain masks. For all patients’ binarized output maps, the predicted stroke volume was calculated, which 

is the most clinically relevant output metric. Bland-Altman analysis was performed to compare predicted 

and ground truth lesion volumes. 

 

Subgroup analysis 
Finally, analyses for two clinically relevant subgroups were done to explore performance. The first group 

contained only patients where a stroke lesion was already seen/suspected based on the radiologist’s 

report of the NCCT. These cases were considered as easier cases and therefore might show an increased 

performance. The second group contained only patients that had a confirmed anterior circulation 

occlusion (ACO) based on CTA, since it is assumed that these patients are more likely to have a large 

stroke lesion. For both groups, models were trained on these datasets separately, only using the best 

configurations according to the stepwise configuration selection. Results between groups were compared 

using a pairwise t-test. 

 

4.3 RESULTS 

4.3.1 DATA CHARACTERISTICS 

Scans of in total 293 patients (109 DECT, 184 SECT) were included and successfully pre-processed. 

Among those, 121 patients were identified as easy cases, and 106 patients had a confirmed ACO. The 

distribution of the delay between the two CTA acquisitions and the time between CT and MR acquisitions 

are described in Table 4.1. There was a statistical significant difference between SECT and DECT 

angiography delay times in all datasets (p < 0.001). 

 
Table 4.1: Distribution of acquisition parameters of different (sub)datasets. All values are presented as median and 

interquartile range (25% - 75%). 

 All Easy ACO 
 SECT DECT p SECT DECT p SECT DECT P 

CT to MR time 

(min)* 
59 

(25–308) 
73 

(32-298) 
0.628 

54 
(26–215) 

42 
(17–174) 

0.394 
44 

(25–108) 
42 

(26–80) 
0.704 

CTA delay time 

(s) 
69 

(35– 81) 
14 

(14-15) 
< 

0.001 
66 

(15-78) 
14 

(14–15) 
< 

0.001 
61 

(15–79) 
15 

(14–15) 
< 

0.001 

Total # patients 293 109 - 121 31 - 106 30 - 

 

                                                      
* Note that CT to MR times are skewed due to the presence of MR prior to CT acquisitions (negative times). 
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4.3.2 STEPWISE CONFIGURATION SELECTION 

The stepwise selection process identified the following significant configuration parameters 1) SECT (p 

< 0.001); 2) DeepMedic (p < 0.001); 3) 2D (p < 0.05). With these configuration parameters fixes, there 

was no additional significant improvement in performance considering the patch sampling strategy 

(SW/FGBG), with/without data augmentation and mixed/separate modality processing subgroups. The 

results (p-values) of the stepwise configuration selection process are presented in Table 4.2.  

 
Table 4.2: Results of the stepwise configuration selection. All values are presented as p-values of (Welch) Two-Sample t 

Tests or Mann-Whitney U tests. Sampling strategy was considered in the analysis after the set of configurations was 

constrained to a patch-based training scheme. 

Total 

configs 

Modality 

processing 

Data 

augmentation 

Training 

scheme 

Patch 

sampling 

strategy 

Operational 

dimensionality 
CNN type 

Input 

modality 

128 0.509 0.971 9.60 ⋅ 10-2 - 9.97 ⋅ 10-2 1.08 ⋅ 10-4 1.42 ⋅ 10-13 

64 0.242 0.734 0.192 - 0.196 6.25 ⋅ 10-7 SECT 

16 0.309 0.783 Patch 0.378 4.73  10-2 DeepMedic SECT 

8 0.236 0.973 Patch 0.654 2D DeepMedic SECT 
 

4.3.3 SUBGROUP ANALYSIS 

Performance of the remaining configurations on all patients and on both subgroup datasets are presented 

in Table 4.3. All configurations have the above mentioned top performing parameters fixed. Although the 

‘Easy’ dataset has the highest DSC in configuration 3, a pairwise t-test showed a statistical significant 

difference in DSC between the ‘All’ and ‘ACO’ groups (p = 0.014), with a higher performance for the ‘All’ 

dataset. Since for both the ‘All’ and ‘Easy’ datasets, the DSC for configuration 3 is highest, with a higher 

DSC for the ‘Easy’ dataset, performance on these two datasets using this configuration is further explored 

in ROC, PR and Bland-Altman analyses. 

 
Table 4.3: Performance of remaining configurations on the independent test set of all cases and on both subgroups. Top 

performing configuration parameters (patch-based, 2D, DeepMedic, SW sampling strategy) were fixed. Values are presented 

as DSC. 

Configuration All Easy ACO 
Patch sampling 

strategy 

Modality 

processing 

Data 

augmentation 

1 0.213 0.301 0.204 SW Mixed No 

2 0.229 0.306 0.190 SW Mixed Yes 

3 0.254 0.330 0.194 SW Separate No 

4 0.199 0.192 0.143 SW Separate Yes 

5 0.192 0.184 0.198 FGBG Mixed No 

6 0.208 0.089 0.165 FGBG Mixed Yes 

7 0.220 0.245 0.196 FGBG Separate No 

8 0.245 0.129 0.186 FGBG Separate Yes 

 

4.3.4 ROC AND PRECISION-RECALL ANALYSES 

A voxel-wise ROC analysis of the top performing configuration on all cases (configuration 3, Table 4.3) 

is presented in Figure 4.6. ROC analysis is limited to the voxels of the brain area in the NCCT, based on 

the generated NCCT brain masks. Optimal threshold cutoff points (indicated with *) were chosen based 

on maximization of the DSC on the training set. In the ‘All’ dataset, this threshold resulted in a sensitivity, 

specificity and precision of 0.31, 0.99 and 0.32 respectively for the training set and 0.33, 0.99 and 0.21 

for the test set. In the ‘Easy’ dataset, these numbers were as follows: 0.38, 0.99 and 0.38 for the training 

set and 0.33, 0.99 and 0.34 for the test set. 
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Figure 4.6: ROC curves (left) and Precision-Recall curves (right) from voxel-wise analysis limited to the brain region. The 

top row presents the performance on the independent test set on ‘All’ cases, the bottom row the ‘Easy’ cases. The * on the 

curves indicates the used threshold to binarize predicted outputs where DSC on the training set is maximized. Note that at 

‘All’ cases the maximum DSC on the test set presented by the dashed curve is higher than the DSC in Table 4.3, since the 

binarization threshold maximizing DSC on the test set is slightly different than for the training set, which is used in Table 

4.3. AP = average precision. 

4.3.5 BLAND-ALTMAN ANALYSIS 

For the same configuration as above and again from both ‘All’ and ‘Easy’ datasets, predicted stroke lesion 

volumes were compared with DWI (ground truth) lesion volumes on individual patient basis, using a Bland-

Altman analysis. The corresponding plots are presented in Figure 4.7. Median and 75% interquartile range 

(IQR) values of differences between predicted and ground truth DWI lesions were all positive, while the 

25% IQR values were negative. In the ‘All’ dataset, the correlation coefficient between the ground truth 

and predicted lesion volumes was higher in the training set (r = 0.71) than in the test set (r = 0.58), while 

in the ‘Easy’ dataset, there was only a small difference between both coefficients (r = 0.65 and r = 0.67 

respectively). Areas regarding the correctness in clinical decision making for EVT based on the predicted 

and ground truth stroke volumes are defined as follows: correct (green) in case both predicted and ground 

truth volume are < 70 cc or > 100 cc; incorrect (blue) in case predicted volume > 100 cc and ground truth 

< 70 cc or vice versa; uncertain (blue), in case predicted and/or ground truth lesion volume were between 

70 cc and 100 cc, since in this lesion volume range one should rely on clinical information whether to 

perform EVT or not. The incorrect EVT decision are rates are as follows: 4% on the ‘All’ train dataset, 

5% on the ‘All’ test dataset, 7% on the ‘Easy’ train dataset and 8% on the ‘Easy’ test dataset. 

 

  

All 

Easy 
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Figure 4.7: Correlation plots (left) with reference line (dotted) and Bland-Altman plot (right) of predicted results from the 

‘All’ and ‘Easy’ training and test datasets to present the coherence between predicted and ground truth DWI lesion volumes. 

In the correlation plots, the green, red and blue shaded areas correspond with correct, incorrect and clinical EVT decisions 

in the Bland-Altman plots. Median, 25th and 75th quantiles of differences between predicted and ground truth lesions are 

indicated by dotted horizontal lines. Note that there is a difference in axes between all plots, with the Bland-Altman plots 

having logarithmic axes.  
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4.3.6 VISUALIZATION OF RESULTS 

The predicted output of one patient from the independent test set is presented in Figure 4.8, together 

with the 3-phase input CT data (multi window-leveled), DWI and ground truth segmentation. Data is 

presented as an example. The DSC of the presented patient is 0.69 and of the presented slice 0.79. The 

ground truth volume for this patient was 94 cc and the predicted volume 109 cc. 

 

 
Figure 4.8: Visualization of CT input data (top row), DWI, segmented ground truth (label) and prediction (bottom row) of an 

independent test case (SECT input). Used CT window levels are the same as applied to the CNN’s input data. The patient 

had a double left M2 inferior division occlusion. DWI was acquired 45 minutes after CT and shows a stroke lesion in the left 

MCA territory. 

4.4 DISCUSSION 

In this study, multiple deep learning architectures based on two CNN types have been implemented and 

tested in several configurations to find the best performing system to detect acute stroke lesions from 

3-phase CT input data. The 2D DeepMedic architecture using SECT data and a sliding-window patch-

sampling strategy performed better than other tested configurations on the available data. Although these 

top performing configurations showed generalization in performance between the training and 

independent test set, the DSC was still limited (0.254), even on ‘easy’ cases (0.330). However, Bland-

Altman analysis showed that the system might be useful to make clinically relevant stoke lesion volume 

predictions to be used for triaging AIS patients. 

 

The SECT configuration parameter showed the most significant difference in performance compared to 

all others (p = 1.42 ⋅ 10-13). Since deep learning is very data hungry, a simple explanation of this finding 

is that more SECT than DECT scanned patients were available. This is in line with the other significant 

configuration parameters: DeepMedic, and thus a patch-based training scheme; and 2D images instead 

of 3D volumes. These configuration parameters all have the advantage that they lead to more data 

samples than their counterpart. Another explanation for the superiority of SECT above DECT could be 

that the voxel values of the iodine-only images are not that well standardized compared to original SECT 

Hounsfield Units, making them less suitable to be window-leveled in using as standard window-level of 

0 – 100 HU. On random visual inspection of the window-leveled iodine images, there seems to be quite 

some difference between the generated voxel gray intensities by the DECT post-processing software. 

Further, patches force the CNN more to extract local image features that are expected to be relevant for 

the detection of AIS, such as subtle local gray-white matter washout in NCCT images, instead of 
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irrelevant global features, such as shape of the brain/head. The DeepMedic network is specifically 

designed to process contextual information of small image patches in a multi-scale approach. Spatial 

localization accuracy of this network is more maintained since it uses no transition (up/down sampling) 

layers, like U-Net does.138 Finally, although above mentioned configuration parameters had significant 

better results than others, the stochastic nature of the used gradient descent optimization algorithms 

during training lead to outlying results. For example, there were still two other configurations (3D 

DeepMedic SECT with separate modality processing, and 3D U-Net ResNeXt SECT with data 

augmentation) that reached higher DSCs (0.278 and 0.294 resp.) than the highest reported DSC for all 
cases in Table 4.3 (0.254). 

 

Results from the ROC analysis are difficult to interpret in terms of absolute numbers because there is a 

huge class imbalance between stroke positive and negative voxels although only voxels in the brain area 

were considered. The precision-recall (PR) curves implicitly correct for this class imbalance by 

considering only stroke positive voxels and positively predicted voxels. The curves show that the 

performance on the training is fairly generalizable to the test set, since there is only a minimal drop AUC, 

AP and DSC. 

 

Correlation plots of the Bland-Altman analysis showed moderate to good correlations between ground 

truth and predicted lesion volumes. The median and IQR values in the Bland-Altman plots tend to an 

overestimation of predicted lesion volumes, since both are positive. However, when taking the clinical 

decision margins into account, the number of incorrect EVT decisions due to a too high or too low 

predicted lesion volume is practically the same (‘All’ train: 4 and 3 out of 177 patients; ‘All’ test: 2 and 1 

out of 58 patients; ‘Easy’ train: 3 and 2 out of 78 patients; ‘Easy’ test: 1 and 1 out of 24 patients). The 

higher incorrect EVT decision rate in the ‘Easy’ dataset compared to the ‘All’ dataset may be caused by 

the higher average ground truth lesion volume in the ‘Easy’ dataset, closer to the EVT decision range of 

70 to 100 cc. Nevertheless, the low numbers of incorrect EVT decision rates in combination with the 

moderate to good correlation coefficients are promising, and might have implications to further study the 

effects of these decision models towards clinical application. Finally, all Bland-Altman plots show a 

‘linear’ pattern (logarithmic axes) in the lower part of the graphs, starting from 0 difference between 

predicted and ground truth lesion volumes. Probably these datapoints represent false negative ‘detected’ 

lesions. 

 

CTP is the most commonly used method to determine ischemic core (and penumbra) in acute stroke 

patients in clinical practice. There are two other studies in literature that compare identification of 

ischemic core using CTP with DWI in a comparable way to this study. Cereda et al. reached a sensitivity 

and specificity of 67% and 87% respectively in a voxel-based ROC analysis when using a threshold of 

38% relative cerebral blood flow (rCBF), only considering voxels in the according to CTP hypo-perfused 

brain region. Correlation coefficient between predicted lesion volumes and DWI volumes was 0.83 and 

mean difference between CTP and DWI lesion volumes was only 0.3 cc.158 Copen et al. reached a voxel-

wise sensitivity of 79% to 81% and a specificity of 83% to 85% depending on the chosen cerebral blood 

flow threshold, considering the brain voxels on the side where the lesion was suspected.64 Both show a 

superior performance compared the results presented in this study and suggest that four dimensional 

(4D) CTP data is richer in information compared to 3-phase CT. 

 

A limitation of this study might be the quality of the input data. More specific selection of cases that all 

have the same image acquisition parameters would be required to achieve more standardized data. These 

acquisition parameters include standardization of CTA delay times, contrast injection rates and used 

image reconstruction kernels. In this way, for example imaging of the collateral physiology could be 

improved, of which it is known that it holds predictive information on stroke lesion volume. Other aspects 

include narrowing the allowed time window between CT and MR acquisition and add parameters, such as 

time from stroke onset to CT, so that the deep learning architecture might able to learn how to interpret 

the input data with respect to these parameter values. Also ADC data could be useful to determine several 

levels of restricted diffusion in the brain to penalize a deep learning system more for inaccurate 

predictions of areas with severe restricted diffusion. 

 

Two other interesting ideas are as follows. First, to use richer CTP data as input, which in fact consists 

of many more phases (and thus radiation dose and contrast) compared to the currently used 3-phase data 

in this study. A CNN potentially only needs a part of these phases to make accurate stroke lesion 

predictions. Ideally, an optimum should be found between the minimum required number of contrast-
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enhanced CT phases and the CNN’s ability to predict acute stroke lesions. This could potentially lead to 

implications to change future stroke CT imaging protocols. Second, to go along with the current 3-phase 

CT data, but to split up the problem in multiple individual prediction problems. For example, deep learning 

could be used to predict ASPECTS from NCCT data, while a second (deep learning) pipeline could process 

CTA data to quantify the collateral circulation in the early and delayed phase. The combined outputs of 

these systems could be used in a final classification or regression model to predict DWI lesion volumes, 

with the ASPECTS also indicating the global location of the infarct.159 

 

Further research should mainly focus on further improving input data by standardization and adding 

clinical parameters, rather than improving CNN architectures. It is clear when comparing this study to 

other studies where CNNs have shown outstanding results in detection and segmentation tasks in the 

field of medical imaging, that the right data and the way how data is presented to the network (data 

augmentation, patches, sampling) is key to set a good baseline result to potentially solve this hard, but 

truly relevant problem of acute stroke detection on CT images. 

 

4.5 CONCLUSION 

This study has shown that a deep learning system might be useful to predict DWI infract core lesions 

based on 3-phase CT data for triaging AIS patients. Systems based on a 2D DeepMedic architecture and 

processing SECT images perform better on the independent test set than systems based on the U-Net 

architecture. Although the performance in terms of DSCs of these 2D DeepMedic based systems still 

seems limited, the predicted lesion volumes result in a promising low number of incorrect EVT decisions 

for triaging AIS patients. Improvements may be achieved by adding more CTA phases to the input data, 

enriching the available information on the underlying vascular stroke physiology, by standardizing CT 

acquisitions and by including clinical parameters to the prediction model. Future research should focus 

on these aspects, for example by finding a tradeoff between required CTA acquisitions (radiation and 

contrast dose) and on the implications of the predicted lesion volumes in clinical practice. 

  



32 

 

 

 

  



33 

 

 

 

 

 

 

 

 

 

 

 

5 

Investigating the predictive ability of 

NCCT texture features in combination 

with DECT iodine features for 

intracerebral hematoma expansion 

 
5.1 INTRODUCTION 

Hematoma expansion (HE) is a common and serious complication after intracerebral hemorrhage (ICH), 

strongly associated with increased mortality, worse functional outcome and neurologic 

deterioration.100,101,160 The exact mechanism driving HE is not clear, possibly being caused by the 

inflammatory response after initial bleeding, hemostatic dysregulation, breakdown of the blood-brain 

barrier or local tissue distortion.98,161,162 Early recognition of patients at risk for HE helps to guide 

selection of ICH patients for targeted intervention. 

 

Many radiographic markers for HE, based on qualitative assessment of non-contrast computed 

tomography (NCCT) and computed tomography angiography (CTA) scans, have been identified. On NCCT, 

these include hematoma location163 and morphologic appearance of the hematoma, such as shape and 

density variation, which are both considered as independent predictors of HE.164,165 Given this, several 

radiographic markers were proposed to qualitatively describe shape or density variations, including island 

sign166, satellite sign167, black hole sign168, blend sign169, swirl sign170, margin irregularity171 and 

hematoma hypodensities.172 All of these markers are thought to reflect active hemorrhage, its time course 

or its multifocal nature. On CTA, the presence of foci of hyperintensities in the hematoma, known as the 

spot sign, is thought to represent active contrast extravasation, and has been shown to be independently 

associated with an increased risk of HE.111,116,173 

 

Although a high specificity is important for these markers to not indicate aggressive/invasive therapy 

(e.g. craniotomy) in vain, the general problem of most of these individual markers is that they lack good 

sensitivity in order to make them clinically valuable. Also standardized assessment and thus automated 

quantification is desired to seamlessly incorporate them in the clinical workflow. Recently, a study on HE 

using dual-energy CT (DECT) showed that quantified iodine in the hematoma and spot signs can be 

combined to a so-called I2-score to predict HE with a higher sensitivity than conventional, qualitatively 

extracted image features.124 Other quantitative features that have been studied focused on morphologic 

appearance of hematomas on NCCT by computing different texture features based on image histogram 
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analysis of the hematoma region.132,174 Since both iodine and texture features assess different hematoma 

aspects, combining them in a prediction model would potentially lead to synergy. The aim of this study is 

to explore if a prediction model that combines iodine and texture can further improve the sensitivity of 

the I2 score without decreasing specificity. 

 

5.2 METHODS 

5.2.1 PATIENT SELECTION AND DATA COLLECTION 

Data from patients who were referred to DECT between October 2014 and February 2018 and who had 

primary intraparenchymal ICH were analyzed retrospectively (approved by institutional review board, 

informed consent waived). Exclusion criteria were: (1) no follow-up NCCT within 48 hours for 

assessment of actual HE; (2) surgical treatment (craniotomy or minimal invasive hematoma evacuation) 

between initial DECT and follow-up scan; (3) (mainly) intraventricular hemorrhage; (4) presence of an 

extraventricular drain to decrease intracranial pressure at baseline scan; (5) inadequate image quality or 

image analysis. Patients scanned before February 2017 were used for training, while the remaining 

patients were used as independent test set. 

 

All scans were acquired with a dual-source CT scanner (Siemens Somatom Definition ForceTM) at the 

emergency radiology department. Series included an initial thin-sliced (0.6 mm) non-contrast head CT, 

followed by an early and delayed phase DECT angiography. The early phase was timed using contrast 

bolus tracking. The NCCT was acquired at 120 kV and the DECT at 80 kV and 140 kV. Images were 

reconstructed using a standard filtered backprojection reconstruction kernel. Follow-up NCCT images 

were reconstructed at a 3 mm slice interval using a soft reconstruction kernel  

 

5.2.2 IMAGE ANALYSIS 

All image processing algorithms were implemented using MATLAB R2018a (The Mathworks, Natick, 

Massachusetts, USA), unless otherwise specified. An illustration of the global image processing pipeline 

is presented in Figure 5.1. 

 

Hematoma segmentation and expansion assessment 
Dual-energy CT images were converted in to virtual non-contrast (VNC) and iodine images, using 

syngo.via (Dual Energy Brain Hemorrhage, Siemens Healthcare), sliced at 3 mm intervals for 

computational cost reasons in the subsequent hematoma segmentation algorithm. On the VNC and on the 

follow-up NCCT images, the tissue was semi-automatically segmented into skull, parenchyma and 

hematoma. Patients were assessed for HE between initial VNC and earliest NCCT follow-up scan, and 

were classified as expander if the hematoma growth was >25% or >3 cm3. If the automated volume 

measurement on the follow-up NCCT was unreliable for expansion measurement due to ventriculostomy, 

hematomas were classified for expansion by neuroradiologic assessment by two experienced 

neuroradiologists, blinded to data analysis, until consensus was reached. 

 

Iodine features 
Hematoma masks from the initial 3 mm sliced VNC were transferred to the iodine images. Automatic 

detection of regional maxima using a quantile filtered mixture separation algorithm was used to detect 

spots in the iodine images.175 Total iodine content within the hematoma (Ih) and, if any spots present, total 

iodine in the brightest spot (Ibs) were quantified (both in mg iodine) and combined to the I2-score as 

presented in Tan et al.124  

 

   (5.1) 

  

Other computed iodine features were total iodine content in all spots (Is, mg), mean iodine concentration 

in the hematoma (mean Ih), mean iodine concentration in spots (mean Is), and maximum iodine 

concentration in all spots (max Is), the latter tree all in mg/ml. These bring the total number of iodine 

features to 6 per hematoma. 
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Figure 5.1: Overview of the images used throughout the processing pipeline. A) DECT Virtual non-contrast image used for 

hematoma segmentation. B) Hematoma mask is transferred to iodine only image. Two iodine features are computed on this 

image (Ih, mean Ih). C) Automatic spot detection using a quantile filtered mixture separation algorithm. Iodine features Is, 

Ibs, mean Is and max Is. D) Hematoma mask transferred to NCCT for texture analysis. E) LoG filtered hematomas at 

different filter widts (σ = 0.5, 0.9 and 1.25 mm respectively). 

Texture features 
Subsequently, the VNC images and corresponding three-dimensional (3D) hematoma masks were 

registered and resliced to the thin sliced initial non-contrast head CT. Texture features were computed 

based on the masked 3D hematoma regions on the NCCT using different methods: (1) based on the image 

histogram; (2) based on two-dimensional (2D) gray level co-occurrence matrices (GLCMs); (3) based on 

3D GLCMs. Image histogram analysis allowed computation of the following texture features: mean voxel 

intensity, standard deviation, variance, uniformity, skewness and kurtosis. Analysis of the GLCMs 

resulted in the following other texture features: entropy, energy, homogeneity, contrast and dissimilarity. 

A more detailed description of these methods is presented in section 2.1 and Appendix B. All GLCMs 

were computed on original Hounsfield Units of the NCCT images, without rescaling image intensities. 

 

Moreover, NCCT images were pre-processed with Laplacian of a Gaussian (LoG) filters using three 

different filter widths (σ = 0.5, 0.9 and 1.25 mm, based on Shen et al.132) and two different filter 

dimensions (2D and 3D). While the Laplacian component enhances texture, the Gaussian component 

allows extraction of texture features in different scale spaces, and thus assessment of both fine and 

coarse texture. Moreover, it stabilizes texture features with respect to CT image noise and possible 

differences in acquisition parameters. More details about the LoG filtering process is presented in 

Appendix C. 

 

Features based on 2D GLCMs were only computed on 2D LoG filtered images, while 3D GLCM based 

features were computed on 3D LoG filtered images. Both 2D and 3D GLCM based features were computed 

on non-filtered images as well. Histogram based texture features were computed on non-filtered and all 
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types of filtered images. All filtering and texture computation methods combined resulted in 82 different 

texture features per hematoma. 

5.2.3 STATISTICAL ANALYSIS 

Statistical analyses were performed using R (R: A Language and Environment for Statistical Computing, 

www.r-project.org). Patient characteristics were described using median and interquartile range (IQR)  

for non-normal distributed variables, and mean and standard deviation for normal distributed variables. 

Significance in differences (p < 0.05) was assessed with a Mann-Whitney U Test or (Welch) Two-Sample 

t Test respectively.  

 

Feature selection 
An overview of the complete feature selection process is presented in Figure 5.2. Since we have a total 

set of 88 features (6 iodine, 82 texture), feature reduction is necessary to avoid model overfitting to 

training data. For a binary classification problem, the number of features should be (far) less than the 

number of positive cases in the training set to avoid model overfitting.134 An extensive feature selection 

process has been designed to accomplish this. The method is based on how often features survive the 

selection process using three different selection methods with an increasing level of Gaussian noise 

applied to the training data, ranging from no noise to 1 standard deviation (11 levels in total). The feature 

survival aspect was chosen to assess the stability of features to slight variations in the training data. 

Three pre-selection methods were applied at all 11 noise levels, leading to a total of 33 feature selection 

simulations. Features were finally ranked on the number of survived selection simulations. 

 

 
 

Figure 5.2: Overview of feature selection process. 

 

Pre-selection method 1 (AUC-CI) 
First, for all of the 88 individual features, receiver operating characteristic (ROC) analysis was performed 

and the area under the curve (AUC) was computed with its corresponding 95% confidence interval (CI). 

If the lower end of this interval was below 0.5, indicating that this feature might have no individual 

predictive value, the feature was dropped. 

 

Pre-selection method 2 (Correlation) 
Correlation between every pair of features was calculated first. For all pairs with a correlation coefficient 

above 0.8 and starting with the highest correlated pair, the feature with the highest mean absolute 

correlation coefficient with all other (remaining) features was dropped. 

  

http://www.r-project.org/
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Pre-selection method 3 (Correlation – AUC) 
Both correlations between every pair of features and AUC for every individual feature were computed. 

Again, for all pairs with a correlation coefficient above 0.8 and starting with the highest correlated pair, 

the feature with the highest mean absolute correlation coefficient with all other (remaining) features was 

dropped. 

 

Subsequently, a second selection step was performed using a stepwise forward/backward parameter 

selection method. Starting with an empty logistic regression model, parameters were added/removed 

based on maximization of the likelihood ratio test between two possible candidate models, while the total 

number of model parameters was kept to a minimum. The Akaike Information Criterion (AIC) combines 

both these aspects by maximizing likelihood ratios and assigning penalties for an increasing number of 

model parameters. Therefore, the stepwise selection process aims to minimize AIC in every step. 

 

Feature ranking 
After the 33 feature selection simulations, selected features for all selection methods at all noise levels 

were collected and counted cumulatively. Features were ranked based on counts, with the highest ranking 

feature having survived the most feature selection simulations, indicating to be the most stable and most 

predictive feature. 

 

Final model selection 
Logistic regression models were fit to the training data with in increasing number of features, starting 

with the highest ranked feature only. For every model, AIC was computed, and the model with the 

minimum AIC value was selected as final combined iodine-texture model. 

 

Iodine-texture model vs. I2-model 
The performance of the combined iodine-texture model on the independent test set is compared to the 

I2-score, with a classification border for expansion at I2 > 20.124 To asses stability of both models, a 

noise sensitivity analysis is performed, evaluating the performance of both models with an increasing 

level of noise applied to the data of the test set (again ranging from 0 to 1 standard deviation). 

 

5.3 RESULTS 

5.3.1 TRAINING AND TEST SET 

Between October 2014 and February 2017, 38 patients with in total 42 hematomas (13 expanders) were 

included, successfully processed and were considered as the training set. From February 2017 to 

February 2018, another 64 patients with in total 69 hematomas (14 expanders) were included. The same 

datasets as in Tan et al.124 were used with the following number of dropped patients due to extra required 

image acquisition and processing steps: 3 in the training set (failed registration of VNC to NCCT) and 2 

in the test set (no baseline NCCT available). Characteristics of the two groups are presented in Table 

5.1.  

 

5.3.2 FEATURE SELECTION AND RANKING 

Total survived selection simulations of features varied between 0 and 29. Two iodine features (Ih and Ibs) 

survived the most simulations, followed by image histogram mean after 3D LoG filtering (σ = 0.9 mm). Is 
and 3D GLCM based dissimilarity (also 3D LoG filtered, σ = 0.9 mm) were the next two in the ranking, 

completing the group of features that survived a minimum of 5 simulations. This threshold of 5 survived 

simulations was chosen given the limited number of expanders (13) in the training set. Other features (up 

to 3 simulation survivals) are presented in Figure 5.3. There was only one texture feature that has been 

selected first in any of the simulations during the stepwise forward/backward feature selection process: 

3D GLCM based dissimilarity (3D LoG filtered, σ = 0.9 mm). For the iodine features, Ih has been selected 

first 28 times, and Ibs and Is both 2 times. 
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Table 5.1: Patient characteristics 

    Variable Training set (n = 38) Test set (n = 64) p-value 

Age (y)*    

   Male 66.6 ± 15.5 (21) 64.7 ± 16.0 (35) - 

   Female 66.5 ± 14.5 (17) 66.8 ± 18.7 (29) - 

Time to F/U CT scan (h)† 7 [5 – 17] 6 [4 – 13] 0.16 

Time between early and delayed CTA (s)† 70 [67 – 74] 69 [59 – 74] 0.18 

Admission SBP (mmHg)† 164 [142 – 190] 150 [135 – 174] 0.06 

Admission INR† 1.2 [1.1 – 1.3] 1.0 [1.0 – 1.2]  <0.05 

Anticoagulant use (other than aspirin) 11 (29) 13 (20) - 

Last seen well (h)    

   <3 9 (24) 23 (36) - 

   3-6 6 (16) 7 (11) - 

   >6 23 (60) 31 (48) - 

   Unknown 0 (0) 3 (5) - 

Type of ICH    

   IPH 26 (68) 44 (68) - 

   IPH with SAH/SDH 5 (13) 10 (16) - 

   IPH with IVH 7 (19) 10 (16) - 

Cause of ICH    

   Hypertension 26 (67) 30 (48) - 

   Cerebral amyloid angiopathy or malignancy 4 (11) 4 (6) - 

   Trauma 3 (8) 9 (14) - 

   Other 1 (3) 6 (9) - 

   Unknown or undetermined 4 (11) 15 (23) - 

Note: Unless otherwise specified, data are number of patients, with percentages in parentheses. 
*Data are means ± standard deviations, with the number of patients between parentheses. 
†Data are medians with interquartile range between block parentheses. 

F/U = follow-up, SBP = systolic blood pressure, INR = international normalized ratio, ICH = intracerebral hemorrhage 

IPH = intraparenchymal hemorrhage, SAH = subarachnoid hemorrhage, SDH = subdural hemorrhage 

IVH = intraventricular hemorrhage 

 

5.3.3 FINAL MODEL SELECTION AND PERFORMANCE ON TRAINING SET 

For the group of 5 features that survived a minimum of 5 feature selection simulations (Ih, Ibs, Mean3D0.9, 

Is, Dissimilarity3D0.9) a logistic regression model was fit to the training data including an increasing number 

of features, ordered by ranking. The model that included 3 features (Ih, Ibs, Mean3D0.9) had the lowest AIC, 

and was selected as final combined iodine-texture logistic regression (LR) model (Figure 5.4). Sensitivity 

and specificity on the training set were 100% and 100% respectively, compared to 85% and 90% for the 

I2-score. 
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Figure 5.3: Cumulative feature count of survived selection simulations on the training set. 

 

 
Figure 5.4: Akaike Information Criterion (AIC) for different logistic regression models fit on the training data, with an 

increasing number of features (from left to right) that survived the feature selection process at least 5 times. 

5.3.4 PERFORMANCE ON INDEPENDENT TEST SET: SENSITIVITY ANALYSIS 

On the independent test set at baseline (without noise), the I2-score had a sensitivity and specificity of 

50% and 87% respectively and the combined iodine-texture LR model 43% and 84%. With an increasing 

noise level applied to the test data, sensitivities of both models increased, while specificities decreased. 

The results of the noise sensitivity analysis are presented in Figure 5.5. 
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Figure 5.5: Noise sensitivity analysis of I2-score model and combined iodine-texture logistic regression (LR) model on the 

independent test set. 

5.4 DISCUSSION 

In this study, multiple texture parameters were explored on their predictive ability for HE in combination 

with DECT iodine features. Extensive feature selection has shown that the iodine features Ih and Ibs are 

the most stable from all assessed features, and especially Ih has shown its predictive value with 28 times 

been selected as first, and thus as most predictive feature. A combined iodine-texture  logistic regression 

model was not able to outperform the recently published I2-score. However, sensitivity analysis of 

performance on the independent test set demonstrated that nor the I2-score model, nor the combined 

iodine-texture LR model was robust to slight modifications (± 0.2 SD) to the data. 

 

The feature selection and ranking process clearly showed that texture features performed worse than 

iodine features (especially Ih and Ibs), also when different random seeds for were used for the noise 

generation (not reported in results). Other studies, however, reported positively about the predictive 

value of texture parameters for HE. Shen et al. reached sensitivities up to 85% for histogram based 

texture uniformity, while Connor et al. reports significant differences for image histogram standard 

deviation of the hematoma region.132,174 It is known that texture features are in general sensitive to 

differences in acquisition parameters. The only texture parameters that survived the feature selection 

process were the texture features after LoG filtering of the scans, and consisted of both image histogram 

and GLCM based texture features. Apparently, stabilizing texture features by LoG filtering of the data 

was more important than the exact used texture computation method in this dataset. However, even after 

LoG filtering, the quantitative texture features were not able to capture the (ongoing) physiologic bleeding 

process that is described by other qualitative hematoma characteristics on NCCT, such as blend sign and 

swirl sign.169,170 It might be that texture parameters are better able to capture the final result of this 

bleeding pattern, when hematoma/tissue has readily been reorganized, and thus may be better linked to 

patient outcome metrics instead of potential or ongoing HE. 

 

Iodine features, however, can provide a better representation of the actual, ongoing bleeding process. 

This process could be divided in initial vessel rupture, leading to focal bleeding, a potential (bright) spot 

sign (Ibs) and initial hematoma growth. Subsequently, secondary vessel leakage, leads more slowly to 

diffusely accumulated iodine in the hematoma (Ih), where the initial focal bleeding also contributes to the 

total iodine content in the hematoma. This may explain the superior performance of Ih in the feature 

selection process. The total iodine in all spots (Is) was selected only 5/33 times, suggesting that it is 

mainly the intensity of one bleeding (Ibs) that dominates expansion probability rather than a possible 

multifocal bleeding pattern (Is). This finding is contradicting the scoring system of spots signs by intensity 

and number, described in Romero et al.114 
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It is remarkable that the performance of the combined iodine-texture LR model drops considerably from 

the training set to the test set. Although the AIC penalizes models containing many features, the selected 

model with 3 features based on the minimal AIC still clearly overfits on the training data (100% sensitivity 

and specificity). Ideally, the number for model features should be far less than the number of positive 

cases in the training data to avoid overfitting.134 The number of expanders in the used training dataset is 

only 13, which might be too few for a model based on 3 features. Fitting a model on a training dataset 

containing more positive cases would potentially overcome this problem and let the results on the training 

set be more generalizable to the test set. A different cause of the non-generalizability may be that other 

acquisition settings than delay time (only recorded), such as contrast injection rate, timing of the early 

phase CTA or used reconstruction kernels, are significantly different between the training and the test 

set. 

 

Other interesting findings are that also the performance of the I2-score drops from the training set to 

the test set (sens/spec 85%/90% to 50%/87%), and that its performance on the test set is remarkably 

worse compared to Tan et al. (sens/spec 71%/93%), while having used almost the same database. An 

explanation for the difference in performance could be that this study required a redo of the hematoma 

segmentations. Since there was no focus on texture analysis in Tan et al., VNC images from DECT were 

generated as (gray) RGB images rather than in HUs and were only used for hematoma segmentation 

purposes. However, it was not possible to use these RGB images for registration to the conventional 

NCCT, that was meant to be used for texture analysis, requiring VNC images to be regenerated using 

syngo.via. Because the user has to define a boxed field-of-view of the 3D DECT volume to be converted 

to VNC, the original VNC images could not be replicated, and thus a redo of the segmentations was 

required. Therefore, used hematoma masks in this study were different compared to Tan et al. and could 

have caused the different performance on the test set. This fits with the fact that the performed sensitivity 

analysis also showed that the I2-score is sensitive to slight data modifications, indicating that this Ih/Ibs 

model might have been fit on a too small training dataset and needs some recalibration on a larger data 

set. Moreover, the accuracy of the used semi-automatic segmentation algorithm (based on max-

flow/min-cut 3D region growing) has never been validated on intracerebral hematomas, although the 

results look good on visual inspection. Studies on larger cohorts are required to validate the initial 

reported performance of the I2-score. 

 

This study has several limitations. First, data came from only one DECT scanner type from one hospital. 

Although this works as an advantage for the performance of this study, generalizability of the identified  

features compared to other centers and scanner types is limited, and requires studies with larger cohorts, 

multiple centers and DECT scanner types as well. Moreover, the relation between these quantitative 

image features and clinical outcome measures, such as modified Rankin scale (mRS) or mortality has not 

been assessed. Third, the used prediction models in this study only used quantitative radiographic 

features and did not include clinical parameters such as anticoagulant usage, time from symptom onset 

to CT scan, blood pressure, National Institute of Health Stroke Scale (NIHSS), Glasgow Coma Scale (GCS) 

or other features.176 

 

Future research should focus on validating the I2-score by standardizing image acquisition, studying 

larger cohorts and selecting patients more strictly on solely intraparenchymal hemorrhages without 

intraventricular or subarachnoid component. Further, incorporating clinical parameters in the model may 

increase model performance. Another interesting but different approach to reveal the potential synergy 

between image features from NCCT and DECT iodine images is to develop a deep learning system that 

takes segmented hematoma regions of both modalities as input to learn combined predictive features, and 

use these to classify hematomas as expanders or non-expanders. 

 

5.5 CONCLUSION 

This study has shown that a logistic regression model combining NCCT texture features and DECT iodine 

features was not able to outperform recently proposed I2-score on an independent test set in prediction 

hematoma expansion. Moreover, performances of both the I2-score model and combined iodine-texture 

model were not robust to slight data modifications. Although the results from an extensive feature 

selection process clearly showed that DECT iodine features have more predictive value than NCCT 

texture features to, future research should validate and/or update the I2-score model based on a larger, 
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strictly selected study cohort using standardized image acquisition protocols, to make its performance 

generalizable to other datasets. 
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Conclusion 

 
he research performed for this thesis has attempted to develop models able to assist in clinical triage 

of hemorrhagic and acute ischemic stroke patients by identifying subgroups relevant for therapy 

selection. Both studies were based on analysis of CT scans, which is the most relevant and widespread 

imaging modality used in emergency radiology. By acquiring both non-contrast CT images, early and 

delayed (dual-energy) contrast-enhanced phases, these scans are able to capture relevant underlying 

vascular physiology in the brain leading to intracerebral hemorrhage expansion or development of 

necrotic tissue in ischemic brain areas, referred as the ischemic core. 

 

Identifying the extent of the ischemic core is important to select AIS patients eligible for EVT. This study 

has shown that a deep learning architecture based on a 2D DeepMedic architecture, taking SECT image 

patches from above described 3-phase CT as input, performed better than other U-Net based 

architectures in predicting ground truth DWI ischemic core lesions. Moreover, the predicted infarct core 

lesion volumes on individual patient basis led to low incorrect EVT decision rates, implying that the 

system might be useful for clinically triaging AIS patients. Standardizing CT acquisitions, including clinical 

parameters to the prediction model and adding CTA phases, enriching the information on the underlying 

vascular stroke physiology, may be required to further improve the performance of this deep learning 

system. Future work should focus on these aspects, for example by finding a tradeoff between required 

CTA acquisitions (radiation and contrast dose) and on the implications of the predicted lesion volumes in 

clinical practice. 

 

To predict hematoma expansion in hemorrhagic stroke patients, quantitative texture features based on 

NCCT images have been identified and combined with DECT iodine features in the development of a 

logistic regression model. The results have shown that a logistic regression model combining iodine and 

texture features was not able to outperform the recently proposed I2-score on an independent test set. 

Results from an extensive feature selection process have shown that DECT iodine features have more 

predictive value than texture features from NCCT for predicting hematoma expansion. Future research 

should validate and/or update the I2-score model based on a larger, strictly selected study cohort using 

standardized image acquisition protocols, to make its performance generalizable to other datasets. 

 

As more and more medical imaging data is stored and annotated in a structured way, more quantitative 

imaging features can be extracted and/or learned by self-learning systems, to be used in applications 

that are able to aid in daily clinical practice. Today, we are just at the beginning of the computer-aided 

diagnosis revolution in healthcare. 
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Appendix 

 
A. DUAL-ENERGY CT POST-PROCESSING 

The fundamental principle of dual-energy CT (DECT) is that certain materials show a clear difference in 

x-ray attenuation profile for varying clinically used x-ray beam energies. Most of our body’s soft tissue 

is composed of C, H, N and O atoms. The electron binding energy of the innermost electron shell, called 

k-edge, in these materials is very low (< 1 keV). Because the average photon energy used in medical x-

rays (approximately 1/3 of the maximum beam energy) is far higher than this k-edge energy, the 

attenuation of x-rays is dominated by the Compton effect, which is directly proportional to the physical 

density of materials. However, materials with a higher atomic number (Z) have a higher k-edge, such as 

calcium (4 keV) and iodine (33 keV). Here, the photoelectric effect still plays an important role in x-ray 

attenuation, causing an increase in attenuation, especially when the average photon energy is close to 

the material’s k-edge. At higher energies, the photoelectric effect decreases with the used peak 

kilovoltage (kVp), proportionally to kVp-3. 

 

When a CT scan is acquired at two energies, the difference in contribution of the Compton and 

photoelectric effect in both beams, is bigger for higher Z materials compared to soft tissue materials. For 

example, when an iodinated contrast-enhanced CT scan of the head is acquired at 100 kVp and 150 kVp, 

the attenuation due to the presence of iodine will be much higher in the low kV scan compared to the 

high kV scan, because at the low energy scan the photoelectric effect has a bigger contribution to the 

total attenuation (average beam energy close to iodine k-edge). Thus with increasing iodine density, the 

computed Hounsfield Units (HU) on the low kV image will increase more rapidly than on the high kV 

image. For soft tissues, such as brain parenchyma (BP) and intracerebral hemorrhage (ICH), the 

difference in contribution of the photoelectric effect is much less, since x-ray attenuation is dominated 

by the Compton effect in both scans. In this way, the difference in increase in HUs with increasing soft 

tissue density between the low and high kV images is less. 

 

 
Figure A.1: Post-processing principle of three material decomposition in DECT for the generation of VNC / iodine-only 

images (left) and VNCa / calcium-only images (right). Note that the dual-energy slope of calcium is lower compared to 

iodine, because calcium has a lower k-edge, and thus the photoelectric effect contributes less to the total attenuation. 

Both material types can be characterized with dual-energy slopes (Figure A.1), one considered as the 

(soft tissue) base-material pair slope (BP, ICH) and the other as the high Z material slope (e.g. iodine or 

calcium). The HUs of an observed voxel are then interpreted as a displacement from the base-material 
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slope along the high Z material slope, representing the content of that material in the observed voxel. In 

this way, three-material decomposition is achieved by virtually decomposing every voxel into a base-

material part and high Z material part. In turn, virtual non-contrast (VNC) / iodine only and virtual non-

calcium (VNCa) / calcium-only images can be computed when an iodine and calcium slope are used 

respectively. Image reconstruction parameters and selection of base-material pair depend on clinical 

application. Final material quantification can be achieved by doing calibration experiments. 

 

 

B. COMPUTATION OF TEXTURE FEATURES FROM GLCMS 

As discussed in section 2.1, GLCMs can be computed for adjacent pixels or voxels (hereafter elements) 

pairs in a specific directions with respect to the central assessed element. When multiple (often 

symmetrical) directions are considered, a separate GLCM is computed for every individual direction. 

After summing up these GLCMs and normalizing the result, texture features such as entropy, energy, 

homogeneity, contrast and dissimilarity can be computed using the following equations: 

 

   (B.1) 

     (B.2) 

    (B.3) 

    (B.4) 

    (B.5) 

with p representing the GLCM, and i and j the GLCM row and column elements respectively. 

 

 

C. LAPLACIAN OF A GAUSSIAN FILTERING 

In order to enhance texture of the segmented hematomas on different scales, CT images were filtered 

using a Laplacian of a Gaussian (LoG) kernel with varying filter width (σ). The details of the used 

convolutional kernels are presented below. 

 

2D LoG filtering 

- Gauss kernel:     (C.1) 

- LoG kernel:         (C.2) 

- Filter size:       (C.3) 

 

3D LoG filtering 

- Gauss kernel:  (C.4) 

- LoG kernel:       (C.5) 

- Filter size:      (C.6) 
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      (C.7) 

      (C.8) 

 

with vx, vy, vz the voxel dimensions of the CT data. 

 

 

D. BASIC CNN OPERATIONS 

The basic operations in a CNN are structured in layers to ensure a certain order. The most commonly 

used order of layers is as follows: convolution, batch-normalization, dropout, non-linear activation 

function. While the convolution and non-linear activation layers are considered as standard, batch-

normalization and dropout are optional. 

 

The basic operation in a convolutional layer is presented in Figure 2.2. It shows that N sliding filters of 

size 3 × 3 process a C-channel input to an N-channel output feature space that is transferred to the next 

layer. Every individual convolution operation thus has only one output value that is transferred to the  

position of the central element of the considered input space area. When the filters slide in a stepwise 

manner over the complete grid of the input data, a new value is computed for all data elements except 

the border elements. To avoid shrinking of the feature space in the next layer, the input data is usually 

zero-padded. 

 

Stride and pooling 
The size of the steps that a convolutional filter takes to slide over the image grid is determined by the 

stride s. It represents the number of data elements the filter moves to perform the next convolution. Both 

the filter shape f and the filter stride s can be chosen arbitrarily for all dimensions. If f and s are 

represented by a scalar, the shape in all dimensions is equal. Figure D.1 (left) presents an example of 

stride when s = 2 for the filter moving in the x direction. The number of possible convolution operations 

is halved for both directions, resulting in a down sampled output space (not depicted) with the same factor 

s = 2. In this way, the convolutional layer acts as a learnable down sampling operation. This in contrast 

to down sampling using pooling operations (Figure D.1 right), in which fixed rules are used, such as in 

maximum and average pooling. 

 
Figure D.1: The concept of stride (left) with s = 2 and pooling (right). Both convolution and pooling operations have a single 

value as ouput for every considered input space area (red). For the sake of this example, the pooling size is taken the same 

as the filter size (3x3). Note that the pooling size is usually equal to the stride, and thus would be 2 × 2 instead of 3 × 3 in 

practice. 

 

Depth wise separable convolutions 
The basic convolution operation presented in Figure 2.2 is a cross-channel operation, using data from all 

channels to compute an output. However, in some cases it might be intuitively undesirable to mix channel 

information, for example when different input channels represent different images, such as in 3-phase 
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CT data. To overcome this problem, individual convolution operations should only act on a group (g) of 

or even individual input channels. This is what is called a depth wise separable convolution. In addition 

to avoiding mixed channel information, the computational costs of this operation are lower when 

computing the same number of output feature maps compared to a regular convolution, since the number 

of required weights for every produced output channel is reduced by the number of input channels C or 

C/g for the grouped case. The concept of the depth wise separable convolution is presented in Figure 

D.2. 

 

 
Figure D.2: Depthwise separable convolution acting on individual channels (g = 1) of a mutli-channel input space (C = 3). 

Three filters compute three output channels using the same number of weights as a single filter in a regular convolution. 

 

Batch normalization 
The output of the convolutional layers is sent to a batch normalization layer, where the data is normalized 

according to learned batch statistics. Since backpropagation takes place after all data samples (m) of one 

batch have been processed, it is important that the gradient of the backpropagated error through the 

network should not vanish or explode to avoid ineffective adjustments and thus learning of the weights 

and biases in the convolutional layers. A batch normalization layer acts on the feature space (x) of a 

specific layer from one batch by bringing its mean (µ) to 0 and its variance (σ2) to 1. Subsequently, the 

normalized output is scaled with γ and is shifted with β to an output space y. Both these scaling and 

shifting parameters can be learned using the stochastic gradient descent algorithm. Batch normalization  

allows to use higher learning rates, accelerating training of CNNs, and be less careful about weight 

initialization. An overview of the steps in batch normalization (BN) is presented below.149 

Batch mean:        (D.1) 

Batch variance:        (D.2) 

Normalize:        (D.3) 

Scale and shift:      (D.4) 

 

Dropout 
A regularization method to prevent overfitting of the learned weights in the convolutional layers is 

dropout. A dropout layer randomly drops input elements of the feature space with a given probability by 

setting them to 0. This effectively drops neurons in the subsequent convolutional layer and thus avoids 

co-adaptation of learned weights that work well on the training set, while these are far more likely to fail 

on an independent test set. The effect of a dropout layer is demonstrated in Figure D.3. 
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Figure D.3: Effect of a 50% dropout layer. 

 

 

Non-linear activation functions 

To allow a neural network in general to learn complex mappings from input to output, non-linearities, 

called activation functions, are required that transform the data between successive other layers. The 

most commonly used activation is the Rectified Linear Unit (ReLU) function, and is defined as follows: 

 

    (D.5) 

 

The effect of the ReLU function on a certain input is presented in Figure D.4. 

 

 
Figure D.4: Non-linear ReLU function applied to certain input matrix. 

The ReLU function has a few advantages. First is that the computational costs are very low. Second, it 

solves the vanishing gradient problem compared to other activation functions (such as sigmoid), because 

the slope does not saturate when x gets large. The latter especially occurs in early used layers in the 

network, since here the actual gradient is a multiplication of gradients in later layers. If gradients are 

very small or even zero, the weight updates computed by the stochastic gradient descent algorithm are 

also (close to) zero, and thus no learning takes place. The third advantage of the ReLU function that it is 

sparsely activated, since it is zero for all negative inputs. This is desirable, because it only activates 

neurons that have learned specific features relevant to the presented input data. It makes a network 

faster, as fewer things need to be computed. 

 

For final classification layers, the earlier mentioned sigmoid function is still very useful, since it is only 

able to produce output values between 0 and 1, representing likelihoods of output data points belonging 

to one or the other class (in our case whether a voxel belongs to the negative (no infarct) or positive 

(infarcted) class). The sigmoid function is defined as follows: 

     (D.6) 

 

E. DSC OPTIMIZATION 

The output of both CNNs used in this thesis is generated by a final output layer, giving a voxel wise 

likelihood of being infarcted using above mentioned sigmoid activation function (D.6). A thresholding 

operation is required to go from this output likelihood map to a final binary output (infarct vs. no infarct). 

Subsequently, the DSC can be computed, which is used as final performance metric. Given the definition 

of the sigmoid function with output values between 0 and 1, it seems intuitively to use a threshold of 0.5 
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for final voxel classification. However, trial-and-error showed that the final DSC is strongly dependent 

on the chosen threshold. An explanation for this sensitivity is the huge class imbalance in the used 

dataset, with relatively few lesion positive voxels. The predictions need to be very specific to not end up 

with a near-zero DSC, because false positives decrease the DSC heavily. In order to optimize the used 

threshold that maximizes DSC, an algorithm similar to expectation maximization has been implemented, 

assuming that the DSC only increases when stepwise lowering the threshold from 1 to 0 (thus starting 

with zero false positives) until a maximum has been reached. Figure E.1 demonstrates the influence of 

the probability threshold on the final DSC for a test configuration of the U-Net architecture after being 

trained to segment stroke lesions from DWI and ADC input data. It shows that the optimal probability 

threshold is close to 1 and that the difference in DSC with respect to a threshold of 0.5 is 0.46 in on the 

DSC scale. 

 

Figure E.1: Example of the sensitivity of the final computed DSC with respect to the chosen probability threshold to binarize 

the CNN’s output. 

 

F. OVERVIEW OF TESTED CNN CONFIGURATIONS 

CNN Type Block type 
Operational 

dimensionality 

Modality 

processing 

Training 

scheme 

Sampling 

strategy 

Input 

modality 

Data 

augmentation 

Network 

depth 
Batch size 

DeepMedic - 2D Mixed Patch SW SECT Yes 4 128 

DeepMedic - 2D Separate Patch SW SECT Yes 4 128 

DeepMedic - 2D Mixed Patch SW SECT No 4 128 

DeepMedic - 2D Separate Patch SW SECT No 4 128 

DeepMedic - 2D Mixed Patch SW DECT Yes 4 128 

DeepMedic - 2D Separate Patch SW DECT Yes 4 128 

DeepMedic - 2D Mixed Patch SW DECT No 4 128 

DeepMedic - 2D Separate Patch SW DECT No 4 128 

DeepMedic - 2D Mixed Patch FGBG SECT Yes 4 128 

DeepMedic - 2D Separate Patch FGBG SECT Yes 4 128 

DeepMedic - 2D Mixed Patch FGBG SECT No 4 128 

DeepMedic - 2D Separate Patch FGBG SECT No 4 128 

DeepMedic - 2D Mixed Patch FGBG DECT No 4 128 
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DeepMedic - 2D Mixed Patch FGBG DECT Yes 4 128 

DeepMedic - 2D Separate Patch FGBG DECT No 4 128 

DeepMedic - 2D Separate Patch FGBG DECT Yes 4 128 

U-Net ResDense 2D Mixed Patch SW SECT No 4 128 

U-Net ResDense 2D Mixed Patch SW DECT No 4 128 

U-Net ResNeXt 2D Mixed Patch SW SECT No 4 128 

U-Net ResNeXt 2D Mixed Patch SW DECT No 4 128 

U-Net ResDense 2D Mixed Patch SW SECT Yes 4 128 

U-Net ResNeXt 2D Mixed Patch SW SECT Yes 4 128 

U-Net ResDense 2D Mixed Patch SW DECT Yes 4 128 

U-Net ResNeXt 2D Mixed Patch SW DECT Yes 4 128 

U-Net ResDense 2D Separate Patch SW SECT Yes 4 128 

U-Net ResNeXt 2D Separate Patch SW SECT Yes 4 128 

U-Net ResDense 2D Separate Patch SW SECT No 4 128 

U-Net ResNeXt 2D Separate Patch SW SECT No 4 128 

U-Net ResDense 2D Separate Patch SW DECT No 4 128 

U-Net ResDense 2D Separate Patch SW DECT Yes 4 128 

U-Net ResNeXt 2D Separate Patch SW DECT No 4 128 

U-Net ResNeXt 2D Separate Patch SW DECT Yes 4 128 

U-Net ResDense 2D Mixed Patch FGBG SECT No 4 128 

U-Net ResDense 2D Mixed Patch FGBG DECT No 4 128 

U-Net ResNeXt 2D Mixed Patch FGBG SECT No 4 128 

U-Net ResNeXt 2D Mixed Patch FGBG DECT No 4 128 

U-Net ResDense 2D Mixed Patch FGBG SECT Yes 4 128 

U-Net ResNeXt 2D Mixed Patch FGBG SECT Yes 4 128 

U-Net ResDense 2D Mixed Patch FGBG DECT Yes 4 128 

U-Net ResNeXt 2D Mixed Patch FGBG DECT Yes 4 128 

U-Net ResDense 2D Separate Patch FGBG SECT Yes 4 128 

U-Net ResNeXt 2D Separate Patch FGBG SECT Yes 4 128 

U-Net ResDense 2D Separate Patch FGBG SECT No 4 128 

U-Net ResNeXt 2D Separate Patch FGBG SECT No 4 128 

U-Net ResDense 2D Separate Patch FGBG DECT No 4 128 

U-Net ResDense 2D Separate Patch FGBG DECT Yes 4 128 

U-Net ResNeXt 2D Separate Patch FGBG DECT No 4 128 

U-Net ResNeXt 2D Separate Patch FGBG DECT Yes 4 128 

DeepMedic - 3D Mixed Patch SW SECT Yes 4 2 

DeepMedic - 3D Separate Patch SW SECT Yes 4 2 

DeepMedic - 3D Mixed Patch SW SECT No 4 2 

DeepMedic - 3D Separate Patch SW SECT No 4 2 

DeepMedic - 3D Mixed Patch SW DECT Yes 4 2 

DeepMedic - 3D Separate Patch SW DECT Yes 4 2 
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DeepMedic - 3D Mixed Patch SW DECT No 4 2 

DeepMedic - 3D Separate Patch SW DECT No 4 2 

DeepMedic - 3D Mixed Patch FGBG SECT Yes 4 2 

DeepMedic - 3D Separate Patch FGBG SECT Yes 4 2 

DeepMedic - 3D Mixed Patch FGBG SECT No 4 2 

DeepMedic - 3D Separate Patch FGBG SECT No 4 2 

DeepMedic - 3D Mixed Patch FGBG DECT No 4 2 

DeepMedic - 3D Mixed Patch FGBG DECT Yes 4 2 

DeepMedic - 3D Separate Patch FGBG DECT No 4 2 

DeepMedic - 3D Separate Patch FGBG DECT Yes 4 2 

U-Net ResDense 3D Mixed Patch FGBG SECT No 4 2 

U-Net ResDense 3D Mixed Patch FGBG SECT Yes 4 2 

U-Net ResDense 3D Separate Patch FGBG SECT No 4 2 

U-Net ResDense 3D Separate Patch FGBG SECT Yes 4 2 

U-Net ResDense 3D Mixed Patch FGBG DECT No 4 2 

U-Net ResDense 3D Mixed Patch FGBG DECT Yes 4 2 

U-Net ResDense 3D Separate Patch FGBG DECT No 4 2 

U-Net ResDense 3D Separate Patch FGBG DECT Yes 4 2 

U-Net ResNeXt 3D Mixed Patch FGBG SECT No 4 2 

U-Net ResNeXt 3D Mixed Patch FGBG SECT Yes 4 2 

U-Net ResNeXt 3D Separate Patch FGBG SECT No 4 2 

U-Net ResNeXt 3D Separate Patch FGBG SECT Yes 4 2 

U-Net ResNeXt 3D Mixed Patch FGBG DECT No 4 2 

U-Net ResNeXt 3D Mixed Patch FGBG DECT Yes 4 2 

U-Net ResNeXt 3D Separate Patch FGBG DECT No 4 2 

U-Net ResNeXt 3D Separate Patch FGBG DECT Yes 4 2 

U-Net ResDense 3D Mixed Patch SW SECT No 4 2 

U-Net ResDense 3D Mixed Patch SW SECT Yes 4 2 

U-Net ResDense 3D Separate Patch SW SECT No 4 2 

U-Net ResDense 3D Separate Patch SW SECT Yes 4 2 

U-Net ResDense 3D Mixed Patch SW DECT No 4 2 

U-Net ResDense 3D Mixed Patch SW DECT Yes 4 2 

U-Net ResDense 3D Separate Patch SW DECT No 4 2 

U-Net ResDense 3D Separate Patch SW DECT Yes 4 2 

U-Net ResNeXt 3D Mixed Patch SW SECT No 4 2 

U-Net ResNeXt 3D Mixed Patch SW SECT Yes 4 2 

U-Net ResNeXt 3D Separate Patch SW SECT No 4 2 

U-Net ResNeXt 3D Separate Patch SW SECT Yes 4 2 

U-Net ResNeXt 3D Mixed Patch SW DECT No 4 2 

U-Net ResNeXt 3D Mixed Patch SW DECT Yes 4 2 

U-Net ResNeXt 3D Separate Patch SW DECT No 4 2 
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U-Net ResNeXt 3D Separate Patch SW DECT Yes 4 2 

U-Net ResDense 2D Mixed Dense - SECT No 6 256 

U-Net ResDense 2D Mixed Dense - SECT Yes 6 256 

U-Net ResDense 2D Separate Dense - SECT No 6 256 

U-Net ResDense 2D Separate Dense - SECT Yes 6 256 

U-Net ResDense 2D Mixed Dense - DECT No 6 256 

U-Net ResDense 2D Mixed Dense - DECT Yes 6 256 

U-Net ResDense 2D Separate Dense - DECT No 6 256 

U-Net ResDense 2D Separate Dense - DECT Yes 6 256 

U-Net ResNeXt 2D Mixed Dense - SECT No 6 256 

U-Net ResNeXt 2D Mixed Dense - SECT Yes 6 256 

U-Net ResNeXt 2D Separate Dense - SECT No 6 256 

U-Net ResNeXt 2D Separate Dense - SECT Yes 6 256 

U-Net ResNeXt 2D Mixed Dense - DECT No 6 256 

U-Net ResNeXt 2D Mixed Dense - DECT Yes 6 256 

U-Net ResNeXt 2D Separate Dense - DECT No 6 256 

U-Net ResNeXt 2D Separate Dense - DECT Yes 6 256 

U-Net ResDense 3D Mixed Dense - SECT No 6 4 

U-Net ResDense 3D Mixed Dense - SECT Yes 6 4 

U-Net ResDense 3D Separate Dense - SECT No 6 4 

U-Net ResDense 3D Separate Dense - SECT Yes 6 4 

U-Net ResDense 3D Mixed Dense - DECT No 6 4 

U-Net ResDense 3D Mixed Dense - DECT Yes 6 4 

U-Net ResDense 3D Separate Dense - DECT No 6 4 

U-Net ResDense 3D Separate Dense - DECT Yes 6 4 

U-Net ResNeXt 3D Mixed Dense - SECT No 6 4 

U-Net ResNeXt 3D Mixed Dense - SECT Yes 6 4 

U-Net ResNeXt 3D Separate Dense - SECT No 6 4 

U-Net ResNeXt 3D Separate Dense - SECT Yes 6 4 

U-Net ResNeXt 3D Mixed Dense - DECT No 6 4 

U-Net ResNeXt 3D Mixed Dense - DECT Yes 6 4 

U-Net ResNeXt 3D Separate Dense - DECT No 6 4 

U-Net ResNeXt 3D Separate Dense - DECT Yes 6 4 
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