
Master Thesis
for the study programme MSc. Business Information Technology

D E V O P S U N D E R C O N T R O L

olivia h . plant

Development of a framework for achieving internal control and effectively
managing risks in a DevOps environment

March 2019

university of twente

Olivia H. Plant: DevOps under control, Development of a framework for achieving
internal control and effectively managing risks in a DevOps environment
Master Thesis, University of Twente, March 2019

author:
Olivia H. Plant, MSc candidate
Study Programme: MSc Business Information Technology
Track: IT Management & Innovation
E-Mail: o.h.plant@alumnus.utwente.nl

graduation committee:
Dr. Klaas Sikkel
Faculty: Electrical Engineering, Mathematics and Computer Science
Department: Services and Cybersecurity
Email: k.sikkel@utwente.nl

Prof. Dr. Jos van Hillegersberg
Faculty: Behavioural, Management and Social Sciences
Department: Industrial Engineering and Business Information Systems
Email: j.vanhillegersberg@utwente.nl

Frank van Praat, MA MSc RE
Company: KPMG Nederland
Department: IT Assurance & Advisory Noord
Position: Senior Manager
E-Mail: vanpraat.frank@kpmg.nl

M A N A G E M E N T S U M M A RY

Although multiple definitions of the DevOps concept exist, DevOps is generally
considered to be an Agile software development approach with the goal of
combining development and operations and emphasizing frequent and fast
software deployment. Four main aspects of DevOps are collaboration, automation,
measurement and monitoring. While the DevOps approach offers great benefits,
many companies are struggling with the implementation of DevOps and with
maintaining control of their processes due to the required autonomy of the
DevOps teams and the high degree of automation. At the same time, they
struggle with demonstrating this control towards external auditing parties. This
study therefore seeks to identify which types of risks companies using DevOps
are generally exposed to and to develop a framework that helps companies
control their processes and manage risks without hindering the speed and
efficiency of the DevOps approach substantially.

The literature review suggests that many risk management controls concerning
access management, change management, compliance and security can be auto-
mated. However, research on DevOps is still scarce and specific risks applicable
to DevOps are hardly mentioned. Furthermore, we conducted case studies in
nine companies using DevOps which show that manners of implementing Dev-
Ops differ widely and that many companies in practice use a combination of
traditional and automated controls to manage their DevOps environment. This
study also shows that soft aspects such as organizational culture, communication
and team responsibility are of integral importance for effectively mitigating risks
in DevOps.

Risks associated with DevOps can be grouped into five categories which are
transitional, organizational, project, team and product risks. It is further argued that
there is no best way to implement DevOps and that the DevOps concept rather
needs to be tailored to the needs of the company in question. Two main factors
that influence companies in their decision how to manage their processes are
the DevOps maturity and risk appetite. Based on these factors, a framework is
developed that suggests four strategies with suitable controls to manage risks in
DevOps.

The findings of this study implicate that companies first have to find a way
to establish a solid DevOps culture before relying on automation practices.
Likewise, auditors will have to find a way to assess these so-called "soft controls"
in order to reliably give assurance on internal control. This thesis presents some
first suggestions on how this can be done.

This study has both scientific and practical value:
• scientific: The study is one of the first of its kind and contributes to the

scarce field of research about risk management in DevOps.
• practical: We provide guidelines for companies on how to integrate risk

management practices into their DevOps processes.
• practical: We provide insights for auditors who want to provide assurance

on internal control on how to audit DevOps processes.

iii

The main research methods applied were a structured, multivocal literature
review and multiple case studies that draw from semi-structured interviews as
main input. The framework has been validated with four experts in the fields IT
Risk, IT Audit and DevOps and with six of the case study participants.

The findings are mainly limited by the fact that some case studies draw from only
a single interview as source of information and that the validation techniques
applied were artificial instead of naturalistic. Directions for future research
include implementation and auditing of soft controls, assessing DevOps maturity
and general success factors for DevOps transitions.

iv

P R E FA C E

After five and a half years, my life as a student at the University of Twente
comes to an end. It has been a time full of adventures and personal growth,
starting with a Bachelor in International Business Administration and finally
finding my passion for IT Management and moving on to pursuing the MSc
programme in Business Information Technology. This thesis is the result of nine
months work and I am quite happy with how it turned out. Many people have
contributed to this research over the past few months and I would like to thank
some of them in the following:

I would firstly like to thank my supervisors Klaas Sikkel and Jos van Hillegers-
berg. I could not have wished for a better combination of supervisors. Both of
them have always made time for me, supported all of my ideas and given me
valuable feedback. Thank you for the interesting meetings and the hours you
must have spent on reading my drafts.

I would also like to thank my KPMG colleagues for their advice and interest in
my thesis, especially my company supervisor Frank van Praat who always made
time for me despite his busy schedule and my fellow internship companions
who kept me motivated throughout both coffee breaks as well as stressful
periods. I would also like to thank Henk Hendriks for pointing me towards this
topic in the first place; this thesis has sparked my enthusiasm about Agile and
DevOps even further and I thoroughly enjoyed working on it.

I am also grateful to all people who made time to participate in the case studies
and/or give me feedback on the results. Their insights and contributions mark
the core of this thesis and this research would have been much less interesting
without their participation.

Most importantly, I would like to thank my friends and family, especially my
parents and my boyfriend, for always supporting me throughout my studies.
This thesis would not have been possible without you.

v

C O N T E N T S

1 introduction 1

1.1 Thesis structure . 1

2 background 3

2.1 What is DevOps? . 3

2.2 Risk management and internal control 7

3 research design 9

3.1 Research objective and questions 9

3.2 Research model . 11

4 literature review 13

4.1 Literature review method . 13

4.2 Internal environment . 15

4.3 Objective setting . 16

4.4 Event identification, risk assessment and risk response 18

4.5 Control activities . 19

4.6 Information & communication . 23

4.7 Monitoring . 24

4.8 Discussion . 24

4.9 Conclusion . 25

5 research method 26

5.1 Case studies . 26

5.2 Validation . 28

6 case study results 31

6.1 Summary of case study companies 31

6.2 Overview of concepts . 33

6.3 Identified risk categories . 37

6.4 General risk mitigation mechanisms 39

6.5 Identified controls . 41

6.6 The DevOps transformation at GeoTech 54

7 the devops risk management framework 56

7.1 Synthesizing literature and empirical findings 56

7.2 DevOps risk governance components 60

7.3 The DevOps risk management matrix (DRMM) 62

8 validation 69

8.1 Senior manager - GRC Technology 69

8.2 Senior manager - Digital Enablement 71

8.3 Senior consultant - Enterprise Agility 72

vi

contents vii

8.4 Director - IT Assurance & Advisory 74

8.5 Case study participants . 76

8.6 Summary and adjustments . 78

9 discussion 79

9.1 Implications . 79

9.2 Validity and reliability of research 82

9.3 Contributions to research and practice 86

9.4 Related and future work . 87

10 conclusion 89

10.1 Research questions . 89

10.2 Key contributions and findings . 90

bibliography 93

appendices

a structured literature review : search protocol 99

a.1 Inclusion and exclusion criteria . 99

a.2 Search results . 99

b structured literature review : results 100

b.1 Selected papers . 100

b.2 Controls mentioned in literature 102

c case study interviews : coding 103

d synthesis of literature and case study findings 107

L I S T O F F I G U R E S

Figure 2.1 Typical automated activities included in CI and CD prac-
tices . 5

Figure 2.2 Three lines of defence model as illustrated by Davies and
Zhivitskaya [5] . 8

Figure 3.1 Design cycle adapted from Wieringa [54] 9

Figure 3.2 Template for design problems [54] 10

Figure 3.3 Research model . 11

Figure 4.1 Literature review method and output 13

Figure 4.2 COSO Enterprise risk management Framework [4] 14

Figure 4.3 CMMI lifecycle and ITIL processes for DevOps according
to Phifer [35] . 17

Figure 5.1 Coding of interview quotes and mapping of relationships 27

Figure 5.2 Categorization of codes and inheritance of relationships 28

Figure 5.3 Defining relationships in ATLAS ti 30

Figure 6.1 Concept map . 34

Figure 6.2 Incident and change statistics GeoTech 55

Figure 7.1 Risk categories related to DevOps 57

Figure 7.2 Representation of DevOps risk governance components . 61

Figure 7.3 Demonstration of DevOps risk management matrix . . . 63

Figure 7.4 Controls for DRMM strategies 65

Figure 7.5 Basic growth strategies . 68

L I S T O F TA B L E S

Table 2.1 DevOps capabilities and enablers according to Smeds et
al. [44] . 3

Table 2.2 DASA DevOps competence areas [8] 4

Table 3.1 Design cycle phases applied to this research 12

Table 6.1 Overview of case study companies and interviewees . . 32

Table 7.1 Examples of risks and controls 58

Table 8.1 Experts interviewed for artifact validation 69

Table 9.1 Guidelines for design-science research according to Hevner
et al. [18] applied to this research 84

Table B.1 Papers selected for literature review 100

Table B.2 Controls mentioned in literature 102

Table C.1 Overview of codes and categories created during case
study analysis . 103

Table D.1 Practices found in literature and case studies 107

viii

A C R O N Y M S

AWS Amazon Web Services

CAB Change Advisory Board

CD Continuous Deployment

CI Continuous Integration

COBIT Control Objectives for Information and related Technology

COSO Committee of Sponsoring Organizations of the Treadway Commission

DTAP Development-Testing-Acceptance-Production

ERM Enterprise risk management

GITC general IT controls

IaC Infrastructure as Code

SAFe Scaled Agile Framework

SOx Sarbanes–Oxley Act

ix

1
I N T R O D U C T I O N

DevOps is often used as an umbrella term to describe software development
approaches with the aim of increasing the pace of software development pro-
cesses and improving software quality [12]. Important practices often found A detailed

description of the
DevOps
phenomenon is given
in Section 2.1

in DevOps teams are the shared responsibility for software development and
operations and sometimes at least partly automated software delivery pipelines
and infrastructure.

Formerly known for its use in more technologically advanced companies such
as Netflix, Etsy and Spotify, DevOps has also become interesting for more
traditional companies [24] and is nowadays continuously gaining popularity [39,
10]. While many companies are enthusiastic about the opportunities that DevOps
offers and are keen to implement it, they are struggling to maintain control of
their processes due to the high degree of automation as well as the required
autonomy of the DevOps teams and decentralized decision making structures.
It is therefore beneficial to adopt a more tailored and risk-management based
approach when designing the DevOps processes for a company. A second
struggle for companies as well as for their auditors is to demonstrate this control
in IT audits. Traditional control frameworks that stress aspects such as change
control, access management and security are no longer compatible with DevOps
and Agile ways of working and need to be adjusted.

Despite the obvious need for more rigorous investigations of these problems,
academic research is only recently picking up on the DevOps trend with publi-
cations having increased significantly over the past three years. However, much
of the available literature is still concerned with defining what DevOps is in the
first places or focuses only on the technical aspects of automation. The research
at hand aims at setting a first step towards more structured risk management
and process design in DevOps with the goal to increase internal control while
remaining as agile as possible.

1.1 thesis structure

This thesis is structured as follows:

• Chapter 2 gives a detailed overview of the DevOps concept and attempted
definitions by scholars as well as a short description of risk management
and internal control terminology.

• Chapter 3 describes the design of this research and the steps to be under-
taken during the course of its execution.

• Chapter 4 summarizes the academic literature available in the context of
DevOps and risk management.

• Chapter 5 explains the empirical research methodologies in detail.

1

1.1 thesis structure 2

• Chapter 6 summarizes the empirical case study results.

• Chapter 7 synthesizes the results of the literature and empirical studies
and introduces the final risk management framework.

• Chapter 8 summarizes the validation of the initial draft framework and
accounts for the adjustments that were made to this.

• Chapter 9 discusses the implications of the results for scholars and practi-
tioners and evaluates their validity, reliability and limitations.

• Chapter 10 sums up and concludes the thesis.

2
B A C K G R O U N D

2.1 what is devops?

DevOps is a combination of the words development and operations and was first
used during a presentation by Patrick Debois and Andrew Clay Shafers at the
2008 Agile Conference [27]. The central philosophy of DevOps which scholars
and practitioners agree on is that DevOps aims to bridge the gap between
development and operations by assigning DevOps teams shared responsibility
for both processes [26, 44]. DevOps has been referred to as many different things
among which a movement, a philosophy, a (development) practice, a mindset or
a culture. Furthermore, there are tensions as to whether DevOps is mainly about
culture or is more of a technical solution [26]. Lichtenberger [24] explicitly warns
his readers that DevOps is no framework or standard that could be looked up in
a codified book, but is rather a movement with the goal of becoming "better" and
"faster". Literature reviews have also shown that there is no uniform definition In order to apply to a

wider context, this
study purposely does
not rely on one
specific definition of
DevOps.

of DevOps [12, 25] although various studies have defined some general patterns
that DevOps processes usually share. In the following we will first name some
definitions of DevOps as encountered during a literature review. We will then
elaborate on some practices that are often associated with DevOps.

Table 2.1: DevOps capabilities and enablers according to Smeds et al. [44]

Capabilities

Continuous planning

Collaborative and continuous deployment

Continuous integration and testing

Continuous release and deployment

Continuous infrastructure monitoring and optimization

Continuous user behavior monitoring and feedback

Service failure recovery without delay

Cultural Enablers

Shared goals, definition of success, incentives

Shared ways of working, responsibility, collective ownership

Shared values, respect and trust

Constant, effortless communication

Continuous experimentation and learning

Technological Enablers

Build automation

Test automation

Deployment automation

Monitoring automation

Recovery automation

Infrastructure automation

Configuration management for code and infrastructure

3

2.1 what is devops? 4

Lwakatare et al. [25] defined collaboration, automation, measurement and monitoring
as the four main dimensions of DevOps. In another paper they added a fifth
dimension called culture [26]. Similarly, Smeds et al. [44] defined DevOps as a set
of capabilities, cultural enablers and technological enablers which are shown in
Table 2.1. Jabbari et al. [20] found that “DevOps is a development methodology aimed
at bridging the gap between Development and Operations, emphasizing communication
and collaboration, continuous integration, quality assurance and delivery with automated
deployment utilizing a set of development practices". According to Nielsen et al. [33],
DevOps incorporates three main principles which are working according to
agile principles with continuous and frequent software delivery, collaboration
with a culture based on trust, respect and communication and integration of
practices and tools. The software delivery process is divided into the four stages:
plan & measure, develop & test, release & deploy, as well as monitor & optimize. A
literature review by Erich et al. [12] showed that research papers about DevOps
emphasized the aspects culture of collaboration, automation, measurement, sharing,
services, quality assurance and governance.

A model that is commonly used by DevOps practitioners is the competence
model from the DevOps Agile Skills Association (DASA) [8] which emphasizes
twelve skill and knowledge areas that should be present in DevOps teams. These
areas are summarized in Table 2.2. In the following, the four original dimensions
of Lwakatare et al. are used to summarize the most common DevOps practices.

2.1.1 Collaboration

DevOps teams have shared goals, shared incentives and shared responsibilities
for development and operations [20]. Collaboration is enforced through infor-
mation sharing and broadening of team members’ skillsets [25]. Due to this new
way of working, DevOps requires a complete shift in culture. DevOps culture is
based on trust, respect and communication [33] and is one of the most difficult
parts to implement for companies when moving towards DevOps [2].

Furthermore, DevOps is considered by many authors to be an extension of
agile software development that aims to apply the agile principles not only to
the development but also the operation of software [20, 27]. Some authors see

Table 2.2: DASA DevOps competence areas [8]

skill areas knowledge areas

Courage Business value optimization

Teambuilding Business analysis

DevOps leadership Architecture and design

Continuous improvement Programming

Continuous delivery

Test specification

Infrastructure engineering

Security, risk and compliance

2.1 what is devops? 5

Figure 2.1: Typical automated activities included in CI and CD practices

agile as an enabler for DevOps while only few authors see agile as a separate
development methodology with similarities to DevOps [20]. Both focus on rapid
and incremental releases, gathering feedback quickly and correcting problems
[27].

2.1.2 Automation

According to Lwakatare et al. [25], increased automation of testing and deploy-
ment processes is necessary to keep up with the increased pace of agile software
development. Three terms that are repeatedly mentioned in combination with
DevOps but are often used interchangeably are Continuous Integration, Con-
tinuous Delivery and Continuous Deployment [46]. Continuous Integration (CI)
is a development practice where team members integrate their work [46] by
constantly merging working copies to a shared main branch [22]. Changes in
code are directly tested and merged in order to continuously validate the code
and detect problems as early as possible. As soon as a developer commits a
change, the system detects this automatically and triggers a build, conducts
automated tests and posts the build to a repository [52]. Continuous Delivery
builds on this concept by additionally preparing the software for release. In or-
der to do so, automated acceptance tests are conducted and the code is deployed
to a staging environment. The software can then be deployed with a single
manual click on a button [36]. Finally, Continuous Deployment (CD) extends the
two principles by also conducting an automated release process following the
extensive testing [46]. In this case, no human interaction is needed in order to
deploy a change once a piece of code is checked in by a developer and passes
all automated tests. Figure 2.1 visualizes the described activities and differences
between these three principles. While many companies organize their delivery
process and corresponding environments according to the Development-Testing-
Acceptance-Production (DTAP) approach, the exact order in which the described
activities are conducted may vary per company. In order to build these auto-
mated toolchains, developers can use automation software like Jenkins which
connects and triggers the necessary applications.

DevOps is generally agreed by scholars to be based on Lean thinking and
aims to make processes more efficient and effective throughout the entire IT
value stream [27]. In order to implement Continuous Deployment efficiently,
parts of the development and deployment chain that do not add value should

2.1 what is devops? 6

therefore be eliminated and features that are ready for delivery can be released
immediately [22].

Another important principle that is frequently used within DevOps is known
as Infrastructure as Code (IaC) and is often used for configuration management
of servers that will run the applications. The desired state of infrastructure and
configurations is defined in a domain-specific language [7]. This configuration
information is then stored in source code repositories. Tools such as such as
Chef, Puppet, Salt or Ansible allow developers to treat these configurations as
code which can be versioned and tested and ultimately rolled out by ensuring
that all systems have the defined configurations [40, 43]. This can for example
be used to ensure that the acceptance environment in which code is tested is
the same as the actual production environment to which the changes will be
deployed once they pass the tests successfully.

A similar technique that is gaining popularity in DevOps are containers like
Docker. These containers are quick to set up and provide a separate environment
for applications to be tested and developed in. They are often used to create
virtual development, test and production environments in DevOps [26]. Docker
containers are launched from images that contain information about their content
such as applications and processes to be run once the container is launched. They
can be distributed via registries which makes Dockers very portable. Different
to virtual machines, Docker runs on top of the host operating system and does
not require installment of another operating system. They are therefore very
resource efficient [41]. However, configurations in Docker containers cannot be
changed since containers cannot be updated. Updated software or configuration
therefore requires a new image build [40].

2.1.3 Monitoring

Monitoring allows for fast detection and correction of problems which is cen-
tral to DevOps. Systems and the underlying infrastructure should therefore
be continuously monitored by operations personnel. Furthermore, continuous
monitoring allows for appropriate assignment of resources [25]. Monitoring is
conducted by implementing automated monitoring tools and logs. However,
it can be difficult for development personnel to search the large amount of
available logs to detect anomalies if the systems are not designed to show er-
rors automatically. Furthermore, Continuous Deployment somewhat challenges
monitoring due to its focus on speed and effectiveness. DevOps addresses these
problems by emphasizing collaboration between development and operations
personnel so systems are designed to expose relevant information quickly [25].

2.1.4 Measurement

Quality assurance is mentioned as an important part of DevOps by multiple
authors [20, 25]. Integrating measurement into the DevOps pipeline ensures
that performance of development and quality assurance is based on quantitative
data. Measurement should be based on real time performance and usage data
[25]. The metrics to be measured should always focus on business value of

2.2 risk management and internal control 7

the operations and production data should drive decisions, improvements and
changes to the system [26].

2.2 risk management and internal control

The international risk management standard ISO31000 defines risk manage-
ment as a set of principles, frameworks and processes for managing risk [45].
However, the Committee of Sponsoring Organizations of the Treadway Com-
mission (COSO) [4] has shifted the focus to a more holistic view of risk man-
agement with the establishment of its Internal control and Enterprise risk
management (ERM) frameworks. In these frameworks, COSO advocates for the
implementation of appropriate risk-based controls throughout the enterprise to
ensure the achievement of organizational objectives. This infers that risk manage-
ment impacts organizational management as a whole instead of only applying
to risk management processes [45]. Risk management therefore is also no longer
just a function focused on financial and accounting risks but on management
control throughout the whole enterprise [45]. Furthermore, internal control is
an integral part of ERM according to COSO [4].

2.2.1 The Sarbanes–Oxley Act

Corporate scandals in the early 2000s have lead to the establishment of the
Sarbanes–Oxley Act (SOx) which requires companies to regularly report on
their internal control structure and procedures concerning financial reporting
together with independent auditors [1, 49]. In order to do so, companies often
adopt frameworks such as COSO which help them to structure their control
processes. Although COSO is one of the most popular frameworks used for SOx
compliance, one of its limitations is that it does not explicitly name any control
concepts [42]. Another framework which is often used and does provide specific
controls and processes is the Control Objectives for Information and related
Technology (COBIT) framework [42]. Rubino et al. [42] advocate that COBIT can
be a useful internal control framework for companies which overcomes some of
COSO’s limitations.

2.2.2 IT audit and controls

The audit committee oversees the financial performance of the enterprise and
ensures the reliability of its financial reporting [49]. Internal control is therefore
important in IT Audits which are conducted as part of the financial statement
audits but also for achieving (security) certifications. According to Gantz [15], IT
Audit can help organizations ensure that assets are governed effectively i.e. they
operate as intended and work in a way that complies with applicable regulations
and standards.

IT controls are items that are tested and analyzed during an IT audit and thus
form the substance of auditing [15]. There are various approaches to categorizing
IT controls: They can be preventive, detective or corrective towards the risks
they address and can be of administrative, technical or physical nature [15].
Administrative controls concern policies, procedures or plans to ensure the

2.2 risk management and internal control 8

Figure 2.2: Three lines of defence model as illustrated by Davies and Zhivitskaya [5]

integrity of the organizations operations and assets while technical controls
are designed to achieve the organizations control objectives. Physical controls
concern the access to facilities and assets. Auditors also distinguish between
general IT controls (GITC) and application controls [19]. Application controls are
integrated into applications which support the financial control objectives such
as financial applications. Application controls for example include completeness
and accuracy of the working of an application. The GITC are integrated into
IT processes which ensure a reliable operating environment and support the
application controls. Examples for these controls are access to programs and data
and changes to programs [19].

2.2.3 Three lines of defence model

Many companies arrange their corporate governance according to the "Three
lines of defence" model. The model is particularly popular in financial institu-
tions but also used in other sectors [47]. The exact origins of it are unknown
and there are multiple subtly different version of it in which the boundaries
between the three lines differ slightly [5]. The model divides organizational risk
management activities into three "lines of defence". The first line of defence is
designed to reduce operational risk in day-to-day activities. It contains manage-
ment and internal controls and is performed by the individual employees and
their superiors. The intention of this first line is to capture risks early and prevent
them from happening [47]. The risk ownership is maintained by the business.
The second line contains overseeing and supporting functions. Most importantly,
this includes the central risk management organization but also supporting
functions like compliance, legal and HR [5]. This line sets the company-wide
rules and policies and provides risk owners from the first line with information
about risks across the organization [47]. The third line of defence is the internal
audit which provides assurance on the effectiveness of first two lines. As shown
in Figure 2.2, the lines of defence are overseen by the senior management and
governing bodies and are assessed by external auditors.

Section 2.1 of this chapter was adapted from a previously issued report by the same author [37]

3
R E S E A R C H D E S I G N

This research project contains a descriptive research part and design research.
The descriptive research is conducted in form of literature reviews and case For a description and

motivation of the
research
methodologies refer
to Section 4.1 and
Chapter 5

studies and aims to answer knowledge questions whose understanding will ulti-
mately aid in designing an effective risk management framework. Throughout
the whole project we will follow the design science methodology by Wieringa
[54] which is aimed at conducting design research but also gives room for
answering supporting knowledge questions. According to Wieringa, the goal
of a design project is to (re)design an artifact so that it better contributes to the
achievement of a goal. The design cycle describes the process of such a design
research project and encompasses the phases problem investigation, treatment
design and treatment validation. The design cycle is part of a bigger engineering
cycle which also incorporates the steps of treatment implementation and implemen-
tation evaluation. Depending on the outcome of the treatment validation phase,
the cycle potentially has to be iterated several times until the designed artifact
produces the desired effects. The design cycle and the question corresponding
to each phase are shown in Figure 3.1. Question marks represent knowledge
questions while exclamation marks indicate design problems.

Figure 3.1: Design cycle adapted from Wieringa [54]

As demonstrated by Wieringa himself, the design cycle follows essentially the
same steps as the design science research methodology by Peffers et al. [34]. In
this research it was decided to use the methodology by Wieringa because his
approach encompasses a complete conceptual framework including classification
of research problems, research questions and research methods that can be
applied in every step of the design cycle.

3.1 research objective and questions

Using the template for defining design problems (also known as technical
research problems) by Wieringa in Figure 3.2, the objective of this research can
be formulated as to improve risk management in DevOps by designing a framework

9

3.1 research objective and questions 10

that satisfies agility requirements in order to help companies demonstrate control over
their processes and create valid audit trails.

Improve <a problem context>

by <(re)designing an artifact>

that satisfies <some requirements>

in order to <help stakeholders achieve some goals>

Figure 3.2: Template for design problems [54]

The main research question results from this design research objective and is
formulated as follows:

What is a suitable framework that allows companies to mitigate risks and exercise
control over their DevOps environment while remaining agile?

In order to design an effective risk management framework and the desired
interaction with the problem context, two descriptive knowledge questions have
to be answered first and suitable implementation strategies have to be designed.
Firstly, the risks that companies are dealing with have to be identified. Under-
standing these will aid in designing effective response strategies and controls.
However, the risks are expected to differ per company and their respective
environment. This research therefore aims at identifying risk categories and
will investigate whether these categories differ per context. The first research
sub-question is therefore defined as follows:

1. What types of risks are companies using DevOps exposed to?

The second sub-question aims at identifying specific practices that ensure an
adequate management of risks in DevOps. This includes IT controls as well as
existing strategies and frameworks. As indicated in the main research question,
the goal of these practices is to mitigate the risks identified in research sub-
question one while hindering the efficiency and agility of DevOps as little as
possible. It is therefore necessary to not only consider whether these controls
sufficiently mitigate risks but also to assess the impact they have on the efficiency
of the process.

2. Which practices exist that can be incorporated into a DevOps process to
demonstrate control and ensure the creation of valid audit trails?

Lastly, a suitable strategy for implementing these practices and addressing the
identified risks has to be designed based on the outcome of the knowledge
questions above.

3. Which strategy should companies drive in order to identify risks and
implement suitable controls?

Research sub-question one aims at establishing a better understanding of the
problem context while questions two and three are designed to illustrate the
content of the risk management framework. The first two sub-questions are
descriptive knowledge questions and the third question is a design problem
[54].

3.2 research model 11

3.2 research model

Combining the research design and questions leads to the research model
presented in Figure 3.3 according to the notation by Verschuren and Doorewaard
[51]. Data will be gathered both through a structured literature review as well as
through case studies. This type of research was selected due to the evident lack
of empirical research concerning risk management in DevOps. The individual
outcomes of these studies will be synthesized to a conceptual model explaining
the problem context, as well as risk mitigation strategies and controls which
can be implemented in DevOps. This draft framework will then be discussed
with risk management, audit and DevOps experts and will be presented to the
interviewees of the case studies who will evaluate the use of the model for their
company. Their input will be used to create the final DevOps risk management
framework and guidelines. The arrows at the bottom of the diagram indicate
the phase of the design cycle that corresponds to the particular actions. The
application of the design cycle to this research is also demonstrated in Table 3.1
in more detail.

Figure 3.3: Research model

3.2 research model 12

Table 3.1: Design cycle phases applied to this research

research focus method chapter

Problem investigation

State of the art of risk management in
DevOps research

Literature review 4

RQ1: What types of risks are compa-
nies using DevOps exposed to?

Literature review
Case studies

4, 6

Treatment design

RQ2: Which practices exist that can be
incorporated into a DevOps process
to demonstrate control and ensure the
creation of valid audit trails?

Literature review
Case studies

4, 6

RQ3: Which strategy should compa-
nies drive in order to identify risks
and implement suitable controls?

Literature review
Case studies
Framework design

4, 6, 7

Validation

Risk mitigation effectiveness Expert opinions
Case study respondents

8

Agility requirements Expert opinions
Case study respondents

8

4
L I T E R AT U R E R E V I E W

4.1 literature review method

In order to gain an overview of all relevant literature concerning risk man-
agement and DevOps, a structured literature review following the procedure
suggested by Kitchenham [21] was conducted. An important part of structured
literature reviews is the search protocol which can be found in Appendix A. This
protocol provides details of search terms and inclusion and exclusion criteria
in order to ensure a coherent and non-biased selection of relevant literature.
The search keys were created based on an exploratory literature review. The
papers were selected by first scanning the titles of all results and excluding
obviously non-relevant papers. Subsequently, the abstract of papers that seemed
to meet the inclusion criteria was scanned and non-relevant papers were again
excluded. Lastly, the full text of the remaining papers was read before deciding
which papers should be included in the review. These steps were carried out
conservatively, meaning that if it was doubtful whether a paper met inclusion
criteria, it was taken to the next step and was only excluded once it was certain
that it would not contribute to our research. This process as well as the amount
of papers left after each step of the review is shown in Figure 4.1. A more
detailed overview is given in the search protocol.

In order to assure the quality of the literature, only academic databases where
researched in the first place and only journal articles and conference papers
where considered for inclusion in the review. However, according to Garousi
et al. [16] it is important to also include so called “grey literature” (non-peer
reviewed literature) in software engineering research, especially if the field of
research does not provide a substantial amount of literature like it is the case
with DevOps. Grey literature can provide the researcher with state-of the art
concepts that might not be mentioned in academic literature and may help

Figure 4.1: Literature review method and output

13

4.1 literature review method 14

avoiding publication bias. Since there was only very little academic literature
available focusing specifically on risk management in DevOps, it was therefore
decided to conduct a multivocal literature review for this item following the
guidelines of the aforementioned authors [17]. However, it is important to pay
special attention to the quality of the papers when conducting a multivocal
literature review. We therefore only included first tier grey literature with a
high credibility like whitepapers and books. During the database search only
literature from 2014 onwards was selected in order to gain an overview of the
state of the art research. However, during the reference searches older literature
was included to gain a deeper understanding of the background of the papers.
This review process resulted in a list of 16 papers. Another exploratory literature
search conducted for verification purposes in Google Scholar yielded no new
results so the final list is deemed to be complete.

Of the selected papers, nine papers are conference papers and five papers are A list of papers
selected for the
literature review and
their validation
methods can be
found in Appendix
B.1

white papers. Only one journal paper and one book chapter were included.
Notably, a large amount of the papers (especially white papers) are solely based
on expert opinions which are in many cases the personal opinions of the authors.
Furthermore, some papers were based on literature studies. Only few researchers
conducted empirical research like interviews and case studies or validated their
models. However, according to Kitchenham [21], software engineering research
usually has little empirical evidence and scholars in this domain often have to
rely on expert opinions.

In order to structure the literature review and to put the available information
in the context of risk management, the literature review follows the categories
of the original COSO Enterprise Risk Management Framework [4] as shown in
Figure 4.2. The ERM framework was chosen because it is generally considered
to be the most high-level risk management framework available and spans risk
management categories throughout the whole enterprise. Although DevOps is
not necessarily implemented throughout the whole enterprise, implementing
DevOps in a department creates a separate entity with separate governance and
risk management mechanisms which are comparable to those of an enterprise.

Figure 4.2: COSO Enterprise risk management Framework [4]

4.2 internal environment 15

4.2 internal environment

According to COSO [4], the internal environment is the basis for all other
components of the ERM framework. It encompasses the culture within an
organization and influences the risk consciousness and -appetite of its people.
Relevant factors include risk appetite, ethical values and assignment of authority
and responsibilities.

An important aspect of the internal environment within DevOps which is often
mentioned in literature is the culture. Traditionally, development and opera-
tions have different cultures which need to be replaced by a common mindset
and values. The adoption of the DevOps culture is essential for a successful
implementation of DevOps and will lead to failure of the transformation if
not achieved [2]. A good DevOps culture is based on respect, trust and open
communication and reinforces collaboration between team members [33]. These
cultural changes towards DevOps can best be achieved by promoting learning
and experimentation [2]. Farroha and Farroha [13] also stress that DevOps teams
should treat failure as a learning experience “not to be learned more than once”.
Teams should therefore focus on recovering fast from mistakes instead of not
making any.

Other important aspects of the internal environment within DevOps are men-
tioned by Wiedemann [53] who researched general governance mechanisms in
the form of structures, processes and relational mechanisms that lead to success-
ful implementation of DevOps. She concluded that DevOps teams should be
given the freedom to be able to take over all the tasks of a given software delivery
cycle and should have great autonomy with regards to decision making. Since
DevOps is a very decentralized concept, teams also need highly implemented
communication and knowledge sharing opportunities. Within an organization
using DevOps, the IT team moves from being a service provider towards be-
ing a partner of the business. Another important mechanism is therefore the
assignment of a product owner who interacts regularly with the business side
and is responsible for the generation and validation of requirements. In order to
ensure a successful transition towards implementing DevOps, the employment
of an agile coach has proven successful for organizations.

The importance of governance mechanisms in the context of DevOps is also
supported by Muñoz and Díaz [32] who implemented DevOps in a Mexican
datacenter in order to achieve a development that reduces the time of release.
They considered governance to be a supporting mechanism of quality assur-
ance which was based on the OWASP Software Assurance Maturity Model.
Furthermore, they divided the employees into teams and assigned them specific
strategic roles and responsibilities. The teams that were needed in this process
are the development team, a revision control system team, a quality assurance
team and a release management team. The teams were responsible for different
stages of the deployment process. Wiedemann [53] supports the importance of
clear roles by stating that assuming agile roles and responsibilities are essential
in effectively governing DevOps teams.

Due to the focus of DevOps culture on experimenting and recovering fast
from failure instead of not failing at all, DevOps culture somewhat encourages

4.3 objective setting 16

risk taking and increases risk appetite in the internal environment. However,
DevOps culture can also potentially decrease operational risks due to the close
collaboration of development and operations. Within DevOps, the team usually
shares responsibility for development and operations of a system. Developers
are therefore more likely to build a system with operational risks in mind and
preventing them as much as possible.

4.3 objective setting

Setting objectives is a prerequisite to risk identification, assessment and response.
Without objectives, no risks that threaten the achievement of these objectives can
be identified. The COSO framework defines four objective categories which are
strategic objectives, operations objectives, reporting objectives and compliance objectives.
Besides describing these objectives, we also name some strategies to achieving
them in this section.

4.3.1 Strategic objectives

Companies should start by setting their business goals at a strategic level based
on the organization’s mission and vision. Furthermore, the objectives should
also reflect the risk appetite determined by the organization [4]. The identified
literature does not explicitly mention strategic objectives in combination with
DevOps since these vary heavily depending on the company setting the objec-
tives. The only generic strategic objective is mentioned by Farroha and Farroha
[13] who state that the overall strategic DevOps objective is “to maximize invest-
ment outcome and ensure that customers continuously get increased service quality and
features in a manner that satisfies their needs”.

4.3.2 Operations objectives

Operations objectives relate to the effective and efficient use of the entity’s re-
sources [4]. Due to the increased speed, quality and agility which DevOps brings
about if implemented correctly [9, 53], implementing DevOps processes can con-
tribute significantly to achieving these objectives. The identified literature does
not mention operations objectives explicitly; however, multiple authors suggest
the use of CMMi maturity model and ITIL best practices in combination with
DevOps which are helpful frameworks to implement and improve IT processes
and services and subsequently ensure achievement of operations objectives
[33, 32, 35]. Phifer [35] shows how ITIL processes and the CMMI engineering
lifecycle fit into the DevOps process as shown in Figure 4.3. However, he also
notes that implementing the CMMI and ITIL processes does not necessarily
mean that a company will not encounter operational problems, the result is
mainly an alignment of processes and IT needs and therefore helps realizing
enterprise objectives.

4.3 objective setting 17

Figure 4.3: CMMI lifecycle and ITIL processes for DevOps according to Phifer [35]

4.3.3 Reporting objectives

Reporting objectives refer to the creation of reports that facilitate management’s
decision making and monitoring but also external reports such as financial
statements. Multiple papers mention the integration of logging applications into
the delivery pipeline in order to ensure adequate reporting of events [43, 28].
This way, DevOps can facilitate the creation of operational reports that inform
management about the quality of their processes. Reporting activities that do
not concern operations directly are not mentioned in the literature and do not
seem to be affected by the implementation of DevOps.

4.3.4 Compliance objectives

The objectives which are most heavily impacted by DevOps and which are men-
tioned by far most often in the identified literature are compliance objectives.
Companies are often required to achieve compliance with standards and laws
that intend to reduce risks and create a traceable development process. Many of
these compliance frameworks are designed for the traditional waterfall develop-
ment process and do not fit naturally into a DevOps environment. Compliance
is therefore often seen as an obstacle to employing DevOps because of required
tests and controls that do not seem to fit into an automated process. Highly regu-
lated environments usually demand segregation of duty, separated work groups
and strict confidentiality as well as security measures. This contrasts DevOps
where communication, collaboration and automation are central [56]. One of the
main problems that characterizes this misfit is the merging of development and
operations in DevOps. Developers are assigned operational responsibilities such
as debugging running production systems but traditional compliance controls

4.4 event identification, risk assessment and risk response 18

restrict access to production environments for developers [28]. Multiple scholars
therefore advocate for a hybrid environment in which the DevOps process is
integrated into the specific environment as much as possible but stays restricted
by applicable regulations [56, 28].

While the examples mentioned above show compliance as an obstacle to deploy-
ing an efficient and automated DevOps process, Laukkarinen et al. [22] use the
example of medical device and health software IEC/ISO standards to show that
DevOps can in certain cases also be used as a helpful tool to ensure compliance.
They found that DevOps was beneficial for implementing most requirements.
For example, clause 5.8.6 of IEC 62304 for medical device software requires that
the procedure and environment of the software creation has to be documented.
In DevOps, this can easily be done with development tools such as the project
management tool JIRA, source code repositories like GIT and automation soft-
ware like Jenkins. Furthermore, using invariable Docker containers allow for
a repeatable installation and release process which is required by clause 5.8.8.
However, the authors also identified three obstacles that slow down the CI and
CD procedures. Firstly, software units have to be verified which means that
Continuous Integration can only happen after all units have passed unit testing.
Secondly, all tasks and activities such as unfinished documentation have to be
completed before the release of a software unit. Lastly, Continuous Deployment
through remote updating to customer is not possible with IEC 82304-1 because
the responsibility has to be transferred explicitly to the customer when taking
the software into use. Whether DevOps is a benefit to achieving compliance or
compliance is an obstacle to realizing DevOps therefore heavily depends on the
regulations itself. In order to ensure compliance, the DevOps process in some
cases needs to be slowed down or put on halt until other tasks are completed.

Laukkarinen et al. [23] concluded in a follow up paper on DevOps in regulated
software environments that tighter integration between development tools,
requirements management, version control and the deployment pipeline would
aid the creation of regulatory compliance development practices. However
the authors also note that regulations and accompanied standards could be
improved to better relate regulations with DevOps practices.

4.4 event identification, risk assessment and risk response

Event identification and risk assessment are processes which management
conducts in order to identify and evaluate events that have an impact on the
enterprise. While some events represent opportunities, other events have a
negative impact on the achievement of priory defined enterprise objectives and
therefore represent risks. Risk assessment aims at identifying to which extent
these events can harm the enterprise objectives. After identifying relevant risks,
companies have to decide whether to avoid, reduce share or accept these risks
[4].

While some scholars claim that traditional risk management frameworks can still
be used in combination with DevOps, others argue that the DevOps environment
needs a new approach to risk management. Diaz and Muñoz [11] propose to
add a separate risk management phase to the DevOps process in which the

4.5 control activities 19

ISO/IEC 2005 norm and the OCTAVE Allegro methodology are used to identify,
assess and respond to risks.

Bierwolf et al. [2] argue that due to the dynamic and uncertain environment in
which DevOps is mostly deployed, companies should employ a risk dialogue
approach instead of a risk log, meaning that a constant conversation between
employees and management about observations and information is necessary
in order to identify risks. A generic risk which is often mentioned in literature
to which DevOps does not yet pay sufficient attention is that of security. Some
practitioners therefore advocate for the integration of security principles into
DevOps which is known as DevSecOps or SecDevOps. These preventional
measures are discussed in the next section.

While multiple authors suggest approaches and frameworks on how to asses
risks in DevOps and argue that control activities should be implemented based
on these risk analyses, risks itself are hardly named. The few risks that are
mentioned are usually only listed as a justification for implementing controls,
however, no complete risk analysis is conducted. There is therefore no assurance
that the proposed risk responses are sufficient or on the other hand unneces-
sary because their corresponding risks are already covered by another control.
Only DeLuccia IV et al. [6] show an example audit procedure in which a com-
pany bases its controls on three main risks to information systems which are
availability, integrity and confidentiality.

4.5 control activities

Control activities are the activities which ensure that the risk responses are
carried out. Although research has not defined many specific risks and responses
until now, various general controls were mentioned in literature with the aim of
controlling and securing the DevOps process.

Bierwolf et al. [2] use a framework to define and compare management and con-
trol measures which divides controls into four categories being culture, content,
relations and process. They note that in DevOps, control measures concerning
culture and collaboration are much more important than in the classical waterfall
approach in which management and controls are usually focused on content
and process. Because these so-called "soft controls" are already covered in the An overview of all

controls discussed in
the following section
can be found in
Appendix B.2

other categories (e.g. internal environment and information & communication),
this section will mainly focus on the “hard controls” as means to implementing
risk responses. The controls encountered in literature were grouped into six
broad categories which are discussed in the following.

4.5.1 Change control

The DevOps Enterprise Forum [9] identifies change control as one major con-
cern when it comes to DevOps practices and compliance with SOx and PCI
regulations.

Change control practices intend to reduce the risk of implementing changes that
lead to more failures, poor processing and unreliable systems [9]. Implementing
change control is often considered to be an obstacle to running an efficient

4.5 control activities 20

DevOps process by many companies since manual approvals block the rapid
rate of change and delivery processes. However, the DevOps Enterprise Forum
claims that many of the change approvals and verifications that are usually done
manually (e.g. performance testing, security scan, verification of change sets) can
also be automated by defining thresholds and automated controls throughout
the delivery pipeline. Furthermore, delivering smaller changes more frequently
as it is the case with DevOps, reduces risks compared to large releases with
many changes as it is done in traditional waterfall development. However, this
claim is disputed by other scholars who claim that the high rate of delivery
poses a security problem that needs to be handled accordingly [30]. In order
to quickly roll back deployments and trace changes, companies should always
integrate version control into their DevOps processes. This can be done by using
version control systems such as Git or Subversion [33].

4.5.2 Identity and access management and separation of duties

Secure authentication and access management are essential to controlling the
critical systems [43, 32, 28]. Another concern that auditors often mention in
combination with change control and access management is the separation of
duties principle which is seemingly violated in DevOps since changes can be
made by a single person. The DevOps Enterprise Forum [9] however notes
that it is generally inefficient to employ a strict separation of duties where two
separate human beings have to make and approve changes. In some cases it is
sufficient to give DevOps engineers two accounts for the different environments
e.g. with administrator rights in the development environment and restricted
user level rights in the production environment. It is suggested to automate
the production deployment process so no person can execute the deployment
without passing the automated controls first. The same procedure should be
used when deploying to non-production environments. Similarly, DeLuccia
IV et al. [6] show, based on a fictitious audit procedure, that the underlying
concerns that lead to the implementation of separation of duty can often be
solved otherwise by defining the business objectives, identifying corresponding
risks and mitigating these. In order to ensure that no single person has end-to-
end control of a process without a separate check point, code that is checked-in
should always be peer-reviewed [6, 9, 28]. This can be enforced by signing it
with personal cryptographic signatures of the developers. When the code moves
through the deployment pipeline it should be automatically checked after every
step of the process that both signatures are still valid and that the code has not
been tampered with [9].

Multi-person authorization should be implemented in case an approved devel-
oper needs access to a specified system when he needs to fulfill operational
responsibilities like troubleshooting problems. He should be able to request
access via a web form and his access should then be authorized and granted
temporarily by a third party, for example via a timed password or a temporary
access certificate. Subsequently, an event report must be generated in which the
details of this event are recorded [9, 28]. Although a strict separation of duties
is therefore mostly not necessary, some traditional controls still demand this.

4.5 control activities 21

In this case another multi-person authorization approach has to be used when
making and approving changes.

4.5.3 Compliance

As mentioned earlier, compliance is often seen as hindering the DevOps pro-
cess. However, multiple controls have been suggested in literature to achieve
compliance while automating as many functions as possible. Firstly, Farroha
and Farroha [13] stress the importance of enforcing regular audits to discover
irregularities early. Furthermore, the testing and development systems should
be connected to a network that is separate from the production network [32, 28].
Applications that automatically test for and report compliance violations should
be integrated into the process. They should terminate access if a threshold is
exceeded and initiate alarms if a policy is not accepted [13].

Many norms demand that software items can be traced back to the requirements
based on which they were developed. Laukkarinen et al. [23] therefore propose
to introduce item tracking from requirement to the final product as a standard
practice in DevOps. Software items related to requirements should be traced
over the complete version history and at every point of its lifecycle. In order
to enable this, workflow tools, version histories and CI tools have to form
automatic connections. In order to achieve further compliance, tools should
include standard templates that comply with regulations. These tools should
work hierarchically by linking requirements, subsequent items and their test
items and reports to each other. Lastly, the tools should guide the developer to
follow the regulated workflow.

4.5.4 Security

Multiple papers have mentioned the integration of security aspects into DevOps
in order to reduce (cyber) risks. Security is a common concern which limits the
adoption of DevOps [30] and security experts have therefore investigated how
to implement security practices into the DevOps process which is known as
SecDevOps or DevSecOps. Mohan and Othmane [30] have performed a litera-
ture review on these terms and found that important aspects which are often
mentioned in DevSecOps literature are definition, security best practices, compliance,
process automation, tools, software configuration, team collaboration, availability of
activity data, and information secrecy.

In order to ensure quality and information security, Muñoz and Díaz [32]
implemented phases from the OWASP Software Assurance Maturity Model
(SAMM) to structure their DevOps process and implement the right controls.
The OWASP SAMM covers the phases governance, construction, verification and
operations and therefore spans the complete DevOps life cycle. The governance
phase is concerned with how the overall software development activities are
managed. It includes security aspects like strategy, metrics, education, guidance,
policy and compliance. The construction phase focuses on identifying threats
and defining and building a secure architecture. The validation phase deals
with testing the produced artifacts and the operations phase involves activities
related to securely deploying and operating the software.

4.5 control activities 22

Furthermore, companies should keep an inventory of authorized and unautho-
rized devices and software in order to ensure platform security and version-
and software management [40] and have a controlled environment for produc-
tion and pre-production that separate applications from databases to protect
data in case an application is hacked [32]. During the development process,
incremental changes can be made directly to components if the security impact
is minimal. If this is not the case, security specialists and architects have to
be involved. It is therefore important to integrate automatic checks into the
deployment pipeline that halt the process if necessary. Changes to untrusted
data processing for example require that updated data validation code has to
be developed and integrated, before the changes can be deployed [28]. Once
the code is checked in, a static code analysis should be executed [6, 9]. This can
for example be triggered using Jenkins. During the CI build, code should be
screened for security vulnerabilities [30]. However, engineers should already
pay attention to security issues during code design and peer-reviews by giving
special attention to handling of unencrypted sensitive data and ensure secured
access to application interfaces [9]. As a general rule, all threats meeting the
security criteria must be fixed or mitigated before deployment can take place
[28]. The automated deployment process should then be followed by automatic
test execution [9].

The control that is mentioned most often are automated security tests [6, 9, 28,
30, 40, 43] which have to be integrated into the deployment pipeline. The testing
phase of DevOps should not only focus on performance testing but should
include security tests like penetration testing, and network testing and scanning
[28]. Mohan and Othmane [30] refer to a presentation which advocates that
companies should consider the depth of their dynamic and static security scans
in the CI build chain as well the intensity of the scans and the consolidation
which is the effectiveness of handling the findings. Another important control
is configuration management. Hardware and software on servers should have
secure configurations by using configuration management services that help
rolling configurations of operating systems and application components out to
all systems and keeping them in sync [40] (see Section 2.1.2). Shackleford [43]
adds to this that companies can implement applications that detect whether
configurations have been changed and automatically roll them back to the
desired state. He demonstrates how these controls can be integrated into the
DevOps process for example by using automated configuration management
tools and IaC. Robinson [40] also mentions container technologies like Docker
as a secure way of ensuring correct configurations in testing environments.
Companies however have to pay special attention to whether the containers they
use contain outdated software or other vulnerabilities when using images from
publicly available repositories.

4.5.5 Monitoring and logging

Multiple papers mention the integration of process monitoring tools into the
deployment pipeline in order to minimize risk and create reliable reporting
which can be used by auditors. In case of a problem or if compliance conditions
are not fulfilled, these tools can halt the deployment process and alert the

4.6 information & communication 23

developers. Nielsen et al. [33] even define monitoring as an integral part of the
DevOps concept. Continuous monitoring is not just a measure to reduce risk
but also allows the team to continuously improve their processes. Farroha and
Farroha [13] suggest that metrics such as mean time to repair (MTTR) and mean
time to restore service (MTRS) are more important to track than the mean time
between failures (MTBF) in most cases because DevOps teams should focus on
learning and moving on from mistakes instead of not making any. Other metrics
they suggest are overall process quality, cost of development, cost of maintenance,
accessibility, reliability, interoperability, and availability for audits. Moreover, security
measures such as unauthorized exposures and the capability to automatically
prevent unauthorized access from internal and external sources should be taken
into account. However, companies should also consider user friendliness metrics
like ease of use, automation of processes, speed, and continuity. Lastly, tools should
not only monitor and automatically report incidents such as compliance breaches
[13] but should also continuously perform logging to create traceable processes
and valid audit trails.

4.5.6 Others

Controls that could not be assigned to one of the previous aspects were classi-
fied as “Others”. In order to allow for rollbacks and ease the release process of
software, a “BlueGreenDeployment” pattern can be applied: Companies should
have two production environments (a “blue” and a “green” one) of which one is
live. During a release, the software is deployed to the other production environ-
ment. Once it is running there, this environment including the release should
go live and all incoming requests are routed to this production environment.
In case of problems, a rapid rollback can be performed by just putting the first
production environment live again [9]. Furthermore, Michener and Clager [28]
advise that companies should organize their development activities around a
threat model which they maintain. This threat model has to be updated if the
threat landscape changes which can happen for example if changes with impacts
on security or data processing are implemented. Lastly, companies should have
backup policies and contingency plans for restoring lost data [32].

4.6 information & communication

Within enterprise risk management it is essential that relevant information about
events and activities is delivered to personnel in order to allow them to carry
out their risk management and other responsibilities. DevOps has an inherent
emphasis on communication. Nielsen et al. [33] acknowledge this importance
and developed a DevOps knowledge sharing framework which increases aware-
ness about the different ways in which knowledge can be shared and which
helps companies assess their fulfillment of important DevOps elements. They
see the main challenge of DevOps as closing the gap between development and
operations which requires a detailed implementation framework. A crucial ele-
ment of this framework is the collaboration and knowledge within and between
DevOps teams. Sharing knowledge happens through socialization, externalization,
combination and internalization. It is important to note that this framework does

4.7 monitoring 24

not only focus on sharing explicit information about activities and events for
better risk management but also focuses on knowledge sharing which leads to
more skilled employees in general. Furthermore, Muñoz and Díaz [32] mention
Scrum as a suitable methodology for DevOps that allows regular interaction
between team members. Wiedemann [53] supports this statement by noting how
a product owner can also bridge the communications gap between the Scrum
team and the IT department.

4.7 monitoring

The monitoring category encompasses ongoing monitoring activities of the
other components and separate evaluations. COSO [4] suggests to do this using
internal and external auditors. While DevOps has a strong focus on monitoring
operations and continuous improvement, no paper suggested monitoring the
effectiveness of risk management processes such as risk responses and controls
itself.

4.8 discussion

As identified by Bierwolf et al. [2], DevOps has a strong focus on soft controls.
It is therefore not surprising that DevOps inherently contributes to the “softer”
categories of ERM such as the internal environment and information & com-
munication. However, DevOps can also substantially contribute to achieving
operational objectives and minimizing operational risks through automated
testing and continuous monitoring. DevOps can either be a benefit or an ob-
stacle to achieving enterprise objectives, especially compliance objectives. In
certain cases the DevOps process needs adjustment or has to be molded into a
hybrid environment in order to remain compliant which potentially slows the
process down and causes DevOps to lose some of its benefits [28, 56]. During the
literature search it became evident that much of the available literature views
DevOps as a purely technical approach focused on automating the development
process as much as possible but substantially less research has been conducted
taking the central philosophy and cultural dimension of DevOps into account.

DevOps is often said to minimize software development risks through better
communication and more frequent delivery. However, especially the last claim
is disputed. Although companies using DevOps seem to be generally positive
about the approach [12], no empirical research including quantitative data was
encountered during this review showing that companies which use DevOps
have reduced their amount of failures. Furthermore, risks are not always con-
sidered and dealt with accordingly. Little attention has been given to explicit
risk management in DevOps until now because traditional risk identification,
assessment and response actions are not usually a part of DevOps. However, one
case study has shown that risk management can still be conducted in DevOps
using existing frameworks like the ISO/IEC 2005 norm and the OCTAVE Allegro
methodology. Nevertheless, management should be aware of the dynamic and
uncertain environment it operates in and should engage in a continuous dialog
with employees to identify changes in the threat landscape [2].

4.9 conclusion 25

Although literature has shown that it is possible to conduct risk analysis in
DevOps, only few risks have been named explicitly. The controls that were
mentioned by authors are often not based on earlier identified risks but are
rather suggested with the intention of bringing some kind of structure and
control to the process or trying to achieve compliance with norms that do
not always fit a DevOps process. Risks are only named occasionally to justify
certain controls which gives no assurance that the whole process is secured.
Furthermore, no attention has been given to monitoring these controls and risk
responses so far.

The second issue that was identified in this review is the achievement of compli-
ance objectives. Researchers have suggested various measurements to achieve
compliance with software development norms and operational frameworks,
some of which hinder the DevOps process. The real problem however, seems
to be that the norms and laws are not designed for DevOps and agile ways
of working. While the objectives of these frameworks are clear and important,
the controls they demand are designed for traditional software development
methods. It has been shown how DevOps can achieve many of these objectives
using a different set of controls for example by letting developers peer review
their code and implementing automated, secured controls instead of demanding
a strict separation of duty. Institutes such as ISO and IEC but also best practices
like ITIL should therefore consider adjusting their requirements to suit more
contemporary ways of software development.

4.9 conclusion

The multivocal literature review has shown that there is a lack of empirical
and validated research on risk management in DevOps which emphasizes the
relevance of this study. While most papers have not conducted thorough risk
analyses for DevOps, literature has provided a substantial amount of automated
controls that can be used by companies to control their processes. However, no
elaborate strategies for addressing risks and choosing controls were presented.
The literature review has therefore contributed foremost to assessing the current
state of research in this domain and to answering research sub-question 2.
The empirical component of this research will have to give a more detailed
impression of types of risks that companies using DevOps are dealing and
whether these or other controls can be used to mitigate these risks.

The content of this chapter was adapted from a previously issued report by the same author [37]

5
R E S E A R C H M E T H O D

5.1 case studies

In order to address the lack of empirical research in the field of risk management
in DevOps, it is imperative to conduct an empirical investigation in the context
of this research. This will increase the reliability of conclusions and allow us to
base the risk management framework in a real-world context. It was therefore
decided to analyze processes related to DevOps in multiple companies and
to incorporate the results into the framework design. The case studies took
a multiple-case, holistic design, following a replication logic [57]. This means
that the DevOps risk management process was the global unit of analysis per
company and that multiple companies were analyzed in order to see whether
the observations and conclusions were comparable. Evidence was collected
through multiple sources:

• Semi-structured interviews: Interviews served as the main input for the
case studies. In every case study at least one interview was conducted.
This amounted to 12 interviews with in total 17 employees. Interviewees
were selected based on their experience with DevOps processes in their
company and their position. Both low-level views from developers as well
as high-level views from managers or auditors were included. Interviews
were held either individually or in sessions with multiple people. One
interview was conducted via telephone. After the first part of the interview,
respondents were shown important results from the literature review and
were given the opportunity to give their opinion about these. This was
done at the end in order to not influence their answers in the first part of
the interview.

• Additional documentation: In two cases additional documentation was used
for a deeper understanding of the organization and organizational pro-
cesses.

• Observations: Five case studies included a guided tour through the company.
Striking observations were written down after the visit and included in
the analysis.

• Informal Conversations: Remarks made from employees or people connected
to the company during lunch breaks, before or after the interviews as well
as during exploratory meetings were taken in to account as long as these
remarks did not concern confidential information or personal opinions
that were made off the record.

5.1.1 Analysis of evidence

All interviews were recorded with permission of the respondents. After the
sessions the recordings were transcribed manually aiming to be as complete as

26

5.1 case studies 27

Figure 5.1: Coding of interview quotes and mapping of relationships

possible. In some cases, in-between conversations that did not directly contribute
to answering the research questions were omitted; however, the rest of the
transcript was verbatim. This amounted to an average transcript length of 8

pages per interview. The transcripts were then sent to the interviewees who were
given the opportunity to give feedback. Interviews mostly lasted between 40 and
50 minutes although some interviews were longer than this. In one company
where multiple employees were interviewed, additional interviews took only
about 20 minutes.

The interviews and some additional documents were analyzed with the quali-
tative data analysis software ATLAS ti following the concept of open coding [3].
Paragraphs and sentences were assigned one or multiple codes that summarized
the topics discussed in this section (see Figure 5.1). We followed the concept
of deductive coding described by Miles and Huberman [29] by using the con-
trols derived from the literature review as a starting point for creating codes.
However, many more codes were added during the analysis of which not all of
them directly related to IT controls or risks but aimed at capturing contextual
information which might have an influence on risks and controls. During and
after the open coding process, the codes were rearranged, in some cases merged
or deleted if they were redundant and classified into categories. These categories
served to identify the high-level processes that were important in managing
risks in DevOps. The total amount of codes left was 86. Atlas ti also allows the An overview of all

codes and
(sub)categories
designed during this
process is given in
Appendix C.

researcher to define relationships between codes, e.g. by defining whether one
factor causes another factor as shown in Figure 5.3. This process of creating
broader conceptual categories based on identified relationships between codes
is also known as axial coding [3]. In special cases, a code was assigned to more
than one category if the concept contributed to multiple categories. Some large
categories were divided into subcategories.

The relationships between code categories were inherited from the relationships
between singular codes within their group using inductive reasoning (see Fig-
ure 5.2; the code compliance requirements was not assigned to a larger group).
These categories, concepts and relationships were then put into a concept map
[29] which is presented in Chapter 6. However, it is important to note that due to

5.2 validation 28

Figure 5.2: Categorization of codes and inheritance of relationships

the nature of inductive reasoning, it is possible that not all relationships between
categories are completely defined. In the example given in Figure 5.2, this could
for example mean that there are other DevOps practices that do not support or
even hinder the implementation of controls. The relationships can therefore only
be assumed to be partially true. For this reason, the nature of the relationships
between code categories was not included in the concept map.

Information obtained from other sources was processed after the first coding
process and added to the codes they fit best.

5.2 validation

Venable et al. [50] describe two ways to categorize validation methods based on
which they suggest different strategies for validating design science research.
The first distinction is made between formative and summative evaluations. The
goal of formative evaluations is to improve the artifact based on the outcome
while summative evaluations intend to create an understanding of the artifact
in different contexts. The second distinction Venable et al. [50] mention are
artificial and naturalistic evaluations. Artificial evaluations include simulations
and laboratory experiments whereas naturalistic evaluations intend to explore
the artifact in its real life environment.

The validation strategy applied to this design science research is based on
the "Technical Risk & Efficacy" strategy suggested by Venable et al. [50]. This
strategy is especially suitable for validating artifacts whose major design risk is
technically oriented as it is the case with a risk management framework. The
Technical Risk & Efficacy strategy emphasizes artificial, formative evaluations in
the early stages and moves to more naturalistic, summative evaluations near the
end of the design process. In our research, the artificial, formative evaluations
are conducted through interviewing IT Risk and DevOps experts, who help to
improve the artifact. A more naturalistic evaluations is done by presenting an
improved version of the artifact to the case study respondents who can then
give feedback on the expected effectiveness and efficiency of the framework in
their own company. The main evaluands to be tested during evaluation where
the effectiveness in terms of risk mitigation as well as the frameworks ability to
allow for an efficient DevOps process.

5.2.1 Expert opinions

The first validation of the risk management framework was by expert opinions
from experts in the fields of IT Risk management, IT Audit and DevOps. Ac-
cording to Wieringa [54], this validation method comprises that the designed

5.2 validation 29

artifact is submitted to experts "who imagine how such an artifact will interact with
problem contexts imagined by them and then predict what effects they think this would
have". The experts were selected based on their affinity with IT Risk and/or
DevOps. None of the experts were priory involved in the research so they could
give their unbiased view on the results.

All interviews were recorded. After the sessions, a summary with all feedback
given by the expert was written down. The sessions mainly consisted of a series
of discussions evolving around the concepts presented in a slide show. Because
the interviews merely served to validate existing findings instead of identifying
new concepts, no coding process was conducted.

Due to the formative nature of the evaluations, the process took an iterative
approach: During the interviews, experts were presented with slides summa-
rizing the research process and the available results. After the interview, the
framework was improved according to the received feedback. The improved
version was then presented to the next respondent.

5.2.2 Case study respondents

16 case study respondents were sent a survey with a version of the risk manage-
ment framework which was created towards the end of the validation process.
The survey contained questions regarding the usefulness of the artifact as well
as the effectiveness in terms of risk mitigation and in how far the proposed
strategies would hinder an efficient DevOps process. The survey consisted of
open questions and closed questions that could be ranked on a five point scale.
No questions were obligatory and respondents were asked to only give feed-
back where they deemed necessary. The respondents could decide whether
they wanted to disclose their company or remain anonymous. The survey was
answered by six employees from at least four different companies.

5.2 validation 30

Figure 5.3: Defining relationships in ATLAS ti

6
C A S E S T U D Y R E S U LT S

6.1 summary of case study companies

In the following section we will shortly describe each case study company.
Most respondents mentioned that the DevOps teams in their company had
varying levels of maturity, the analysis in this chapter will therefore focus on
the processes at team level as much as possible. A summary of all companies
described in the following in given in Table 6.1.

FinTech

FinTech is a large bank which is currently running pilot projects using DevOps.
The interviewee is a DevOps consultant that assists teams that want to transition
to DevOps in doing so. Besides the development teams, FinTech also employs
infrastructure teams.

SmartIndustries

SmartIndustries is a multinational company that builds high-tech electrical
systems. Among others, it provides services to the Dutch government because
of which it is subject to many security requirements. The case study team at
SmartIndustry provides business applications. It is currently not using any
automated practices like testing or deployment but has assigned team members
both development and operational responsibilities.

GeoTech

GeoTech is an infrastructure provider for a type of public transportation. The case See Section 6.6 for a
detailed case study of
GeoTech

study team builds applications providing maps with geo-data of relevant terrain
and maintains the database with this information. The analyzed teams have
been using DevOps for one and a half years. Software teams are separate from
infrastructure teams at GeoTech. The infrastructure teams are again separated
based on the the type of infrastructure they maintain such as Windows teams,
Linux teams or Oracle teams. The interviewees were the solution architect, a
product owner and a DevOps engineer.

31

6.1 summary of case study companies 32

Table 6.1: Overview of case study companies and interviewees

pseudonym description interviewees per session

SmartIndustries High-tech
manufacturer

- Manager Competence Center

- Scrum Master

FinTech Bank - DevOps Consultant

InsuranceInk Insurance
company

- Manager Software Development and
Manager Infrastructure & Operations

GovTech Governmental
agency

- Project Manager & QA Officer

GeoTech Infrastructure
provider for public
transport

- Solution Architect

- Product Owner

- DevOps engineer

PublicServices Independent
regulatory agency

- Internal Auditor, Software Engineer,
Product Owner & Security Manager

WebSales1 E-Commerce
company

- Security Engineer

WebSales2 E-Commerce
company

- Risk & Compliance Officer

WebTech Internet Agency - DevOps Engineer

GovTech

GovTech is a governmental agency. The analyzed team maintains the website
of this agency. It works according to the Scaled Agile Framework (SAFe) and
is responsible for both developmental and operational tasks. The platform on
which the website is hosted is maintained by a third party which deploys a
release package that GovTech has prepared for production every two weeks.
The interviewees were a quality assurance officer and a project leader.

PublicServices

PublicServices is an independent governmental agency that is licensed by the
Dutch government to provide specific services to the public. The interviewees
were a software engineer of a team providing digital services to the public
(in the following referred to as Team External), a product owner of a team
providing software tooling to the other teams (in the following referred to as
Team Internal), an internal auditor and briefly, a security officer. The services of
Team External are partly run in Amazon Web Services (AWS), other services are
run on an internal platform which is maintained by infrastructure teams.

6.2 overview of concepts 33

WebTech

WebTech is a small digital services agency with about 100 employees. It provides
digital services such as websites, dashboards and calculators to multiple clients.
The interviewee is a DevOps engineer at WebTech. WebTech uses continuous
deployment.

InsuranceInk

InsuranceInk is a large Dutch insurance that is currently transitioning to DevOps.
The interviewees were a manager of software development and a manager of in-
frastructure. InsuranceInk is currently working on automating their deployment
and uses tools like Azure DevOps to check in code and run some automated
tests. It also uses Octo Deploy for automating deployment.

WebSales1

WebSales1 is a Dutch e-commerce company that is known for its successful
development processes and strong company culture. It has been using DevOps
for five years. The interviewee is a security engineer who supports the DevOps
teams in ensuring the security of their products. For this he serves as a contact
person for security related questions, is involved in early design stages and
conducts security audits. The systems of WebSales1 run in AWS and it has
automated most of its production completely.

WebSales2

WebSales2 is a Dutch e-commerce company that operates worldwide. It has
been using DevOps for many years. The interviewee at WebSales2 is a risk &
compliance officer who ensures that suitable IT controls are present and are
correctly implemented. The company separates between development groups
and administrators of assets whereby administrators are people that run the
platform underneath the application. However, this is only a separation of
responsibilities since both groups have the same access rights. The company is
currently transitioning from one way of working DevOps to another DevOps
process since it is implementing a microservices architecture. This means that
teams now work with more fragmented code on which they can enforce a full
review when it is to be deployed which opens up new opportunities in terms
of automated testing and authorizations. WebSales2 has also automated its
deployment.

6.2 overview of concepts

According to the process described in Section 5.1.1, a concept map was con-
structed. This map entails the high level categories and their codes or names
of code groups and is shown in Figure 6.1. The map does not only show the
risks, risk mitigation mechanisms and control categories but also includes some
categories that were identified as being indirectly related to these concepts.

6.2 overview of concepts 34

Figure 6.1: Concept map

Furthermore, the map shows the relationship between these contextual concepts
and the core concepts. The contextual concepts will be elaborated shortly in the
following before we describe the findings of the analysis that are directly related
to the research questions.

6.2.1 DevOps practices

During the first part of the interviews, respondents were asked to describe their
understanding of DevOps and to which extent they implemented DevOps in
their company. This was done to understand the maturity of their DevOps pro-
cesses and the experience the company had in applying this practice. Multiple
companies indicated that they were still in the implementation phase and were
currently running pilot projects. The maturity of the DevOps practices showed
to have a significant influence on the nature of controls and risk mitigation mech-
anisms that were integrated into the process. For example, multiple companies
indicated that they were not experienced enough to employ continuous delivery
techniques or to rely on automated testing which made the implementation of
manual change controls and deployment activities necessary. When designing a
control framework, it is therefore important to consider the DevOps maturity

6.2 overview of concepts 35

of the respective company. There is no explicit relationship defined between
DevOps practices and risks because the risks were already defined as being
risks within a DevOps environment and do not seem to be further affected by
the extent to which the practices are implemented.

6.2.2 Compliance requirements

The case study companies were subjected to various levels of compliance. In at
least two cases the compliance requirements influenced the nature of controls
directly. The risk & compliance officer at WebSales2 explained that PCI regula-
tions demand a set of change requests and an approval at the deployment stage.
The security officer at PublicServices mentioned that the ISO security norm they
were following demands that roles are sufficiently separated and access is given
according to the principle of least privilege. Other companies were subject to
strict internal compliance. At SmartIndustries, every new employee needs to
undergo strict security screening that takes four to twelve weeks and makes it
impossible for the manager to quickly hire new people when more employees
are needed.

Although some case companies seemed to be subjected to compliance require-
ments much more than others, not all respondents thought that these require-
ments were hindering their process. Some respondents even stated that DevOps
allowed them to be more compliant because new work items that were derived
from compliance requirements could be put on the backlog and be picked up
directly in the next sprint. As shown in Figure 5.2, some DevOps practices also
supported compliance requirements e.g. through automated logging and version
control. Many respondents also stressed that due to the General Data Protection
Law they had to be very careful with the protection of personal data, however,
they did not think that this was related to the DevOps process.

6.2.3 Inhibitors

Two factors were categorized as inhibitors because they were mentioned by
respondents as hindering an effective implementation of controls or as increasing
risks. Firstly, an employee mentioned that they had too much work for the
amount of employees in the team which leads to a large backlog and and
certain work like patching being done less frequently. He also mentioned that
this made it difficult for them to employ a strict separation of duties or peer
reviews. The second inhibitor that was encountered were old systems. Several
respondents indicated that their mainframe was still running with COBOL which
for example made it difficult to perform rollbacks. Naming these inhibitors does
not necessarily imply that companies facing these problems will not be able
to conduct effective risk management. However, having scarce resources or
systems that do not sufficiently support automation and agile working does
likely require the implementation of additional controls that are not desirable
in a DevOps environment since they will slow the process down. Addressing
these inhibitors is therefore seen as a prerequisite to our framework.

6.2 overview of concepts 36

6.2.4 Success indicators

Before identifying risks and controls in the analyzed processes, it was necessary
to identify the particular outcomes that a company had achieved with their
DevOps process. This was required so that one may identify those controls
that would burden the process as little as possible. Respondents were therefore
also asked to elaborate on the influences that the DevOps implementation had
on their organization and operation. While negative influences were mostly
categorized as organizational risks, positive influences were rated as indicators
of a successful DevOps implementation. Not surprisingly, it was shown that
many of the success factors related to codes in the DevOps practices category.
For example, an increased rate of deployment was mostly due to the automation
of processes. These success factors were included in the concept map and served
as a reference to identifying which controls would still allow for a successful
DevOps implementation. All companies reported some positive outcomes of
their DevOps transition.

The success indicator Less incidents was added because a case company provided
quantitative data to demonstrate that they had managed to lower their number
of incidents significantly by implementing DevOps. However, a risk and compli-
ance officer at another company disputed this finding by stating that a company
in which she worked earlier that did not work agile had much less incidents than
her current company because this company used change requests and stages. A
manager at the first company made the remark that the incidents in DevOps
are not comparable to incidents in waterfall since they are of a different nature.
Teams will usually notice malfunctions in their systems much earlier due to
extensive testing and monitoring and will likely fix them before users can create
tickets and officially declare them incidents. The remaining occurrences that are
escalated to incidents therefore relate to larger issues that are already known in
the team. Besides an increased rate of deployment, respondents reported that
they were saving time due to the automation of manual tasks and were more
flexible because of the agile way of working and less dependencies on other
teams. They also thought that they could implement customer wishes better in
DevOps as well as involve them in the process and inform them early in case
of problems or delays. The success indicator that was mentioned by far most
often was that developers were now writing code while already considering
how it could be maintained best because they have to fulfill the operational
tasks themselves. This ultimately leads to better code and documentation.

Although we acknowledge and define some success indicators that will aid in
the creation of the risk management framework, it is important to note that con-
ducting risk management and implementing effective controls will not directly
lead to a successful DevOps process. Controls mainly serve to eliminate or miti-
gate the negative relationship between risks and DevOps success. Indicators that
are directly related to DevOps success (besides the identified DevOps practices)
are not within the scope of this research.

6.3 identified risk categories 37

6.3 identified risk categories

Since risks vary per company and environment, it is not possible to create a
complete list of all risks in DevOps. The risks mentioned by respondents or
encountered during the case studies therefore had to be grouped and put into a
wider context of risk categories to allow for a complete overview of risks that
need to be considered. The risk categories will be elaborated in the following

6.3.1 Team risks

Team risks were mentioned most often and seem to be the biggest risk category
applicable to DevOps. Many respondents acknowledged the risk that the teams
could prioritize the wrong items of the backlog for example by choosing devel-
opment tasks over operations tasks. They also mentioned that less important
items would probably stay on the backlog for a very long time and would not
be picked up which can lead to faulty or insecure products. Furthermore, teams
are sometimes pressured to take quick decisions because of short delivery dates
and stakeholder expectations. This can lead to taking unwise decisions that
increase the technical debt or deployment of products that are not yet entirely
finished or secure (see Section 6.3.2). Due to the high degree of autonomy and
the required access and authorization rights, DevOps teams can work very
independently. This can lead to such a high degree of team autonomy that the
team activities and systems become completely intransparent to the rest of the
organization and teams start to close off their products from other employees
because they feel that it is their own product. This also means that other teams
would not be able to intervene or even notice in case the subject team does
not maintain their system properly. As one respondent put it, teams could also
become so independent that their start "reinventing their own wheel". One group
of respondents also mentioned the risk that teams will not stick to the schedule
they agreed upon at the beginning of a sprint because they start working on
other small tasks which they deem important or help out other teams for a few
hours. Lastly, many controls that were mentioned relate to the general risk of
internal fraud. Many organizations grant their employees access to production
which means they could potentially deploy malicious code without having to
show it to a second person first. Furthermore, many employees have access to
databases which enables them to steal confidential data.

6.3.2 Product risks

Product risks are risks to the confidentiality, availability and integrity of the
product. Since DevOps focuses on frequently deploying small, incremental
changes, the deployed product might not be completely compliant or secure
at all times. One respondent mentioned in this context that agile teams often
call the first deployed versions "minimum viable product" in order to legitimize
a potential lack of features like compliance or security. Nevertheless, security
and compliance were not mentioned as key risks which are specific to DevOps,
although almost all of the respondents stressed the general need for being
compliant and secure. Moreover, multiple respondents addressed the risk of

6.3 identified risk categories 38

poor system continuity. This risk is an output of risks addressed earlier like
deploying products that are still under development or because DevOps teams
tend to prioritize developing tasks above operational maintenance tasks, which
might compromise the system availability. One respondent also mentioned that
due to the flexible and fast way of working there were risks that the product
would not always comply with internal guidelines such as communication
policies or the house style. For example, his company usually expects that the
communications department is involved in a new product from the beginning
on which is not always possible because their scheduling is less flexible than
that of the DevOps teams (also see Section 6.3.3).

6.3.3 Organizational risks

Organizational risks refer to risks that originate from the structure of the orga-
nization and the organizational processes. Several respondents mentioned that
they had difficulties working with other teams or departments in their organi-
zation which were working in a non-DevOps way. One interviewee mentioned
that the other departments on their side of the organization still works with
traditional project methods and that it costs his team a lot of time to justify their
own way of working. He gave the following example:

"[...] the risks to me are primarily in the people around it [DevOps]. Of course
everybody has a good intention why they want to or don’t want to use it but that
creates the risks. The moment someone comes along with a traditional planning
following a waterfall method and they start putting pressure on the agile teams
their processes become disorganized. And that for me is the biggest risk."

This experience was shared by another respondent who mentioned that the
higher levels of his organization work with traditional methods like PRINCE2

while his team works according to business priorities instead of a traditional
planning which do not always complement each other. This is especially prob-
lematic when the top management wants to obtain resources from the DevOps
teams for their own projects while the DevOps teams face other priorities.

6.3.4 Project risks

This category encompasses risks that relate to plannings and agreements made
with clients. Multiple respondents mentioned predictability as a risk of DevOps
projects. Due to the agile way of working, deadlines and delivery dates are
less predictable and sometimes hard to realize. This agile risk is amplified by
the shared responsibility of the teams for both development and operations.
Operational incidents cannot be planned at the beginning of the sprint but
sometimes have to be resolved immediately once they occur. This can impact
the sprint planning and lead to teams lagging behind their planning. However,
other respondents mentioned that their overall predictability had increased since
transitioning to DevOps because they are less dependent on other teams. This
risk was mainly mentioned in combination with larger projects.

Furthermore, one respondent lamented a lack of structure and clarity in large
projects which are managed in an agile way. According to this respondent, he

6.4 general risk mitigation mechanisms 39

misses parts of the traditional project management methodologies like PRINCE2

which make use of impact analyses, steering committees and resonance groups.
These responsibilities are less defined and visible in agile projects which makes
it difficult for employees to escalate concerns and observations that could
potentially threaten the success of the project. He suggested integrating some
traditional project management elements into large DevOps projects.

"We are currently in quite a large project [...] and because it is so large I can
see a lot of risks impacting the chances of success of the project and I notice
that I cannot just go somewhere with this easily. Normally you have steering
committees, resonance groups, you name it, but now you don’t have this. In this
case I do miss the steering of this."

6.3.5 Transitional risks

Transitional risks only apply to organizations that have recently started imple-
menting DevOps and still have a low DevOps maturity. Some respondents such
as a security manager stressed that it was difficult for teams to realize what is
meant by the idea of "end-to-end responsibility" of a product. According to him,
teams were not yet fully aware of all security and compliance standards they
had to fulfill and it was difficult to communicate them from an organizational
perspective. Another respondent noted that the DevOps transition created a lot
of stress among his employees because of their increased responsibility which
not all of them were happy with. A third respondent found that operational
engineers often felt redundant after teaching development teams how to do
operational tasks which could lead to unmotivated employees. As evident, all
transitional risks also fall into one of the other risk categories (in this case all
identified risks are team risks; nevertheless, it cannot be ruled out that more
transitional risks exist that fall into another category). However, the difference
between transitional risks and the other categories is that transitional risks dis-
appear once the company has successfully implemented DevOps and employees
have become accustomed to it.

6.4 general risk mitigation mechanisms

This section introduces some some general risk mitigation mechanisms for
addressing risks in DevOps that have not yet been translated to specific controls.

6.4.1 Product owner

In order to address problems relating to the prioritization of backlog items,
respondents stressed the importance of a capable product owner who carries the
overall responsibility for the realization of tasks and connects the team to the
rest of the organization and the clients. The product owner has to monitor the
execution of operational and development tasks and can determine the urgency
of an unexpected incident as well as when it should be solved. In multiple
companies, the product owner was also the role deciding whether an item
fulfilled the stakeholder requirements and could authorize it to be deployed into
production.

6.4 general risk mitigation mechanisms 40

6.4.2 Agile practices

All companies used an agile working process. One company had specifically
implemented the SAFe framework and claimed it helped them maintain an
overview of risks and create countermeasures. A risk management approach
was integrated into the process starting with risk evaluation sessions and docu-
menting and refining user stories. Risks were then considered in writing user
stories and Definitions of Done.

6.4.3 Quality assurance

One case company demonstrated the use of a Quality Assurance officer who
was supporting and monitoring the DevOps process from a high-level view.
While the teams are mainly responsible themselves for the quality of their
products, the QA officer checks general quality criteria such as whether the
Definition of Done is correctly defined. He is also involved at the beginning
of each project where he participates in a risk evaluation session with various
other disciplines and ensures that other roles such as architects are sufficiently
consulted. The QA department also ensures compliance and other quality
aspects of the products. Once the high-level requirements of a new project are
made sufficiently transparent, responsibility is transferred to the DevOps teams
who can then start defining epics and user stories from these. They also used
the code quality tool SonarQube to ensure quality.

6.4.4 Project management

As mentioned in Section 6.3.4, one respondent addressed the need for traditional
project management elements in complex agile projects. These project might
benefit from appointing steering committees, project leaders and assigning risk
officers whom people can approach with concerns. An example of how this
could be done was demonstrated by SmartIndustries: Large projects that exceed
a certain number of hours are divided into gates for which a plan is created. For
these large projects a steering group and a program manager are assigned and
risks are defined and explicitly monitored.

6.4.5 Frameworks

Frameworks that were encountered in combination with DevOps were as fol-
lows: One company used the DASA model which was introduced in Section 2.1.
Few companies used ISO 27001/2, SDL or NIST for information security. Some
respondents also mentioned using ITIL and wanting to maintain the ITIL pro-
cesses when switching to DevOps. One company explicitly mentioned using
COBIT, however, they only used it for critical applications that are relevant for
requirements from the Sarbanes–Oxley Act. As mentioned in Section 6.4.2, one
company used the SAFe framework for general process management.

6.5 identified controls 41

6.4.6 Organizational culture

Another general mechanism that was encountered was the organizational cul-
ture. As also found during the literature review in Chapter 4, this element is the
most difficult to implement, yet one of the most important elements. The orga-
nizational culture is connected to many controls and risks that are influenced
by this. The case company with the most mature processes also had the most
visible culture, which is also known outside of the organization. According to
the respondent, most teams felt responsible for their own product and wanted
to continuously improve it. Furthermore, he stressed the importance to create a
culture in which people welcome change and dare to speak up if they made a
mistake:

"We have something here which we call ’failure-treats’ [...]. You take them to
people to talk about your failure. Funny enough, in IT you mostly see people
saying ’Yes, I did that once too [...] That is really stupid but I can think of three
places where that could happen to us too’. And then everybody can laugh and it’s
all great. [...] It creates a much friendlier, open atmosphere. Because the ugliest
thing from a security point of view is if people don’t dare to speak up. If there’s a
taboo about that, especially if it’s about the reputation of people. That can stand
in the way of openness."

6.4.7 Management support

The last factor that was identified in the context of risk mitigation mechanisms
was the importance of management support for DevOps. Teams require a great
deal of autonomy and decision making capabilities (see Section 6.5.7) in order
to work effectively and act quickly upon incidents which requires management
to give this control to the teams. Management support was shown to not just be
a very important risk mitigation mechanism but should rather be viewed as a
prerequisite for using DevOps effectively. A lack of management support can
even lead to team and organizational risks.

6.5 identified controls

The identified controls were again grouped into categories. For this we used the
categories encountered during the literature review in Section 4.4. A category
"soft controls" was added to this list.

6.5.1 Change control

Team responsibility and communication

In general, companies that deployed frequently gave teams more autonomy
when deploying these changes. Especially companies where changes had a
relatively low overall impact like WebSales1 and 2 as well as WebTech gave
teams a lot of freedom in assessing the impact of a change themselves and
taking appropriate measurements. A frequent expectation mentioned was that
teams should communicate themselves with other teams if they were about

6.5 identified controls 42

to implement a change that might impact other systems. Some companies let
their team deploy small changes themselves if they fulfill a set of criteria. For
example, InsuranceInk requires them among others to have a plan for rollback,
assess the impact and talk to the product owner.

Change approval

Most teams have integrated some form of change approval into their process. For a more elaborate
description per
company on the
authorization process
and SOD principles
see Section 6.5.2

The rigidness of this approval process however varies per company: At SmartIn-
dustries, most changes have to be registered for authorization of a Change
Advisory Board (see next section). Only very small changes such as patches can
be installed directly by the team themselves. In many companies the product
owner is the last person authorizing a change because he needs to validate
whether the requirements he designed are implemented correctly. GovTech
has outsourced its platform to a third party that does not want to grant the
developers access to production which is why all deployment activities are still
conducted by the hosting organization. The official approval is also given by the
product owner before changes are prepared for a release. FinTech has recently
designed a new change approval process in the light of their DevOps transition:
While changes previously had to be approved by a separate department, changes
that solely affect the DevOps team itself, now only have to be approved by the
product owner of the team. Changes that also affect other applications and teams
have to be approved by another person from the affected team. The respondent
stressed the importance of chain alignment in this context as teams have to be
aware which other systems are impacted by changes to their own system.

WebSales2 previously deployed changes directly to production after a minimal
amount of testing. The official approval was then given after deployment by
another team member (see section Post-deployment testing). The new process
to which WebSales2 is currently transitioning allows more automatic testing
upfront and also enforces an authorization by another developer before de-
ployment. At WebTech, changes are also mostly approved by a more senior
developer.

Change advisory boards

Multiple companies use a Change Advisory Board (CAB) in which representa-
tives of different business units are involved. The CABs however take varying
roles in the companies: At PublicServices and WebSales1, the person committing
the change himself decides whether a CAB is necessary. The CAB then takes
an advisory role by determining risks and impacts of the change and decides
which actions need to be undertaken before deploying a change. According to
the respondent at WebSales1, the involved people will especially look at risks
such as privacy and security. InsuranceInk employs a change manager who
guards the change process and facilitates it with a technical change advisory
board (tCAB) which is involved with technical changes. Besides the tCAB, Insur-
anceInk also has a regular CAB. At SmartIndustries, the CAB meets every two
weeks and takes an authorization role. When submitting a change, developers
then have to fill in an Excel Sheet in which they answer some questions and
include a fallback plan. The CAB then estimates the risks of the change and
makes a change calendar which it publishes.

6.5 identified controls 43

Categorizing changes

In order to find a balance between giving teams autonomy and still keeping
control over changes, companies like GeoTech, FinTech and InsuranceInk cate-
gorize their changes and treat them differently depending on their category. At
GeoTech, developers have to assign a change category to the change themselves
when registering it whereby 0 is the lowest category. Changes of category 1 and
higher are checked by a CAB that authorizes all changes on an organizational
level. The teams can then deploy the changes themselves.

Different to GeoTech, teams at FinTech cannot determine the category of the
change themselves. The interviewee expressed the intention to automate changes
of a lower category in the future. Higher category changes will always have to
be approved by people inside or outside of the team depending on the impact.
InsuranceInk distinguishes between categories like quick releases (small changes),
standard releases and speed releases (changes that have to be deployed immediately).
Standard releases have to be assessed for impact and in some cases have to be
authorized by a CAB. Changes of a technical nature are always checked by a
technical CAB because they have a bigger impact. Many of the regular software
changes are currently left to the team responsibility. SmartIndustries does not
officially use change categories. However, the manager noted that in their JIRA
Scum board, requirements are broken down into items like sub-task, task, story or
epic which naturally gives the developers an indication of the size of the change.

Version control

All companies stated to use version control. SmartIndustries has recently de-
ployed Git as a version control system while WebTech uses Gitlab. The software
engineer at WebSales1 stated that version control made it very easy for him
to trace back who conducted a particular change. He was particularly positive
about versioning configuration sets that were written down as code. Furthermore,
one respondent mentioned that they also versioned their Docker containers in
which the applications were running which demonstrates the use of IaC and
containers for versioning both infrastructure and applications.

Change registration

Besides using regular version control, some companies still require changes to
be registered by the developers. Multiple tools were mentioned for documenting
the process. While FinTech uses ServiceNow, SmartIndustries used JIRA. Al-
though documentation is still necessary, most companies stressed that the overall
amount of documentation had significantly decreased since using DevOps and
that changes can be deployed much faster now. According to a respondent at
PublicServices, the change request forms in their company are nowadays more
used for communicating changes with each other than for documenting the pro-
cess. GovTech also uses JIRA and saves documentation in an internal wiki when
deploying changes. When making a change, teams have to fill in a release form
which is saved to this wiki. After this, automated tests are deployed and the test
reports are also saved in the wiki. The wiki is generally used for administrative
documents and comments while JIRA documents the agile process. GeoTech

6.5 identified controls 44

uses a central changesystem called ICD which is produced by IBM. This is also
required for operational changes such as creating accounts.

Automated testing

As part of automating the process, many companies are currently aiming to
automate the testing process. This eliminates manual tasks and increases the
deployment process but also ensures that crucial tests are always run when
making a change. While companies like WebSales1 and WebTech already use CD
with extensive automated tests, other companies created a hybrid environment
with partly automated and partly manual tests or used CI. Team External at
PublicServices still employs testers but also uses automated regression tests that
run every night. Furthermore, a piece of code can only be checked in when a
change meets the requirements. This means changes cannot be committed if
the code coverage of tests is less than 70% or the build is broken. GovTech and
GeoTech have also automated substantial parts of their testing process although.

Post-deployment testing

WebSales2 had the least amount of preventive controls. Changes in their old
change process were previously directly deployed after a minimum amount of
automatic testing without the approval of another person. Traffic to this new
production environment was then limited to a small percentage until another
team member (usually a more senior developer) conducted a peer review on
the change and approved it. The traffic to the new production environment
was then extended to 100%. This way of A/B testing provides WebSales2 with
metrics that help them to decide whether they want to extend the change or roll
back. However, the authorizing developers also reviews the code in terms of
security and compliance. WebSales2 also was the only company that indicated
having some automatic change notifications in the most critical parts. These
controls can assess the impact of a change based on the dependencies of the
system. However, these change controls only take place the moment a change
is deployed which does not give the developer enough time to react before
the change goes live. In other parts that are not covered by automatic change
controls, teams are expected to assess the impact themselves and communicate
with other teams if necessary.

6.5.2 Identity and access management and separation of duties

Access to production

Most questions concerning access management evolved around the question
who should gain access to the production environment. Whether companies
gave employees this access to production or not depended on the circumstances.
WebSales2 grants its team member complete access to production in order to
fulfill operational tasks like troubleshooting; however, they do have different
privileges in production than in development. Concerning companies that fully
automate their deployment and don’t grant employees access to production, the
respondent noted:

6.5 identified controls 45

"You need to trust your system you need to trust all this deployment, the pipeline
and the tests you perform before. And also it is very hard to troubleshoot if
you don’t know the application. So let’s imagine for a moment we trust our
administrators or the platform owners to troubleshoot, it is really hard. Now if
you think about new technologies like containers where they don’t really have
privilege access but they can still troubleshoot or even trigger new versions of the
pictures of applications very fast. Then again the risk becomes lower."

Developers at WebSales2 do not have default privileges to access to configure
the tools in the pipeline. WebTech also gives developers access to production but
still uses more traditional role descriptions and only grants this access to specific
roles. On the other hand of the scale was WebSales1 which uses continuous
deployment. This high degree of automation allows them to restrict developers
access rights to production substantially. Employees are granted as little access
as possible which effectively leads to most employees not having access to
production. Teams however do maintain the pipeline themselves by adding and
changing tests. The respondent at FinTech mentioned that not having to give
developers access to production anymore was was their ultimate goal for the
DevOps transition:

"In the end of course you want everything to go into the pipeline automatically
so that you don’t have to give access to anybody but in the mean time we will
have to come up with some intermediate solution."

Timed passwords

Between giving employees complete access to production and none at all were
companies like FinTech and GeoTech who used timed access rights. FinTech
stated that it wants to keep the separation of duties principle after its DevOps
transition and therefore doesn’t want to give developers unlimited access to
production. It is currently running pilots with the software "CyberArk" which
allows developers to request timed passwords. GeoTech grants developers
restricted access once a change is authorized by the CAB. The access then is
logged and a standard notification is sent to the security department. While this
control seems like an effective compromise, it depends on the circumstances
whether this is practical. The interviewee at WebTech noted that he needed access
to the production about twice per week and that requesting timed passwords for
this frequent access would be rather impractical and not add much security since
he had the regular opportunity to tamper with the production environment if
he really wanted to.

Separation of duties

All companies said that they wanted to use some kind of separation of duties
principle, although not all companies enforce this. Many case companies work
with peer reviews, although the manner in which they were conducted varied.
At WebSales1 and Team External of PublicServices, code reviews are technically
required because developers cannot check in a piece of code if his merge request
is not approved by another developer. Furthermore, at Team External the product
owner is the person ultimately deploying the change.

6.5 identified controls 46

In other teams, respondents trusted that another person would see the code
automatically because people are working together in DevOps projects and
have access to the same code base. This is also the case with Team Internal at
PublicServices where all team members are able to deploy code to the next stage.
Although it does make use of a reviewing role, the review is not technically
enforced. According to the product owner, it does not happen that a piece of
code is deployed that only one or two people saw because of the way in which
the teams collaborate. The respondent at WebTech had a similar reasoning.
Furthermore, WebTech also uses code reviews by encouraging developers to
create merge requests and assigning those to a more senior developer who has
to check the code and merge it. This is not necessarily done for small projects.

SmartIndustries also demands peer reviews, however, these are not enforced.
Developers only have to check a to-do list in JIRA which includes a code review,
although this list is not connected to the system. One of the respondents noted
that access rights are not regularly reviewed and that some employees still
have old access rights which they don’t need anymore. At GeoTech, teams have
access to all accounts because of the varying tasks they do. Access to production
however has to be requested on a temporary basis after a change has been
authorized.

Because GovTech has outsourced its platform to a third party which manually
deploys changes every two weeks, a separation of duties principle is integrated
into the process. Furthermore, the product owner needs to approve each release
package. As mentioned earlier, the product owner is also responsible for approval
at FinTech and Team External. InsuranceInk is currently still in transition and
has not yet decided how to handle the separation of duties principle. The
respondents however did note that they do not necessarily want to stick to
a traditional segregation of duties principle. According to one manager, the
underlying goal of this principle is to prevent team members from conducting
fraud. If there is another way to prevent them from doing to they would also be
willing to try this. Currently, the technical application managers deploy changes
which effectively means that the separation of duties is still available.

The respondent at WebSales2 noted that although the company requires a
change authorization before the code goes live in the new process, code could
technically be changed again once the code is live since developers have access
the production in order to troubleshoot. This demonstrates that even the most
effective separation of duties controls will not mitigate the risk of internal fraud
if access to production is not restricted.

Separate roles and access rights

Some companies still worked with specific roles and assigned access rights per
role. A manager at InsuranceInk stated that they were considering the possibility
to grant employees dynamic access rights per sprint by assigning them specific
responsibilities and access rights every sprint.

Team External at PublicServices also divides roles strictly. The team still uses
specific role descriptions like developers, testers and operational employees who
are responsible for a specific part of the deployment process. The process follows
the common DTAP principle where no employee is able to deploy a piece of

6.5 identified controls 47

code to the next environment if he deployed it to the previous one. WebTech
grants employees required access to servers by using public and a private SSH
keys. Employees that need access to production servers are granted those on the
basis of their public key. In case they leave the company or their private key is
compromised, access can be easily revoked by removing the public key from
the central access list. WebTech however does not make use of temporary access
rights.

Others

GeoTech has created a selfservice portal for one of its platforms in which the
team can grant access rights to people to view data that is visualized in their
application. However, the organization has defined data owners that have to
give their consent if someone wants to access their data. Most companies also
said to use separate accounts where every employee has one or more accounts
to access parts of the deployment chain.

6.5.3 Security

On a high level, GeoTech has divided security into three main components which Security-related
monitoring activities
are discussed in
Section 6.5.5.

are privacy, security and company risks such as application failures. SmartIndus-
tries distinguishes between three similar types of security which are physical,
information security and cybersecurity.

Team responsibility

Many companies stressed the responsibility of the teams to ensure the security
of their own product. InsuranceInk follows the SDL framework level 2 and holds
teams responsible for executing it correctly. As mentioned in Section 6.4, the
respondent at WebSales1 thought that it was very important that team members
feel responsible and dare to step up if they have any security concerns because
no security auditor would be able to find all security issues. The respondent at
WebTech also noted that it was necessary to rely on the goodwill of employees
to some extent because too many security controls would hinder the process:

"Of course we have NDA’s, we have contracts with [WebTech], we have agree-
ments [...]. [But] you have to be able to deal with each other in good faith. Security
is always a consideration between usability and security, the more usability the
less security and the other way round."

Another respondent mentioned in this context that very strict systems with a
lot of security checks will inhibit the efficiency of the workflow which leads to
team members developing workarounds that again compromise security.

Some companies even gave the teams a dedicated moment where they could
mention security risks. At GovTech this happened during so-called "pokerses-
sions" where the user stories were evaluated in terms of effort and time they cost
to implement. The risks that have to be dealt with are then considered when
assigning a story a "pokervalue". Large stories are split up into smaller sub-tasks
to make them more manageable. WebTech also stated to conduct sessions in
which security concerns as well as other risks could be raised. A respondent at

6.5 identified controls 48

GeoTech stressed that they treat the security department as an internal customer
that provides requirements which are put on the backlog and prioritized by the
product owner.

Security department

Most case companies have a dedicated security department. The tasks of this
department often covered monitoring activities and high level security tasks
that ensured that the teams would implement security properly in their prod-
ucts. For example, the security department at InsuranceInk handles security
exceptions like temporary authorization and monitors whether the teams meet
the requirements of the SDL framework. Furthermore, security officers provide
advice and organize the execution of penetration tests. The security department
at Govtech also conducts regular security awareness campaigns and encourages
employees to think about security. Similarly, the respondent at FinTech stated
that the company was currently busy developing security trainings for DevOps
teams.

A respondent at GeoTech pointed out that the security department makes
agreements with other departments so if his team request a server from the
infrastructure team they can be assured that it is secure because of the agree-
ments the infrateam made with security. Their security department also serves
as a contact point in case the teams have questions. Multiple companies also
involve their security departments in the design process of new systems or when
choosing suppliers. At InsuranceInk the security manager is also involved in the
steering committee of the DevOps transition.

In some companies the security department also conducted lower-level tasks.
The security engineer at WebSales1 is responsible for auditing the teams from a
security perspective and conducting PCI audits. He is also the contact person
for advice and participates in CABs in case complex changes are submitted. The
security department at WebSales2 conducts monitoring activities and reacts to
threats e.g. by blocking traffic. The security departments at GeoTech equally
conducts strong monitoring. At SmartIndustries, information security is covered
by a group of people in the IT department who conduct internal audits and tests.
They try to hack existing applications and are involved in designing new ones.
There is also a cybersecurity business unit although the case study team is not
involved with them very much. PublicServices also divided their security tasks
across multipe departments. Security advisors think about infrastructure and
appliances whereas security officers handle security policies such as ISO27001.

Outsourced platforms

Companies that had outsourced their platform to an external party stated that
the hosting provider conducts extra monitoring activities. One respondent also
stressed that they had service level agreements with their hosting provider that
ensured security.

Security tests

Multiple tools were mentioned that aid the teams in developing secure products.
Some teams at PublicServices use the security tool Fortify, however, one engineer

6.5 identified controls 49

of Team External noted that Fortify was not fast enough for his team. His team
uses a static code analysis tool SonarQube but wants to move back towards
Fortify in the future. The respondent at WebTech stated that one of their clients
uses the open source OWASP scanner to check whether the microsites which
WebTech produces for them are secure. GovTech and PublicServices hire third
parties to conduct additional security testing like pentests in case they deem
this necessary.

Most case study companies have only partly automated their security tests
so far. Notable exceptions were WebSales1 who uses security testing software
like pentesting software and specialized products for websites and webservices
and WebSales2 who implemented automated security tests in their new way
of working. Generally, companies automated more of the functional tests than
security tests.

Security operations centers

PublicServices and SmartIndustries both had an internal security operations
center (SOC). During a visit to the SOC at PublicServices, it was demonstrated
that it did not only monitor logs but also monitored Twitter feeds that related to
their work and associated instances so that the public opinion and external events
could be detected quickly. The SOC also coordinates the Security Information
and Event Monitoring (SIEM) which is partly conducted by an external party.
Besides conducting monitoring, the SOC can also scan the infrastructure. At
SmartIndustries, the SOC was located in another city and monitored running
applications for which the case team requested this.

6.5.4 Compliance

In order to ensure and verify compliance, multiple companies had employed
compliance officers or internal auditors. In the case of WebSales2 this was a risk
& compliance officer whereas PublicServices had internal auditors. WebSales1

had employed a security officer who is partly responsible for security related
audits. As the risk & compliance officer at WebSales2 pointed out, the company
separates between critical applications that fall under the SOx regulations and
less critical applications. Only for the SOx applications did the company use
the COBIT framework. One team at PublicServices was building a so-called
"audit robot" that would check in the logs associated to a committed piece of
code whether it was first analyzed with the security tool Fortify. This would
then allow the company to identify code that was potentially not sufficiently
tested for security issues and call the responsible teams to account. Many
companies are also regularly audited by third parties in terms of security, e.g.
because they followed the ISO 27002 norm or use the identity management
service DigID. None of the companies that already had some experiences with
external audits such as security or financial statement audits reported particular
difficulties due to their DevOps processes. Some respondents even mentioned
that they were now able to handle concerns which the auditors mentioned faster
due to working DevOps. SmartIndustries was the company with the strictest
compliance requirements. One of the respondents mentioned that every time

6.5 identified controls 50

they want to implement a new application which is connected to the internet
they have to let another party check this application.

Some controls found during the literature review in Table B.2 were also employed
by the case study companies; however, this was not done because of specific
compliance requirements but rather because companies viewed them as a good
practice. All companies separated their testing and production environments
from each other, mostly following the traditional DTAP pattern. Item tracking
was often done in tools like JIRA by starting with epics and refining them to
more specific user stories, tasks and sub-tasks. Controls that were implemented
due to compliance requirements as described in Section 6.2.2 mostly related
to change and access management. No company had automated compliance
testing to monitor whether these compliance requirements were fulfilled. This
was mainly done by internal auditors that were specialized in security or legal
issues. The security manager at WebSales1 mentioned that, although general
compliance checks are more difficult to deploy than security checks, it is e.g.
possible to automatically check whether employees use suitable encryption
algorithms that ensure data privacy. He also pointed out that it is in some cases
still necessary to conduct manual checks especially when someone raises the
suspicion that something is not right. It is therefore not effective to completely
rely on the automatic compliance and security controls without critical thinking.

Another aspect that was often mentioned in order to ensure compliance require-
ments was to increase transparency and traceability of actions. This was mostly
done by logging actions.

6.5.5 Monitoring and logging

While logging was acknowledged as important by all participants, the focus of
logging varied slightly. While GovTech stressed that they conducted technical
and functional logging, SmartIndustries stated to mainly focus on technical
logging. According to the risk & compliance officer at WebSales2, strong mon-
itoring is also a way to compensate for a potential lack of preventive controls
of which they implemented less because they did not want to slow the process
down:

"This is something very natural in DevOps that they [the developers] will also
do the troubleshooting and deployment and everything. So they still have this
access and the code can still change. So I think that would be one of the main
remaining risks. It is not 100%. So usually companies would try to limit this
level of access or put strong monitoring into that. Which is a way to compensate
the missing piece of control there."

The security engineer at WebSales1 pointed out that the DevOps teams are
innately encouraged to monitor because they also have to provide operational
services for their applications. Without the feedback they receive from monitor-
ing these systems it is more difficult for them to detect problems. Encouraging
the teams to do so is important because the teams are responsible for building
the logging tools for their applications themselves, which create important audit
trails. At GeoTech, at least one of the case teams uses the tool Splunk for moni-
toring operations. They have also created rule-based alarms, e.g. if the CPU is

6.5 identified controls 51

higher than 5%, an automated alarm is sent to the team mailbox. The adminis-
trator of a sprint is responsible for checking this mailbox as well as checking
Splunk itself regularly to ensure that no other incidents happened which did
not trigger rule-based alarms. Furthermore, multiple teams were observed to
have large screens in their department that reflect real-time testing results and
other important KPIs or logs. This was for example the case at GovTech and
GeoTech. Seeing these test results continuously allows the teams to react fast to
potential incidents and continuously improve their tests and code.

Besides holding the teams responsible for monitoring their own applications,
many companies charged the security department with high-level monitoring
tasks of network traffic or activities (also see Section 6.5.3). At some compa-
nies the security department also monitored internal processes: Every time a
developer at GeoTech conducts an action that is not normally allowed for him,
an alarm is sent to the security department. This also happens every time a
developer deploys something into production. In case a change is registered
and was previous authorized by the CAB, security conducts no further action.
Otherwise, the notification is followed up. The security department at GeoTech
also has dashboards with flags in their office in order to recognize incidents
as fast as possible. At the companies that had outsourced their platform, the
external hosting provider also conducts substantial monitoring activities. As
mentioned earlier, two companies also had an inhouse security operations center
which monitored logs and applications.

Various metrics were mentioned to be suitable for monitoring. The respondent
at FinTech mentioned that the teams in her company get to decide themselves
which KPIs they want to monitor. Examples for KPIs she gave were mean
time to restore service or change success rate. An interviewee at InsuranceInk
also stressed that it is important to conduct a zero measurement before the
teams implement DevOps in order to track improvements through the use of
DevOps. He also noted that his company currently uses old KPIs that should
be changed to efficiently support the DevOps processes. FinTech also extracts
monthly reports from their administration software ServiceNow that shows
configuration management, incidents and changes. Similarly, SmartIndustries
stated to regularly create reports for auditors but also to monitor their internal
effectiveness.

Other controls that have been previously mentioned but are also important
in the context of logging are change registrations, version control tools and
logging access to production in order to trace who checked in, approved or
deployed a piece of code. The respondent at Webtech also stressed the use of
Docker containers in the context of logging: Containers do not only enable
developers to update applications much easier but also allow them to trace
application-versions more easily with a version number.

6.5.6 Others

Risk evaluation sessions

Many companies have risk evaluation sessions in which potential risks of a
project or a new work item were discussed. WebSales2 calls this a threat anal-

6.5 identified controls 52

ysis and conducts this during the design stage of every new project. In most
companies, these meetings involve experts from different domains such as audit,
legal, compliance and security but in some companies also customer centric
disciplines like UX are involved. GovTech, FinTech and PublicServices do this on
a regular basis or before every large project, similar to WebSales2. FinTech also
mentioned to have additionally planned this for their DevOps implementation
project. WebTech has also conducted a similiar workshop a while ago in order
to identify security risks.

Risk log

SmartIndustries explicitly defines and monitors risks in large projects. GovTech
stated that they incoporate risks into user stories which are documented in JIRA.
WebTech also mentioned that they started being aware of potential risks some
time ago but are not yet explicitly managing them or writing them down.

Rollout and rollback strategies

Most companies expect teams to have rollback plans in case a deployment
does not perform as desired. How these are conducted varied per team. At
InsuranceInk, teams are among others required to have a rollback plan in place
when independently deploying quick releases that do not have to be approved by
a CAB. GeoTech conducts rollbacks by making snapshots of the virtual servers
and deploying the older version again. This has the advantage that no traces of
the old, replaced application are left behind. The respondent stressed that this is
only possible because they separate their databases from the applications which
means that the databases are untouched if the applications are reset to an older
version.

Team External at PublicServices uses a BlueGreen deployment strategy (see
Section 4.5.6). The Microsoft Azure platform which they use enables the team to
roll out versions to different regions like Northern Europe or Western Europe.
Furthermore, they have a production and staging slot which they can swap in
case the production version does not work as expected. The product owner of
Team Internal mentioned that this strategy was not possible for teams using
COBOL which only allows them to do rollforwards. These teams usually first
check whether they can handle the issue in production and then deploy a better
version. In case this is not possible, they have to roll out the old version again.

6.5.7 Soft aspects

As already evident, DevOps strongly emphasizes soft controls. During the inter-
views, various soft controls were identified that supported the implementation
of above mentioned controls or mitigated risks identified in Section 6.3. Most of
these controls were not mentioned explicitly by respondents but were identified
from examples the respondents gave about how their teams behaved. While
some of these aspects were already addressed in the previous sections, we will
give a comprehensive overview of these controls in the following.

6.5 identified controls 53

Clearly communicated responsibilities

Some companies demonstrated that they had clearly communicated responsi-
bilities, authorizations and procedures in place. These clearly communicated
responsibilities were found within the teams as well as when the team had to
interact with people outside of the team: Within the teams, members knew very
well what was expected from them in terms of development, maintenance but
also security and compliance of their products. Multiple interviewees stressed
that it was very important that teams are aware that they were end-to-end
responsible for their product. As one respondent put it:

"Everyone has to be able to operate the run, if the system is in lock-down it could
also be a developer who is called out of his bed."

Outside of the teams, members also knew which person they should approach
in case of incidents, questions or if a certain process needed to be authorized.
Examples of these clearly communicated responsibilities include the appoint-
ment of data owners who need to authorize access to particular data sets and
information security officers.

Team autonomy

In most companies, teams were given the freedom and authority to take inde-
pendent decisions concerning their systems. If teams do not have the autonomy
do take decisions and react quickly, this can increase security issues. Teams evi-
dently need to receive this autonomy from their superiors which requires strong
management support. Team autonomy is also strongly related to the concepts
of organizational culture, continuous improvement and team responsibility. A
manager at InsuranceInk illustrated this in the following example:

"I sometimes say as a joke that I would like to go back to the basics. Of course
we are a corporation, but really I would like to go back to the basics in the sense
that a team feels as if they were eight nerds in an attic. Like, you have your own
company, your own responsibilities, that’s clear, and the moment you don’t have
a product...well you have to put food on the table, the chimney has to smoke. Then
you get this kind of spirit that teams really go for the very best. And that is were
we want to go, really towards small, autonomous teams with a high degree of
automation and efficiency."

Communication

Teams were encouraged to communicate among each other as well as with
managers at all times. This was mentioned very often in the context of change
management when respondents gave examples of change deployments that also
impacted systems of other teams (see Section 6.5.1). However, communication
was also expected if teams had problems they could not solve themselves or
had questions. One product owner mentioned that he consciously chooses
not to participate in the daily stand-up meetings of his team but rather waits
until the team approaches him with questions or problems. Teams should
also feel responsible for their product and step forward in case of concerns as
demonstrated in Section 6.4.6.

6.6 the devops transformation at geotech 54

6.6 the devops transformation at geotech

The teams at GeoTech transitioned to DevOps one and a half years ago. Prior to
this, they were working with an external supplier while GeoTech created the
requirements and also internally operated the applications. However, changes
involved an extremely high amount of documentation, multiple contracts and
slow communication between all parties involved:

"It became completely unworkable with an external supplier and an internal
operating department and another IT party in between. It went over too many
levels with too much documentation. Of every change 80% was documentation
of which only 20% finally became a change. Effectively we only did a few changes
per three months, almost nothing."

As part of the DevOps transition, the external supplier was transformed into
consultants that worked on a hiring base and the functional and technical
application management teams were merged and transformed into DevOps
teams. All team members are now encouraged to perform both functional as
well as technical tasks. The teams are responsible for the applications as well
as maintaining the database behind their applications. Reaction times are now
much faster because client requests are directed at the teams directly and are
solved within the teams.

The DevOps teams have already automated some small tasks such as data ex-
traction, transformation and loading. According to one respondent, the ultimate
goal is to completely automate the process and to integrate all operational tasks
into a CI/CD pipeline. Since the teams are responsible for both development
and operations, they have administrator rights on all DTAP environments. How-
ever, team members do not have access to production by default but receive
temporary access once a change is formally approved by the company which
makes sure that changes do not clash with other scheduled changes. Small
changes that are categorized as low impact changes can be performed directly
by the teams which makes the process more efficient. All actions are logged
and are therefore fully traceable. Version control is performed both on code and
data as well as on configuration sets. Snapshots of the virtual servers enable the
teams to perform quick and clean rollbacks. GeoTech also has a large security
department which monitors the security logs. Security requirements from this
department are treated like client requests and are added to the backlog and
prioritized by the product owners.

GeoTech also has procedures in place in order to enforce communication and
detect problems early. Team leaders have to inform their team members within
an hour if they run into a problem which they haven’t solved yet. If the problem
is still not solved within a specified period, it is scaled up by informing the
product owner, solution architect and other relevant actors. This way, serious
problems are scaled up to an organizational level within less than a week.

The transition has led to significant performance increases as shown in Figure 6.2.
The represented team transitioned to DevOps in 2017 whereby the statistics
clearly show decreased numbers of incidents and shortened resolution times
within the three quarters after the transition. Most strikingly, the teams have

6.6 the devops transformation at geotech 55

managed to significantly increase their numbers of changes and to shorten the
throughput time of these.

(a) Number of incidents (b) Incident resolution time (days)

(c) Open number of incidents (d) Number of changes

(e) Change resolution time (days)

Figure 6.2: Incident and change statistics GeoTech

7
T H E D E V O P S R I S K M A N A G E M E N T F R A M E W O R K

The following chapter introduces the final risk management framework and
strategies as designed after the validation interviews. For information on the
draft framework and adjustments to the same refer to Chapter 8. The risk
management framework introduced in this chapter consists of a classification of
risks (Section 7.1.1), a summary of risk management practices that are compatible
with DevOps (discussed in Section 7.1.2, complete overview in Appendix D),
an overview of DevOps risk governance components (Section 7.2) and a risk
management matrix that suggests four different risk management strategies for
companies (Section 7.3).

7.1 synthesizing literature and empirical findings

7.1.1 Risks

As concluded in Chapter 4, risks were hardly mentioned in literature, although
they have been identified plenty by practitioners. Furthermore, literature mainly
focused on inherent risks that were directly related to the concept of DevOps
(such as a high deployment rate or developers having access to production) while
practitioners also mentioned practical risks that were related to the consequences
of using DevOps e.g. planning and communication problems or teams becoming
too autonomous. Moreover, literature mainly mentioned risks as a justification
for suggesting specific controls instead of conducting thorough risk analyses.

Since the risks encountered in literature were much more generic than the risks
mentioned by practitioners, it is not possible to compare these findings without
identifying the root problems behind these generic risks. For example, the risk
of frequent deployment in reality concerns the risk of deploying faulty products
that do not meet security or compliance standards or lead to system downtime.
This risk therefore falls into the product risk category as described in Section 6.3.
Developers having access to production was a risk that was also mentioned by
practitioners and was classified as a risk of internal fraud which again belongs
to the team risks. The risks of security and compliance as mentioned in literature
also concern the product that is deployed.

Analyzing the risks encountered in literature this way supports the classification
of risks as designed during the case study analysis, whereby the risks men-
tioned in literature exclusively fall into the team and product risk categories.
Figure 7.1 visualizes these risk categories and indicates a top-down approach
that organizations can use when examining risks relevant to their situation.

The definitions of the categories adhere to the descriptions developed in Sec-
tion 6.3 with the following additions: The product risk category does not only
encompass the obvious products and services of an organization but more
specifically the product the team is working on. This for example also includes
the infrastructure and the CD pipeline since the infrastructure is nothing more

56

7.1 synthesizing literature and empirical findings 57

Figure 7.1: Risk categories related to DevOps

than a product maintained by the infrastructure teams while the pipeline ei-
ther belongs to the product of the DevOps teams or is a separate product of a
dedicated team maintaining the pipeline. Furthermore, the project risk category
might seem counter-intuitive at first sight since projects are a traditional concept.
However, the category describes any activity that is bound to a schedule and
budget and involves multiple actors. This can refer to development activities
within a team or to organizational wide activities. Because many companies still
use this term in combination with the described activities, it was decided to
keep this category with the given name.

Naturally, these categories are interconnected since a problem in one category
can lead to risks in another category. Furthermore, some categories might overlap
as one risk could be assigned to multiple categories. Nevertheless, the overview
is deemed to cover all important risks and can therefore be a useful tool which
aids organizations in conducting a complete risk assessment for their DevOps
processes.

7.1.2 Risk management practices

A comparison of risk management practices in literature and practice shows A complete overview
of all practices found
in literature and
practice can be found
in Table D.1 in
Appendix D

that literature suggests many technically advanced, automated controls while
companies in practice still rely on more traditional practices because they are not
yet mature enough in their processes to rely on the other controls. Most controls
in literature were also recognized in practice, although the technically advanced
controls were only found in very mature companies. Furthermore, controls
from literature were mainly focused around the operational processes regarding
software delivery and were less concerned with supporting mechanisms such as
the role of the security department.

While literature suggests compliance as a goal in itself, respondents from the
case studies made clear that compliance for them is not a goal that needs to be
achieved but rather viewed it as a basic condition they need to fulfill from where
they design their operations. Furthermore, many compliance controls that were
mentioned usually fall into one of the other categories such as security controls

7.1 synthesizing literature and empirical findings 58

(when following security frameworks) or change and access controls (e.g. when
applying ITIL or COBIT). Nevertheless, we will keep compliance as a separate
category in our framework to cover controls that ensure general compliance and
controls that may be required in terms of compliance and not fall into one of
the other categories.

7.1.3 Mapping controls to risks

Table 7.1 summarizes the identified risks and suggests some controls that can
be applied to mitigate these. Besides mapping controls found in literature or
during the case studies to the risks, some controls had to be newly designed
or specified more in depth to cover the risks sufficiently. This mainly concerns
controls about awareness trainings as well as the specifications of soft controls
and general risk mitigation mechanisms. As evident, some controls were also
used in a different context than originally specified. For example, the control
reporting is not only useful for reporting to auditors but can also be useful as
a monitoring tool in which DevOps teams have to issue these reports to the
management in order to demonstrate and justify their actions and choices.

The table also clearly demonstrates the importance of soft aspects such as com-
munication and culture. Since soft aspects in DevOps are no longer just useful
for improving business processes but are rather integral controls to mitigate
important business risks, it is essential for companies to create more measurable
and verifiable approaches to soft controls. Being able to demonstrate the effec-
tiveness of their soft controls will also allow companies to prove their internal
control to auditing parties. For example, culture could be demonstrated through
the existence of a code of conduct or by conducting regular trainings while
communication could be demonstrated through the establishment of effective
communication channels and communication protocols.

This table only
intends to provide
examples of
important risks and
suitable controls to
mitigate these. It
does not aim to be
complete

Table 7.1: Examples of risks and controls

category risk control

Transition 1.1 Teams don’t
understand and carry
out their
responsibilities which
affects security and
quality of work

1.1.1 Regular awareness trainings

1.1.2 Clearly define and communi-
cate team responsibilities
1.1.3 Regular audits of teams and
code by relevant departments (e.g.
security, compliance)

1.2 Stressed or
frustrated employees
lead to less productive
work

1.2.1 Clearly define and communi-
cate team responsibilities
1.2.2 Appoint contact people out-
side of teams for questions and sup-
port (e.g. security and compliance
departments)

7.1 synthesizing literature and empirical findings 59

category risk control

Organization 2.1 Collaboration of
DevOps and
non-DevOps teams
leads to scheduling
and resource problems

2.1.1 Communication

2.1.2 Apply some project manage-
ment principles to ensure proper
time and resource planing
2.1.3 Limit contact between DevOps
and non-DevOps teams
2.1.4 Team autonomy

2.2 Management and
DevOps teams have
differing priorities
which leads to
scheduling and
resource problems

2.2.1 Management support

2.2.2 Communication

2.2.3 Team autonomy

Project 3.1 DevOps teams
don’t meet customer
deadlines because of
Agile working or
unforeseen incidents

3.1.1 Use agile frameworks that help
to structure the process (e.g. SAFe)
3.1.2 Use some traditional project
management mechanisms
3.1.3 Train product owner to priori-
tize backlog items and incidents

3.2 Project fails because
of too little overview

3.2.1 Use some traditional project
management mechanisms (e.g.
quality gates, project board, risk
officer)
3.2.2 Clearly define and communi-
cate responsibilities

Team 4.1 Wrong
prioritization of work
items leads to critical
items not being carried
out

4.1.1 Train product owner to priori-
tize backlog items and incidents
4.1.2 Clearly communicate respon-
sibilities

4.2 Team member
conducts internal fraud
by stealing data or
manipulating systems

4.2.1 All Identity and access man-
agement controls
4.2.2 All change controls

4.2.3 Logging

4.2.4 Monitoring for unauthorized
actions
4.2.5 Soft controls (e.g. team respon-
sibility, non-disclosure agreements)

7.2 devops risk governance components 60

category risk control

4.3 Teams become too
independent and their
actions cannot be
controlled by the
organization anymore

4.3.1 Logging

4.3.2 Communication

4.3.3 Soft controls (e.g. code of con-
duct, responsibility trainings, cul-
ture)
4.3.4 Reporting

4.4 Teams don’t stick to
schedule that was
agreed upon which
jeopardizes on-time
delivery of work

4.4.1 Soft controls (e.g. code of con-
duct, responsibility trainings, cul-
ture)
4.4.2 Clearly communicate respon-
sibilities
4.4.3 Reporting

Product 5.1 Deployed product
is not secure

5.1.1 All security controls

5.1.2 Monitoring network traffic

5.1.3 All change controls

5.1.4 Soft controls (e.g. team respon-
sibility)

5.2 Deployed product
is not compliant

5.2.1 All compliance controls

5.2.2 All change controls

5.3 System
malfunctions because
of faulty product

5.3.1 All change controls

5.3.2 Rollback strategies

5.4 Deployed product is
not of sufficient quality

5.4.1 Automated functional tests

5.4.2 Quality Assurance practices
(e.g. QA Officer, regular quality au-
dits)

7.2 devops risk governance components

The main elements that constitute effective DevOps risk governance are visual-
ized in Figure 7.2 in the form of a house. The roof represents the risk categories
and compliance requirements that apply to a company and which should govern
all organizational design choices. Clearly assigned roles, responsibilities and
policies are the overarching requirements for effectively dealing with these risks
and compliance requirements. These general mechanisms are supported by four
pillars: The first three pillars represent the three lines of defence model (which
was previously described in Section 2.2.3) in a DevOps context. The first line
addresses operational processes around software delivery and operations and
contains the automated and manual controls. The DevOps teams themselves are
the risk owners and are responsible for the implementation and execution of the
first line controls. The second line contains supporting and overseeing functions

7.2 devops risk governance components 61

Figure 7.2: Representation of DevOps risk governance components

that actively manage the risks. This includes departments that have been estab-
lished as important for supporting the DevOps teams as well as frameworks
and methods they provide. Besides the security, legal and QA departments
mentioned in this figure, other departments may have to be involved in the
DevOps process depending on the exact activities of the teams. The last line
of defence provides assurance in form of internal audit. Although not all case
study organizations conducted explicit internal audits, we have incorporated this
practice to represent the necessary recurring assessment of the efficiency of risk
management activities in the model. The DevOps processes add business value
and operational efficiency. Some DevOps processes naturally overlap with the
proposed controls. DevOps can e.g. contribute to effective monitoring, logging,
conducting quality assurance through automated testing and conducting version
control. The continuous improvement aspect is also reflected in the internal
audit and the culture. A strong DevOps culture emphasizing integrity, trust
and communication is the foundation of all other components in the house,
clearly demonstrating that a lack of culture will lead to a collapse of the DevOps
organization.

The blocks are based on the concept map in Figure 6.1. However, some elements
have been rearranged due to their priorities. The case studies and literature
review have made clear that culture is one of the most important elements in
DevOps risk management and cannot simply be seen as an interchangeable risk
management process. It has therefore been moved towards the bottom of the

7.3 the devops risk management matrix (drmm) 62

house. The identified soft controls match with the elements Culture and Roles,
responsibilities, policies and are therefore not mentioned separately in the opera-
tions pillar anymore. Lastly, the product owner who was identified as one of the
main actors in mitigating product and team risks is also incorporated in Roles,
responsibilities, policies and in Agile practices which represents the importance of
his function better.

While this figure represents all important elements of risk governance, it does
not give information about the design of the risk management strategy that com-
panies should drive nor the specific practices which it should implement. During
the literature review, many controls and mechanisms have been identified; how-
ever, not all of them are suitable for every situation. The following sections will
address this issue and aim at establishing guidelines for how the elements and
processes represented in this house should be designed and executed.

7.3 the devops risk management matrix (drmm)

As identified in Section 6.2, two main factors which predominantly influence
the nature of risk management practices are the compliance requirements to which
a company is subdued as well as the DevOps practices which it implemented.
Extending these concepts to broader categories which they represent leads to the
proposition that two main factors which influence companies in the design of
their controls are Risk appetite as well as DevOps maturity. Risk appetite is based
on the impact that the occurrence of a risk will have on the company and on the
teams’ choice whether it wants to carry these consequences. A higher risk impact
as well as many compliance requirements often lead to a lower risk appetite:
While e-commerce companies like WebSales1 and 2 chose to value the speed of
deployment over not making smaller mistakes such as bugs, the same choice
was not reasonable for companies operating in high-risk or high-compliance
environments like FinTech and SmartIndustries. However, risk appetite was also
found to vary heavily per team. Teams that were providing internal services to
their company could usually afford to make more mistakes than teams providing
services to customers.

Mapping these two factors on a matrix will give us the figure represented in
Figure 7.3a with four basic situations in which teams can find themselves. We A detailed

description of each
DRMM strategy is
given in
Section 7.3.2

will call this matrix the DevOps risk management matrix (DRMM) in the following.
The figure includes a basic description of a risk mitigation strategy that is
suitable for each situation. While companies cannot completely control their
position on the risk appetite dimension, they can change their DevOps maturity.
The background colours in the matrix represent the agility which teams can
achieve at each stage of their DevOps journey while remaining in control: Light
background colours represent high agility and dark colours low agility (see
Figure 7.3b). This division also explains the main driver why teams want to
become more mature in their processes: Increasing DevOps maturity leads to an
increase in agility and lets them reap more benefits of DevOps (some of which
which have been identified in Section 6.2.4 earlier). While teams with a higher
risk appetite and a high maturity can fully automate their process, transfer most
of the responsibility to the teams and thus achieve the maximum possible speed
and agility, the same degree of automation is not suggested for teams with a

7.3 the devops risk management matrix (drmm) 63

(a) Basic description of DRMM strategies (b) Maximum speed that can be achieved while
remaining in control

(c) Risks applicable to DRMM quadrants

Figure 7.3: Demonstration of DevOps risk management matrix

low risk appetite, even if they are very mature in their processes. This is due to
the need of extra manual preventive controls that ensure compliance and risk
mitigation before deployment.

While risk appetite and DevOps maturity seem like two different factors, it is
important to note that the two axes are not entirely independent from each
other. Teams that operated in a lower risk environment (and thus often had a
higher risk appetite) were in general more mature in their DevOps processes
than teams in higher risk environments. It is therefore likely more difficult for
teams who are less capable of taking some risks to move from a low maturity of
DevOps processes to the high maturity quadrant. This is likely because teams
with a low risk appetite somewhat challenge the idea of DevOps as suggested by
Farroha and Farroha [13] who claim that it is more important to recover quickly
from mistakes instead of completely preventing them from happening.

7.3 the devops risk management matrix (drmm) 64

7.3.1 Relationship risks and DevOps risk management matrix

After examining the basic risk-mitigation strategies demonstrated in Figure 7.3a
it becomes clear that the risks identified in Section 6.3 have varying priorities
in the different quadrants. While companies should of course always consider
all types of risks and identify whether they apply to their specific situation, it
is evident that some risks like transitional risks only apply to companies with
a low DevOps maturity while others like team risks are mainly due to a high
degree of team autonomy which is a characteristic of higher DevOps maturity.
Product risks are generally higher in teams with a high risk appetite since these
may employ less checks before deploying a product and prioritize speed and
ultimately continuous delivery over (calculated) risks. Especially teams that
deploy relatively often but have not yet implemented many functional tests are
at risk of deploying faulty products. Organizational and project risks were not
found to be related to risk impact or DevOps maturity but depend on the nature
of the organization and the type of work that the teams conduct.

Companies have to pay special attention to implementing extra mitigating
controls that arise from the risks mentioned in their teams’ quadrant. These
controls will therefore be integrated in the strategies that are introduced in
the next section. It is important to note that companies which still have a low
DevOps maturity and employ some traditional development methods naturally
still have to be aware of risks specific to traditional software development which
are not discussed in this thesis.

7.3.2 The DRMM strategies

As shown in Table 7.1, multiple controls can be used to mitigate the same risks.
The controls a company chooses should therefore depend on its position in the
DRMM and the corresponding strategy it should pursue, as well as on the risks
that are of particular importance to the team’s situation. Figure 7.4 suggests
some controls that support the respective strategies. The strategies are discussed
in more detail in the following.

High DevOps maturity - low risk appetite: Continuous delivery

Teams in the low risk appetite half of the matrix have to focus much more on de-
signing preventive controls than teams in the other half because they can afford
fewer mistakes than the prior group. Nevertheless, teams with a high DevOps
maturity can automate much of their process and leverage DevOps to their
benefit. Enforcing critical functional and security tests before every deployment
can increase product quality and safety because it eliminates the possibility of
human mistakes. On the other hand, in order to eliminate the possibility of
technological malfunctioning or not testing important parts of a new feature,
manual approval should be always required right before deployment. This can
for example be done by the product owner of the team who verifies that the user
requirements are fulfilled or through another DevOps engineer who can run
some technical tests that verify safety and compliance. The exact design of these
controls depends on the company’s wishes and its particular circumstances.
Large changes should always be approved by a CAB. Generally, developers

7.3 the devops risk management matrix (drmm) 65

Figure 7.4: Controls for DRMM strategies

should not gain access to production. Furthermore, teams need to be responsible
enough to reach out to the security department and the CAB in case they have
questions or concerns instead of just pushing critical changes to production. The
security department should furthermore take a strong monitoring role in this
strategy, both internally and externally. This means that on one hand it should
support the teams with monitoring their systems and infrastructure and by
taking appropriate action such as blocking traffic if required. On the other hand,
security should also monitor for internal incidents such as unauthorized ac-
tions by developers. These monitoring activities can be supported by triggering
rule based alarms in case of predefined events. In very high risk environments
that require extensive monitoring it is recommended to establish a dedicated
security operations center either in-house or by contracting a third party that
conducts strong and continuous monitoring activities. The company should also
conduct regular internal audits to ensure the controls are still up-to-date and
effective. Despite the large amount of preventive and detective controls, it is very
important for these companies to train the team responsibility and awareness
as well as to establish a culture of continuous improvement in which team
members dare to speak up in case of concerns. Only if such a culture is created

7.3 the devops risk management matrix (drmm) 66

the company can trust their operational DevOps processes. On a general note,
since approval in continuous delivery can be given with one single click on the
button, this strategy does not loose much of its speed compared to continuous
deployment, if the responsible person authorizes important changes right away.

High DevOps maturity - high risk appetite: Continuous deployment

This quadrant is undoubtedly the most desirable for teams to be in because
it allows them to achieve the maximum possible speed and agility and lets
them automate as many manual tasks as possible including the deployment of
the product. However, this strategy is only responsible if the consequences of
deploying a partially faulty product or a team not carrying out its responsibil-
ities are relatively low and the company is willing to carry them. Companies
operating this strategy can give their teams great autonomy and responsibility
and can emphasize the use of detective controls (monitoring) over preventive
controls. Teams are mainly responsible for security and compliance related is-
sues themselves which increases speed and eliminates unnecessary bureaucratic
processes. Since the deployment is fully automated, it is not necessary to give
all developers access to production which lowers the risk of internal fraud.
Furthermore, frequently deploying small releases also lower risk to some extent
and lets these teams detect problems early. The security department takes an
advisory role which the teams can approach if they have questions and audits
the processes in regular intervals. In order to maintain a separation of duties
principle and prevent internal fraud, peer reviews for approving merge requests
before entering the deployment pipeline are recommended. However, in order
to compensate for the lack of preventive controls, teams should always have a
rollback strategy in place and conduct strong monitoring activities that detect
and escalate incidents quickly. Teams in this quadrant can also consider making
use of platforms such as Microsoft Azure or AWS which do not inhibit their
continuous deployment capabilities.

Low DevOps maturity - high risk appetite: Experimental learning

The third quadrant describes companies or teams that are willing to take some
calculated risks but are not yet very mature in their processes and actions. Due to
their willingness to accept the impact of small mistakes, teams in this quadrant
are free to experiment with different controls and techniques to find out what
works best for their situation. Teams in this half of the matrix typically prioritize
speed over perfection which is why controls such as post-deployment approval
are acceptable here. Obviously, once a company matures in their processes it
can still implement more automated tests which don’t take away any of the
speed but lowers the possibility of product risk (see Section 7.3.2). The team
might also benefit from BlueGreen deployment strategies and A/B testing to
test customer responses to different versions of their product. Since the risk
impact is presumably lower for teams with a high risk appetite, it is generally
acceptable (although not desirable) to give developers access to production
e.g. to troubleshoot, although companies will then have to implement strong
monitoring and logging instruments to ensure traceability. If the teams want
to focus on building their core capabilities and focus less on infrastructure,
they can also benefit from outsourcing their platform to a third party or using

7.3 the devops risk management matrix (drmm) 67

cloud services such as Microsoft Azure or AWS. Nevertheless, teams should
conduct thorough risk analyses and not refrain from using manual controls to
compensate for missing automated tests, even though these might inhibit their
agility to some extent. Since the teams are still in the starting phase of their
DevOps transition and might not be accustomed to their responsibilities and
the DevOps culture yet, management should review their actions regularly, for
example by asking for updates and reports from the teams. Teams should also
receive extensive coaching on their responsibilities to prepare them for working
more independently once they reach a higher DevOps maturity.

Low DevOps maturity - low risk appetite: Agile teams responsible for Dev and Ops

Teams that are not yet mature in their DevOps processes but cannot or do not
want to take many risks are operating in a rather perilous environment. They
therefore have to be extremely careful when implementing new features and
methods. A suitable starting point is to implement an Agile framework like
Scum or SAFe that structures their processes and to give teams responsibility
for both development and operations. Automation does not yet play a (big) role
at this point because it is more important for teams to become accustomed to
the DevOps culture and their broadened responsibilities. Controls are therefore
rather traditional and can be replaced by automated controls during the growth
process (see Section 7.3.3). Changes should generally be approved by a change
advisory board, except for very small changes with minimal impact, and should
always be registered beforehand to improve traceability and inform other teams.
Teams however should be extensively trained in their responsibilities in order
to prepare them for a more autonomous way of working. Developers should
only gain temporary access to production in order to deploy changes, e.g. by
requesting timed passwords. In order to assess and ensure compliance, the
company should also employ internal auditors or risk & compliance officers.

7.3.3 How to move from one quadrant to another

The risk appetite of a company or team will likely not change through the
implementation of DevOps which means that teams are operating on a vertical
scale in the DRMM, aiming to achieve a higher DevOps maturity. The main
drivers for this desired maturity growth has been identified above as increased
agility and generally reaping more benefits associated with the DevOps concept.
As mentioned earlier, it is easier for teams with a higher risk appetite to move
to a higher maturity than for teams with low risk appetite.

Figure 7.5 gives a basic indication how teams should approach their maturity
growth process based on the available strategies. While teams with a higher
risk appetite are rather free to experiment with different deployment strategies
and automated controls, teams that don’t want make mistakes have to think
much more about the applicable risks and mitigating controls beforehand. The
risk assessment approach suggested in Figure 7.1 and the complete summary
of controls in Appendix D can be of help when doing so. Teams in this sit-
uation also need to identify and involve critical actors in the design of their
DevOps processes from an early stage on. Most importantly, this concerns the
security department but could also apply to departments such as quality as-

7.3 the devops risk management matrix (drmm) 68

surance, infrastructure and legal & compliance. While this overview gives a
basic indication on achieving maturity growth in DevOps, more research on
DevOps maturity stages and growth strategies needs to be conducted to give
more specific instructions.

Figure 7.5: Basic growth strategies

8
VA L I D AT I O N

This chapter summarizes the validation interviews and the results of the valida-
tion survey and the adjustments that were made to the draft framework based
on the received feedback. As shown in Table 8.1, four experts working in the
fields of DevOps and/or IT Risk and audit were interviewed during this phase.
The interviews are summarized in the following sections. Finally, Section 8.5
summarizes the results of the survey sent to the case study respondents.

Table 8.1: Experts interviewed for artifact validation

position expertise experience

Senior Manager - GRC Technology Governance, Risk &
Compliance,
IT Audit, DevOps

9 years

Senior Manager - Digital Enablement Agile, DevOps 11 years

Senior Consultant - Enterprise Agility Agile, DevOps,
Change
Management

10 years

Director - IT Assurance & Advisory IT Audit, IT Risk 12 years

8.1 senior manager - grc technology

The first expert to be interviewed was a senior manager in the Governance, Risk
& Compliance Technology department of a Big4 audit- and consultancy company.
The interviewee had almost nine years of experience in IT risk consulting as
well as IT audit and IT assurance engagements and is currently also consulting
some companies on how to keep control over their DevOps processes. The
respondent said that he experienced a shift of DevOps from more experimental
web applications towards critical core systems over the past years which makes
DevOps also a relevant topic for auditors nowadays. Nevertheless, he stated that
his department is still exploring how to control DevOps and that not everything
is completely clear to them yet. Since the respondent had extensive knowledge
about both DevOps and IT Risk, the interview served to receive broad feedback
on the whole research and to improve the framework based on this.

8.1.1 Risks in DevOps

The expert thought that risks can be viewed from many different angles: While
auditors during the financial statement audit will look at the integrity of the
systems processing the data, other others might look at to effectiveness, privacy
and continuity. Looking at the classification of risks as done in this research,
he noted that many of the categories were interconnected and that many risks

69

8.1 senior manager - grc technology 70

such as problems in the organization or transition would eventually lead to
product risks. Generally, he thought that the categories represented different
levels in which the risks would manifest themselves but if one looked at the root
problems, the categories did make sense to him. Furthermore, he also thought
that one risk could fall into multiple categories. While the exact category of a
risk is therefore not always clear, he agreed that the combination of categories
did cover all risks he could think about. On a side note, he mentioned that
the term "project" represented a rather traditional concept which implies that a
product is specified, designed and finished at some point.

The interviewee also thought that it was important to stress that not all specific
risks that were listed in Table 7.1 belonged exclusively to DevOps. For example,
the risk of a team member conducting internal fraud applies to all companies and
not only to DevOps teams. Nevertheless, the risk is obviously also important
to consider for companies using DevOps. While the risk did not change by
implementing DevOps, he noted that the controls to mitigate this risk did
change in nature. He also pointed out that the DevOps practices such as faster
and more frequent deployment brought new risks to the process. These were
mainly classified as product risks.

8.1.2 DevOps risk governance

The first versions of the risk governance house consisted of three pillars being
control processes, DevOps and risk management practices, similar to the concept map
introduced in Figure 6.1. However, the interviewee thought that the division
between controls and risk mitigation mechanisms was not entirely clear since
they seemed to represent similar concepts. Furthermore, he noted that the
use of frameworks, which were classified as a risk management concept, also
influences other factors such as the roles, responsibilities and policies in the
organization. Nevertheless, he overall agreed with the approach which the
framework represented.

8.1.3 DevOps risk management and controls

The draft risk management matrix originally contained the axis "risk impact"
instead of "risk appetite". The respondent thought that these were two very
suitable factors to use for the matrix. However, in order to make the meaning of
the risk impact axis clearer, he proposed to rename the same to "risk appetite". The
main reason for this was that the respondent argued that a company can choose
its position on the horizontal axis to some extent itself, by deciding whether it
wants to carry the consequences of a risk occurring or not. This contradicted
the original assumption made during the design of the draft framework that
companies cannot influence their position on the risk impact dimension since
this purely depended on external factors. Renaming the "risk impact" axis to
"risk appetite" also implied that the matrix had to be mirrored vertically. The
interviewee also agreed that the two axes are not entirely independent from each
other and wondered whether a company in the high risk impact/high DevOps
maturity segment even existed. He agreed with the strategies presented but
did not recognize the difference between the lower two quadrants at first. The

8.2 senior manager - digital enablement 71

low maturity/high risk appetite quadrant was therefore renamed from "Manual
Controls only for non-Automated Tests" to "Experimental Learning" to stress the
experimental part of the strategy as opposed to the low maturity/low risk
appetite strategy which was more controlled.

8.2 senior manager - digital enablement

The second interviewee was a senior manager in the Digital Enablement de-
partment of the same company as the first interviewee. He had worked for the
company for eleven and a half years and has extensive experience with software
development teams. In the past he has worked on software testing, software
design and as a team lead for development teams. Due to the interviewee’s
specialization in agile methods and DevOps and his technical knowledge, the
validation interview focused on the technical aspects of the proposed solution
as well as how they could contribute to managing risks. The interview also
addressed DevOps implementations on a general level and suitable strategies
for conducting these.

8.2.1 Risks in DevOps

The expert agreed with the presented categorization of risks and thought that
these covered all important aspects. He also agreed with the statement of the
first interviewee that the risks were overlapping since e.g. problems within a
project could affect the team and ultimately the product. He stressed that there
would always be some overlap between the categories because one problem
often causes another one. However, he thought that this didn’t matter as long as
the framework helps companies to identify the relevant risks. He particularly
liked the mentioning of transitional risks which he deemed to be very important.
He furthermore pointed out that infrastructure and the CD pipeline (which fall
into the product category) were important elements to consider when assessing
risks. He agreed with the first respondent that the term "project" is a rather
traditional concept and that in DevOps this concept was often called "release
trains" or "value streams". However, he also acknowledged that many companies
were still using the word "project" and thought that this was rather a semantic
discussion. On a general note, he thought that the risks in DevOps were not
very different to risks in traditional software development although the controls
did change and engineers now rely much more on automation. This supported
the statement made by the first interviewee.

8.2.2 DevOps risk governance

The expert confirmed that "roles, responsibilities and procedures" were an important
element when asked about this. He stressed that it was very important to have
clear agreements in order to operate effectively as a team. However, he also noted
that team members should have these roles and responsibilities internalized
instead of just documenting them. When asked about the division between the
risk mitigation mechanisms and controls pillars, he answered that he understands
why the first respondent thought that this was confusing but also sees why

8.3 senior consultant - enterprise agility 72

they were set apart in the model since they were more of a basis or a starting
point for companies to enforce effective risk management. Generally, the risk
mitigation mechanisms were less tangible than the controls.

8.2.3 DevOps risk management and controls

The respondent agreed with renaming the "risk impact" axis to "risk appetite"
and added that the concepts were related since the risk appetite of a company is
heavily influenced by the impact of a risk on the company. He also agreed with
the general strategies designed and pointed out that the low risk appetite/low
maturity quadrant represented more of a Scrum way of working than a real
DevOps team. However, he thought that the most important element was the
culture of combining development and operations which was also included in
this strategy. He also agreed with the mapping of risks to the matrix. Looking
at the controls suggested for each strategy he agreed with the structure and
pointed out that the controls in the lower half were more traditional while the
ones belonging to higher maturity strategies were rather automated. He also
stressed that automating the infrastructure e.g. by using containerization was
also a kind of risk management control because teams would generally not have
to access the product in the CD pipeline or production anymore. Looking at
the risks and controls table, the expert added that pair programming, as for
example done in Extreme Programming (XP), is also a method to ensure peer
reviews.

The expert agreed that the role of auditors will change in the near future
through the implementation of DevOps: whereas auditors in the past have
sought assurance in documents and procedures, they will now have to look
at toolstacks and logs to obtain the necessary information about automated
controls. He also mentioned that he was surprised by the little amount of
research that was done on DevOps until now, although many companies were
already using it in practice.

8.3 senior consultant - enterprise agility

The interviewee was a senior consultant in the enterprise agility line of a large
technology company. This line specializes in transformations towards Agile,
including Lean, DevOps, SAFe, LeSS and similar principles. The interviewee has
worked at the company for about 10 years and worked in healthcare before this.
Due to this background he had a specialization in human and organizational
behavior and change management which according to him was the most impor-
tant factor in Agile transformations. The interview therefore had a particular
focus on the human and cultural aspects of the proposed strategies and their
expected implications.

8.3.1 Risks in DevOps

Concerning the overview of risks he added that quality risks were also important
to consider. These were considered a valuable addition and were added to the
product risk category. The respondent did not agree with the project risk category

8.3 senior consultant - enterprise agility 73

because he thought that organizations using DevOps should not conduct projects
anymore. According to him, the main risk was that organizations were still
thinking in projects which hinders agility. Nevertheless, he thought that it was
recognizable that many companies were still using projects although they were
working DevOps but said that this category will ultimately not exist anymore
once the organizations grow in maturity and stop doing so.

8.3.2 DevOps risk governance

The respondent agreed with the DevOps risk governance overview. While he
thought that some of the names given to the elements in the house sounded
somewhat traditional, he agreed with the description he was given about these.
He proposed moving the culture block from the roof of the house to the bottom
to symbolize that it was the most important element and that the house would
collapse without the foundation. Similar to the first respondent, he had some
difficulties seeing the difference between the general risk management practices
and control processes.

8.3.3 DevOps risk management and controls

Generally, the interviewee felt that many of the suggested controls were still too
traditional and would only describe the first steps of a DevOps transformation
instead of the ultimate goal. He did however fully agree with the suggested
continuous deployment strategy since this did not make use of traditional
controls. The interviewee was convinced that companies should also consider
completely automating their delivery pipeline if they were operating in a high
risk environment because he thought that people would make more mistakes
than technology. The concept of continuous delivery was therefore redundant to
him because it should not be necessary that a person authorized deployment if
the company had already ensured that the scripts and tests were of sufficient
quality. Again, he noted that it was logical that companies at this point in time
still had the desire to use manual controls but that this should only be a first
step and not the ultimate goal.

For the same reason the respondent did not agree with the project risk category,
he did also not agree with the project management controls. Generally, he
thought that it would be rather inefficient to try and create a mixture of PRINCE2

and Agile management methodologies and said that transitioning to DevOps
required a completely new way of working that requires the company to drop
old habits. In this context he also pointed out that employees transitioning to
DevOps have to learn to trust the technologies instead of wanting to add manual
checks that are not necessary.

The expert stated that he did not particularly like the term "DevOps maturity"
because he did not like the idea of maturity models. However, since the term
was used on the matrix he thought that users should receive some instructions
on how to assess their DevOps maturity and risk impact since the advice they
receive from the framework depended on their position on the matrix. This
problem was already partially addressed by renaming the "risk impact" axis to
"risk appetite" which demonstrates that this is a choice that should be made

8.4 director - it assurance & advisory 74

by the company. Furthermore, our framework does not aim to prescribe the
exact controls a company should implement depending on their position on the
matrix but rather show them possibilities which controls they can use depending
on whether their teams are independent enough and have automated parts of
their delivery pipeline. The choice whether a company should pursue a high
or low DevOps maturity strategy is therefore also up to the company. The
company will however be limited naturally in its choice of controls if it has not
automated their pipeline yet or if teams are not yet trained enough to take on
extra responsibilities.

8.4 director - it assurance & advisory

The last interviewee was a director of the IT Assurance & Advisory department
in the same company as the first two respondents. He was specialized in IT
assurance and audit engagements as well as IT Risk advisory projects and had
worked in the field for over 12 years. The interview was therefore focused on
how the different strategies could be assessed from an auditing perspective and
whether the controls mitigated the risks sufficiently.

8.4.1 DevOps audit and controls

Similar to most other respondents, the expert acknowledged that the DevOps
transition will lead to new ways of working for IT auditors. Instead of auditing
the change process and particular objects, auditors will have to audit the auto-
mated scripts that ensure the testing and movement of the code through the
pipeline. He also pointed out that these scripts need to be updated regularly
once the system is changed and that the scripts also require the design of new
general IT controls (GITC) around them to ensure that they are always up to
date.

When asked about the importance of soft controls in Agile and DevOps, the
interviewee pointed out that this creates a significant responsibility for the learn-
ing & development department to ensure that employees are trained properly
and are continuously made aware of their responsibilities and the new processes.
This could for example happen through regular (online) trainings and letting
them sign an agreement when they start working at the company. He also stated
that he believed the soft controls were the most important controls in this way
of working because the other controls would only be effective if the soft controls
were.

Concerning the authorization process of automated deployment of products
he stated that it depends on the type of change that was conducted and that
there is no one best way to manage this. While small changes like performance
related updates could easily be automated and authorized by two developers,
other changes that impact functionality and possibly have an influence on legal
or security issues should be discussed with other knowledgeable actors. He also
pointed out that departments such as legal and security should be involved in
the design of the tests to ensure that only changes are deployed that comply with
their standards. He furthermore stated that the "four eye principle" (separation

8.4 director - it assurance & advisory 75

of duties) could theoretically be replaced by one developer deploying a change
alone and the pipeline taking the role of the second pair of eyes. Of course this
would only be possible if the developer was not allowed to change the pipeline
on his own and if the scripts were secured with a set of properly functioning
GITC. He also thought that the most important control is that companies should
not open their production for development activities because that would make
all tests in the deployment pipeline redundant.

8.4.2 DevOps risk governance

The respondent liked the visualization of the risk governance house and agreed
that culture was an important element that should represent the foundation of
the house. Generally, he thought that the more a company depends on automated
controls, the more important the human factor becomes. Similar to previous
respondents, he had difficulties seeing the difference between the general risk
management practices and control processes, although when explained to him,
he thought that they were somewhat similar to the first and second line of
defence in the three lines of defence risk management model. He generally
thought that the controls were more operational than the risk management
practices but pointed out that some practices like frameworks and project
management influenced other components which was also noted by the first
respondent. It therefore was ultimately decided to rearrange these pillars and to
create three risk management pillars based on the three lines of defence and to
position the pillar representing the DevOps components next to them.

8.4.3 DevOps risk management

The respondent agreed with the axes "risk appetite" and "DevOps maturity" on
the risk management matrix and added that in order to achieve a high DevOps
maturity, the fact whether the DevOps culture is already embedded in the minds
of the teams plays a big role. He also agreed that the positioning on the matrix
would not be the same throughout the company but depended on the system
at hand and the team that was responsible for it. When confronted with the
statement of the third respondent that companies in high risk environments
should also consider completely automating their deployment, the respondent
said that this was largely related to the risk appetite of a company. While
some companies like WebTech1 and 2 would be quicker to choose automated
deployment, teams working with systems related to airline security or treasury
management systems would not want this. Furthermore, he pointed out that
the identification of the impact of a change and the decision which scripts need
to be run on the piece of code to be deployed was an action that needed to be
done by a human being and could not be automated. He therefore thought that
continuous deployment in these environment would require such an extremely
high degree of preventive controls on the front-end that it would probably never
be feasible for all companies. He also pointed out that companies who had to be
SOx compliant were required to give out an in-control statement every year and
therefore could not take any risks but had to be sure their operations remained
in control during the DevOps transition. Looking at the proposed controls, he

8.5 case study participants 76

mentioned that asking a CAB for advice was still very traditional and that this
should just happen if changes were deployed that were not in line with the
beforehand agreed IT strategy.

8.5 case study participants

The results from the survey sent to the case study participants are summarized
in the following. The survey was answered by six respondents.

8.5.1 Risks in DevOps

The respondents generally agreed that the overview of risks covered all im-
portant risks in DevOps. Only one respondent indicated that he had a neutral
opinion concerning the overview and another respondent commented that
quality risks were lacking. This was due to an error in the survey which did
not mention quality risks as part of product risk. Since the respondent did
not mention any other risks missing, it is assumed that this respondent also
agrees with the overview of risks. Similarly to most interviewed experts, one
respondent pointed out that project risks were not specifically associated with
DevOps. He however mention that an advantage of agile projects is that teams
aim at delivering a working piece of software every sprint, starting with the
highest priority backlog items. This means that even if a project does not make
the deadline, the teams will still have delivered some important functionality
which is not necessarily the case in traditional projects. Another respondents
thought that transitional risks were not very significant and that organizational
risks (DevOps teams having to work with non-DevOps teams) was more of a
bad practice than a risk. While this construction is undoubtedly a bad practice,
it was decided to keep it as a risk in the overview since many companies in
reality still struggle with this and therefore need to consider this construction as
a source of risk.

8.5.2 DevOps risk management and controls

Opinions varied concerning the choice of the axes "risk appetite" and "DevOps
maturity". Employees from one company slightly disagreed with this choice
whereas two other respondents agreed and one was neutral. Since the names
of the axes were rated very positively by most interviewed experts, it was
decided to keep these names. Two respondents remarked that the maturity of
the DevOps teams was also dependent on the company as a whole and its
culture and technical ability and is thus not entirely up to the teams. One other
respondent thought that DevOps had different risks and a different view on
risks than traditional methods and that the whole implementation of DevOps
should be considered from this angle.

The vast majority of respondents (four of six) agreed that the proposed strategies
and controls would address the most important DevOps risks whereby only one
respondent was neutral and one disagreed. Similarly, four respondents thought
that the proposed controls would not hinder the DevOps process unnecessarily
while two respondents were neutral. Two respondents however remarked that

8.5 case study participants 77

the control "all changes through CAB" for the "Agile teams responsible for Dev+Ops"
strategy was too restrictive. The control was therefore changed to "most changes
through CAB" with the explanation that very low impact changes could be
deployed by the teams directly. One respondent stated that the "Experimental
Learning" strategy should contain a more controlled environment by using e.g.
BlueGreen deployment and A/B testing. These controls were added to the
strategy. The same respondent criticized the suggestion to let teams in this
strategy report to management since this would undermine team responsibility
and lead to responsibility-avoiding behaviour. As a response, a description
was added to the strategy that this should only happen as long as the teams
are not ready to work completely independently. Furthermore, reporting to
management incidentally is expected to increase the sense of responsibility
among team members since they are still free to make their own decisions but
need to justify these towards the management. Another respondent from the
same company did not agree that the "Continuous deployment" strategy was
positioned as a higher risk appetite strategy since he thought that manually
setting software into production brought about more risks. Since bringing the
software into production only includes one click on the button and this strategy
thus includes another preventive control, it was decided to keep the positions
of strategies this way. The respondent added that an advantage of continuous
deployment is that deployments can be planned at times when users are not
disturbed by the updates whereas a manual deployment would likely take place
during working hours.

Three of the respondents thought that the matrix was a useful tool for compa-
nies who did not know yet know how to organize their processes related to
DevOps whereas one respondent was neutral and employees from one company
disagreed. These were the two respondents who indicated that they did not
agree with the names of the axes in the first place and subsequently did not
agree very much with the proposed strategies.

Responses were mixed concerning the placement of risks on the matrix and to
what extent the strategies sufficiently mitigated these risks. Two respondents
thought that the strategies addressed the risks sufficiently while one was neutral
and three disagreed. This was the only part of the risk management framework
with which half of the respondents disagreed. While there was no explanation
given by these respondents, it is assumed that respondents that did not agree
with "Continuous Deployment" as a higher risk appetite strategy did also not
agree that product risks were higher in companies that deployed more often.

8.5.3 DevOps risk governance

Multiple respondents indicated that they liked that culture was a fundamental
part of the governance overview. One respondent stated that the house should
also visualize how the DevOps processes connect with the risk management
processes, e.g. through monitoring, logging and quality assurance in testing.
While this was not possible to visualize due to aesthetic reasons, we added a
description to the house that explains the interdependency of the two groups.
Another respondent indicated that he needed some more explanation to fully
understand the visualization. It can therefore be concluded that the overview of

8.6 summary and adjustments 78

risk governance components should always be well explained to avoid misun-
derstandings.

8.6 summary and adjustments

The validation interviews have led to some minor changes such as renaming the
"risk impact" axis to "risk appetite" and creating three pillars based on the three
lines of defence in the risk governance house. Furthermore, some controls were
slightly adjusted or added based on feedback from the case study respondents.

The respondents overall agreed with both the classification of risks as well
as the risk management matrix and its respective strategies. Only case study
participants from one company disagreed with the proposed strategies and one
DevOps expert did not agree with the traditional controls. Overall, the matrix
was evaluated positively on its risk mitigation ability and very positively on
the agility requirement, meaning that the proposed controls sufficiently miti-
gated risks and would not hinder the DevOps process unnecessarily. Managers,
auditors and IT Risk experts seemed to be more positive about the proposed
approach than DevOps team members and one of the DevOps experts.

This expert and one survey respondent indicated that companies in high risk en-
vironments could also completely automate their deployment pipeline whereas
the two risk management experts thought that this would theoretically be possi-
ble but require such an extensive amount of preventive, automated controls and
trust into the pipeline that such a strategy would probably not be feasible for
companies with a very low risk appetite. The other case study respondents and
DevOps expert also indicated that they agreed with the positioning of strategies
on the matrix. It was therefore decided to maintain the suggested continuous
delivery approach for companies with a low risk appetite.

Many respondents noted that the project risk category was not entirely rep-
resentative of DevOps organizations since projects are a traditional concept.
Nevertheless, they acknowledged that many companies still use projects and
this is therefore a source of risk that needs to be considered. One respondent
pointed out that Agile projects also have some advantages compared to tradi-
tional projects, although a comparison of these two is not within the scope of this
research. Due to the amount of companies that still use this term and in order to
stress that risks in this category do not only apply to development activities, it
was ultimately decided to keep the term "project" in the risk category overview.
The category therefore describes any activity within the DevOps environment
that is bound to a time planning, budget and involves multiple actors. One
DevOps expert stated that the project risk category will vanish once companies
completely embrace the DevOps mindset and stop working project-based.

Another important conclusion is that the risk categories identified are not
mutually exclusive but represent different levels on which the risks can manifest
themselves. Nevertheless, all respondents thought that the overview was a useful
tool that could help companies identify relevant risks. Lastly, it was found that
the DevOps risk governance overview should always be accompanied by a
detailed explanation concerning the interdependencies of some components.

9
D I S C U S S I O N

9.1 implications

The objective of this research was to create a risk management framework that
helps companies control their DevOps environment while remaining agile. In
order to do so we have identified risks that are applicable to companies using
DevOps as well as gathered and structured risk management practices that can
be used for managing risks in DevOps. The encountered evidence from this
study has wide reaching implications for companies, auditors as well as future
research.

9.1.1 Core values of DevOps and how to implement them

The DevOps approaches presented in our framework are based on the four
dimensions of Lwakatare et al. which are collaboration, automation, measurement
and monitoring. As mentioned in Section 2.1, this thesis did consciously not
choose one exact definition of DevOps and stick to it. The final artifact designed
to help companies implement DevOps supports this decision since the "What is
DevOps" discussions seems rather irrelevant considering the need for tailoring
the concept to the companies’ needs and situation. While some practitioners
would only consider a completely automated CD strategy to fall under the
definition of DevOps, others consider DevOps to only be the combination of
development and operations into one team which is given in all four strategies.
This diverse understanding of DevOps was also encountered during the case
studies since companies had widely differing processes. Looking at the results
of this research, the real question that companies should ask themselves is not
how they can implement a fixed definition of DevOps they have in mind and
simultaneously remain in control, but rather how they can tailor the DevOps
philosophy to their needs in order to leverage their risk management processes
through DevOps and experience the maximum amount of benefits without
risking major losses or disasters.

Despite being averse to defining a precise definition however, this study has
made clear what the core values of DevOps are and which elements are most
important in a DevOps environment. It has become obvious that soft controls
such as culture, communication and the feeling of responsibility are essential.
These controls have a significant impact on the success and the risks of a
DevOps endeavor and should not be underestimated, neither by managers
nor by auditors. The cultural aspects encountered in this study can also be
related back to the Agile manifesto which is the core of all agile methods and
emphasizes individuals and interactions, working software, customer collaboration
and responding to change.

Even if a company was technologically very advanced and had implemented the
best automated controls available, a lack of responsibility or trust will still lead

79

9.1 implications 80

to the failure of the DevOps process. The direct consequence to these findings
is that companies using DevOps will have to find a way to consolidate the
DevOps culture in the organization, preferably before implementing any other
DevOps processes. Employees need to be encouraged to come forward if they
have made a mistake, knowing they will not be punished for it. Furthermore,
companies need to ensure that teams communicate among each other and are
aware of their responsibilities. Companies that aim for the maximum rate of
agility should also encourage teams to take some risks while maintaining the
continuous improvement mindset. On one hand this means that companies need
to make sure the right processes and tools are in place, such as key performance
indicators that focus on recovering fast from mistakes instead of failure rates
as suggested by Farroha and Farroha [13], and the availability of tools that
support communication between teams. It is also necessary to clearly assign and
communicate responsibilities, both in terms of team responsibilities as well as
by creating supporting structures outside the team e.g. for questions regarding
security, compliance or legal issues. The more difficult part however includes
changing the mindset of employees. Examples of mechanism for this are the
"failure treats" encountered during the case study as well as regular trainings
provided by the learning & development department and communication plans
for scaling up problems.

9.1.2 Risk management in DevOps and the role of automation

The results further suggest that a crucial part of risk management concerns the
process design of DevOps. Nevertheless, recurring risk evaluation dialogues are
a very important practice to ensure that the designed process still addresses all
relevant risks in the volatile DevOps environment. The use of an automated
delivery pipeline increases the responsibility of the DevOps teams to consider the
impact of a change before every deployment and to ensure that the automated
tests cover all relevant parts of the code. Automated checks can again aid with
this by halting the process if the test coverage is not high enough, however, they
cannot replace human judgement. This stresses the importance of soft controls
once more. Generally, automation of processes should be seen as a supporting
mechanism to help achieve the DevOps values by organizations and not as
a goal in itself. The case study of GeoTech (Section 6.6) shows that it is not
necessary to completely automate the delivery process in order significantly
improve incident resolution and change throughput times. The added value of
DevOps rather seems to lie in the combination of development and operations
into one, autonomous team instead of complete automation. Looking at the risk
management framework, this indicates that companies should not stay in the
low-maturity quadrants for too long since DevOps teams have to learn how to
operate independently to reap the true benefits of DevOps. These strategies are
therefore merely meant to support companies during their maturity growth.

This study also suggests that completely automating the deployment pipeline
is not always feasible nor desirable for companies with a low risk appetite,
although a few respondents working with DevOps did not agree with this
statement. Some of these respondents pointed out that DevOps inherently
mitigates risks by emphasizing rigorous testing and holding teams responsible

9.1 implications 81

for development and operations. Nevertheless, continuous deployment brings
new challenges and advantages that need to be considered when choosing
to implement it: Firstly, deploying small releases frequently, leads to earlier
error detection and allows companies to perform faster rollbacks. Furthermore,
employing automated checks leads to a basic quality assurance of the deployed
product. On the other hand, frequent deployment also means that more items
might be deployed that are not working as expected, especially if releases
are committed that contain new functionality which is not (yet) covered by
the automated tests. Therefore, IT Risk experts agreed that companies with a
low risk appetite could benefit from adding another manual approval before
deployment (as suggested in Section 7.3.2) while still making use of automated
testing or could alternatively aim at creating a hybrid environment as proposed
by Yasar [56].

One of the most difficult parts of creating an efficient DevOps environment
seems to be the integration of processes from DevOps teams with non-DevOps
departments. According to one interviewed expert, it is most desirable that
an organization completely moves towards a DevOps way of working instead
of trying to keep traditional structures. However, this might not be feasible
for all organizations. Alternatively, organizations could consider separating
DevOps teams from the rest of the organization and treat them like separate
entities or internal start-ups, therefore limiting their contact with non-DevOps
departments.

Despite the challenges encountered, all case study respondents were positive
about using DevOps which suggests that the DevOps approach yields some
significant advantages over traditional development methods such as faster
delivery speed, less incidents and improved customer service. This was also
clearly demonstrated in the case study of GeoTech in Section 6.6. The risk
management framework has therefore been designed in such a way that it
supports and accompanies the companies throughout their maturity growth
since higher DevOps maturity will let them reap more benefits. Contrary to some
expectations created in literature, most case study participants did not perceive
compliance requirements as hindering the DevOps process particularly. However,
the described situations are not entirely comparable since Laukkarinen et al.
[22] performed an analysis of requirements for medical devices. Compliance
therefore only seems to be an obstacle to DevOps in very specific sectors but not
generally to the broad range of companies which we studied. Most importantly,
this research has shown that it is entirely possible to remain in control of DevOps
and CD practices and to demonstrate this control towards auditing parties if
DevOps is implemented correctly. Generally, this becomes easier as more parts
of the pipeline are automated while hybrid environments are more difficult
to manage. Some tools can even improve compliance and control significantly
compared to traditional methods through the use of automated logging tools
as well as IaC and containers that increase traceability and ensure correct
configuration of the development, testing and production environments at all
times.

9.2 validity and reliability of research 82

9.1.3 The future of IT audit

As predicted by literature and interviewed experts, DevOps will continuously
gain importance in IT audits due to its increasing application on critical en-
terprise systems. This makes it imperative for companies using DevOps to be
capable of demonstrating the control of their processes. However, this research
also shows that the profession of IT auditors will change significantly in the
future. Besides having to audit the effectiveness of soft controls within an orga-
nization, auditors will also have to become more technologically skilled. Instead
of auditing procedures and samples, IT audit will have to focus on automation
tools and scripts that execute these procedures. This requires that auditors can
e.g. understand deployment scripts and assess their effectiveness, evaluate auto-
mated tests and review log files. Furthermore, they will have to assess the GITC
around the deployment pipeline in terms of access and change management.

9.2 validity and reliability of research

Reliability refers to consistency of measures, while validity is characterized as
whether an indicator that is designed to measure a certain concept really does
measure the intended concept [3]. According to Yin [57], case study research has
to maximize four subtypes of reliability and validity to ensure the quality of the
design: construct validity, internal validity, external validity, and reliability. These
will be discussed in the following.

9.2.1 Construct validity

Construct validity implies that the researcher needs to establish correct op-
erational measures for the concepts being studied [57]. Construct validity is
sometimes viewed as problematic in case study research since some subjective
judgement is used to collect the data.

The initial measures collected during the case studies in this research concerned
process design and practices such as access management, change management
and the configuration of the software delivery pipelines. These concepts were
therefore "hard facts" that could be objectively measured and had shared mean-
ing by all participants involved. Concepts that were more difficult to measure
include softer aspects related to the success of risk management or DevOps,
responsibility and trust since these depend on personal judgement of the inter-
viewee and researcher.

Riege [38] suggests to ensure construct validity in case study research by using
multiple sources of evidence, establishing a chain of evidence and to have key informants
review the draft case study report. One limitation to the first criterion is that
various case studies depended on one single interview with one employee of the
company. On the other hand, we have studied a broad range of organizations
and used multiple types of sources (interviews, documents, observations and
informal conversations) in other cases, which compensates for the thin evidence
within some companies. The second criterion was fully fulfilled since a chain of
evidence should be established by using verbatim interview transcripts and notes
of observations which supply sufficient citations and cross checks of sources of

9.2 validity and reliability of research 83

evidence. Lastly, all all informants have read their respective interview transcript,
however, the review of the results through case study participants was limited to
six people. Overall, it can therefore be concluded that the three criteria suggested
by Riege have been sufficiently fulfilled although the limited number of evidence
within some case studies partly limits construct validity.

9.2.2 Internal validity

Internal validity is of concern to causal or explanatory case studies in which
the researcher tries to determine whether event x led to event y [57]. The
research at hand draws many causal conclusions such as the influence of certain
controls on successful risk management. Internal validity of these conclusions
is therefore of great importance to this research. According to Riege [38], the
corresponding design test to internal validity is credibility. Yin [57] suggests
the following case study tactics for increasing internal validity: pattern-matching,
explanation-building and time-series analyses. While this research does not draw on
time-series analyses, the other two criteria were fulfilled. Pattern matching was
conducted by studying multiple companies and observing which features and
processes companies with mature DevOps processes shared. The factors that
were identified as critical for managing risks in DevOps were then provided
with detailed explanations. Furthermore, the collected data was analyzed and
relationships were established using open and axial coding techniques. This
way we have also established within-case as well as cross-case analyses of the
available data as suggested by Riege [38]. It can therefore be concluded that
there are little doubts concerning the internal validity of this research.

9.2.3 External validity

External validity is concerned with establishing a domain to which a study’s
findings can be generalized [57]. The study at hand has tried to differentiate the
conclusions based on the companies risk appetite and DevOps maturity and
therefore aims to represent a range of companies and establish wide generaliz-
ability. According to Yin [57], using a replication logic and multiple case studies
as done in this research can help increase external validity and thus ensure
that the findings are generalizable beyond the case study at hand. We have also
compared the collected data to evidence from extant literature as suggested by
Riege [38].

Nevertheless, it is never possible to be completely certain of external validity,
even though we have applied rigorous research methods and replicated some
findings across multiple companies. The external validity of this study is lim-
ited by the number of case studies which is extremely small compared to all
companies using DevOps. Furthermore, all case companies were located in the
Netherlands which could also lead to cultural bias. It is therefore not possible
to guarantee full external validity, although the research methods and findings
suggest a rather high degree of generalizability.

9.2 validity and reliability of research 84

9.2.4 Reliability

Reliability is characterized as demonstrating that the operations of a study can
be repeated with the same results[57]. In order to do so, case study researchers
should use a case study protocol and develop a case study data base [57]. Among
others, Riege [38] suggests to give full account of theories and ideas and assure
congruence between the research issues and features of the study design.

The conducted research phases have been recorded as detailed as possible in
this thesis. Due to the anonymity of case study respondents it is not possible to
exactly describe the nature of each company which somewhat limits replicability.
Although almost every company implemented DevOps differently, it is expected
that a second execution of this research will encounter similar risk management
practices as we have in this research. This is especially plausible for those
practices that were encountered in multiple companies. It is also expected that
the same soft aspects will be identified as important as in this research.

9.2.5 Design research quality

The above performed analysis was based on validity and reliability criteria
for case study research. In order to demonstrate the validity and reliability of
the design research part of this study, we use the seven guidelines for design-
science research by Hevner et al. [18]. When analyzing the research using
these guidelines, it becomes evident that all principles have been fulfilled. The
weakest part of the research is the validation (Guideline 3) since this was only
done with expert opinions and a limited number of case study respondents. A
truly naturalistic validation of the artifact, for example through a case study, is
therefore lacking and could be conducted in future research. However, all other
guidelines have been rigorously followed which suggests an overall reliable and
valid design research.

Table 9.1: Guidelines for design-science research according to Hevner et al. [18] applied
to this research

guideline description application

1 Design as
Artifact

Design-science research must
produce a viable artifact in
the form of a construct, a
model, a method or an instan-
tiation.

We provide a DevOps risk
management matrix includ-
ing four strategies for man-
aging risks in DevOps.

2 Problem
Relevance

The objective of design-
science research is to de-
velop technology-based solu-
tions to important and rele-
vant business problems.

Risk management in DevOps
has been identified as a rele-
vant business problem. Our
solution strategies are mostly
technology based.

9.2 validity and reliability of research 85

guideline description application

3 Design
Evalua-
tion

The utility, quality, and effi-
cacy of a design artifact must
be rigorously demonstrated
via well-executed evaluation
methods.

Our framework was vali-
dated with expert opinions
and the case study respon-
dents. An empirical valida-
tion is still lacking.

4 Research
Contribu-
tions

Effective design science re-
search must provide clear
and verifiable contributions
in the areas of the design
artifact, design foundations
and/or design methodolo-
gies.

This research is one of the
first studies to explore the
topic of risk management in
DevOps. It is also one of a
limited numbers of empirical
studies in the domain of Dev-
Ops.

5 Research
Rigor

Design-science research relies
upon the application of rig-
orous methods in both the
construction and evaluation
of the design artifact.

We have conducted a rig-
orous multivocal literature
study according to the proce-
dure by Kitchenham [21] and
empirical case studies apply-
ing a structured coding pro-
cess [3].

6 Design as
a Search
Process

The search for an effective ar-
tifact requires utilizing avail-
able means to reach desired
ends while satisfying laws in
the problem environment

The design and validation
process took iterative ap-
proaches in search of the op-
timum artifact.

7 Commu-
nication
of
Research

Design-science research must
be presented effectively both
to technology-oriented as
well as management-oriented
audiences

The research has been pre-
sented to a group of IT Audit
& Risk Management profes-
sionals as well as to a group
of IT Managers and CIOs. It
will also be defended in front
of university researchers in
the field of Business Informa-
tion Technology.

9.2.6 Summary

While no major threats to internal validity, external validity and reliability have
been identified, case study research is often naturally limited in construct validity
due to subjective measurements. In our research, many of the measured objects
were processes and practices which can be objectively measured. However,
aspects related to organizational culture were more difficult to identify and are
therefore limited in construct validity. Although we have taken measures to
limit subjectiveness by collecting data from multiple sources, some cases depend
on only one interview with a single employee and are therefore still limited in

9.3 contributions to research and practice 86

validity. This is somewhat compensated for by the fact that we have studied a
total of nine companies.

A second limitation is that this study does not provide a completely natural-
istic evaluation. In order to verify whether the framework really brings the
expected results, a case study should be conducted by using the framework
while implementing DevOps in a real-world company.

9.3 contributions to research and practice

9.3.1 Contributions to research

Literature related to risk management in DevOps is still limited and strongly
lacks empirical research. The lack of research on this topic has even been
lamented by interviewees during this study. Nevertheless, research about Dev-
Ops in general has increased significantly over the past two years and is expected
to grow further as the DevOps concept continues to gain importance in the
business world. This study is also one of the first to provide empirical evi-
dence on managing risks in DevOps. We have set an example for subsequent
research by studying a total of nine companies and providing an overview
of their practices. Due to the empirical component, this study also provides
less idealized descriptions of DevOps processes and more real-world insights.
Most other papers we encountered only described very advanced, automated
processes which were only encountered in few companies during this study
and did not address the real problems that most companies were struggling
with. Furthermore, only a small amount of papers have been identified that
specifically dealt with addressing risks in a DevOps context of which the thesis
at hand is the most elaborate research. We therefore believe that this research
contributes significantly to the DevOps research community.

Besides researching risk management in DevOps, we have also described the
case of a company which implemented DevOps and provided quantitative
data about the observed benefits. This was something that was still missing in
academic literature according to Erich et al. [12].

9.3.2 Contributions to practice

On the practical side, this thesis provides a framework based on proven empiri-
cal practices which can guide DevOps practitioners in designing appropriate
DevOps processes for their companies and addressing relevant risks. The use
of such a framework has been acknowledged by case study participants and
industry experts which sparks the hope that the framework at hand will be of
real use to them.

On a general note, this thesis might contribute to taking the "buzz" from the
DevOps hype and help DevOps advance towards a useful concept that can
actually add business value. For this to happen, practitioners need to realize
that only focusing on the implementation of trending topics like continuous
deployment pipelines is not always the best solution for their company as
demonstrated in this thesis.

9.4 related and future work 87

9.4 related and future work

9.4.1 Related work

During the course of this research, more papers in the domain of DevOps have
been published which have not been included into the literature review. Our
claims towards the academic contributions of this paper are therefore limited
to the time of the literature data collection which was conducted in June 2018.
An exploratory literature review has shown that as of February 2019, notable
academic contributions about compliance and DevOps as well as DevSecOps
include:

• V. Mohan, L. ben Othmane and A. Kres "BP: Security concerns and best
practices for automation of software deployment processes -An industrial
case study", 2018 IEEE Secure Development Conference [31]

• A. Subramanian, P. Krishnamachariar, M. Gupta and R. Sharman, "Audit-
ing an agile development operations ecosystem", International Journal of
Risk and Contingency Management [48]

-this paper was not fully accessible and was selected based on the abstract and
introduction

• T.C.M. Fernandes, I. Costa, N. Salvetti, F.L.F. de Magalhães and A.A.
Fernandes, “Influence of DevOps practices in IT management processes
according to the COBIT5 model”, NAVUS – Revista de Gestão e Tecnologia
[14]

-this paper is in Portuguese and was only selected based on the English abstract

• L. Williams, “Continuously integrating security”, Proceedings - 2018 ACM/
IEEE 1st International Workshop on Security Awareness from Design to Deploy-
ment, SEAD 2018 [55]

During this exploratory literature review, no papers covering the exact same
problem statement as this research have been encountered which shows that the
relevance of this study remains.

9.4.2 Future work

This thesis has only studied the implementation and execution of DevOps
from a risk management perspective. In order to guarantee successful Dev-
Ops processes, more research is needed to identify other factors that ensure
implementation success. Likewise, this thesis only provides a limited overview
of benefits associated with DevOps (called "success indicators" in this thesis)
whereas a more complete assessment still needs to be established.

An ongoing challenge for practitioners is the application of the so-called "soft
controls" within an enterprise such as company culture, employee responsibility
and trust. Future research should focus on how to implement these control as
well as how to demonstrate them so they could potentially be considered in
DevOps audit and assurance engagements in the future. The thesis at hand has

9.4 related and future work 88

already made a start by naming some practices that could indicate the presence
of these controls such as security awareness trainings, non-disclosure agreements
or team responsibility trainings. Furthermore, it was stated during the literature
review that existing compliance requirements like frameworks and laws are
mostly directed at traditional development processes and therefore do not fit
naturally with DevOps. In order to provide assurance on the increasing amount
of agile and DevOps processes, these frameworks will have to be adjusted in the
near future. This thesis has already demonstrated how DevOps processes can
be kept under control and suggested some fitting controls for this.

Lastly, this study was not concerned with comparing the risks from a traditional
waterfall method and the DevOps approach. Some respondents thought that
DevOps inherently lowered risks and that risks in DevOps were therefore fewer
and different than risks in waterfall. Other respondents pointed out that the
overview of risks given in Section 7.1.1 showed that risks in DevOps are not
very different from those encountered in a traditional waterfall process and
that only the controls to mitigate these risks are different. Since we did not
study the waterfall method in this study, we can make no conclusions regarding
a comparison between the two approaches. However, a comparison is also
not expected to be of importance to the target companies of this study since
they have already decided to transition to DevOps and are not concerned with
the waterfall method anymore. For companies still contemplating whether to
implement DevOps or not, a thorough comparison of risks in waterfall and
DevOps and a conclusion which approach bears the most overall amount of
risks however could be of value.

10
C O N C L U S I O N

10.1 research questions

This study aimed at investigating possibilities for companies to manage risks
and increase internal control while using DevOps without trading off too much
of the agility and benefits that DevOps offers. Secondly, it intended to research
how these companies can demonstrate their internal control towards IT auditing
parties. It has followed the main research question:

What is a suitable framework that allows companies to mitigate risks and exercise
control over their DevOps environment while remaining agile?

In order to answer this question, a multivocal literature review and nine case
studies have been performed. The results of this study have been evaluated with
four experts and six case study respondents. The main research question was
divided into three sub-questions which are answered in the following.

1. What types of risks are companies using DevOps exposed to?

The empirical research has shown that risks associated with DevOps can be
grouped into five categories which are transitional, organizational, project, team
and product risks. As experts pointed out during the validation phase, not all
risks in these categories are purely associated with DevOps since they are
also important in traditional forms of software development. Furthermore, the
risk categories are naturally overlapping since one risk can be associated with
multiple categories and one risk can lead to another. Project risks and transitional
risks are expected to only apply to companies who are still in particular stages
of the DevOps transition while the other risks remain relevant to all companies
using DevOps. The classification was judged to be a helpful tool for companies
when analyzing risks in DevOps.

2. Which practices exist that can be incorporated into a DevOps process to demonstrate
control and ensure the creation of valid audit trails?

This thesis has given an extensive overview of practices that can be applied in
DevOps to address the risks identified in research sub-question 1. These practices
concerned both automated controls that are integrated into the DevOps process
as well as more traditional controls that can be used in combination with DevOps.
The hard controls were categorized into access management, change control, security,
compliance, monitoring, logging and others. Besides these hard controls, important
soft controls such as culture, communication and team responsibility and more
general risk management aspects and frameworks were identified. A complete
overview of all practices can be found in Appendix D.

89

10.2 key contributions and findings 90

3. Which strategy should companies drive in order to identify risks and implement
suitable controls?

Based on the findings related to research sub-questions 1 and 2, four strategies
were designed which teams can use based on their DevOps maturity and risk
appetite. While only one of these strategies would be considered as "fully
DevOps" (referring to complete automation of processes and maximum speed)
by some practitioners, all strategies allow users to reap the maximum amount
of benefits from DevOps while remaining in control of their operations. We
also show that complete automation of processes is not necessary in order to
significantly improve change throughput and incident resolution times since
the main added value seems to lie in the combination of developmental and
operational tasks.

10.2 key contributions and findings

During the literature review, a lack of empirical research on risk management
and DevOps was encountered. The research at hand therefore helps both practi-
tioners as well as researchers to understand the interdependency of risk manage-
ment and DevOps better. Our findings generally align with the scarce resources
that were available. The main contributions to academia and practice are three-
fold:

• scientific: This study is one of few and the most elaborate empirical study
we have found so far regarding risk management in DevOps.

• practical: We provide an overview of important DevOps risk governance
components and a contingency-based framework for companies on how
to integrate risk management practices into their DevOps processes.

• practical: This study provides insights for auditors that want to provide
assurance on internal control on how to audit DevOps processes.

The most important findings of this research are outlined in the following section
by means of key statements.

1. DevOps does not have to be a trade-off between risk and agility

This research has demonstrated that applying DevOps practices does not have
to lead to less control over processes. Case studies have shown that full or partial
automation of the deployment pipeline and infrastructure can help increase
control by enforcing automated tests, automatically monitoring and logging
actions and using version control on code and infrastructure configurations.
However, companies that do not want to automate their processes completely
can also remain in control while using DevOps by integrating more traditional,
manual practices into the delivery process.

2. DevOps culture is the basis for successful risk management

We have found that a culture of responsibility, communication and trust is
essential for managing risks in DevOps. While this is probably the most diffi-
cult part to implement during the transition, DevOps heavily relies on these

10.2 key contributions and findings 91

aspects since no elaborate approval processes are conducted and teams can
often deploy releases independently. Among others, this implies that teams
need to be responsible enough to come forward in case of questions or concerns.
Nevertheless, teams also need to receive enough autonomy from management
to solve incidents quickly and independently.

3. DevOps requires clear roles and responsibilities

DevOps requires clearly assigned roles and responsibilities. This refers to the
responsibilities of the teams as well as to contact people outside of the teams
whom they can approach in case of questions or concerns. Second line of defence
functions are of great importance in DevOps since these need to ensure that
the teams are informed sufficiently e.g. about security or compliance issues
and need to provide the teams with the right tools. They should also audit the
teams regularly without undermining their autonomy. Different to traditional
processes, these roles and responsibilities however should be embedded into the
minds of the employees instead of just being defined in procedure files.

4. There is no one best way to manage risks in DevOps

Two factors were identified that influence how companies organize their software
delivery processes:

• Risk appetite: The extent to which a company accepts that some releases
are deployed that are not completely accurate and prefers to perform fast
rollbacks instead of not making any mistakes.

• DevOps maturity: How independently the teams are able to operate as
well as to what extent they are ready to automate parts of their delivery
process.

While companies with a lower risk appetite used more preventive controls,
companies with a higher risk appetite were more prone to use continuous
deployment techniques. Furthermore, many companies made a distinction
between low impact changes that can be deployed independently by the teams
and higher impact changes that have to be approved by a Change Advisory
Board first. The proposed risk management framework takes these influencing
factors into account by suggesting extra manual controls for teams that are
not yet using elaborate automation and proposing more preventive controls for
companies that do not want to rely purely on a continuous deployment process.

5. Continuous deployment is not for everyone

While some companies stated to aim for complete automation of their deploy-
ment process, others did not think that deploying multiple times per day was
necessary. Continuous deployment brings upon various advantages and chal-
lenges and it is ultimately up to the company to decide whether it wants to
accept these. Nevertheless, automation should rather be seen as a supporting
mechanism to implementing the DevOps philosophy by aiding faster and more
frequent deployment and ensuring basic quality assurance through automated
testing.

10.2 key contributions and findings 92

6. Opinions about DevOps differ widely

All interviewees were generally positive about using DevOps, although people
had widely differing opinions about what DevOps was and how it should be
dealt with. It therefore seems unattainable to develop a framework that everyone
involved with DevOps completely agrees with. One expert and some case study
respondents regarded DevOps as inherently mitigating risks and thus being a
lower-risk approach than waterfall methods. Other respondents thought that
DevOps was a method with great potential that however needed thorough risk
management practices to remain in control. While some validation respondents
working with DevOps thought that companies with a lower risk appetite should
use continuous deployment since this would bear less risk, other respondents
among which IT Risk experts thought that continuous delivery was a feasible
alternative due to the extra manual approval. Ultimately, the choice which risk
mitigation strategy to use is of course left to the company.

B I B L I O G R A P H Y

[1] Addison-Hewitt Associates, “A guide to the Sarbanes-Oxley Act,” 2006,
"[Online]. Available: http://www.soxlaw.com. [Accessed: 12-Jan-2019]".

[2] R. Bierwolf, P. Frijns, and P. van Kemenade, “Project management in a
dynamic environment: Balancing stakeholders,” in 2017 IEEE European
Technology and Engineering Management Summit (E-TEMS), 2017, pp. 1–6,
isbn: 978-1-5386-3721-0. doi: 10.1109/E-TEMS.2017.8244226.

[3] A. Bryman, Social research methods, 4th. Oxford University Press, 2012, isbn:
978–0–19–958805–3.

[4] Committee of Sponsoring Organizations of the Treadway Commission,
Enterprise risk management - Integrated framework, 2004.

[5] H. Davies and M. Zhivitskaya, “Three lines of defence: A robust organising
framework, or just lines in the sand?” Global Policy, vol. 9, no. Supplement
1, pp. 34–42, 2018, issn: 17585899. doi: 10.1111/1758-5899.12568.

[6] J. DeLuccia IV, J. Gallimore, G. Kim, and B. Miller, “DevOps audit defense
toolkit,” IT Revolution, Tech. Rep., 2015.

[7] P. Debois, “DevOps: A software revolution in the making?” Cutter IT
Journal, vol. 24, no. 8, pp. 3–5, 2011, issn: 15227383.

[8] DevOps Agile Skills Association (DASA), “12 critical skills and knowl-
edge areas required for DevOps,” "[Online]. Available: https://www.
devopsagileskills.org/dasa-competence-model/. [Accessed: 20-Feb-2019]".

[9] DevOps Enterprise Forum, An unlikely union: DevOps and audit - Information
security and compliance practices. IT Revolution, 2015.

[10] DevOps.com, “The state of DevOps adoption and trends in 2017,” 2017,
"[Online]. Available: https://devops.com/state-devops-adoption-trends-
2017. [Accessed: 10-Jan-2019]".

[11] O. Diaz and M. Muñoz, “Fortaleciendo un enfoque DevOps con seguridad
y gestión de riesgos: Una experiencia de su implementación en un centro
de datos en una organización mexicana [Reinforcing DevOps approach
with security and risk management: An experience of implementing it
in a data center of a mexican organization],” in 2017 6th International
Conference on Software Process Improvement (CIMPS), 2017, pp. 1–7, isbn:
978-1-5386-3230-7. doi: 10.1109/CIMPS.2017.8169957.

[12] F. M. Erich, C. Amrit, and M. Daneva, “A qualitative study of DevOps
usage in practice,” Journal of Software: Evolution and Process, vol. 29, no. 6,
2017, issn: 20477481. doi: 10.1002/smr.1885.

[13] B. S. Farroha and D. L. Farroha, “A framework for managing mission
needs, compliance, and trust in the DevOps environment,” in Proceedings -
IEEE Military Communications Conference MILCOM, 2014, pp. 288–293, isbn:
9781479967704. doi: 10.1109/MILCOM.2014.54.

93

http://www.soxlaw.com
https://doi.org/10.1109/E-TEMS.2017.8244226
https://doi.org/10.1111/1758-5899.12568
https://www.devopsagileskills.org/dasa-competence-model/
https://www.devopsagileskills.org/dasa-competence-model/
https://devops.com/state-devops-adoption-trends-2017
https://devops.com/state-devops-adoption-trends-2017
https://doi.org/10.1109/CIMPS.2017.8169957
https://doi.org/10.1002/smr.1885
https://doi.org/10.1109/MILCOM.2014.54

bibliography 94

[14] T. C. M. Fernandes, I. Costa, N. Salvetti, F. L. F. de Magalhães, and A. A.
Fernandes, “Influência das práticas do DevOps nos processos de gestão
de TI conforme o modelo COBIT 5 [Influence of DevOps practices in
IT management processes according to the COBIT 5 model],” NAVUS
– Revista de Gestão e Tecnologia, pp. 20–31, 2018, issn: 22374558. doi: 10.
22279/navus.2018.v8n1.p20-31.584.

[15] S. D. Gantz, The basics of IT audit: Purposes, processes, and practical information.
2013, pp. 1–244, isbn: 9780124171596. doi: 10.1016/C2013-0-06954-X.

[16] V. Garousi, M. Felderer, and M. V. Mäntylä, “The need for multivocal litera-
ture reviews in software engineering,” in Proceedings of the 20th International
Conference on Evaluation and Assessment in Software Engineering - EASE ’16,
2016, pp. 1–6, isbn: 9781450336918. doi: 10.1145/2915970.2916008.

[17] V. Garousi, M. Felderer, and M. V. Mäntylä, Guidelines for conducting
multivocal literature reviews in software engineering, 2017.

[18] A. R. Hevner, S. T. March, J. Park, and S. Ram, “Design Science in IS
Research,” MIS Quarterly, vol. 28, no. 1, pp. 75–105, 2004.

[19] IT Governance Institute, IT control objectives for Sarbanes-Oxley [exposure
draft], 2nd ed. 2006.

[20] R. Jabbari, N. bin Ali, K. Petersen, and B. Tanveer, “What is DevOps?
A systematic mapping study on definitions and practices,” Proceedings
of the Scientific Workshop of XP2016, pp. 1–11, 2016, issn: 07421222. doi:
10.1145/2962695.2962707.

[21] B. Kitchenham, “Procedures for performing systematic reviews,” Software
Engineering Group, Keele University & Empirical Software Engineering,
National ICT Australia Ltd., Tech. Rep., 2004.

[22] T. Laukkarinen, K. Kuusinen, and T. Mikkonen, “DevOps in regulated
software development: Case medical devices,” in 2017 IEEE/ACM 39th
International Conference on Software Engineering: New Ideas and Emerging
Technologies Results Track (ICSE-NIER), IEEE, May 2017, pp. 15–18, isbn:
978-1-5386-2675-7. doi: 10.1109/ICSE-NIER.2017.20.

[23] T. Laukkarinen, K. Kuusinen, and T. Mikkonen, “Regulated software meets
DevOps,” Information and Software Technology, vol. 97, pp. 176–178, 2018,
issn: 09505849. doi: 10.1016/j.infsof.2018.01.011.

[24] A. Lichtenberger, “Fünf kritische erfolgsfaktoren für eine erfolgreiche
DevOps transformation [Five critical DevOps success factors],” HMD
Praxis der Wirtschaftsinformatik, vol. 54, no. 2, pp. 244–250, 2017, issn:
1436-3011. doi: 10.1365/s40702-017-0293-6.

[25] L. E. Lwakatare, P. Kuvaja, and M. Oivo, “Dimensions of DevOps,” Lecture
Notes in Business Information Processing, vol. 212, pp. 212–217, 2015, issn:
18651348. doi: 10.1007/978-3-319-18612-2_19.

[26] L. E. Lwakatare, P. Kuvaja, and M. Oivo, “An exploratory study of DevOps:
Extending the dimensions of DevOps with practices,” in ICSEA 2016 : The
Eleventh International Conference on Software Engineering Advances, Rome,
Italy, 2016, pp. 91–99, isbn: 9781612084985.

https://doi.org/10.22279/navus.2018.v8n1.p20-31.584
https://doi.org/10.22279/navus.2018.v8n1.p20-31.584
https://doi.org/10.1016/C2013-0-06954-X
https://doi.org/10.1145/2915970.2916008
https://doi.org/10.1145/2962695.2962707
https://doi.org/10.1109/ICSE-NIER.2017.20
https://doi.org/10.1016/j.infsof.2018.01.011
https://doi.org/10.1365/s40702-017-0293-6
https://doi.org/10.1007/978-3-319-18612-2_19

bibliography 95

[27] L. E. Lwakatare, P. Kuvaja, and M. Oivo, “Relationship of DevOps to Agile,
Lean and Continuous Deployment: A multivocal literature review study,”
in Lecture Notes in Computer Science, vol. 10027 LNCS, 2016, pp. 399–415,
isbn: 9783319490939. doi: 10.1007/978-3-319-49094-6_27.

[28] J. R. Michener and A. T. Clager, Mitigating an oxymoron: compliance in a
DevOps environment, 2016. doi: 10.1109/COMPSAC.2016.155.

[29] M. B. Miles and A. M. Huberman, Qualitative data analysis: An expanded
sourcebook. SAGE, 1994, isbn: 0803955405.

[30] V. Mohan and L. ben Othmane, “SecDevOps: Is it a marketing buzzword?
Mapping research on security in DevOps,” in Proceedings - 2016 11th
International Conference on Availability, Reliability and Security, ARES 2016,
2016, pp. 542–547, isbn: 9781509009909. doi: 10.1109/ARES.2016.92.

[31] V. Mohan, L. ben Othmane, and A. Kres, “BP: Security concerns and best
practices for automation of software deployment processes -An industrial
case study,” 2018 IEEE Secure Development Conference, pp. 21–28, Sep. 2018.
doi: 10.1109/SecDev.2018.00011.

[32] M. Muñoz and O. Díaz, “DevOps: Foundations and its utilization in data
center,” in Engineering and Management of Data Centers, Springer, Cham,
2017, pp. 205–225. doi: 10.1007/978-3-319-65082-1_10.

[33] P. A. Nielsen, T. J. Winkler, and J. Nørbjerg, “Closing the IT development-
operations gap: The DevOps knowledge sharing framework,” in CEUR
Workshop Proceedings, B. Johansson, Ed., vol. 1898, CEUR, 2017, isbn:
16130073.

[34] K. Peffers, T. Tuunanen, M. A. Rothenberger, and S. Chatterjee, “A design
science research methodology for information systems research,” Journal
of Management Information Systems, vol. 24, no. 3, pp. 45–77, 2008, issn:
0742-1222. doi: 10.2753/MIS0742-1222240302.

[35] B. Phifer, “Next-generation process integration: CMMI and ITIL do Dev-
Ops,” Cutter IT Journal, vol. 24, no. 8, pp. 28–33, 2011, issn: 15227383.

[36] S. Pittet, “Continuous Integration vs. Continuous Delivery vs. Contin-
uous Deployment,” "[Online]. Available: https://www.atlassian.com/
continuous-delivery/principles/continuous-integration-vs-delivery-vs-
deployment. [Accessed: 04-Feb-2019]".

[37] O. Plant, “Risk management in devops: A state of the art literature review
- Research topics business information technology,” University of Twente,
2018.

[38] A. M. Riege, “Validity and reliability tests in case study research: A
literature review with “hands-on” applications for each research phase,”
Qualitative Market Research: An International Journal, vol. 6, no. 2, pp. 75–86,
2003, issn: 13522752. doi: 10.1108/13522750310470055.

[39] RightScale, “Cloud computing trends: 2018 state of the cloud survey,”
2018, "[Online]. Available: https://www.rightscale.com/blog/cloud-
industry- insights/cloud- computing- trends- 2018- state- cloud- survey.
[Accessed: 10-Jan-2019]".

[40] A. Robinson, “Continuous security: implementing the critical controls in a
DevOps environment,” SANS Institute InfoSec Reading Room, 2015.

https://doi.org/10.1007/978-3-319-49094-6_27
https://doi.org/10.1109/COMPSAC.2016.155
https://doi.org/10.1109/ARES.2016.92
https://doi.org/10.1109/SecDev.2018.00011
https://doi.org/10.1007/978-3-319-65082-1_10
https://doi.org/10.2753/MIS0742-1222240302
https://www.atlassian.com/continuous-delivery/principles/continuous-integration-vs-delivery-vs-deployment
https://www.atlassian.com/continuous-delivery/principles/continuous-integration-vs-delivery-vs-deployment
https://www.atlassian.com/continuous-delivery/principles/continuous-integration-vs-delivery-vs-deployment
https://doi.org/10.1108/13522750310470055
https://www.rightscale.com/blog/cloud-industry-insights/cloud-computing-trends-2018-state-cloud-survey
https://www.rightscale.com/blog/cloud-industry-insights/cloud-computing-trends-2018-state-cloud-survey

bibliography 96

[41] A. Robinson, “A checklist for audit of Docker containers,” SANS Institute
InfoSec Reading Room, 2016.

[42] M. Rubino, F. Vitolla, and A. Garzoni, “The impact of an IT governance
framework on the internal control environment,” Records Management
Journal, vol. 27, no. 1, pp. 19–41, 2017, issn: 09565698. doi: 10.1108/RMJ-
03-2016-0007.

[43] D. Shackleford, “A DevSecOps playbook,” SANS Institute, 2016.

[44] J. Smeds, K. Nybom, and I. Porres, “DevOps: A definition and perceived
adoption impediments,” Lecture Notes in Business Information Processing,
vol. 212, pp. 166–177, 2015, issn: 18651348. doi: 10.1007/978-3-319-18612-
2_14.

[45] K. Soin and P. Collier, “Risk and risk management in management ac-
counting and control,” Management Accounting Research, vol. 24, no. 2,
pp. 82–87, 2013, issn: 10445005. doi: 10.1016/j.mar.2013.04.003.

[46] D. Ståhl, T. Mårtensson, J. Bosch, D. Stahl, T. Martensson, and J. Bosch,
“Continuous practices and DevOps: Beyond the buzz, what does it all
mean?” In 2017 43rd Euromicro Conference on Software Engineering and
Advanced Applications (SEAA), 2017, pp. 440–448, isbn: 978-1-5386-2141-7.
doi: 10.1109/SEAA.2017.8114695.

[47] E. Střihavková, “Analysis of the status and quality of internal audit in
selected organizations,” IOP Conference Series: Materials Science and Engi-
neering, vol. 393, no. 1, 2018, issn: 1757899X. doi: 10.1088/1757-899X/393/
1/012115.

[48] A. Subramanian, P. K. Krishnamachariar, M. Gupta, and R. Sharman, “Au-
diting an Agile development operations ecosystem,” International Journal
of Risk and Contingency Management, vol. 7, no. 4, pp. 90–110, 2018, issn:
2160-9624. doi: 10.4018/IJRCM.2018100105.

[49] V. W. Tai, Y. H. Lai, and T. H. Yang, “The role of the board and the
audit committee in corporate risk management,” North American Journal of
Economics and Finance, 2018, issn: 10629408. doi: 10.1016/j.najef.2018.11.
008.

[50] J. Venable, J. Pries-Heje, and R. Baskerville, “FEDS: a framework for
evaluation in design science research,” European Journal of Information
Systems, vol. 25, no. 1, pp. 77–89, Jan. 2016, issn: 1476-9344. doi: 10.1057/
ejis.2014.36.

[51] P. Verschuren and H. Doorewaard, Het ontwerpen van een onderzoek [De-
signing a research project], 5th ed. Amsterdam: Boom Lemma Uitgevers,
2015.

[52] M. Virmani, “Understanding DevOps & bridging the gap from Continuous
Integration to Continuous Delivery,” in 5th International Conference on
Innovative Computing Technology, INTECH 2015, 2015, pp. 78–82, isbn:
9781467375504. doi: 10.1109/INTECH.2015.7173368.

[53] A. Wiedemann, “IT governance mechanisms for DevOps teams: How
incumbent companies achieve competitive advantages,” 51st Hawaii Inter-
national Conference on System Sciences, vol. 9, pp. 4931–4940, 2018.

https://doi.org/10.1108/RMJ-03-2016-0007
https://doi.org/10.1108/RMJ-03-2016-0007
https://doi.org/10.1007/978-3-319-18612-2_14
https://doi.org/10.1007/978-3-319-18612-2_14
https://doi.org/10.1016/j.mar.2013.04.003
https://doi.org/10.1109/SEAA.2017.8114695
https://doi.org/10.1088/1757-899X/393/1/012115
https://doi.org/10.1088/1757-899X/393/1/012115
https://doi.org/10.4018/IJRCM.2018100105
https://doi.org/10.1016/j.najef.2018.11.008
https://doi.org/10.1016/j.najef.2018.11.008
https://doi.org/10.1057/ejis.2014.36
https://doi.org/10.1057/ejis.2014.36
https://doi.org/10.1109/INTECH.2015.7173368

bibliography 97

[54] R. J. Wieringa, Design science methodology for information systems and software
engineering, 1st. Springer-Verlag Berlin Heidelberg, 2014, isbn: 9783662438398.
doi: 10.1007/978-3-662-43839-8.

[55] L. Williams, “Continuously integrating security,” Proceedings - 2018 ACM/IEEE
1st International Workshop on Security Awareness from Design to Deployment,
SEAD 2018, pp. 1–2, 2018. doi: 10.1145/3194707.3194717.

[56] H. Yasar, “Implementing secure DevOps assessment for highly regulated
environments,” in Proceedings of the 12th International Conference on Avail-
ability, Reliability and Security - ARES ’17, Reggio Calabria, Italy: ACM,
2017, pp. 1–3, isbn: 9781450352574. doi: 10.1145/3098954.3105819.

[57] R. K. Yin, “Case study research: Design and methods,” Applied Social
Research Methods, vol. 5, 1994. doi: 10.1177/017084068600700114.

https://doi.org/10.1007/978-3-662-43839-8
https://doi.org/10.1145/3194707.3194717
https://doi.org/10.1145/3098954.3105819
https://doi.org/10.1177/017084068600700114

APPENDICES

98

A
S T R U C T U R E D L I T E R AT U R E R E V I E W : S E A R C H P R O T O C O L

a.1 inclusion and exclusion criteria

inclusion exclusion

Papers about governance mechanisms within DevOps Papers only about DevOps tooling

Papers about managing risks in DevOps Papers only about DevOps infrastructure

Papers about achieving compliance in DevOps

Paper about process management in DevOps

a.2 search results

Search in academic databases

Databases: Scopus, Web of Science, IEEE XPlore, ACM Digital library (Guide to
computing literature), AIS Electronic library

Search key: ”devops” AND ("risk management" OR compliance OR governance OR
"IT controls")

Search conducted on 21.06.2018

search process amount of papers

Unique results 128

After filtering on title 33

After filtering on abstract 18

After filtering on full text 9

Adding forward & backward references 11

Grey literature search

Database: SANS InfoSec Reading Room (search via Google)

Search key: site:https://www.sans.org/reading-room filetype:pdf “devops” AND ("risk
management" OR compliance OR governance OR "IT controls")

search process amount of papers

Unique results 137

After filtering on title 4

After filtering on abstract 2

After filtering on full text 2

Adding forward & backward references 5

99

B
S T R U C T U R E D L I T E R AT U R E R E V I E W : R E S U LT S

b.1 selected papers

The papers selected for the literature review are summarized in Table B.1.
Next to a short description, the type of research is mentioned and whether the
conclusions have been validated. The table also indicates the type of the paper.
Nine papers are conference papers (C) and five papers are white papers (W).
Only one journal paper (J) and one book chapter (B) were included.

Table B.1: Papers selected for literature review

paper type description

[2] C Analyze risk management capability of the DevOps ap-
proach. Propose a framework for comparing management
and control measures by dividing them into four areas of
attention. Conclusions based on literature study.

[6] W Guideline for auditors. Techniques on mitigating risks and
auditing a DevOps process with a fictitious example. Au-
thors claim to summarize techniques encountered while
studying “a number of organizations”, no further informa-
tion.

[9] W Addresses three major concerns about DevOps: change con-
trol, security and separation of duties. Names information
security and compliance practices. Result of a series of con-
ference workshops with 50 experts.

[32] B Book Chapter, describes a detailed DevOps implementation
approach in a Mexican data center with focus on develop-
ment, quality assurance and infrastructure technology.

[11] C Follow up paper to [32]. DevOps approach is extended with
a special focus on risk management. Written in Spanish.

[13] C Framework for managing needs, compliance and trust in
DevOps through use of metrics and tools, processes and
culture. Claims to have been validated “on a small scale in
several DoD organizations” but no further elaboration.

[22] C Examine the impact that two IEC/ISO standards about regu-
lated medical device software development have on DevOps
practices. Theoretical study.

[23] J Sequel to [22]. Proposes tools and practices for DevOps to
meet regulatory requirements based on the findings of the
previous paper. No validation.

100

B.1 selected papers 101

paper type description

[28] C Propose hard controls for development and operations in
order to remain compliant with common security standards
(PCI DSS, US NIST) and in control using DevOps. No em-
pirical research.

[30] C Literature review on the current state of SecDevOps research.

[33] C Design Research. Propose a framework for successfully im-
plementing DevOps and sharing knowledge. Validated in a
small IT service firm and a large financial services company.

[35] W Describes how ITIL and CMMI frameworks work together
with DevOps. Based on expert opinion (author).

[40] W Mentions critical security controls in DevOps. Based on ex-
pert opinion (author).

[43] W Describes how to implement DevSecOps. Based on expert
opinion (author).

[53] C Describes general IT Governance structures found in DevOps
teams. Qualitative research among team members in six
companies.

[56] C Extended abstract of paper on difficulty of implementing
DevOps in highly regulated environments and suggestions
to implement secure DevOps. Only expert opinion (author)
evident.

B.2 controls mentioned in literature 102

b.2 controls mentioned in literature

Table B.2: Controls mentioned in literature

control mentioned by

Change control

Automated change controls and thresholds [9]

Version control [13, 33, 40]

IAM & separation of duties

Automate production deployment [9]

Separate accounts for accessing development and pro-
ductions environment

[9]

Temporary access on request for developers to produc-
tion environment

[9, 28]

Code peer reviews [9, 28, 6]

Secure Authentication [28]

Identity and access Management [32, 43]

Compliance

Regular auditing [13]

Item tracking [23]

Standard templates in tools [23]

Automated compliance testing and reporting [13]

Isolation of testing and development system from pro-
duction

[28, 32]

Security

Static code analysis [9, 6]

Automated security tests [9, 28, 30, 40, 43, 6]

Configuration management [13, 40, 43]

Inventory management [40, 43]

Separation of application and databases [32]

Monitoring and logging

Logging [9, 28, 43]

Continuous monitoring [13, 33]

Reporting [13]

Other

BlueGreenDeployment [9]

Risk analysis (threat model) [11, 28]

Backup policies [32]

Note: This table only sums up the "hard controls" as described in Section 4.5.

C
C A S E S T U D Y I N T E RV I E W S : C O D I N G

Table C.1 gives an overview of all codes and code categories created in Atlas
ti during the analysis of case study evidence. Since Atlas ti does not support
subgroups, these were added later.

Abbreviations:
Gen. risk mitig. mechanisms: General risk mitigation mechanisms
IAM & SOD: Identity and Access Management & Separation of Duties
Mon. & Log.: Monitoring & Logging

Table C.1: Overview of codes and categories created during case study analysis

code code groups code subgroups

(if applicable)

Access to production Risks Team

Prioritization of Tasks Risks Team

Internal Fraud Risks Team

Increasing backlog Risks Team

Fast Decision Taking Risks Team

Access to pipeline Risks Team

Not working according to plan Risks Team

Too much team autonomy Risks Team

Predictability Risks Project

Difficulties in bigger projects Risks Project

Transitional Risks Risks Transition

Incompatibility with
non-DevOps teams and
processes

Risks Organization

Security Risks Product

System continuity Risks Product

Risk of non-compliance Risks Product

Deploying products that are
still in development

Risks Product

Flexibility Success Indicators -

Less stress Success Indicators -

Less mistakes Success Indicators -

Increased rate of deployment Success Indicators -

Time saving Success Indicators -

Improved customer service Success Indicators -

103

case study interviews : coding 104

code code groups code subgroups

Consideration Success Indicators -

Reusable Coding Success Indicators -

Legacy Systems Inhibitors -

Scarce resources Inhibitors -

Compliance Requirements Compliance
Requirements

-

Frameworks Gen. risk mitig.
mechanisms

-

Quality Assurance Gen. risk mitig.
mechanisms

-

Agile Practices Gen. risk mitig.
mechanisms

-

Product Owner Gen. risk mitig.
mechanisms

-

Management Support Gen. risk mitig.
mechanisms

-

Project Management Gen. risk mitig.
mechanisms

-

Culture Gen. risk mitig.
mechanisms

-

Automation of data
management

DevOps practices -

General automation DevOps practices -

Continuous Improvement DevOps practices -

Architecture DevOps practices -

Continuous Deployment DevOps practices -

Status of DevOps
Implementation

DevOps practices -

Separation between Dev and
Ops

DevOps practices -

Cross functional teams DevOps practices -

Team responsible for specific
service

DevOps practices -

Test Automation DevOps practices -

Controls Change Control

Infrastructure Automation DevOps practices -

Controls Mon. & Log.

Automated Change Checks Controls Change Control

Limiting traffic to test change Controls Change Control

Change registration Controls Change Control

Change Advisory Board Controls Change Control

case study interviews : coding 105

code code groups code subgroups

Frequent Changes Controls Change Control

Definitions for Change
Categories

Controls Change Control

Change Authorization Controls Change Control

Chain Alignment Controls Change Control

Version Control Controls Change Control

Mon. & Log.

Third Party Controls Security

Change Control

Team feels responsible for their
work

Controls Security

Change Control

Soft Controls

Communication Controls Change Control

Soft Controls

Traceability and transparency Controls Compliance

Auditing Controls Compliance

Internal Audit Controls Compliance

Timed Passwords Controls IAM & SOD

Separate roles and access rights Controls IAM & SOD

No access to production Controls IAM & SOD

Separation of Duties Controls IAM & SOD

Peer Reviews Controls IAM & SOD

Metrics Controls Mon. & Log.

Reporting Controls Mon. & Log.

Logging Controls Mon. & Log.

Security department Controls Security

Mon. & Log.

Monitoring:rule-based alarms Controls Security

Mon. & Log.

Monitoring Controls Security

Mon. & Log.

Rollout & Rollback Controls Others

Risk Log Controls Others

Risk Evaluation Sessions Controls Others

Security Design Controls Security

Security Tests Controls Security

Security audit (internal or
external)

Controls Security

Security awareness and policies Controls Security

case study interviews : coding 106

code code groups code subgroups

Team is assigned responsibility Controls Soft Controls

Clearly communicated
responsibilities, authorizations
and procedures

Controls Soft Controls

Varying maturity levels per
team

No category assigned -

Drivers for DevOps No category assigned -

Tooling No category assigned -

Division Infrastructure and
DevOps

No category assigned -

Workarounds No category assigned -

Incident handling No category assigned -

D
S Y N T H E S I S O F L I T E R AT U R E A N D C A S E S T U D Y F I N D I N G S

Table D.1: Practices found in literature and case studies

control literature practice

General risk mitigation mechanisms

Product owner x

Agile practices x x

Quality assurance x x

Project management x

Frameworks x1 x1

Culture x x

Management support x

Change control

Automated change controls and thresholds x (x)2

Change size categories (x)3 x

Version control x x

Change registration (x)4 x

Change advisory boards x

Automated functional testing x5 x

Post-deployment approval x

Identity and access management

Automate production deployment x x

Separate accounts for accessing development
and productions environment

x x

Temporary access on request for developers to
production environment

x x

Code peer reviews x x

Authorization before deployment x

Secure authentication x x

Access management x x

Access rights based on employee role x

Compliance

Regular auditing x x

Item tracking x x

Standard templates in tools x x

107

synthesis of literature and case study findings 108

control literature practice

Automated compliance testing and reporting x

Isolation of testing and development system
from production

x x

Security

Awareness trainings x

Security department (monitoring and reaction) x

Static code analysis x x

Automated security tests x x

Configuration management x x

Inventory management x

Security operations center x

Separation of application and databases x x

Monitoring and logging

Logging x x

Continuous monitoring x x

Reporting x x

Other

Rollback strategies (e.g. BlueGreen Deployment) x x

Risk analysis (threat model) x

Risk evaluation sessions x

Risk log (x)6

Backup policies x x

Soft aspects

Clearly communicated responsibilities x x

Team autonomy x

Communication x x

1 Frameworks in literature: CMMi, ITIL, OCTAVE Allegro, OWASP SAMM,
ISO/IEC 2005 Frameworks in practice: DASA, ISO 27001/2, SDL, NIST,
ITIL, COBIT, SAFe

2 Implemented partly at WebSales2 immediately before deployment
3 Michener and Clager [28] mention that small changes can be deployed

directly but suggest no categories
4 Implied in item tracking and logging
5 Implied in definition of Continuous Deployment/DevOps
6 Only at SmartIndustries in large projects

colophon

This document was typeset using the LATEX editor Overleaf V2 and is based on
the classicthesis template developed by André Miede and Ivo Pletikosić.

	Management Summary
	Preface
	Contents
	List of Figures
	List of Tables
	Acronyms
	1 Introduction
	1.1 Thesis structure

	2 Background
	2.1 What is DevOps?
	2.2 Risk management and internal control

	3 Research design
	3.1 Research objective and questions
	3.2 Research model

	4 Literature Review
	4.1 Literature review method
	4.2 Internal environment
	4.3 Objective setting
	4.4 Event identification, risk assessment and risk response
	4.5 Control activities
	4.6 Information & communication
	4.7 Monitoring
	4.8 Discussion
	4.9 Conclusion

	5 Research Method
	5.1 Case studies
	5.2 Validation

	6 Case study results
	6.1 Summary of case study companies
	6.2 Overview of concepts
	6.3 Identified risk categories
	6.4 General risk mitigation mechanisms
	6.5 Identified controls
	6.6 The DevOps transformation at GeoTech

	7 The DevOps Risk Management Framework
	7.1 Synthesizing literature and empirical findings
	7.2 DevOps risk governance components
	7.3 The DevOps risk management matrix (DRMM)

	8 Validation
	8.1 Senior manager - GRC Technology
	8.2 Senior manager - Digital Enablement
	8.3 Senior consultant - Enterprise Agility
	8.4 Director - IT Assurance & Advisory
	8.5 Case study participants
	8.6 Summary and adjustments

	9 Discussion
	9.1 Implications
	9.2 Validity and reliability of research
	9.3 Contributions to research and practice
	9.4 Related and future work

	10 Conclusion
	10.1 Research questions
	10.2 Key contributions and findings

	 Bibliography
	 appendices
	A Structured literature review: search protocol
	A.1 Inclusion and exclusion criteria
	A.2 Search results

	B Structured Literature Review: Results
	B.1 Selected papers
	B.2 Controls mentioned in literature

	C Case study interviews: coding
	D Synthesis of literature and case study findings
	Colophon

