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“Let’s see, he thought, I've done nearly a quarter, let’s call it a third,
so when I've done that corner by the hayrack it’ll be more than half,
call it five-eighths, which means three more wheelbarrow loads... It
doesn’t prove anything very much except that the awesome splendour of

the universe is much easier to deal with if you think of it as a series of
small chunks.”

— Terry Pratchett, Mort
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1. Summary

Granular materials can segregate due to differences in particle properties. One of the properties that
can lead to segregation is size differences between particles. Several different mechanisms can play a
role in size segregation, but the exact principles behind these mechanisms are still poorly understood.

Segregation can be analysed using a number of different methods and setups. During this thesis we
worked on a data processing method for Refractive Index Matched Scanning (RIMS) data recorded in
a rotating drum setup.

RIMS is a method that employs an index matched solution and a laser sheet to produce slices of a
particle configuration. One of the main objectives of this thesis was to continue development of a tool
that could produce 3D reconstructions of the particle positions from laser slice data. This consists of
two main steps: Firstly detecting circles within the original slices. Secondly these circles are combined
into spherical particles.

The tool was then used to analyse data from several drum experiments using bidisperse and tridis-
perse mixtures. In these experiments a drum was rotated a small amount between scans and the
particle positions in each scan were used to analyse the progression of segregation. For the binary
mixture of 6 and 9 mm particles rotated slowly, we could see an initial phase at constant segrega-
tion strength. After this phase segregation slowed down and the system reached equilibrium between
segregation and diffusive remixing.

The RIMS data analysis tool can now be used for further analysis of segregation in drums. A
recommendation is to improve the coverage of the laser sheet that illuminates the setup. This would
result in improved accuracy of the reconstructions.



2. Introduction

Granular materials surround us in our day to day lives. Consequences of granular material are presented
to us whenever we open a bag of potato chips. We are always presented with the results of granular
segregation in the form of large chips at the top of the bag. When the bag is almost empty we are
left with a collection of small, broken up, chunks. Granular flow events are usually accompanied
by granular segregation. Although these events are common, both in nature as well as in industry,
granular flow is still poorly understood [1].

Flow of particles in drums can be analysed using a number of different methods such as optical
tracking methods [2], X-ray tomography [3] and Positron Emission Particle Tracking (PEPT) [4].
Optical particle tracking methods are limited to particles that are visible from the outside of the
drum (usually transparent drum-sides) and PEPT is limited to a very low number of tracer particles
(usually one particle is tracked, but multiple particles have been tracked successfully in the past). None
of the currently available methods can give positions of all particles in a drum without destroying the
particles themselves, except for Refractive Index Matched Scanning (RIMS) and X-ray tomography. X-
ray tomography is either limited to samples no larger than a couple of centimeters tall or prohibitively
expensive [3].

RIMS data is generated by shining a sheet of laser light through a drum filled with glass particles
and a liquid which has a refractive index which is very close to the refractive index of the particles [5].
Because the refractive index is almost identical, laser light will not diffract at the interface between
liquid and particles. By choosing a liquid that fluoresces under the chosen laser light, sections of the
drum occupied by liquid will light up, while the parts of the laser sheet occupied by particles will be
dark when observed from the side.

In 2015 Bram van der Horn wrote a Matlab code that can be used to reconstruct particle positions
in a drum from RIMS data. This code worked for some datasets, but for problematic datasets it was
unable to complete the drum reconstruction. During my thesis my aim was to extend the code to be
able to cope with real experimental data and to write documentation for the code.

This thesis is structured as follows: In Chapter 3 some background of granular materials is
discussed along with some other methods for analysis of granular flow behaviour, as well as previous
work on RIMS. Then in Chapter 4 the RIMS data processing method is presented in paper format.

Then the structure and working principles of the processing program are outlined in Chapter 5.
Finally the results of analysis of segregation progression is presented in paper format in Chapter 6.

Throughout this thesis, the main question is:
How quickly does a mixture of 6 and 9 mm particles in a slowly rotating drum segregate?



3. Background

In this chapter some background on granular materials will be presented. This is done in order to
provide a framework using which the rest of this thesis can be understood more easily along with the
relevance and contribution to the field of granular materials.

3.1 Granular materials

Granular materials are materials that are made up of discrete particles that, together, exhibit properties
that are different from the material that they are made up of [6]. If the particles in a granular material
are non-cohesive and frictionless then the forces between particles are only repulsive and then the shape
of the material is affected only by gravity and the shape of the container, but despite this complex
behaviour can be observed in granular materials [6].

Granular materials are often encountered in our day-to-day lives, as well as in industry. An example
of a effect of granular materials in our daily lives is the Brazil nut effect[1]. The Brazil nut effect was
named after the largest type of nut in the collection of mixed nuts in which the effect was first
observed. It is the mechanism by which larger particles in a granular mixture tend to rise to the top
of a container. Smaller particles tend to sink to the bottom of that same container. This effect is also
visible in containers of cornflakes and oats, where the product in the bottom of a container often tends
to be made up of relatively small particles. This Brazil nut effect is an illustration of complicated
granular behaviour and the driving mechanisms behind this effect are still poorly understood [7].

In industry, properties and handling characteristics of granular material can be of great importance
to the end product of a vast number of activities. Many industrial processes encounter granular
materials in one or multiple operations, granular materials are said to be the second-most manipulated
material in industry, second only to water [8]. Examples of relevant industries are the food, medicine
and mining industry.

An important sub-field in granular material research is segregation. The exact mechanisms by
which segregation takes place is still ill-understood [9], and there are several different descriptions and
theories about the exact mechanisms by which materials segregate.

3.2 Granular segregation

There are several proposed mechanisms by which granular materials may segregate [10]. The grains
in granular materials may be different in terms of particle sizes, roughness and/or density. In the
experiments performed for this project particles differ only in size. This is why the main focus in this
section is on size segregation.

3.2.1 Size segregation

In this section several size related mechanisms are discussed. Differences between these mechanisms
may seem small. This is due to the fact that different regimes are not always distinctly separated from
each other.
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The spontaneous percolation mechanism

The spontaneous percolation mechanism describes the drainage of small particles through structures
of larger particles [11]. It is easier for smaller particles to travel through structures of large particles.
This is both because of the sheer likelihood that a smaller particle will fit in a gap and due to the
increased chance that a gap will be filled by a small particle before the gap has grown enough to
accommodate a larger particle.

An example of the percolation mechanism can be a jar filled with rocks. If sand is poured into this
jar the grains of sand will flow to the bottom of the jar, filling the gaps between the rocks.

Inertia

Inertia is thought to be one of the driving mechanisms of axial segregation or banding in rotating drum
systems [12]. Larger particles have more inertia than smaller particles and if both are travelling at the
same velocity, the large particle will also have more momentum. This increase in momentum means
that it is more difficult to slow down a lager particle.

In the case of rotating drum systems, axial segregation usually takes place after radial segregation
has occurred. For low rotation rates a radially segregated system has a core of small particles sur-
rounded by a ring of large particles [13]. Inertial effects are thought to play a role in the displacement
of the small particles in the core by the larger particles [12].

Clustering

Clustering is an effect by which similarly sized particles seem to seek each other out and form groups
[14]. Tt is mostly observed in horizontally vibrating systems and the groups form stripes which look
similar to the bands found in axially segregated drums. The stripes form orthogonal to the direction
of vibration.

Ordered Settling

Ordered settling is also an effect that can be seen in vertically vibrating systems. It involves a large
particle that is ‘intruding’ in a region with a large number of small particles. According to Julien
et al. [15] the size ratio between the large and small particles has to be above the critical size ratio
of 2.8. The name ordered settling refers to the order of the movement of particles [16]. During the
vibration, a void is present below the large intruder and this hole is partially filled by the small particles
surrounding the void. This levers up the large particle.

Kinetic sieving

Kinetic sieving is similar to the percolation mechanism in that smaller particles still have a tendency
to fill in gaps in between large particles [10, 17]. A distinction between the two is that the percolation
mechanism usually describes systems where the large particles tend to be static, while kinetic sieving
describes a more dynamic system. The mechanisms that together cause kinetic sieving are similar to
those involved in ordered settling.

Kinetic sieving is caused by the constant opening and closing of gaps in a flowing layer. Small
particles tend to fall into these gaps. The movement of these small particles can then lever larger
grains up through a process termed squeeze expulsion by Savage and Lun [18]. This means small
particles tend to move down, while large particles move up to the free surface of the flowing layer.

In the case of slowly rotating drums with large size ratios between large and small particles kinetic
sieving can cause layered patterns [19]. These layered patterns are sometimes referred to as ‘inverted
grading’. ‘Normal’ grading is the sedimentation of particles in bodies of water. Under normal sed-
imentation large particles sink more quickly than fine particles, which means large particles usually
form layers before smaller particles are deposited.
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3.3 Methods for the analysis of granular systems

Several different methods are available for the analysis of granular materials, all with different working
principles and different sets of advantages and disadvantages. In this section some of these methods
are discussed. At the end of this section Refractive Index Matched Scanning will also be discussed in
detail, this is the method of analysis that was worked on during this project.

3.3.1 Magnetic Resonance Imaging

Magnetic Resonance Imaging (MRI) is an imaging technique that relies on differences in resonance
frequencies of the nuclei of different kinds of atoms [20]. Atoms absorb and emit specific frequencies
of a magnetic fields. This allows MRI techniques to distinguish between different materials regardless
of whether they are optically clear. MRI scanning has been used to analyse segregation of mixtures of
MRI-sensitive and non MRI active materials by Hill et al. [21] to measure axial segregation speed.

Technological advantages of MRI techniques are its non-invasiveness, there is no radiation damage
and the technique is harmless for experimenters [22]. The main drawbacks are the fact that experimen-
tal setups have to be limited to non-metal materials, MRI scanners are expensive and reconstructions
from fast MRI scans often include artifacts.

3.3.2 Positron Emission Particle Tracking

Positron Emission Particle Tracking (PEPT) is a process that uses a radioactively labelled tracer
particle and a positron detecting apparatus to determine the location of the tracer particle in 3D [4].
The tracer material decays by positron emission and the positron then annihilates as soon as it comes
in contact with an electron. This annihilation event results in a pair of back-to-back gamma-rays being
sent from the annihilation site. These gamma rays can be detected using a special camera such as the
Birmingham Positron Camera [23].

Advantages of PEPT are the small time resolution between datapoints and the claimed sub-mm
accuracy of these datapoints. Another advantage is the ability to track inside opaque geometries,
including ones made of metals. The main drawback of this technique is that only a very limited
number of particles can be tracked at the same time.

3.3.3 Optical tracking

Optical particle tracking relies on the particles in question being distinguishable from each other. This
can be done by adding tracer particles of a contrasting colours [2]. Particles are then imaged using a
(high speed) camera and particle paths are reconstructed using a particle tracking algorithm.

Advantages of this method are cost and the availability of open-source libraries for optical particle
tracking (e.g the IDL Particle Tracking library [24]). The main disadvantage is the inability to track
particles that are not either at a system boundary or at the free surface.

3.3.4 X-ray tomography

X-ray tomography (XRT) and especially computerised tomography (CT) is a technique that uses a
collection of X-ray measurements (slices) which can be used to reconstruct the 3D objects that are
scanned [25]. It is a non-desctuctive method using which particles in a vessel van be imaged and
reconstructed [3].

Advantages are the fact that randomly shaped particles can be reconstructed in 3D. Drawbacks
of X-ray techniques are the cost of the required machines, lack of access to internal hardware and
software configuration of X-ray machines and risk of exposure to radiation [3].
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3.4 Previous work on RIMS

There has been some interest in index matching and RIMS in the past, for the analysis of several
different systems. In this section a selection of this past work will be discussed.

In 2011 Wiederseiner et al.[5] published a review on the topic of the index matching of particle
suspensions. In this review they outlined a procedure for the selection of appropriate materials and
liquids. They also describe several difficulties in index matched methods. One of these problems is
related to the number of liquid-solid interfaces that light has to travel through. A slight mismatch
in refractive index between the solid and fluid phase will result in significant blurriness if light has to
travel though many liquid-solid interfaces. Another point of consideration that is mentioned in the
article is the difference in dependency on temperature of the refractive index of the solid and liquid
phase. Due to this difference an index matched solution is only sufficiently index matched in a very
narrow temperature range, which means that a RIMS setup can only be used in a properly temperature
controlled environment.

In his 2012 review article, Dijksman et al. [26] performed ray tracing simulations in order to
find the effects of slight index mismatches. These simulations allowed Dijksman et al. to perform
sensitivity analyses which are difficult to perform experimentally. They found that index-matching
accuracy requirements increased with the number of particle layers that light has to travel through.
Their ray tracing simulation images became increasingly blurry with an increasing number of particle
layers.

Dijksman [27] also performed research on a RIMS setup in 2017, this time using soft hydrogel
particles. Hydrogel was selected because this material could be index-matched using a watery solution.
The fact that the hydrogel particles were soft and deformable meant that conventional approaches were
not applicable, instead the researchers devised a voxel based approach. The researchers encountered a
number of artefacts in their images that were also encountered during the research performed for this
thesis.

In 2015 Van der Vaart et al. [28] investigated oscillatory shear using RIMS. In this research the
particles were reconstructed in 3D using a convolution method. The progression of segregation in a
shear box was determined by recording the positions of the particles after each full oscillation and
determining particle fractions in the vertical direction.

Van der Vaart et al. [29] also performed research on the topic of RIMS. The system under inves-
tigation was a moving bed chute flow with hard borosilicate glass particles. During their experiments
they applied continuous tracking to a single plane in the chute. This meant that particle movement
could be tracked using RIMS without interrupting particle movement. This allowed the researchers to
investigate segregation continuously on a particle level. The importance of a liquid with low viscosity
was discussed in relation to the Stokes number. The Stokes number is the characteristic response time
of the liquid divided with the response time of a particle. A Stokes number greater than one was said
to prevent the flow of the liquid from significantly influencing particle movement.

3.5 Image processing for RIMS

In 2015 Kasper van der Vaart recorded RIMS data using a rotating drum and bidisperse and tridisperse
glass particles. Bram van der Horn wrote a Matlab code that could be used to reconstruct the particle
positions. In literature several different possible image segementation methods were encountered.

The RIMS analysis program that was extended and used during this research uses a so-called
branchpoints method. Other methods that have been proposed for either RIMS or similar problems
are convolution and watershed. First an explanation of convolution and watershed will be given and
finally also the used branchpoint method will be discussed.

3.5.1 Convolution

Convolution [30] is a method using which particle positions can be extracted form images using a
convolution kernel. An example of a particle recognition software that uses convolution is the Particle
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Tracking algorithm made by Crocker and Grier [31]. In their algorithm images are filtered using a
round convolution kernel that applies a blur to the images. After blurring particle positions can be
determined by identifying bright spots. If multiple bright spots are found within an expected particle
diameter of each other, the brightest location is chosen and the rest are discarded. An example of the
convolution method is shown in Figure 3.1.

(a) (b) (©)

Figure 3.1: An example of the convolution method. a) shows the original black and white image b)
shows the image after a blurring pass using a Gaussian c¢) shows a 3d mesh illustrating the brightness
peaks after blurring.

3.5.2 Watershed

The watershed segmentation method [30] lends its name from the fact that images are converted to
a kind of height map, after which regions in the images can be distinguished from each other. The
watershed method can be used to separate objects of interest that are touching.

The watershed method requires a black and white image, wherein background pixels are black and
foreground pixels are white. First a Euclidean Distance Map (EDM) is created. An EDM is a grayscale
image in which the brightness level of a pixel is defined by its distance from the distance to the nearest
background pixel. This creates a kind of height map. The highest peak in this map is then selected as
the ‘water level’ and the water is drained, adding pixels of the current ‘height’ unless adding a pixel
would create bridging pixels between features. This results in a segmented image with, in the case of
particle recognition, all particles defined by their own segment. An example of the watershed method
being applied to a test image can be found in Figure 3.2

- : a
(a) (b)

(c) (d)
Figure 3.2: An example of the watershed method. a) shows the original black and white image b)
shows the Euclidean Distance Map c¢) shows a 3D mesh of the Euclidean Distance Map d) shows the
segmented image, wherein different segments are shown in different colours.

3.5.3 Applied method: branchpoints

The method of segmenting images that is used during this project is called the branchpoints method.
This process takes a black and white image and then, for each pixel in the image, it checks connectivity
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with other pixels and it then performs a modified erosion step. Performing the branchpoints method
multiple times results in the breakup of bridges between blots in an image.

An example of the branchpoints method being applied to an image can be found in Figure 3.3.
Note in this image the pointy artefacts present where a bridge between two blots has been broken up.

(a) (b) (c)

Figure 3.3: An example of the branchpoints method. a) shows the original black and white image b)
shows the image after the branchpoints method has been applied five times ¢) shows the image after
the branchpoints method has been applied ten times.



4. The RIMS processing method

Note: this section was written in paper format as during this thesis as we are planning to send a modified version of

this chapter to the Experiments in Fluids journal. This is why some information may be repeated in this section.

4.1 Abstract

We present a method for the analysis of Refractive Index Matched Scanning (RIMS) data. RIMS is
a method for the analysis of granular flow that requires a fluorescent liquid that is index matched to
the particles in the system. This results in a transparent solution of particles. The fluorescent liquid
is illuminated using a sheet of laser light, this means that slices of the configuration of particles in the
drum can be recorded using a digital camera. By moving the sheet of laser light slightly between slices
a full scan of a configuration can be made.

The RIMS method was applied to a drum that was filled with spherical particles. A tool was
developed that can accurately reconstruct the configuration of particles in the drum from a set of
slices. Some issues were found with the image quality of the experimental datasets. These issues could
be alleviated by improving the laser illumination used in the experimental setup. The tool can be used
to analyse progression of segregation in rotating drums.

4.2 Introduction

Segregation in granular materials can be analysed using a number of different techniques. Examples of
such techniques are X-ray tomography [3], Magnetic Resonance Imaging (MRI) [20], optical tracking
[2] and Positron Emission Particle Tracking (PEPT) [4]. The machines required for these techniques
tend to be prohibitively expensive (in the order of hundreds of thousands of US dollars [26]) and most
techniques are unable to capture behaviour of all particles at the same time.

Refractive Index Matched Scanning (RIMS) [5] is a relatively new technique that uses a liquid
that is index matched to the material of the transparent granular particles that are being studied.
This means that a vessel filled with this material and a matched liquid is transparent to the naked
eye. Adding fluorescent dye to the liquid and illuminating cross sections of the vessel with a sheet of
laser light makes it possible to locate cross sections of spheres due to the fact that locations where no
fluorescent liquid is present stay dark, while the liquid emits light.

RIMS data can be analysed using several different methods, such as voxel-based reconstruction [27]
or 2D methods [28]. For the analysis of segregation using RIMS we were interested in the locations
of spheres in a glass drum. This is why a 3D reconstruction algorithm was put together. We have
developed a way to process images produced using the RIMS technique and we are able to reconstruct
more than 95% of the particles in the drum. In this article we will discuss the reconstruction process
from start to finish.

4.3 Method

For the sake of clarity, the vessel under investigation for this article is a glass drum with a diameter
of 170 mm and a depth of 160 mm filled with glass spheres. The liquid used was a mixture of 69:31
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mixture of benzyl alcohol and ethanol. A fluorescent dye was added to the liquid.

As mentioned, the images produced using the RIMS method are cross sections of the vessel under
investigation, with dark circles where the laser sheet cut through glass spheres. The drum was held
by a rotating device. The slices of the drum were imaged from the front side of this drum. Images
produced using this method look like Figure 4.1. Because of slight refractive index mismatches the
images get blurrier as the imaged slice moves further away from the drum side from which the images
are recorded, this makes the image processing step increasingly difficult.

(a) The first image of a dataset (b) The 100-th image of a dataset

Figure 4.1: Sample images of a RIMS dataset

The drum reconstrustion procedure was split up into two parts. In the first part the images are
processed and the locations of circles are determined and stored in a text file. The second script reads
this text file and reconstructs the drum using the circle locations identified using the first script.

4.3.1 Part 1: Image Processing

The first component performs a series of operations on each image in a dataset. The images are read
in and a region of interest is applied to the image such that the region outside the drum is completely
ignored. Then the image is analysed using a local version of Otsu’s method [32] in order to determine
good threshold values for sections of the image and these threshold values are applied. Small objects
in the image are removed using a set of consecutive binary opening and closing operations. After
this, the image is eroded using the branchpoints procedure discussed in Section 3.5.3. Due to the
order of these procedures the area originally outside the region of interest is now set to ‘true’, this
region, and all elements attached to this region are eliminated by setting all elements that are in direct
contact with the edges of the image to ‘false’. Some additional erosion is performed so elements that
are too small are removed and now the centroids and radii of the remaining elements in the images
can be determined. Multiple binary erosion operations were performed on these elements and this is
compensated for by adding a constant to each recorded element radius before writing the coordinates
and radii to an output file. The value of the compensation constant is equal to the number of erosion
operations performed.

4.3.2 Part 2: Data Processing

The second component performs the actual reconstruction of the particles in the vessel. The output
of the image processing script is read in and this data is sanitised. This sanitisation entails removal
of circles that have large overlaps and this step also removes circles that are larger than the expected
maximum circle radius, as these kinds of circles would generate errors, making the rest of the process
more difficult. Now circles in consecutive slices with similar centres are combined into circle groups.
Checks are performed to find circle groups with similar centres and if two groups are sufficiently close
to one another (i.e. less than the maximum expected circle radius away from each other) then these
circle groups are combined into a single group.

10
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After this a recursive sphere fitting algorithm identifies possible sphere fits for each of the circle
groups using geometric fits [33] of variants of the circle group in multiple configurations. These
configurations are then checked for overlaps with other circle groups and the configuration with conflicts
are iteratively removed from the list of possible configurations until eventually a final acceptable
configuration of spheres is found.

A more detailed description of Part 2 of the code can be found in Chapter 5.

4.4 Results

Examples of a reconstructed bidisperse and tridisperse drums can be seen in Figure 4.2. From visual
inspection of the post-reconstruction control images it looks like the script correctly identifies about
95% of the particles in the drum. Some examples of unidentified spheres can be seen in Figure 4.3.

100 o
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(a) A reconstructed bidisperse drum. (b) A reconstructed tridisperse drum

Figure 4.2: Examples of drum reconstructions.

(a)

Figure 4.3: Examples of sphere fitting and circle identification issues. In all images the dark circles
are sphere slices. Sphere slices that are found by the slice recognition script discussed in Section 4.3.1
but not fitted by the sphere fitting algorithm are highlighted by a red circle. Sections of the spheres
that were fitted by the sphere fitting algorithm discussed in Section 4.3.1 are highlighted with green
circles. a) shows the difficulties that the script has near the edge of the drum. b) is the check image
of the first slice of a dataset note that while many of the sphere slices were identified, for many of the
small circles no fit was found. c) is the check image of the same section as b in the second slice. Many
circles in ¢ were not found by the script discussed in Section 4.3.1.

11
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4.5 Discussion

This analysis method for RIMS data is able to reconstruct a configuration of particles in a drum to a
reasonable degree of accuracy, but there are some issues with identification of certain particles.

In the available datasets the upper edge of the bed tended to be poorly lit, which caused dark spots
in those regions. An example of this lighting issue can be seen in Figure 4.3.a. A possible solution for
this issue could be improving the illumination setup. This improvement could be achieved using either
an additional laser sheet or by moving the laser and lens further away from the drum.

Another problem lies in the identification and fitting of small particles in the first and last slices
of a dataset, which can be observed in Figure 4.3.b and Figure 4.3.c. The issue is partially caused by
the fact that small particles have a diameter that is relatively small (6mm) compared to the distance
between slices (1mm), this means that in Figure 4.3.c the particle slices are so small that they are
ignored by the circle identification part fo the image processing script. Another part of the problem is
that the first slice has to be recorded some distance away from the drum side. This distance is needed
due to the way the side of the drum is glued to the cylindrical part of the drum. If the first slice is
taken too close to the side of the drum then the glue causes light scattering, which creates dark and
blurry spots in the image. These two issues combined lead to only one slice of these circles being found,
while at least two slices of a particle are required in order to fit a sphere. A possible solution could be
to either reduce the distance between slices (for example halving it to 0.5mm), but that would increase
the size of datasets and also increase the time required for recording a dataset.

4.6 Recommendations

Now that drums can be reconstructed from RIMS slices and positional data can be extracted for
(almost) all particles in the drum, this technique can be applied for segregation research. If slices are
generated after rotating the drum a small amount, then segregation speed could be determined by
computing the segregation index after each partial rotation.

It would, however, be advisable to look into improving the laser setup before recording new data.
While the current system allows for finding more than 95% of the particles in the drum, improving
illumination of the drum would ease the circle recognition part of the process.
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5. Detailed code overview

5.1 Main code: analysis puzzle new

First a datafile is loaded in, this mat file contains a collection of circles found during image processing
which has to be performed before running the main script. The images are grouped based on the
image in which they were found and the circles are defined by their x and y coordinate on the image,
along with their circle radius.

Pre processing

Due to the sometimes unclear nature of the images made using the RIMS technique, the image pro-
cessing step sometimes finds circles in places where circles are not really present. These bad circles
tend to have large overlaps with other circles, and these bad circles tend to upset sphere fitting further
on in the script. So to make life a bit easier for the reconstruction part of the script, the collection of
images is put under some scrutiny. Circles that have large overlaps with other circles are removed, as
well as circles that are larger than the largest radius that is expected in the dataset. This step removes
both the ‘bad’ circles and some ‘good’ circles, but due to the fact that there are usually plenty of slices
available for each particle the accuracy of the reconstruction should not be affected much.

Circle grouping and loner removal

After the initial sanity check of the supplied dataset, grouping of the circles can start. In the initial
circle grouping step circles in subsequent images are grouped if they have similar centroids. Following
the initial circle grouping step is the group knitting step. In this step groups look for groups with similar
centroids regardless of the distance between them. Then for all candidates the distance between the
groups is calculated and if the groups are sufficiently close to each other they are linked up. Knitting
of two groups is not allowed if the gap between the last circle of the first group and the first circle of
the second group is greater than the radius of the first circle of the second group. This requirement is
imposed in order to avoid producing large groups with multiple spheres in them, as groups like that
affect the run time of the reconstruction.

After grouping and knitting, the script looks for groups with only one circle in them, called ‘loners’.
These loner groups are removed from the dataset, because at least two circles are required in order to
define a sphere.

Group-sphere fitting (fit alternative generation)

Now group-sphere fitting can start. For each group of circles a set of possible sphere fits is found
using fitallcircles() (see: Appendix A). Along with possible fits the fit errors, cut offs (i.e. spots
in a group where one sphere ends and another starts) and overlaps of the spheres in the group are
returned by the function. The fits produced by fitallcircles() are cleaned up by cleanfit () (see:
Appendix C), this function returns only the configurations with no loners and only with acceptable
overlaps. A group is said to have multiple group-alternatives if there are multiple sphere configurations
for a given group of circles, a group with only a single possible configuration is called an anchor. This
search for possible sphere fits is performed for each group of circles and the results of the fitting process
are stored for further analysis.
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CHAPTER 5. DETAILED CODE OVERVIEW

For the next part of this explanation it is necessary to have a clear understanding of what is meant
with ‘alternative’. An alternative is a possible single sphere fit or a configuration of multiple sphere fits
that is within the acceptable error range, given the collection of data points in a set of circles grouped
by the circle grouping process.

Elimination of alternatives

Now all sphere fits for all alternatives are written to a single matrix. This matrix is then used by
getcircleoverlaps() (see: Appendix D) to compute overlaps between alternatives, ignoring overlaps
between spheres in the same group. Now a matrix of alternatives that have large overlaps is made,
this matrix is used to decide which alternatives to discard and which ones to keep.

A boolean array of alternatives is produced in order to keep track of eliminated alternatives. Now
a loop is started using which the program iteratively looks for a solution using findeliminators()
(see: Appendix E) and deletefrompuzzle () (See: Appendix F) each time to try to solve the conflicts.
During every iteration of the loop there are three possible outcomes:

If we have reduced the number of options (available alternatives)

And we have no leftover incompatibilities
1 — we are done and we can break the while loop
And we still have leftover incompatibilites

2 — we need another iteration of the while loop to try to further reduce our options
Else if we were not able to reduce our number of available alternatives

3 — then there is no point in continuing this approach and we break the while loop

If this procedure of eliminating possible group-sphere alternatives ends up deciding that all alterna-
tives in a given circle group are unsuitable, the function smallestvalidoverlap() (see: Appendix G)
is used to look for the least problematic option.

Now we are only left with groups with either 1 or multiple alternatives. The remaining option of
groups that have only a single remaining alternative are recorded in the solution matrix of the script.
All groups that still have multiple possibly valid alternatives available are stored as non-unique groups.

Determining the final configuration

These non-unique groups are processed in order to determine which of the available solutions is the
most appropriate. A list of all spheres present in the alternatives is made using compatiblealts()
(see: Appendix H). If a sphere is present in every alternative for a given group, the sphere is accepted
into the solution matrix as a unique sphere. If this still leaves the problem with non-unique spheres,
then the alternative that has the lowest total fitting error is accepted. Finally all accepted spheres
are checked against each other and if the overlap between the accepted spheres is within an allowable
range, the spheres are stored in the final configuration.

This final configuration is then plotted and stored.
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CHAPTER 5. DETAILED CODE OVERVIEW

5.2 Function flowchart

The structure of the code and its function files can be found in Figure 5.1. Sharp corners indicate
standalone or parent-functions, while rounded corners indicate child-functions. The lines between
boxes indicate function calls and data streams.

analysis_puzzle_new

fitallcircles()

fite()

qfreecirclefit(

fite()

FLL FL

]
fitr () |
]

qfreecirclefit(

cleantfit()

getoverlap() ]

11

getoption|() ]

getcircleoverlaps()

findeliminators()

deletefrompuzzle()

smallestvalidoverlap()

returnoverlap()

compatiblealts()

findfreealts()

Figure 5.1: Flowchart of all functions in the code. Note: sharp corners indicate functions that can be
found in their own function files, while rounded corners indicate child-functions that are found in the
same function file as their parent functions.
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6. RIMS results, progression of segregation

Note: this section was written in paper format as during this thesis as we are planning to send a modified version of

this chapter to the Granular Matter journal. This is why some information may be repeated in this section.

6.1 Abstract

Segregation in a system of 6 and 9 mm particles in a slowly rotating drum with a diameter of 170 mm
were analysed using the Refractive Index Matched Scanning. It was found that radial segregation took
place very quickly and an intersection was found between the initial phase of fast segregation and a
stable plateau at 0.64 drum rotations. This coincides with a single rotation of the particle bed.

Axial segregation was not observed within the timescale that was analysed during this project, but
periodic oscillations of the segregation index were found. The cause of these oscillations is currently
unclear, more data is required before solid conclusions can be drawn.

6.2 Introduction

Segregation within granular systems is something many different industries encounter. Although sev-
eral efforts have been made to understand the principles behind segregation and several competing
theories have been devised, the exact mechanisms behind segregation are still poorly understood [34].
Rotating drums are simple experimental setups using which segregation can be analysed. Other com-
monly used systems are chutes [18] and vibrated systems [35].

In 1995 Cantelaube and Bideau [34] performed segregation experiments using a 2d system comprised
of disks in a rotating drum. The particles in the drum were filmed. The images were then analysed
using an image processing program and the progression of segregation could be determined. In the
experiments 6 and 10 mm disks were used, which gives a size ratio of 1.66. The system was initially
homogeneously mixed, and strong segregation was observed after only a few rotations.

In 2008 Arntz et al. [13] performed simulations of quasi-2D (narrow) drums with particles with a
size ratio of 1.5. As opposed to Cantelaube and Bideau, the system was initially fully segregated: the
left half of the drum was filled with small particles and the right half was filled with large particles.
The progression of segregation was analysed using an entropy based segregation index. It was found
that for the system under investigation at several different rotation rates, most of the rearrangement
occurred in the first 10 rotations.

The goal of this research was to use Refractive Index Matched Scanning (RIMS) to determine the
segregation speed of an initially-mixed drum filled with 6 and 9 mm particles.

6.3 Method

During this research experimental datasets were processed and the reconstructed datasets were anal-
ysed. First an explanation of the experimental setup will be given and after that the method of analysis
will be explained.
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CHAPTER 6. RIMS RESULTS, PROGRESSION OF SEGREGATION

6.3.1 Experimental setup

The setup that was used was a glass rotating drum with a diameter of 170 mm and a depth of 160 mm
filled with around 600 9 mm and 2100 6 mm glass spheres. The liquid used to index-match the glass
drum and particles was a 69:31 mixture of benzyl alcohol and ethanol. A fluorescent dye was added
to the liquid.

The setup was illuminated using a sheet of laser light. Pictures were taken from the side of the
drum, generating pictures with dark spots where the laser sheet intersected glass spheres and light
spots in places where fluid was present. Pictures of slices are taken with a digital camera, after each
image the sheet of laser light is moved 1 mm in the axial direction of the drum.

Due to slight mismatch of the refractive index of the fluorescent light and the glass particles, the
images get blurrier as the laser light moves deeper into the drum. The difference in blurriness is clearly
visible in Figure 6.1.

Between scans, the drum was rotated slowly until the desired rotation was reached. Between each
set of scans, the drum was rotated quite quickly in a regime where good mixing behaviour was observed
(the cascading C regime as described by Arntz et al. [13]).

The datasets were analysed using the processing algorithm discussed in Chapter 4.

(a) The first image of a dataset (b) The 100-th image of a dataset

Figure 6.1: Sample images of a RIMS dataset

6.3.2 Mixing state characterisation

After reconstruction of the particle positions in the drum, the progession of segregation could be
analysed. In order to characterise the state of the system at different points in time, the segregation
index as described by Arntz[36] was used. This is a segregation indicator based on Boltzmann’s
expression (Equation (6.1)). In this equation z,(k) and z,(k) are the number fractions of species a
and b in cell k and s(k) is the local entropy in cell k. A cell is a section of the drum. The cell size can
be chosen freely, but a cell should be smaller than the expected size of segregation features. During
post processing multiple cell sizes were tested and compared against each other.

s(k) = z4(k) Inz, (k) + 2 (k) Inzp (k) (6.1)

Summing these local entropies and multiplying by the number of particles in each cell (denoted as
n(k,t)) gives the total entropy at any timestep S(t) (Equation (6.2)). Where N is the total number
of particles in the system.

S(t) = %Z s(k, )n(k, 1) (6.2)

The total entropy can be normalised using Equation (6.3). Where ¢(t) is the segregation index at
time ¢ and S,ey and Sy, are reference entropy values for the completely segregated and mixed states.
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CHAPTER 6. RIMS RESULTS, PROGRESSION OF SEGREGATION

_ S(t) = Sseq
¢)(t) B szx - Sseg

Arntz [36] defined systems to be mixed if ¢ > 0.9 and segregated if ¢ < 0.65. Though this definition
is only valid if the cell size, Sy, and Seeq are chosen correctly.

By determining the location of the spheres after multiple partial rotations, the segregation speed
can be determined. By defining cells in the plane of the side of the drum radial segregation speed can
be determined. By choosing to define cells in the plane of the front or top of the drum progression of
axial segregation can be determined.

As we are aware that the reconstruction algorithm sometimes fails to include all spheres in the
final configuration, sensitivity checks have to be performed in order to determine how sensitive the
segregation index trend is to missed datapoints.

(6.3)

6.4 Results and Discussion

In this section the results and discussion of the experiments are presented. First the segregation speed
is analysed in the radial and axial directions. Another result that will be shown is the effect of choosing
several different bin widths on the segregation index. Finally also measurements of axial segregation
are presented.

6.4.1 Radial segregation

Of main interest was the radial segregation speed of the mixture of 6 and 9 mm particles. Figure 6.2
shows the progression of segregation when the values for Ss.q = —0.05 and S,,;, = —0.52 are used in
Equation (6.3) with a cell size of 25mm.

Segregation progression
For 10, 20 and 30 degrees of rotation between sets
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Figure 6.2: Progression of radial segregation in a slowly rotating drum. For all datasets Segregation
Index parameters are set to Sseg = —0.05 and Syix = —0.52 and a bin width and height of 25 mm.

In Figure 6.2 we can see that in each dataset there is an initial phase of rapid segregation. The
initial phase seems to last approximately half a drum rotation. The segregation speed then slows down
until the segregation index plateaus after roughly one rotation. The difference between the initial state
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CHAPTER 6. RIMS RESULTS, PROGRESSION OF SEGREGATION

of the drum and the segregated state after one drum rotation is shown in Figure 6.3. In the initial
state the drum appears well mixed. During inspection of the inside of the reconstruction it appears
as though particles are distributed randomly in the drum. There is a slight bias for large particles the
the bottom part of the free surface. This bias is likely caused by the way the drum is stopped at the
end of the mixing cycle.

The configuration of the particles in the drum after one rotation was analysed similarly. A core of
small particles in centre of the particle bed is now clearly present. The core is surrounded by a shell
of mostly large particles. Such configurations are typical for slowly rotating bidisperse mixtures [13].

(a) Initial drum configuration. (b) Drum configuration after a full rotation.

Figure 6.3: Side views of reconstructed drums.

The difference in starting segregation index could be compensating by selecting different values for
the reference segregation state Sy,;, (shown in Figure 6.4). The initial value of the segregation index
was shifted to 1 by setting Sy.;, to -0.509 for the 10 degree set, -0.59 for the 20 degree set and -0.49
for the 30 degree set. The value for the 20 degree set is quite far removed from the 10 and 30 degree
set. This can be explained by the fact that in the 20 degree set the ratio between the number of large
and small particles is 0.41 instead of the ratio of 0.29 that was used for the 10 and 30 degree sets. This
difference in number ratio results in a reference situation.

Normalised starting point segregation progression

1.05

For 10, 20 and 30 degrees of rotation between sets
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095

085

08

Segregation Index (Arnlz entropy method, unscaled)

Figure 6.4: Progression of segregation in a slowly rotating drum. For all datasets segregation index
parameter Ss.q = —0.05, S;,;; Was set to the values listed in the legend in order to normalise the data.

The normalised radial segregation progression data is plotted as a point cloud in Figure 6.5. The
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initial phase of rapid segregation was fitted with a linear fit. The plateau region was fitted with a line
at the average value of the datapoints in the equilibrium region. The two fits intersect at approximately
0.64 rotations. This corresponds almost perfectly with the ratio of the circumference of the particle
bed and the circumference of the drum. This possible relation could be tested by performing new
experiments at different fill levels.

Normalised starting point segregation progression

105 Combined data of 10, 20 and 30 degrees of rotation between sets

®  First linear section

® Middle section
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Figure 6.5: Progression of segregation in a slowly rotating drum with 6 and 9 mm particles. Datasets
were normalised as in Figure 6.4. Linear fits were made through the initial linear section (indicated in
magenta) and through the flat tail part of the data (indicated in green).

Effects of bin width

The bin size in the segregation index calculation is a factor that can influence the results. This is
why a sensitivity analysis was performed for this parameter. The same datasets were analysed using
different bin widths and presented in Figure 6.6. It appears as though slightly increasing the bin width
slightly changes peaks in the data. This could be due to the fact that particles near the edges a bin
suddenly belong to a different cell. This changes the particle ratios within the cells computed using
Equation (6.1).

As cell size increases so does the average segregation index, even in the plateau region. As cell sizes
grow the cells so does the number of particles within these cells. This makes it more likely for cells
to contain both large and small particles. This means that the contents of cells will be slightly more
‘mixed’ as cell sizes grow. Resulting in an average shift up of the segregation index.
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Figure 6.6: Sensitivity check of the influence of bin with during calculation of the segregation index.

6.4.2 Axial segregation

The progression of axial segregation was the subject of another analysis, shown in Figure 6.7. None of
the datasets showed significant signs of axial segregation. For the 10 and 30 degree datasets, however,
a strange trend was observed. These sets showed oscillations that were in phase with each other.

This could be caused by a cluster of particles that moves through the drum periodically. The period
of the oscillation is the same as the ratio between a bed rotation and a drum rotation (0.64). Another
possible cause could be a periodic reduction of the image quality due to contaminations on the wall of
the drum. At this point the exact cause of the oscillation is still unclear.
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Figure 6.7: Progression of axial segregation index in a slowly rotating drum. For all datasets Segrega-
tion Index parameters are set to Ss¢q = —0.05 and Sy, = —0.52. The horizontal bin width was set
to 25 mm, while the axial bin width was 10 mm.

6.5 Conclusion and outlook

Using the RIMS technique it was found that 6 and 9 mm particles in a slowly rotating drum segregate
radially within one rotation of the drum. A theoretical intersection point between the initial phase of
fast segregation and the segregation plateau at exactly one rotation of the particle bed. This correlation
may be by pure coincidence, so further experiments or simulations at several fill heights will have to
be performed in order to check this relation.
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No significant axial segregation was observed during the experiments, but periodic oscillations of
the segregation index were observed in the 10 and 30 degree per scan datasets. These oscillations have
identical periods and are in-phase with each other, so it is assumed that these oscillations are caused
by the configuration of the particles before rotating the drum.
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A. Function: fitallcircles()

A.1 fitallcircles()

Outputs

Par, [x - 0 - r] Parameters of the circle fits
err, a list of allowed fit errors per datapoint divided by the circle radius

cutoffs, in the case that a circle group contains more than one sphere, this list indicates where one
sphere ends and another starts

overlap, in the case that a circle group contains more than one sphere, this lists the overlaps between
the spheres

Inputs

XY, [x - r] x-coordinates and radii of circles in a circle group
radii, a list of radii that are expected in the system
varargin

‘verbose’, makes the code output messages to the command line

‘free’, allows free geometric fitting in the fitc() subfunction (so no information about ex-
pected circle radius is expected)

‘all’, makes the function return all fits, without checking whether the errors of the fits are
within acceptable bounds

‘bitfree’, expects an additional input: the allowed deviation of the fit radius from the radii
in radii. If the function is in bitfree mode, the circle fitting is a little bit free, the radius
of the circle fits are tested against the supplied radii, but some deviation is allowed

fitallcircles() code explanation

First the input in XY is sorted and the output variables are initalised as empty cell arrays. After this
a loop is entered wherein an attempt is made to fit circles to the supplied datasets. The actual fitting
is done by subfunction fitr (), which stands for ‘fit recursively’. fitr() returns the same outputs as
fitallcircles, but fitallcircles() checks whether overlaps and fitting errors are within acceptable
ranges and returns only acceptable fits to the main function. The fitting procedure starts out by
attempting to fit a single circle to the supplied datapoints and the number of attempted spheres
is increased until the number of attempted spheres equals the number of datapoints or if the last
acceptable fit was found using 2 spheres less than the current number.
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A.2 Subfunction: fitr() of fitallcircles()

Outputs

The outputs of fitr() are the same as the outputs of its parent function fitallcircles() but the
parent function inspects the outputs and rejects unsuitable fits.

Par, [x - 0 - r] Parameters of the circle fits
err, a list of allowed fit errors per datapoint divided by the circle radius

cutoffs, in the case that a circle group contains more than one sphere, this list indicates where one
sphere ends and another starts

overlap, in the case that a circle group contains more than one sphere, this lists the overlaps between
the spheres

Inputs

XY, [x - r] x-coordinates and radii of circles in a circle group
radii, a list of radii that are expected in the system

count, the number of recursive loops already performed, in other words: the recursive depth of the
current solution

maxcount, the maximum number of recursive loops that is allowed in order to obtain a fit

fitr() code explanation

This function is a recursive function, which means that it is a function that can call another instance
of itself. This is done in an effort to reduce the problem until a state is reached in which it becomes
simple to solve the reduced problem. This recursive function essentially has two possible outcomes: in
the first case the problem at hand is simple and the function can solve the problem, this is called the
base case. The second possible outcome is that the problem is too complicated to solve immediately,
in this case the problem is reduced further and another instance of the function is called, this is known
as the recursive case.

In the base case all entries in XY are fed to the subfunction called fitc() and fitc() returns a
circle fit for the given datapoints and also returns the average fitting error per datapoint divided by
the circle radius.

If the problem is not simple enough for the base case, the recursive case is called. Here a for-loop is
used to send part of the circle group to the function called fitc() (see: Appendix A.3) and the other
part is fed into another instance of fitr() (so the function calls a new instance of itself, hence the
‘recursive’ in the function name). These recursive functions compute partial solutions for the fitting
problem and all these partial solutions are added to the solution of the main problem if their fits have
sufficiently low fitting errors.

Just having sufficiently low fitting errors is not good enough, because there are additional require-
ments. From the physical problem (hard spheres in a drum) we know that the spheres should not
overlap each other. This information is used to reject any sphere fits that have sphere overlaps that
are greater than the expected fitting accuracy. This is done by first computing a ‘rough’ overlap.
Overlaps with loner circles are computed as if the loner has the maximum expected radius. Rejection
of fits is done by parent function fitallcircles().
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APPENDIX A. FUNCTION: FITALLCIRCLES()

A.3 Subfunction: fitc() of fitr() (of fitallcircles())

Outputs

Par, [x - 0 - r] Parameters of the circle fits

err, a list of allowed fit errors per datapoint divided by the circle radius

Inputs
XY, [x - r] x-coordinates and radii of circles in a circle group

radii, a list of radii that are expected in the system

fitc() code explanation

This function tries to fit a single circle to the [x - r] data in XY. There are three possible ways this
function can be performed:

If the supplied dataset in XY only contains a single circle
— no sphere can be fitted to the dataset and the data is returned as a loner in the shape [x - r - 0]
Else if XY contains exactly 2 circles

— a sphere can be fitted geometrically. This is done using the following method:
The horizontal distance Dx between the datapoints is computed, as well as d1 (using Equa-
tion (A.1)), R (using Equation (A.2)) and d2 (using Equation (A.3)). The meaning of these
parameters is illustrated in Figure A.1. Now using d1 and d2 the centrepoint of the fitted circle
can be determined as follows:

If abs(Dx - d1 - d2) is very small

— The centre of the circle is between the two given datapoints
Elseif d2 > d1

— The centre is to the left of both datapoints

Else (d1 > d2)

— The centre is to the right of both datapoints

If there are more than 2 datapoints or if geometric fitting returns an unnaceptable fit

— qfreecirclefit () is called in order to fit the dataset

abs(R? — R3 — Dx?)
2Dz

R=\/R?+d2 (A.2)

T
a2 = /R~ R} (A.3)

dl =
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Figure A.1: The circle fitting parameters as used by the geometric circle fit.
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B. Function: qfreecirclefit()

The function is called by fitc() as: [Par,err]=qfreecirclefit(xy, ‘bitfree’,radii,dr) Where
radii contains the given particle radii in pixels and dr contains the maximum allowable fit error in
pixels (this value is set to 5.5 pixels).

Outputs

Xyr, [x - ¥ - 1] (in the output of this function y is always equal to 0)

err, the average error per datapoint divided over radius

Inputs
data, [x - 1]
varargin

’rmax’, for setting max radius
’rrange’, for setting a minimum and maximum radius

’bitfree’, takes both a set of radii (radii) and a maximum allowable fitting error in pixels
(dr). First a check is performed to see which of the radii best matches the input and then
the search area for the actual fit becomes the found radius plus and minus the allowable fit
error

gfreecirclefit() code explanation

The code starts by storing the first and last radius of the dataset in xy in y1 and yend, the same is
done with the first and last x-coordinates in x1 and xend. After this the search space for the circle fit
has to be determined. The search space is set to the space between xmin and xmax.

If the input dataset contains more than 2 circles and the maximum radius in the set does not
belong to the the first or the last circle (Case 1 in Figure B.1) then:

— xmin is the x-coordinate of the first circle
— xmax is the x-coordinate of the last circle

Else if the last radius > the first radius (Case 2 in Figure B.1).
— xmin is the x-coordinate of the first circle
— xmax is xmin plus the largest possible radius

Else the last radius < the first radius (Case 3 in Figure B.1).
— xmax is the x-coordinate of the last circle

— xmin is xmax minus the largest possible radius
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Case 1 Case 2 Case 3

Figure B.1: The three possible cases for a given dataset with of datapoints (illustrated as blue dots).

After this a radius search space is made in r the search space is initially set for all given radii
in xlength (= 5) steps between radii(i)-dr and radii(i)+dr, where i indicates the i-th possible
radius.

Another search space is made for the x-location of the sphere. This is done in di*xlength (=10)
steps between xmin and xmax.

The search areas are now iteratively narrowed down for every combination of the entries in the
search spaces for the x location and the radius. If the current x location is called the trial point, then
the distance between the trial point and each datapoint is stored as the implied radius ri. Then the
differences between all entries in the radius search space can be computed using Equation (B.1) where
F is the sum of the squared errors, ri is the current set of implied radii and r(j) is the currently
tested radius. Figure B.2 shows how the implied radii are computed for a given trial point.

F = sum((ri —r(5))?) (B.1)
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Figure B.2: The implied radius method. The blue dot is an example of a trial point, the red dots are
datapoints and the dashed straight lines show the implied radii. In this example the trial point is quite
far away from the actual centre of the circle.

During the calculation of F, if the current F is the smallest one so far, the current value is stored as
the new minimum value of Fand the current trial point and trial radius are also stored. If the current
value of F is sufficiently small the search is stopped and the found midpoint of the circle and its radius
are given as output.

If a sufficiently good fit is not yet found, the search space is narrowed down based on the previously
found minimum fit error:

— For the x-coordinate, the search area is reduced to the locations between the neighbour of the
previously found minimum error squared (see Figure B.3).

— For the radius, in the first iteration of the search the most appropriate radius is selected from the
list of available radii and the search space is set to radius-dr and radius+dr. In subsequent
iterations the search space is set to between the neighbours of the local minimum error squared
(see Figure B.3).

Using this process, the found radius and the found centre of the circle described by the datapoints
are refined until the error is sufficiently small. The search is stopped when an acceptable fit (meaning
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that the fitting error is within the allowed error margin) is found and the good fit is returned as the
function output along with the fit error divided by the number of datapoints and the found radius.
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F . Minimum F
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{errort2) i ° l °
4
x L 1

New search space

Figure B.3: Selection of the new search space using the neighbour method. Errors of given datapoints
are shown as blue dots, the new search space is shown as a red bracket.
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C. Function: cleanfit()

C.1 cleanfit()

Outputs

newPar, [x - 0 - r] Parameters of the new circle fits, at this point, the second column in the matrix is
still 0 because this stage of the script is still dealing with 2D fitting

overlap, overlaps between circles divided by the radius of the biggest circle involved in the overlap

Inputs

Par, [x - 0 - r] Parameters of circle fits, at this point, the second column in the matrix is still 0 because
this stage of the script is still dealing with 2D fitting

radii, a list of radii that are expected in the system
varargin

‘verbose’, makes the code output more messages to the command line

‘bitfree’, expects an additional input: the allowed deviation of the fit radius from the radii
in radii. If the function is in bitfree mode, the circle fitting is a little bit free, the radius
of the circle fits are tested against the supplied radii, but some deviation is allowed

cleanfit() code explanation

The code starts out by finding loner indices in the provided set of circles in Par. Loners in this case
are circles that do not belong to a fitted sphere. These so called ‘loners’ are found using the fact that
the program up to now has stored fitted circles as [x - 0 - ], while it has stored loners in the form [x -
r - 0].

Now for every loner index a check is performed to see which of the available radii is larger than the
radius of the loner circle, as a circle can definitely not belong to a sphere with a radius smaller than
its circle radius. If none of the available radii is larger than the current loner radius then a warning is
thrown. Otherwise for all possible radii two possible fits are added to the list of options. An example
of options generated for a loner is shown in Figure C.1.
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Figure C.1: Hlustration of the circles identified as possible fits for a given loner. In this image the blue
dot indicates the x-coordinate of the loner, while the distance between the blue and red dot indicates
the loner radius. In this example two available radii were available to this loner. Circles from the
smaller available radius are shown in dark grey, while the circles belonging to the larger radius are
shown in a lighter grey.

These possible loner fits are checked for overlap with other spheres in the dataset in Par and if the
overlap with other non-loner circles in the dataset is too large then the loner option is removed from
the list of options. If none of the options is valid then the outputs newPar and overlap are returned
empty. If, however, there are valid options then the invalid options are removed and we check if the
removal of these options also reduces the options for the previous sphere. If options for the previous
sphere are not reduced, then we check if options for the next sphere can be reduced.

If after reduction of options there are still multiple available options for spheres in the current circle
group, then subfunction getoption() is called to determine all possible configurations of the options.
These configurations of the returned options are then returned as function output in newPar.
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C.2 Subfunction: getoption() of cleanfit()

Outputs

op, [option 1 - option 2 - ... - option n] contains the requested option number configuration
Inputs

nop, [noptions,spherel - Noptions,sphere2 = «++ ~ noptions,lastsphere} contains the number of OptiOIlS for each

sphere in the Par set that cleanfit () is currently working on.

x, the currently requested configuration of options

getoption() code explanation

This function does not perform a puzzling step per se, but it performs a mathematical operation.
This is why the explanation style is a bit different from the one used for the other functions and
subfunctions.

This function takes the total number of particles and the number of options available to these
options and a requested configuration number and it returns an option configuration corresponding to
this configuration number.

For example, if the current group of spheres has 3 available options for the last 2 of 3 spheres
with the first sphere only having a single option, then input nop would be [1,3,3] and we would have
1%3%3 = 9 available options with the configuration numbers and corresponding configurations as seen
in Table C.1.

Table C.1

configuration number x  configuration
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D. Function: getcircleoverlaps()

Outputs

overl, [spherenumber 1 - spherenumber 2 - overlap - relative overlap] a list of overlapping spheres,
along with their overlap as well as the overlap divided by the radius of the smallest of the spheres
involved in the overlap

Inputs
XYR, [x-y-zr1]in3Dor [x-y-1]
varargin

‘verbose’, makes the code output more messages to the command line

getcircleoverlaps() code explanation

First a box is defined that contains all spheres present in the system. This box is then divided up into
smaller cells, such that a sphere within any given cell can only be in contact with spheres that are in
that same cell or any of the 26 cells that neighbour that cell.

Then for each sphere the cell that contains its midpoint is determined and then a list of all spheres
in neighbouring cells is made. All of these spheres are then checked for overlaps and if an overlapping
sphere is found then the properties of the overlap are stored in the output variable overl according
to the format [spherenumber 1 - spherenumber 2 - overlap - relative overlap].
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E. Function: findeliminators()

Outputs

eliminators, [group number - alternative number| this is a list of eliminators. An eliminator is a
group alternative that has conflicts with all alternatives of another group

eliminated, [group number - alternative number]| this is a list of eliminated group alternatives

Inputs

bga, this variable contains a Boolean Grid Array of all groups and alternatives present in the system.
Each row of the array represents a group in the puzzle and every column represents an altnumber
that is still available to that group. It is possible for a group’s row to look like [1,0,0,1], this
would mean that this group still has alt number one and four available and that alt number two
and three have been eliminated.

inc, [groupnumber 1 - altnumber 1 - groupnumber 2 - altnumber 2] a list of groups and alternatives
that are incompatible with each other. In this case incompatible means that the two groups can
not both be in the final solution of the puzzle as they have a relative overlap that is too large.

findeliminators() code explanation

A list of groups with incompatibilities is made and a loop is performed over all entries in this list. For
each entry in the list a smaller list with all group alternatives that are incompatible with the current
group is made. Then a check is performed to see if the groups involved in the incompatibilities are
eliminators. A group alternative is deemed an eliminator if that group alternative is in conflict with
all alternatives of another group (this group is added to the list of eliminated groups).
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F. Function: deletefrompuzzle()

Outputs

newbga, this is identical to the Boolean Grid Array (bga) that is an input to the function, but now
all entries listen in the input variable inc are set to false.

newinc, [groupnumber 1 - altnumber 1 - groupnumber 2 - altnumber 2] this is the list of incompatibili-
ties left over after deletion of all groups in alts (the list of eliminators foun by findeliminators()).

Inputs

bga, this variable contains a Boolean Grid Array of all groups and alternatives present in the system.
Each row of the array represents a group in the puzzle and every column represents an altnumber
that is still available to that group. It is possible for a group’s row to look like [1,0,0,1], this
would mean that this group still has alt number one and four available and that alt number two
and three have been eliminated.

inc, [groupnumber 1 - altnumber 1 - groupnumber 2 - altnumber 2] a list of groups and alternatives
that are incompatible with each other. In this case incompatible means that the two groups can
not both be in the final solution of the puzzle as they have a relative overlap that is too large.

alts, [group number - alternative number] this is a list of eliminators, the exact same list of eliminators
output by findeliminators() (see Appendix E). An eliminator is a group alternative that has
conflicts with all alternatives of another group, this is the list of group-alternatives that are going
to be removed from the boolean grid array (bga).

deletefrompuzzle() code explanation

This function removes all entries in alts from the provided Boolean Grid Array bga. The function
also removes all incompatibilites that involve these group alternatives from the list of conflicts in inc.
The updated bga and list of incompatibilites are returned as newbga and newinc.
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G. Function: smallestvalidoverlap()

Outputs

ov, [group number - alt number - sum of valid overlap] this array contains for every group in
eliminatedgroups the alternative with the smallest sum of valid overlaps. So it contains
the least-bad alternative for each completely eliminated group. The spheres in these group-
alternatives are later reconsidered and if an acceptable sphere is found it is added to the main
solution.

Inputs

overl, [grn 1 - altn 1 - sphn 1 - grn 2 - altn 2 - sphn 2 - rel overl] (grn = group number, altn =
alternative number, sphn = sphere number, rel overl = relative overlap, which is the overlap
between the spheres divided by the radius of the smallest of the two spheres)

bga, this variable contains a Boolean Grid Array of all groups and alternatives present in the system.
Each row of the array represents a group in the puzzle and every column represents an altnumber
that is still available to that group. It is possible for a group’s row to look like [1,0,0,1], this
would mean that this group still has alt number one and four available and that alt number two
and three have been eliminated.

eliminatedgroups, [groupnumber] this is a list of groups that have been completely eliminated by
the while loop involving iterations of findeliminators() and deletefrompuzzle(). A group
is completely eliminated if all of its entries in the Boolean Grid Array bga are set to false.

smallestvalidoverlap() code explanation

This function loops over each of the completely eliminated groups for each of the eliminated groups

it first looks for all overlaps that involve the current group. Then for each of the alternatives of that

group all overlaps concerning that group-alt in overl are added to a list of ‘valid overlaps’ if the other

group-alternative involved in the overlap is still set to true in the Boolean Grid Array (bga). Within

the context of this function ‘valid’ means existing within the currently accepted solution of the system.
At this point the list of valid overlaps may or may not be empty.

If the list of valid (existing) overlaps is empty

Then that must mean that the other group involved in the overlap is also completely removed
(meaning that it will also be an entry in eliminatedgroups)

— The current group-alt is accepted and added to the Boolean Grid Array (bga) and we end
our search and break and move on to the next completely deleted group

Else the list of valid (existing) overlaps is not empty

— compute the sum of the existing overlaps

Then a check is performed to see whether this newly found sum of existing overlaps is the smallest
one we have found so far. If it is, then store the current minimum overlap and set the group-alt with
minimum overlap in bga to true.
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H. Function: compatiblealts()

Outputs

calts, [alt 1 - alt 2 - ... - alt n] this is an array of possible configurations of alts for each group. Each
row represents the rownumber-th group and each column represents a configuration of alts.

fa, this array is in the same format als the input variable bga but in fa each alt that is set to true
represents a ‘free alt’, which is a group-alternative that has no overlaps with any other group.

Inputs

bga, this variable contains a Boolean Grid Array of all groups and alternatives present in the system.
Each row of the array represents a group in the puzzle and every column represents an altnumber
that is still available to that group. It is possible for a group’s row to look like [1,0,0,1], this
would mean that this group still has alt number one and four available and that alt number two
and three have been eliminated.

incalts, [groupnumber 1 - altnumber 1 - groupnumber 2 - altnumber 2] a list of groups and alter-
natives that are incompatible with each other. In this case incompatible means that the two
groups can not both be in the final solution of the puzzle as they have a relative overlap that is
too large.

varargin

‘verbose’, makes the code output more messages to the command line

‘graph’, makes the code produce a graph of the history of group checks performed by the
function

compatiblealts() code explanation

The code starts out by calling the short function findfreealts()® which returns a list of groups that
are not mentioned at all in the incompatibility matrix incalts. These ‘free’ alts are free in the sense
that they do not overlap with any other groups, so their validity does not have to be checked anymore,
as their in- or exclusion from the final solution does not affect the inclusion of other groups.

The free alts are removed from bga such that bga now only contains non-free alts. This version of
bga is now used to determine a list of possible configurations. This is done using a while loop over the
lenght of bga. Within this while-loop it is possible that the previous step was ‘forward’ or ‘backward’.
Forward means that in the last group that was analysed was a group with a lower group number, while
backward means that the previously analysed group had a higher group number.

The function then checks for compatibility between alts and if an incompatibility is found, an
additional configuration is added. If no incompatibilities are found then the function walks forwards
from the first until the last group, when all groups have been checked the script walks backwards and
then outputs a single configuration of group alts.

IN.B. There is no detailed function description of findfreealts() because the steps undertaken in this function are
irrelevant to understanding the main script. Only the output of this function is relevant to the main problem.
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