

BUILDING A FRAMEWORK IN CLASH TO CREATE

DETERMINISTIC SENSOR AND ACTUATOR

INTERFACES FOR FPGA
Master Thesis

Bart Wijlens
b.wijlens-1@student.utwente.nl

Abstract

This master Thesis is part of a bigger research project at CAES. The goal of this
project is to build a framework in Clash to create deterministic systems with sensors
and actuators. This Thesis focusses on the communication aspect with the sensors

and actuators. Research will be done on how to design and analyze a framework that
creates deterministic interfaces for the connected sensors and actuators.

Supervisors

Dr.Ir. A.B.J. Kokkeler

H.H.Folmer Msc

Dr.Ir. R. Langerak

1

CONTENTS

1 Introduction ... 4

2 Background .. 5

2.1 Explaination terms ... 5

2.1.1 Determinism .. 5

2.1.2 Framework .. 5

2.2 Clash ... 5

2.3 Dataflow .. 6

2.3.1 What is dataflow? .. 6

2.3.2 Backpressure .. 7

2.3.3 Self edges ... 7

2.3.4 periodic behaviour ... 8

2.3.5 Assumptions and info .. 9

2.4 Framework within main project .. 9

2.5 Goal ... 10

2.6 Design process .. 10

3 Designing framework .. 11

3.1 Sensor interface in Detail .. 11

3.2 Use of Dataflow in Framework... 11

3.2.1 Hardware perspective ... 12

3.2.2 Theoretical perspective ... 12

3.3 Dataflow and Hardware ... 12

3.3.1 Structural dataflow .. 12

3.3.2 Functional Dataflow .. 13

3.4 Final Solution ... 13

3.5 Improve performance Framework .. 15

4 Implement framework in hardware.. 17

4.1 framework in hardware .. 17

4.1.1 Backpressure .. 17

4.1.2 Nodes ... 19

4.2 Synchronization ... 20

4.2.1 Mean time between failures for synchronizer .. 20

4.2.2 Synchronizer Solutions ... 22

2

4.3 Framework contents .. 24

4.3.1 Communication nodes .. 25

4.3.2 Controllers... 26

4.3.3 Others ... 28

4.4 Framework Implementations for Sensor interface 29

4.4.1 Communication interface .. 29

4.4.2 Sensor driver ... 29

4.4.3 Synchronization .. 29

4.4.4 IO sampler .. 33

5 Results .. 34

5.1 Test process .. 34

5.1.1 Test board ... 34

5.1.2 Test process individual components ... 34

5.1.3 Test process implementation .. 34

5.2 Testing framework ... 41

5.2.1 Testing individual components .. 41

5.2.2 Testing implementation ... 42

6 Conclusion .. 46

7 Discussion and Future work ... 47

8 Appendix ... 48

A.1 Communication protocols .. 48

A.1.1 SPI .. 48

A.1.2 GPIO ... 48

A.1.3 I2C .. 48

A.1.4 UART .. 48

A.2 MTBF for synchronizer in case frequencies aren’t multiples 49

A.3 Deriving dataflow from clash ... 52

A.3.1 Dataflow Abstraction ... 52

A.3.2 Derivation process .. 53

A.3.3 Other Nodes .. 57

A.4 Adding Controllers ... 63

A.5 MTBF calculation for synchronizer sensor ... 65

A.6 Results simulation ... 67

3

A.6.1 Frequencies are equal .. 67

A.6.2 Frequencies are multiple ... 68

A.6.3 Frequencies are not a multiple .. 69

9 References ... 70

4

1 INTRODUCTION

Now a days cars are equipped with hundreds of sensors and actuators, all in place to

improve the reliability and safety. While progress has been made with respect to

smart usage of these sensor and actuators, the real time aspect is still hard to

guarantee. When a sensor sends out a signal, the data often needs to go through a

CPU before the corresponding actuator can be controlled accordingly. This single

CPU is used by multiple sensors meaning there is chance of unforeseen delays,

other processes or sensors could still be using the processor. There exist solutions

which can overcome these unforeseen delays, strict scheduling for example.

However, the complexity and unpredictability of most systems makes it hard to

implement these techniques.

A CPU schedules its processes to guarantee that the deadline for each process is

met. This scheduling is only possible if all processes are known beforehand, when an

unforeseen process arrives like pressing the breaks in a car it can result in

scheduling problems. At that moment the CPU has two options, delay the current

process or delay the new process. This trade off leads to unforeseen delays which

can cause processes to miss their deadline. Missing deadlines can lead to system

failures or slow responses. Most systems are tested thoroughly meaning that the

chance of this happening is extremely small but no hard guarantees can be given.

The CAES group at the University of Twente is working on a solution to make

systems with sensors and actuators better analysable. This analysability can be used

to give better guarantees with respect to timing. One way to achieve this is by

replacing the CPU for an FPGA. FPGAs contain in contrast to CPUs reconfigurable

hardware, the hardware can be configured according to the purpose of the FPGA.

Since a FPGA can be configured it shares less resources than a CPU allowing it to

run multiple processes separately from each other. Separating processes removes

most of the scheduling problems present in a CPU. The goal of the project is to build

a framework that can be used to create deterministic hardware designs for system

with sensors and actuators. The development of the framework is done in Clash, a

Haskell based tool used for hardware description.

This thesis focusses on the sensor communication aspect and answers the question:

“How to design a framework in Clash to create deterministic sensor interfaces for

FPGAs?”. To solve this question there started with searching for a method on how to

analyse and prove determinism. This method will be used to design the framework

and to guarantee determinism. In the end the framework will be used to create a test

setup to show how it can be used to create deterministic sensor interfaces.

5

2 BACKGROUND

2.1 EXPLAINATION TERMS

2.1.1 DETERMINISM

A deterministic system is a system that behaves in a predictable way so there is no

randomness involved. When an input is given to the system it should be known

beforehand when the corresponding output is generated. As an example a CPU will

be used, a CPU is deterministic when all its processes are known beforehand. These

processes can be scheduled resulting in no random behaviour. In most cases

however there is an OS in the way that also generates processes. These processes

are not known beforehand but have to be scheduled as well. This will results in

unpredictable execution times for the different processes which makes the system

nondeterministic.

2.1.2 FRAMEWORK

A framework is a set of tools and functions which can be used to create system with

functionality the framework was make for. For example a framework for audio

processing could consist of a set of different processing functions that can be

combined to create an audio processing pipeline. There are a number of reasons

why frameworks are useful:

➔ It makes it easier for users to implement the functionalities the framework is

made for.

➔ Frameworks can give guarantees when used according to its specifications.

➔ A framework is already tested meaning it is guaranteed to work.

➔ Allows reusing of code

➔ Easily expandable

2.2 CLASH

Clash is a tool developed within the research group CAES at the University of Twente

(Uchevler, Svarstad, Kuper, & Baaij, 2013) and is now part of the company

Qbaylogic. The tool has been developed as a new way of designing hardware.

Instead of using traditional hardware description languages (HDLs) like VHDL and

Verilog, this tool uses the functional language Haskell. The Clash-language is a

subset of Haskell which means all code written in the Clash-language can run within

the Haskell environment, the other way around is not guaranteed. The code written is

converted by the Clash-compiler to the traditional HDLs (VHDL, Verilog).

The tool is still in development meaning there can be bugs and parts of the syntax

can change over time. The version used is a development version of 0.99.3.

Working with Clash is different compared to traditional HDLs, Clash approaches

problems from a functional standpoint while HDLs take the hardware approach. It is

still possible to mimic HDLs however but this is not recommended. When Clash is

6

used correctly it can improve the development speed and reliability of

FPGA/hardware projects. There are a number of ways in which Clash surpasses

HDLs in terms of functionality:

• In most cases the code written in Clash is smaller than in other languages, a

functional description is more compact.

• The time to simulation is extremely short, code written can be simulated within

seconds. This is a big improvement compared to programs like ModelSim and

Vivado which can take tenths of seconds.

• Clash makes use of Haskells automatic type derivation which determines

types at compile time making designs less type bound. When used correctly

Clash only needs one location where the variable types are defined meaning

that sizes and types of variables can be easily changed without having to go

through all IPs separately.

• The possibility of dynamic hardware generation, this is a functionality of

Haskell which can be used in Clash. When parts of a function are known

beforehand the function is simplified by already filling in the known parts. The

hardware generated from this is based on the simplified function making it

possible to generate hardware depending setting variables, variable ranges or

variable types.

2.3 DATAFLOW

Dataflow is used throughout the report for analysis since it is deterministic by

definition. Dataflow doesn’t contain random behaviour or choice.

2.3.1 WHAT IS DATAFLOW?

Dataflow graphs are diagrams consisting of nodes (circles), edges (arrows) and

tokens (black circles) (Figure 1) (Edward A. Lee T. M., May 1995) (Edward A. Lee D.

G., October 1987) (Grootte, 2016). Edges connect nodes to indicating there is

communication. The “data” that is communicated between the different nodes is

represented by tokens. Depending on the type of dataflow used the tokens are stored

on a node or an edge, in this thesis there is chosen to have edges store the tokens.

Edges can store more than one token, the number of tokens stored is indicated by a

number near the token.

When a node has at least one token at all of its input edges it is able to “fire”, this

means it consumes a token from all of its input edges and creates a token at all of its

output edges. A delay can be added between consuming and firing this is indicated

inside the node.

7

Figure 1: Dataflow components

2.3.2 BACKPRESSURE

Backpressure in dataflow means two nodes are connected with edges in both

directions (Figure 2). This is useful to limit the number of tokens that can be stored on

an edge. The tokens on both edges combined is the maximum number of tokens that

can be stored.

Figure 2: Dataflow backpressure

2.3.3 SELF EDGES

A self-edge in dataflow is an edge from a node that is connected to the same node

as is shown in Figure 3.

Figure 3: dataflow self-edge

Self-edges are used to limit the number of times a node can execute concurrently,

the limit is set by the number of tokens on the self-edge. Without the self-edge the

node can run in parallel until all the input tokens are consumed.

8

2.3.4 PERIODIC BEHAVIOUR

Under some condition dataflow is periodic, this is important since it determines how

well the graph performs. A dataflow graph is periodic when it is strongly connected,

this means that each node can be reached from every node in the graph (Bekooij,

2017). The period in this case can be calculated with the mean cycle ratio (MCR).

The MCR is equal to the slowest period of all loops in the dataflow graph. A loop is

the path taken by a token when it leaves a node and returns without passing the

same node twice. The period of a loop is calculated by dividing the time it takes a

token to make the loop by the number of tokens in the loop. A simplified formula is

given below:

𝑀𝐶𝑅 = max (𝑎𝑙𝑙 𝑝)

𝑝 =
𝑑𝑒𝑙𝑎𝑦 𝑙𝑜𝑜𝑝

𝑡𝑜𝑘𝑒𝑛𝑠 𝑖𝑛 𝑙𝑜𝑜𝑝

To show how the MCR works an example is given.

Figure 4: Dataflow with loop periods

The dataflow in Figure 4 has names for each loop (L1 till L5), the output period is

given by LO. To calculate the output period of LO the period of each loop needs to be

determined:

𝐿1 = 𝑎 + 1

𝐿2 = 1 + 1 = 2

𝐿3 = 𝑏 + 1

𝐿4 = 1 + 1 = 2

𝐿5 = 𝑐 + 1

9

It is assumed the number of tokens on each loop equals 1 so the output period can

be determined by taking the maximum of all loops.

𝐿𝑂 = max(𝐿1, 𝐿2, 𝐿3, 𝐿4, 𝐿5)

It there would be self-edges than these should be included in the MCR calculation as

well.

2.3.5 ASSUMPTIONS AND INFO

There are a few assumptions made in this report that are important to know. To start

the delays for the nodes are always multiples of 1 clock cycle. There is chosen to

have multiples of one clock cycle to keep the dataflow in sync with the clock. A

second assumption are the implicit self-edge, all pictures in the report assume the

nodes have self-edges.

2.4 FRAMEWORK WITHIN MAIN PROJECT

As mentioned in the introduction the framework is going to be part of a bigger project,

this means it has to be fitted in somehow. It is important to know where the

framework will be located within this project because it will influence certain design

choice made later on. The layout used for the main project is shown in Figure 5, the

sensor interface is the focus of this thesis.

Figure 5: General layout

10

The layout consists of four parts:

Sensor

Represents the sensors and actuators connected to framework of the main project.

Sensor interface

The sensor interface is responsible for the communication between the sensors and

actuator and the bus. It converts data from the bus to something the sensor can use

and the other way around. The sensor interface is going to be implemented as a

framework and is the focus of this thesis.

Bus

Guides the data from the User IP to the correct sensor interface

User IP

The user IP is responsible for the functional behaviour. It is responsible for reading

the sensor data and controlling the corresponding actuator, its behaviour should be

fully deterministic.

2.5 GOAL

The goal of the project is to create framework which consists of a set of building

blocks which can be combined to create sensor/actuator interfaces for FPGAs. The

designs made with these blocks should be easily analysable and must guarantee

deterministic behaviour at all times. To describe the blocks in hardware the Clash-

language is used. The design should be as small as possible in terms of hardware

since they are going to be implemented on a FPGA.

2.6 DESIGN PROCESS

The framework will be designed in a number of steps. There is started with exploring

the required functionality of the framework in more detail. Next there will be looked at

how to design a framework using dataflow. The designed framework will be tested

and used to create a test setup to show it can create deterministic sensor interfaces.

11

3 DESIGNING FRAMEWORK

3.1 SENSOR INTERFACE IN DETAIL

The sensor interface is explored in more detail to get a better idea on what the

sensor interface does and how to build a framework for it. As said before the sensor

interface is responsible for translating the communication between the sensor and

user IP. This process is split up into four different blocks to make analysis easier but

also to make it better suitable for a framework (Figure 6).

Figure 6: Sensor Interface

As can be seen from the figure the sensor interface will be implemented as a pipeline

where each block will have its own functionality as described below:

The Communication Interface is responsible for translating the sensor/actuator

protocol (SPI, I2C, UART, …) to something that can be used by the sensor driver.

The Sensor Driver is responsible for communicating with the sensor/actuator and

initializing the sensor if necessary. The sensor driver handles commands from the

user IP and sends sensor data back.

The Synchronisation is responsible for handling the communication between

different clock domains. Most of the times the clock frequency for a sensor is different

from that of the users IP meaning some sort of synchronization is necessary.

The OI sampler acts as the front end of the sensor, it can receive input data for the

sensor and send output data to the user. This block compensates the variable delay

of the synchronizer as will be explained later.

3.2 USE OF DATAFLOW IN FRAMEWORK

As explained earlier, dataflow is going to be used for analysing and proving the

deterministic behaviour of the framework. However it is not yet defined how dataflow

is going to be used in the framework. There is looked at two different approaches.

When taking the hardware approach a hardware design is made that is represented

12

in dataflow. The dataflow representation is used to show the hardware design is

deterministic. If the theoretical approach is taken a dataflow design is made which is

then represented in hardware. In this case the hardware is deterministic because it is

derived from dataflow.

3.2.1 HARDWARE PERSPECTIVE

The framework will consist of a set hardware blocks that can be combined to create

different sensor interfaces. Each blocks will perform one of the functions shown in

Figure 6 (Communication interface, driver, synchronizer or IO sampler). Different

blocks can be made for each function to create different sensor interfaces. The

blocks will be designed using the Clash-language meaning they are directly

implemented in hardware. Taking this approach is useful since it gives a lot of

flexibility with respect to hardware design choices. Being close to the hardware

allows designing with optimization in mind which results in smaller and faster

designs. The downside is that hardware is not deterministic by definition.

Proving the determinism is done by deriving a dataflow equivalent of each block. If

the conversion is possible determinism is guaranteed.

From a user perspective this approach works as follows. The user connects different

hardware blocks to create a sensor interface. The hardware blocks all have a

dataflow equivalent, these can be used by the user to do analysis on the design.

3.2.2 THEORETICAL PERSPECTIVE

The theoretical perspective starts with dataflow. The framework will consist of a set of

dataflow nodes that can be combined to create a sensor interface. The nodes have a

hardware equivalent that will be used to implement the design. This approach

guarantees determinism since it is based on dataflow. From a user perspective this

solution will consist of a number of nodes, each with its own functionality. The user

can combine these node to create a sensor interface. The hardware is a functional

equivalent of the dataflow graph meaning the properties of the dataflow graph do

also hold for the hardware.

3.3 DATAFLOW AND HARDWARE

To use dataflow in combination with hardware a link between dataflow and hardware

needs to be defined. This link is mainly based on how tokens are interpreted,

dataflow components get a different meaning based on the interpretation of tokens.

Two different definitions are explained here called structural dataflow and functional

dataflow.

3.3.1 STRUCTURAL DATAFLOW

For structural dataflow a token represents a signal in hardware. A signal can contain

data or nothing. Signals will change every clock cycle meaning a new token needs to

be produced each cycle. The nodes in the graph represent hardware components

13

like multiplexers and OR gates. The edges represent the wires between these

components. A wire in hardware does not have memory meaning an edge can only

store one token at a time. All nodes have a delay of 1 clock cycle to guarantee new

tokens each clock cycle.

The definition of data is lost with this approach, it is not known when a token contains

data or nothing. For example, a node can produce data every 5 clock cycles, in

dataflow this would mean it produces 4 tokens that contain “nothing” and one that

contains the data. The contents of these 5 tokens cannot be observed meaning each

one them could all be a “nothing” or “data”.

This representation can be used to prove that hardware is deterministic since it

guarantees a new signal every clock cycle. The graph doesn’t say anything about the

deterministic behavior of the data itself. Data could still be outputted at random.

3.3.2 FUNCTIONAL DATAFLOW

When using the functional dataflow representation a token represent data in contrast

to the structural dataflow where a token could be data as well as nothing. The nodes

represent functions that use the input tokens to create an output. The time a node

takes to do this must be multiple of 1 clock cycle to keep all nodes in sync with the

clock. The edges can be seen as FIFOs in hardware, the size of the FIFO is limited

meaning it can only hold a limited amount of data. This limitation is controlled by

implementing backpressure, the number of tokens in the backpressure loop indicate

the size. Adding backpressure makes the dataflow graph automatically strongly

connected which means the dataflow graph is periodic. The delay of each of the

nodes depend on their functional description in hardware, it should be at least one

when it has internal storage. As a rule of thumb can be used: if a node has more than

one input and output edge it has internal storage. The tokens only represent data

meaning this representation can be used to prove the deterministic behavior of data.

3.4 FINAL SOLUTION

A decision needs to be made on how to design the framework. There are two choices

that need to be made, is the structural or functional representation of hardware going

to be used and is the framework going to be designed according to the theoretical or

the hardware perspective.

Deciding whether to use the functional or structural representation of hardware is

easy. The dataflow graph should proof the deterministic behaviour data resulting in

the only possible representation, the functional one. This means nodes will represent

functions and tokens represent data.

For deciding on how to design the framework itself the hardware approach seemed to

be the best solution at first. A set of deterministic hardware blocks that is connected

one after the other to create a pipeline looked like a simple and elegant solution. The

fact that it would use less hardware than its theoretical counterpart made it even

better. The blocks in the pipeline would share the same interface making it easy to

14

interchange them for a block with different functionality.

It turned out that this design approach results into problems. The freedom given while

designing the hardware blocks resulted in nondeterministic designs. This made it

necessary to formulate a design rule to prevent these design mistakes: “The output

period or delay should not be influenced by nondeterministic inputs”. A second

problem became clear later in the process, the timing. If one of the processes in the

pipeline is slower than the blocks before it, the system would break since data can be

lost. At first glance this was a problem that could be overcome by controlling the

delay of the different blocks. The constraint limited the flexibility of the framework

since certain combinations of blocks could result into timing problems. Besides the

constraints for the framework itself there was also a problem with the processes after

the IO sampler. It the processes after the sensor interface would be slower than then

the output period of the sensor interface it would also result in data loss. To solve the

delay problem a feedback system was added, each receiving block should indicate to

the sending block if it is ready. The sending block is halted until the receiving block is

able to process the data. Implementing these halt signals needed a redesign for each

block.

The added complexity in terms of feedback reduced the hardware gain and

prevented the relative ease with which blocks could be designed. Converting the

hardware designs to dataflow often resulted in complex dataflow graph or no

dataflow graph at all. This made is hard to prove determinism and do analysis on the

designs.

The first approach turned out to be more complex than initially thought, this was the

reason to try the theoretical approach. Approaching the problem from dataflow

perspective directly gave much better results. Analysis could be done beforehand

since the dataflow calculation methods could be used. The timing problem was

covered by the backpressure required by the functional hardware representation. The

added backpressure made the whole system become self-timed. The designing of

nodes turned out to be easier than expected, the fact that dataflow rules should apply

gave a good guidance during the design process.

In the end there is chosen to use the theoretical approach because it turned out to be

better analysable and easier to implement.

The final solution for the framework uses a theoretical perspective, this means

designs will be made in dataflow which are later converted to hardware. The dataflow

will use the functional representation of hardware meaning each node represents a

function instead of a hardware components. The design from Figure 6 is converted

accordingly as is shown in Figure 7.

Figure 7: Dataflow sensor interface

15

The blocks from Figure 6 are converted to dataflow nodes. Each node is connected

with backpressure to limit the storage on the edges.

3.5 IMPROVE PERFORMANCE FRAMEWORK

The design from Figure 7 is not very efficient. With this design the nodes can only fire

when both the previous and next node are finished. This structure limits parallel

processing which can be shown by calculating the MCR:

𝑝𝑒𝑟𝑖𝑜𝑑 = max(𝑎 + 𝑏, 𝑏 + 𝑐, 𝑐 + 𝑑, 𝑎, 𝑏, 𝑐, 𝑑)

The output period equals the period of two nodes added.

By separating the communication aspect from the controller/functional part the

parallelism can be improved (Figure 8). The ctrl node represent the functional part

which is called controller from now on. The controller is responsible for processing

incoming data and controlling the connected communication node. The

communication node is responsible for distributing incoming data to the next

communication node and the controller. This node has a delay of 1 clock cycle

because it has more than one input and output edge. The red arrows show how the

data from the tokens goes through the system. As can be seen from the picture, data

only goes in one direction. This choice is made to prevent forcing the input and

output data to go through the same processing pipeline. Most of the times input data

will require different processing than output data.

Figure 8: General layout framework

When this new design is put in Figure 7 it results in a design with communication

nodes at the bottom and controllers at the top (Figure 9).

16

Figure 9: Dataflow general layout improved parallelism

The MCR is calculated for the new design:

𝑝𝑒𝑟𝑖𝑜𝑑 = max(𝑎 + 1, 𝑏 + 1, 𝑐 + 1, 𝑑 + 1, 2, 𝑎, 𝑏, 𝑐, 𝑑, 1)

The output period now equals the delay of one of the controller plus the delay of a

communication node. It is assumed the controllers will have a delay bigger than the 1

clock cycle from the communication node. Based on this assumption it can be

concluded that the period will be smaller than for the previous solution (Figure 7).

17

4 IMPLEMENT FRAMEWORK IN HARDWARE

4.1 FRAMEWORK IN HARDWARE

For the conversion from dataflow to hardware a standard procedure is used. There

are two parts that need to be discussed, the backpressure and the nodes. Here the

implementation of these two dataflow elements is explained.

4.1.1 BACKPRESSURE

Nodes/Edges/Backpressure.hs

Designing backpressure in hardware is a complex operation. The backpressure

needs to store tokens (data) but cannot have a delay. To solve this problem there is

started with a definition of tokens and edges in hardware. The choice is made to

represent an edge as two lines, a data line and a control line. The control line is used

for indicating tokens on the edge. When the control line is high it indicates there is a

token present, when the line is low there is no token. The data inside the token is

handled by the separate data line which sends the data in parallel. The values for the

data and control line are stored at the output buffer of the node sending the token.

When a node sends out a new token its output buffer is updated, the control signal is

set to high to indicate the new token while the data line gets the new data. The

backpressure is implemented with only one token in the loop, this means that new

data can only be send when the previous data has been read.

When the backpressure edges are implemented in hardware as described above it

would result in a working backpressure design (Figure 10). Keep in mind the nodes in

the figure represent the hardware equivalent of a node as will be explained later.

Figure 10: Backpressure in hardware

The problem with this design is the following. When “Node A” sends a token because

its input control line is high (high indicates a token), it has to wait at least one clock

cycle before the input control signal is updated by “Node B”. This delay is the result of

“Node B” having to update its output buffer. This means that “Node A” cannot read its

inputs for one clock cycle after sending because they are not updated yet. This is not

according to dataflow specifications and makes node design unnecessary complex.

The nodes now need to have logic for their own behavior as well as well as logic for

controlling the backpressure.

A solution needs to be found on how to get rid of the delay and preventing nodes

18

from having to worry about backpressure logic. This problem is solved by

implementing the backpressure as a state machine who switches between two circuit

layouts, the state is controlled by the controller (Figure 11). The design shown here

represents the backpressure between node A and node B (Figure 12). The state is

switched when there is a signal edge on one of the input signals. The signal edges

are used because it makes synchronization easier later on. The switching of state

takes one clock cycle, to prevent strange behavior the input and output node should

have at least a delay of one clock cycle. The inverters which connect the input to the

output of a node act as a direct response to the input. It looks like the token on the

incoming edge is consumed at the moment a token is put on the outgoing edge. This

is not the exact behavior of dataflow since dataflow consumes tokens at the start of

its execution. However, consuming the token at “firing” time doesn’t influence the

dataflow behavior.

There are “signal edge” symbols shown next to the input lines, these indicate the

signal is a signal edge instead of the signal itself. This line is high when the input

signal changes and low when it equals its previous value. The switching of state is

done by the controller according to the following rules:

➔ If State is X and there is an edge on output A the state goes to Y

➔ If State is Y and there is an edge on output B the state goes to X

Figure 11: Hardware design backpressure

19

Figure 12: Backpressure between node A and node B

The backpressure only communicate data in one direction as is shown by only one

data line. An example shown in Figure 13 for dataflow graph of Figure 14.

Figure 13: Plot working backpressure

Figure 14: Example dataflow layout

4.1.2 NODES

All nodes will be implemented as state machines. Each node will have at least two

states called “Fire” and “Wait”. During the “Fire” state the node produces new tokens,

20

while the “Wait” state is used for waiting on new input tokens. When in the “Fire” state

the next state depends on the available input tokens. When there are tokens

available at all input edges (inputs are high) the next state is again the “Fire” state, if

not the next state is “Wait”. When the node is in the “Wait” state and tokens are

available at the inputs (inputs are high) the node goes to the “Fire” state. Every state

execution takes one clock cycle meaning that every node has at least a delay of 1

clock cycle.

The state machine explained here is for a basic node. When the input tokens need to

be processed states can be added before the “Fire” state. This means when tokens

are available at all inputs the nodes goes through all the processing states finishing

with the “Fire” state.

4.2 SYNCHRONIZATION

The framework needs to support synchronization between multiple clock domains.

Some information is given with respect to calculating the Mean Time Between

Failures for synchronizers and which designs are already available.

4.2.1 MEAN TIME BETWEEN FAILURES FOR SYNCHRONIZER

When communicating between different clock domains there is a change that data is

corrupted due to the metastability of flip flops. This happens when the receiver reads

the input data just before or just after it has been changed. How much time depends

on the setup and hold times of the flip flops used. It cannot be guaranteed that

metastability will never happen since the 2 clock domains are asynchronous. The

only way to say something about the reliability of this communication is by calculating

the chance an error will happen. There are different methods found on the internet,

this one is chosen because of it is well documented (Wellheuser, 2018) (Patharkar,

2015) (blendics, 2018).

The chance a flip flop is metastable after a period tR is given by:

𝑃𝐹 = 𝑃𝐸 ∗ 𝑃𝑆

Where

𝑃𝐸 = 𝐶ℎ𝑎𝑛𝑐𝑒 𝑜𝑓 𝑒𝑛𝑡𝑒𝑟𝑖𝑛𝑔 𝑚𝑒𝑡𝑎𝑠𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦

𝑃𝑆 = 𝐶ℎ𝑎𝑛𝑐𝑒 𝑜𝑓 𝑏𝑒𝑖𝑛𝑔 𝑚𝑒𝑡𝑎𝑠𝑡𝑎𝑏𝑙𝑒 𝑎𝑓𝑡𝑒𝑟 𝑡𝑅

PE is determined by calculating the chance that the edge of the output clock is inside

the danger zone of the flip flop (T0). This is the period where the propagation delay of

the flipflop is higher than the clock. The probability is calculated by dividing T0 by the

clock period tC.

𝑃𝐸 =
𝑇0

𝑡𝑐
= 𝑓𝑐𝑇0

𝑇0 = 𝑡𝑠𝑢 − 𝑡ℎ

21

𝑓𝑐 = 𝑜𝑢𝑡𝑝𝑢𝑡 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 (𝐻𝑧)

𝑡𝑐 = 𝑐𝑙𝑜𝑐𝑘 𝑝𝑒𝑟𝑖𝑜𝑑 (𝑠)

𝑡𝑠𝑢 = 𝑠𝑒𝑡𝑢𝑝 𝑡𝑖𝑚𝑒 (𝑠)

𝑡ℎ = ℎ𝑜𝑙𝑑 𝑡𝑖𝑚𝑒 (𝑠)

The metastability of a flip flop after tR seconds is given by:

𝑃𝑆 = 𝑒−
𝑡𝑅
𝜏

Where

𝑡𝑅 = 𝑟𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒

𝜏 = 𝑎 𝑡𝑖𝑚𝑒 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡, 𝑓𝑙𝑖𝑝 𝑓𝑙𝑜𝑝 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐

The resolution time is the time available for the signal to become stable. This means

it is a full clock cycle minus constant delays.

𝑡𝑅 =
1

𝑓𝑐
− 𝑡𝑝𝑟𝑜𝑝 − 𝑡𝑠𝑢

When both probabilities are combined it results in the following formula:

𝑃𝐹 = 𝑃𝐸𝑃𝑆 = 𝑓𝑐 ∗ (𝑡𝑠𝑢 − 𝑡ℎ) ∗ 𝑒−

1
𝑓𝑐

−𝑡𝑝𝑟𝑜𝑝−𝑡𝑠𝑢

𝜏

To get the failure rate the changing frequency of the input needs to be known.

Assume the input changes with a rate fd, then the failure rate becomes:

𝜆 = 𝑓𝑑𝑃𝐹 = 𝑓𝑑𝑓𝑐 ∗ (𝑡𝑠𝑢 − 𝑡ℎ) ∗ 𝑒−

1
𝑓𝑐

−𝑡𝑝𝑟𝑜𝑝−𝑡𝑠𝑢

𝜏

The failure rate can be used to calculate the mean time between failures (MTBF) as

follows

𝑀𝑇𝐵𝐹 =
1

𝜆
=

𝑒

1
𝑓𝑐

−𝑡𝑝𝑟𝑜𝑝−𝑡𝑠𝑢

𝜏

𝑓𝑑𝑓𝑐 ∗ (𝑡𝑠𝑢 − 𝑡ℎ)
=

𝑒
𝑡𝑅
𝜏

𝑓𝑑𝑓𝑐 ∗ 𝑇0

The value for the propagation delay 𝑡𝑝𝑟𝑜𝑝, setup time 𝑡𝑠𝑢, hold time 𝑡ℎ and the flip

flop constant 𝜏 all depend on the FPGA. These values are not documented, that is

why there is decided to base the setup and hold times on the calculation example

from ti (Wellheuser, 2018). This example uses values from a FIFO chip which is

comparable to what is presented here. Keep in mind that these values are only an

indication and could be completely off depending on the FPGA.

22

𝑡𝑝𝑟𝑜𝑝 + 𝑡𝑠𝑢 = 1.3 𝑛𝑠

𝑇0 = 𝑡𝑠𝑢 − 𝑡ℎ = 2.05 𝑛𝑠

𝜏 = 0.4 𝑛𝑠

To improve the MTBF it is possible add an extra flip flops in series, by doing so the

performance is improved since the resolution time is doubled.

𝑃𝐹 = 𝑃𝐸 ∗ 𝑃𝑆1 ∗ 𝑃𝑆2

𝑀𝑇𝐵𝐹 =
𝑒

𝑡𝑅
𝜏

𝑓𝑑𝑓𝑐𝑇0
∗ 𝑒

𝑡𝑅
𝜏 =

𝑒
2𝑡𝑅

𝜏

𝑓𝑑𝑓𝑐𝑇0

Multiple flipflops can be added to improve the MTBF even more, this is at the cost of

communication speed since more cycles are needed to transport one message from

one to the other clock domain. The MTBF for “x” number of flip flops is:

𝑀𝑇𝐵𝐹 ==
𝑒𝑥

𝑡𝑅
𝜏

𝑓𝑑𝑓𝑐𝑇0

As both the formulas show the MTBF will increase when the input or output

frequency decreases, this can be explained by the fact that the flipflops have more

time to become stable.

4.2.2 SYNCHRONIZER SOLUTIONS

There are a number of different designs available for synchronizing data between 2

clock domains. The different layouts mentioned here vary in complexity (Sachin

Hatture, 2015) (Tejas, Amit, & Divyanshu, 2018). These designs are mainly used

when the two frequencies that need to be synchronized aren’t a multiple of each

other. The synchronizer designs are implemented to improve the Mean Time

Between Failures (MTBF). Since there is chance data is read by the receiving

domain when it is not yet stable.

The first design is simply 2 flipflops in series (Figure 15).

Figure 15: Dual flip synchronizer

This circuit useful since it uses minimal hardware to make multidomain

communication possible. The downside of this solution is that there is no knowing

23

when a signal has arrived in the other domain. The design is also not useful for

synchronizing multiple bits since it will decrease the MTBF drastically. Correct

operation of this design requires the input signal to be constant during

synchronization.

To improve the synchronization of multiple bits the following solution is used (Figure

16).

Figure 16: Dual flip flop data synchronizer

This solution is based on the 2 flip flop synchronizer but has a separate

communication line for data. The data line has twice as long to become stable

compared the synchronization line. To make this solution work the data line should

remain constant until the data has been read on the receiver side. Since there is no

feedback this is hard to determine. This problem can be circumvented by making the

clock frequency of the receiver domain at least twice as high as the clock of the

sender domain.

The next design improves the feedback part (Figure 17).

24

Figure 17: Synchronizer with feedback

This design send a signal to the receiver, this signal is then returned to the sender.

During this period a busy signal is kept high at the sender side to indicate no new

signal can be send. This solution solves the feedback problem at the cost of more

hardware. It does not allow to send data since it only has one communication line.

Two other designs found improve on the data communication aspect. The first

solution adds data lines to a sort of handshake design, the last solution uses a FIFO

buffer as communication. A FIFO is the most reliable way of communication but does

require a lot of hardware. The best trade-off is the handshake protocol with data

communication abilities.

4.3 FRAMEWORK CONTENTS

The framework is going to consist of a number of dataflow nodes that have a

hardware equivalent. Multiple nodes have been designed to create a first basis for

the framework. Each node is designed in a number of steps:

1. Design a dataflow node of the function that is going to be added

2. Convert the designed node to hardware design (explanation shown in appendix

A.4)

3. Test hardware design and convert back it back to dataflow to prove they are equal.

(explanation shown in appendix A.3)

25

4.3.1 COMMUNICATION NODES

As explained before, these nodes are responsible for sending the data through the

system. They will be used in combination with a controller. A number of different

nodes are designed as is shown here:

4.3.1.1 INPUT NODE

Nodes/Basic/NodeInput.hs

The input node reads data from its input and outputs it to the controller (Figure 18).

Figure 18: NodeInput

4.3.1.2 OUTPUT NODE

Nodes/Basic/NodeOutput.hs

The output node read data from the controller and outputs it to the rest of the system

(Figure 19).

Figure 19: NodeOutput

26

4.3.1.3 NORMAL NODE

Nodes/Basic/NodeNormal.hs

The normal node read input data and sends it to the connected controller, at the

same time it reads the previous controller value and sends it to the output (Figure

20).

Figure 20: NodeNormal

4.3.1.4 BLOCKING NODE

Nodes/Basic/NodeBlock.hs

The blocking node blocks its input after an output, it is enabled again when the

controller returns a signal (Figure 21). The controller should be of the type delay.

Figure 21: NodeBlock

4.3.2 CONTROLLERS

Controller manipulate the input data and then output them again. A controller should

be used in conjunction with a communication node. A number of pre-made controllers

is shown here. A structured way of creating custom controllers is explained in

appendix A.4.

27

4.3.2.1 SPI

Nodes/Controllers/SPI/Stream.hs

Nodes/Controllers/SPI/StreamR.hs

The SPI controllers are used to communicate with a SPI interface. There are two

design:

Stream: Does not pull CS high after each message

StreamR: Pulls CS high after every message

4.3.2.1.1 DATAFLOW DESIGN

The dataflow model can be found in Figure 22.

Figure 22: Controller SPI

The initial dataflow design has an unknown execution time a, the value for a is

determined by the implementation in Clash. The Clash implementation has a delay

equal to x+1 where x represents the message size.

4.3.2.1.2 HARDWARE DESIGN

To understand where the x+1 delay for the node is coming from the underlying

hardware needs to be known. The controller reads data from its input and puts it in

an internal buffer, the first bit is directly written to the sensor since it is unnecessary

to store. The next x (depending on message size) clock cycles data is read from the

sensor and put in the buffer while data from the buffer is written to the sensor. When

the last bit is written the full buffer is outputted together with the last bit from the

sensor making the output complete (Figure 23).

Figure 23: Working SPI controller

28

When no data is available at the input of the node the controller is halted and the

sensor clock is turned off until new data is available.

4.3.2.2 NODE DELAY

Nodes/Delay/Delay.hs

The delay node is a controller that adds a delay between its input and output. It can

be used in combination with the nodeBlock to block the input for a number of clock

cycles. The dataflow looks like Figure 24.

Figure 24: Delay

4.3.3 OTHERS

This node could be categorized as a controller or a communication node since it

doesn’t store tokens. It converts an incoming token outputs it directly hence the 0

delay.

4.3.3.1 SLICE TOKEN

Designs/SliceToken.hs

The slice token node can be used to make the length of a token in number of bits

smaller, this can be useful for getting rid of useless data. The node can be

implemented with zero delay since cutting of bits in hardware is done by not

connecting wires.

Figure 25: Dataflow SliceToken

The node has no state so proving its correct behavior is not necessary.

29

4.4 FRAMEWORK IMPLEMENTATIONS FOR SENSOR INTERFACE

These are implementations made with framework nodes explained above. These

designs are made to create a sensor interface. In some cases a custom parts are

added, the choice to include these parts will be explained when this is the case.

4.4.1 COMMUNICATION INTERFACE

4.4.1.1 SPI INTERFACE

Designs/SPIinterface.hs

This design is made to make working with SPI easier, the design needs as inputs an

SPI controller type (Stream, StreamR) and the type of communication node. The

design then automatically generates the correct layout of nodes.

4.4.2 SENSOR DRIVER

No specific implementations have been designed as sensor driver.

4.4.3 SYNCHRONIZATION

There are cases where a design needs multiple clock domains, for example when

communicating with a sensor. Sensors do often run at lower clock speed then the

logic using the sensor data. There is the option to use oversampling for this problem

to get rid of the second clock but this needs hardware to convert the sample data.

The higher clock speed used for oversampling will also limit the flexibility in placing

the hardware on the FPGA, for lower clock speeds wires can be longer giving the

FPGA more freedom in placing the different hardware components. To communicate

between two clock domains synchronization is needed. Two designs are shown, one

in case the two frequencies are multiples and one in the case they are not. Keep in

mind that the execution times are worst case since they depend on the distance

between the edges of the two clocks. This means that the output period of a

synchronizer is variable and not deterministic. The IO sampler that will be explained

later can be used to compensate the variability.

4.4.3.1 SYNCHRONISATION: FREQUENCIES OF BOTH DOMAINS IS

MULTIPLE

Designs/SyncMult.hs

In case the two clocks are a multiple of each other the edges of the clocks are in sync

once every x clock cycles (depending on frequencies). The ratio between the two

frequencies is given by the frequency ratio or the period ratio:

30

𝑅𝑓 =
𝑓𝑖𝑛

𝑓𝑜𝑢𝑡
=

1
𝑑𝑖𝑛

1
𝑑𝑜𝑢𝑡

=
𝑑𝑜𝑢𝑡

𝑑𝑖𝑛

𝑑𝑜𝑢𝑡 = 𝑝𝑒𝑟𝑖𝑜𝑑 𝑜𝑓 𝑐𝑙𝑜𝑐𝑘 𝑜𝑢𝑡 (𝑠)

𝑑𝑖𝑛 = 𝑝𝑒𝑟𝑖𝑜𝑑 𝑜𝑓 𝑐𝑙𝑜𝑐𝑘 𝑖𝑛 (𝑠)

𝑅𝑓 = 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑟𝑎𝑡𝑖𝑜

There are two problem that need to be overcome. First is the synchronizing from the

fast to the slow clock domain, the sending node needs to halt until the receiving

domain has processed the data. The second problem arises when synchronizing

from a slow to a fast clock domain, the node in the fast clock domain can read the

same input signal multiple times since the output node updates its output signal too

slow.

The synchronization from the fast to the slow domain has already been covered by

the backpressure since it halts the sending node. The other way around is a bit more

difficult, it is solved as follows. The synchronization uses a custom node which

toggles its output instead setting it high or low, this in combination with the

backpressure design explained earlier prevents the system from reading the same

input multiple times. The layout is shown in Figure 26. No synchronization flip flops

are needed since there is no metastability.

Figure 26: Synchronization multiple

The backpressure design should run at the highest frequency of the two synchronizer

frequencies to assure correct edge detection.

The worst case throughput of the synchronizer is determined by maximum period of

the internal loop.

31

𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡𝑠𝑦𝑛𝑐𝑀𝑢𝑙𝑡 = 𝑑𝑖𝑛 + 𝑑𝑜𝑢𝑡

𝑑𝑜𝑢𝑡 = 𝑝𝑒𝑟𝑖𝑜𝑑 𝑜𝑓 𝑐𝑙𝑜𝑐𝑘 𝑜𝑢𝑡 (𝑠)

𝑑𝑖𝑛 = 𝑝𝑒𝑟𝑖𝑜𝑑 𝑜𝑓 𝑐𝑙𝑜𝑐𝑘 𝑖𝑛 (𝑠)

The maximum delay from input to output is:

𝐷𝑒𝑙𝑎𝑦𝑠𝑦𝑛𝑐𝑀𝑢𝑙𝑡 = 𝑑𝑖𝑛 + 𝑑𝑜𝑢𝑡

𝑑𝑜𝑢𝑡 = 𝑝𝑒𝑟𝑖𝑜𝑑 𝑜𝑓 𝑐𝑙𝑜𝑐𝑘 𝑜𝑢𝑡 (𝑠)

𝑑𝑖𝑛 = 𝑝𝑒𝑟𝑖𝑜𝑑 𝑜𝑓 𝑐𝑙𝑜𝑐𝑘 𝑖𝑛 (𝑠)

4.4.3.2 SYNCHRONISATION: FREQUENCIES OF BOTH DOMAINS IS NO

MULTIPLE

Designs/SyncNoMult.hs

When the clocks are not a multiple of each other synchronization becomes more

difficult, it can never be guaranteed that the clock edges are in sync.

The already existing designs explained earlier are hard to combine with the dataflow

format used. There has been decided to use the same design as in Figure 26. The

communication between the two domains is extended with a dual flip synchronizer

(Figure 27). The flip flops are indicated by the circles with c and d in them. The value

for c and d represent the number of flip flops in the synchronizer.

Figure 27: Synchronizer frequencies aren't multiples

For the synchronization in both directions the normal flip flop design is used (Figure

15). The data itself is synchronized separately based on (Figure 16), the only

difference is that the multiplexer is included in the receiver node. One requirement for

synchronization is that the input signals will be kept constant during synchronization

giving the flip flops time to become stable, the toggle nodes are perfect suited for this

since they keep their output constant for at least the time it takes for the feedback to

32

respond which is always larger than time it needs to become stable. The

backpressure is a custom designed since it had to be split up to make room for the

synchronizer flip flops Figure 28.

Figure 28: Back pressure design for synchronization

The minimum throughput of this synchronizer can be calculated by determining the

maximum period of the design:

𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡𝑀𝑖𝑛𝑠𝑦𝑛𝑐𝑁𝑜𝑀𝑢𝑙𝑡 = (𝑑 + 1) ∗ 𝑑𝑖𝑛 + (𝑐 + 1) ∗ 𝑑𝑜𝑢𝑡

The maximum delay of the design is

𝐷𝑒𝑙𝑎𝑦𝑠𝑦𝑛𝑐𝑁𝑜𝑀𝑢𝑙𝑡 = 𝑑𝑖𝑛 + (𝑐 + 1) ∗ 𝑑𝑜𝑢𝑡

The MTBF is calculated for this design and can be found in appendix A.2.

4.4.3.3 SMART SYNC

Designs/SmartSync.hs

The smart sync design automatically determines which synchronization solution is

best based on the given input frequencies. It can choose between no

synchronization, when fin and fout are the same, synchronization for multiples and

synchronization for no multiples.

33

4.4.4 IO SAMPLER

4.4.4.1 FLOW GATE

Designs/FlowGate.hs

This design is based on the NodeBlock communication node, it can be combined

with different delay controllers and by doing so influence its behavior. At this moment

there is only one option which is called “Delay”, this option adds a Delay controller to

the communication node so the input blocked for a number of clock cycles after each

input. The design compensates for the extra delay added by the communication

node. (Figure 29).

Figure 29: FlowGate

34

5 RESULTS

The framework will be tested in two steps:

➔ First all components of the framework will be tested separately. This includes

both the nodes and the designs made with these nodes, like the synchronizer.

➔ Next the components of the framework are used to build a interface for a

sensor. This is done to show that the framework can be used to build a

deterministic interface.

5.1 TEST PROCESS

5.1.1 TEST BOARD

The FPGA board that is going to be used for testing is the Zybo-Z20 from Digilent.

This board is equipped with a Zynq-7010 FPGA from Xilinx. All Digilent boards make

use of a standard interface called PMOD, this interface is mainly used for connecting

peripherals like sensors and actuators. The PMOD interface is called a standard but

still uses 3 different pin layouts (1 x 6, 2 x 6 and 2 x4). Digilent provides a collection

of devices that can be connected to the PMOD interface, these vary from displays to

light sensors. Most of the devices are provided with an example code, sometimes this

is only in C, other times also VHDL or Verilog. The official PMOD interface supports

four protocols: SPI, GPIO, I2C and UART. The four communication protocols

supported by PMOD are very common.

5.1.2 TEST PROCESS INDIVIDUAL COMPONENTS

The individual components of the framework will be tested separately to verify that

they are working correctly. These tests will be done by comparing the output of each

of the individual components to a unique test vector. These test vectors are designed

in such a way that most input to output combinations of a component are covered.

The first tests will be done in the simulation environment of Clash. When the

simulations in Clash are successful the code will be converted to Verilog. The FPGA

programming software Vivado is then used to simulate the Verilog code, the results

are compared to the results from Clash. When this works the implementation for each

component will be generated to get an idea of the hardware footprints, these

footprints are given in LUTs and flipflops.

5.1.3 TEST PROCESS IMPLEMENTATION

To test if the framework is useful for building a sensor interface a test setup is made

using the layout shown in Figure 6. The sensor that is going to be used for testing is

a SPI ambient light sensor. The setup will be tested with an infinite supply of tokens

at its input which is the side that will be connected to the bus. This is done to get a

periodic output, asking constantly for new data is the most stress that can be put on

the system. The designs will first be tested in Clash by using the internal simulation

35

tool. If the simulations are successful the code is converted to VHDL and tested in

Vivado. The output period of these simulations is determined and compared to their

theoretical value. Next the design in implemented on the FPGA, it will be added as an

AXI peripheral so the output can be read out by a CPU and displayed. The output

signal indicating new data is connected to an output pin so the output period can be

compared to the theory. The last step is checking the size of the design in number of

flip flops and LUTs

5.1.3.1 SENSOR

The sensor used is a Digilent PMOD light-sensor. This is a

sensor with an SPI interface that sends out 2 bytes of data

every time the chip select goes from high to low. The 2 bytes

consist of 3 zeros, then 8 bits of data followed by 4 zeros

(Figure 30). The 15 bits are collected by the driver, the driver

cuts off the zeros and then puts the data on the output. The

sensor has an operating frequency between 1 MHz and 4

MHz. There is chosen to use an SPI sensor instead of an I2C,

UART or GPIO because the other interfaces had

implementation problems. The implementation of I2C needs tri-state inputs and

outputs for communication which cannot be implemented in Clash. The UART

interface needs a clock which must be synchronised which is not possible is Clash

unfortunately. A solution would be to do oversampling, if SPI was not easier to

implement this interface would have been chosen. The last interface that could be

used is GPIO, this is not used since it is too specific for each sensor which is not in

line with a framework design.

Figure 30: Data layout light sensor

5.1.3.2 LAYOUT

The layout of the test setup will differ depending on the input and output frequencies.

The Clash design automatically changes the layout depending on these frequencies.

To guarantee the design fully works the three possible layouts will be tested

separately. These layouts are:

➔ Frequency of sensor and receiver are equal

➔ Frequency of sensor is multiple of the receiver frequency

➔ Frequency of sensor and receiver are no multiple.

36

5.1.3.2.1 DESIGN 1: FREQUENCIES ARE EQUAL

When the input and output frequency are equal, the synchronization step is not

necessary, the dataflow is given in Figure 31.

Figure 31: Dataflow Lightsensor without synchronization

The IO sampler is left out since there is no synchronization so no variable delay. The

SPI interface uses the streamR design, this design pulls CS high after every

message. This is necessary to have the sensor work correctly. The sensor itself only

outputs data, this is why the communication node below the streamR SPI interface

uses the NodeOutput design. The delay for the streamR controller equals the

message size plus 1 which results in a delay of 16 cycles.

The output period can be determined by calculating the MCR, there are only three

loops in this design to it is relatively easy to do.

𝑀𝐶𝑅 = max(16 + 1, 16, 1) = 17 𝑐𝑦𝑐𝑙𝑒𝑠

5.1.3.2.2 DESIGN 2: FREQUENCIES ARE MULTIPLES

The next test uses two frequencies that are multiples. The sensor frequency is set to

2 Mhz, the frequency of the user IP is set to 100 Mhz. The design that results from

these frequencies is shown in Figure 32.

Figure 32: Dataflow light sensor when frequencies are multiples

37

The design consists of three components: The SPI interface, the synchronization and

the IO sampler. The delay for the streamR controller is the same as for equal

frequencies so 16 cycles.

The synchronization uses the design for frequencies that are a multiple of each other.

The last component is the IO sampler. The IO sampler is responsible for correcting

the variable delay of the synchronizer so the output of the dataflow is deterministic.

The period of the IO sampler should be equal or higher than the MCR of the rest of

the sensor interface.

The delays for the nodes are given in number of clock cycles for their specific

domain. The delays are corrected by dividing them by the frequency ratio given

below so all delays are given in number of output clock cycles.

𝑅𝑓 =
𝑓𝑠𝑒𝑛𝑠𝑜𝑟

𝑓𝑢𝑠𝑒𝑟𝐼𝑃
=

2 𝑀𝐻𝑧

100 𝑀𝐻𝑧
=

1

50

The corrected dataflow graph is shown in Figure 33. The different loops in the

dataflow graph are marked.

Figure 33: Dataflow light sensor when frequencies are multiples, corrected

The value for b is still unknown. It can be calculated by using the property that the

output period (L5) should equal the MCR of the rest of the dataflow:

𝑀𝐶𝑅𝑜𝑡ℎ𝑒𝑟 = 𝐿5 = 𝑏 + 1 = 𝑚𝑎𝑥(𝑙1, 𝑙2, 𝑙3, 𝑙4)

The periods of the designs are:

𝑙1 =
16 + 1

𝑅𝑓
= 850

𝑙2 =
1 + 1

𝑅𝑓
= 100

𝑙3 = 1 +
1

𝑅𝑓
= 51

𝑙4 = 1 + 1 = 2

38

When these values are filled in it results in a value for b:

𝑏 = 𝑚𝑎𝑥(850,100,51,2) − 1 = 849

As can be seen from the results the SPI interface is the slowest part of the design.

The design will generate an output with a period of 850 clock cycles.

5.1.3.2.3 DESIGN 3: FREQUENCIES ARE NO MULTIPLE

The last case is if the frequencies used are no multiple. The frequency for the userIP

is set to 101 MHz, the sensor still used 2 MHz. The new design will look like Figure

34.

Figure 34: Dataflow Light sensor, frequencies are no multiples

As can be seen, in this case the synchronizer for frequencies that aren’t a multiple is

used. The variables b and c represent the number of flip flops between the two

nodes, both b and c are set to two since there is no option in the code yet to set

number of flip flops. There is started with the calculation of a.

The value for “a” equals the 16 clock cycles from before since the message size did

not change.

The clock cycles delay in the sensor domain are corrected in the same way as was

done for the previous solution. The frequency ratio is used to convert the delays in

the sensor domain to the output domain.

𝑅𝑓 =
𝑓𝑠𝑒𝑛𝑠𝑜𝑟

𝑓𝑢𝑠𝑒𝑟𝐼𝑃
=

2 𝑀𝐻𝑧

101 𝑀𝐻𝑧
=

2

101

The corrected dataflow graph is shown in Figure 35. The different loops in the

dataflow graph are again marked.

39

Figure 35: Dataflow light sensor when frequencies aren't multiples, corrected

The value for d is still unknown but can be calculated by using the property that the

output period (L5) should equal the MCR of the rest of the dataflow:

𝑀𝐶𝑅𝑜𝑡ℎ𝑒𝑟 = 𝐿5 = 𝑑 + 1 = 𝑚𝑎𝑥(𝑙1, 𝑙2, 𝑙3, 𝑙4)

The periods of the designs are:

𝑙1 =
16 + 1

𝑅𝑓
= 858.5

𝑙2 =
1 + 1

𝑅𝑓
= 101

𝑙3 = 1 + 2 +
2 + 1

𝑅𝑓
= 154.5

𝑙4 = 1 + 1 = 2

When these values are filled in it results in a value for d:

𝑑 = 𝑚𝑎𝑥(858.5, 101, 154.5, 2) − 1 = 857.5

The ceil value for d is used since half clock cycles do not exist.

𝑐𝑒𝑖𝑙(𝑑) = 858

The slowest loop is again the SPI interface. The output period equals in this case 859

clock cycles.

The MTBF is calculated to check if the synchronizer is reliable enough. A good target

value for MTBF could not be found so it is set to 1000 years. The calculation for this

setup resulted in a MTBF of:

MTBF = 5357753,12 𝑦𝑒𝑎𝑟𝑠

40

This is much higher than the required 1000 years, the full calculation can be found in

appendix A.5.

5.1.3.3 TEST ON FPGA

The last step is to test the design on the FPGA, this will be done by connecting it to

the AXI bus and communicate over UART. The bit indicating new data can be

analyzed with the build in logic analyzer of Vivado, the period of this signal should

equal (depending on design).

𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑖𝑒𝑠 𝑎𝑟𝑒 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑒: 850 𝑠𝑎𝑚𝑝𝑙𝑒𝑠

𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑖𝑒𝑠 𝑎𝑟𝑒 𝑛𝑜𝑡 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑒: 859 𝑠𝑎𝑚𝑝𝑙𝑒𝑠

41

5.2 TESTING FRAMEWORK

5.2.1 TESTING INDIVIDUAL COMPONENTS

All the components inside the framework are tested in Clash as well as in Vivado, the

results are given in Table 1.

Table 1: Results testing components

NODE NAME SETTINGS CLASH
SIM

VIVADO
SIM

SIZE

BACKPRESSURE Constant Success Success 1 LUT

3 REGISTER

NODEINPUT Input: 8 Bit

Output: 8 Bit

Success Success 2 LUT

10
REGISTERS

NODEOUTPUT Input: 8 Bit

Output: 8 Bit

Success Success 2 LUT

11
REGISTERS

NODENORMAL Input: 8 Bit

Output: 9 Bit

Success Success 2 LUT

20
REGISTERS

NODEBLOCK Input: 8 Bit

Output: 8 Bit

Success Success 2 LUT

11
REGISTERS

DELAY Delay: 3 Success Success 2 LUT

5 REGISTERS

SYNCMULT Input: 8 Bit

Output: 8 Bit

Success Success 7 LUT

23
REGISTERS

SYNCNOMULT Input: 8 Bit

Output: 8 Bit

Success Success 8 LUT

30
REGISTERS

FLOWGATE Input: 8 Bit

Output: 8 Bit

Delay: 4

Success Success 5 LUT

18
REGISTERS

STREAM Input: 8 Bit

Output: 8 Bit

Success Success 14 LUT

25
REGISTERS

STREAMR Input: 8 Bit

Output: 8 Bit

Success Success 14 LUT

24
REGISTERS

42

5.2.2 TESTING IMPLEMENTATION

The three different layouts for the light sensor interface are tested separately.

5.2.2.1 FREQUENCIES ARE EQUAL

5.2.2.1.1 SIMULATION

The simulation in clash for the interface with equal frequencies is ran successfully.

The clash-language is converted to VHDL and tested in Vivado. The time stamps

where new data arrives are 80,003 ms, 165,003 ms and 250,003 ms. The time

between these results is 85 ms. The output frequency is 2 MHz meaning a period of

500 ns, this means the number of cycles between outputs is:

85000

0,5
= 170000 𝑐𝑦𝑐𝑙𝑒𝑠

The period should be 17 cycles which means the value from the simulation is 10000

times to high, when there is looked at the results in more detail it can be seen that a

clock period takes 5 ms (smallest period without change), this is 10000 times too

high. The difference is probably caused by the simulation clock which means the

error is caused by the Clash compiler.

5.2.2.1.2 FPGA

The design is implemented on the FPGA, there is tested if the sensor is read out

correctly. The output values cover the full range of the sensor so it can be assumed

sensor is read out correctly.

Next the output period is tested to see if the output is periodic, the results are shown

in Figure 36. Every pulse indicates new data, for periodic behavior the distance

between the pulses should be equal.

Figure 36: Output signal indicating new data for the setup where the

frequencies for the sensor and userIP are equal. Each pulse indicates a new

output, the period between the pulses is constant meaning the output is

periodic.

The pulses are at sample times:

3, 20 ,37, 54, 71, 88, 105

The times between the pulses equals the 17 determined in the method.

43

The size of the design when implemented on a FPGA is:

45 REGISTERS, 20 LUT

5.2.2.2 FREQUENCIES ARE MULTIPLE

5.2.2.2.1 SIMULATION

The next design that is going to be tested is the one where frequencies are multiples.

The IO sampler added is filled in by hand since it is not yet possible to let Clash do

this. The period is determined by running the function for calculating the MCR before

compilation, the result in then filled in. The function returns a MCR of 850 cycles

which equals the value calculated earlier.

The clash simulation is ran successfully so the code is converted to VHDL. The

simulation in Vivado shows outputs generated at: 85.203 us, 170.203 us, 255.203 us.

The difference between these outputs is exactly 85.000 us. The output frequency

equals 100 MHz which results in a period of 10 ns. With these values the output

period can be calculated:

85000000

10
= 8500000 𝑐𝑦𝑐𝑙𝑒𝑠

The calculated output frequency is again a factor 10.000 too high. The graphs show

that the clock period during simulation equals 100 us, this is about 10.000 times

higher than the period calculated which explains the difference.

5.2.2.2.2 TEST ON FPGA

The simulations work correctly so the design can be implemented on a FPGA. The

sensor is read out correctly meaning the sensor interface is working. Next the output

is tested so see if it is periodic, the results are shown in Figure 37. Every pulse

indicates new data, the distance between the pulses should be equal for periodic

behavior.

Figure 37: Output signal indicating new data for the setup where the

frequencies for the sensor and userIP are a multiple of each other. Each pulse

indicates a new output, the period between the pulses is constant meaning the

output is periodic.

44

The pulses are at sample times:

339,1189, 2039, 2889, 3739, 4589, 5439, 6289, 7139, 7989

The time between the samples are 850 samples meaning the output period equals

the 850 cycles determined in the method.

The size of the final design is

100 REGISTERS, 40 LUT

5.2.2.3 FREQUENCIES ARE NO MULTIPLE

5.2.2.3.1 SIMULATION

The design where the 2 frequencies are not a multiple of each other is the most

complex version. Again the output period is filled in by hand but should in this case

equal 859 cycles. After the Clash simulation is ran successfully the code is converted

to VHDL. The periodic is checked in Vivado, outputs are generated around:

85.349,62 ns, 170.399,21 ns, 255.448,8 ns. The difference between these times is

85.049,59 ns which means the output is periodic. The output frequency is 101 MHz

meaning it has a period of 9,901 ns, this means the number of cycles between

outputs is:

85.049.000,59

9,901
= 8590000 𝑐𝑦𝑐𝑙𝑒𝑠

This is again a factor 10.000 too high, the reason is most likely the same as for the

previous result.

5.2.2.3.2 TEST ON FPGA

With the simulation being successful the design can be implemented on the FPGA.

The sensor data seems to be correct so there can be continued with testing the

output interval. The output interval is tested in the same way as for the other designs,

the results are shown in Figure 38.

45

Figure 38: Output signal indicating new data for the setup where the

frequencies for the sensor and userIP are not a multiple of each other. Each

pulse indicates a new output, the period between the pulses is constant

meaning the output is periodic.

The pulses are at sample times:

830, 1689, 2548, 3407, 4266, 5125, 5984, 6843, 7702

The times between the pulses equals the 859 determined in the method.

The size of the full layout is:

107 REGISTERS, 44 LUT

46

6 CONCLUSION

Designing a framework that has to deliver deterministic and real time designs is not

an easy task. The first step taken in the design process was to use dataflow for

analysis. Dataflow is useful because it is deterministic by definition and has a lot of

analysis techniques already available. For the framework itself there where two

options on how to design it. The first option was to design hardware blocks which

could be combined to create a sensor interface. These designs would all have a

dataflow equivalent to prove their deterministic behavior. The reason for choosing a

hardware approach was the flexibility and ease of design. It turned out that this

solution was much more complex than it initially seemed. There were problems with

timing, dataflow conversion and doing analysis as a whole. This resulted in trying

another approach. The second approach starts with dataflow. The framework is

designed in dataflow and later converted to hardware. The framework itself consists

of a set of dataflow nodes which can be combined by the user to create sensor

interfaces. Each node has a hardware equivalent which is used to generate the

design for a FPGA. The nodes are connected with backpressure to limit the number

of tokens that can be stored on an edge and to make the whole system self-timed.

This solution is much better analyzable at the cost of some flexibility. The designs

made with the framework are automatically self-timed due to the backpressure, this

makes designing simple since the timing problems are handled automatically.

Each node in the framework has been tested to check its functionality and to assure it

behaves according to the dataflow rules. To test the deterministic behavior of the

framework an interface for a SPI light sensor created. Its output signal is tested to

see if it is deterministic and if it outputs realistic sensor readings.

The test done gave positive results, the output period was deterministic and the

sensor was read out correctly. The amount of area used by the components is low,

the test setup only used 118 FF and 58 LUTs. The small hardware footprint makes it

realistic for implementation on a FPGA which has multiple thousands flip flops and

LUTs available.

To summarize, building a framework based on dataflow is a good solution. The

framework is deterministic and can be analyzed by using dataflow techniques. In

terms of flexibility it is a bit limited due to the limitations that come with dataflow. The

use of backpressure makes the design self-timed, this gets rid of all kind of timing

problems. By expanding the framework in the future the functionality can be

improved.

47

7 DISCUSSION AND FUTURE WORK

There is a difference between the simulation done in Vivado and what is specified in

Clash. The clock in Vivado is 10.000 times slower than the one implemented in

Clash. This will not cause any problems since the relative speed difference between

the clocks stays the same. However, it something that should be kept in mind when

doing analysis on the simulation results.

The framework is at this moment limited in its functionality since there is only a small

number of nodes available. The number of nodes should be increased in the future to

add functionality to the framework.

The way nodes are connected at this moment is not as easy as it should be, all

edges have to be connected by hand. In the future this should be simplified, an

example of what the syntax could look like is:

𝑜𝑢𝑡𝑝𝑢𝑡 = 𝑛𝑜𝑑𝑒1 < −−> 𝑛𝑜𝑑𝑒2 < −−> (𝑛𝑜𝑑𝑒3 𝑖𝑛𝑝𝑢𝑡)

The synchronization step for synchronizing when frequencies are not a multiple of

each other could result into problems since it hasn’t been fully verified. If an edge is

missed due to metastability the synchronizer is locked meaning the whole system

could get stuck. This is something that should be tested in the future.

48

8 APPENDIX

A.1 COMMUNICATION PROTOCOLS

The PMOD interface uses four types of protocols. Each of these protocols is

explained here.

A.1.1 SPI

SPI is a three+ wire communication protocol consisting of one master and 1+ slaves.

Each slave adds an extra wire for communication in the form of a chip select. When

the chip select is pulled low the slave is selected and the communication can start.

The communication part of the interface consists of a clock, a mosi (master out, slave

in) and a miso (master in, slave out). The word size and the operating frequency are

not defined. The send and received message do not even have to be the same size.

Most SPI slaves read on the falling edge to prevent problems with instable data.

A.1.2 GPIO

GPIO stands for general purpose IO, it does not have a standard since it fully

custom. This means nothing can be said about the communication protocol.

A.1.3 I2C

The I2C communication interface only uses 2 wires, one clock and a data line. The

protocol supports multiple masters and slaves. The maximum clock frequency is 100

kHz for normal speed and 400 kHz for full speed. In the default state both the clock

and data line are kept high. To start communication first the data line is pulled low

and then the clock. Next the clock is started and the address is send, this address

can be 7 or 10 bits with an extra bit for reading or writing. In case of 7 bits one byte

is send consisting of the address and the read/write bit. If the 10 bit address is used it

will be send using two bytes. The byte starts with the code 11110 followed by 2 of

the address bits and then the read/write bit. The next byte consists of the remaining 8

bits from the address. After each byte the receiver (slave in this case) will pull the

data line low to indicate the message was received. All the message send with I2C

have to be 8 bit.

A.1.4 UART

UART uses 2 wires for communication the same as for I2C. The purpose of these

wires is different however, one is meant for sending and the other for receiving. The 2

devices connected share a clock speed which is defined beforehand. A message is

send by pulling the tx line from high to low, next the 8 bit long message is send

followed by a parity bit (optional). The parity bit is added for error checking, it counts

the number of ones in the message and indicates if it is even or odd. The last 1 or 2

bits send are stop bits, these indicate the end of a message.

49

A.2 MTBF FOR SYNCHRONIZER IN CASE FREQUENCIES AREN’T

MULTIPLES

The MTBF formula for synchronizers that have to synchronize between two

frequencies that aren’t a multiple is determined here. MTBF calculations are only

necessary for these types of synchronizers, for the other versions the metastability is

covert by the compiler. The number of flip flop used for synchronization is represented

by the variables c and d which are shown in Figure 27, the number of flip flops

determines the MTBF. The relation between c and d and MTBF is calculated. There

are two MTBFs that need to be calculated.

➔ Synchronization of response bit (𝑀𝑇𝐵𝐹𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒)

➔ Synchronisation of message (𝑀𝑇𝐵𝐹𝑀𝑒𝑠𝑠𝑎𝑔𝑒)

When synchronizing data first the message is send covert by the 𝑀𝑇𝐵𝐹𝑀𝑒𝑠𝑠𝑎𝑔𝑒, next

the receiver domain has to send back a response with a MTBF of 𝑀𝑇𝐵𝐹𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒. The

MTBFs can be seen as if in series so they can be added as follows:

𝑀𝑇𝐵𝐹𝑡𝑜𝑡𝑎𝑙 =
1

1
𝑀𝑇𝐵𝐹𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒

+
1

𝑀𝑇𝐵𝐹𝑀𝑒𝑠𝑠𝑎𝑔𝑒

There is started with the MTBFResponse, this can be calculated with the formula

determined earlier:

𝑀𝑇𝐵𝐹𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒 =
𝑒𝑑∗

1
𝑓𝑒

−1.3 𝑛𝑠

0.4 𝑛𝑠

𝑓𝑑𝑓𝑒 ∗ 2.05 𝑛𝑠

𝑓𝑑 = 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑜𝑓 𝑖𝑛𝑝𝑢𝑡 𝑑𝑎𝑡𝑎

𝑓𝑒 = 𝑖𝑛𝑝𝑢𝑡 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦

𝑑 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑙𝑖𝑝 𝑓𝑙𝑜𝑝𝑠 𝑖𝑛 𝑠𝑦𝑛𝑐ℎ𝑟𝑜𝑛𝑖𝑧𝑒𝑟

The MTBFMessage, is going to be a bit more difficult since the synchronization works

differently compared to the response bit. The message that has to be synchronized

has 2 clock cycles to become stable, but it needs to be guaranteed that all bits are

stable to prevent data incoherency. Besides the message the synchronization line

can also become instable, this results in the following MTBF formula:

𝑀𝑇𝐵𝐹𝑚𝑒𝑠𝑠𝑎𝑔𝑒 =
1

𝑏𝑖𝑡𝑠
𝑀𝑇𝐵𝐹𝑀𝑒𝑠𝑠𝑎𝑔𝑒𝐵𝑖𝑡

+
1

𝑀𝑇𝐵𝐹𝑆𝑦𝑛𝑐

𝑏𝑖𝑡𝑠 = 𝑠𝑖𝑧𝑒 𝑚𝑒𝑠𝑠𝑎𝑔𝑒 𝑖𝑠 𝑏𝑖𝑡𝑠

𝑀𝑇𝐵𝐹𝑀𝑒𝑠𝑠𝑎𝑔𝑒𝐵𝑖𝑡 = 𝑀𝑇𝐵𝐹 𝑓𝑜𝑟 1 𝑏𝑖𝑡 𝑜𝑓 𝑡ℎ𝑒 𝑚𝑒𝑠𝑠𝑎𝑔𝑒

50

𝑀𝑇𝐵𝐹𝑆𝑦𝑛𝑐 = 𝑀𝑇𝐵𝐹 𝑓𝑜𝑟 𝑠𝑦𝑛𝑐ℎ𝑟𝑜𝑛𝑖𝑧𝑎𝑡𝑖𝑜𝑛 𝑏𝑖𝑡

There is started with the 𝑀𝑇𝐵𝐹𝑆𝑦𝑛𝑐 this used the same formula as for MTBFResponse

only the direction is the other way around:

𝑀𝑇𝐵𝐹𝑠𝑦𝑛𝑐 =
𝑒𝑐∗

1
𝑓𝑐

−1.3 𝑛𝑠

0.4 𝑛𝑠

𝑓𝑑𝑓𝑐 ∗ 2.05 𝑛𝑠

𝑓𝑑 = 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑜𝑓 𝑖𝑛𝑝𝑢𝑡 𝑑𝑎𝑡𝑎

𝑓𝑐 = 𝑜𝑢𝑡𝑝𝑢𝑡 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦

𝑐 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑙𝑖𝑝 𝑓𝑙𝑜𝑝𝑠 𝑖𝑛 𝑠𝑦𝑛𝑐ℎ𝑟𝑜𝑛𝑖𝑧𝑒𝑟

Next the 𝑀𝑇𝐵𝐹𝑀𝑒𝑠𝑠𝑎𝑔𝑒𝐵𝑖𝑡 is determined, each bit has twice as long to become stable,

this can be covered by multiplying the output frequency with 1 divided by the number

of flipflops used for the synchronization bit.

𝑀𝑇𝐵𝐹𝑚𝑒𝑠𝑠𝑎𝑔𝑒𝐵𝑖𝑡 =
𝑒

𝑐
𝑓𝑐

−1.3 𝑛𝑠

0.4 𝑛𝑠

1
𝑐 𝑓𝑑𝑓𝑐 ∗ 2.05 𝑛𝑠

𝑓𝑑 = 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑜𝑓 𝑖𝑛𝑝𝑢𝑡 𝑑𝑎𝑡𝑎

𝑓𝑐 = 𝑜𝑢𝑡𝑝𝑢𝑡 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦

𝑐 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑙𝑖𝑝 𝑓𝑙𝑜𝑝𝑠 𝑖𝑛 𝑠𝑦𝑛𝑐ℎ𝑟𝑜𝑛𝑖𝑧𝑒𝑟

To get a better insight in how MTBF reacts to frequency, number of bits and number

of flip flops, plots are made. All plots are made for a small frequency range since

values can become very big making it impossible to read the graph. The first plot

shows how the number of bits influences the MTBF. The number of synchronizer flip

flops is kept at two in this case (Figure 39).

51

Figure 39: MTBF for different message sizes

As can be seen from the graph the MTBF is halved for 100 times the message size.

The second plot shows how the MTBF depends on the in and output frequency. In

this case the number of synchronization flip flops is kept at 2, the message size is

kept constant at 10 bits (Figure 40).

Figure 40:MTBF for different input frequencies

As can be seen from the graphs the influence is substantial, for increasing the input

frequency by 6 Mhz the MTBF is divided by 10.

The last graph shows the MTBF for data input speeds (Figure 41).

0

100

200

300

400

500

600

700

M
TB

F(
1

0
0

0
 y

ea
rs

)

Fc

MTBF for different message size (fe=100 Mhz,
fd=1 MHz)

1

25

50

100

0

100

200

300

400

500

600

M
TB

F(
1

0
0

0
 y

ea
rs

)

Fc

MTBF for different fe (Message Size=10 bit, fd = 1 MHz)

1,00E+08

1,02E+08

1,04E+08

1,06E+08

52

Figure 41: MTBF for different output frequencies

This graph shows that the MTBF is halved when the data input speed is doubled, is

should be kept in mind that the influence of the data speed is substantial.

A.3 DERIVING DATAFLOW FROM CLASH

Deriving dataflow from the clash-language is done according to a standard

procedure. The procedure is the same for each node, there is started with the state

space, the state space is converted to dataflow and then simplified.

A.3.1 DATAFLOW ABSTRACTION

The dataflow graphs can in some cases be simplified, there are simplification

methods used throughout the report.

A.3.1.1 MERGE NODES

Nodes can be merged when they happen after each other (data dependency), on the

condition that the first node only has inputs and the last node only has outputs

(except the edge in between). When merged the delay of both nodes can be added,

the input and output edges are also combined into one node (Figure 42).

0

100

200

300

400

500

600

M
TB

F(
1

0
0

0
 y

ea
rs

)

Fc

MTBF for different fd (Message Size=10 bit, fe=100 MHz)

1,00E+06

1,50E+06

2,00E+06

2,50E+06

53

Figure 42: merging two nodes

A.3.1.2 MERGE TOKENS

It is also possible to merge a number of tokens. Imagine three nodes A, B and C, A

produces x tokens, C consumes X tokens and B is positioned in between processing

these tokens (Figure 43). In this case the delay of node B can be multiplied by x

when the tokens produced and consumed is reduced to 1. What happens is that

there is assumed that all tokens are consumed at once. Keep in mind that node B

should not have any inputs or outputs except from A and C.

Figure 43: Merge tokens

A.3.2 DERIVATION PROCESS

Deriving a dataflow graph from the Clash design is a standard procedure. Each

derivation will be done according to the procedure explained here, as an example the

input node is going to be used.

54

Nodes/Basic/NodeInput.hs

First a state space diagram is derived from the Clash code. This is a diagram

showing how the code goes through different states.

---------Predefined functions---------------------------------------

 predef1 = case (edgeDataIn == high && edgeCtrlOut == high) of
 True -> Fire
 False -> Wait

---------Next state---

 stateNext = case stateI of
 Wait -> predef1
 Fire -> predef1

As can be seen from the code, for both states (Fire and Wait) the next state is

determined by the same condition. The values checked by this condition are the input

signals from the controller and input data. The code is used to create a state space

diagram (Figure 44):

Figure 44: Statespace NodeInput

The state space diagram shows that from both states the same condition is checked

as was done by the code. The next step is converting the state space diagram to

dataflow. Doing this conversion brings some complexity with it since conditions

cannot be represented. To make representing possible some assumptions are done,

the input and output signals will be represented by edges where high represents a

token and low means there is not. The states will be represented by nodes which

have edges for input and output signals and edges for determining the execution

order. To determine which inputs and output each state has the code has to be used

again, this time the content of the state is examined.

55

 state' = case stateNext of
-- (edgeResponseOut, (ctrlIn, edgeCtrlIn), stateI)
 Wait -> (low, (ctrlIn, low), stateNext)
 Fire -> (high, (dataIn, high), stateNext)

The signals edgeResponseOut and edgeCtrlIn represent output signals and they are

only high (produce tokens) for the Fire state. With this information the nodes for the

states and their corresponding output edges can be derived (Figure 45).

Figure 45: Node Input states in dataflow

Edges connected to external processes like sensors or actuators can be removed

since they are assumed to be infinite consumers/producers of tokens. The next step

is determining the dependencies and delays of all of the nodes. There is started with

the condition, as can be seen from the state space the design stays in the wait state

until the condition is satisfied. The condition can also be represented by adding the

input edge to the Wait state (Figure 46).

Figure 46: Node Input states of dataflow with inputs

Now only the delays and the dependencies between the nodes have to be added.

There is an edge from the Wait to the Fire state since after Wait is finished Fire has

to start. When Fire is finished the next state could be Fire or Wait. There has been

decided to incorporate the conditions inside the Wait state meaning from the Fire

56

state it has to go to the Wait state to check the conditions. The delay of each state is

normally one clock cycle, however since the Wait state includes a condition it is

reduced to 0. The Wait states delay is controlled by its inputs, meaning when an input

is detected it should fire immediately. The delay of the node will always be a multiple

of 1 clock cycle since it will be connected to nodes which satisfy this property (Figure

47).

Figure 47: Dataflow NodeInput from statespace (1/2)

The dataflow can be simplified by combining the two states, this results in Figure 48.

Figure 48: Dataflow NodeInput from statespace (2/2)

57

A.3.3 OTHER NODES

A.3.3.1 OUTPUT NODE

Nodes/Basic/NodeOutput.hs

Figure 49: Statespace nodeOutput

Figure 50: Dataflow NodeOutput from statespace (1/2)

Figure 51: Dataflow NodeOutput from statespace (2/2)

58

A.3.3.2 BLOCKING NODE

Nodes/Basic/NodeBlock.hs

Figure 52: Statespace nodeBlock

Figure 53: Dataflow NodeBlock from statespace (1/2)

Figure 54: Dataflow NodeBlock from statespace (2/2)

59

A.3.3.3 NORMAL NODE

Nodes/Basic/NodeNormal.hs

Figure 55: Statespace nodeNormal

Figure 56: Dataflow NodeNormal from statespace (1/2)

Figure 57: Dataflow NodeNormal from statespace (2/2)

60

A.3.3.4 SPI INTERFACES

Nodes/Controllers/SPI/Stream.hs and ../StreamR.hs

Figure 58: Statespace stream and streamR

The state space is converted to dataflow, the counter condition is implemented as

multiple tokens produced on an edge since it force to perform the state busy a x-1

number of times.

Figure 59: Dataflow Stream and StreamR from statespace (1/3)

61

Figure 60: Dataflow Stream and StreamR from statespace (2/3)

Figure 61: Dataflow Stream and StreamR from statespace (3/3)

62

A.3.3.5 DELAY CONTROLLER

Nodes/Delay/Delay.hs

Figure 62: Statespace Delay

Figure 63: Dataflow Delay from statespace (1/3)

63

Figure 64: Dataflow Delay from statespace (2/3)

Figure 65: Dataflow Delay from statespace (3/3)

A.4 ADDING CONTROLLERS

Adding controllers is really easy, every node consists of a moore machine which uses

predefined types as input and output.

The first step is load the correct modules:

import Clash.Explicit.Prelude
import Types.Types

With the modules included the states and the state variables are created, the

controllers are designed as a moore machine so the output variables are also present

in the state:

64

data States = <add states here> | Wait | Fire deriving
(Undefined,Generic)
type State a = (<add own vars here>, EdgeCtrl a, States)

The next step is making the control part of the node. A layout is shown which is used

throughout the framework, a custom layout can be used as long as the

communication part with other nodes is satisfied.

--

-- Moore functionality
--

node :: (KnownNat a)
 => State a
 -> (EdgeCtrl a)
 -> State a
node state input = state'
 where
---------Inputs---

 (dataIn, edgeDataIn) = input
---------Load State---

 (<own vars here>, (ctrlOut, edgeCtrlOut), stateI) = state

---------Predefined functions---------------------------------------

 predef1 = case (edgeDataIn == high) of
 True -> <start state which consumes tokens>
 False -> Wait

---------Next state---

 stateNext = case stateI of
 Wait -> predef1
 Fire -> predef1 <end state which fires tokens>
 <Custom states are added here>

---------Fill in state--

 state' = case stateNext of
-- (.. , (ctrlOut, edgeCtrlOut),
stateI)
 Wait -> (<own vars here>, (ctrlOut, low),
stateNext)
 Fire -> (<own vars here>, (dataIn, high),
stateNext)

65

 <Other states> -> …

The next step is adding the output function, this is just copying state variables to the

output:

--

-- Moore Output
--

nodeOut :: (KnownNat a)
 => State a
 -> EdgeCtrl a
nodeOut state = output
 where
 (<own vars here>, edgeCtrlOut, stateL) = state
 output = edgeCtrlOut

The last step is to combine the two functions in a moore machine

--

-- Main function
--

main
 :: (KnownNat a)
 => Clock domA Source
 -> Reset domA Asynchronous
 -> Signal domA (EdgeCtrl a)
 -> Signal domA (EdgeCtrl a)
main clk rst = moore clk rst node nodeOut (<own vars>, (0, high),
Wait)

A.5 MTBF CALCULATION FOR SYNCHRONIZER SENSOR

To get a feeling on how reliable the system is the MTBF is calculated

𝑀𝑇𝐵𝐹𝑡𝑜𝑡𝑎𝑙 =
1

1
𝑀𝑇𝐵𝐹𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒

+
1

𝑀𝑇𝐵𝐹𝑀𝑒𝑠𝑠𝑎𝑔𝑒

To for calculating the MTBF for the response first the “Data speed” needs to be

determined, this is the speed with which data is outputted/produced.

𝑓𝑑 =
1

𝑑 ∗ 𝑑𝑜𝑢𝑡
=

1

859 ∗ 𝑑𝑜𝑢𝑡
=

1

859 ∗
1
𝑓𝑐

=
𝑓𝑐

859
=

101 𝑀𝐻𝑧

859
≈ 117579 𝐻𝑧 = 117,579 𝑘𝐻𝑧

66

𝑀𝑇𝐵𝐹𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒 =
𝑒𝑑∗

1
𝑓𝑒

−1.3 𝑛𝑠

0.4 𝑛𝑠

𝑓𝑑𝑓𝑒 ∗ 2.05 𝑛𝑠
=

𝑒2∗

1
2 𝑀𝐻𝑧

−1.3 𝑛𝑠

0.4 𝑛𝑠

117,579 𝑘𝐻𝑧 ∗ 2 𝑀𝐻𝑧 ∗ 2.05 𝑛𝑠
= 𝑚𝑎𝑛𝑦 𝑦𝑒𝑎𝑟𝑠

𝑀𝑇𝐵𝐹𝑚𝑒𝑠𝑠𝑎𝑔𝑒 =
1

𝑏𝑖𝑡𝑠
𝑀𝑇𝐵𝐹𝑀𝑒𝑠𝑠𝑎𝑔𝑒𝐵𝑖𝑡

+
1

𝑀𝑇𝐵𝐹𝑆𝑦𝑛𝑐

𝑀𝑇𝐵𝐹𝑠𝑦𝑛𝑐 =
𝑒𝑐∗

1
𝑓𝑐

−1.3 𝑛𝑠

0.4 𝑛𝑠

𝑓𝑑𝑓𝑐 ∗ 2.05 𝑛𝑠
=

𝑒2∗

1
101 𝑀𝐻𝑧

−1.3 𝑛𝑠

0.4 𝑛𝑠

1
2 ∗ 2 𝑀𝐻𝑧 ∗ 101 𝑀𝐻𝑧 ∗ 2.05 𝑛𝑠

= 6188724 years

𝑀𝑇𝐵𝐹𝑚𝑒𝑠𝑠𝑎𝑔𝑒𝐵𝑖𝑡 =
𝑒

𝑐
𝑓𝑐

−1.3 𝑛𝑠

0.4 𝑛𝑠

1
𝑐 ∗ 𝑓𝑑 ∗ 𝑓𝑐 ∗ 2.05 𝑛𝑠

=
𝑒

2
101 𝑀𝐻𝑧

−1.3 𝑛𝑠

0.4 𝑛𝑠

1
2 ∗

1
155

∗ 2 𝑀𝐻𝑧 ∗ 101 𝑀𝐻𝑧 ∗ 2.05 𝑛𝑠

= 319218573 years

𝑀𝑇𝐵𝐹𝑚𝑒𝑠𝑠𝑎𝑔𝑒 =
1

8
319218573

+
1

6188724

= 5357753,12 years

𝑀𝑇𝐵𝐹𝑡𝑜𝑡𝑎𝑙 =
1

1
𝑣𝑒𝑟𝑦 𝑏𝑖𝑔

+
1

5357753,12

≈
1

1
5357753,12

= 5357753,12 𝑦𝑒𝑎𝑟𝑠

67

A.6 RESULTS SIMULATION

The plots used for determining the output interval are shown here.

A.6.1 FREQUENCIES ARE EQUAL

68

A.6.2 FREQUENCIES ARE MULTIPLE

69

A.6.3 FREQUENCIES ARE NOT A MULTIPLE

70

9 REFERENCES

(2018, June 4). Retrieved from ti.com: http://www.ti.com/lit/ds/scas520h/scas520h.pdf

Altera. (2018, June 4). Altera. Retrieved from Altera:

http://arantxa.ii.uam.es/~die/%5BLectura%20Timing%5D%20Metaestabilidad

%20AN042%20-%20Altera.pdf

Bahukhandi, A. (2018, April 23). http://www-classes.usc.edu. Retrieved from

http://www-classes.usc.edu: http://www-classes.usc.edu/engr/ee-

s/552/coursematerials/ee552-G1.pdf

Bekooij, M. (2017). Dataflow Analysis for Real-Time Multiprocessor Systems. Empel:

Springer.

blendics. (2018, April 18). Retrieved from blendics: http://blendics.com/wp-

content/uploads/2016/08/golson_snug14.pdf

digilent. (2018, September 3). zybo z7 product page. Retrieved from Website of

digilent: https://store.digilentinc.com/zybo-z7-zynq-7000-arm-fpga-soc-

development-board/

Edward A. Lee, D. G. (October 1987). Synchronous data flow. Proceedings of the

IEEE, 1235-1245.

Edward A. Lee, T. M. (May 1995). Dataflow Process Networks. Proceedings of the

IEEE, 773-801.

Grootte, R. d. (2016). On the analysis of synchronous dataflow graphs: a system-

theoretic perspective. Enschede: 978-90-365-4041-4.

interfacebus. (2018, June 4). Design Metastable. Retrieved from interfacebus.com:

http://www.interfacebus.com/Design_MetaStable.html

Patharkar, A. S. (2015). Performance Analysis of Synchronizer and Measurement of

Metastability. International Conference on Computing Communication Control

and Automation. Pune, India: IEEE.

Sachin Hatture, S. D. (2015). Multi-clock domain synchronizers. International

Conference on Computation of Power, Energy, Information and

Communication (ICCPEIC). Chennai, India: IEEE.

Tejas, D., Amit, J., & Divyanshu, J. (2018, April 18). Synchronizer techniques for

multi-clock domain SoCs & FPGAs. Retrieved from edn.com:

https://www.edn.com/electronics-blogs/day-in-the-life-of-a-chip-

designer/4435339/Synchronizer-techniques-for-multi-clock-domain-SoCs

71

Uchevler, B., Svarstad, K., Kuper, J., & Baaij, C. (2013). System-level modelling of

dynamic reconfigurable designs using functional programming abstractions.

Santa Clara, CA, USA: IEEE.

Wellheuser, C. (2018, June 4). ti. Retrieved from ti.com:

http://www.ti.com/lit/an/scza004a/scza004a.pdf

Xilinx. (2018, June 4). Xilinx. Retrieved from Xilinx:

http://userweb.eng.gla.ac.uk/scott.roy/DCD3/technotes.pdf

