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Summary
Wind turbine components fail before their statistical based predicted lifetime. The statistic
prediction is difficult because of varying parameters in side conditions, components and loads.
Early component failures are mostly unexpected and thus costly maintenance.
Improvement in lifetime prediction can be done by using the actual internal loads in a wind
turbine. Lifetime prediction based on a failure model with internal loads as input can take
into account the variations and adjust the lifetime prediction based on measurements. The
internal loads can be determined with a structural model of the wind turbine using accelerometers
as input. Therefore this research focuses on the feasibility of a structural model for the load
prediction of wind turbines.
Three different approaches as structural model are considered: based on analytic dynamics, using
Finite Element Method (FEM) program Spacar and a manually defined FEM model. All three
approaches are applied to a test bench; the manually defined FEM method appears to be the most
suitable. The structural model is validated by comparing frequencies of the model and an hammer
impact test (HIT) on the test bench. A force amplitude comparison between the prediction using
acceleration measurements and the theoretical force due to the centrifugal acceleration showed
predictions with about 50% error. Possible causes are discussed and recommendations are given
to improve the accuracy.
Also an outlook is given with a bearing force prediction based on acceleration measurements.
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List of Symbols

Roman

A dynamic stiffness matrix [multiple]
A cross sectional area [m2]
a acceleration measurements vector [m s=2]
a node numbering [-]
â maximum excitation [dB]
B analytic beam modeshape coefficients vector [-]
b node numbering [-]
C damping matrix [multiple]
C basic dynamic load rating from bearing geometry [N]
D modeshape trigonometric functions matrix [-]
d diameter [m]
E Young’s modulus [Pa]
F force [N]
f distributed load [N m=1]
G shear modulus [Pa]
g gravity constant [m s=2]
I second moment of inertia [m4]
h beam height [m]
J mass inertia [kg m2]
K stiffness matrix [multiple]

K̂ reduced stiffness matrix [multiple]
k stiffness [multiple]
L total beam length [m]
L basic rating life reliability [millions of revolutions]
l beam section element length [m]
M mass matrix [multiple]

M̂ reduced mass matrix [multiple]
M bending moment [N m]
m mass beam element section [kg]
N gear ratio [-]
n Eigenmode number [-]
n amount of gear teeth [-]
P equivalent dynamic bearing load [N]
p exponent for the bearing life equation [-]
Q load vector [N]
q beam coordinates vector [multiple]
R load vector [multiple]
r radius [m]
r′ non-dimensional radius of gyration [-]
T transient modeshape [-]
T torque [N m]
t time [s]
W spatial modeshape [-]
w radial beam deflection [m]
w gear width [m]
Y acceleration amplitude [m s=2]
Z spatial amplitude [-]
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Greek

α Rayleigh damping coefficient [rad]
α scaling factor modeshapes [m]

β wave number [m=1/4]
β Rayleigh damping coefficient [rad=1]
γ acceleration equation [multiple]
δ distance [m]
δij Kronecker delta [-]
ε coordinate displacements Spacar [-]
ζ damping ratio [-]
η natural coordinate [multiple]
η gearbox rotation around x-axis [rad]
θ rotation about y-axis [rad]
λ Lagrange multiplier [-]
µ rotary frequency factor [-]
ρ density [kg m=3]
Φ constraints matrix [multiple]
φ rotation about y-axis [rad]
ψ rotation about x-axis [rad]
Ω rotor rotational speed [rad s=1]
ω beam resonance frequency [rad s=1]

Abbreviations

ac accelerometer
B bearing
CAD computer aided design
CMS condition based maintenance
DoF degree of freedom
FEM finite element method
GEN generator
GB gearbox
HIT hammer impact test
HSS high speed shaft
INT intermediate shaft
LSS low speed shaft
SCADA supervisory control and data acquisition
SHM structural health monitoring
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1 Introduction
1.1 Background
Nowadays, conversion from wind to electrical energy is done on a large scale using wind turbines,
both on- and offshore. To become more and more competitive with fossil fuel energy, a reduction
in costs is needed, which can, among others, be reached with a more economic operation and
maintenance strategy [2, 3]. For offshore a lot of planning in the maintenance strategy is involved,
since it is much more difficult to get equipment, materials and employees at the right spot at sea
compared to onshore wind turbines. Unexpected failures on offshore wind turbines are therefore
much more costly. A failure can be defined as the state of a system when it can not longer
fulfil its intended or designed function. In general, a failure is a result of the loads on a system
exceeding the system capacity [4], caused by:

1. The capacity can be too low by a weak design, for example by using too small geometry
dimensions. Designs are over-sized and have too much capacity to be on the ’safe side’. In
general, the capacity is determined during the design phase and can not (easily be) changed
afterwards.

2. The loads can be too high by underestimation. To be on the ’safe side’, loads are overesti-
mated resulting in replacing components before the end of their lifetime, leaving a part of
it unused.

Both determining the capacity and loads are important for wind turbines, since most components
have to last their entire lifespan of about twenty years. Ideally, only small maintenance is
performed during these years, for example lubrication. However, in practise many wind turbine
components fail before their required lifetime [5]. Apparently, the estimations of the capacity
or loads are inadequate. Loads exceeding the capacity result in too high internal loads causing
(internal) component failure. The relation between usage (loads) and lifetime is schematically
shown in figure 1.1. Several methods to describe this relation (shown as system in the blue box)
are discussed in the next section.

Usage
System

Wind turbine
Remaining

lifetime

Figure 1.1: Lifetime is determined by the usage of the system, adapted from [4].

1.2 Current lifetime prediction
The current lifetime prediction is done during the design and during the operation of a wind
turbine. This section describes how this prediction is done at both wind turbine life stages.

1.2.1 Lifetime prediction during design
Most research to wind turbine design and maintenance in literature focuses on the statistic
description of wind speed and turbulence, since there is no exact solution to determine it. The
predictions are used as input for multi-body dynamics in combination with the Finite Element
Method (FEM) for multiple flexible components, (for example programs like Simpack [6] or
Adams). These are used as structural model to estimate the local loads and determine the needed
capacity during the design phase, using a given failure model by standards or manufacturers.
This method is visualized in figure 1.2, with figure 1.1 shown in a grey box. However, the wind
load is predicted (extrapolated) with a certain error, shown by comparing statistical probability
functions with measurements from the field [7]. Differences between these can be due to variation
in site conditions [8] and manufacturing quality [9]. These differences can lead to a negative
balance of capacity and loads, with the consequence of failures.
Also component failure is tried to predict using statistics. It is mainly applied on the bending
of rotor blades and the tower, without using a physical model of the structural dynamics [10].
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Figure 1.2: Statistics to predict wind speed & turbulence in combination with FEM to design
the wind turbine and achieve a required lifetime, adapted from [4].

1.2.2 Lifetime prediction during operation
The statistical approach during design is basically a ’feed forward control’, since data is measured
in advance and used to ’control’ the lifetime of a system. To make it more like ’feed back control’,
real-time measurements during operation can be used to control the lifetime. This is called a
Condition Monitoring System (CMS). The basic system is a so called Supervisory Control and
Data Acquisition (SCADA) system, which is present on almost every wind turbine. This system
samples characteristic quantities like the power generation, wind speed, nacelle temperature,
gearbox oil and bearing temperatures, generator winding temperatures and phase currents at
fixed intervals. It is able to alarm operators, but cannot give inside information.
More detailed systems consider Structural Health Monitoring, aiming on determining the in-
tegrity of the structure [11]. Active displacement measurements is done at the blades measuring
strain, but the relation between strains and stresses is not given [12]. In another research by
Hameed et al. [13], CMS is applied to the drive train of wind turbines using accelerometers and
vibration analyses. The data is used in probability models, but it is hard to validate these due
to slow degradation and failure mechanisms. The data process is shown in figure 1.3, which
is an extension to figure 1.1, shown as box. Field measurements are processed using classifica-
tion to predict the remaining lifetime. For example, high vibrations mean a component failure
probably. The classification is not about a periodic movement, such as structural vibrations or
fatigue cycles, but rather an offset of the normal excitation caused by an impurity or irregularity
in a component. Besides using a statistical model, also structural models are used to describe

Unknown
Wind &

turbulence

Usage
System

Wind turbine
Remaining

lifetime

Measurements

Signal
processing

Statistic
classification

Figure 1.3: Condition Monitoring System applied to a wind turbine.

the relation between external and internal loads. Wasilczuk et al. [14] mention determining in-
ternal loads, but his approach and results are not available. Research to drive train modelling
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and failures already takes place, considering shaft bending, bearing clearance and tolerances [5].
CMS is applied using measurements of different characteristic quantities, for example vibrations,
acoustics, electrical output and oil quality (number of particles). However, the diagnosis of those
data needs more research for determining the structural health and lifetime prediction of wind
turbines [11].

1.3 Problem statement
The problem that arises from the description of the current lifetime prediction is the unknown
load on a wind turbine. Because the load is unknown, statistics are currently used to predict the
wind load and lifetime of components. In practise, the lifetime of real components differs from
the prediction. This difference results in unexpected component failures, which are very costly.
A more sophisticated but low cost approach is needed to improve the lifetime prediction of wind
turbine components [15].

1.4 Research questions
The goal of this research is to define a structural dynamic model to describe the relation between
measured vibrations and the internal loads. The failure model of components about wear and
fatigue is assumed to be known, for example given by bearing and gearbox manufacturers or
design standards, requiring quantified loads as input. The research question is stated as:

To what extent can internal forces, moments and torques of a wind turbine be determined, using
accelerometers?

The following sub questions are stated to split up the research question:
1. How can an analytic structural model be defined and applied to a wind turbine?
2. How can a numerical structural model be defined and applied to a wind turbine?
3. What manipulation is needed to use a structural model for measurement processing?
4. What is the accuracy of the structural model?

The first two sub questions are about describing the structural dynamic model. An analytic model
is considered because it is expected to be fast and to give insight in the dynamical behaviour of
the system. A numerical model is expected to be fast as well, but more geometric details may
be added. The third sub question is about the interface between the accelerometers and the
structural model. The last sub question is about the accuracy of the model. For a real wind
turbine, the lifetime prediction has to be accurate over a lifespan of about twenty years [16]. An
error of 10% in this time prediction is assumed to be acceptable, which is about two years. A
critical component of a wind turbine is a bearing, where its lifetime is dependent on the load it
carries. Its basic rating life is described by the L10 norm [17]:

L10 =

(
C

P

)p
(1.1)

Where
L10 = basic rating life (at 90%) reliability, millions of revolutions
C = basic dynamic load rating from bearing geometry, N
P = equivalent dynamic bearing load, N
p = exponent for the life equation, 3 for ball bearings or 10/3 for roller bearings

As can be seen, allowing an 10% error of L10 results in an allowed error for P in ball bearings
of 2.15%. The lifetime model of other critical components is assumed similar to the L10 norm.
Therefore, the accuracy of the load prediction is required to be within 2.15% error.

1.5 Approach
A mechanical model can be used to determine internal loads and remaining lifetime. This is
similar to the approach showed in figure 1.2, but without the statistic prediction. The wind
speed and turbulences are the input of the system. Usage is determined by the user, which is in
many cases the manufacturer or operator by a (remote) control system. This causes loads on the

3



mechanical system, resulting in a remaining lifetime. To quantify it, a structural model can be
used to determine these mechanical loads on components, for example bearings. These internal
loads are used as input for fatigue models. In this case wear and fatigue are assumed the most
dominant. This results in a damage accumulation which can be used for setting up a mainte-
nance strategy to avoid failures. Preferably, the loads on the system are directly known and used
as input for the mechanical model to determine internal loads. However, it is not possible to
measure loads, such as forces and torques, on the wind turbine directly, since the usage by wind
and turbulence is not exactly known. Therefore the loads need to be deduced from measurable
parameters, such as the relative displacement of components caused by these loads. Nonetheless,
relative displacements cannot be measured in a wind turbine [18]. As stated before, accelerom-
eters are already used and trusted during operation by CMS. From an economical view, using
this sensors is advantageous above using expensive new measurement equipment. Preferably,
the CMS sensors should be used as input in the model. If an harmonic excitation is assumed,
the acceleration sensors move with a periodic motion. Therefore the dynamic displacements can
be predicted accurately from the accelerations, since the noise offset can be easily removed [19].
The drawback of using accelerations as input is the disregarded static displacement offset. The
structural model should be preferably analytic to make it fast in calculations and give insight
in external and internal dynamics of the system. A fast calculation of the lifetime is required
to process the data during operation. Bending of a structure can be described by its bending
modes. These depend on the excitation frequency. This implies frequency dependent displace-
ments, which should be present in the structural dynamic model. The periodic excitation is due
to the unequal wind load on the separate blades during rotation, since the wind speed is higher
at more height from the ground [20].
The overview with the relation between usage and lifetime is partly modified and can be seen in
figure 1.4, which is an modification to figure 1.2 with a change between usage and determining
the internal loads. Since a wind turbine has many components, only the most critical are con-

Usage

Measure
accelerations

Structural
dynamic
model

(Internal)
loads

Unknown
Wind &

turbulence

System
Wind turbine

Remaining
lifetime

Zoom in
to the

level of the
physical
failure

mechanism

Failure model:
wear & fatigue

Service life
/ damage
accumu-

lation

Maintenance
strategy

Figure 1.4: Preferred model using CMS accelerometers, modified part of lifetime prediction in
figure 1.2, adapted from [4].

sidered. These are defined as the drive train and the rotor blades, based on relative failure rates
and maintenance costs [21]. The aerodynamic load calculation of the rotor depends on, among
others, blade design details, lift and drag values, angle of attack (pitch angle), wind speed (at
different heights and including turbulences), side and shear winds and yaw misalignment [22].
These are almost all related to the field of fluid and aero dynamics. For the drive train only the
vibration response during excitation is needed. The vibration response includes all fluctuations
and effects. This is related to the field of (multi body) dynamics. To focus in depth on a small
specific part of the critical components concerning dynamics, this research will focus on the wind
turbine drive train.

4



1.6 Drive train configuration
Wind turbine drive trains are available in different configurations, the considered ones can be
seen in figure 1.5. A short description is given below.
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(b) Only gearbox bearings.
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(c) One main bearing.

ro
to

r
h
u

b stator
generator

pin

main shaft

rotor
generator

B2 B1

(d) Direct drive without gearbox.

Figure 1.5: Schematic overviews with different drive train configurations, adopted from [18].

The different configurations in figure 1.5 are explained by Rommel [18].
(a) Two main bearings, two gearbox bearings and two rubber bushes support the moment of

the gearbox [23]. Important to note is the over constraint by the rubber-bushes. Both the
rotor and the gearbox are ’overhanging’ weights.

(b) Only two gearbox bearings. The rotor is an overhanging weight, the gearbox is placed
between the bearings. The differences between figure 1.5a are the two removed main
bearings. The gearbox housing is fixed to the base frame.

(c) One main bearing in combination with the gearbox bearings and rubber bushes. This is
a combination between the first two mentioned configurations, but with only one main
bearing removed from figure 1.5a.

(d) The direct drive. It is similar to figure 1.5b, but instead of the gearbox a low speed generator
is placed between the bearings. Because of the low speed generator, no mechanical speed
transmission is needed [24]. The differences between figure 1.5a are the two removed main
bearings.

Figures 1.5b, 1.5c, 1.5d are simplified configurations of figure 1.5a. For example by using no or
one main bearing. Also, figure 1.5a has the constrained forces due to the rubber bushes. Because
of these two reasons, this research will focus on the configuration with two main bearings.
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1.7 Test bench
Since no acceleration data, geometries and properties of a real wind turbine are available a test
bench with known geometries and properties will be used as feasibility study to the dynamics
of a wind turbine drive train. This section gives a description of the test bench and explains
the excitation rotor force. Some short justifications to exclude stiffness and damping effects of
shafts dependent on the rotating frequency. The shafts can be modelled as beams if the speed
influence on the damping and stiffness of the shaft can be neglected.

1.7.1 Description
Figure 1.6 shows a CAD model of the test bench. The test bench consists of a flexible base
frame with a rotating flexible shaft, gearbox and generator. The rotor is modelled as rotating
unbalanced mass. A faster rotor speed will be used in the range between 3.0 Hz and 8.0 Hz
compared to the relative slow speed about 15 RPM of a real wind turbine. This speed is to
excite the first four resonance frequencies for z-bending and shaft torsion. Another practical
reason for this frequency range are the available accelerometers. A detailed CAD model and
used dimensions can be found in appendix A.

Rotor Gearbox Generator

Figure 1.6: CAD model test bench 3D view, in corporation with D. Berendsen.

1.7.2 Excitation force
Figure 1.7 shows a schematic overview of the rotor, which is modelled as a rotating unbalance to
mimic the harmonic wind load variation. The ’rotor’ is mounted to the Low Speed Shaft (LSS),
shown as blue dot. The rotating unbalance with speed Ω results in force in z-direction FR,z,
force in y-direction FR,y and fluctuating torque TR around the z-axis. Because of the rotating
unbalance mass mu with radius ru, the force in z-direction FR,z and torque at the shaft TR are
described by:

FR,z(t) = mu(ruΩ2 sin(Ωt)− z̈(t)) (1.2)

TR(t) = murug cos(Ωt) (1.3)

Ωt
TR

z̈
FR,z

mu

ru

z

y
LSS

ÿ
-FR,y

Unbalance mass

Figure 1.7: Free body diagram of the rotor, represented by a rotating mass, YZ view.

Only forces and displacements in z-direction are considered in this research. The stiffness of the
base frame in y-direction is much stiffer compared to the z-direction based on the rectangular
area inertia. The stiffness for the shaft is the same in z- and y-direction, because of the circular
cross-section. Shaft modeshapes for both directions are assumed to be similar.
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1.7.3 Rotary inertia effect for rotating shafts
An analytical derivation of the equation of motion for a rotating beam is given to determine the
rotary and gyroscopic effects. The equations of motion for a circular beam with rotatory inertia
according to [25] are given by:

∂Qz
∂x

= ρA
∂2wz
∂t2

(1.4)

EI
∂3wz
∂x3

+Qz = ρI
∂

∂x

∂2wz
∂t2

+ 2ΩρI
∂

∂x

∂wy
∂t

(1.5)

where

A = cross sectional area, m2

E = Young’s modulus, N m=2

I = area inertia, m4

Q = shear force, N
t = time, s
w = radial deflection, m
ρ = density, kg m=3

Ω = rotational speed, rad s=1

The force and moment balances for an infinitesimally thin shaft segment are visualized in figure
1.8.

z

My(x)

Qz(x)

∂x

wz

Qz(x+ ∂x)

My(x+ ∂x)

x

Ω

Figure 1.8: An infinitesimal rotating shaft segment, adapted from [25]

By eliminating shear forces choosing radial displacement z as complex quantity of wz and wy:

z = wz + iwy (1.6)

The following equation of motion for a rotating shaft is obtained:

EI
∂4z

∂x4
− ρI(

∂4z

∂x2∂t2
− 2iΩ

∂3z

∂t∂x2
) + ρA

∂2z

∂t2
= 0 (1.7)

For a hinged-hinged shaft with zero displacement and moment at the ends with length L the
boundary conditions are given by:

z(0, t) = z(L, t) = 0 (1.8)

∂2z(0, t)

∂x2
=
∂2z(L, t)

∂x2
= 0 (1.9)

A common trial function for z is used:

z = Z sin(
πnx

L
)eiωt (1.10)

where n is the Eigenmode number and Z the spatial amplitude. Applying this trail function and
solving for the Eigenfrequency results in:[

1 +
π2n2I

AL2
(1− 2

Ω

ω
)

]
ω2 − EI

ρA

π4n4

L4
= 0 (1.11)
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The following non-dimensional parameters factor µ and non-dimensional radius of gyration r′

can be used:

µ =
(ωc
ω

)2
(1.12)

ωc =
n2π2

L2

√
EI

ρA
(1.13)

r′ =

√
I

AL2
(1.14)

where ωc is the analytical solution for a non rotating hinged-hinged beam, corresponding to [26].
Using equation 1.11 factor µ can be expressed as:

µ =

[
1 + (πnr′)2(1− 2Ω

ω
)

]
(1.15)

For the test bench shafts with a shaft radius of 3.0 mm and a shaft length of 200 mm r′ is
negligible small. Therefore the shaft eigenfrequencies are assumed not affected by rotary or
gyroscopic effects. In the next section the rotary effects on the rotor unbalance are determined.

1.7.4 Rotary effects at the rotor
A fast spinning shaft or rotor has a stabilizing effect. This is known as gyroscopic precession. A
small study to rotating components of the test bench is done to verify this effect. The rotor with
unbalance is assumed sensitive to it, because the rotor has a relatively heavy rotating mass on a
long, slender shaft of the test bench. This is shown in figure 1.9, at a maximum deflection and
rotation of the rotor δ and θ, respectively. The rotor consists of a coupling with mR and inertia
JR. The rotor is an unbalanced mass with radius ru and mass mu. Bearing B2 is located on the
right.

z

x

B2

Rotor

δ
θ

ru

mu

mR

JR

LSS

Ω

Figure 1.9: Schematic overview rotor with rotating unbalance, deformed LSS, XZ view.

To determine the effect of gyroscopic precession on the rotor and LSS a simplification to a
rotating clamped beam is made, as can be seen in figure 1.10. The force and gyroscopic moment
due to the gyroscopic precession are indicated by FR,z and My, respectively. This approach is
adapted from Tiwari [27]. The rotor coupling is modelled as rigid disc with mass md and inertia
Jd. The LSS rotates with speed Ω, has stiffness properties EI and length l. Its mass is in this
case assumed significantly smaller compared to the rotor mass. Bearing B2 is assumed fixed.

z

x

LSS

B2

l

My

FR,z
EI

Ω δ

θ

Figure 1.10: Free body diagram of the rotor and part of LSS, XZ view.

Force FR,z is due to the unbalanced mass and rotation speed ω of the rotor around offset δ with
centrifugal acceleration:

FR,z = mRΩ2δ +muΩ2(ru + δ) (1.16)
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The moment My is due to gyroscopic precession [28]:

My = Ω2JRθ (1.17)

The displacement and rotation are given by the beam bending theory:

δ =
FR,zl

3

3EI
− Myl

2

2EI
(1.18)

θ =
FR,zl

2

2EI
− Myl

EI
(1.19)

It is assumed that the gyroscopic precession is of significant effect if it compensates the force Fz,
so when δ and θ are zero. Solving for zero deflection and rotation results in a critical shaft speed
Ωcr of 17.8 Hz, with:

E = E-modulus for steel, 210 GPa
I = area inertia LSS cross section, 6.9× 10=11 m4

mR = mass rotating rotor coupling, 0.175 kg
JR = mass inertia rotating rotor coupling, 2.0× 10=5 kg m2

l = length LSS, 250 mm
ru = radius unbalance, 10 mm
mu = mass unbalance, 48 g

As was shown, at speeds from 17.8 Hz the gyroscopic effect is of significant influence. Therefore,
the gyroscopic effect is neglected for lower speeds.
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2 Methodology
The rotating unbalance at the test bench, described in section 1.7, causes harmonic vibrations.
These vibrations can be measured with accelerometers, located at specific locations of the base
and gearbox. The choice where to put the sensors is limited, because they cannot be put on the
rotating shaft due to wiring. Further, a structural model is needed to process these accelerations
and predict internal loads, for example in the bearings. This chapter describes three different
structural models: an analytic model, a Spacar model and a manually defined FEM model.

2.1 Analytic structural model
An analytic approach to describe the dynamics of the test bench is considered in this section,
because this approach gives insight in the dynamic behaviour and gives exact solutions without
time consuming iterations or integration. The derivations in this section are based on the dictaat
Dynamics 2 [26]. In general, an analytical model is faster in calculation compared to a numerical
one, which is advantageous for a model to use during operation. To describe the response of a
flexible structure to an harmonic load, the modeshapes of the structure are needed. First these
modeshapes are determined as Eigenvalue problem. Second these modeshapes have to be scaled
in order to use them describing an harmonic forced vibration.

2.1.1 Modeshapes
The equation of motion for transverse vibrations in a beam (Euler-Bernoulli) is given in equation
2.1. This holds for example for a shaft element of the test bench.

ρA
∂2w(x, t)

∂t2
+ EI

∂4w(x, t)

∂x4
= f(x, t) (2.1)

With ρ the density, A the cross sectional area, E the Young’s modulus and I the area moment of
inertia around the y-axis. Function w(x, t) describes the z-displacement as function of location
and time. A schematic overview with these parameters can be seen in figure 2.1. In this case,
the cross section is chosen circular for a shaft, shown at the right side.

ρA, EI
lx

z

y
f(x,t)

w(x,t)

Figure 2.1: Schematic overview analytic beam element, with side- and cross sectional view.

Using separation of variables of w(x, t) = W (x)T (t) and f(x, t) = 0 for free vibrations of the
homogeneous solution with a constant cross section results in:

1

T (t)

dT 2(t)

dt2
= − EI

ρAW (x)

d4W (x)

dx4
= −ω2 (2.2)

Where ω is the Eigenfrequency. This equation can be split in a transient and spatial part,
resulting in the following differential equations:

d2T (t)

dt2
+ ω2T (t) = 0 (2.3)

d4W (x)

dx4
− β4W (x) = 0, β4 =

ρAω2

EI
(2.4)

Where β is called the wave number. As can be seen, β depends on the geometry and material and
is different for each individual beam. A solution for the spatial differential equation of amplitude
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W (x) a beam is given by:

W (x) = B1 cos(βx) +B2 sin(βx) +B3 cosh(βx) +B4 sinh(βx) (2.5)

These can be differentiated resulting in expressions for:
• Angle θ(x) = W ′(x)
• Moment My(x) = EIW ′′(x)
• Shear force Q(x) = EIW ′′′(x)

Where superscript ’ denotes a differentiation w.r.t. x. Each beam element needs four boundary
conditions (BCs), since equation 2.4 is a fourth order equation. Defining them in matrix vector
form results in matrix D with cos, sin, sinh and cosh values depending on β (indirect on ω) and
vector B with the scaling values B1 till B4 for each beam:

[D(ω)] {B} = 0 (2.6)

Matrix D] is a square matrix with size four times the amount of beams, dependent on frequency
ω. The determinant |D(ω)| = 0 for resonance frequencies ωn is solved numerically, since for more
than one element, the analytic solution does not exist. Inserting ωn back in equation 2.6 results
in the Eigenvectors (or modeshapes) of the system αsW (ω, x). In this, αs is still undetermined.
A method to determine the scaling factor is described in the next section.

2.1.2 Modeshape scaling
Modeshape scaling is needed, because scaled modeshapes can describe the response of the beam
to an harmonic load. The scaling is done for one clamped beam element (left side) and a free-end
(right side), as is shown in figure 2.2. The four boundary conditions at both the beam ends are
given, as derivations from equation 2.3 and 2.5.

w(x, t)

F̄ cos(ωt)

EI, L, ρA

W (0) = 0
θ(0) = 0

My(L) = 0
Q(L) = 0

z

x

Figure 2.2: Free body diagram of an analytic clamped-free beam with harmonic excitation, XZ
view.

Using the spatial part W (x), two distinct frequencies ωi and ωj and their corresponding mode-
shapes Wi(x) and Wj(x), for a beam without point mass at the free end:

EI
d4Wi(x)

dx4
= ω2

i ρAWi(x) (2.7)

EI
d4Wj(x)

dx4
= ω2

j ρAWj(x) (2.8)

The first equation is multiplied with Wj(x) and integrated over the beam length L:

EI

∫ L

0
Wj(x)

d4Wi(x)

dx4
dx = ω2

i ρA

∫ L

0
Wi(x)Wj(x)dx (2.9)

Using integration by parts the left hand side can be split up in different integrals:

EI

[
Wj(x)

d3Wi(x)

dx3

]L
0

− EI
[
dWj(x)

dx

d2Wi(x)

dx2

]L
0

+ EI

∫ L

0

d2Wi(x)

dx2

d2Wj(x)

dx2
dx

= ω2
i ρA

∫ L

0
Wi(x)Wj(x)dx

(2.10)

For geometrical or natural boundary conditions, for example clamped, simply supported (hinged)
or a free end, the terms between square brackets are always zero by the combination of displacement-
shear force and angle-moment at the beam end boundaries:
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• Clamped end: W = 0 and dW (x)
dx = 0

• Hinged end : W = 0 and d2W (x)
dx2

= 0

• Free end: d3W (x)
dx3

= 0 and d2W (x)
dx2

= 0

The same integration and multiplication with Wi(x) can be applied to the second equation of
2.7. This results in a formulation with the same left hand side as 2.10. This can only be true if
the following holds for two distinct modeshapes:

ρA

∫ L

0
Wi(x)Wj(x)dx = δij (2.11)

Where δij is the Kronecker delta. Note, both modeshapes Wi and Wj still depend on scaling
factor αs.

Similar to the beam with free-end, the condition for adding point mass m and inertia J at the
free end of the beam can be derived, resulting in:

ρA

∫ L

0
Wi(x)Wj(x)dx+mWi(L)Wj(L) + JW ′i (L)W ′j(L) = δij (2.12)

Now, scaling factor αs in both Wi and Wj can be determined. Note, this holds for only one
beam element. As can be seen, the scaling factor formulation increases rapidly in complexity by
adding more details like point masses.

2.1.3 Harmonic forced vibration
With the modeshapes determined and scaled, the relation between an harmonic load and dis-
placement of a beam can be determined. For the forced vibration, consider the beam equation
2.1. The response of a beam can be described as the linear combination of several modeshapes
multiplied with a transient function:

w(x, t) =

∞∑
i=1

Wi(x)ηi(t) (2.13)

Substitution in equation 2.1, multiplying with Wj(x) and integrating over the length L of the
beam yields:

∞∑
i=1

[∫ L

0
ρAWi(x)Wj(x)

]
d2η(t)

dt2
+
∞∑
i=1

[∫ L

0
EIWj(x)

d4Wi(x)

dx4

]
ηi(t) =

∫ L

0
Wj(x)f(x, t)dx

(2.14)
Because of the orthogonality conditions this formulation can be normalized. This is similar to
the normalization of a 2 DoF system and results in:

d2ηi(t)

dt2
+ ω2

i ηi(t) = Qi(t) (2.15)

An harmonic force f(x, t) at the beam end is assumed, as was shown in figure 2.2:

f(x, t) = F̄ cos(ωt) (2.16)

Using this harmonic load as load vector Qi(t) at the right side of equation 2.14:

Qi(t) =

∫ L

0
Wj(x)F̄ cos(ωt)dx = Fi cos(ωt) (2.17)

Because of the harmonic excitation the steady state solution for ηi is:

ηi(t) =
F̄

ω2
i − ω2

cos(ωt) (2.18)
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At resonance frequencies, where ω = ωi, the solution for the transient part is infinite. The reason
for this is the lack of damping. Combining the spatial and transient part results in a function
for a point at the beam at a certain time and location:

w(x, t) =
∞∑
n=1

Wn(x)
F̄

ω2
n − ω2

cos(ωt) (2.19)

As can be seen, an infinite amount of modeshapes is summed, but the influence of a modeshape
decreases quadratic with the frequency. In practice a finite amount of modeshapes is taken into
account based on results.

Equation 2.19 can be reversed to get the force F̄ as function of the displacement w(x, t). How-
ever, for simple geometry it is already a fairly time consuming and complicated process [29].
Determining scaling factor αs for multiple connected beams will be even more complicated due
to the cross terms between separate beam modeshapes, masses and inertia.
Another disadvantage is the complex damping phenomenon, which is excluded in this analytic
approach [29]. Especially at Eigenfrequencies, damping is relevant, as was shown in equation
2.18.
So although the analytical solution is defined simply, computational fast and giving insight in
the dynamical behaviour of flexible beams, the usage is limited to a single, undamped beam.
Using multiple beam elements results in a complex formulation.

2.2 FEM structural model
In this section a structural model will be described by using the finite element method (FEM).
Compared with the analytic approach, a more complex model with multiple beams including
damping can be defined with FEM. As stated as well for the analytic model, the FEM model
should be fast in order to process acceleration data real time. Several FEM programs are available
to build a structural model and perform load calculations, for example Ansys or Spacar. The
use of Spacar is preferred because of its simplicity in defining and calculating a FEM model.
However, these FEM programs have a disadvantage; details of the structural model, such as the
gearbox ratio, can not be added to the structural model. Therefore, FEM is also programmed
manually with those details. Both FEM approaches are considered to compare and verify results
and show significance of those details.

2.2.1 Spacar
Spacar is a FEM program developed at the University of Twente [30] and is based on Matlab.
With use of the extended version, the geometry can be defined and run in Spacar, which is
advantageous for fast checking or optimizing of designed geometries. A simple definition and a
fast calculation are required for the structural model.
A beam can be defined by its cross sectional area and inertia from coordinate p to q in 3D,
as can be seen in figure 2.3. Beams can be coupled by displacement or rotation. The first two
deformations of a beam are elongation and torsion, respectively ε1 and ε2. Spacar uses a different
definition of coordinate displacements and rotations ε3, ε4, ε5 and ε6 compared to other FEM
programs. Other FEM programs use the displacement and rotation of a node, as will be described
in section 2.2.2. In general, the different definition of bending modes makes it difficult to export
or manipulate the structural model. Exporting and manipulation of the model is necessary for
processing acceleration data. Therefore, Spacar is only used to verify the modeshapes of the
manually defined FEM.

2.2.2 Manual program
Manually describing a FEM model has a couple of advantages: It gives insight in the FEM
structure and linking between elements and boundary conditions. Also, the structure can be
built by simple beams, enabling a fast computation. The main advantage is the option to add
extra details, for example the gearbox ratio. This section describes the used theory and is
based on [32, 33]. First an overview of the FEM describing beam elements is given. Second the

14



l

q

p

ε4

ε3

Rpny

Rqny

(a) Deformation ε3 and ε4.

l

q

p

ε6

ε5

Rpny

Rqny

(b) Deformation ε5 and ε6.

Figure 2.3: Schematic overview Spacar beam with bending deformation coordinates, adapted
from [31].

Lagrange multiplier theorem is explained, which can be used to link beam elements together or
add geometrical constraints. Third damping of a FEM system is explained, which is relevant at
resonance frequencies.

FEM in general

Consider the following dynamic system:

Mq̈(t) + Cq̇(t) + Kq(t) = R(t) (2.20)

With mass matrix M, acceleration vector q̈(t), damping matrix C, velocity vector q̇(t), stiffness
matrix K, displacement vector q(t) and load vector R, where the vectors contain translations
and rotations. An harmonic displacement and excitation with frequency Ω can be described in
the time domain by:

q(t) = q̄eiΩt (2.21)

R(t) = R̄eiΩt (2.22)

where q̄ and R̄ are the amplitude of the displacement and force, respectively. Vector q(t) can
be differentiated to velocities q̇(t) and accelerations q̈(t):

q̇(t) = iΩq̄eiΩt = iΩq(t) (2.23)

q̈(t) = −Ω2q̄eiΩt = −Ω2q(t) (2.24)

For a known acceleration the displacement can be determined by reverting equation 2.24, (similar
to equation 2.3), which is needed as input for the FEM program. This displacement is much
more accurate in comparison to twice integrating the acceleration, since that has a minimal error
of about 9% [34]. Applying these velocity and acceleration to equation 2.20 results for the spatial
part in:

[−Ω2M + iΩC + K]q̄ = R̄ (2.25)

This holds for a general harmonic frequency. Because FEM beams are assumed to have a linear
stiffness, results from higher harmonics can be added. This is for example the case for the higher
harmonics caused by the three blades of a wind turbine [18]. A beam element with bending and
torsion between node i and j, has six degrees of freedom q, all time dependent:

q = [zi, θi, ψi, zj , θj , ψj ]
T (2.26)

Where z is a displacement in z-direction, θ a rotation around the y-axis and ψ a rotation around
the x-axis. Tension in axial direction is neglected, since the stiffness in this direction is much
higher in comparison with other directions. The beam with coordinates and used parameters is
shown in figure 2.4. Load vector R consists of:

R = [Fi,Mi, Ti, Fj ,Mj , Tj ]
T (2.27)
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x

Figure 2.4: Schematic overview FEM beam element with nodes i and j with degrees of freedom
q and loads R.

Where F is a force in z-direction, M a bending moment around the y-axis and T a torque around
the x-axis. The stiffness and mass matrices K and M describing the relation between q and R
are given by the Bernoulli-Euler and st. Venant theories. The Bernoulli-Euler beam theory is
used to describe bending of the beams, where small, linear, deformations are assumed. For a
beam element, this can be described by a 4x4 stiffness matrix applied to the displacement and
angle of a node.
The St.Venant torsion theory is used to describe torsion in the beam elements, assuming small,
linear deformations with a constant cross section and neglecting warping. This is described in
2x2 matrices. Both theories are combined, resulting in 6x6 stiffness and mass matrices. The
shear modulus G is assumed E/3.

K =
E

l



12
Iy
l2

6
Iy
l 0 −12

Iy
l2

6
Iy
l 0

6
Iy
l 4Iy 0 −6

Iy
l 2Iy 0

0 0
Iyz
3 0 0 − Iyz

3

−12
Iy
l2
−6

Iy
l 0 12

Iy
l2

−6
Iy
l 0

6
Iy
l 2Iy 0 −6

Iy
l 4Iy 0

0 0
Iyz
3 0 0

Iyz
3


(2.28)

Where Iy is the area inertia around the y-axis, Iyz the area inertia of both the y- and z-axis and
l the element length. The consistent mass matrix M for one element with the masses distributed
over the beam is described by:

M =
m

2



156
210

221
210 0 54

210
−13l
210 0

221
210

4l2

210 0 13l
210

−31l2

210 0

0 0 r2

3 0 0 r2

6
54
210

13l
210 0 156

210
−22l
210 0

−13l
210

−3l2

210 0 −22l
210

4l2

210 0

0 0 r2

6 0 0 r2

3


(2.29)

Where m is the beam element mass and r is the shaft radius. A lumped mass matrix Ml, with
the masses equally distributed at the two nodes, can be used for computational reasons:

Ml =
m

2



1 0 0 0 0 0
0 1

12 l
2 0 0 0 0

0 0 r2

2 0 0 0
0 0 0 1 0 0
0 0 0 0 1

12 l
2 0

0 0 0 0 0 r2

2


(2.30)

Lagrange multipliers
For exact linking of beam coordinates the Lagrange multiplier theorem can be used, described in
the multi-body dynamics approach from [33]. For example, this can be used to link the gearbox
displacement and rotation to the shafts, where two nodes of two beam elements are merged.
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The mass and stiffness matrices M and K for a constant frequency Ω form the dynamic stiffness
matrix A:

A = [K− Ω2M] (2.31)

The linking between two coordinates can be described by a constraint equation of motion Φ.
A direct linking between beams, for example the same z-displacement of nodes (node b has the
same displacement as node a), results in a constraint like:

az = bz (2.32)

Using a matrix vector notation results in a constraint equation Φ = 0, with for the a and b
indices:

Φ =
[
1 −1

]
(2.33)

Φ with additional constraints for q applied to the system of equations A · q = R holds:[
A ΦT

Φ 0

]{
q
λ

}
=

{
R
γ

}
(2.34)

Where the acceleration equation γ is given by:

γ = Φq̈ = −[Φq̇]qq̇− 2Φtq̇−Φtt (2.35)

Were subscript q is a derivative w.r.t. q and subscript t to time. As can be seen for constant
constraints as in equation 2.34, the derivatives of [Φq̇] to q and Φ to t are zero for direct linking
between elements, resulting in γ equals zero.

Part of the structural model validation is done using the modeshapes of the model. To solve for
the modeshapes of the structural model, a reduction to only independent variables is needed.
Some of q are dependent variables, since they are dependent (linked) to other nodes, for example,
node b has the same displacement as node a. So the displacement of node b can be described
by the displacement of node a, implying displacement b is dependent on displacement a. The
system of equations in 2.34 can be rewritten (manipulated) to a dependent (d) and independent
(i) part including the Lagrange multiplier λ, shown in equation 2.36.Add Adi ΦT

d

Aid Aii ΦT
i

Φd Φi 0


qd
qi
λ

 =


Rd

Ri

0

 (2.36)

From this, the system can be manipulated to a reduced form with only independent variables,
without dependent variables qd and Lagrange multiplier λ. Equation 2.31 can be reverted re-
sulting in a system of equations which can be solved for the modeshapes:

[K̂− Ω2M̂]q = R̂ (2.37)

Where reduced mass matrix M̂ is based on a transformation of the dependent and independent
part of mass matrix M:

M̂ = Mii −MidΦ
−1
d Φi −ΦT

i Φ−Td
[
Mdi −MddΦ

−1
d Φi

]
(2.38)

Where ’T ’ is the transpose of a matrix and ’−T ’ the inverse transpose. Because of the harmonic
displacement assumption (equation 2.24), the same transformation also holds for the stiffness
matrix K:

K̂ = Kii −KidΦ
−1
d Φi −ΦT

i Φ−Td
[
Kdi −KddΦ

−1
d Φi

]
(2.39)

Also load vector R is reduced:
R̂ = Ri + ΦT

i Φ−Td Rd (2.40)

As can be seen in equations 2.38, 2.39 and 2.40, the mass, stiffness and respectively load of
the dependent variables qd is distributed over the remaining independent variables qi using the
constraint equations Φ. Now, K̂ and M̂ can be used to solve for the modeshapes.
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Damping
At resonance frequencies, the solution of an undamped system is infinite, as it is an Eigenvalue
problem. To compensate for this, damping can be added. The most used damping approximation
in FEM is Rayleigh damping, which assumes the damping proportional to the mass and stiffness
matrix:

C = [αM + βK] (2.41)

Where α and β can be calculated from:

ζi =
α

2ωi
+
βωi
2

(2.42)

In case of rigid body motion it can not be applied, since damping would be infinite. Damping
decreases with frequency [35]. Damping parameters α and β are assumed to be constant and ζi
is the damping ratio of a resonance peak. In most real life structural applications mass damping
is neglected [29], so β can be directly evaluated from ζ. By the so called ’3dB rule’, ζ can be
estimated from experiments by measuring the width of a resonance peak [36], as can be seen in
figure 2.5. The response of a multi degree of freedom system can be described by the contributions
of single degree of freedom systems (SDoF). A SDoF system with transfer function TF (s) with
a certain Eigenfrequency ωn can be described in the Laplace domain s by:

TF (s) =
ω2
n

s2 + 2ζωns+ ω2
n

(2.43)

Here, ωi is located at the maximum excitation â. Note, a small frequency step is required to

ωi

ω1 ω2

â
â√
2

|H(ω)|

ω

Figure 2.5: Schematic overview damping ratio estimation from amplitude resonance peak at
frequency ωi, adapted from [36].

estimate the amplitude at ω1 and ω2 accurately. Damping ratio ζ is given by [36]:

ζi =
ω2 − ω1

2ωi
(2.44)

From this, the damping parameter β can be evaluated using equation 2.42.

18



3 Application
In this chapter the discussed theory about the analytic, Spacar and the manual FEM approach
will be applied to the test bench, which geometry is shown in appendix A. In all three struc-
tural models, the geometry of the test bench is simplified to beam elements in order to have a
computationally fast model.

3.1 Analytic

An analytic model of only the Base and LSS is made. This can be seen at the left half of
the test bench in figure A.2. Only the LSS part of the test bench is taken into account for
the structural modal, because the High Speed Shaft (HSS) part is stiffened and so has higher
resonance frequencies. Figure 3.1 shows a schematic overview of the test bench modelled by
analytic beams. Both the Base and LSS consist of three beam elements. The bearings (red
line with black dot) are assumed rigid with inertia; the base (black) and LSS (blue line) have
the same displacement at this node. At the LSS ends inertia (magenta dots) is added as rotor
and gearbox (GB). A spring (grey) is added under the gearbox with stiffness kGB. The DC
motor driving the rotor is supported by a leafspring, which is shown also as grey spring with
axial stiffness kRS, connected to the ground. The Base is also connected to the ground by the
rigid tower, shown as red square mark. Only bending in z-direction is considered. Each element

z

x

mr
Jr
kRS

B2 B1

Base

LSS mGB
JGB
kGB

Rotor GB

Tower

Figure 3.1: Schematic overview analytic model applied to the LSS part of the test bench, XZ
view.

has four boundary conditions, for three base- and three shaft-elements this means 24 boundary
conditions to solve for the Eigenfrequencies. The order of the boundary conditions starts at the
tower to keep the matrix as sparse as possible for computational effort. The nodes are numbered
as shown in figure 3.2. Each node has certain boundary conditions derived from equation 2.5,
considering displacement W , angle θ, bending moment M and shear force Q. The boundary
conditions are listed in table 3.1.

z

x

A

B2 B1

L1

LSS

123

456

Base
L2L3L4

BCD

EFGH
Rotor Gearbox

Figure 3.2: Schematic overview of the boundary conditions per node for the analytic model
applied to the LSS part of the test bench.
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Table 3.1: Boundary conditions analytic structural model ordered per node.

Node Equation Remarks

A W1(0) = 0 Clamped at tower
θ1(0) = 0

B W1(L1) = W2(L1) Continuous base displacement,
θ1(L1) = θ2(L1) angle,

M1(L1) = Jbω
2 θ1(L1) + M2(L2) moment,

Q1(L1) + mbω
2 W1 + Q4(L1) = Q2(L1) + Q5(L1) shear force

C W2(L2) = W3(L2) Continuous base displacement,
θ2(L2) = θ3(L2) angle,

M2(L2) = Jbω
2 θ2(L2) + M3(L2) moment,

Q2(L2) + mbω
2 W2 + Q5(L2) = Q3(L2) + Q6(L2) shear force

D M3(L3) = 0 Free end
Q3(L3) = 0

E Q4(0)-mGBω
2W4(0) + kGBW4(0) == 0 Gearbox mass

M4(0) + JGBω
2θ4(0) = 0 and inertia

F W4(L1) = W5(L1) Continuous shaft displacement,
W4(L1) = W1(L1) connection to base,
θ4(L1) = θ4(L1) angle,
M4(L1) = M5(L1) moment

G W5(L2) = W6(L2) Continuous shaft displacement,
W5(L2) = W2(L2) connection to base,
θ5(L2) = θ5(L2) angle,
M5(L2) = M6(L2) moment

H Q6(L4)-mRω
2W6(L4) + kRSW4(L4) == 0 Rotor mass and support stiffness

M6(L4) + JRω
2θ6(L4) = 0 rotor inertia

At node A, the structure is clamped to the tower. At nodes B, C, F and G the Base or LSS,
respectively, is continuous in displacement, angle, moment and shear force. Node D is a loose
end with no moment or shear force. Node E and H have an additional point mass, inertia and
stiffness due to the gearbox or rotor (support), respectively.
Using the BC’s described in table 3.1 in equation 2.6 and solving for the resonance frequencies
ωn, results in the following (manually scaled) modeshapes, shown in figure 3.3. Here, the rotor
is the left (magenta) mass and the gearbox the right one. The tower is shown right as red square
mark with grey line. The first three Eigenfrequencies, shown at the y-axis, are within the speed
range of the DC driving motor of the test bench.
The second and third mode are highly sensitive on the gearbox spring stiffness kGB, as can be
seen by the amplitude in z-direction of the gearbox. Therefore, also a part of the High Speed
Shaft (HSS) may need to be included in the model, since its mass and coupling stiffness influence
the gearbox motion. The structural model assumes only gearbox movement, while its torsion
rotation is fixed. This may not be the case for the test bench, causing inaccuracies for the load
prediction.
In this research, the analytic model is used to determine the dimensions of the test bench during
the design phase, get insight in its dynamic behaviour and verify results of other methods. It is
not used to describe the relation between displacements and loads, because modeshape scaling
of multiple linked beams is too complicated. Therefore the FEM approach is applied to the test
bench in the next section.
Appendix B.2 gives a short documentation how this analytic approach is defined in a Matlab
file.
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Figure 3.3: Schematic overview analytic modeshapes with Eigenfrequencies ω, XZ plane.
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3.2 FEM - Spacar
Using FEM program Spacar [30] (extended version) modeshapes are determined, as can be seen
in figure 3.4. The same grid as with the analytic approach is used. Bending and torsion in 3D
is considered. The rotor is mounted on the (blue) LSS end as magenta disc. The gearbox is
modelled as beam element, instead of a point-mass in the analytic model. The right edge of
the magenta gearbox is also supported by a grey spring kGB, allowing rotation of the gearbox
(shaft torsion). The bearings (red blocks) are modelled as rigid beams. As it can be seen, the

x
y

z

(a) First mode: z-bending Base,
3.7 Hz.

zy

x

(b) Third mode: y-bending LSS,
5.9 Hz.

z

y
x

(c) Fifth mode: z-bending LSS,
10.0 Hz.

Figure 3.4: Schematic overview three Spacar modeshapes.

first (figure 3.4a) and fifth (figure 3.4c) mode correspond to the analytic solutions of figure 3.3.
The second mode (not shown) is shaft torsion in combination with a rotation of the gearbox at
5.8 Hz. The third (figure 3.4b) and fourth (not shown) modes are LSS bending in y-direction,
which were not modelled analytically. Also these are dominated by the radial gearbox spring
stiffness kGB in y-direction. The fifth mode is the second bending mode in z-direction of the
LSS.
The shaft bending in y-direction is almost similar to the one in z-direction, but depends on the
gearbox side ways spring stiffness kGB,y. Therefore, the model may be simplified by disregarding
the y-bending in 3D. Appendix B.3 gives a short documentation of the input file for Spacar.
However, a complete understanding of the node numbering inside Spacar matrices is required
in order to use Spacar to process acceleration data. This is not possible since numbering is
done internally. Besides this, gearbox torsion in combination with gears can not be added to
the program. Another disadvantage is the limitation to the amount of beams of the program.
Therefore, Spacar is only used to verify the Eigenfrequencies and modeshapes of the manual
programmed FEM approach.

3.3 FEM - Defined manually
In this section the description of the manual FEM applied to the test bench is described. The
coordinate system and linking of the beam elements can be put to a desired set for data processing
by manually programming the model. Also extra constraints like the gear ratio can be added by
using the Lagrange multiplier theorem. Because the FEM model is programmed manually, it is
relatively simple and fast. This section explains the definition of the model elements, boundary
conditions, linking between different elements and damping of the FEM model of the test bench.

3.3.1 Elements
The test bench geometry is simplified to a beam structure with different element (colours) per
different cross section, as shown in figure 3.5; it is similar to the real test bench shown in figure
A.1. As can be seen by the element colours, the FEM model consists of different beam elements.
Each one is described as follows:

1. Base (black line): A beam element with bending in z-direction, fixed at the tower (grey
rectangle), coupled to the LSS and generator (GEN) by bearing B2, B1, B3 B4, shown as
red lines with a black dot. These are modelled as spring, described in detail in section
3.3.3. The numbering is due to the model definition of the FEM elements. Viscous friction
can be neglected [37]. Two accelerometers ac are located below the main bearings B2 and
B1, shown as orange squares. The Base is clamped to the tower. The right part of the
base, between the tower and generator is stiffened to give it higher resonance frequencies.

2. LSS (blue line): A shaft beam element with bending in z-direction and torsion around the
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Figure 3.5: Schematic overview of manual FEM structural model with external loads.

x-axis (ψ). The rotor is added as point inertia and is supported with stiffness kR. The
right part overlaps with the gearbox (GB). Two accelerometers are added to the LSS beam
element at nodes near the GB, shown as orange squares.

3. GB (magenta line): A beam element bending in z-direction, parallel to the y-axis. Fig-
ure 3.6 shows an enlarged view with the gearbox in magenta. The gearbox geometry of
the test bench is simplified to a simple beam with corresponding mass and inertia. One
accelerometer is added to the gearbox beam element. The gearbox spring (kGB) is added
as translation and rotation stiffness. These stiffness is determined experimentally. As can
be seen below, the GB is only linked to the LSS and HSS by two ’bearing nodes’ (where
the GB beam crosses the LSS and HSS shafts), instead of the four bearings in the real test
bench. This is because of simplicity reasons. The linking (or merging) to the LSS and HSS
by Lagrange multipliers is explained in section 2.2.2.

4. HSS (red line): A torsion beam element with bending in z-direction and torsion around
the x-axis (ψ) and is coupled to an intermediate shaft (INT) by a membrane coupling. The
coupling is shown as sphere mark.

5. INT (green line): A torsion beam element with bending in z-direction and torsion around
the x-axis (ψ) and is coupled to the generator (GEN) by a membrane coupling.

6. GEN (cyan line): A torsion beam element with bending in z-direction and torsion around
the x-axis (ψ). The mass and inertia of both the solid coupling to the DC motor and
generator are included in the beam by a thicker shaft radius.

Each beam element has a mass and stiffness matrix M and K. The accelerometer mass and
inertia is taken into account. The linking using bearings, couplings or Lagrange multipliers will
be described in the next sections.

INT

kGB

GB

Base

Tower

LSS

x

y

z

ac5 ac4ac3

Bearingnodes

HSS

GEN

Figure 3.6: Schematic overview gearbox manual FEM structural model, enlarged 3D view.

3.3.2 Boundary conditions
The connections to the ground or outside world have to be defined. The rotor angle ψR is
assumed driven at constant angular speed Ω, for the model this implies it does not have a speed
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variation. The following external unknown loads are derived from figure 3.5:

1. Rotor force FR in z-direction, due to the constant angular speed.
2. Rotor torque TR in ψ-direction, due to gravity acting on the unbalance arm.
3. Generator torque TGEN, because of electric resistance.
4. Clamping force FT at the tower fixation. The displacement z is zero at the tower.
5. Clamping moment MT at the tower fixation. The inclination angle θ is zero at the tower.

3.3.3 Link LSS to Base
The main and generator bearings link the base displacement to the LSS and HSS, respectively.
Since the bearings have a finite axial stiffness, they can be modelled as tension-compression spring
elements. An additional benefit is that the load in this spring elements can be easily evaluated
for a given displacement profile. This section applies this principle to the main bearings, but
also holds for the generator bearings.

z

x

B2 B1

LSS

Tower

BC

FG

Base

Rotor GB

Figure 3.7: Schematic overview linking LSS to the Base by linear bearing spring elements.

Figure 3.7 shows a schematic overview of the part of the base frame, the main bearings, the LSS
and GB, with illustrative node numbering in capital letters B, C, F and G. The stiffness matrix
K of the Base and LSS combined look as shown in equation 3.1. The same holds for the mass
matrix M, shown in equation 3.2.

K =

[
[KBase] 0

0 [KLSS]

]
(3.1)

M =

[
[MBase] 0

0 [MLSS]

]
(3.2)

The bearing stiffness matrix Kb with linear (radial) bearing stiffness kb is given by:

Kb = kb

[
1 −1
−1 1

]
(3.3)

The lumped bearing mass matrix Mb is given by bearing mass mb, distributed equally over the
two nodes:

Mb =
1

2
mb

[
1 0
0 1

]
(3.4)

The bearings only constrain z-displacement between nodes C and G and as well as between node
B and F . The bearing stiffness and mass matrices are added to the total matrices of equations
3.1 and 3.2, for example for bearing B2 on nodes C and G:

K([Cz, Gz], [Cz, Gz]) = K([Cz, Gz], [Cz, Gz]) + Kb (3.5)

M([Cz, Gz], [Cz, Gz]) = M([Cz, Gz], [Cz, Gz]) + Mb (3.6)

This is done for all four bearings B1, B2, B3 and B4 of the test bench. It also applies to the
membrane couplings, but these have stiffness in three directions (z, θ and ψ), resulting in 6x6
matrices.
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Figure 3.8: Schematic overview of a one stage gearbox with DoFs and applied torques.

3.3.4 Link between GB, LSS and HSS
The Lagrange multiplier theorem will be applied to the gearbox, since at the gearbox, the LSS,
HSS and the gears are physical linked together by bending and rotation. The LSS, HSS and GB
elements are shown schematically in figure 3.8 in respectively blue, red and magenta colours. The
gearbox has a degree of freedom (DoF) around the x-axis: η. Where the angular displacement of
a node is shown by ψ, the torsional shaft stiffness kI and kII is given by the third and sixth row
or column, respectively, in equation 2.28, the rotational mass inertia by J and the gear radius
by r. The node numbering 1 to 5 is illustrative.
This section first compares the gear teeth stiffness with LSS torsional stiffness. Second it describes
the link the LSS, HSS and GB rotations by the torsional stiffness matrices. Thirdly the bending
of the LSS and HSS is linked. Both links are needed to fully describe the physical connections
of test bench in the structural FEM modal.

Stiffness comparison between gear teeth and LSS

The stiffness of the teeth is considered in figure 3.9, with a schematic overview of the two gears
with two teeth. The right (blue dot) gear is mounted on the LSS, the left (red dot) gear is
mounted on the HSS. Both rotate opposite to each other, since it is a one-stage gearbox. With

d2,p

ht

-ψ4
ψ1

z

y

LSS gearHSS gear

lt

d2,o

d1,p

d1,o

Figure 3.9: Schematic YZ -overview of gears with two teeth.

parameters described in table 3.2 from [38]. Where teeth length lt is assumed to be half of the
difference between the outer and pitch radius d0 and dp. The teeth height ht is assumed by:

ht =
πdp

2n
(3.7)

With n the number of teeth. The rotation stiffness of one gear teeth kg using beam bending
theory is:

kg =
T

ψ
=

3EIr2

l3t
(3.8)
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Table 3.2: Characteristic quantities gears.

Parameter Quantity Value Unit

d1,o Outer diameter gear 1 38 mm
d2,o Inner diameter gear 2 17 mm
d1,p Pitch diameter gear 1 36 mm
d2,p Pitch diameter gear 2 15 mm
ht Teeth height 1.6 mm
lt Teeth length 1.0 mm
n1 No teeth gear 1 36 -
n2 No teeth gear 2 15 -
wt Gear width 6.0 mm

Here T is the torque on the shaft, ψ the shaft rotation, E is the E-modulus of polyoxymethylene
(POM), r the pitch radius and I the area inertia of the teeth cross section (wt x lt) and is the
gear disc assumed rigid. The total stiffness kgears of both gears is combined:

kgears =

(
1

kg1
+

1

kg2

)−1

= 912.8 [Nm/rad] (3.9)

The LSS torsion stiffness is given by:

kLSS,ψ =
T

φ
=
GIxy

ls
= 12.7 [Nm/rad] (3.10)

With shear modulus G is 70 GPa for steel, shaft length ls is 700 mm and a shaft diameter of
6.0 mm. By comparing the results of equations 3.9 and 3.10, it can be seen that for the test
bench the gear teeth stiffness kgears is about a factor seventy higher compared to the shaft
torsion stiffness kLSS,ψ. Therefore the gear teeth are assumed rigid.

Torsion linking of the LSS, HSS and GB rotation

As the gear teeth are assumed rigid compared to the LSS torsion stiffness, the following constraint
equation between the LSS, HSS and gearbox rotation η is derived from figures 3.8 and 3.9:

Φ = −Nψ1 − ψ4 + η = 0 (3.11)

With the gear ratio N is defined as r1/r2 and where shaft rotation ψ4 is dependent on shaft
rotation ψ1 and gearbox rotation η. This constraint equation can be used to link the LSS and
HSS mass and stiffness matrices K and M, as was shown in figure 3.8. The LSS and HSS shaft
elements have both just common K and M matrices for torsion, with q defined as:

q = [ψ0, ψ1, η, ψ4, ψ5]T (3.12)

K =


kI −kI 0 0 0
−kI kI 0 0 0

0 0 0 0 0
0 0 0 kII −kII

0 0 0 −kII kII

 (3.13)

Lumped mass matrix M, but with added point inertia of the gears J1 and J2 at the gear nodes,
is given by:

M =


1
2JI 0 0 0 0
0 1

2JI + J1 0 0 0
0 0 0 0 0
0 0 0 1

2JII + J2 0
0 0 0 0 1

2JII

 (3.14)
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As can be seen by the absence of off-diagonal terms between the second, third and fourth rows
or columns, respectively, there is no linking between the nodes ψ1 and ψ4. Applying the matrix
reduction to the K and M matrices by using the Lagrange multiplier of equation 2.39 results in
the following reduced K̂ and M̂ matrices, with independent variables qi, chosen as [ψ0, ψ1, η,
ψ5]T and dependent variable qd is [ψ4]:

K̂ =


kI −kI 0 0
−kI kI + kIIN

2 −kIIN kIIN
0 −kIIN kII −kII

0 kIIN −kII kII

 (3.15)

M̂ =


1
2JI 0 0 0
0 1

2JI + J1 +N2(J2 + 1
2JII) −N(J2 + 1

2JII) 0
0 −N(J2 + 1

2JII) J2 + 1
2JII 0

0 0 0 1
2JII

 (3.16)

Shaft rotation ψ4 is replaced by gearbox rotation η, keeping the size of the original matrices of
the LSS and HSS the same, which is convenient for programming. Wu et al. [39] determined
similar mass and stiffness matrices for adding gearbox ratios to shaft elements, but with a fixed
gearbox housing rotation η. This is an extra validation of the used linking method. As can be
seen by the off-diagonal terms, the rotation coordinates are now linked together.

Bending linking of the LSS, HSS and GB
The gearbox rotation can be added to the LSS and HSS rotations and displacements including the
gear ratio. The gearbox housing is modelled also as a rigid beam with mass, but perpendicular
(radial) to the shafts and parallel to the y-axis. This is visualized in figure 3.10, were all DoF per
node are shown for the LSS, GB and HSS beams. Shaft rotation ψ is due to torsion, rotation φ
is due to a bending moment. Shaft rotation ψ4 is replaced by η as was described previously. The
node numbering 1 to 5 is illustrative. The figure has the same orientation and colouring as figure
3.6. Four constraint equations Φ are applied to link the different elements (colours) of figure
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Figure 3.10: Schematic overview LSS, GB and HSS beams with DoF per node, not linked.

3.10 to each other. These four constraints are needed to constrain the degrees of freedom of the
gearbox. Gearbox angle η is dependent of shaft rotation ψ3 of the gearbox element, resulting in
the following constraint equation with merged angles:

Φ1 = −η + ψ3 = 0 (3.17)

The gearbox beam element is also coupled to the LSS and HSS by displacements. This results
in the following constraint equations:

Φ2 = z1 − z2 = 0 (3.18)

Φ3 = −z3 + z4 = 0 (3.19)

Also, angle θ is continuous through the gearbox. This implies:

Φ4 = θ1 − θ4 = 0 (3.20)
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Combining these four constraint equations, choosing dependent coordinates qd as [η, z2, z3, θ4]T

and applying these to the total K and M matrices of the system results in reduced matrices K̂
and M̂, which are used to determine the modeshapes of the structural model. The next chapter
will describe how the defined structural model can be manipulated to process the acceleration
data.
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4 Data processing
The structural model was defined in section 3.3. Before it can be used, the model matrices
need to be manipulated according to known and unknown coordinate values in order to use
them in combination with the accelerometer data. The accelerometers can have some offset
to a maximum of 15% or measure unnecessary vibrations, such as higher harmonics. Higher
harmonics are not modelled in the structural model. Therefore, the measurement data needs to
be pre-processed before it can be used as input for the structural model. This can be done by
applying a detrending method to the data and using filter techniques. After filtering the data
can be used as input for the model to determine (internal) loads.

4.1 Acceleration measurements filtering
Accelerometers have a voltage as output with a given relation between the voltage and acceler-
ation. For the used accelerometers, this relation is assumed to be constant and determined by a
calibration done once in the past. However, in experiments a small offset was observed, making
measurements less accurate. Since the accelerations are assumed to be harmonic, as stated in
section 2.21, the offset should be zero. This is done by detrending the data, where the mean
value of the data is removed [40].

Besides the unwanted offset, the data also contains higher harmonics and noise due to external
vibrations. A band pass filter can be used to remove frequencies below and above the harmonic
frequencies, which are multiples of the rotational speed Ω. Another disturbance at a multiple of
the gearbox ratio is the HSS rotational speed ΩHSS . The filter can be described in the Laplace
domain (s) by [41]:

BP (s) =
∆Ωs

s2 + ∆Ωs+ Ω2
(4.1)

The frequency difference ∆Ω is the peak width to pass through and is chosen to be 1.0 Hz based
on iterations. Frequencies below this band width at frequency Ω are suppressed.
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Figure 4.1: Bode diagram of bandpass filters for 604 RPM rotational rotor speed.

Figure 4.1 shows the frequency spectrum with a second-order and a quadratic bandpass filter
at ΩLSS. The quadratic filter (BP 2) is needed in stead of the second order bandpass filter BP,
because the second-order filter has a too small amplification factor of about =25 dB at the other
peak, as can be seen in figure 4.1 at the black mark. An amplification of =25 dB does not
suppress the other peak sufficiently. The slope of the quadratic filter is =40 dB per decade,
while the second order is only =20 dB. The phase plot is not shown, because the phase-shift is
compensated automatically by Matlab and neglected during data processing [42].

4.2 From acceleration measurements to loads
Figure 4.2 shows a flow diagram of the load prediction algorithm based on acceleration mea-
surements. The structural model was defined in section 3.3, but the mass and stiffness matrices
need to be manipulated and shuffled according to knowns and unknowns to determine loads from
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acceleration measurements. This is described in this section. First the assumptions and needed
inputs are stated. Second the manipulation of the matrices is explained.

Measure
accelerations

Unknown
Excitation
load R3(Ω)

Filter
Detrend

q1 = a/Ω2

Structural
model

Known
external

loads R1, R2

Geometry:
K & M

q2, q3

R3, R4

a

q1

A

Figure 4.2: Flow diagram algorithm to predict forces with acceleration measurements as input.

4.2.1 Structural model inputs

The first described inputs are the accelerometers. The test bench drive train rotates an un-
balanced rotor with rotational speed Ω, resulting in an harmonic excitation load R3. This is
causing harmonic vibrations. These harmonic vibrations are measured with accelerometers at
certain nodes as was described in section 3.3.1. The acceleration measurements are filtered and
detrended, as described in section 4.1. Because of the harmonic profile, q1 due to the acceleration
at a node can be determined from:

q1 = − a

Ω2
(4.2)

Where acceleration a is filtered with a bandpass filter at frequency Ω.

The second inputs are the known external loads R1 and R2. These loads are zero because only
the dynamic external loads on nodes are considered; the static force due to gravity is not taken
into account. For example, see figure 3.5 for the external loads. In this figure, all nodes of the
LSS except for the rotor node have zero external force.

The third inputs are the K and M matrices are given by the geometry of the test bench. The
’dynamic stiffness matrix’ A is described from equation 2.25 by:

A = [−Ω2M + iΩC + K] (4.3)

4.2.2 Manipulation of dynamic stiffness matrix A

A manipulation of matrix A is proposed by linear algebra according to knowns and unknowns
of variable q and loads R:


A11 A12 . .

A21 . . .

. . . .

. . . A44

 ·


q1

q2

q3

q4

 =


R1

R2

R3

R4

 (4.4)

As can be seen in equation 4.4, there are four ’row sections’ 1 to 4. Each section consists of
multiple rows. Each section has a different meaning in the sense of known and unknown values,
as can be seen in table 4.1. Unknown values (uv) need to be determined using the structural
model.
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Table 4.1: Explanation row sections system of equations.

Row sec. q R Remark

1 measured 0 Nodes with accelerometers
2 uv 0 Nodes without ex. load
3 uv uv Nodes with ex. load
4 0 uv Clamped nodes

Note, the sequence of the rows can be chosen arbitrarily. As can be seen, row section one should
have the same or larger size than row section three in order to solve this system of equations.
Unknown variables q2 and q3 can be determined from the known loads R1 and R2 and variables
q1 by an inverse FEM approach:[

q2

q3

]
=

[
A12 A13

A22 A23

]−1

·
([

R1

R2

]
−
[
A11

A21

]
q1

)
(4.5)

Variables q2 and q3 contain complex numbers, because matrix A contains complex numbers due
to the damping matrix. Since the prediction is only about the magnitude of the excitation only
the real part is taken into account. The inverse is not necessarily square, so in most cases the
pseudo-inverse is used.
With all variables of q determined, the external loads R3 and R4 can be determined using
equation 4.4, again considering only the real part of the solution:[

R3

R4

]
=

[
A31 A32 A33

A41 A42 A43

]
·

q1

q2

q3

 (4.6)

4.2.3 Structural model output
Using the complete set of q and the mass and stiffness matrices Me and Ke for each element, all
dynamic internal loads can be determined. For example the bearing loads with element matrices
described in equation 3.1. Also the rotor force FR,z can be predicted. This prediction can be
compared with the theoretical value using equation 1.2. The rotor origin acceleration has to be
taken into account.

4.3 From theoretical rotor force to accelerations
The proposed algorithm of section 4.2 is partly modified or reverted to predict accelerations
based on the rotor force described in equation 1.2. This is needed as validation of the model and
to quantify the prediction error. Figure 4.3 shows a flow diagram of the used algorithm and is
explained in this section.
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Structural
model

Known
external
loads R1

Geometry:
K & M

q̈ = ω2 q

Measure
accelerations

Filter
Detrend

q̈ = a ?

A

q q̈

a

Figure 4.3: Algorithm assumed forces to predict accelerations.

4.3.1 Structural model inputs
The first inputs are the known external loads R1. These loads are zero because only the dynamic
external loads on nodes are considered; static gravity load is not taken into account. For example,
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see figure 3.5. In this figure, all nodes of the LSS except for the rotor node have zero external
force. The loads by the rotor R2 are derived from the free body diagram shown in figure 1.7.
The acceleration of the rotor origin z̈ is neglected in this case, because it is also unknown. This
has as implication that the prediction only holds for frequencies where the acceleration of the
origin is relatively small compared to the centrifugal term of the rotor acceleration. Other inputs
for the model are the stiffness and mass matrices K and M. These are given by the geometry of
the test bench. The ’dynamic stiffness matrix’ A was already described by equation 4.3.

4.3.2 Manipulation of dynamic stiffness matrix A
Matrix A is shuffled according to known and unknown (uv) parts of coordinates q and loads R:A11 A12 A13

A22 . .

A32 . .

 ·
q1

q2

q3

 =

R1

R2

R3

 (4.7)

As can be seen, there are three ’row sections’. Each can consist of multiple rows. Each section
has a different meaning in the sense of known and unknown values:

Table 4.2: Explanation row sections system of equations.

Row sec. q R Remark

1 uv 0 Nodes without ex. load
2 uv Rotor load Assumed load
3 0 uv Clamped nodes

Loads R1 and R2 are used as input in the structural model to determine the unknown variables
q1 and q2 using an inverse FEM approach:[

q1

q2

]
=

[
A12 A13

A22 A23

]−1

·
[
R1

R2

]
(4.8)

Because this inverse is not necessarily square, in most cases the pseudo-inverse is used.

4.3.3 Structural model output
Matrix A contains complex numbers due to damping. Only the real part of q1 and q2 is taken
into account. Multiplying q with −Ω2 by equation 2.3 results in predicted accelerations. These
can be compared with the filtered acceleration measurements.
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5 Validation results and discussion
Validation of the model is needed to show and quantify its quality and accuracy. A maximum
error of 2.15% is allowed in this research, as was based on the L10 norm in section 1.4. The
quality of the prediction is important, because a small error in load prediction can make a big
difference in the remaining lifetime prediction. First a rough validation of the sensors to trust
the externally done calibration is provided. Second the modeshapes of the structural model and
the test bench are compared. These modeshapes describe the response of the system to a certain
load, as described in the analytic approach of section 2.1. At last, a reversed model is used
with assumed rotor loads as input to predict accelerations at measurement nodes, which can
be compared to acceleration measurements at the test bench. This comparison can be used to
determine the quality of the model.

5.1 Sensor validation

The 3D acceleration sensors were calibrated externally in the past. A rough validation with a
yard stick is done to verify the motion amplitudes of the sensors. Besides the amplitude also the
rotor speed Ω is measured for verification, since this is related to the accelerations in the system.
An external RPM meter is placed at the generator shaft of the test bench, as can be seen in
figure 5.1. The generator rotates with a speed ratio N of 2.45:1 due to the gearbox.

LSS

Base

B2 B1

GB

HSS

INT GEN

B3 B4

Rotor

Tower x

z

ac2 ac1

ac3 ac4,5

RPM

Figure 5.1: Schematic overview of the RPM meter located at the generator shaft end.

The vibrations due to the unbalanced rotor are measured by accelerometers ac1 till ac5. The
measurements are transformed from the time domain to the frequency domain by the Fourier
transformation. A plot of the frequency spectrum of the five sensors is shown in figure 5.2, with
a sampling frequency fs of 20.0 kHz. The absolute value is smoothed with a moving average filter
with thirty points. The frequency spectrum is cropped and scaled to the maximum peak. Some
important observations are stated below:

• The left peak is the rotational speed of the rotating unbalance at the LSS rotor, marked as
ΩLSS. This corresponds to the (gearbox ratio converted) value measured with the external
RPM meter.

• At multiples of the LSS frequency, small peaks are observed, which are due to higher
harmonics. Their amplitude decrease rapidly for higher frequencies.

• The highest peak is at 2.45 times the LSS frequency, located as ΩHSS. This is not an
higher harmonic but the first harmonic of the HSS, due to the gear ratio. Not only the
HSS vibrates at this frequency, but also the base (sensors ac1 and ac2). The magnitude
of this peak is significantly higher compared to the first peak. This resonance frequency is
not included in the structural model; it is an un modelled additional unknown input, for
example a rotating unbalance at the HSS such as a membrane coupling.
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Figure 5.2: Acceleration measurements scaled magnitude response at 305 RPM rotor speed.

5.2 Modes validation
Besides the validation of the sensors, also the structural FEM model is validated. This is done by
comparing the modeshapes of the test bench with the modeshapes (amplitudes) of the structural
model. This is described in the following section.

5.2.1 Hammer Impact Test (HIT)
The response of the test bench to a certain excitation force at a specific node can be determined
using an HIT. The force is applied and measured with a special impact hammer equipped with a
force sensor. The response is measured with the five accelerometers ac1 till ac5. The test bench
is hit near ac2. By using this as an hit location, the results are calibrated, since the hammer
input force is measured directly with the accelerometer. This method is applied to the test bench
which is shown in figure 5.3. The rotor is not driven during the HIT. It is assumed that the HIT
only excites the bending modes. This assumption is allowed, since only the excitation force in
z-direction of the test bench rotor is taken into account in the structural model.

LSS
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B2 B1

GB

HSS

INT GEN

B3 B4

Rotor

Tower x

z

ac2 ac1

ac3 ac4,5

Hammer

Figure 5.3: Schematic overview hammer impact test and accelerometers on structural model.

The results are visualized by dividing the output of the five accelerometers by the input force
of the hammer. This is transformed to the frequency domain by the Fourier transformation
(FFT), resulting in five transfer-functions between the hammer input and each accelerometer.
The magnitude and phase part of the transfer-functions are shown in figure 5.4. The HIT is done
twice; the results are the average of two measurement sets. The sample frequency fs is 10.2 kHz.
The frequency range is cropped to a range between 3.0 Hz and 13.0 Hz. Figure 5.4b shows the
(unwrapped) phase. From this, the relative phase between the signals can be seen. This is
relevant to compare with the modeshapes of the structural model. As can be seen in figure 5.4a,
four resonance frequencies are present in the signal. The phase of the fifth sensor shows some
noise. This can be due to the motion of the HSS part of the test bench or the gearbox motion.

5.2.2 Rotor speed sweep
To validate the assumption done in section 1.7.3 concerning the rotary effects on Eigenfrequencies
a rotor speed sweep is done on the test bench. This is similar to the HIT, but without hammer
and with rotating shafts with a varying rotor speed Ω between 0 RPM and 600 RPM. The Fourier
transform of the acceleration measurements is shown in figure 5.5. The y-axis is unscaled. The
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Figure 5.4: Response of accelerometers Y to the impact hammer U .

sample frequency is 1.25 kHz. The absolute values of the Fourier transform are filtered using a
moving average filter over thirty points. As can be seen three resonance peaks are clearly visible
at 4.2 Hz, 7.1 Hz and 10.2 Hz. At 8.0 Hz also a peak is present, but this is less visible because it
slightly intervenes with the second peak.
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Figure 5.5: Smoothed Fourier transform of rotor speed sweep

5.2.3 Model modeshapes
With the system which is reduced by the Lagrange multipliers and boundary conditions, the
modeshapes can be determined as shown in figure 5.6. Because torsion is relatively high frequent
(about 21 Hz, lower right plot figure 5.6c), a comparison between a FEM with only bending (figure
5.6a) and with bending and shaft torsion (figures 5.6b and 5.6c) is made. For the bending-torsion
model also the shafts torsion is shown at the right side. The used element colours correspond
to the ones used in figure 3.5. The y-axis is unscaled, because the scaling is done manually
according to a reasonable value of the gearbox rotation angle η around the x-axis. Some modes
are mirrored due to the random scaling of the Eigenvectors. Both models use the same test bench
geometry and parameters. As can be seen in figure 5.6, the difference between the two models
can be found in the modeshapes where the gearbox moves. An explanation for this difference
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can be the effect of extra rotational inertia and stiffness. The first torsion mode of the shafts is
at 21.2 Hz. Bending of the stiffened (cyan) HSS-GEN Base part of the test bench is at 23.0 Hz.
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Figure 5.6: Schematic overview modeshapes bending and bending-torsion structural models with
resonance frequencies ω.

5.2.4 Comparison between HIT and FEM modeshapes
Resonance frequencies from the HIT, bending model and bending-torsion model are summarized
in table 5.1. As can be seen, the ’gearbox’ modes between 6.0 Hz and 8.0 Hz are less accurate
described by the bending model, while the bending-torsion model has Eigenfrequencies more
close to the HIT results. An explanation can be the extra rotation stiffness and inertia of the
shafts. Besides the resonance frequency, also the phase difference, shown in figure 5.4b, can be

Table 5.1: Resonance frequencies ω [Hz] of the HIT, bending model and bending-torsion model.

Mode HIT Sweep Bending Bending-torsion

1 4.2 4.2 3.9 4.1
2 7.2 7.1 6.4 7.1
3 8.0 8.0 8.6 8.0
4 10.5 10.2 10.4 10.6

taken into account to verify the FEM model. The relative phase difference between the base
and gearbox accelerometers of the first and fourth resonance frequency, 0◦ and 180◦ respectively,
corresponds roughly to the modeshapes of the FEM model. However, the second and third
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resonance frequency does not show the same relative phase difference between the base and
gearbox accelerometers. An explanation for this can be the torsional excitation by the unbalance
mass, which has a phase shift of 90◦ (see equation 1.2) compared to the force excitation by the
unbalance mass.
Because the resonance frequencies of the bending-torsion FEM model corresponds better to the
HIT compared to the bending FEM model, the bending-torsion model is used as structural model.
However, the torsion is not measured directly via sensors, but extrapolated from the gearbox
angle η. The extrapolation can be an inaccuracy of processing the accelerometer data with the
structural model. This inaccuracy is hard to quantify, since the extrapolation is a solution to
the under determined system of equations, having infinitely many solutions. The Matlab solver
chooses one based on the minimal norm of the solution vector.

5.2.5 Model consistency
A FEM model is called consistent if the results are independent of the amount of used elements
[32]. To check for consistency of the model, the resonance frequencies of the model are determined
for several element lengths l in the range between 1000 mm and 20 mm. The resulting amount
of elements is plotted with determined resonance frequencies in figure 5.7. As can be seen, the
first, second, third and fourth Eigenfrequencies are stable after about thirty elements, which
correspond to a mesh-size of 100 mm. The fifth Eigenfrequency is stable for a coarser grid with
less elements, because this is the first linear torsion mode.
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Figure 5.7: Eigenfrequencies for different amount of elements.

5.2.6 Damping
As was described in section 2.2.2, the damping parameter β can be determined from damping
ratio ζ. Figure 5.8 shows the response of accelerometer ac1 to the HIT. Using the 3 dB rule,
indicated in the figure, ω1 and ω2 are roughly estimated to be 4.3 Hz and 4.5 Hz, respectively.
Using equation 2.42 damping factor ζ is determined 0.02. The SDoF system T (s) from equation
2.43 with estimated ζ is added to figure 5.8 at the first resonance frequency to verify the damping
ratio. As can be seen the damping ratio corresponds roughly to the test bench response. Choosing
ζ as 0.02 in equation 2.42 results for damping factor β as 1.6× 10=3 rad=1.
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Figure 5.8: Estimation of damping ratio ζ from peak width HIT accelerometer ac1.
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5.3 Predict accelerations using assumed rotor force
The reversed approach described in section 4.3 is applied to the test bench to quantify the
prediction error. It is called reversed, because an assumed rotor load is used to predict the
accelerations of test bench components. First this is done for one rotor speed, second it is done
for a range of rotor speeds.

5.3.1 Acceleration comparison for one specific rotational speed
The low-pass filtered measured accelerations from sensors ac1 till ac5 are compared to the pre-
diction of the structural FEM model for a specific rotational speed. This comparison can be
seen in figure 5.9. The blue line represents the prediction of the structural FEM model. The red
line is the filtered acceleration measurement at ΩLSS. Additionally, also the HSS frequency ΩHSS

filtered result is added to show its significance. As can be seen, the first two acceleration profiles
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Figure 5.9: Comparison measured and predicted accelerations at 426 RPM rotor speed.

are quite similar. The third and fourth are predicted too low. The third and fourth sensor are
far too low. This may indicate the structural model is not adequate at these sensors, which are
located at the gearbox. For the fifth sensor, the HSS frequency is of significant influence.

5.3.2 Acceleration comparison for a range of rotational speeds
The acceleration prediction and comparison for one constant rotational speed described in the
previous section can be applied to a range of rotational speeds. To compare the prediction
with real measurements, the amplitude of the prediction is divided by the amplitude of the
measurement. So a perfect prediction has a comparison value of 1, indicated on the logarithmic
y-axis by 100. This is shown in figure 5.10 for the five accelerometers ac1 till ac5. Also the
resonance frequencies of the structural model ωFEM and the HIT ωHIT are included, shown by
the vertical red and black lines. As can be seen, the comparison is not stable for any accelerometer
over the frequency range. Especially before the first and between the second and third resonance
frequency at 7.2 Hz and 8.0 Hz the prediction explodes. The prediction at frequencies between
4.5 Hz to 7.0 Hz and 8.5 Hz to 10 Hz are closer to the reference value 1 for ac1 to ac4, but has
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Figure 5.10: Acceleration comparison between the structural FEM model and five accelerometer
measurements for a range of rotational rotor speeds Ω, with the Eigenfrequencies ω of the FEM
and HIT drawn vertically, respectively.

far more than 2.15% error. ac1 and ac2 are mostly predicted larger than 1 while ac3 and ac4

is predicted to low between 4.5 Hz and 7.5 Hz. At 7.0 Hz and 8.0 Hz the gearbox is vibrating.
Accelerometer ac5 shows an higher prediction error between 7.0 Hz to 10.0 Hz. This validation
indicates a possible error in the inverse FEM model.

5.4 Load prediction using accelerations
Using the structural model with the algorithm described in section 4.2 the loads can be predicted
using accelerometers as input. One of the loads is the rotor force due to the rotating unbalance.
This force can be compared with the theoretical load described in equation 1.2. In this section,
this is first described for one LSS rotational speed, afterwards it is applied to a range of rotational
speeds.

5.4.1 Rotor load prediction at one constant rotational speed
The rotor and bearing loads can be predicted with the structural model, using equation 4.6. The
rotor force in z-direction is shown in figure 5.11. The sinusoid line is the predicted force by the
structural model, the dashed line is the theoretical rotor force by equation 1.2 due to the rotating
unbalance mass. Acceleration z̈ of the rotor origin is predicted also by the structural model and
used in equation 1.2. As can be seen, the model prediction compared to the assumed maximum

0.8 0.82 0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98 1

−2

0

2

Time [sec]

R
ot

o
r

fo
rc

e
F

R
,z

[N
]

Model
Theory

Figure 5.11: Rotor force in z-direction comparison between FEM and theoretical at 604 RPM
rotor speed.

amplitude is almost the same for this rotational speed, but the error more than 2.15%.
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5.4.2 Rotor force prediction for a range of rotational speeds
Figure 5.12 shows a comparison between the amplitude of the predicted rotor force and amplitude
of the theoretical rotor force in z-direction for a range of rotational speeds based on equation 1.2.
Ideally, this values should be 1, shown as black dotted line. The resonance frequencies of both
the HIT (ωHIT) and FEM model (ωFEM) are shown as red and black vertical line, respectively.
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Figure 5.12: Comparison between FEM and theoretical rotor force for a range of rotational
speeds Ω, with the Eigenfrequencies ω of the FEM and HIT drawn vertically, respectively.

As can be seen, the prediction is not stable at the ideal value 1. The first resonance frequency at
4.0 Hz of the FEM model is a bit too low compared to the HIT, this can explain the amplitude
difference around this frequency. Between 4.5 Hz and 7.0 Hz the prediction also fluctuates. At
the gearbox rotation modes of 7.0 Hz and 8.0 Hz, the FEM prediction is too low. This indicates
the inverse FEM model is not correct.

5.5 Discussion
The resonance frequencies of the test bench are measured using an HIT and using a rotor speed
sweep. These frequencies correspond with the Eigenfrequencies of a bending-torsion FEM model
and partly with the analytic and Spacar models. Therefore these validation methods are assumed
to be accurate. In literature also comparisons between Eigenfrequencies of both experiments and
a structural model are done with accurate results, for example by Nigam et al. [43]. In general,
the Eigenfrequencies are related the the ratio between stiffness and mass matrices, which seems
to be correct according to the validations.
The modeshape amplitudes are related to the values of both the mass and stiffness matrices.
From the accelerometer acceleration and rotor force predictions becomes clear that determining
the modeshapes back using the inverse FEM method may be incorrect. This is indicated by the
fact that both the predictions have a different error at the same frequencies. The acceleration
prediction validation showed larger prediction errors compared to the rotor force validation ap-
proach.
As was observed as well from the analytical and Spacar, the gearbox modeshapes are sensitive
to the gearbox spring, which may be modelled too simple by only a linear stiffness in axial direc-
tion. This can explain the wrong prediction at frequencies where the gearbox is vibrating. The
FEM model is also sensitive to small changes of other parameters, for example point masses or
lengths.
A comparison between the amplitude of experiments and a structural model is less common
in literature. Wang et al. [44] uses an analytical based approach to predict the amplitudes of a
clamped beam, but with an error of 20 - 30%. Gherlone et al. [45] uses an inverse FEM approach
to predict motion with strain measurements applied to a clamped beam with an load prediction
error about 5.9%. Kawai et al. [46] poses the inverse FEM and describes it as inaccurate very
sensitive to measurement noise. Dividing the measured accelerations by the rotational speed
squared also results in small displacement values, which are sensitive to noise. The inverse of
the dynamic stiffness matrix is ill posed due to the small amount of measurement nodes. The
displacement sensitivity and the ill posed inverse can both result in an inaccurate solution.
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6 Outlook
In this section, acceleration measurements are used as input for the structural FEM model to
predict internal loads at a specific constant LSS rotational speeds. This is done as outlook
to a possible application of the structural model. The prediction is done at several rotational
speeds to see the influence of the speed on the internal loads, for example the bearing loads. At
resonance frequencies where the test bench is vibrating, higher dynamic loads are expected. The
prediction is done to show the possible practical use of the proposed structural model.

6.1 Prediction at one constant rotational speed
First, coordinates q, containing bending and torsional deflection, are predicted using the struc-
tural model, according to the algorithm described in section 4.2. The displacements and shaft
rotations are visualized in a schematic overview of the test bench in figure 6.1. The rotor is
shown at the left side as magenta disc, the generator at the right side as cyan rectangle. To
tower is located at the red square mark with grey line at (0,0). The acceleros are visualized
as orange square marks. The used damping coefficient β is 1.6× 10=3 rad=1 and the number
of beam elements is 362. The x-rotation of the gearbox is shown by η. The displacements in
z-direction are shown in figure 6.1a, the shaft rotation ψ due to torsion and gearbox rotation is
shown figure 6.1b. As can be seen, the gear ratio causes a vertical jump in rotation (magenta
line), appointed with an arrow. This rotation is due to the rigid body motion of the gearbox.
The torsion inclination of the blue LSS and green INT are slightly opposite to each other, as
is expected by a one-stage gearbox. The shapes are similar to the modeshape of the model, as
already shown in figure 5.6. Based on figure 5.10, the acceleration prediction of the gearbox
sensors ac3 till ac5 is too low and should have a much higher amplitude. Figure 6.2 shows the

(a) Displacement prediction

(b) Shaft torsion prediction

Figure 6.1: Displacement and shaft rotation prediction at 604 RPM. If the figure does not appear
interactive, please enable this function and click on it or use a recent version of Adobe Reader.

internal force in z-direction in the bearing (spring) elements (main bearings). As expected, they
are opposite to each other due to the bending moment in the shaft. The force amplitude of the
bearings differs a bit. The frequency corresponds to the LSS rotational speed. At this frequency,
the accelerometer validation had an error of about 10% and the rotor validation an error of 20%,
as was shown in figures 5.10 and 5.12, respectively. Therefore this bearing load prediction should
be considered with such an error.
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Figure 6.2: Bearing load prediction at 604 RPM.

6.2 Bearing load prediction for a range of rotational speeds
The prediction of rotor and bearing loads is done for a range of rotational speeds containing four
modelled resonance frequencies. In figure 6.3 the amplitude of the main bearings is shown for a
range of rotational speeds. For an higher frequency the load increases globally. At the resonance
frequencies corresponding to figure 5.6 peaks can be observed at 4.0 Hz, 7.0 Hz and 10.0 Hz. The
resonance frequency of 8.0 Hz is merely visible. This is explained by figure 5.6 where can be seen
that this is a gearbox rotation mode.
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Figure 6.3: Bearing load prediction for a range of rotational speeds.

Because of the validation done in section 5.3 and 5.4, the bearing loads prediction should be
considered with the errors shown in figures 5.10 and 5.12. This means the force prediction of the
bearings is at all speeds considered not reliable. But even with this prediction error the influence
of the vibrations on the bearing loads is clearly visible.
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7 Conclusion
A feasibility study to a simple and fast structural model of a test bench is made to process
measurements from accelerometers to internal loads. The dimensions of the test bench are
designed to vibrate by an rotating unbalance, since at resonance frequencies, the dynamic loads
can be significantly higher compared to the quasi-static load case. The research questions are
stated and answered as follows:

How can an analytic structural modal be defined and applied to a wind turbine?

An analytic structural model considering the low speed part of the drive train is defined. This
is done by using multiple beam sections connected by boundary conditions. Linking multiple
beams together leads to a complex formulation for the modeshape scaling, making it not suitable
to use. Also, damping at resonance frequencies is important, which is not taken into account in
the analytic model. This results in an infinite excitation at resonance frequencies.

How can a numerical structural model be defined and applied to a wind turbine?

The first considered numerical model is the Finite Element Method (FEM) using the program
Spacar. This enables a simple and fast formulation of different beam elements describing bending
and torsion in 3D. The node numbering is done internally in the program; mass and stiffness
matrices cannot easy be manipulated to use them for acceleration input. Additionally, details
like the gearbox ratio can not be added.
The second considered numerical model is a manual defined FEM model. This enabled a simple
and fast formulation of different beams in 2D including bending in z-direction and shaft torsion.
Gearbox details, for example the gear ratio, were added using the Lagrange multiplier theorem.

What manipulation is needed to use the structural model for measurement process-
ing?

First the acceleration measurement data is detrended to remove an acceleration offset. Second,
the data is filtered using a bandpass filter to remove noise and higher harmonic frequencies.
Third, the mass and stiffness matrices of the structural model are manipulated according to
known and unknown coordinate or load values using an inverse finite element method.

What is the accuracy of the structural model?

The model was validated using three approaches. The first approach was by using a hammer
impact test on the test bench and comparing its resonance frequencies with the Eigenfrequencies
of the FEM model. From this the necessity of including both bending and torsion in the model
became clear, because this model had the most similar resonance frequencies. A rotor speed
sweep is done to validate the use of non rotating beams to represent the rotating shafts. Both
have similar resonance frequencies.
The second validation assumed a theoretical harmonic rotor excitation force as input for the
model. Accelerations were predicted with the structural model and compared with accelerometer
measurements. This validation showed a considerable difference between model predictions and
measurements, especially low-frequent and at the gearbox resonance frequencies. Between 5.0 Hz
and 7.0 Hz the prediction seemed more stable, but still with a relatively large error.
The third validation used acceleration measurements to predict the rotor excitation force. This
was done at several constant rotational speeds of the rotor. At most rotor speeds the rotor force
prediction is too low with about 50% error. At 7.0 Hz the prediction is too high with an error of
60%.

To what extent can internal loads, moments and torques of a wind turbine be de-
termined using accelerometers?

Acceleration measurements are used as input to a structural model to predict the motion and
loads. However, the validation showed prediction with significant errors at most frequencies.
Therefore the set requirement of 2.15% prediction error is not met at any speed in the range of
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the first four resonance frequencies of the test bench. The (inverse) FEM model appears to be
sensitive to small changes of test bench dimensions which makes it not suitable to validate the
structural model. Also the test bench has too much uncertainties to be accurately represented
in a model.
Although the prediction is not accurate, the simple analytic and numerical modelling of the drive
train gives insight in the governing dynamics of a complex system with multiple bodies.
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8 Recommendations
The current structural model does not show stable and reliable force predictions for a frequency
range in the first four modeshapes. The first recommendation is to uses a simple test set-up like
a clamped beam or mass-spring system as proof of principle to validate the inverse finite element
method using accelerometers as input. Preferably the exciting load or displacement is directly
measured. The current test bench is too complex to proof the principle of the inverse structural
model.

The second recommendation is to circumvent the inverse model. This can be done by the use
of known harmonic input rotor forces and moments to predict the test bench motion for dif-
ferent speeds. The measured accelerations can be matched to the motion shape, resulting in a
corresponding rotor force. This is an optimization problem instead of an inverse solution problem.

The third recommendation is to add rotational measurements. The load prediction can be im-
proved by using a rotational encoders to measure torsion of shafts. As became clear of the
FEM model modeshapes, shaft rotation has to be taken into account to describe the gearbox
modeshapes accurately. However, shaft rotations are currently not measured at the test bench,
resulting in an under determined set of equations to solve in the structural model. In practise,
this means an infinite amount of solutions for the shaft rotation, where the algorithm picks a
single one. This solution depends on the used solver routine. The easiest location to put the
rotational encoders is at the driving DC motor and DC generator.

The last recommendation concerns test bench uncertainty of the gearbox spring. Its stiffness
is unknown and no data-sheets are available. The spring is not only loaded axially as linear
movement, but also radial in x and y-direction during rotational movement of the gearbox.
Because the spring is clamped at both sides this rotational stiffness is hard to determine. The
clamping causes also extra forces in case the gearbox is not properly aligned with the base. A
solution for this stiffness uncertainty can be the use of a folded leafsprings, which stiffness are
easier to determine. Two schematic sketches are shown in figure 8.1 with the gearbox attached
to the base by a leafspring. Figure 8.1a only allows for z-bending, while figure 8.1b allows for
both z and y-bending.

GBLSS INT

Base Leafspring

(a) Leafspring

GBLSS INT

Base Leafspring

(b) Folded leafspring

Figure 8.1: Two leafspring configurations between the gearbox and base
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A Test bench description
This chapter describes the used test bench. First the design is shown and in the second section
all relevant dimensions are given.

A.1 Design
A test bench is built to verify a structural model. The base frame and shafts are considered
flexible. Figures A.2 and A.3 show the CAD design from different perspectives with components
described below, where the numbers correspond to the ones in the pictures.
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Figure A.1: CAD model test bench 3D view, in corporation with D. Berendsen.
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Figure A.2: CAD model test bench side view XZ plane, in corporation with D. Berendsen.
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Figure A.3: CAD model test bench top view XY plane, in corporation with D. Berendsen.

1. A DC motor drives the ’rotor’ and is supported by a leafspring ’DC motor support’. It has
a speed range of about 180 RPM till 950 RPM, with a maximum voltage of 15 V [47].

2. The varying wind load is modelled by two unbalance masses. Its radii can be varied. They
are mounted on a rigid coupling which couples the DC drive shaft to the LSS.

3. The DC motor is supported by a folded leafspring as counter torque.
4. A shaft with diameter 6.0 mm is used as LSS.
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5. Two ball bearings are used as main bearings [37]. To mimic viscous friction a more heavy
industrial alternative was considered [48], but the viscous friction absorbed to much power
of the DC motor, as was observed in practise.

6. The flexible base frame is modelled as a sheet, the rear part below the generator is stiffened
by two stiffeners.

7. The tower, with certain stiffness about the z-axis to model the tower stiffness, realized by
springs for the test bench.

8. The gearbox ratio Ri is chosen as 2.45 and assembled in house using two POM gears. The
gears have a pitch of 15.0 mm and 36.0 mm, respectively. The shafts are both connected by
two bearings to the gearbox. It is modelled by a box with a think bottom plate, screwed
together.

9. The gearbox is supported by a spring to the base frame.
10. A short shaft with diameter 4.0 mm is used as HSS.
11. Two membrane couplings [49]. Real wind turbines use metal disc packs. Both are shown

in figure A.4. In figure A.4a the flexible membranes can be seen, which are needed to
compensate for misalignment between the gearbox and generator shaft. They act as radial
and bending spring, causing extra forces on the bearings. Figure A.4b shows the one used
in the test bench. Cardanic-couplings are not used in practise because of extra rotating
parts and costs.

12. An intermediate shaft with diameter 6.0 mm is used between the membrane couplings.
13. Two generator bearings supporting the generator shaft [37].
14. A generator shaft with diameter of 6.0 mm is used between the membrane coupling and

the generator
15. The generator is modelled by a DC motor [47]. The voltage output can be measured via

a voltage divider using Labview. It has an internal transmission with a ratio of 6:1. It is
coupled to the generator shaft by a rigid coupling.

16. Since the bending curve of a beam is of fourth order, at least four accelerometers for the
LSS in combination with the base frame are used [18]. To measure the torsion fluctuation
two accelerometers are placed on the XY plane of the gearbox. The shafts are assumed
torsion rigid, because shaft rotations are not measured. All accelerometers measure in 3D
starting from 0.0 Hz, so without frequency offset. The locations are chosen with aid of the
modeshapes to measure at five non-singular locations.

17. The test bench rests on a solid aluminium ground plate.
18. The base frame can be stiffened by extra T profiles.

(a) Metal discpack coupling wind turbine, from [50]. (b) Membrane coupling test bench, from [49].

Figure A.4: Couplings between gearbox and generator

A.2 Dimensions and properties test bench
Loads due to dynamic excitation can be significantly higher in comparison to static loading,
especially at resonance frequencies. Therefore the dimensions and masses of the test bench
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are chosen in such a way that they are in the range of the DC motor speed. As can be seen
in figure A.3, the positions of the bearings can be shifted through slots to vary the resonance
frequencies in a small range. The analytic approach described in section 2.1 is used to estimate
the Eigenfrequencies based on dimensions. All used dimensions and properties are listed:

Table A.1: Used steel properties.

Symbol Parameter Value Unit

E E-modulus 210 GPa
G G-modulus 70 GPa
ρ Density 7.8× 103 kg m3

Table A.2: Main lengths.

Symbol Parameter Value Unit

lr |Rotor - Bearing 2| 250 mm
ls |Bearing 2 - Bearing 1| 260 mm
lp |Bearing 1 - Tower| 265 mm
lbe |Bearing 2 - free end base| 135 mm
lgbx1 |GB LSS side - Tower| 40 mm
lgbx2 |GB HSS side - Tower| 30 mm
lGB Gearbox y length 128 mm
lHSS |HSS| 60 mm
lINT |INT| 235 mm
lg1 |Coupling 2 - Bearing 3| 45 mm
lg2 |Bearing 3 - Bearing 4| 120 mm
lg2 |Bearing 4 - Generator| 90 mm
lGEN |Generator| 70 mm
hb |Base - LSS| 55 mm
r1r2 |LSS - HSS| 23.5 mm

Table A.3: Cross section dimensions.

Symbol Parameter Value Unit

RLSS LSS radius 3 mm
RHSS HSS radius 2 mm
RINT INT radius 3 mm
wbf Base width 300 mm
tbf Base thickness 3 mm
ron Rotor unbalance radius 5 mm
wGB Gearbox width 70 mm
tGB Gearbox thickness 7 mm

Table A.4: Stiffness parameters.

Symbol Parameter Value Unit

kDC DC motor support 141.3 N m=1

kb Bearing 190·106 N m=1

kGB Gearbox linear spring 2.2·103 N m=1

kGB,θ Gearbox rotation spring 0.13 N m=1

kC,r Membrane radial coupling 4.0 kN m=1

kC,θ Membrane angular coupling 0.3 Nm/◦

kC,ψ Membrane torsion coupling 145 N m rad=1
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Table A.5: Mass properties.

Symbol Parameter Value Unit

mr Rotor mass 0.485 kg
Jr,θ Rotor mass inertia y-axis 8.2× 10=4 kg m2

Jr,ψ Rotor mass inertia x-axis 5.0× 10=4 kg m2

mb Bearing holder mass 0.602 kg
Jb,θ Bearing holder mass inertia y-axis 142× 10=6 kg m2

mGB Gearbox mass 0.580 kg
JGB,θ Gearbox mass inertia y-axis 410× 10=6 kg m2

mA Accelerometer mass 40 g
JA,θ Accelerometer mass inertia y-axis 2.6× 10=6 kg m2

mC Membrane coupling mass 14 g
JC,θ Membrane coupling mass inertia y-axis 60× 10=8 kg m2

JC,ψ Membrane coupling mass inertia x-axis 60× 10=8 kg m2

JLSS LSS gear mass inertia x-axis 1.4× 10=6 kg m2

JHSS HSS gear mass inertia x-axis 4.5× 10=8 kg m2

Table A.6: Other properties.

Symbol Parameter Value Unit

Ri Ratio Gear 1 / Gear 2 2.45 -
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B Matlab program description
This chapter gives a short documentation of the used Matlab files.

B.1 Parameters definition
All relevant dimensions, as stated in section A.2, are also described in the Matlab file parame-
ters.m. This file is used for the analytic, Spacar and manual FEM structural models.

B.2 Analytic model
The Matlab file defines the analytic model. First the cross sections are defined by the area and
inertia. The relative lengths between each node are converted to an absolute coordinate system
with x zero at the tower.
The shape functions for each beam section are defined as symbolic functions, which are differen-
tiated to the angle, moment and shear force. The boundary conditions are applied which results
in a 24x24 matrix to solve for the eigenvalue. The modeshapes are obtained by inserting the
found eigenvalue and choosing the free scaling factor as 1. Four modeshapes are plotted and
saved as .svg and .csv file.

B.3 Spacar
The Spacar model uses the extended version 2017 of Spacar. The dimensions are defined from
the parameters.m file. The model is build in 3D. The inertias and stiffnesses are defined for the
different cross sections. The properties for the springs and bearings are overridden.
The model is build from the tower, connecting each beam element section to each other by the
displacements and rotations. Constraints with the ground are added. Gravity can be added.
Colours are added manually for Spavisual. Modeshape results are visualized in Spavisual and
can be manually exported.

B.4 FEM
The manual defined FEM program has two versions: one with only bending and one with bending
and torsion. Both are defined in the same way. First the model is defined. Second the acceleration
data is preprocessed. Last the model can be manipulated to be used in two ways: to predict
rotor force or to predict accelerations.

B.4.1 Model

The area and inertia are defined per beam section in Matlab cells. Relative beam section lengths
are converted to an absolute coordinate system with x is zero at the tower. The complete test
bench is defined using beam elements. The x-nodes per element (Base, LSS, etc.) are defined
using the given lengths. Beam elements are defined between x-nodes.
The nodes defined by the user are converted to program indices, since a node can have multiple
indices (displacement, rotation, etc.). To check the dimension input a undeformed plot is drawn
with all elements and added details.
With the defined dimensions for each element the mass and stiffness matrices are determined
and stored in a 3D Matlab cell. The different element matrices are linked to each other by the
bearing and coupling stiffnesses and Lagrange multipliers for the gearbox.
Boundary conditions are applied to solve for the Eigenvectors. To plot these, the reduced coor-
dinates and boundary conditions are added back into the Eigenvectors. Several modeshapes can
be plotted. The y-axis is not relevant, since the scaling is done random.
The indices of the reduced mass and stiffness matrices are stored and sorted according to section
4.2.
Using a for loop with different section lengths the model consistency can be obtained.
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B.4.2 Data preprocessing
Acceleration measurements are done (externally) using Labview and saved as .dat file. These can
be imported by Matlab. Matlab routine detrend is used to remove the offset of each accelerometer.
Matlab routine fft is used to get the Fourier transform of each accelerometer. A bandpass filter
is used to remove higher harmonics from the signal. With the known rotational frequency the
accelerations are converted to displacements.

B.4.3 Loads to accelerations
Using the assumed harmonic rotor force and known displacements and loads the motion of the
test bench is predicted by solving the system of equations.

B.4.4 Acceleration to loads
Using the determined displacements from the accelerometers and known displacements or loads
the motion of the test bench is predicted by solving the system of equations.
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