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1 INTRODUCTION 

Now a days cars are equipped with hundreds of sensors and actuators, all in place to 

improve the reliability and safety. While progress has been made with respect to 

smart usage of these sensor and actuators, the real time aspect is still hard to 

guarantee. When a sensor sends out a signal, the data often needs to go through a 

CPU before the corresponding actuator can be controlled accordingly. This single 

CPU is used by multiple sensors meaning there is chance of unforeseen delays, 

other processes or sensors could still be using the processor. There exist solutions 

which can overcome these unforeseen delays, strict scheduling for example. 

However, the complexity and unpredictability of most systems makes it hard to 

implement these techniques.  

A CPU schedules its processes to guarantee that the deadline for each process is 

met. This scheduling is only possible if all processes are known beforehand, when an 

unforeseen process arrives like pressing the breaks in a car it can result in 

scheduling problems. At that moment the CPU has two options, delay the current 

process or delay the new process. This trade off leads to unforeseen delays which 

can cause processes to miss their deadline. Missing deadlines can lead to system 

failures or slow responses. Most systems are tested thoroughly meaning that the 

chance of this happening is extremely small but no hard guarantees can be given. 

The CAES group at the University of Twente is working on a solution to make 

systems with sensors and actuators better analysable. This analysability can be used 

to give better guarantees with respect to timing. One way to achieve this is by 

replacing the CPU for an FPGA. FPGAs contain in contrast to CPUs reconfigurable 

hardware, the hardware can be configured according to the purpose of the FPGA. 

Since a FPGA can be configured it shares less resources than a CPU allowing it to 

run multiple processes separately from each other. Separating processes removes 

most of the scheduling problems present in a CPU. The goal of the project is to build 

a framework that can be used to create deterministic hardware designs for system 

with sensors and actuators. The development of the framework is done in Clash, a 

Haskell based tool used for hardware description.  

This thesis focusses on the sensor communication aspect and answers the question: 

“How to design a framework in Clash to create deterministic sensor interfaces for 

FPGAs?”. To solve this question there started with searching for a method on how to 

analyse and prove determinism. This method will be used to design the framework 

and to guarantee determinism. In the end the framework will be used to create a test 

setup to show how it can be used to create deterministic sensor interfaces.   
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2 BACKGROUND 

2.1 EXPLAINATION TERMS 

2.1.1 DETERMINISM 

A deterministic system is a system that behaves in a predictable way so there is no 

randomness involved. When an input is given to the system it should be known 

beforehand when the corresponding output is generated. As an example a CPU will 

be used, a CPU is deterministic when all its processes are known beforehand. These 

processes can be scheduled resulting in no random behaviour. In most cases 

however there is an OS in the way that also generates processes. These processes 

are not known beforehand but have to be scheduled as well. This will results in 

unpredictable execution times for the different processes which makes the system 

nondeterministic.  

2.1.2 FRAMEWORK 

A framework is a set of tools and functions which can be used to create system with 

functionality the framework was make for. For example a framework for audio 

processing could consist of a set of different processing functions that can be 

combined to create an audio processing pipeline. There are a number of reasons 

why frameworks are useful: 

➔ It makes it easier for users to implement the functionalities the framework is 

made for.  

➔ Frameworks can give guarantees when used according to its specifications. 

➔ A framework is already tested meaning it is guaranteed to work.  

➔ Allows reusing of code 

➔ Easily expandable 

2.2 CLASH 

Clash is a tool developed within the research group CAES at the University of Twente 

(Uchevler, Svarstad, Kuper, & Baaij, 2013) and is now part of the company 

Qbaylogic. The tool has been developed as a new way of designing hardware. 

Instead of using traditional hardware description languages (HDLs) like VHDL and 

Verilog, this tool uses the functional language Haskell. The Clash-language is a 

subset of Haskell which means all code written in the Clash-language can run within 

the Haskell environment, the other way around is not guaranteed. The code written is 

converted by the Clash-compiler to the traditional HDLs (VHDL, Verilog).  

The tool is still in development meaning there can be bugs and parts of the syntax 

can change over time. The version used is a development version of 0.99.3.  

Working with Clash is different compared to traditional HDLs, Clash approaches 

problems from a functional standpoint while HDLs take the hardware approach. It is 

still possible to mimic HDLs however but this is not recommended. When Clash is 
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used correctly it can improve the development speed and reliability of 

FPGA/hardware projects. There are a number of ways in which Clash surpasses 

HDLs in terms of functionality: 

• In most cases the code written in Clash is smaller than in other languages, a 

functional description is more compact.  

• The time to simulation is extremely short, code written can be simulated within 

seconds. This is a big improvement compared to programs like ModelSim and 

Vivado which can take tenths of seconds. 

• Clash makes use of Haskells automatic type derivation which determines 

types at compile time making designs less type bound. When used correctly 

Clash only needs one location where the variable types are defined meaning 

that sizes and types of variables can be easily changed without having to go 

through all IPs separately.  

• The possibility of dynamic hardware generation, this is a functionality of 

Haskell which can be used in Clash. When parts of a function are known 

beforehand the function is simplified by already filling in the known parts. The 

hardware generated from this is based on the simplified function making it 

possible to generate hardware depending setting variables, variable ranges or 

variable types.  

2.3 DATAFLOW 

Dataflow is used throughout the report for analysis since it is deterministic by 

definition. Dataflow doesn’t  contain random behaviour or choice. 

2.3.1 WHAT IS DATAFLOW? 

Dataflow graphs are diagrams consisting of nodes (circles), edges (arrows) and 

tokens (black circles) (Figure 1) (Edward A. Lee T. M., May 1995) (Edward A. Lee D. 

G., October 1987) (Grootte, 2016). Edges connect nodes to indicating there is 

communication. The “data” that is communicated between the different nodes is 

represented by tokens. Depending on the type of dataflow used the tokens are stored 

on a node or an edge, in this thesis there is chosen to have edges store the tokens. 

Edges can store more than one token, the number of tokens stored is indicated by a 

number near the token.  

When a node has at least one token at all of its input edges it is able to “fire”, this 

means it consumes a token from all of its input edges and creates a token at all of its 

output edges. A delay can be added between consuming and firing this is indicated 

inside the node.  
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Figure 1: Dataflow components 

2.3.2 BACKPRESSURE 

Backpressure in dataflow means two nodes are connected with edges in both 

directions (Figure 2). This is useful to limit the number of tokens that can be stored on 

an edge. The tokens on both edges combined is the maximum number of tokens that 

can be stored.  

 

Figure 2: Dataflow backpressure 

2.3.3 SELF EDGES 

A self-edge in dataflow is an edge from a node that is connected to the same node 

as is shown in Figure 3. 

 

Figure 3: dataflow self-edge 

Self-edges are used to limit the number of times a node can execute concurrently, 

the limit is set by the number of tokens on the self-edge. Without the self-edge the 

node can run in parallel until all the input tokens are consumed.  
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2.3.4 PERIODIC BEHAVIOUR 

Under some condition dataflow is periodic, this is important since it determines how 

well the graph performs. A dataflow graph is periodic when it is strongly connected, 

this means that each node can be reached from every node in the graph (Bekooij, 

2017). The period in this case can be calculated with the mean cycle ratio (MCR). 

The MCR is equal to the slowest period of all loops in the dataflow graph. A loop is 

the path taken by a token when it leaves a node and returns without passing the 

same node twice. The period of a loop is calculated by dividing the time it takes a 

token to make the loop by the number of tokens in the loop. A simplified formula is 

given below: 

𝑀𝐶𝑅 =  max (𝑎𝑙𝑙 𝑝) 

    

𝑝 =  
𝑑𝑒𝑙𝑎𝑦 𝑙𝑜𝑜𝑝

𝑡𝑜𝑘𝑒𝑛𝑠 𝑖𝑛 𝑙𝑜𝑜𝑝
 

To show how the MCR works an example is given. 

 

Figure 4: Dataflow with loop periods 

The dataflow in Figure 4 has names for each loop (L1 till L5), the output period is 

given by LO. To calculate the output period of LO the period of each loop needs to be 

determined: 

𝐿1 = 𝑎 + 1 

𝐿2 = 1 + 1 = 2 

𝐿3 = 𝑏 + 1 

𝐿4 = 1 + 1 = 2 

𝐿5 = 𝑐 + 1 
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It is assumed the number of tokens on each loop equals 1 so the output period can 

be determined by taking the maximum of all loops. 

𝐿𝑂 = max(𝐿1, 𝐿2, 𝐿3, 𝐿4, 𝐿5) 

It there would be self-edges than these should be included in the MCR calculation as 

well.  

2.3.5 ASSUMPTIONS AND INFO 

There are a few assumptions made in this report that are important to know. To start 

the delays for the nodes are always multiples of 1 clock cycle. There is chosen to 

have multiples of one clock cycle to keep the dataflow in sync with the clock. A 

second assumption are the implicit self-edge, all pictures in the report assume the 

nodes have self-edges. 

 

2.4 FRAMEWORK WITHIN MAIN PROJECT 

As mentioned in the introduction the framework is going to be part of a bigger project, 

this means it has to be fitted in somehow. It is important to know where the 

framework will be located within this project because it will influence certain design 

choice made later on. The layout used for the main project is shown in Figure 5, the 

sensor interface is the focus of this thesis. 

 

Figure 5: General layout 
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The layout consists of four parts: 

Sensor 

Represents the sensors and actuators connected to framework of the main project. 

Sensor interface 

The sensor interface is responsible for the communication between the sensors and 

actuator and the bus. It converts data from the bus to something the sensor can use 

and the other way around. The sensor interface is going to be implemented as a 

framework and is the focus of this thesis.  

Bus 

Guides the data from the User IP to the correct sensor interface 

User IP 

The user IP is responsible for the functional behaviour. It is responsible for reading 

the sensor data and controlling the corresponding actuator, its behaviour should be 

fully deterministic. 

2.5 GOAL 

The goal of the project is to create framework which consists of a set of building 

blocks which can be combined to create sensor/actuator interfaces for FPGAs. The 

designs made with these blocks should be easily analysable and must guarantee 

deterministic behaviour at all times. To describe the blocks in hardware the Clash-

language is used. The design should be as small as possible in terms of hardware 

since they are going to be implemented on a FPGA. 

2.6 DESIGN PROCESS 

The framework will be designed in a number of steps. There is started with exploring 

the required functionality of the framework in more detail. Next there will be looked at 

how to design a framework using dataflow. The designed framework will be tested 

and used to create a test setup to show it can create deterministic sensor interfaces. 
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3 DESIGNING FRAMEWORK 

3.1 SENSOR INTERFACE IN DETAIL 

The sensor interface is explored in more detail to get a better idea on what the 

sensor interface does and how to build a framework for it. As said before the sensor 

interface is responsible for translating the communication between the sensor and 

user IP. This process is split up into four different blocks to make analysis easier but 

also to make it better suitable for a framework (Figure 6). 

 

Figure 6: Sensor Interface 

As can be seen from the figure the sensor interface will be implemented as a pipeline 

where each block will have its own functionality as described below: 

The Communication Interface is responsible for translating the sensor/actuator 

protocol (SPI, I2C, UART, …) to something that can be used by the sensor driver.  

The Sensor Driver is responsible for communicating with the sensor/actuator and 

initializing the sensor if necessary. The sensor driver handles commands from the 

user IP and sends sensor data back. 

The Synchronisation is responsible for handling the communication between 

different clock domains. Most of the times the clock frequency for a sensor is different 

from that of the users IP meaning some sort of synchronization is necessary. 

The OI sampler acts as the front end of the sensor, it can receive input data for the 

sensor and send output data to the user. This block compensates the variable delay 

of the synchronizer as will be explained later. 

 

3.2 USE OF DATAFLOW IN FRAMEWORK 

As explained earlier, dataflow is going to be used for analysing and proving the 

deterministic behaviour of the framework. However it is not yet defined how dataflow 

is going to be used in the framework. There is looked at two different approaches. 

When taking the hardware approach a hardware design is made that is represented 
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in dataflow. The dataflow representation is used to show the hardware design is 

deterministic. If the theoretical approach is taken a dataflow design is made which is 

then represented in hardware. In this case the hardware is deterministic because it is 

derived from dataflow.   

3.2.1 HARDWARE PERSPECTIVE  

The framework will consist of a set hardware blocks that can be combined to create 

different sensor interfaces. Each blocks will perform one of the functions shown in 

Figure 6 (Communication interface, driver, synchronizer or IO sampler). Different 

blocks can be made for each function to create different sensor interfaces. The 

blocks will be designed using the Clash-language meaning they are directly 

implemented in hardware. Taking this approach is useful since it gives a lot of 

flexibility with respect to hardware design choices. Being close to the hardware 

allows designing with optimization in mind which results in smaller and faster 

designs. The downside is that hardware is not deterministic by definition.  

Proving the determinism is done by deriving a dataflow equivalent of each block. If 

the conversion is possible determinism is guaranteed. 

From a user perspective this approach works as follows. The user connects different 

hardware blocks to create a sensor interface. The hardware blocks all have a 

dataflow equivalent, these can be used by the user to do analysis on the design.  

3.2.2 THEORETICAL PERSPECTIVE 

The theoretical perspective starts with dataflow. The framework will consist of a set of 

dataflow nodes that can be combined to create a sensor interface. The nodes have a 

hardware equivalent that will be used to implement the design. This approach 

guarantees determinism since it is based on dataflow. From a user perspective this 

solution will consist of a number of nodes, each with its own functionality. The user 

can combine these node to create a sensor interface. The hardware is a functional 

equivalent of the dataflow graph meaning the properties of the dataflow graph do 

also hold for the hardware. 

3.3 DATAFLOW AND HARDWARE 

To use dataflow in combination with hardware a link between dataflow and hardware 

needs to be defined. This link is mainly based on how tokens are interpreted, 

dataflow components get a different meaning based on the interpretation of tokens. 

Two different definitions are explained here called structural dataflow and functional 

dataflow. 

3.3.1 STRUCTURAL DATAFLOW 

For structural dataflow a token represents a signal in hardware. A signal can contain 

data or nothing. Signals will change every clock cycle meaning a new token needs to 

be produced each cycle. The nodes in the graph represent hardware components 
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like multiplexers and OR gates. The edges represent the wires between these 

components. A wire in hardware does not have memory meaning an edge can only 

store one token at a time. All nodes have a delay of 1 clock cycle to guarantee new 

tokens each clock cycle.  

The definition of data is lost with this approach, it is not known when a token contains 

data or nothing. For example, a node can produce data every 5 clock cycles, in 

dataflow this would mean it produces 4 tokens that contain “nothing” and one that 

contains the data. The contents of these 5 tokens cannot be observed meaning each 

one them could all be a “nothing” or “data”.  

This representation can be used to prove that hardware is deterministic since it 

guarantees a new signal every clock cycle. The graph doesn’t say anything about the 

deterministic behavior of the data itself. Data could still be outputted at random.  

3.3.2 FUNCTIONAL DATAFLOW 

When using the functional dataflow representation a token represent data in contrast 

to the structural dataflow where a token could be data as well as nothing. The nodes 

represent functions that use the input tokens to create an output. The time a node 

takes to do this must be multiple of 1 clock cycle to keep all nodes in sync with the 

clock. The edges can be seen as FIFOs in hardware, the size of the FIFO is limited 

meaning it can only hold a limited amount of data. This limitation is controlled by 

implementing backpressure, the number of tokens in the backpressure loop indicate 

the size. Adding backpressure makes the dataflow graph automatically strongly 

connected which means the dataflow graph is periodic. The delay of each of the 

nodes depend on their functional description in hardware, it should be at least one 

when it has internal storage. As a rule of thumb can be used: if a node has more than 

one input and output edge it has internal storage. The tokens only represent data 

meaning this representation can be used to prove the deterministic behavior of data. 

3.4 FINAL SOLUTION 

A decision needs to be made on how to design the framework. There are two choices 

that need to be made, is the structural or functional representation of hardware going 

to be used and is the framework going to be designed according to the theoretical or 

the hardware perspective.  

Deciding whether to use the functional or structural representation of hardware is 

easy. The dataflow graph should proof the deterministic behaviour data resulting in 

the only possible representation, the functional one. This means nodes will represent 

functions and tokens represent data.  

For deciding on how to design the framework itself the hardware approach seemed to 

be the best solution at first. A set of deterministic hardware blocks that is connected 

one after the other to create a pipeline looked like a simple and elegant solution. The 

fact that it would use less hardware than its theoretical counterpart made it even 

better. The blocks in the pipeline would share the same interface making it easy to 
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interchange them for a block with different functionality.  

It turned out that this design approach results into problems. The freedom given while 

designing the hardware blocks resulted in nondeterministic designs. This made it 

necessary to formulate a design rule to prevent these design mistakes: “The output 

period or delay should not be influenced by nondeterministic inputs”. A second 

problem became clear later in the process, the timing. If one of the processes in the 

pipeline is slower than the blocks before it, the system would break since data can be 

lost. At first glance this was a problem that could be overcome by controlling the  

delay of the different blocks. The constraint limited the flexibility of the framework 

since certain combinations of blocks could result into timing problems. Besides the 

constraints for the framework itself there was also a problem with the processes after 

the IO sampler. It the processes after the sensor interface would be slower than then 

the output period of the sensor interface it would also result in data loss. To solve the 

delay problem a feedback system was added, each receiving block should indicate to 

the sending block if it is ready. The sending block is halted until the receiving block is 

able to process the data. Implementing these halt signals needed a redesign for each 

block.  

The added complexity in terms of feedback reduced the hardware gain and 

prevented the relative ease with which blocks could be designed. Converting the 

hardware designs to dataflow often resulted in complex dataflow graph or no 

dataflow graph at all. This made is hard to prove determinism and do analysis on the 

designs. 

The first approach turned out to be more complex than initially thought, this was the 

reason to try the theoretical approach. Approaching the problem from dataflow 

perspective directly gave much better results. Analysis could be done beforehand 

since the dataflow calculation methods could be used. The timing problem was 

covered by the backpressure required by the functional hardware representation. The 

added backpressure made the whole system become self-timed. The designing of 

nodes turned out to be easier than expected, the fact that dataflow rules should apply 

gave a good guidance during the design process.  

In the end there is chosen to use the theoretical approach because it turned out to be 

better analysable and easier to implement. 

The final solution for the framework uses a theoretical perspective, this means 

designs will be made in dataflow which are later converted to hardware. The dataflow 

will use the functional representation of hardware meaning each node represents a 

function instead of a hardware components. The design from Figure 6 is converted 

accordingly as is shown in Figure 7. 

 

Figure 7: Dataflow sensor interface 
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The blocks from Figure 6 are converted to dataflow nodes. Each node is connected 

with backpressure to limit the storage on the edges. 

3.5 IMPROVE PERFORMANCE FRAMEWORK 

The design from Figure 7 is not very efficient. With this design the nodes can only fire 

when both the previous and next node are finished. This structure limits parallel 

processing which can be shown by calculating the MCR: 

𝑝𝑒𝑟𝑖𝑜𝑑 = max(𝑎 + 𝑏, 𝑏 + 𝑐, 𝑐 + 𝑑, 𝑎, 𝑏, 𝑐, 𝑑) 

The output period equals the period of two nodes added.  

By separating the communication aspect from the controller/functional part the 

parallelism can be improved (Figure 8). The ctrl node represent the functional part 

which is called controller from now on. The controller is responsible for processing 

incoming data and controlling the connected communication node. The 

communication node is responsible for distributing incoming data to the next 

communication node and the controller. This node has a delay of 1 clock cycle 

because it has more than one input and output edge. The red arrows show how the 

data from the tokens goes through the system. As can be seen from the picture, data 

only goes in one direction. This choice is made to prevent forcing the input and 

output data to go through the same processing pipeline. Most of the times input data 

will require different processing than output data.  

 

Figure 8: General layout framework 

When this new design is put in Figure 7 it results in a design with communication 

nodes at the bottom and controllers at the top (Figure 9).  
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Figure 9: Dataflow general layout improved parallelism 

The MCR is calculated for the new design: 

𝑝𝑒𝑟𝑖𝑜𝑑 = max(𝑎 + 1, 𝑏 + 1, 𝑐 + 1, 𝑑 + 1, 2, 𝑎, 𝑏, 𝑐, 𝑑, 1) 

The output period now equals the delay of one of the controller plus the delay of a 

communication node. It is assumed the controllers will have a delay bigger than the 1 

clock cycle from the communication node. Based on this assumption it can be 

concluded that the period will be smaller than for the previous solution (Figure 7). 
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4 IMPLEMENT FRAMEWORK IN HARDWARE 

4.1 FRAMEWORK IN HARDWARE 

For the conversion from dataflow to hardware a standard procedure is used. There 

are two parts that need to be discussed, the backpressure and the nodes. Here the 

implementation of these two dataflow elements is explained. 

4.1.1 BACKPRESSURE 

Nodes/Edges/Backpressure.hs 

Designing backpressure in hardware is a complex operation. The backpressure 

needs to store tokens (data) but cannot have a delay. To solve this problem there is 

started with a definition of tokens and edges in hardware. The choice is made to 

represent an edge as two lines, a data line and a control line. The control line is used 

for indicating tokens on the edge. When the control line is high it indicates there is a 

token present, when the line is low there is no token. The data inside the token is 

handled by the separate data line which sends the data in parallel. The values for the 

data and control line are stored at the output buffer of the node sending the token. 

When a node sends out a new token its output buffer is updated, the control signal is 

set to high to indicate the new token while the data line gets the new data. The 

backpressure is implemented with only one token in the loop, this means that new 

data can only be send when the previous data has been read.  

When the backpressure edges are implemented in hardware as described above it 

would result in a working backpressure design (Figure 10). Keep in mind the nodes in 

the figure represent the hardware equivalent of a node as will be explained later. 

 

Figure 10: Backpressure in hardware 

The problem with this design is the following. When “Node A” sends a token because 

its input control line is high (high indicates a token), it has to wait at least one clock 

cycle before the input control signal is updated by “Node B”. This delay is the result of 

“Node B” having to update its output buffer. This means that “Node A” cannot read its 

inputs for one clock cycle after sending because they are not updated yet. This is not 

according to dataflow specifications and makes node design unnecessary complex. 

The nodes now need to have logic for their own behavior as well as well as logic for 

controlling the backpressure.  

A solution needs to be found on how to get rid of the delay and preventing nodes 
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from having to worry about backpressure logic. This problem is solved by 

implementing the backpressure as a state machine who switches between two circuit 

layouts, the state is controlled by the controller (Figure 11). The design shown here 

represents the backpressure between node A and node B (Figure 12). The state is 

switched when there is a signal edge on one of the input signals. The signal edges 

are used because it makes synchronization easier later on. The switching of state 

takes one clock cycle, to prevent strange behavior the input and output node should 

have at least a delay of one clock cycle. The inverters which connect the input to the 

output of a node act as a direct response to the input. It looks like the token on the 

incoming edge is consumed at the moment a token is put on the outgoing edge. This 

is not the exact behavior of dataflow since dataflow consumes tokens at the start of 

its execution. However, consuming the token at “firing” time doesn’t influence the 

dataflow behavior.  

There are “signal edge” symbols shown next to the input lines, these indicate the 

signal is a signal edge instead of the signal itself. This line is high when the input 

signal changes and low when it equals its previous value. The switching of state is 

done by the controller according to the following rules: 

➔ If State is X and there is an edge on output A the state goes to Y 

➔ If State is Y and there is an edge on output B the state goes to X 

 

 

Figure 11: Hardware design backpressure 
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Figure 12: Backpressure between node A and node B 

The backpressure only communicate data in one direction as is shown by only one 

data line. An example shown in Figure 13 for dataflow graph of Figure 14.  

 

Figure 13: Plot working backpressure 

 

Figure 14: Example dataflow layout 

4.1.2 NODES 

All nodes will be implemented as state machines. Each node will have at least two 

states called “Fire” and “Wait”. During the “Fire” state the node produces new tokens, 
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while the “Wait” state is used for waiting on new input tokens. When in the “Fire” state 

the next state depends on the available input tokens. When there are tokens 

available at all input edges (inputs are high) the next state is again the “Fire” state, if 

not the next state is “Wait”. When the node is in the “Wait” state and tokens are 

available at the inputs (inputs are high) the node goes to the “Fire” state. Every state 

execution takes one clock cycle meaning that every node has at least a delay of 1 

clock cycle. 

The state machine explained here is for a basic node. When the input tokens need to 

be processed states can be added before the “Fire” state. This means when tokens 

are available at all inputs the nodes goes through all the processing states finishing 

with the “Fire” state.   

4.2 SYNCHRONIZATION 

The framework needs to support synchronization between multiple clock domains. 

Some information is given with respect to calculating the Mean Time Between 

Failures for synchronizers and which designs are already available. 

4.2.1 MEAN TIME BETWEEN FAILURES FOR SYNCHRONIZER  

When communicating between different clock domains there is a change that data is 

corrupted due to the metastability of flip flops. This happens when the receiver reads 

the input data just before or just after it has been changed. How much time depends 

on the setup and hold times of the flip flops used. It cannot be guaranteed that 

metastability will never happen since the 2 clock domains are asynchronous. The 

only way to say something about the reliability of this communication is by calculating 

the chance an error will happen. There are different methods found on the internet, 

this one is chosen because of it is well documented (Wellheuser, 2018) (Patharkar, 

2015) (blendics, 2018).  

The chance a flip flop is metastable after a period tR is given by: 

𝑃𝐹 = 𝑃𝐸 ∗ 𝑃𝑆 

Where  

𝑃𝐸 = 𝐶ℎ𝑎𝑛𝑐𝑒 𝑜𝑓 𝑒𝑛𝑡𝑒𝑟𝑖𝑛𝑔 𝑚𝑒𝑡𝑎𝑠𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦 

𝑃𝑆 = 𝐶ℎ𝑎𝑛𝑐𝑒 𝑜𝑓 𝑏𝑒𝑖𝑛𝑔 𝑚𝑒𝑡𝑎𝑠𝑡𝑎𝑏𝑙𝑒 𝑎𝑓𝑡𝑒𝑟 𝑡𝑅 

PE is determined by calculating the chance that the edge of the output clock is inside 

the danger zone of the flip flop (T0). This is the period where the propagation delay of 

the flipflop is higher than the clock. The probability is calculated by dividing T0 by the 

clock period tC.  

𝑃𝐸 =
𝑇0

𝑡𝑐
= 𝑓𝑐𝑇0 

𝑇0 = 𝑡𝑠𝑢 − 𝑡ℎ 
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𝑓𝑐 = 𝑜𝑢𝑡𝑝𝑢𝑡 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 (𝐻𝑧) 

𝑡𝑐 = 𝑐𝑙𝑜𝑐𝑘 𝑝𝑒𝑟𝑖𝑜𝑑 (𝑠) 

𝑡𝑠𝑢 = 𝑠𝑒𝑡𝑢𝑝 𝑡𝑖𝑚𝑒 (𝑠) 

𝑡ℎ = ℎ𝑜𝑙𝑑 𝑡𝑖𝑚𝑒 (𝑠) 

The metastability of a flip flop after tR seconds is given by: 

𝑃𝑆 = 𝑒− 
𝑡𝑅
𝜏  

Where 

𝑡𝑅 = 𝑟𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒 

𝜏 = 𝑎 𝑡𝑖𝑚𝑒 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡, 𝑓𝑙𝑖𝑝 𝑓𝑙𝑜𝑝 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐 

The resolution time is the time available for the signal to become stable. This means 

it is a full clock cycle minus constant delays. 

   

𝑡𝑅 =
1

𝑓𝑐
− 𝑡𝑝𝑟𝑜𝑝 − 𝑡𝑠𝑢 

When both probabilities are combined it results in the following formula: 

𝑃𝐹 = 𝑃𝐸𝑃𝑆 = 𝑓𝑐 ∗ (𝑡𝑠𝑢 − 𝑡ℎ) ∗ 𝑒−

1
𝑓𝑐

−𝑡𝑝𝑟𝑜𝑝−𝑡𝑠𝑢

𝜏  

To get the failure rate the changing frequency of the input needs to be known. 

Assume the input changes with a rate fd, then the failure rate becomes: 

𝜆 = 𝑓𝑑𝑃𝐹 = 𝑓𝑑𝑓𝑐 ∗ (𝑡𝑠𝑢 − 𝑡ℎ) ∗ 𝑒−

1
𝑓𝑐

−𝑡𝑝𝑟𝑜𝑝−𝑡𝑠𝑢

𝜏  

The failure rate can be used to calculate the mean time between failures (MTBF) as 

follows 

𝑀𝑇𝐵𝐹 =
1

𝜆
=

𝑒

1
𝑓𝑐

−𝑡𝑝𝑟𝑜𝑝−𝑡𝑠𝑢

𝜏

𝑓𝑑𝑓𝑐 ∗ (𝑡𝑠𝑢 − 𝑡ℎ)
=

𝑒
𝑡𝑅
𝜏

𝑓𝑑𝑓𝑐 ∗ 𝑇0
 

The value for the propagation delay 𝑡𝑝𝑟𝑜𝑝, setup time  𝑡𝑠𝑢, hold time 𝑡ℎ and the flip 

flop constant 𝜏 all depend on the FPGA. These values are not documented, that is 

why there is decided to base the setup and hold times on the calculation example 

from ti (Wellheuser, 2018). This example uses values from a FIFO chip which is 

comparable to what is presented here. Keep in mind that these values are only an 

indication and could be completely off depending on the FPGA. 
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𝑡𝑝𝑟𝑜𝑝 + 𝑡𝑠𝑢 = 1.3 𝑛𝑠 

𝑇0 = 𝑡𝑠𝑢 − 𝑡ℎ = 2.05 𝑛𝑠 

𝜏 = 0.4 𝑛𝑠 

To improve the MTBF it is possible add an extra flip flops in series, by doing so the 

performance is improved since the resolution time is doubled.  

𝑃𝐹 = 𝑃𝐸 ∗ 𝑃𝑆1 ∗ 𝑃𝑆2 

𝑀𝑇𝐵𝐹 =
𝑒

𝑡𝑅
𝜏

𝑓𝑑𝑓𝑐𝑇0
∗ 𝑒

𝑡𝑅
𝜏 =

𝑒
2𝑡𝑅

𝜏

𝑓𝑑𝑓𝑐𝑇0
 

Multiple flipflops can be added to improve the MTBF even more, this is at the cost of 

communication speed since more cycles are needed to transport one message from 

one to the other clock domain. The MTBF for “x” number of flip flops is: 

𝑀𝑇𝐵𝐹 ==
𝑒𝑥

𝑡𝑅
𝜏

𝑓𝑑𝑓𝑐𝑇0
 

As both the formulas show the MTBF will increase when the input or output 

frequency decreases, this can be explained by the fact that the flipflops have more 

time to become stable. 

4.2.2 SYNCHRONIZER SOLUTIONS 

There are a number of different designs available for synchronizing data between 2 

clock domains. The different layouts mentioned here vary in complexity (Sachin 

Hatture, 2015) (Tejas, Amit, & Divyanshu, 2018). These designs are mainly used 

when the two frequencies that need to be synchronized aren’t a multiple of each 

other. The synchronizer designs are implemented to improve the Mean Time 

Between Failures (MTBF). Since there is chance data is read by the receiving 

domain when it is not yet stable.   

The first design is simply 2 flipflops in series (Figure 15).   

 

Figure 15: Dual flip synchronizer 

This circuit useful since it uses minimal hardware to make multidomain 

communication possible. The downside of this solution is that there is no knowing 
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when a signal has arrived in the other domain. The design is also not useful for 

synchronizing multiple bits since it will decrease the MTBF drastically. Correct 

operation of this design requires the input signal to be constant during 

synchronization. 

To improve the synchronization of multiple bits the following solution is used (Figure 

16).  

 

Figure 16: Dual flip flop data synchronizer 

This solution is based on the 2 flip flop synchronizer but has a separate 

communication line for data. The data line has twice as long to become stable 

compared the synchronization line. To make this solution work the data line should 

remain constant until the data has been read on the receiver side. Since there is no 

feedback this is hard to determine. This problem can be circumvented by making the 

clock frequency of the receiver domain at least twice as high as the clock of the 

sender domain.  

The next design improves the feedback part (Figure 17). 
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Figure 17: Synchronizer with feedback 

This design send a signal to the receiver, this signal is then returned to the sender. 

During this period a busy signal is kept high at the sender side to indicate no new 

signal can be send. This solution solves the feedback problem at the cost of more 

hardware. It does not allow to send data since it only has one communication line. 

Two other designs found improve on the data communication aspect. The first 

solution adds data lines to a sort of handshake design, the last solution uses a FIFO 

buffer as communication. A FIFO is the most reliable way of communication but does 

require a lot of hardware. The best trade-off is the handshake protocol with data 

communication abilities. 

 

4.3 FRAMEWORK CONTENTS 

The framework is going to consist of a number of dataflow nodes that have a 

hardware equivalent. Multiple nodes have been designed to create a first basis for 

the framework. Each node is designed in a number of steps: 

1. Design a dataflow node of the function that is going to be added 

2. Convert the designed node to hardware design (explanation shown in appendix 

A.4)  

3. Test hardware design and convert back it back to dataflow to prove they are equal. 

(explanation shown in appendix A.3) 
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4.3.1 COMMUNICATION NODES 

As explained before, these nodes are responsible for sending the data through the 

system. They will be used in combination with a controller. A number of different 

nodes are designed as is shown here: 

4.3.1.1 INPUT NODE 

Nodes/Basic/NodeInput.hs 

The input node reads data from its input and outputs it to the controller (Figure 18). 

 

Figure 18: NodeInput   

4.3.1.2 OUTPUT NODE 

Nodes/Basic/NodeOutput.hs 

The output node read data from the controller and outputs it to the rest of the system 

(Figure 19). 

 

Figure 19: NodeOutput 
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4.3.1.3 NORMAL NODE 

Nodes/Basic/NodeNormal.hs 

The normal node read input data and sends it to the connected controller, at the 

same time it reads the previous controller value and sends it to the output (Figure 

20).  

 

Figure 20: NodeNormal 

4.3.1.4 BLOCKING NODE 

Nodes/Basic/NodeBlock.hs 

The blocking node blocks its input after an output, it is enabled again when the 

controller returns a signal (Figure 21). The controller should be of the type delay.  

 

Figure 21: NodeBlock 

4.3.2 CONTROLLERS 

Controller manipulate the input data and then output them again. A controller should 

be used in conjunction with a communication node. A number of pre-made controllers 

is shown here. A structured way of creating custom controllers is explained in 

appendix A.4.  
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4.3.2.1 SPI 

Nodes/Controllers/SPI/Stream.hs 

Nodes/Controllers/SPI/StreamR.hs 

The SPI controllers are used to communicate with a SPI interface. There are two 

design: 

Stream: Does not pull CS high after each message  

StreamR: Pulls CS high after every message  

4.3.2.1.1 DATAFLOW DESIGN 

The dataflow model can be found in Figure 22. 

 

Figure 22: Controller SPI 

The initial dataflow design has an unknown execution time a, the value for a is 

determined by the implementation in Clash. The Clash implementation has a delay 

equal to x+1 where x represents the message size. 

4.3.2.1.2 HARDWARE DESIGN 

To understand where the x+1 delay for the node is coming from the underlying 

hardware needs to be known. The controller reads data from its input and puts it in 

an internal buffer, the first bit is directly written to the sensor since it is unnecessary 

to store. The next x (depending on message size) clock cycles data is read from the 

sensor and put in the buffer while data from the buffer is written to the sensor. When 

the last bit is written the full buffer is outputted together with the last bit from the 

sensor making the output complete (Figure 23). 

 

Figure 23: Working SPI controller 
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When no data is available at the input of the node the controller is halted and the 

sensor clock is turned off until new data is available.  

4.3.2.2 NODE DELAY 

Nodes/Delay/Delay.hs 

The delay node is a controller that adds a delay between its input and output. It can 

be used in combination with the nodeBlock to block the input for a number of clock 

cycles. The dataflow looks like Figure 24. 

 

Figure 24: Delay 

4.3.3 OTHERS 

This node could be categorized as a controller or a communication node since it 

doesn’t store tokens. It converts an incoming token outputs it directly hence the 0 

delay. 

4.3.3.1 SLICE TOKEN 

Designs/SliceToken.hs 

The slice token node can be used to make the length of a token in number of bits 

smaller, this can be useful for getting rid of useless data. The node can be 

implemented with zero delay since cutting of bits in hardware is done by not 

connecting wires. 

 

Figure 25: Dataflow SliceToken 

The node has no state so proving its correct behavior is not necessary. 
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4.4 FRAMEWORK IMPLEMENTATIONS FOR SENSOR INTERFACE 

These are implementations made with framework nodes explained above. These 

designs are made to create a sensor interface. In some cases a custom parts are 

added, the choice to include these parts will be explained when this is the case.  

4.4.1 COMMUNICATION INTERFACE 

4.4.1.1 SPI INTERFACE  

Designs/SPIinterface.hs 

This design is made to make working with SPI easier, the design needs as inputs an 

SPI controller type (Stream, StreamR) and the type of communication node. The 

design then automatically generates the correct layout of nodes. 

4.4.2 SENSOR DRIVER 

No specific implementations have been designed as sensor driver.  

4.4.3 SYNCHRONIZATION 

There are cases where a design needs multiple clock domains, for example when 

communicating with a sensor. Sensors do often run at lower clock speed then the 

logic using the sensor data. There is the option to use oversampling for this problem 

to get rid of the second clock but this needs hardware to convert the sample data. 

The higher clock speed used for oversampling will also limit the flexibility in placing 

the hardware on the FPGA, for lower clock speeds wires can be longer giving the 

FPGA more freedom in placing the different hardware components. To communicate 

between two clock domains synchronization is needed. Two designs are shown, one 

in case the two frequencies are multiples and one in the case they are not. Keep in 

mind that the execution times are worst case since they depend on the distance 

between the edges of the two clocks. This means that the output period of a 

synchronizer is variable and not deterministic. The IO sampler that will be explained 

later can be used to compensate the variability. 

4.4.3.1 SYNCHRONISATION: FREQUENCIES OF BOTH DOMAINS IS 

MULTIPLE 

Designs/SyncMult.hs 

In case the two clocks are a multiple of each other the edges of the clocks are in sync 

once every x clock cycles (depending on frequencies). The ratio between the two 

frequencies is given by the frequency ratio or the period ratio: 
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𝑅𝑓 =
𝑓𝑖𝑛

𝑓𝑜𝑢𝑡
=

1
𝑑𝑖𝑛

1
𝑑𝑜𝑢𝑡

=
𝑑𝑜𝑢𝑡

𝑑𝑖𝑛
 

𝑑𝑜𝑢𝑡 = 𝑝𝑒𝑟𝑖𝑜𝑑 𝑜𝑓 𝑐𝑙𝑜𝑐𝑘 𝑜𝑢𝑡 (𝑠) 

𝑑𝑖𝑛 = 𝑝𝑒𝑟𝑖𝑜𝑑 𝑜𝑓 𝑐𝑙𝑜𝑐𝑘 𝑖𝑛 (𝑠) 

𝑅𝑓 = 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑟𝑎𝑡𝑖𝑜  

There are two problem that need to be overcome. First is the synchronizing from the 

fast to the slow clock domain, the sending node needs to halt until the receiving 

domain has processed the data. The second problem arises when synchronizing 

from a slow to a fast clock domain, the node in the fast clock domain can read the 

same input signal multiple times since the output node updates its output signal too 

slow.  

The synchronization from the fast to the slow domain has already been covered by 

the backpressure since it halts the sending node. The other way around is a bit more 

difficult, it is solved as follows. The synchronization uses a custom node which 

toggles its output instead setting it high or low, this in combination with the 

backpressure design explained earlier prevents the system from reading the same 

input multiple times. The layout is shown in Figure 26. No synchronization flip flops 

are needed since there is no metastability. 

 

Figure 26: Synchronization multiple 

The backpressure design should run at the highest frequency of the two synchronizer 

frequencies to assure correct edge detection.  

The worst case throughput of the synchronizer is determined by maximum period of 

the internal loop. 
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𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡𝑠𝑦𝑛𝑐𝑀𝑢𝑙𝑡 = 𝑑𝑖𝑛 + 𝑑𝑜𝑢𝑡 

𝑑𝑜𝑢𝑡 = 𝑝𝑒𝑟𝑖𝑜𝑑 𝑜𝑓 𝑐𝑙𝑜𝑐𝑘 𝑜𝑢𝑡 (𝑠) 

𝑑𝑖𝑛 = 𝑝𝑒𝑟𝑖𝑜𝑑 𝑜𝑓 𝑐𝑙𝑜𝑐𝑘 𝑖𝑛 (𝑠) 

The maximum delay from input to output is: 

𝐷𝑒𝑙𝑎𝑦𝑠𝑦𝑛𝑐𝑀𝑢𝑙𝑡 = 𝑑𝑖𝑛 + 𝑑𝑜𝑢𝑡 

𝑑𝑜𝑢𝑡 = 𝑝𝑒𝑟𝑖𝑜𝑑 𝑜𝑓 𝑐𝑙𝑜𝑐𝑘 𝑜𝑢𝑡 (𝑠) 

𝑑𝑖𝑛 = 𝑝𝑒𝑟𝑖𝑜𝑑 𝑜𝑓 𝑐𝑙𝑜𝑐𝑘 𝑖𝑛 (𝑠) 

4.4.3.2 SYNCHRONISATION: FREQUENCIES OF BOTH DOMAINS IS NO 

MULTIPLE 

Designs/SyncNoMult.hs 

When the clocks are not a multiple of each other synchronization becomes more 

difficult, it can never be guaranteed that the clock edges are in sync.  

The already existing designs explained earlier are hard to combine with the dataflow 

format used. There has been decided to use the same design as in Figure 26. The 

communication between the two domains is extended with a dual flip synchronizer 

(Figure 27). The flip flops are indicated by the circles with c and d in them. The value 

for c and d represent the number of flip flops in the synchronizer.  

 

Figure 27: Synchronizer frequencies aren't multiples 

For the synchronization in both directions the normal flip flop design is used (Figure 

15). The data itself is synchronized separately based on (Figure 16), the only 

difference is that the multiplexer is included in the receiver node. One requirement for 

synchronization is that the input signals will be kept constant during synchronization 

giving the flip flops time to become stable, the toggle nodes are perfect suited for this 

since they keep their output constant for at least the time it takes for the feedback to 
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respond which is always larger than time it needs to become stable. The 

backpressure is a custom designed since it had to be split up to make room for the 

synchronizer flip flops Figure 28.  

 

Figure 28: Back pressure design for synchronization 

The minimum throughput of this synchronizer can be calculated by determining the 

maximum period of the design: 

𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡𝑀𝑖𝑛𝑠𝑦𝑛𝑐𝑁𝑜𝑀𝑢𝑙𝑡 = (𝑑 + 1) ∗ 𝑑𝑖𝑛 + (𝑐 + 1) ∗ 𝑑𝑜𝑢𝑡 

The maximum delay of the design is 

𝐷𝑒𝑙𝑎𝑦𝑠𝑦𝑛𝑐𝑁𝑜𝑀𝑢𝑙𝑡 = 𝑑𝑖𝑛 + (𝑐 + 1) ∗ 𝑑𝑜𝑢𝑡 

The MTBF is calculated for this design and can be found in appendix A.2.  

4.4.3.3 SMART SYNC 

Designs/SmartSync.hs 

The smart sync design automatically determines which synchronization solution is 

best based on the given input frequencies. It can choose between no 

synchronization, when fin and fout are the same, synchronization for multiples and 

synchronization for no multiples. 
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4.4.4 IO SAMPLER 

4.4.4.1 FLOW GATE 

Designs/FlowGate.hs 

This design is  based on the NodeBlock communication node, it can be combined 

with different delay controllers and by doing so influence its behavior. At this moment 

there is only one option which is called “Delay”, this option adds a Delay controller to 

the communication node so the input blocked for a number of clock cycles after each 

input. The design compensates for the extra delay added by the communication 

node. (Figure 29). 

 

Figure 29: FlowGate 
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5 RESULTS 

The framework will be tested in two steps: 

➔ First all components of the framework will be tested separately. This includes 

both the nodes and the designs made with these nodes, like the synchronizer. 

➔ Next the components of the framework are used to build a interface for a 

sensor. This is done to show that the framework can be used to build a 

deterministic interface.  

5.1 TEST PROCESS 

5.1.1 TEST BOARD 

The FPGA board that is going to be used for testing is the Zybo-Z20 from Digilent. 

This board is equipped with a Zynq-7010 FPGA from Xilinx. All Digilent boards make 

use of a standard interface called PMOD, this interface is mainly used for connecting 

peripherals like sensors and actuators. The PMOD interface is called a standard but 

still uses 3 different pin layouts (1 x 6, 2 x 6 and 2 x4). Digilent provides a collection 

of devices that can be connected to the PMOD interface, these vary from displays to 

light sensors. Most of the devices are provided with an example code, sometimes this 

is only in C, other times also VHDL or Verilog. The official PMOD interface supports 

four protocols: SPI, GPIO, I2C and UART. The four communication protocols 

supported by PMOD are very common. 

5.1.2 TEST PROCESS INDIVIDUAL COMPONENTS 

The individual components of the framework will be tested separately to verify that 

they are working correctly. These tests will be done by comparing the output of each 

of the individual components to a unique test vector. These test vectors are designed 

in such a way that most input to output combinations of a component are covered. 

The first tests will be done in the simulation environment of Clash. When the 

simulations in Clash are successful the code will be converted to Verilog. The FPGA 

programming software Vivado is then used to simulate the Verilog code, the results 

are compared to the results from Clash. When this works the implementation for each 

component will be generated to get an idea of the hardware footprints, these 

footprints are given in LUTs and flipflops. 

5.1.3 TEST PROCESS IMPLEMENTATION 

To test if the framework is useful for building a sensor interface a test setup is made 

using the layout shown in  Figure 6. The sensor that is going to be used for testing is  

a SPI ambient light sensor. The setup will be tested with an infinite supply of tokens 

at its input which is the side that will be connected to the bus. This is done to get a 

periodic output, asking constantly for new data is the most stress that can be put on 

the system. The designs will first be tested in Clash by using the internal simulation 
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tool. If the simulations are successful the code is converted to VHDL and tested in 

Vivado. The output period of these simulations is determined and compared to their 

theoretical value. Next the design in implemented on the FPGA, it will be added as an 

AXI peripheral so the output can be read out by a CPU and displayed. The output 

signal indicating new data is connected to an output pin so the output period can be 

compared to the theory. The last step is checking the size of the design in number of 

flip flops and LUTs 

5.1.3.1 SENSOR  

The sensor used is a Digilent PMOD light-sensor. This is a 

sensor with an SPI interface that sends out 2 bytes of data 

every time the chip select goes from high to low. The 2 bytes 

consist of 3 zeros, then 8 bits of data followed by 4 zeros 

(Figure 30). The 15 bits are collected by the driver, the driver 

cuts off the zeros and then puts the data on the output. The 

sensor has an operating frequency between 1 MHz and 4 

MHz. There is chosen to use an SPI sensor instead of an I2C, 

UART or GPIO because the other interfaces had 

implementation problems. The implementation of I2C needs tri-state inputs and 

outputs for communication which cannot be implemented in Clash. The UART 

interface needs a clock which must be synchronised which is not possible is Clash 

unfortunately. A solution would be to do oversampling, if SPI was not easier to 

implement this interface would have been chosen. The last interface that could be 

used is GPIO, this is not used since it is too specific for each sensor which is not in 

line with a framework design.   

 

Figure 30: Data layout light sensor 

5.1.3.2 LAYOUT 

The layout of the test setup will differ depending on the input and output frequencies. 

The Clash design automatically changes the layout depending on these frequencies. 

To guarantee the design fully works the three possible layouts will be tested 

separately. These layouts are:  

➔ Frequency of sensor and receiver are equal 

➔ Frequency of sensor is multiple of the receiver frequency 

➔ Frequency of sensor and receiver are no multiple. 
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5.1.3.2.1 DESIGN 1: FREQUENCIES ARE EQUAL 

When the input and output frequency are equal, the synchronization step is not 

necessary, the dataflow is given in Figure 31. 

 

Figure 31: Dataflow Lightsensor without synchronization 

The IO sampler is left out since there is no synchronization so no variable delay. The 

SPI interface uses the streamR design, this design pulls CS high after every 

message. This is necessary to have the sensor work correctly. The sensor itself only 

outputs data, this is why the communication node below the streamR SPI interface 

uses the NodeOutput design. The delay for the streamR controller equals the 

message size plus 1 which results in a delay of 16 cycles. 

The output period can be determined by calculating the MCR, there are only three 

loops in this design to it is relatively easy to do. 

𝑀𝐶𝑅 = max(16 + 1, 16, 1) = 17 𝑐𝑦𝑐𝑙𝑒𝑠 

5.1.3.2.2 DESIGN 2: FREQUENCIES ARE MULTIPLES 

The next test uses two frequencies that are multiples. The sensor frequency is set to 

2 Mhz, the frequency of the user IP is set to 100 Mhz. The design that results from 

these frequencies is shown in Figure 32.  

 

Figure 32: Dataflow light sensor when frequencies are multiples 
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The design consists of three components: The SPI interface, the synchronization and 

the IO sampler. The delay for the streamR controller is the same as for equal 

frequencies so 16 cycles.  

The synchronization uses the design for frequencies that are a multiple of each other. 

The last component is the IO sampler. The IO sampler is responsible for correcting 

the variable delay of the synchronizer so the output of the dataflow is deterministic. 

The period of the IO sampler should be equal or higher than the MCR of the rest of 

the sensor interface.  

The delays for the nodes are given in number of clock cycles for their specific 

domain. The delays are corrected by dividing them by the frequency ratio given 

below so all delays are given in number of output clock cycles. 

𝑅𝑓 =
𝑓𝑠𝑒𝑛𝑠𝑜𝑟

𝑓𝑢𝑠𝑒𝑟𝐼𝑃
=

2 𝑀𝐻𝑧

100 𝑀𝐻𝑧
=

1

50
 

The corrected dataflow graph is shown in Figure 33. The different loops in the 

dataflow graph are marked. 

 

Figure 33: Dataflow light sensor when frequencies are multiples, corrected 

The value for b is still unknown. It can be calculated by using the property that the 

output period (L5) should equal the MCR of the rest of the dataflow: 

𝑀𝐶𝑅𝑜𝑡ℎ𝑒𝑟 = 𝐿5 = 𝑏 + 1 = 𝑚𝑎𝑥(𝑙1, 𝑙2, 𝑙3, 𝑙4) 

The periods of the designs are: 

𝑙1 =
16 + 1

𝑅𝑓
= 850 

𝑙2 =
1 + 1

𝑅𝑓
= 100 

𝑙3 = 1 +
1

𝑅𝑓
= 51 

𝑙4 = 1 + 1 = 2 
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When these values are filled in it results in a value for b: 

𝑏 = 𝑚𝑎𝑥(850,100,51,2) − 1 = 849 

As can be seen from the results the SPI interface is the slowest part of the design. 

The design will generate an output with a period of 850 clock cycles. 

5.1.3.2.3 DESIGN 3: FREQUENCIES ARE NO MULTIPLE 

The last case is if the frequencies used are no multiple. The frequency for the userIP 

is set to 101 MHz, the sensor still used 2 MHz. The new design will look like Figure 

34. 

 

Figure 34: Dataflow Light sensor, frequencies are no multiples 

As can be seen, in this case the synchronizer for frequencies that aren’t a multiple is 

used. The variables b and c represent the number of flip flops between the two 

nodes, both b and c are set to two since there is no option in the code yet to set 

number of flip flops. There is started with the calculation of a.  

The value for “a” equals the 16 clock cycles from before since the message size did 

not change.  

The clock cycles delay in the sensor domain are corrected in the same way as was 

done for the previous solution. The frequency ratio is used to convert the delays in 

the sensor domain to the output domain.  

𝑅𝑓 =
𝑓𝑠𝑒𝑛𝑠𝑜𝑟

𝑓𝑢𝑠𝑒𝑟𝐼𝑃
=

2 𝑀𝐻𝑧

101 𝑀𝐻𝑧
=

2

101
 

The corrected dataflow graph is shown in Figure 35. The different loops in the 

dataflow graph are again marked.  
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Figure 35: Dataflow light sensor when frequencies aren't multiples, corrected 

The value for d is still unknown but can be calculated by using the property that the 

output period (L5) should equal the MCR of the rest of the dataflow: 

𝑀𝐶𝑅𝑜𝑡ℎ𝑒𝑟 = 𝐿5 = 𝑑 + 1 = 𝑚𝑎𝑥(𝑙1, 𝑙2, 𝑙3, 𝑙4) 

The periods of the designs are: 

𝑙1 =
16 + 1

𝑅𝑓
= 858.5 

𝑙2 =
1 + 1

𝑅𝑓
= 101 

𝑙3 = 1 + 2 +
2 + 1

𝑅𝑓
= 154.5 

𝑙4 = 1 + 1 = 2 

When these values are filled in it results in a value for d: 

𝑑 = 𝑚𝑎𝑥(858.5, 101, 154.5, 2) − 1 = 857.5 

The ceil value for d is used since half clock cycles do not exist. 

𝑐𝑒𝑖𝑙(𝑑) = 858 

The slowest loop is again the SPI interface. The output period equals in this case 859 

clock cycles.  

The MTBF is calculated to check if the synchronizer is reliable enough. A good target 

value for MTBF could not be found so it is set to 1000 years. The calculation for this 

setup resulted in a MTBF of: 

MTBF = 5357753,12 𝑦𝑒𝑎𝑟𝑠 
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This is much higher than the required 1000 years, the full calculation can be found in 

appendix A.5.  

5.1.3.3 TEST ON FPGA 

The last step is to test the design on the FPGA, this will be done by connecting it to 

the AXI bus and communicate over UART. The bit indicating new data can be 

analyzed with the build in logic analyzer of Vivado, the period of this signal should 

equal (depending on design).  

𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑖𝑒𝑠 𝑎𝑟𝑒 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑒: 850 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 

𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑖𝑒𝑠 𝑎𝑟𝑒 𝑛𝑜𝑡 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑒: 859 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 
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5.2 TESTING FRAMEWORK 

5.2.1 TESTING INDIVIDUAL COMPONENTS 

All the components inside the framework are tested in Clash as well as in Vivado, the 

results are given in Table 1. 

Table 1: Results testing components 

NODE NAME SETTINGS CLASH 
SIM 

VIVADO 
SIM 

SIZE 

BACKPRESSURE Constant Success Success 1 LUT 

3 REGISTER 

NODEINPUT Input: 8 Bit 

Output: 8 Bit  

Success Success 2 LUT 

10 
REGISTERS 

NODEOUTPUT Input: 8 Bit 

Output: 8 Bit 

Success Success 2 LUT 

11 
REGISTERS 

NODENORMAL Input: 8 Bit 

Output: 9 Bit 

Success Success 2 LUT 

20 
REGISTERS 

NODEBLOCK Input: 8 Bit 

Output: 8 Bit 

Success Success 2 LUT 

11 
REGISTERS 

DELAY Delay: 3 Success Success 2 LUT 

5 REGISTERS 

SYNCMULT Input: 8 Bit 

Output: 8 Bit 

Success Success 7 LUT 

23 
REGISTERS 

SYNCNOMULT Input: 8 Bit 

Output: 8 Bit 

Success Success 8 LUT 

30 
REGISTERS 

FLOWGATE Input: 8 Bit 

Output: 8 Bit 

Delay: 4 

Success Success 5 LUT 

18 
REGISTERS 

STREAM Input: 8 Bit 

Output: 8 Bit 

Success Success 14 LUT 

25 
REGISTERS 

STREAMR Input: 8 Bit 

Output: 8 Bit 

Success Success 14 LUT 

24 
REGISTERS 
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5.2.2 TESTING IMPLEMENTATION 

The three different layouts for the light sensor interface are tested separately.  

5.2.2.1 FREQUENCIES ARE EQUAL 

5.2.2.1.1 SIMULATION 

The simulation in clash for the interface with equal frequencies is ran successfully. 

The clash-language is converted to VHDL and tested in Vivado. The time stamps  

where new data arrives are 80,003 ms, 165,003 ms and 250,003 ms. The time 

between these results is 85 ms. The output frequency is 2 MHz meaning a period of 

500 ns, this means the number of cycles between outputs is: 

85000

0,5
= 170000 𝑐𝑦𝑐𝑙𝑒𝑠 

The period should be 17 cycles which means the value from the simulation is 10000 

times to high, when there is looked at the results in more detail it can be seen that a 

clock period takes 5 ms (smallest period without change), this is 10000 times too 

high. The difference is probably caused by the simulation clock which means the 

error is caused by the Clash compiler. 

5.2.2.1.2 FPGA 

The design is implemented on the FPGA, there is tested if the sensor is read out 

correctly. The output values cover the full range of the sensor so it can be assumed 

sensor is read out correctly. 

Next the output period is tested to see if the output is periodic, the results are shown 

in Figure 36. Every pulse indicates new data, for periodic behavior the distance 

between the pulses should be equal. 

 

Figure 36: Output signal indicating new data for the setup where the 

frequencies for the sensor and userIP are equal. Each pulse indicates a new 

output, the period between the pulses is constant meaning the output is 

periodic. 

The pulses are at sample times: 

3, 20 ,37, 54, 71, 88, 105 

The times between the pulses equals the 17 determined in the method.  
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The size of the design when implemented on a FPGA is: 

45 REGISTERS, 20 LUT 

5.2.2.2 FREQUENCIES ARE MULTIPLE 

5.2.2.2.1 SIMULATION 

The next design that is going to be tested is the one where frequencies are multiples. 

The IO sampler added is filled in by hand since it is not yet possible to let Clash do 

this. The period is determined by running the function for calculating the MCR before 

compilation, the result in then filled in. The function returns a MCR of 850 cycles 

which  equals the value calculated earlier.  

The clash simulation is ran successfully so the code is converted to VHDL. The 

simulation in Vivado shows outputs generated at: 85.203 us, 170.203 us, 255.203 us. 

The difference between these outputs is exactly 85.000 us. The output frequency 

equals 100 MHz which results in a period of 10 ns. With these values the output 

period can be calculated: 

85000000

10
= 8500000 𝑐𝑦𝑐𝑙𝑒𝑠 

The calculated output frequency is again a factor 10.000 too high. The graphs show 

that the clock period during simulation equals 100 us, this is about 10.000 times 

higher than the period calculated which explains the difference.  

5.2.2.2.2 TEST ON FPGA 

The simulations work correctly so the design can be implemented on a FPGA. The 

sensor is read out correctly meaning the sensor interface is working. Next the output 

is tested so see if it is periodic, the results are shown in Figure 37. Every pulse 

indicates new data, the distance between the pulses should be equal for periodic 

behavior. 

 

Figure 37: Output signal indicating new data for the setup where the 

frequencies for the sensor and userIP are a multiple of each other. Each pulse 

indicates a new output, the period between the pulses is constant meaning the 

output is periodic. 
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The pulses are at sample times: 

339,1189, 2039, 2889, 3739, 4589, 5439, 6289, 7139, 7989 

The time between the samples are 850 samples meaning the output period equals 

the 850 cycles determined in the method. 

The size of the final design is 

100 REGISTERS, 40 LUT 

5.2.2.3 FREQUENCIES ARE NO MULTIPLE 

5.2.2.3.1 SIMULATION 

The design where the 2 frequencies are not a multiple of each other is the most 

complex version. Again the output period is filled in by hand but should in this case 

equal 859 cycles. After the Clash simulation is ran successfully the code is converted 

to VHDL. The periodic is checked in Vivado, outputs are generated around: 

85.349,62 ns, 170.399,21 ns, 255.448,8 ns. The difference between these times is  

85.049,59 ns which means the output is periodic. The output frequency is 101 MHz 

meaning it has a period of 9,901 ns, this means the number of cycles between 

outputs is: 

85.049.000,59 

9,901
= 8590000 𝑐𝑦𝑐𝑙𝑒𝑠 

This is again a factor 10.000 too high, the reason is most likely the same as for the 

previous result.  

5.2.2.3.2 TEST ON FPGA 

With the simulation being successful the design can be implemented on the FPGA. 

The sensor data seems to be correct so there can be continued with testing the 

output interval. The output interval is tested in the same way as for the other designs, 

the results are shown in Figure 38.  
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Figure 38: Output signal indicating new data for the setup where the 

frequencies for the sensor and userIP are not a multiple of each other. Each 

pulse indicates a new output, the period between the pulses is constant 

meaning the output is periodic. 

The pulses are at sample times: 

830, 1689, 2548, 3407, 4266, 5125, 5984, 6843, 7702 

The times between the pulses equals the 859 determined in the method.  

The size of the full layout is: 

107 REGISTERS, 44 LUT 
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6 CONCLUSION 

Designing a framework that has to deliver deterministic and real time designs is not 

an easy task. The first step taken in the design process was to use dataflow for 

analysis. Dataflow is useful because it is deterministic by definition and has a lot of 

analysis techniques already available. For the framework itself there where two 

options on how to design it. The first option was to design hardware blocks which 

could be combined to create a sensor interface. These designs would all have a 

dataflow equivalent to prove their deterministic behavior. The reason for choosing a 

hardware approach was the flexibility and ease of design. It turned out that this 

solution was much more complex than it initially seemed. There were problems with 

timing, dataflow conversion and doing analysis as a whole. This resulted in trying 

another approach. The second approach starts with dataflow. The framework is 

designed in dataflow and later converted to hardware. The framework itself consists 

of a set of dataflow nodes which can be combined by the user to create sensor 

interfaces. Each node has a hardware equivalent which is used to generate the 

design for a FPGA. The nodes are connected with backpressure to limit the number 

of tokens that can be stored on an edge and to make the whole system self-timed. 

This solution is much better analyzable at the cost of some flexibility. The designs 

made with the framework are automatically self-timed due to the backpressure, this 

makes designing simple since the timing problems are handled automatically.  

Each node in the framework has been tested to check its functionality and to assure it 

behaves according to the dataflow rules. To test the deterministic behavior of the 

framework an interface for a SPI light sensor created. Its output signal is tested to 

see if it is deterministic and if it outputs realistic sensor readings.  

The test done gave positive results, the output period was deterministic and the 

sensor was read out correctly. The amount of area used by the components is low, 

the test setup only used 118 FF and 58 LUTs. The small hardware footprint makes it 

realistic for implementation on a FPGA which has multiple thousands flip flops and 

LUTs available. 

To summarize, building a framework based on dataflow is a good solution. The 

framework is deterministic and can be analyzed by using dataflow techniques. In 

terms of flexibility it is a bit limited due to the limitations that come with dataflow. The 

use of backpressure makes the design self-timed, this gets rid of all kind of timing 

problems. By expanding the framework in the future the functionality can be 

improved.  
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7 DISCUSSION AND FUTURE WORK 

There is a difference between the simulation done in Vivado and what is specified in 

Clash. The clock in Vivado is 10.000 times slower than the one implemented in 

Clash. This will not cause any problems since the relative speed difference between 

the clocks stays the same. However, it something that should be kept in mind when 

doing analysis on the simulation results. 

The framework is at this moment limited in its functionality since there is only a small 

number of nodes available. The number of nodes should be increased in the future to 

add functionality to the framework. 

The way nodes are connected at this moment is not as easy as it should be, all 

edges have to be connected by hand. In the future this should be simplified, an 

example of what the syntax could look like is: 

𝑜𝑢𝑡𝑝𝑢𝑡 = 𝑛𝑜𝑑𝑒1 < −−>  𝑛𝑜𝑑𝑒2 < −−>  (𝑛𝑜𝑑𝑒3 𝑖𝑛𝑝𝑢𝑡) 

The synchronization step for synchronizing when frequencies are not a multiple of 

each other could result into problems since it hasn’t been fully verified. If an edge is 

missed due to metastability the synchronizer is locked meaning the whole system 

could get stuck. This is something that should be tested in the future. 
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8 APPENDIX 

A.1 COMMUNICATION PROTOCOLS 

The PMOD interface uses four types of protocols. Each of these protocols is 

explained here.  

A.1.1  SPI 

SPI is a three+ wire communication protocol consisting of one master and 1+ slaves. 

Each slave adds an extra wire for communication in the form of a chip select. When 

the chip select is pulled low the slave is selected and the communication can start. 

The communication part of the interface consists of a clock, a mosi (master out, slave 

in) and a miso (master in, slave out). The word size and the operating frequency are 

not defined. The send and received message do not even have to be the same size. 

Most SPI slaves read on the falling edge to prevent problems with instable data.  

A.1.2  GPIO 

GPIO stands for general purpose IO, it does not have a standard since it fully 

custom. This means nothing can be said about the communication protocol. 

A.1.3  I2C 

The I2C communication interface only uses 2 wires, one clock and a data line. The 

protocol supports multiple masters and slaves. The maximum clock frequency is 100 

kHz for normal speed and 400 kHz for full speed. In the default state both the clock 

and data line are kept high. To start communication first the data line is pulled low 

and then the clock. Next the clock is started and the address is send, this address 

can be 7  or 10 bits with an extra bit for reading or writing. In case of 7 bits one byte 

is send consisting of the address and the read/write bit. If the 10 bit address is used it 

will be send using two bytes. The byte starts with the code 11110 followed by  2 of 

the address bits and then the read/write bit. The next byte consists of the remaining 8 

bits from the address. After each byte the receiver (slave in this case) will pull the 

data line low to indicate the message was received. All the message send with I2C 

have to be 8 bit. 

A.1.4  UART 

UART uses 2 wires for communication the same as for I2C. The purpose of these 

wires is different however, one is meant for sending and the other for receiving. The 2 

devices connected share a clock speed which is defined beforehand. A message is 

send by pulling the tx line from high to low, next the 8 bit long message is send 

followed by a parity bit (optional). The parity bit is added for error checking, it counts 

the number of ones in the message and indicates if it is even or odd. The last 1 or 2 

bits send are stop bits, these indicate the end of a message. 
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A.2 MTBF FOR SYNCHRONIZER IN CASE FREQUENCIES AREN’T 

MULTIPLES 

The MTBF formula for synchronizers that have to synchronize between two 

frequencies that aren’t a multiple is determined here. MTBF calculations are only  

necessary for these types of synchronizers, for the other versions the metastability is 

covert by the compiler. The number of flip flop used for synchronization is represented 

by the variables c and d which are shown in Figure 27, the number of flip flops 

determines the MTBF. The relation between c and d and MTBF is calculated. There 

are two MTBFs that need to be calculated.  

➔ Synchronization of response bit (𝑀𝑇𝐵𝐹𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒) 

➔ Synchronisation of message (𝑀𝑇𝐵𝐹𝑀𝑒𝑠𝑠𝑎𝑔𝑒) 

When synchronizing data first the message is send covert by the 𝑀𝑇𝐵𝐹𝑀𝑒𝑠𝑠𝑎𝑔𝑒, next 

the receiver domain has to send back a response with a MTBF of 𝑀𝑇𝐵𝐹𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒. The 

MTBFs can be seen as if in series so they can be added as follows: 

𝑀𝑇𝐵𝐹𝑡𝑜𝑡𝑎𝑙 =
1

1
𝑀𝑇𝐵𝐹𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒

+
1

𝑀𝑇𝐵𝐹𝑀𝑒𝑠𝑠𝑎𝑔𝑒

 

There is started with the MTBFResponse, this can be calculated with the formula 

determined earlier: 

𝑀𝑇𝐵𝐹𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒 =
𝑒𝑑∗

1
𝑓𝑒

−1.3 𝑛𝑠

0.4 𝑛𝑠

𝑓𝑑𝑓𝑒 ∗ 2.05 𝑛𝑠
 

𝑓𝑑 = 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑜𝑓 𝑖𝑛𝑝𝑢𝑡 𝑑𝑎𝑡𝑎 

𝑓𝑒 = 𝑖𝑛𝑝𝑢𝑡 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 

𝑑 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑙𝑖𝑝 𝑓𝑙𝑜𝑝𝑠 𝑖𝑛 𝑠𝑦𝑛𝑐ℎ𝑟𝑜𝑛𝑖𝑧𝑒𝑟 

The MTBFMessage, is going to be a bit more difficult since the synchronization works 

differently compared to the response bit. The message that has to be synchronized 

has 2 clock cycles to become stable, but it needs to be guaranteed that all bits are 

stable to prevent data incoherency. Besides the message the synchronization line 

can also become instable, this results in the following MTBF formula: 

𝑀𝑇𝐵𝐹𝑚𝑒𝑠𝑠𝑎𝑔𝑒 =
1

𝑏𝑖𝑡𝑠
𝑀𝑇𝐵𝐹𝑀𝑒𝑠𝑠𝑎𝑔𝑒𝐵𝑖𝑡

+
1

𝑀𝑇𝐵𝐹𝑆𝑦𝑛𝑐

 

𝑏𝑖𝑡𝑠 = 𝑠𝑖𝑧𝑒 𝑚𝑒𝑠𝑠𝑎𝑔𝑒 𝑖𝑠 𝑏𝑖𝑡𝑠 

𝑀𝑇𝐵𝐹𝑀𝑒𝑠𝑠𝑎𝑔𝑒𝐵𝑖𝑡 = 𝑀𝑇𝐵𝐹 𝑓𝑜𝑟 1 𝑏𝑖𝑡 𝑜𝑓 𝑡ℎ𝑒 𝑚𝑒𝑠𝑠𝑎𝑔𝑒 
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𝑀𝑇𝐵𝐹𝑆𝑦𝑛𝑐 = 𝑀𝑇𝐵𝐹 𝑓𝑜𝑟 𝑠𝑦𝑛𝑐ℎ𝑟𝑜𝑛𝑖𝑧𝑎𝑡𝑖𝑜𝑛 𝑏𝑖𝑡 

There is started with the 𝑀𝑇𝐵𝐹𝑆𝑦𝑛𝑐 this used the same formula as for MTBFResponse 

only the direction is the other way around: 

𝑀𝑇𝐵𝐹𝑠𝑦𝑛𝑐 =
𝑒𝑐∗

1
𝑓𝑐

−1.3 𝑛𝑠

0.4 𝑛𝑠

𝑓𝑑𝑓𝑐 ∗ 2.05 𝑛𝑠
 

𝑓𝑑 = 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑜𝑓 𝑖𝑛𝑝𝑢𝑡 𝑑𝑎𝑡𝑎 

𝑓𝑐 = 𝑜𝑢𝑡𝑝𝑢𝑡 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 

𝑐 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑙𝑖𝑝 𝑓𝑙𝑜𝑝𝑠 𝑖𝑛 𝑠𝑦𝑛𝑐ℎ𝑟𝑜𝑛𝑖𝑧𝑒𝑟  

Next the 𝑀𝑇𝐵𝐹𝑀𝑒𝑠𝑠𝑎𝑔𝑒𝐵𝑖𝑡 is determined, each bit has twice as long to become stable, 

this can be covered by multiplying the output frequency with 1 divided by the number 

of flipflops used for the synchronization bit. 

𝑀𝑇𝐵𝐹𝑚𝑒𝑠𝑠𝑎𝑔𝑒𝐵𝑖𝑡 =
𝑒

𝑐
𝑓𝑐

−1.3 𝑛𝑠

0.4 𝑛𝑠

1
𝑐 𝑓𝑑𝑓𝑐 ∗ 2.05 𝑛𝑠

 

𝑓𝑑 = 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑜𝑓 𝑖𝑛𝑝𝑢𝑡 𝑑𝑎𝑡𝑎 

𝑓𝑐 = 𝑜𝑢𝑡𝑝𝑢𝑡 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 

𝑐 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑙𝑖𝑝 𝑓𝑙𝑜𝑝𝑠 𝑖𝑛 𝑠𝑦𝑛𝑐ℎ𝑟𝑜𝑛𝑖𝑧𝑒𝑟 

To get a better insight in how MTBF reacts to frequency, number of bits and number 

of flip flops, plots are made. All plots are made for a small frequency range since 

values can become very big making it impossible to read the graph. The first plot 

shows how the number of bits influences the MTBF. The number of synchronizer flip 

flops is kept at two in this case (Figure 39). 
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Figure 39: MTBF for different message sizes 

As can be seen from the graph the MTBF is halved for 100 times the message size. 

The second plot shows how the MTBF depends on the in and output frequency. In 

this case the number of synchronization flip flops is kept at 2, the message size is 

kept constant at 10 bits (Figure 40).  

 

 

Figure 40:MTBF for different input frequencies 

As can be seen from the graphs the influence is substantial, for increasing the input 

frequency by 6 Mhz the MTBF is divided by 10.  

The last graph shows the MTBF for data input speeds (Figure 41). 
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Figure 41: MTBF for different output frequencies 

This graph shows that the MTBF is halved when the data input speed is doubled, is 

should be kept in mind that the influence of the data speed is substantial.  

 

A.3 DERIVING DATAFLOW FROM CLASH 

Deriving dataflow from the clash-language is done according to a standard 

procedure. The procedure is the same for each node, there is started with the state 

space, the state space is converted to dataflow and then simplified.  

A.3.1 DATAFLOW ABSTRACTION 

The dataflow graphs can in some cases be simplified, there are simplification 

methods used throughout the report. 

A.3.1.1 MERGE NODES 

Nodes can be merged when they happen after each other (data dependency), on the 

condition that the first node only has inputs and the last node only has outputs 

(except the edge in between). When merged the delay of both nodes can be added, 

the input and output edges are also combined into one node (Figure 42). 

0

100

200

300

400

500

600

M
TB

F(
1

0
0

0
 y

ea
rs

)

Fc

MTBF for different fd (Message Size=10 bit, fe=100 MHz)

1,00E+06

1,50E+06

2,00E+06

2,50E+06



53 
 

 

Figure 42: merging two nodes 

A.3.1.2 MERGE TOKENS 

It is also possible to merge a number of tokens. Imagine three nodes A, B and C, A 

produces x tokens, C consumes X tokens and B is positioned in between processing 

these tokens (Figure 43). In this case the delay of node B can be multiplied by x 

when the tokens produced and consumed is reduced to 1. What happens is that 

there is assumed that all tokens are consumed at once. Keep in mind that node B 

should not have any inputs or outputs except from A and C.  

 

Figure 43: Merge tokens 

 

A.3.2 DERIVATION PROCESS 

Deriving a dataflow graph from the Clash design is a standard procedure. Each 

derivation will be done according to the procedure explained here, as an example the 

input node is going to be used. 



54 
 

Nodes/Basic/NodeInput.hs 

First a state space diagram is derived from the Clash code. This is a diagram 

showing how the code goes through different states.  

---------Predefined functions---------------------------------------
------ 
    predef1 = case (edgeDataIn == high && edgeCtrlOut == high) of 
                True  -> Fire 
                False -> Wait 
 
---------Next state-------------------------------------------------
----- 
    stateNext = case stateI of 
      Wait   -> predef1 
      Fire -> predef1 
 

As can be seen from the code, for both states (Fire and Wait) the next state is 

determined by the same condition. The values checked by this condition are the input 

signals from the controller and input data. The code is used to create a state space 

diagram (Figure 44): 

 

Figure 44: Statespace NodeInput 

The state space diagram shows that from both states the same condition is checked 

as was done by the code. The next step is converting the state space diagram to 

dataflow. Doing this conversion brings some complexity with it since conditions 

cannot be represented. To make representing possible some assumptions are done, 

the input and output signals will be represented by edges where high represents a 

token and low means there is not. The states will be represented by nodes which 

have edges for input and output signals and edges for determining the execution 

order. To determine which inputs and output each state has the code has to be used 

again, this time the content of the state is examined. 
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    state' = case stateNext of 
--            ( edgeResponseOut, ( ctrlIn,  edgeCtrlIn),    stateI) 
      Wait -> (             low, ( ctrlIn,         low), stateNext) 
      Fire -> (            high, ( dataIn,        high), stateNext) 
 

The signals edgeResponseOut and edgeCtrlIn represent output signals and they are 

only high (produce tokens) for the Fire state. With this information the nodes for the 

states and their corresponding output edges can be derived (Figure 45). 

 

Figure 45: Node Input states in dataflow 

Edges connected to external processes like sensors or actuators can be removed 

since they are assumed to be infinite consumers/producers of tokens. The next step 

is determining the dependencies and delays of all of the nodes. There is started with 

the condition, as can be seen from the state space the design stays in the wait state 

until the condition is satisfied. The condition can also be represented by adding the 

input edge to the Wait state (Figure 46). 

 

Figure 46: Node Input states of dataflow with inputs 

Now only the delays and the dependencies between the nodes have to be added. 

There is an edge from the Wait to the Fire state since after Wait is finished Fire has 

to start. When Fire is finished the next state could be Fire or Wait. There has been 

decided to incorporate the conditions inside the Wait state meaning from the Fire 
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state it has to go to the Wait state to check the conditions. The delay of each state is 

normally one clock cycle, however since the Wait state includes a condition it is 

reduced to 0. The Wait states delay is controlled by its inputs, meaning when an input 

is detected it should fire immediately. The delay of the node will always be a multiple 

of 1 clock cycle since it will be connected to nodes which satisfy this property (Figure 

47). 

 

Figure 47: Dataflow NodeInput from statespace (1/2) 

The dataflow can be simplified by combining the two states, this results in Figure 48. 

 

Figure 48: Dataflow NodeInput from statespace (2/2) 
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A.3.3 OTHER NODES 

A.3.3.1 OUTPUT NODE 

Nodes/Basic/NodeOutput.hs 

 

Figure 49: Statespace nodeOutput 

 

Figure 50: Dataflow NodeOutput from statespace (1/2) 

 

Figure 51: Dataflow NodeOutput from statespace (2/2) 
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A.3.3.2 BLOCKING NODE 

Nodes/Basic/NodeBlock.hs 

 

Figure 52: Statespace nodeBlock 

 

Figure 53: Dataflow NodeBlock from statespace (1/2) 

 

Figure 54: Dataflow NodeBlock from statespace (2/2) 
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A.3.3.3 NORMAL NODE 

Nodes/Basic/NodeNormal.hs 

 

Figure 55: Statespace nodeNormal 

 

Figure 56: Dataflow NodeNormal from statespace (1/2) 

 

Figure 57: Dataflow NodeNormal from statespace (2/2) 
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A.3.3.4 SPI INTERFACES 

Nodes/Controllers/SPI/Stream.hs and ../StreamR.hs 

 

Figure 58: Statespace stream and streamR 

The state space is converted to dataflow, the counter condition is implemented as 

multiple tokens produced on an edge since it force to perform the state busy a x-1 

number of times. 

 

Figure 59: Dataflow Stream and StreamR from statespace (1/3) 
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Figure 60: Dataflow Stream and StreamR from statespace (2/3) 

 

Figure 61: Dataflow Stream and StreamR from statespace (3/3) 
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A.3.3.5 DELAY CONTROLLER 

Nodes/Delay/Delay.hs 

 

Figure 62: Statespace Delay 

 

Figure 63: Dataflow Delay from statespace (1/3) 
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Figure 64:  Dataflow Delay from statespace (2/3) 

 

Figure 65:  Dataflow Delay from statespace (3/3) 

A.4 ADDING CONTROLLERS 

Adding controllers is really easy, every node consists of a moore machine which uses 

predefined types as input and output. 

The first step is load the correct modules: 

import Clash.Explicit.Prelude 
import Types.Types 

With the modules included the states and the state variables are created, the 

controllers are designed as a moore machine so the output variables are also present 

in the state: 
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data States = <add states here> | Wait | Fire deriving 
(Undefined,Generic) 
type State a = (<add own vars here>, EdgeCtrl a, States)  

The next step is making the control part of the node. A layout is shown which is used 

throughout the framework, a custom layout can be used as long as the 

communication part with other nodes is satisfied. 

--------------------------------------------------------------------
---------- 
-- Moore functionality 
--------------------------------------------------------------------
----------   
node :: (KnownNat a) 
  => State a 
  -> (EdgeCtrl a) 
  -> State a 
node state input = state' 
  where 
---------Inputs-----------------------------------------------------
----     
    (dataIn, edgeDataIn) = input 
---------Load State-------------------------------------------------
-----  
    (<own vars here>, (ctrlOut, edgeCtrlOut), stateI) = state 
     
 
---------Predefined functions---------------------------------------
------ 
    predef1 = case (edgeDataIn == high) of 
                True  -> <start state which consumes tokens> 
                False -> Wait 
 
---------Next state-------------------------------------------------
----- 
    stateNext = case stateI of 
      Wait   -> predef1 
      Fire -> predef1 <end state which fires tokens> 
 <Custom states are added here> 
 
---------Fill in state----------------------------------------------
---- 
    state' = case stateNext of 
--            ( ..             , ( ctrlOut,  edgeCtrlOut),    
stateI) 
      Wait -> ( <own vars here>, ( ctrlOut,          low), 
stateNext) 
      Fire -> ( <own vars here>, (  dataIn,         high), 
stateNext) 
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 <Other states> -> … 

The next step is adding the output function, this is just copying state variables to the 

output: 

--------------------------------------------------------------------
---------- 
-- Moore Output 
--------------------------------------------------------------------
----------  
nodeOut :: (KnownNat a) 
  => State a 
  -> EdgeCtrl a 
nodeOut state = output 
  where 
    (<own vars here>, edgeCtrlOut, stateL) = state 
    output = edgeCtrlOut 

 

The last step is to combine the two functions in a moore machine 

--------------------------------------------------------------------
---------- 
-- Main function 
--------------------------------------------------------------------
---------- 
main  
  :: (KnownNat a) 
  => Clock domA Source  
  -> Reset domA Asynchronous 
  -> Signal domA (EdgeCtrl a) 
  -> Signal domA (EdgeCtrl a)  
main clk rst = moore clk rst node nodeOut (<own vars>, (0, high), 
Wait) 

A.5 MTBF CALCULATION FOR SYNCHRONIZER SENSOR  

To get a feeling on how reliable the system is the MTBF is calculated 

𝑀𝑇𝐵𝐹𝑡𝑜𝑡𝑎𝑙 =
1

1
𝑀𝑇𝐵𝐹𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒

+
1

𝑀𝑇𝐵𝐹𝑀𝑒𝑠𝑠𝑎𝑔𝑒

 

To for calculating the MTBF for the response first the “Data speed” needs to be 

determined, this is the speed with which data is outputted/produced. 

𝑓𝑑 =
1

𝑑 ∗ 𝑑𝑜𝑢𝑡
=

1

859 ∗ 𝑑𝑜𝑢𝑡
=

1

859 ∗
1
𝑓𝑐

=
𝑓𝑐

859
=

101 𝑀𝐻𝑧

859
≈ 117579 𝐻𝑧 = 117,579 𝑘𝐻𝑧 
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𝑀𝑇𝐵𝐹𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒 =
𝑒𝑑∗

1
𝑓𝑒

−1.3 𝑛𝑠

0.4 𝑛𝑠

𝑓𝑑𝑓𝑒 ∗ 2.05 𝑛𝑠
=

𝑒2∗

1
2 𝑀𝐻𝑧

−1.3 𝑛𝑠

0.4 𝑛𝑠

117,579 𝑘𝐻𝑧 ∗ 2 𝑀𝐻𝑧 ∗ 2.05 𝑛𝑠
= 𝑚𝑎𝑛𝑦 𝑦𝑒𝑎𝑟𝑠 

𝑀𝑇𝐵𝐹𝑚𝑒𝑠𝑠𝑎𝑔𝑒 =
1

𝑏𝑖𝑡𝑠
𝑀𝑇𝐵𝐹𝑀𝑒𝑠𝑠𝑎𝑔𝑒𝐵𝑖𝑡

+
1

𝑀𝑇𝐵𝐹𝑆𝑦𝑛𝑐

 

𝑀𝑇𝐵𝐹𝑠𝑦𝑛𝑐 =
𝑒𝑐∗

1
𝑓𝑐

−1.3 𝑛𝑠

0.4 𝑛𝑠

𝑓𝑑𝑓𝑐 ∗ 2.05 𝑛𝑠
=

𝑒2∗

1
101 𝑀𝐻𝑧

−1.3 𝑛𝑠

0.4 𝑛𝑠

1
2 ∗ 2 𝑀𝐻𝑧 ∗ 101 𝑀𝐻𝑧 ∗ 2.05 𝑛𝑠

= 6188724 years 

 

𝑀𝑇𝐵𝐹𝑚𝑒𝑠𝑠𝑎𝑔𝑒𝐵𝑖𝑡 =
𝑒

𝑐
𝑓𝑐

−1.3 𝑛𝑠

0.4 𝑛𝑠

1
𝑐 ∗ 𝑓𝑑 ∗ 𝑓𝑐 ∗ 2.05 𝑛𝑠

=
𝑒

2
101 𝑀𝐻𝑧

−1.3 𝑛𝑠

0.4 𝑛𝑠

1
2 ∗

1
155

∗ 2 𝑀𝐻𝑧 ∗ 101 𝑀𝐻𝑧 ∗ 2.05 𝑛𝑠

= 319218573 years 

𝑀𝑇𝐵𝐹𝑚𝑒𝑠𝑠𝑎𝑔𝑒 =
1

8
319218573 

+
1

6188724 

=  5357753,12 years 

𝑀𝑇𝐵𝐹𝑡𝑜𝑡𝑎𝑙 =
1

1
𝑣𝑒𝑟𝑦 𝑏𝑖𝑔

+
1

5357753,12

≈
1

1
5357753,12

= 5357753,12 𝑦𝑒𝑎𝑟𝑠 
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A.6 RESULTS SIMULATION 

The plots used for determining the output interval are shown here.  

A.6.1 FREQUENCIES ARE EQUAL 
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A.6.2 FREQUENCIES ARE MULTIPLE 
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A.6.3 FREQUENCIES ARE NOT A MULTIPLE 
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