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Abstract

Tele-operated mobile robots have a potentially high value for emergency services. Mobile robots can aid
in observations and act in place of humans in dealing with unsafe situations. However, mobile robots can
currently show non-deterministic behavior after onboard failures, resulting in mission failure or unsafe sit-
uations. Non-deterministic behavior of a mobile robot implies that the robot expresses random behavior
that does not match the operator’s expected response. Operators require the mobile robots to behave de-
terministically at all times, even after onboard failures. If this requirement is met, overall support for using
mobile robots will increase, fewer emergency operations will fail and dangerous consequences will be prevented.

In this thesis, I will research how to increase deterministic behavior of mobile robots by implementing a safety
layer. The safety layer is modeled analogous to safety layers used in critical chemical processes, in which
a safety layer is added that shuts down the process after detecting failures. This gives the operator time to
eliminate dangerous behavior and mitigate failures. Inspired by this principle, the safety layer detects onboard-
computer failures using a watchdog onboard the mobile robot. Once the failures are detected, the safety layer
is responsible for taking over the robot’s controls, stopping all movement, and eliminating non-deterministic
behavior using its GPS sensor and compass. Emergency services utilize different types of mobile robots.
Therefore, the safety layer is designed to be generic so that it can be implemented on any mobile robot. After
implementing and testing the functionalities, the effect of the safety layer on a mobile robot is determined.
This is done by estimating the probabilities of negative consequences and yields the safety layer’s effect on the
deterministic behavior of the mobile robot.

By implementing a safety layer, the deterministic behavior of a mobile robot is increased. The safety layer
mitigates onboard failures. This includes onboard-computer failures, to which protection is currently complex.
The safety layer is tested for 25 continuous hours, in which a failure was introduced every 30 minutes. The
safety layer caught all failures and resolved them without false positive or false negatives. The estimation shows
that the safety layer increases the deterministic behavior by 23.6% for the mobile robot at the University of
Twente.





Glossary

Onboard failure

An onboard failure is any failure onboard the mobile robot. A failure terminates

the mobile robot’s ability to perform its tasks. Motor controller failures and

onboard-computer failures are examples of onboard failures.

Onboard-computer

failure

An onboard-computer failure is a failure of the onboard computer of a mobile

robot. The onboard computer processes incoming control commands, processes

sensor data and produces control signals for the motors.

Error
A human action that produces an incorrect result [1]. An error may result in a

fault. An example error is shown in figure 1.

Fault
A manifestation of an error in software [1]. A fault may result in a failure. An

example fault is shown in figure 1.

Failure
Observable incorrect behavior [1]. A failure is always caused by a fault. An

example failure is shown in figure 1.

Failure mitigation Keeping the consequences of a failure to a minimum.

Error Fault Failure

Typo in
control code

Invalid control
signal

Motor controller
failure

Fig. 1 Example of an error, a fault and a failure.





Abbreviations

AED Automatic External Defibrillator

AR Augmented Reality (drone name)

CPU Central Processing Unit

EEPROM Electrically Erasable Programmable Read-Only Memory

EMC Electromagnetic Compatibility

FPGA Field-Programmable Gate Array

GPGGA Global Positioning System Fix Data

GPS Global Positioning System

I2C Inter-Integrated Circuit

LED Light Emitting Diode

LOPA Layers Of Protection Analysis

MCU Microcontroller Unit

MUX Multiplexer

NOP Normal Operations

PCB Printed Circuit Board

PPM Pulse Position Modulation

PWM Pulse Width Modulation

RaM Robotics and Mechatronics

RAM Random Access Memory

UART Universal Asynchronous Receiver-Transmitter

VHDL Very high speed integrated circuit Hardware Description Language

WLAN Wireless Local Area Network
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1 | Introduction

In 2012, a criminal group was producing the toxic sarin gas, allegedly for use in a terrorist attack. After
arrests were made, the national police deployed two mobile robots to investigate the improvised laboratory
in a basement. The mobile robots were deployed to take samples in the basement and transport them to a
decontamination team. During the operation, the pair of mobile robots failed multiple times. The telemetry
that was used to steer one robot was jamming the other robot, which made sensors provide false information.
Additionally, the telemetry interference caused an unsafe situation in which control over both mobile robots
was lost [2].

1.1 Problem description

In operations by emergency services, unexpected mobile robot responses are unacceptable. Emergency services
must at all times be able to rely on responsive and deterministic mobile robots. However, mobile robots still do
not always behave responsive and deterministic, especially after onboard failures, when undefined behavior
occurs. A software fault resulting in an onboard-computer failure will cause a mobile robot to be unresponsive
and mission data may be lost. These failures have various causes and are not always fixable during an operation.
In case of an onboard-computer failure, the mobile robot’s behavior is undefined and the mobile robot might
continue its path in the last known heading, which can cause a dangerous situation.

Mobile robots should always be reliable and show deterministic behavior. If this requirement cannot be met,
emergency operations can fail, mobile robots can harm their environment, and overall support for the usage of
mobile robots can decrease.

1.2 Deterministic behavior

In deterministic behavior, no randomness is involved in determining the next state of the system. A mobile
robot that behaves deterministically will at all times have the same response to events such as control signals
or onboard failures. In other words, the mobile robot always behaves as expected. Deterministic behavior is
not necessarily behavior without errors. This is illustrated using two examples of a mobile robot on wheels
deployed during a bomb disposal mission.

A mobile robot is deployed for a bomb disposal mission. The mobile robot collects the bomb in order to bring
it to a safe location. All control signals result in the operator’s expected response. Suddenly one of the motor
controllers fails and initiates full throttle, even though a stop is expected by the operator. This results in the



2 Introduction

mobile robot driving off a bridge and detonating the bomb on impact. In this unwanted and dangerous situation,
the operator does not have control over the mobile robot and cannot rely on it. The mobile robot only shows
deterministic behavior before the motor controller failure. Without deterministic behavior at all times, the
mobile robots are not fit for usage by emergency services.

In an identical mission as described above, a more sophisticated mobile robot is deployed. The mobile robot is
deployed to bring the bomb to a safe location. All control signals result in the operator’s expected response.
Suddenly, one of the motor controllers fails. The mobile robot automatically halts operations and rearms
the motor controller. Two seconds later, the mobile robot is ready to continue its operations with all motor
controllers working properly. This mobile robot shows deterministic behavior at all times, even after onboard
failures. The operator knows exactly what the response of the mobile robot is to control signals and onboard
failures such as the motor controller failure.

1.3 Relevance

In 2016, the United States had seen a 750% increase in drone usage by emergency services in the last two years.
The majority of the deployments are done by sheriff and police, followed by fire brigades [3]. In the Netherlands
(and in the rest of Europe) there is also a growing interest in the usage of mobile robots by emergency services.
Emergency services such as fire brigades are experimenting with the use of mobile robots. The Dutch national
police are already using mobile robots on a small scale.

If mobile robots do not show deterministic behavior during emergency operations, unacceptable dangerous
consequences can occur. When emergency services deploy a mobile robot, there is likely a dangerous situation
or environment. The consequences of non-deterministic behavior depend on the type of operation and the
operation’s environment. There are two types of operations for emergency services:

• Covert operations are operations by emergency services that are hidden to the public and usually used for
gathering intelligence. It is essential that control over mobile robots is not lost during these operations as
this can expose the mission.

• Overt operations are public operations by emergency services. During these operations, there is often a
large number of spectators. Monitoring fires or crowded events are examples of overt operations. During
these operations, losing control over mobile robots must be prevented as it can cause injuries and damage.

During any operation, non-deterministic behavior can damage the mobile robots, damage their surroundings,
cause injuries and undermine trust in mobile robots. In case of covert operations, non-deterministic behavior
can additionally result in losing cover. An onboard failure can cause the mobile robot to continue in the
last known heading. This can result in damage, injuries or mission failures. If the operators can rely on the
deterministic behavior of their mobile robots, the mobile robots can be deployed in many applications. Therefore,
ensuring deterministic behavior of mobile robots is essential and the probability of negative consequences of
non-deterministic behavior must be minimized.
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1.4 Context

Emergency services are not the only organizations using mobile robots. Many mobile robots are already
in use at chemical plants, manufacturing sites, and other locations. Their purpose is usually inspection or
transportation; for example a pipe inspection robot on a chemical plant. The negative consequences of failures
during inspection or transportation are less severe than the negative consequences of failures during operations
by emergency services. In the latter, a cover can be lost or injuries can be done. This results in more strict
requirements for mobile robots used by emergency services. Additionally, mobile robots used in operations by
emergency services cannot always be approached or reset during operations.

Most mobile robots are teleoperated. This means visual feedback is given to the operators which they use for
controlling the mobile robot. Mobile robots such as drones and rovers can be deployed by emergency services
for a wide variety of scenarios. Some useful scenarios are:

• Covert observation of suspects. It is very valuable for police to be able to observe a suspect without the
suspect knowing it is being observed.

• Getting an overview of an active fire. Drones can be equipped with thermal imaging sensors to provide a
valuable overview to fire brigades.

• Searching for missing persons. Drones are especially useful to find missing persons when equipped with
a thermal imaging sensor [4].

• Bomb disposals. Emergency services prevent putting human lives in danger by using mobile robots with
mechanical arms and grippers to dispose of bombs.

Every mobile robot can have a different implementation of software, hardware, signal formats, et cetera.
This diversity can complexify designing universal safety logic. With many different mobile robots owned by
emergency services, a universal control system is beneficial. This system is being developed by the Robotics
and Mechatronics (RaM) group at the University of Twente. It enables multiple mobile robots to be controlled
by multiple user interfaces. In this system, local and remote controllers can request control over the mobile
robot of their choice. This allows for a more flexible deployment of mobile robots as any operator can control
any mobile robot.



4 Introduction

1.5 Goal

The goal is to research how to design a safety layer that increases the deterministic behavior of mobile robots.
The safety layer must be fit for implementation on any mobile robot, so the safety layer must be generic. A
mobile robot designed by RaM at the University of Twente with the safety layer implemented will serve as a
proof of concept and will test the impact of the safety layer.

How to increase deterministic behavior of mobile robots by adding a safety layer? To address this problem I try
to answer to following research questions:

• What are common threats to deterministic behavior?

• How can threats best be detected?

• What is the appropriate response to failures?

• How can the responses best be effectuated?

1.6 Scope

The research is about increasing the deterministic behavior of mobile robots by adding a safety layer. A mis-
match between the operator’s expected response and the mobile robot response is the cause of non-deterministic
behavior. The mismatch can be caused by events such as incoming control commands and onboard failures.
This research focuses on non-deterministic behavior as a result of failures on the mobile robot. The research
scope is limited to failures that require an onboard solution on the mobile robot. This means all failures that
can be solved onboard will be considered in this research.

There are two exceptions. Device hijacking is out of the scope of this research. Protection against hijacking
should be done by experts in the field of cybersecurity. Hardware failures are also outside of the scope of this
research as they are the responsibility of mobile robot suppliers.

1.7 Report outline

In chapter 2, relevant background information about different types of mobile robots, real-time systems and
control signal structures is found. In chapter 3 the analysis is done. Common threats to deterministic behavior
are discussed first, and onboard failures are identified and analyzed. Then, the detection of these threats is
discussed and the safety layer is introduced. Finally, determining an appropriate response and effectuating
a response are discussed. The conclusions of this chapter describe the design and the implementation of the
safety layer in chapter 4. In chapter 5, the results of testing the safety layer are discussed and evaluated. The
results of the research are stated in chapter 6. Chapters 7, 8, and 9 describe the discussion, conclusion, and
future work of the research.



2 | Background

This chapter contains relevant background information. Several different types of mobile robots are shown in
section 2.1. The concept real-time systems is relevant for describing the timing requirements that real-time
systems can have. This is described in section 2.2. The different types of control signals, such as pulse position
modulation (PPM) and pulse width modulation (PWM), for motor controllers are discussed in sections 2.3 and
2.4. Finally, the concept of a fork bomb is described.

2.1 Mobile robots

There are three types of terrains for mobile robots: air, land, and sea. In every category, there are different
types of mobile robots. For example, flying mobile robots can be airplanes, helicopters or octacopters. Also,
mobile robots can be equipped with numerous devices, such as cameras, sensors, medical equipment, packages,
communication devices, and mechanical arms and grippers. Several types of mobile robots are used for
performing missions for emergency services. Many are used for observation and data collection. Others are
used for delivering medical equipment, dismantling bombs or even initiating contact with a hostage-taker. The
flying mobile robot in figure 2.1 can be used for observation and data collection. It is a hexacopter, meaning
there are six propellers keeping the mobile robot in the air. Compared to a quadcopter (four propellers), the
hexacopter can still function in case of a motor or propeller failure. Additionally, the hexacopter can provide
more thrust.

Fig. 2.1 Typical hexacopter used by fire fighters and police [5].
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Flying mobile robots are also useful for emergency medical assistance. A flying mobile robot can deliver an
automated external defibrillator (AED). People that experience a cardiac arrest can be given and AED by air
much quicker than by ambulance. Bystanders can apply the defibrillator and follow instructions provided.

Besides flying mobile robots, there are mobile robots which operate on land. They are capable of moving by
using wheels or caterpillar tracks. Figure 2.2 gives four different models of a rover on caterpillar tracks. The
rovers have arms to perform tasks such as dismantling bombs. The mobile robots also have one or multiple
cameras to provide visual feedback. These types of mobile robots can also be deployed for initiating contact
with a hostage-taker.

Fig. 2.2 Bomb disposal robots [6].

2.2 Real-time systems

Embedded systems are systems integrated into a bigger system with the purpose of adding some form of
intelligence to it. Figure 2.3 describes embedded software in general and its connections to a process. The
embedded software consists of a user interface, supervisory control and interaction, sequence control, and loop
control. This is encapsulated in a safety layer which is the only block with a connection to measurements and
actuators. The safety layer consists of hard real-time, soft real-time and non-real-time logic. A real-time system
is a system in which the correctness of the system depends not only on the logical results of computation but
also on the time at which the results are produced [7]. Figure 2.3 also describes the possibility of non-real-time
logic, which means producing results after the deadline is still useful for this part of the system: the user
interface and parts of the supervisory control and interaction block. There are three categories of real-time
systems:

• A real-time task is said to be hard if producing the results after its deadline may cause catastrophic
consequences on the system under control.

• A real-time task is said to be firm if producing the results after its deadline is useless for the system but
does not cause any damage.

• A real-time task is said to be soft if producing the results after its deadline has still some utility for the
system, although causing a performance degradation [8].
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Fig. 2.3 Embedded system layout [9].

2.3 Pulse width modulation

A pulse width modulated signal is a common control signal structure. Figure 2.4 shows how an analog signal is
encoded in a PWM signal. Most motor controllers accept this digital signal as input. Every motor controller
needs its own PWM signal. This means the safety layer will use one output pin for every motor on the mobile
robot. PWM signals have a constant amplitude and a variable duty cycle. The width represents the data; in
this application a throttle between 0% and 100%. The period (equal to the sample time) of PWM signals is
usually 20 ms. This means a refresh rate of 50 Hz for the motor controllers. This is generally sufficient but can
be altered when necessary.

PWM
signal

Analog
signal

Sampling times

t

t

Fig. 2.4 Analog to PWM signal [10].

2.4 Pulse position modulation

A pulse position modulated signal is another common control signal structure. PPM signals have a constant
amplitude and pulse width. The position of the pulse, relative to the period represents the data, in this application
a throttle between 0% and 100%. Figure 2.5 shows how to encode an analog signal in a PPM signal. One PPM
signal can contain multiple channels. With a default period of 20 ms, and assigning 2 ms to every channel, up
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to 10 channels can be encoded. This means the safety layer will only need one output pin for all motors on the
mobile robot, provided it has no more than 10 motors. The period (equal to the sample time) of PWM signals
is usually 20 ms. This corresponds with a refresh rate of 50 Hz for the motor controllers. This is generally
sufficient but can be altered when necessary.

PPM
signal

Analog
signal

Sampling times

t

t

Fig. 2.5 Analog to PPM signal [10].

2.5 Fork bomb

A fork bomb is an attack to a system in which a process is continuously forked. Forking a process means the
process replicates itself. This leads to an exponential increase in fork bomb processes, as shown in figure 2.6.
This results in slowing down and eventually crashing the system due to saturation of the operating system’s
process table. Fork bombs are used to trigger onboard-computer failures.

Fig. 2.6 Fork bomb principle [11].



3 | Analysis

This chapter analyzes the design considerations of a safety layer increasing deterministic behavior of mobile
robots. Common threats to deterministic behavior are discussed. To tackle those threats, a safety layer is
introduced. The chapter tries to answer the research questions: What are common threats to deterministic
behavior? How can threats best be detected? What is the appropriate response to failures? How can the
responses best be effectuated?

3.1 What are common threats to deterministic behavior?

Mobile robots are currently not reliable enough because there is still too much non-deterministic behavior.
Non-deterministic behavior occurs when the operator’s expected response does not match the mobile robot’s
response, as seen in equation 3.1. This mismatch in response can occur after events such as incoming control
commands or onboard failures.

i f operator’s expected response ̸= mobile robot response =⇒ non-deterministic behavior (3.1)

As mentioned in the research scope, this research focuses on non-deterministic behavior as a result of failures
on the mobile robot. Hence, failures have to be analyzed. To visualize the causes and consequences of failures,
a bow-tie figure is used. Bow-tie figures are often used for analyzing critical chemical processes. They visualize
the faults possibly resulting in a failure and the consequences of the failure. This gives insight into the safety
barriers necessary to prevent failures or mitigate failures. Bow-tie figures are a useful tool during this research.
A simplified bow-tie figure for typical mobile robots is seen in figure 3.1.
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Fig. 3.1 Simplified bow-tie figure for most mobile robots.

Faults causing a failure (such as network interference causing a network connection error) are given on the
left-hand side. Safety barriers try to prevent the failure from happening. These barriers can be as simple as
voltage stabilizers or operators checking weather conditions. Not all faults have safety barriers preventing the
failure. There likely are faults or failures that have not yet been discovered, and therefore do not have a safety
barrier. In case these undiscovered faults occur, the failure and its consequences are imminent. As soon as
any failure occurs, one of the consequences will follow, as there is no barrier to prevent this. For example, an
unstable voltage source is a fault resulting in an onboard-computer failure (the failure). The corresponding
safety barrier preventing the failure could be a voltage stabilizer. Once the voltage stabilizer fails to stabilize
the voltage, the onboard computer fails. This immediately results in one of the consequences. For example, a
flying mobile robot crashes in water and is lost.

3.1.1 Identifying onboard failures

What are common onboard failures? Some failures are identified because they happened before. Others because
they were identified during discussions. Multiple controllers connected to one mobile robot can only cause a
failure in a multi-robot environment. Currently, the identified onboard failures are:

• Onboard-computer failures

• Motor controller failures

• Network connection errors

• Battery failures

• Multiple controllers

• Incorrect output

The research scope restricted the failures to those that can be solved onboard. Also, hardware failures and
hijacking are excluded by the research scope.
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3.1.2 Analyzing onboard failures

Every onboard failure is analyzed and given a score for likeliness and consequence. The likeliness score goes
from very unlikely to very likely in four steps. The likeliness is relative to one deployment of a mobile robot.
The score for consequence goes from negligible to severe in four steps, describing the consequence to materials,
environment, and humans. Many barriers are already implemented that lower the likeliness and consequence of
onboard failures. These existing barriers (such as operators checking weather conditions) are included in the
failure analysis.

Onboard-computer failures

When an onboard-computer failure occurs on the mobile robot, the operator experiences unexpected behavior.
The mobile robot may do unexpected moves or come to a complete stop. In both cases, the mobile robot may
cause damage, injuries or mission failures. There are many causes of onboard-computer failures. Electrical
interference, bad programming, and hardware failures are some examples. With modern computers and
programmers, onboard-computer failures are unlikely. Also, especially for operations by emergency services,
extensive testing has been done to identify and resolve errors.
⇒ Likeliness: unlikely
⇒ Consequence: severe

Multiple controllers

In a multi-robot environment with multiple controllers, a mobile robot can potentially be linked to multiple
controllers. This could lead to incorrect control signals and unexpected behavior. However, the combination of
the control signals is not completely random and not necessarily problematic. The universal control system,
developed at the University of Twente, gives exclusive ownership. This means – provided the multi-robot logic
works properly – it is very unlikely that multiple controllers will be linked to one mobile robot.
⇒ Likeliness: very unlikely
⇒ Consequence: moderate

Network connection errors

Protection against network connection errors is especially required when a mobile robot is operating in a hostile
environment. Mobile robots can often experience network connection errors. This can have multiple causes,
depending on the communication protocol. Mostly, network connection errors occur because of a weak signal
in certain locations. This results in the mobile robot showing unexpected behavior. It depends on the software
what a mobile robot will do when the network connection is lost. Some are implemented in a way that the
mobile robot will stop moving. Others will continue in the last known heading for a long period of time.
Since operators are trained, they will take the range of a mobile robot in account when performing maneuvers.
However, even then the mobile robot may lose signal due to obstructions or communicational noise. This gives
a medium likeliness: possible. As mentioned, the consequences are significant.
⇒ Likeliness: possible
⇒ Consequence: significant
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Incorrect onboard computer output

An incorrect output by the onboard computer is an onboard failure that may lead to unexpected behavior. There
are several causes that can lead to an incorrect output by the onboard computer. The most likely one is bad
programming. Since mobile robots are extensively tested, the likeliness of incorrect onboard computer output
is low. The consequences are high since arbitrary control signals or status parameters are produced. In turn, this
may result in damage, injuries or mission failures.
⇒ Likeliness: very unlikely
⇒ Consequence: severe

Motor controller failures

Another onboard failure is a motor controller failure. This too can lead to unexpected behavior and uncontrolled
mobile robots. In case the mobile robot is a flying mobile robot, it will crash unless the mobile robot is a
multi-copter with more than four propellers. For the rover, the consequences are less severe than for a flying
mobile robot. In case the mobile robot is a rover, the mobile robot will either come to a complete stop or start
making turns in an arbitrary direction. Most motor controllers can handle faulty input values. However, the
motor controllers may still fail due to noise or unstable voltage supplies. This makes the likeliness low. Since
the consequences for flying mobile robots are severe, the consequence is considered significant.
⇒ Likeliness: unlikely
⇒ Consequence: significant

Battery failure

When the battery has failed, the mobile robot becomes dysfunctional. Communication is not possible and all
motors will stop. For flying mobile robots this means falling to the ground. For mobile robots, this means
coming to a complete stop, unless the mobile robot is positioned on a slope. Ideally, an operator knows the
health of the battery. This can prevent battery failure. Nevertheless, humans make mistakes and battery failure
may occur. The likeliness is low, but the consequence is high as all flying mobile robots will crash in case of
battery failures.
⇒ Likeliness: very unlikely
⇒ Consequence: significant

A common safety analysis technique used in critical chemical processes is setting up a risk matrix. In this matrix,
the likeliness of every failure is plotted against the consequence of that failure. Multiplying the consequence
with the likeliness gives the risk:

risk = consequence ∗ likeliness (3.2)

This means that an onboard failure that is placed in the top-right corner of the matrix must be solved to prevent
constant problems, while onboard failures in the bottom-left corner have a lower priority. To visualize the risk
of the onboard failures mentioned earlier, the corresponding risk matrix is given in figure 3.2.
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Fig. 3.2 Risk matrix.

From this graph, we can conclude that three failures (network connection errors, motor controller failures, and
onboard-computer failures) pose the highest risk for normal operation of a mobile robot. Multiple controllers
linked to one mobile robot is the least problematic failure. Every failure’s risk is determined to define an
implementation priority. Barriers for all failures should be added to the safety layer.

3.2 How can threats best be detected?

This chapter describes the differences between fault detection and failure detection. Also, the detection logic
location, the detection method, and the safety layer are described.

3.2.1 Fault detection

Traditionally, onboard-computer failures are prevented by detecting faults on the onboard computer. The most
common faults are buffer overflow, integer overflow, uninitialized data, null dereference, divide by zero, infinite
loop, deadlock and memory overflow [12]. Also, electrical noise corrupting data, an unstable voltage source or
a poor assembly process [13] may cause system failures. Table 3.1 gives an overview of these most common
faults. All faults can result in an onboard-computer failure.
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Table 3.1 Common computer failure causes.

Category Fault Can result in

Bad programming

Buffer overflow

(Onboard-)

computer

failure

Integer overflow

Divide by zero

Infinite loop

Deadlock

Memory overflow

Hardware
Unstable voltage source

Poor assembly process

Electrical noise Data corruption

The advantage of detecting faults on the onboard computer is that the onboard-computer failure can be prevented.
Another advantage of detecting faults is that the fault resulting in the onboard-computer failure is known. This
enables a fault specific solution which may save time. The disadvantage is that the entire state space of the
faults (including unidentified ones) needs to be included. In other words, every possible fault needs its own
detection logic. This means a failure in the onboard computer is not guaranteed to be detected. The large
number of required safety barriers to detect every fault is another disadvantage.

3.2.2 Failure detection

This research focuses on mitigation, rather than on prevention. Instead of detecting the faults as described above,
the failures are detected. The advantage of detecting failures instead of faults is that failure detection covers all
faults that resulted in the onboard-computer failure, even the unidentified ones. Also, the implementation is a
lot more simple since the logic can be implemented in one location. The bow-tie diagram in figure 3.3 shows
The traditional location of fault detection logic (left-hand side) and failure detection logic (right-hand side).
The disadvantage of failure detection is that the failure is not prevented.
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Fig. 3.3 Bow-tie figure showing fault detection (left-hand side) and failure detection (right-hand side).

Concluding, it costs a lot of effort and logic to detect faults resulting in a failure. Even when a fault is detectable,
not all failures are detected due to undiscovered faults. Therefore, failure detection is much more fit for
implementation.

3.2.3 Detection logic location

There are several locations for implementing detection logic. Traditionally, detection is done on the onboard
computer, as it has access to all sensors and actuators. There are currently three locations where logic can be
implemented that detects onboard failures. Detection logic can be implemented on the:

• Onboard computer

• Network

• Controller (and operator)

Unfortunately, failures of the onboard computer cannot be solved by any of the three mentioned locations. This
is because the onboard computer itself is dysfunctional and both the network and controller cannot access the
mobile robot because there is no network connection with the mobile robot. To increase deterministic behavior
of the mobile robots, onboard failures have to be included, especially considering its risk.

Independent safety layer

Inspired by systems used in critical chemical processes, a fourth location is added: an independent safety layer.
Ronald J. Willey describes the independent safety layer in his layer of protection analysis (LOPA) tool, which
is a risk management technique commonly used in the chemical process industry [14]. The independent safety
layer is usually an emergency shutdown system that does not depend upon any operator interaction. A common
example is seen in burners for boiler systems. In case there is no more flame, light sensors automatically
shut down the gas flow. This prevents leakage of combustible gas into the furnace. Independent safety layers
are added to improve safety. The safety layer reacts after a failure has occurred. It prevents catastrophic
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consequences – often by shutting down the process – and informs operators, who can trigger a reset of the
process. The safety layer is independent of the control process, such that a failure in the latter does not affect
the safety layer. It is important to note that this strategy mitigates failures, meaning it keeps the consequences to
a minimum, instead of preventing the failures. In the mobile robot industry, this concept can be a good solution
for minimizing the consequences of onboard-computer failures. The independent safety layer can communicate
with the onboard computer.

To make sure all onboard failures are mitigated, an independent safety layer must be added to the list of
implementation locations. The safety layer is not integrated with existing logic, to ensure independence. The
structure of the safety layer will be further described in 3.2.5. With this fourth location added, all onboard
failures mentioned in 3.1.1 can be categorized.

Concluding, the onboard computer is capable of mitigating all onboard failures, except for one: onboard-
computer failures. This must be done by the independent safety layer. The other onboard failures can best be
implemented on the onboard computer. It already has access to all sensors and actuators. The network and
controller both cover less onboard failures than the onboard computer. The overview of onboard failures and
the corresponding location of the safety barrier is summarized in table 3.2.

Table 3.2 Onboard failures and their location for the safety barrier mitigating the failures.

Onboard failure Safety barrier location

Onboard-computer failures Independent safety layer

Motor controller failures Onboard computer

Network connection errors Onboard computer

Battery failures Onboard computer

Multiple controllers Onboard computer

Incorrect output Onboard computer

With the proposed safety layer, a new bow-tie figure is set up in figure 3.4. This time the safety layer forms
additional safety barriers that mitigate the failures on the right-hand side of the figure. In this situation, even
onboard-computer failures can be mitigated, which was previously complex. Additionally, unidentified faults
can encounter a safety barrier before consequences occur. The barriers that try to prevent the onboard failures
are still implemented on the left-hand side of the figure.
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Fig. 3.4 Simplified bow-tie figure with the mitigating safety layer added.

3.2.4 Detection method

The best detection method must be determined. There are several methods for detecting onboard-computer
failures. The control signals of the onboard computer can be monitored, the computer’s crash dump can be
analyzed, a heartbeat signal can be added to processes or a watchdog timer can be used to monitor the system.
The independent safety layer is responsible for detecting onboard-computer failures as it is the only entity
capable of detecting them. The detection of all other onboard failures is done on the onboard computer.

Monitoring control signals

Every onboard computer used in a mobile robot outputs control signals. Using these control signals to detect
onboard-computer failures leads to a universal safety layer. An onboard-computer failure can disrupt the control
signals, which can be detected by the safety layer.

A test is done, to check if control signals can be used for detecting onboard-computer failures. A Raspberry
Pi functions as the onboard computer outputting a PWM signal. The signals will represent a fixed value. A
fork bomb will be performed on the Raspberry Pi, simulating an onboard-computer failure. At that point, a
stopwatch is started. The safety layer is used to detect the absence of control signals. It reads the PWM signal
and indicates a failure using light emitting diodes (LEDs) when the signal is different than expected. When the
safety layer has detected the disruption, the stopwatch is stopped.

From the test results, I concluded that the Raspberry Pi successfully produces control signals until it is out of
memory. Up to that point, the allocated memory for toggling the PWM output guarantees there are control
signals on the output. Until there is an absence of the control signals, the control signals cannot be used for
detecting onboard-computer failures. Figure 3.5 shows that it can take up to 120 seconds until there is an
absence of control signals. Up to that point, valid control signals are produced. This means the mobile robot
can continue in its last known heading for the same amount of time. The results are summarized in table 3.3.
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Fig. 3.5 Histogram of detection delay when using control signals as heartbeat.

One could argue that a change in control signals indicates the onboard computer is still active. However, this
would mean that a mobile robot in normal operations has to keep altering its control signals. This is also not a
feasible option since many operations require movements that have the same control signals for a long period
of time. Therefore, a specific control signal for a long period of time cannot be interpreted as a failure in the
onboard computer. Setting up a statistically acceptable set of rules for this would disrupt the functioning of
either the safety layer or the mobile robot. Monitoring the control signals is not a suitable detection method for
this safety layer.

Crash dump analysis

Many operating systems have a crash dump. After a failure, the system will write the cause of the failure to the
crash dump log. Analyzing it is the most straightforward way of detecting a system failure and its cause. An
advantage is that it is much easier to use this built-in logic, compared to manual monitoring of crash causes.
The dump is usually flash memory or a local register to which the system writes failure information in case of a
system crash. The safety layer can be given access to this memory and can therefore determine the cause of the
computer failure, and indicate the failure. A disadvantage is that it is a slow detection method. Only after the
system has failed, the crash dump has been produced and the crash dump is read, the failure will be detected by
the safety layer.

The crash dump is only produced after the failure of the onboard computer. This means the crash dump is also
produced after there is an absence of control signals. Considering the test results for monitoring the control
signals as a detection method, the crash dump is not fast enough. The crash dump is a slower detection method
than monitoring the control signals, which makes crash dump analysis infeasible as a detection method. The
method will not be tested.
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Heartbeat signal

A heartbeat signal is a digital signal that is toggled periodically to show liveliness. This can be used for the
onboard computer to signal the safety layer, even when the onboard computer has failed. When the toggling
of the output is not observed for a number of time intervals, the onboard computer can be considered to have
failed. The heartbeat signal is built-in to a process on the computer. The output of a heartbeat process is shown
in figure 3.6.

10ms0ms 20ms 30ms 40ms 50ms 60ms 70ms

Fig. 3.6 Output of a heartbeat process.

The process is responsible for toggling the heartbeat. This way, if a process is not responsive, it will not toggle
the signal, which can be detected externally. The simple principle is beneficial for the implementation in various
systems. However, the onboard computer may have independent processes running. One of the processes
failing does not necessarily result in a system failure; process A may have failed while process B (containing
a heartbeat process) is still functional. This issue can be prevented by implementing a heartbeat into every
independent process. However – compared to one heartbeat process – this has a more complex implementation,
requires more output pins and costs more computational load.

Testing the heartbeat timer is done by starting a process on the Raspberry Pi that toggles an output every 500 ms.
A field-programmable gate array (FPGA) receives this signal and checks whether the toggles are at most 550
ms (allowing a 10% margin) apart. In case this deadline is not met, the onboard computer can be considered to
have failed, illuminating an LED on the FPGA.

The results show, that a single heartbeat process (independent process on the onboard computer) is not capable
of detecting failures of the onboard computer. The process has allocated memory, which it is given guaranteed
access to. Even when a fork bomb is initiated, the single heartbeat process keeps properly toggling the output
until the onboard computer shuts down as a result of overheating.

A heartbeat process in every independent process is capable of detecting most failures. The solution’s central
processing unit (CPU) load depends on the number of processes. This solution requires as many output pins as
independent processes it must monitor. A big disadvantage is that every existing process must be modified to
include the heartbeat logic.
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Watchdog timer

Bernard C. Drerup has designed a system crash detection and automatic resetting mechanism for processors [15].
These so-called watchdog timers are used to detect software crashes and quickly respond to it. The watchdog
concept is shown in figure 3.7.

Computer Watchdog (timer)
timeout

reset

reboot

Fig. 3.7 The concept of a basic watchdog timer system.

Watchdog timers are commonly found in embedded systems. They are independent timers that are reset by
the computer in case the watchdog’s internal tests are satisfactory. In contrast with the heartbeat signal, the
input of the watchdog timer has no fixed period, only a deadline. The ability of the watchdog to test whether a
predefined process is still running can be a powerful tool for the safety layer. The watchdog timer will only
be reset in case all internal tests were successful. In case the computer fails to reset the watchdog – due to an
internal error – the watchdog timer times out and initiates a system reboot. A sample watchdog signal is shown
in figure 3.8. Note that the period of the watchdog signal is larger than the period of the heartbeat signal. This
is because internal tests take time.

1s0s 2s 3s 4s 5s 6s 7s

internal tests

OKOK OK

internal tests internal tests

Fig. 3.8 Watchdog signal.

In mobile robots such as the Mars rover, the use of these watchdog timers is essential. A big advantage of
a watchdog timer is that it monitors the status of the onboard computer. This means regardless of the cause,
a failure in the onboard computer can be detected. The status is monitored by checking parameters such as
network connectivity, memory, workload and CPU temperature. The watchdog system described above might
need some modifications before it can be used in this research. The timeout signal from the watchdog timer
must not immediately initiate a reboot of the computer. Instead, the timeout signal from the watchdog timer can
be connected to the safety layer which in turn can have the ability to reboot the onboard computer.

Testing the watchdog timer is done by implementing a basic watchdog in Python. The watchdog timer performs
internal checks (memory usage and CPU temperature) on the onboard computer (Raspberry Pi). The watchdog
toggles its output every time it has checked the parameters. The safety layer is connected to this output and
expects a toggle every 1000 ms. In case this requirement is not met, the safety layer will indicate a failure using
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an LED. A fork bomb is used to simulate an onboard-computer failure. Discontinuing the watchdog process
must result in the safety layer detecting a failure.

From the results, I conclude that the watchdog timer is a reliable method for detecting onboard-computer
failures, when the internal tests are carefully chosen. The timeout value (currently 1000 ms) also needs to be
determined before implementation. It takes up to two seconds to detect an onboard-computer failure using a
watchdog, as shown in figure 3.9. This means the onboard computer is still functional for at most one second
after the fork bomb is initiated. The solution requires only one output pin and has a low CPU load. The results
are summarized in table 3.3.
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Fig. 3.9 Histogram of detection delay when using a watchdog.

To test the performance of the detection methods, all faults listed in section 3.2.1 are triggered in the test. The
ability of every detection method to detect a failure after every fault is described in table 3.3. A Yes indicates a
failures was detected, a No indicates no failure was detected. Notes provide additional information. The CPU
load and pin count are shown in the bottom two rows. In the test, a Raspberry Pi 3, model B (v1.2) represents
the onboard computer. Raspbian 9 is running Python scripts on the onboard computer. The safety layer is
represented by very high speed integrated circuit hardware description language (VHDL) logic on a DE0-Nano
(Cyclone IV chip) FPGA.
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Table 3.3 Results of testing failure detection methods.

Single

heartbeat process

Heartbeat process

in every

independent

process (P)

Standard

watchdog timer

Monitoring

control signals

Buffer overflow No Yes Yes No(1)

Integer overflow No(2) No(2) No(2) No(1)(2)

Divide by zero No Yes Yes No(1)

Infinite loop No Yes Yes No(1)

Deadlock No Yes Yes No(1)

Memory overflow No Yes Yes No(1)

Data corruption Not tested(4) Not tested(4) Not tested(4) Not tested(4)

Unstable voltage source No(3) No(3) No(3) No(1)(3)

Poor assembly process Not tested(4) Not tested(4) Not tested(4) Not tested(4)

High load (overheat) No Yes Yes No(1)

CPU load ~0% ~0*P% ~0% 0%

Pin count 1 P 1 0

(1) Until absence of control signals.
(2) Integer overflow is impossible in Python, provided there is enough memory.
(3) Until voltage source unacceptably low.
(4) Data corruption and poor assembly process are complex to reproduce.

Using the test results in the table, I have concluded that the watchdog and the multiple heartbeat processes are
both satisfactory detection methods. The watchdog uses fewer communication pins and is therefore the better
method. The control signals and the crash dump cannot be used for quick detection. Using the control signals
results in similar detection issues as using a single heartbeat process. An unstable voltage source is not detected
by any solution until the voltage source is unacceptably low such that the onboard computer powers off. Integer
overflow is not detected by any detection method. In Python, integers have arbitrary precision and can therefore
represent an arbitrarily large range of integers. The integer range is only limited by available memory. The
CPU load of all detection methods is almost zero.
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3.2.5 Safety layer structure

The safety layer can only be independent if it is stand-alone. This means it will not be integrated with existing
logic, such as the onboard computer. A stand-alone solution can be implemented locally (on the mobile robot)
or remotely. Kristen Anderson’s research [16] shows a proof-of-concept for a crash avoidance system on a toy
car. A remote safety layer functions using sensor data transmitted from the car. The remote solution works as
a safety layer in the proof-of-concept. However, when a loss of connection to the sensors occurs, the crash
avoiding safety layer cannot function. A remote solution is not feasible, because a network connection with the
mobile robot at all times cannot be guaranteed. Hence, a local stand-alone solution is required.

Ideally, the safety layer is implemented between the onboard computer and the motors of a mobile robot since
it can then interrupt control signals when necessary. This implies that the watchdog is also implemented on the
stand-alone safety layer. This is shown in figure 3.10. Also, it does not have logic on the onboard computer or
motors which ensures simple and generic installation.

Safety layer

Motor controllers & encoders

Onboard computer

Fig. 3.10 Ideal structure of the safety layer, ensuring a generic solution.

This would mean a generic solution has been found which can be implemented on any mobile robot. The
scenario from figure 3.10 is only possible if no logic has to be added to the onboard computer or to the motor
controllers & encoders. This logic does not have to be added when the onboard computer’s control signals can
be used as a way of detecting onboard-computer failures.

This is tested in section 3.2.4. From the test, I concluded that it is not possible to detect onboard-computer
failures using the control signals. Therefore, detection logic has to be added to the onboard computer. With the
watchdog implemented on the onboard computer, the revised structure of the safety layer is shown in figure 3.11.
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Safety layer

Motor controllers & encoders

Onboard computer

Fig. 3.11 Revised structure of the safety layer.

The external logic has the advantage of being independent of the mobile robot’s main logic. This means a
malfunction in the main logic does not interrupt the performance of the safety logic. The combination of
internal and external enjoys the advantage of flexibility. The internal logic has access to all sensors, parameters
and other logic on the mobile robot. This internal logic can communicate with the external logic which on
its turn is independent of the main logic. A disadvantage is that the internal logic is unresponsive in case
of onboard-computer failures. Another disadvantage is extra financial and physical space costs for external logic.

Access to the onboard computer of the mobile robot is necessary for the watchdog to function. This is impossible
without integrating the detection logic on the mobile robot. Hence, the safety layer must contain logic integrated
on the onboard computer. The safety layer must be able to function stand-alone in case the onboard computer
shows severe failures. In that case, the detection logic will be unresponsive. This conclusion means sacrificing
some physical space on the mobile robot. Altogether, the safety layer will be a stand-alone onboard solution. It
has a watchdog on the onboard computer and all other logic on the external safety layer.

Concluding, the best method for detecting onboard-computer failures is using a watchdog. The watchdog
must be implemented on the onboard computer to ensure access to system data. The remaining parts of the
safety layer must be stand-alone to ensure independence from the onboard computer. This allows effectuating a
response at all times.
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3.3 What is the appropriate response to failures?

The safety layer is responsible for responding to onboard-computer failures. In case of any other onboard
failure (general failures), the safety layer’s only response is to keep the mobile robot in its current location.
These failures are given further response by the onboard computer. A response that matches the operator’s
expected response should be determined to increase deterministic behavior. What should the safety layer’s
response to onboard-computer failures be?

3.3.1 Proposed response

The initial response by the safety layer must be to keep the mobile robot in its current location. Maintaining
location includes altitude in case of a flying mobile robot. If critical processes (such as the control process
or the video process) are not responding, these processes must be restarted. In case the network connection
has failed, a restart of the network interface must be performed. If these actions are not successful, a reboot
of the onboard computer must be performed. A reboot (soft reset) must always be attempted before a hard
reset is performed. Mission data can be lost when rebooting the onboard computer. Hence, backing-up and
recovering mission data must be considered. Mission data can be stored in arbitrary locations, with any data
size and structure. Making a back-up or recovering these files can be complex. If a hard reset is not successful,
there is no other option then to return to launch using the safety layer. If the onboard-computer failure is solved,
and the control has been recovered, the mobile robot can continue operations.

3.3.2 Resetting the onboard computer

Resetting the onboard computer is an essential function of the safety layer. There are two options for resetting
the safety layer: a reboot and a hard reset. A reboot gives the onboard computer the reboot signal. This is the
safe way of rebooting a system. It initiates a sequence of commands that prevents system corruption. The
system is given time to save important data to memory, unmount external drives and eventually perform a
reboot. A hard reset is the last measure against unresponsive systems. Data corruption may occur, and important
data may be lost. A hard reset cuts the power to the system and reboots it.

3.3.3 Configuring the response

To increase deterministic behavior of mobile robots, the operator’s expected response must match the mobile
robot response. The operator’s expected response may differ per operator and mission. Therefore, the operator
must be given the ability to configure the safety layer’s response. Parameters such as the timeout value for the
mobile robot to return to base instead of solving the failure must be configurable.

Concluding, backing up or recovering mission data is not included in the safety layer as it is very dependent on
the mobile robot. Mission data may be stored in arbitrary locations and have arbitrary data sizes and structures.
It is also likely that mission data is stored on the operator side instead of on the mobile robot. A reboot must
always be performed before the hard reset is performed. However, the response may differ per operator and
mission. To ensure deterministic behavior, the response should match the expectations of the operator. It
is important that the operator knows all responses and can change them accordingly. This feature is a big
advantage because it allows more deterministic behavior on the mobile robot.
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3.4 How can the responses best be effectuated?

With the responses determined, effectuating the responses can be analyzed. The safety layer should be able to
keep the mobile robot in the current location, reset the onboard computer and guide the mobile robot back to
the launch location.

3.4.1 Timing requirements

What are the timing requirements for the safety layer? Immediate detection of onboard-computer failures is
valuable. However, false positives must be prevented. A quick response by the safety layer will be beneficial
for the system performance. Computational deadlines for producing the control signals must be met to ensure
smooth control over the mobile robot.

Detection

Instantly detecting abnormal behavior using the watchdog is valuable. However, the safety layer must always
be sure that abnormal behavior is actually occurring, when it indicates a failure. Falsely activating the safety
layer costs time and can impact emergency operations. The effects of these false positives can be as big as not
activating the safety layer after actual failures. On the other hand, faster detection of failures is beneficial for the
overall performance of the safety layer. The outcome of several internal checks determines whether the onboard
computer is in normal operations or if there is an onboard-computer failure. The internal checks can be:

• Is there enough free memory?

• Is the average CPU load acceptable?

• Is the video process still running?

• Is the control process still running?

• Do network interfaces receive traffic?

• Is the CPU temperature acceptable?

By observing these parameters before and during onboard-computer failures, a selection is chosen for the
design. The free memory is a good parameter to check. Under normal operations, an onboard computer uses no
more than 80% of its memory. This is an observation and depends on the hardware. The workload is not a
reliable parameter to monitor. A peak in user requests can trigger a CPU load of 100% which does not represent
a failure. Monitoring the video process and the control process are valuable internal tests for the watchdog. A
failure in one of these processes represents a failure. Network connectivity is currently not a good parameter
to check. The Raspberry Pi has a weak wireless local area network (WLAN) adapter, occasionally causing
network interruptions. This can lead to false positives. The CPU temperature is a suitable parameter to monitor.
From observation, I concluded that the CPU temperature does not exceed 85 °C under normal circumstances.
Only in case of failures, the CPU temperature is higher.

A test has been done to determine the optimal watchdog timeout. The timeout is defined as the deadline for the
onboard computer to signal the result of the internal checks. A large timeout ensures sufficient time for the
CPU to perform the internal tests, minimizing the number of false positives. A small timeout results in quicker
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detection of failures. A Raspberry Pi is used as an onboard computer. The amount of false positives depends on
the timeout and the CPU load. CPU loads of 30%, 50%, 70%, and 90% are tested for timeouts between 100 ms
and 2000 ms. The load is kept constant at the desired level by dummy processes that rapidly perform complex
calculations. The safety layer keeps count of the number of onboard-computer failures it has detected. The
results are shown in figure 3.12.
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Fig. 3.12 Results of the watchdog timeout test.

False positives are unacceptable. Therefore any timeout lower than 1100 ms cannot be used. Even though it
comes at the cost of a larger detection delay, I assume a timeout of 1500 ms is an acceptable compromise. This
means it takes up to 1.5 seconds to detect an onboard-computer failure.

Response

After an onboard failure has been detected, the safety layer needs to produce appropriate control signals as
fast as possible. Producing computational results such as control signals too late will negatively impact the
performance of the safety layer. The safety layer can always produce control signals that try to keep the mobile
robot in its current location. Up to the point where an onboard-computer failure is detected, these control
signals will be ignored. This yields a quick response.

Concluding, the detection is done by a watchdog timer with a timeout value of 1500 ms, this ensures a low
probability of false positives and a quick detection of failures. The responses must be produced immediately
after an onboard-computer failure is detected. This is done by continuously producing control signals that try
to keep the mobile robot in its current location. They are not propagated until an onboard-computer failure is
detected.

Safety layer

The response must be produced by the safety layer as fast as possible. The safety layer can have three different
timing requirements: soft real-time, firm real-time or hard real-time.

In soft real-time systems, repeatedly producing computational results after the deadline still has some value
for the overall system, decreasing over time. An advantage of using a soft real-time environment is the
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simple implementation because of the widely available reference material. Basic (high level) code and a basic
microcontroller unit (MCU) can satisfy soft real-time requirements. A disadvantage is that the quality of the
produced signals is low. A PWM signal produced in a soft real-time environment will show deviating values
over time as deadlines are missed repeatedly. This is because the design focus is not on timing.

In firm real-time systems, incidentally missing a deadline is acceptable, though its computational results are
useless. Producing results after the deadline therefore only degrades system performance. This means the
system is designed to perform all calculations within the given deadlines. The advantage of such an environment
is its implementation. Most MCUs running standard quality code can satisfy the firm real-time requirements.
The disadvantage is that not all computations are guaranteed to be performed within their given deadline.

In hard real-time systems, missing a computational deadline has catastrophic consequences. A hard real-time
environment guarantees that all computational deadlines will be met. This comes at the cost of complexity.
This disadvantage means only the most powerful devices and expert coding skills can be used to satisfy hard
real-time requirements. Designing hard real-time systems requires a complex timing and system analysis.

Concluding, the safety layer is a real-time system as the correctness of the system depends not only on the
logical results of the computation, but also on the computational time. The safety layer should be a firm
real-time system. Missing some deadlines can be afforded, although it degrades system performance. The
design focus must be on meeting computational deadlines. Soft real-time systems are not quick enough, as
deadlines are missed repeatedly. Hard real-time systems have excessively high timing requirements.

3.4.2 Logic implementation

There are three options for implementing the firm real-time safety layer. First, it could be implemented in
software which sequentially executes code. Second, the safety layer logic can be implemented in hardware on a
printed circuit board (PCB). A third option is using an FPGA, in which logic gates can be programmed to form
a hardware circuit.

Implementing the firm real-time safety layer can be done using software. There are many different processors
available that can run safety layer software. The advantage is a simple implementation which can easily be
modified when necessary. Complex functionalities such as using a global positioning system (GPS) or analyzing
system data can be implemented in software using widely available reference material. A disadvantage is that
in software, all executions happen sequentially. This means it might take many clock cycles before the desired
actions are performed. A powerful MCU must be used to satisfy the firm real-time timing requirements.

The firm real-time safety layer can also be implemented on a hardware circuit; a PCB with logic elements
resulting in the desired behavior. The advantage of a safety layer implemented in hardware is that it is faster
than its equivalent in software since executions can be performed in parallel. A firm real-time environment
is feasible. Not all actions can be performed in parallel. For instance when using a GPS sensor. A major
disadvantage is that the behavior of the circuit cannot be changed unless a new PCB is made. This means there
is little to no flexibility when using a PCB.
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A third option is to use an FPGA, in which hardware can be programmed to show desired behavior. The
programmable hardware circuit allows a lot more flexibility compared to a hardware implementation on a
PCB. FPGAs translate VHDL code to a hardware circuit. This implies a parallel execution of desired behavior.
FPGAs can also execute statements sequentially using processes. In a process, sequential statements such as
conditional logic can be used. This simplifies the implementation of for instance a GPS sensor. Justin Young
researched the benefits of controlling a quadcopter using an FPGA instead of an MCU [17]. He concludes that
it is feasible to make a light-weight controller for quadcopters. When using an FPGA, more room is left-over
for advanced features because the processor is free of data gathering activities thanks to the parallel nature of
FPGA design.

Concluding, functionalities implemented using hardware provide a faster solution, satisfying firm real-time
requirements. As some functionalities such as GPS or reading sensors require sequentiality, a hardware-only
solution is infeasible. An FPGA allows reprogramming and sequential processes; this offers flexibility and
simplicity, while still satisfying firm real-time requirements. A software solution provides the necessary
flexibility and simplicity but does not always satisfy firm real-time requirements. An implementation using an
FPGA is a more lightweight solution, satisfying firm real-time requirements. Therefore, an FPGA will be used.
The watchdog is implemented on the onboard computer, as concluded in section 3.2.5. Its timing environment
is constrained by the onboard computer.

3.4.3 Power supply

A safety layer must be active when the mobile robot is active. This is to ensure that the safety layer can perform
its tasks. Providing power to the safety layer can be done by connecting it to the main battery, by giving it a
separate battery or by implementing a resettable fuse to the onboard computer.

The safety layer can be powered by the mobile robot’s main battery. The advantage is no additional financial
and physical space costs. The solution provides power to the safety layer when the mobile robot is functional.
A disadvantage is that power must be shared with the onboard computer, which might be problematic. An
onboard malfunction could result in a short circuit or high load at the onboard computer. This can leave too
little power for the safety layer to function. Until the malfunction of the onboard computer is fixed by the safety
layer, there will be no power left for the safety layer.

The safety layer can also be powered by a separate battery. This ensures the safety layer is always active. A
disadvantage is that the separate battery must always have sufficient charge. This can be realized by charging
the separate battery with the main battery. This means additional logic has to be added. Another disadvantage
is the additional physical space and financial cost of the battery.

A resettable fuse between the safety layer and the onboard computer can also be implemented. The fuse can
cut the power when the onboard computer’s power consumption is too high. This means when there is power
available on the mobile robot, the safety layer has guaranteed access to it. An advantage is the low financial and
physical space cost compared to adding a backup battery. Most MCUs and onboard computers already have a
fuse and will shut down or reboot in case of abnormalities in power consumption.
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Concluding, a mobile robot will not be able to perform any actions requested by the safety layer when the
mobile robot’s battery is dead. In that case, it is useless to have an active safety layer. Hence, there is no need
for an additional power supply for the safety layer. A resettable fuse to the onboard computer will guarantee
access to the main battery for the safety layer. The resettable fuse cuts off power to the onboard computer when
its load is too high. However, since all certified onboard computers have a fuse already, the onboard computer
will already switch off or reboot when the power consumption is abnormally high. Therefore, the safety layer
will be powered by the mobile robot’s main battery. This will guarantee an active safety layer when the mobile
robot is active.

3.4.4 Access to sensor data

Mobile robots need to be able to return to launch and need to be able to stay in the current location. In case of a
rover, staying in the current location means compensating for unwanted movement due to slopes. In case of a
flying mobile robot such as a multi-copter, this means compensating for wind and natural drift in all six degrees
of freedom. The only data necessary for maintaining location is relative location data. Returning to launch
requires either absolute location data or relative location data and recording the traveled path. For recording the
traveled path, an accelerometer or optical flow sensor are possible. The disadvantage of an accelerometer is that
it may fail to detect a velocity offset as it only senses acceleration. The disadvantage of using an optical flow
sensor is that it has to be mounted on the mobile robot, such that it can determine flow. For most mobile robots
that would be facing the ground. Another disadvantage of the optical flow sensor is that it cannot measure
altitude. A GPS can be used to find the absolute location. Then, there is no need for recording the traveled
path. The disadvantage of GPS is that it does not always work indoors. Abdulqadir Alaqeeli researched the
implementation of a fast GPS position tracking system on an FPGA [18]. The results were satisfactory: the
number of operations was reduced, the hardware implementation was simplified and the acquisition time was
decreased. Access to sensor data can be given by sharing sensors with the onboard computer or by giving the
safety layer private sensors.

The safety layer can use the mobile robot’s onboard sensors to control the mobile robot. To ensure functionality
even when the onboard computer is dysfunctional, the sensors will require rerouting and data sharing. This is a
disadvantage when implementing a safety layer and is in some cases even impossible, for instance when the
GPS is embedded on the onboard computer. An advantage of sharing sensor data is that it does not have any
extra financial or physical space costs. The safety layer can also be given its own sensors. This would allow a
universal safety layer for all mobile robots. The disadvantage, however, is that it will introduce extra financial
and physical space costs. The advantage is always functional sensors for the safety layer.

3.4.5 Control signals

Producing control signals is an essential part of the safety layer. The control signals on the input are of the
same format as the control signals on the output. They also use the same number of communication pins. Not
all mobile robots expect the same type of control signals. This means the mobile robot must be able to produce
all common types of control signals, such that it makes the solution as generic as possible. The disadvantage of
using PWM is that every motor controller requires one data pin. For a hexacopter, this means six pins. The
disadvantage of using PPM is that not all motor controllers support it.
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The safety layer must be able to switch between control signal sources. The two sources are the onboard
computer and the safety layer. There will be a phase difference between the control signals of the onboard
computer and the control signals of the external safety layer because they have a separate clock. To ensure both
the onboard computer and the safety layer can provide control signals, they need to be in phase. Otherwise
switching between control signal sources can cause motor controller failures. The multiplexer reads the
incoming control signals and reproduces them in phase with the safety layer’s control signals. This ensures
smooth transitions between control signal sources. Note that this introduces a permanent delay between the
control command and control action. The maximum delay dmax, as seen in equation 3.3, is the multiplicative
inverse of fc; the control signal frequency. As this frequency is generally 50 Hz, dmax is generally 20 ms.

dmax =
1
fc

(3.3)

3.4.6 Autonomously maintaining location

Lachlan K. Scott researched autonomously hovering drones by means of vision-based flight control [19]. This
method used the device’s camera to anchor the drone to a location. The research successfully created a system
that eliminated natural drift of a drone. This has been tested outdoors in light winds and indoor on a treadmill.
One problem encountered in the research is the next: "However with the low frame rates and resolution available
using the AR Drone, it was unable to achieve autonomous hover when there was a lack of well-defined features
such as over-well-kept lawn or during low light conditions" [19]. In that case a gust of wind will cause the
drone to lose its anchor. Overall, the research for autonomous hovering was successful. One remark is that
the researchers used a camera. Optical flow sensors outputting a velocity vector were not considered. This
sensor may be cheaper and more sophisticated than using a general purpose camera. However, autonomously
maintaining the current location can be done using different techniques too. What are the options?

Accelerometer

An accelerometer can measure acceleration in the three-dimensional space. By integration, the velocity and
distance can be calculated. With the accelerometer, the acceleration ak(t) in direction k ∈ [x,y,z] can be
determined. As seen in equation 3.4, integrating this can yield the velocity. However, the initial velocity v0,k is
unknown. This causes a constant velocity offset.

vk(t) = v0,k +
∫ t

0
ak(t) dt (3.4)

When trying to keep a mobile robot in its location, the velocity is not enough. The displacement has to be
calculated. This is done by integrating the velocity in direction k, as shown in equation 3.5. Note that the
velocity offset is integrated too. An additional offset is added: initial position x0,k. When trying to keep a
mobile robot in its current location, this can be set to zero as a relative location is sufficient.

xk(t) = x0,k +
∫ t

0
[v0,k +

∫ t

0
ak(t) dt] dt (3.5)
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It could be that the offset is negligible. When the acceleration is in the form ak(t) = b+ ct +dt2, the relative
location of the mobile robot to an anchor location can be described. Equation 3.6 describes this relative location.
The terms b, c, and d are measured by the accelerometer. However, v0,k is unknown. When integrated, the drift
v0,k(t) is introduced, growing over time. This means the offset is not negligible.

xrel,k(t) = v0,kt +b
t2

2
+ c

t3

6
+d

t4

12
(3.6)

The disadvantage of using an accelerometer for keeping a mobile robot in its location is the velocity offset,
which causes a displacement drift. The advantage of using an accelerometer is its low complexity, low physical
space cost and low financial cost of implementation.

Optical flow sensor

An optical flow sensor is a camera with the sole purpose of outputting a two-dimensional velocity vector. The
camera finds points that it recognizes and checks the location of those points in every frame. The displacement
of the points determines the velocity magnitude and direction. This can be used to anchor a mobile robot to a
location. The advantage is that – provided the surface is satisfactory – the technique works accurately, without
an offset, also indoors. There are some disadvantages to this technique. First, when the camera has little to
no points to recognize, the sensor fails to output a velocity vector. This may be a problem in some terrains
or poor lighting conditions. Second, the optical flow sensor needs to be mounted on the outside of a mobile
robot, facing the surface it moves along. This may not always be feasible. Finally, the optical flow sensor is
two-dimensional. It does not take altitude into account. This is a problem for flying mobile robots. The optical
flow sensor can be implemented alongside a barometer measuring altitude. Even then, some of the mentioned
disadvantages persist.

GPS

A GPS receiver uses trilateration to find its absolute location. This is done using satellites orbiting earth as
references. Finding the location is a relatively complex computation. However, since it is a very popular
concept, reference material is available. The advantage of using a GPS is the absolute location it yields. This
means no offsets or drifts. The disadvantage is that the receiver should have access to satellite data. This is not
always the case indoors.

Compass

The mobile robot needs to know its orientation in order to be able to go to any predefined location. This is a
requirement for the maintain current location command. An electronic compass can provide this information to
the safety layer.

Concluding, the relative location of the mobile robot and a record of its traveled path are sufficient. Recording
the traveled path will likely result in errors, especially after onboard failures. Two sensors can be used to find
the relative location of the mobile robot: an accelerometer and an optical flow sensor. The velocity offset of
an accelerometer makes a reliable solution infeasible. The optical flow sensor is complex to implement as it
must face the surface along which the mobile robot moves. The optical flow sensor must also recognize distinct
points, which may be a problem in poorly lighted areas or areas without distinct points. Additionally, the optical
flow sensor only works two-dimensional. This means no altitude data is known. Alternatively, the absolute
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location of the mobile robot is provided. The absolute location provided by a GPS sensor is more reliable and
therefore the better choice. Absolute location data eliminates drift of the mobile robot. A GPS sensor does not
always work indoors.

3.4.7 Return to launch

Accelerometer

Returning to launch can be done using an accelerometer when the traveled path is recorded. The accelerometer is
capable of capturing the mobile robot’s displacement information. However, the earlier discussed displacement
drift is a major disadvantage. It will make safely returning to launch using an accelerometer unlikely. Additional
sensors are needed to find the altitude of the mobile robot.

Optical flow sensor

Returning to launch can also be done using an optical flow sensor when the traveled path is recorded. The
optical flow sensor is capable of capturing the mobile robot’s displacement information too. However, it is not
capable of capturing the mobile robot’s altitude data. A lack of well-defined features on the ground may cause
errors in the mobile robot’s path to launch. The optical flow sensor must be mounted in an appropriate location,
which introduces an additional disadvantage.

GPS

The mobile robot can return to launch using a GPS sensor. Finding the absolute location minimizes errors, as
corrections are constantly performed. Waypoints to the location of the launch can be used to guide the mobile
robot back to launch. A disadvantage is that the GPS may lack access to satellite data indoors.

Compass

The mobile robot needs to know its orientation in order to be able to go to any predefined location. This is
a requirement for the return to launch command. An electronic compass can provide this information to the
safety layer.

Concluding, returning to launch requires location services. This can be realized with an accelerometer, with an
optical flow sensor or with a GPS. The stacking of the drift over time will make it unlikely to safely return to
the launch location using an accelerometer. The error will be too large. The optical flow sensor cannot access
altitude data and is very dependent on the ground surface. The GPS sensor has the ability to reliably bring the
mobile robot back to launch. The only disadvantage is that the GPS signal is weak indoors. A GPS sensor is
the best option for guiding a mobile robot back to the launch location. In addition to the GPS, a compass has to
be used to provide the mobile robot with orientation information. Only then, the mobile robot can navigate to a
set of coordinates.
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How can the safety layer be implemented most effectively? This chapter describes the design of the safety
layer, based on the conclusions of chapter 3. Of every component the design is discussed, followed by its
implementation. The overview of the system components is described first.

4.1 Overview

As described in the analysis chapter, the functionalities of the safety layer are to detect failures, respond to
failures and to conditionally take over control of the mobile robot. Additionally, the safety layer needs to be
able to switch between control signals. Therefore I propose a safety layer consisting of four components: a
detection block, a response block, a control block, and a multiplexer. The blocks are shown in figure 4.1. The
control block requires sensors. Details about the functionalities, connections, and implementations of every
block are described next.

control signals

takeover

hard  
resetreboot

encoder data 

Controlreset

maintain location

return to launch

Response

onboard com-
puter status 

Detection Onboard computer

Motors & encoders

External FPGA
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control signals
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Multiplexer

GPS Compass

Motor controllers

Fig. 4.1 Overview of the safety layer (detection block, response block, control block, multiplexer and sensors).
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4.2 Detection block

The first component of the safety layer is the detection block, which is responsible for detecting failures on the
mobile robot. The detection block is implemented using software on the onboard computer. The detection block
detects onboard-computer failures and requests for the general failure mode. The general failure mode can be
requested by any process on the onboard computer in case of any onboard failure other than onboard-computer
failures.

4.2.1 Design

The detection block uses the principle of a watchdog to report the status of the onboard computer to the safety
layer. The watchdog timer performs several internal checks to determine the status of the onboard computer.
The internal checks consist of monitoring the memory usage (80% maximum), the CPU temperature (85
°C maximum), and the liveliness of the control process and video process. When the onboard computer is in
normal operations, the watchdog timer toggles the detection block’s output after performing the internal tests.
If one or multiple of the internal tests are not satisfactory, the detection block does not toggle the output. The
advantage of this approach is that when the detection block (or the onboard computer) is unresponsive, it will
stop toggling the output signal and, therefore, this failure is also detected by the response block. The binary
output signal Sdet as seen in equation 4.1 is output by the detection block.

Sdet =

 not(Sdet), i f all internal tests ok

Sdet , otherwise
(4.1)

The output signal Sdet is toggled every TS
2 seconds, equal to the duration of the internal tests. When there is

no failure detected, the result is a periodic output signal with period TS. Using the test results described in
section 3.4.1, I have concluded that the duration of the internal tests also depends on the CPU load. At 90%
CPU load, the tests take at most 1100 ms. Using these results, I concluded that TS,max = 2∗1500 ms is a good
compromise between a low detection delay and a low number of false positives. Therefore, TS will always
satisfy the condition in equation 4.2.

TS

2
≤ 1500 ms (4.2)

In the worst case scenario, an onboard-computer failure is detected just after the output signal has been toggled.
It then takes up to 1500 ms for the detection block to signal the failure to the response block on the external
FPGA. In case of a failure, the output signal will not be toggled. A sample output signal of the detection block
is shown in figure 4.2, in which the internal tests are not satisfactory at tF . This is not observed by the response
block until tO.
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Fig. 4.2 Sample detection block output signal.

A general failure mode can be requested by other processes on the onboard computer. This makes the request
an input of the detection block. The request for the general failure mode is signaled to the safety layer until
the request is canceled by the process. Therefore, detection is done by waiting for a request. Currently, the
general onboard failures are motor controller failures, network connection errors, battery failures, multiple
controllers, and incorrect output. Onboard-computer failures are not included, as they are impossible to solve
by the onboard computer itself. The request for the general failure mode uses the second output of the detection
block. It is a simple binary signal that is true in case of a request for the general failure mode. False indicates
no request for the general failure mode. Adding a liveliness indicator signal is not necessary as an unresponsive
detection block is already detectable by the response block.

It is important that the detection block can communicate with the response block. The detection block will
be implemented on an onboard computer, while the response block will be implemented on an FPGA. The
implementation on different platforms can cause a problem upon startup. To make sure both blocks are ready
for start-up, an initialization procedure (a handshake) is performed. The detection block will signal the response
block that initialization is requested. The response block can acknowledge this, after which both blocks are
active. This ensures both blocks are ready before the safety layer is activated. Additionally, a disturbance in
one of the connections will cause the safety layer to fail activation. To check all connections, all inputs and
outputs are used for the handshake procedure. The hard reset signal is not used in the handshake since it cannot
be read by the onboard computer. The safety layer is only active after the initialization request by the detection
block is acknowledged by the response block. The procedure is shown in figure 4.3.
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Fig. 4.3 Initialization procedure of the safety layer.

The detection block with its inputs and outputs is shown in figure 4.4. The detection block has system data such
as memory usage as input. This is because it is input for the internal checks of the watchdog. The second input
is the request for the general failure mode. Any process can request it. The two outputs are the status of the
onboard computer, and the request for the general failure mode. Both are binary outputs.

general failure mode request

onboard computer statussystem data

general failure mode request

Detection

Fig. 4.4 Detection block.

4.2.2 Implementation

The detection block is implemented in Python on the onboard computer; a Raspberry Pi. The detection block
is capable of detecting onboard-computer failures by using a watchdog. The watchdog monitors CPU load,
memory load, CPU temperature, network connectivity, and checks if the control process and video process are
still running. This is implemented by searching the process table for a process with the specified name. The
CPU load and network status are not used for determining the status of the onboard computer. The CPU load
and the network status are for reference only, as mentioned in section 3.4.1. The maximum memory usage is
set at 80%. The maximum CPU temperature is set to 85 °C. The control process, video process and the network
all have to be responsive. If one or more of these conditions are violated, the detection block will not change its
output to the onboard-computer failure. The detection block signals any general failure mode request to the
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external safety layer using a binary output. Onboard-computer failures are signaled using the watchdog, of
which the output signal is described in figure 4.2. A running detection block is shown in figure 4.5.

Fig. 4.5 Detection block showing watchdog parameters.

4.3 Response block

The second component of the safety layer is the response block, which is responsible for finding a response to
onboard-computer failures and general failure mode requests. It is also responsible for acknowledging a request
for initialization from the detection block.

4.3.1 Design

The response block is responsible for acknowledging a request for initialization by the detection block. After a
master reset, the response block is continuously listening for the initialization sequence. When this is observed,
acknowledging is done by toggling the reboot pin ten times. This can also be any other sequence. The response
block is also responsible for interpreting the onboard-computer failure status signal. This is done by resetting
a timer every time the signal is toggled. In case the timer exceeds 1500 ms, an onboard-computer failure
is assumed. The onboard computer is in normal operations (NOP) if NOP = True. If no toggle has been
observed for more than 1500 ms, the onboard computer has failed (NOP = False) or its status is unknown
(NOP =Unknown). The latter means either the onboard computer has failed or the safety layer has failed. Both
are interpreted as onboard-computer failure. With NOP ∈ [True, False, Unknown], the status of the onboard
computer is determined by checking TS as stated in equation 4.3.

NOP =

 True, i f TS
2 ≤ 1500 ms

False | Unknown, i f TS
2 > 1500 ms

(4.3)
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In case of a failure, the response block informs the control block to remain in the current location, return to
launch or reset the onboard computer. Before every deployment, the response block can be configured with the
operator’s desired responses. The configurable responses are:

• Return to launch timer. If this timer times out, the response block will inform the control block to return
to launch.

• Hard reset timer. If this timer times out, the safety layer will perform a hard reset instead of a reboot.

The state diagram in figure 4.6 is used to explain the response of the response block to onboard failures. During
normal operations, the mobile robot is in the normal operation state. In case an onboard-computer failure
occurs, the mobile robot is in the onboard-computer failure state. While in the failure state, the safety layer
keeps the mobile robot in its current location. At the same time, the state initiates a reboot of the onboard
computer. If this is successful, the failure state will be left, and normal operations can continue. In case the
reboot failed, a hard reset will be attempted. If this also fails to tackle the onboard-computer failure, the mobile
robot will be in the return to launch state. This will guide the mobile robot back to the launch location. In
case a general failure mode request is signaled, the mobile robot maintains its current location. The onboard
computer then has time to solve the failure. When the onboard computer is done, it clears the general failure
mode request and normal operations will continue.

onboard-computer  
failure 

general failure  
mode request 

operation completeNormal
operation 

Return to launch

failedfailed

success

Reboot

success

Hard reset

Maintain  
current location

Onboard-computer failure state

 no general failure  
mode request

Onboard-
computer  
handler

Maintain  
current location

General failure mode request state

Fig. 4.6 Response block state diagram.
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The inputs for the response block are binary; the onboard computer status and the request for the general failure
mode. The binary outputs trigger events at the control block: return to launch, reset onboard computer and
maintain location. Figure 4.7 shows the response block and its inputs and outputs.

general failure mode request

onboard computer status

return to launch

maintain location

reset onboard computerResponse

Fig. 4.7 Response block.

4.3.2 Implementation

The response block is implemented on the external FPGA. VHDL logic describes the behavior of the state
diagram in figure 4.6. Listening for an initialization request is implemented as follows. The response block
concatenates the two inputs from the detection block, forming a 2-bit number. Every change of this number
triggers a state change. When the sequence "01","11","10","00" is observed, a counter is incremented. This can
also be any other sequence. When this counter reaches five, the initialization is complete and the acknowledge
can be given. The state diagram for listening is shown in figure 4.8.
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Fig. 4.8 State diagram for listening to the initialization request.

When the response block detects the initialization sequence, it acknowledges the start-up procedure by toggling
the reboot pin ten times. After a short delay, the response block starts a timer which is reset every time the
onboard-computer failure signal is toggled. In case this timer exceeds 1500 ms, an onboard-computer failure is
identified. The response block can be configured via universal asynchronous receiver-transmitter (UART) using
the programmer connector. This allows adjusting parameter values such as the return to launch timer and the
hard reset timer.
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4.4 Control block

The third component of the safety layer is the control block. This is the component that translates an instruction
by the response block to an appropriate sequence of control actions. This can be a large set of control actions,
involving a continuous stream of sensor data on the input (return to launch or maintain location). Alternatively,
it can be a single toggle of an output (reset onboard computer). The control block is responsible for producing
instructions for the next actions: return to launch, reset onboard computer and remain in current location.

4.4.1 Design

The safety layer can produce PWM and PPM control signals. Depending on the configuration, one of these
will be produced. The location of a mobile robot is required for maintaining the current location or returning
to launch. This is done using a GPS sensor and a compass. The GPS sensor first captures the location to
maintain. Then, the sensor monitors its current location. The safety layer constantly determines the direction
and distance to the captured location. The compass measures the current heading of the mobile robot. With
these sensor values, the safety layer determines which control signals are needed to move to the desired
location. Rovers use encoder data from their motors to maintain their location. By reading encoder data
when the mobile robot must maintain its current location, any unwanted movement due to slopes is detected.
This unwanted movement can be directly compensated by producing control signals. When a reset of the
onboard computer is requested, the control layer will first attempt a reboot. If this is unsuccessful after the
hard_reset_timer has timed out, a hard reset will be attempted. The procedure for resetting the onboard
computer is mobile robot type independent. The safety layer records the mobile robot’s path by capturing
and storing waypoints (location data) every five seconds. These waypoints are used when the control layer
receives the command to return to launch. Then, the path home must be calculated. The stored waypoints will
be reversely inserted and will lead the mobile robot back to the launch location. When the mobile robot is a
flying mobile robot, the altitude should be included. When the flying mobile robot is home, it can descent and
power off. For rovers, the altitude does not have to be considered. Before deploying a mobile robot, the opera-
tor can configure parameters such as the hard_reset_timer value. Configuring is done within the response block.

The control block with its inputs and outputs is shown in figure 4.9. Most inputs are binary: return to launch,
reset onboard computer and maintain location. The remaining inputs are the GPS sensor data, compass sensor
data, and encoder data. The outputs of the control block are the control signals and the binary takeover, reboot
and hard reset signals.
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Fig. 4.9 Control block.

4.4.2 Implementation

The control block is implemented in VHDL on the external FPGA. It has inputs from the response block and
the sensors and encoders. The outputs go to the onboard computer and the multiplexer block. The control block
produces control signals (PWM or PPM) depending on the instructions from the response block and sensor
data. The control block reads the compass using an inter-integrated circuit (I2C) bus and the GPS using UART.
With the sensor information and the desired response, the control signals are produced. The GPS sensor has
electrically erasable programmable read-only memory (EEPROM) memory to allow quick start-up. This lowers
the initialization time from 60 seconds to one second, provided that the power supply is not interrupted. The
VHDL implementation of the control block instantiates a GPS entity, a compass entity, a PWM entity and a
PPM entity. These entities are described in separate VHDL files. In the GPS entity, raw data from the GPS
sensor is decoded. A raw data sample is shown in figure 4.10. VHDL logic checks the sentence type and the
term count, identified by separators. The entity extracts the safety layer’s latitude from the global positioning
system fix data (GPGGA) sentence, term two and the longitude from sentence GPGGA, term four. Other data
such as altitude and satellite count are also extracted.

Fig. 4.10 Raw UART data from the GPS sensor, to be decoded by the control block.
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The implementation is not complete; the compass and PPM entities are currently not implemented. The
implementation of these entities is not necessary for a feasibility research. The return to launch command is
not implemented and is considered as interesting for future work. The reboot command must be triggered
on the onboard computer when the control block requests a reboot. This is currently implemented within the
detection block. A thread is implemented which monitors the reboot output and triggers the reboot command,
os.system(’reboot’), when requested. This is the safe method to reboot the onboard computer. The hard reset is
done by pulling the run pin down (set to 0; ground) on the Raspberry Pi for one second. When the pin is pulled
back up to 3.3V, the hard reset is performed.

4.5 Multiplexer

The final component of the safety layer is the multiplexer. The multiplexer receives two streams of control
signals: one from the onboard computer and one from the control block. Once the safety layer has detected
any onboard failure, the multiplexer will propagate the safety layer’s control signals instead of the onboard
computer’s control signals.

4.5.1 Design

When the takeover is 0, the multiplexer will propagate the onboard computer control signals. When the control
block’s takeover is 1, the multiplexer will propagate the safety layer control signals instead. To tackle the
phase difference between the two streams of control signals, the multiplexer reads the control signals from the
onboard computer. Subsequently, it reproduces them in phase with the control signals from the safety layer.
This introduces a delay of at most 20 ms when the control signal frequency is 50 Hz.

The multiplexer block with its three inputs and one output is shown in figure 4.11. The block has two control
signals inputs; one from the safety layer and one from the onboard computer. The third input is the binary
takeover from the control block. The only output is the control signals output.

safety layer control signals

onboard computer control signals

control signals

takeover

MUX

1

0

Fig. 4.11 Multiplexer.



4.6 Safety layer 45

4.5.2 Implementation

The multiplexer is implemented on the external FPGA. It switches between control signals depending on the
take_over input from the control block. When the takeover is 0, the control signals from the onboard computer
are propagated. If the takeover is 1, the control signals from the safety layer are propagated. The control signals
from the onboard computer are read and reproduced such that they are in phase with the safety layer’s control
signals. This prevents motor controller errors when switching.

4.6 Safety layer

The safety layer is formed using the detection block, the response block, the control block, the multiplexer,
the compass and the GPS sensor. Additionally, the GPS sensor has EEPROM memory. The safety layer is
implemented using a PCB shield to integrate the components.

4.6.1 Design

The detection block is located on the onboard computer and contains a watchdog to monitor the status of the
onboard computer. The detection block informs the response block when an onboard-computer failure has
occurred, or a general failure mode is requested. In the latter, the safety layer provides a safe mode for the
onboard computer to solve the failure. The response block, control block, and multiplexer are implemented on
the external FPGA (DE0-Nano with a Cyclone IV chip by Altera). This ensures independence from the onboard
computer, performance, and responsiveness. The safety layer does not have a separate power supply since this
is not necessary. Two sensors are added to support the control block: a GPS and a compass. These are required
to enable navigating to any location. The blocks must be implemented on an FPGA. However, the sensors and
inputs and outputs require additional hardware. Therefore, a shield is designed. The schematic of the shield is
given in Appendix A. The shield also provides a push button for reset and status LEDs, to show the status of
the safety layer. This is useful during testing. The design and a render of the design are shown in figure 4.12.

Fig. 4.12 Safety layer PCB design (left-hand-side) and the PCB design render (right-hand-side).
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The green power LED indicates whether the safety layer is on (LED continuously on), off (LED off) or waiting
for initialization (LED blinking). The red GPS signal lost LED indicates the absence of a GPS fix. The
remaining LEDs are blue. Takeover indicates that the safety layer produces control signals instead of the
onboard computer. Soft reset and hard reset indicate the reset method. return to launch indicates that the safety
layer is trying to return to the launch location. maintain location indicates that the safety layer tries to keep the
mobile robot at its current location. Onboard failure and general failure indicate an onboard-computer failure
and a request for the general failure mode, respectively. The programmer connector is used to program the
timer values for the response block. The onboard connector must be connected to the onboard computer. The
pins include the general failure mode request and onboard computer status inputs, as well as the reboot and hard
reset outputs. The control in and control out connectors can be used to connect up to four motor controllers on
input and output. The push button is designed to be used for reset and setting the launch location.

4.6.2 Implementation

The safety layer components are implemented. The NEO6M GPS module is a plug-and-play GPS system. It
calculates the position information of the system and transmits the results using UART. The control block reads
and decodes this raw data using a UART receiver. The MAG3110 is a plug-and-play compass, communicating
over I2C. The control block also reads and decodes this data. The programmer connection is a UART interface.
It is used to configure the response of the safety layer. In the top of the safety layer, there is an optional
connector for the MAG3110 breakout board. The breakout board provides a soldered solution, which makes
soldering much easier, as the pins are much larger. The implemented safety layer is shown in figure 4.13.

Fig. 4.13 Implementation of the safety layer PCB.

The safety layer is positioned between the onboard computer and the motor controllers and encoders. The
detection block – also part of the safety layer – is implemented on the onboard computer. The location of the
safety layer in a mobile robot is seen in figure 4.14. This is also the implementation that will be used for testing
the safety layer. The lightweight Raspberry Pi is suitable for this. When the testing is complete, the safety layer
can be implemented on any mobile robot using any onboard computer.
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Fig. 4.14 Implementation overview. Non-dashed boxes represent safety layer components.

The safety layer was meant to be implemented on a mobile robot at RaM at the University of Twente. This
mobile robot was unfortunately delivered late, so this was not done. However, the mobile robot can still be
included for the remainder of the research. The mobile robot is a rover with a maximum speed of 7 km/h. This
means the mobile robot can travel at most 2.9 meters during the detection delay (1.5 seconds). The rover’s
encoders are used as input data for the safety layer. Inside the body of the rover, the electronics are located. A
Jetson TX2 developed by Nvidia is implemented as the onboard computer. The safety layer is implemented on
the left-hand side of the body. The detection block can be implemented on the Jetson TX2. The mobile robot,
the implemented safety layer and the onboard computer are shown in figure 4.15.
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Fig. 4.15 Mobile robot at University of Twente with implemented safety layer.

By implementing the possibility to request a general failure mode on the safety layer, a framework has effectively
been designed. The framework includes protection against onboard-computer failures by default. Logic to
solve other onboard failures can be added to the onboard computer, utilizing the ability to request a general
failure mode to the safety layer.
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In the test setup, a Raspberry Pi is used as onboard computer. A motor controller and a motor are used to test
the output signals of the safety layer. For a feasibility test, implementing the safety layer on a mobile robot is
not necessary. The mobile robot at the University of Twente was not delivered in time to be used for testing.

5.1 Component testing

Every block is tested to verify whether it functions as expected. The control block’s advanced functionalities
(producing control signals using sensor data) are recommended future work. For this feasibility research these
functionalities were not implemented.

5.1.1 Detection block

The detection block is tested using the safety layer and the Raspberry Pi. A functional detection block can
perform the handshake, detect onboard-computer failures, and can request the general failure mode. The
handshake procedure with the external FPGA is tested first. The watchdog must not be activated before an
acknowledge of the response block on the external FPGA. This ensures that both blocks are ready and the wires
are properly connected. The response block will only acknowledge the initialization after reset. With the safety
layer ready, the detection block is started by running the Python script. The response block acknowledges the
startup request and the watchdog is started. Next, the test is repeated for a response block that has already been
initialized. This is done by manipulating the response block’s state. This is repeated for a response block that is
turned off. Both situations lead – as expected – to a detection block that keeps waiting for the acknowledge
and does not activate its watchdog. This confirms that the safety layer only activates when the connections
and the blocks are functional. The next tests are all performed on an initialized safety layer. The watchdog
is tested to verify it’s detection capabilities. The watchdog monitors memory load, CPU temperature, and
internal processes. Any unsatisfactory check must result in the identification of an onboard-computer failure.
The control process is stopped first. The safety layer detects this and takes over control. This is repeated for
the video process. The watchdog is successful in detecting these faults. To simulate an unresponsive detection
block or onboard computer, the detection block is stopped. This too must be detected by the safety layer. The
safety layer successfully identifies the failure, which confirms that an unresponsive detection block or onboard
computer is detected. To simulate any failure that makes the onboard computer fail, a fork bomb is triggered.
As expected, this is detected by the safety layer due to the internal checks. At any time, the safety layer must
not introduce false positives as they impact normal behavior of the mobile robot. This is tested by triggering a
high load on the onboard computer. In reality this could be high definition image processing or another peak in
computational load. This peak is triggered in the test by requesting 20 instances of Chromium; a web browser
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for Raspbian. Any other peak in computational load would also suffice for this test. Disconnecting the outputs
of the detection block must be detected as onboard-computer failure by the response block. This ensures that the
safety layer detects the disconnection and does not allow normal operations when onboard-computer failures
cannot be detected. In the tests, the cables are disconnected which results in the response block identifying an
onboard-computer failure. The general failure mode request is tested to ensure that any process can successfully
request it when required. The request is tested using a dummy process that toggles the output depending
on keyboard input. The test results are positive for both requesting the mode and cancelling the request. A
summary of the detection block’s test results is given in table 5.1.

Table 5.1 Detection block testing.

Test action Expected response Satisfactory?

Start the detection block,

safety layer ready
Detection block and safety layer online Yes

Start the detection block,

safety layer not ready
Detection block and safety layer offline Yes

Stop the control process Onboard-computer failure identified Yes

Stop the video process Onboard-computer failure identified Yes

Stop the detection block Onboard-computer failure identified Yes

Insert a fork bomb Onboard-computer failure identified Yes

Open 20 instances of Chromium No onboard-computer failure identified Yes

Disconnect the outputs Onboard-computer failure identified Yes

Request general failure mode General failure mode request identified Yes

Cancel general failure mode request No general failure mode request identified Yes

5.1.2 Response block

The response block is tested using the safety layer and a Raspberry Pi. The acknowledge function of the
response block is already tested in the previous section. The responses of the response block are tested using
the safety layer’s LEDs as output. On the input, the detection block triggers failures. During normal operations,
no response must be produced. This is tested to ensure that the safety layer does not interfere with the mobile
robot during normal operations. Next, a general failure mode is requested by the detection block. A dummy
process triggers the request. Cancelling the request must lead to the general failure mode to be canceled. This
is tested to ensure that the mobile robot can continue normal operations after an onboard failure has occurred.
The block’s response to onboard-computer failures is compared to the expected response as shown in the state
diagram from figure 4.6. Using a stopwatch, the timer values for attempting a hard reset and returning to launch
are tested. The response matches the expected response. A summary of the response block’s test results is given
in table 5.2.
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Table 5.2 Response block testing.

Test action Expected response Satisfactory?

No failures No blue LEDs on Yes

Simulate general failure

mode request

Takeover + maintain location + general failure mode

until general failure mode request canceled.
Yes

Simulate onboard-

computer failure

Takeover + maintain location + soft reset +

onboard failure until hard reset timer,

Takeover + maintain location + hard reset +

onboard failure until return to launch timer,

Takeover + return to launch + onboard failure

Yes

5.1.3 Control block

The implemented functionalities of the control block are tested using the safety layer and a Raspberry Pi. In
the tests, the response block triggers responses to which the control block must react. An instruction by the
response block to reset the onboard computer must result in an attempt to perform a reboot. This is essential for
bringing the mobile robot back to normal operations after failures. The reboot is received by the detection block
that runs a thread which listens to the reboot pin. The test concludes that this principle works. When the reboot
is unsuccessful, a hard reset must be attempted. The reboot command is disabled for this test. The hard reset
successfully resets the onboard computer. The test is done to ensure that a reset is eventually performed, even if
a reboot is not successful. The additional tests for the control block include advanced functionalities. These are
not tested as they were not implemented. A summary of the control block’s test results is given in table 5.3.

Table 5.3 Control block testing.

Test action Expected response Satisfactory?

Normal operations
Use GPS + compass + encoders to produce control

signals to maintain location, no takeover.
Not tested

Maintain location
Use GPS + compass + encoders to produce control

signals to maintain location, takeover.
Not tested

Reset onboard computer Reboot, wait for hard reset timer, hard reset Yes

Return to launch
Insert waypoints to return to launch, takeover,

use GPS + compass + encoders to go to waypoints
Not tested

Some additional components of the control block were implemented and tested. The production of PWM
control signals is tested successfully. This is done by producing a sine wave connected to an LED that shows
the sine wave in brightness. The same is repeated for a servo motor and a motor with a motor controller. These
functionalities are necessary for actuating responses such as the maintain location command. Reading the GPS
sensor is implemented but not tested.
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5.1.4 Multiplexer

The multiplexer is tested using the implemented safety layer, an electric motor, a motor controller and a
Raspberry Pi. The Raspberry Pi functions as onboard computer and produces a PWM signal with a duty cycle
of 75%. This signal will be propagated when the takeover is false. The control block will be modified to
produce a PWM signal with a duty cycle of 25%. This is the control signal that will be propagated when
the safety layer has taken over control. For this test, the control block toggles the takeover output every five
seconds, simulating an onboard-computer failure every five seconds, as shown in figure 5.1.

25% duty cycle PWM75% duty cycle PWM

5s 5.04s 5.08s 5.12s

takeover

control
signals

4,96s4,92s4,88s4.84s

Fig. 5.1 Control signal output for multiplexer testing.

To ensure no motor controller failures are introduced, the toggle frequency is high; one toggle every five seconds.
A motor controller for the electric motor is connected to the control signals output of the multiplexer. The result
must be a motor spinning at 25% and 75% throttle every five seconds. A summary of the multiplexer’s test
results is given in table 5.4.

Table 5.4 Multiplexer testing.

Test action Expected response Satisfactory?

No takeover Propagate onboard computer control signals (75% duty cycle) Yes

Takeover Propagate safety layer control signals (25% duty cycle) Yes

5.2 Endurance test

The two most important performance indicators of the safety layer are the number of false positives and false
negatives per unit time. False positives and false negatives decrease deterministic behavior. A test is set up
that determines the number of false positives and false negatives per unit time. Over a period of 25 hours, 50
onboard-computer failures are triggered using a scheduler. This results in two onboard-computer failures every
hour. The safety layer is slightly modified to show the amount of detected onboard-computer failures on its
LEDs. In case it counts less than 50 failures, false negatives are introduced. In case the safety layer detects
more than 50 failures, false positives are introduced. The onboard-computer failures are triggered using a fork
bomb.
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Crontab is a script execution scheduler, shown in figure 5.2. In this test, Crontab schedules the execution of
a dummy control process, a dummy video process and a detection block upon startup of the system. Since
a system reboot takes about 40 seconds, roughly 29 minutes after startup, the fork bomb must be triggered.
The crash_process.py script is responsible for this and starts with a delay of 29 minutes and 20 seconds such
that it can be executed directly after startup. Crontab also allows script scheduling based on the system time,
which can simplify the scheduling. However, the Raspberry Pi used in the tests does not maintain system
time after a hard reset. Since the system time is inaccurate after a hard reset, only the @reboot command is used.

Fig. 5.2 Screenshot of the Crontab script scheduler.

The results of the endurance test are positive. In 25 hours, 50 onboard-computer failures were identified by
the safety layer. This means no false positives and no false negatives are introduced for at least 25 hours of
operations. This also ratifies the watchdog timeout of 1.5 seconds as no false positives were introduced during
25 hours of operations. In these 25 hours, all internal test cycles (roughly 58,000) are performed in time.
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The safety layer has been tested for its basic functionalities. The results are satisfactory: quick detection (at
most 1.5 seconds), and no false positives nor false negatives in 25 continuous hours of testing. The safety layer
is capable of resetting the onboard computer using two methods. No reset has been unsuccessful during the 50
failures of the endurance test. The safety layer is successful in taking over control of the onboard computer
without causing motor controller failures. This chapter describes the estimated increase in deterministic
behavior of mobile robots after adding the safety layer.

6.1 Consequence probabilities

State diagrams are used to describe the probabilities. A sample state diagram is shown in figure 6.1, in which
every fault has a probability of occurrence per deployment: P. A failure can be caused by several faults. Barriers
can prevent the fault from causing a failure. The barriers can consist of input signal validation, operators
checking weather conditions, et cetera. Barriers are given a blocking factor Π. A high blocking factor, for
example Π(A → B) = 0.8, means that in 80% of the occurrences, A is blocked from transitioning to B. A
barrier with Π(C → D) = 0.0 means there is no barrier to block the state transition. When the barrier blocks
a transition, normal operations continue. Once a failure occurred, the safety layer forms the last barrier (Πs)
before consequences can occur. The distribution of the consequences is shown on the transition line. Their sum
must be one.

Consequence A
Cause A

Cause B

1/4

3/4

Failure A

Π = 0.8

Π = 0.0 

Πs = 0.7

P=1/500

P=1/2

Consequence B

Deterministic Non-deterministic

Fig. 6.1 Sample state diagram.

Every failure is mapped into a state diagram with its barriers. Using estimations, the state diagrams are provided
with P, Π, Πs, and the consequence distribution, which allows quantifying the impact of the safety layer to
deterministic behavior of mobile robots.
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6.1.1 Onboard-computer failures

The state diagram in figure 6.2 describes the probability of negative consequences due to onboard-computer
failures. Onboard-computer failures can be caused by programming errors, electrical interference or hardware
failures. On average code contains 15 to 50 bugs per 1000 lines of code [20]. I assume that control software
contains roughly 5000 lines of code, which results in roughly 75 to 250 bugs per mobile robot. I assume
0.5% of the bugs can cause an onboard-computer failure. This results in an 80% probability (P = 4/5) of
programming errors to cause an onboard-computer failure per deployment. I assume that once every 100
deployments, the electrical interference is problematically high. This could be missions close to power lines,
transformers or other high voltage equipment. Deployment of a mobile robot close to this such equipment
is possible, though unlikely. Hardware failures are unlikely as suppliers of hardware perform tests subject to
standards and certificates. Therefore, I estimate that hardware failures have a probability of one every 1000
deployments. I estimate the probability of unknown faults causing an onboard-computer failure at one failure
every 500 deployments. A programming error is likely to be blocked because of testing for emergency robots.
Therefore, the blocking factor is estimated at Π = 0.95. Hardware failures are blocked with Π = 0.1 as barely
any hardware has duplicates or backup logic. Protection against electrical interference is estimated at Π = 0.8
since all equipment has to pass strict tests for electromagnetic compatibility (EMC). The structural body of a
mobile robot also helps to prevent electrical interference. Unknown causes can by definition not have safety
barriers. Hence, Π = 0.0. The consequences of onboard-computer failures are severe, damage to the robot
or its environment is a likely consequence. During covert operations, exposing the mission is also a likely
consequence. Therefore, both consequences are estimated at 3/8. Injuries to people is estimated at 1/8 because
the maximum speed of the mobile robot is 7 km/h, which gives people time to react to the rover failure. In the
remaining 1/8, the consequences are limited to undermined trust by emergency services. In the endurance test,
100% of the onboard-computer failures were intercepted from causing consequences. I pessimistically estimate
the blocking factor of the safety layer at 30% lower, Πs = 0.7.

Expose missionDamage to robot or
environment

Injuries to peopleUndermined trust
Programming

errors

Electrical
interference
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failures Unknown

1/8 1/8
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computer
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Π = 0.8 
Π = 0.95 

Π = 0.1 

P=1/1000

P=4/5
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P=1/100

Πs = 0.7 

Fig. 6.2 State diagram for onboard-computer failures.
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6.1.2 Motor controller failures

The state diagram in figure 6.3 describes the probability of negative consequences due to motor controller fail-
ures. Motor controller failures can be caused by component failures, vibration or incorrect inputs. Component
failures are unlikely, the production of components is subject to testing with standards and certificates that
ensure the quality of the components. However, components wear down and might therefore fail. I estimate
the probability of a component failure at one occurrence every 1000 deployments. Vibration can disconnect
components or make unwanted connections, this probability is estimated at one occurrence every 1000 de-
ployments too. An incorrect input to the motor controller is more likely and is estimated at one occurrence
every 100 deployments. I estimate the probability of unknown faults causing motor controller failures at one
failure every 100 deployments. Component failure and vibration failure do not have barriers as protection is
generally not implemented. Hence, Π = 0.0 for both. A wrong input for the motor controller is usually caught
by the producer side (onboard computer) or by the receiver side (the motor controller). Hence, an estimation
of Π = 0.9 seems reasonable. Unknown causes can by definition not have safety barriers. Hence, Π = 0.0. I
estimated that a motor controller failure is unlikely to result in damage to the robot or its environment. A motor
controller failure will likely stop the mobile robot. If not, this mobile robot’s maximum speed is 7 km/h which
is unlikely to do any damage. Injuries to people is very unlikely, regarding the effect of a motor controller
failure and the maximum speed of the mobile robot. Hence, both are unlikely but possible: 1/8. I estimated
that in 3 out of 8 consequences, the mission is exposed due to random movement of the robot. In the remaining
3/8, the consequences are limited to undermined trust by emergency services. If implemented, the onboard
computer handler can use the general failure mode to solve the motor controller failure. Flying mobile robots
with less than five propellers will not be fixable. With these factors taken into account, I pessimistically estimate
the blocking factor of the safety layer at Πs = 0.2.
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Fig. 6.3 State diagram for motor controller failures.
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6.1.3 Incorrect output

The state diagram in figure 6.4 describes the probability of negative consequences due to incorrect output. An
incorrect output by the onboard computer can be caused by a bug in the onboard computer or by an incorrect
input to the onboard computer. As calculated in section 6.1.1, the onboard computer encounters 75 to 250 bugs
per deployment. I assume 0.5% of the bugs can cause an incorrect output. This results in an 80% probability
(P = 4/5) of an incorrect output due to a bug in the onboard computer for one deployment. I assume that the
probability of a bug in the controller software, leading to an incorrect input, is equal to the probability of a bug
in the onboard computer. With the same estimations this results in P = 4/5 too. I estimate the probability of
unknown faults causing an incorrect output at one failure every 500 deployments. Assuming extensive testing
of control software, the blocking factor after bugs can be estimated at Π = 0.8. An incorrect input to the mobile
robot is likely to be blocked because of sophisticated checks in both the transmitter and the receiver. Therefore,
the blocking factor is estimated at Π = 0.95. Unknown causes can by definition not have safety barriers. Hence,
Π = 0.0. The consequences of an incorrect output are moderate, damage to the robot or its environment can
occur after arbitrary control signals. However, the maximum speed is only 7 km/h which is unlikely to do
serious damage. Hence, P = 1/8. During covert operations, exposing the mission is a likely consequence as
random movement can expose the mission. Therefore, the consequence is estimated at 3/8. Injuries to people
is estimated at 1/8 because the maximum speed of the mobile robot is 7 km/h, which gives people time to react
to the rover’s random behavior. In the remaining 3/8, the consequences are limited to undermined trust by
emergency services. Implementing the safety barrier is complex because of the necessary output validation on
the onboard computer. Once implemented, output validation has to be done, which is not always successful.
Therefore, I pessimistically estimate the blocking factor of the safety layer at Πs = 0.1.
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Fig. 6.4 State diagram for incorrect output.
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6.1.4 Network connection errors

The state diagram in figure 6.5 describes the probability of negative consequences due to network connection
errors. Network connection errors can be caused by the mobile robot to be out of range, experience interference
or experience a blocked signal. A mobile robot is easily out of range. I estimate this to occur once every
two deployments when no barriers are added. Naturally, the operator will be a strong barrier for preventing
this. Interference or noise can cause network connection errors. I estimate this at one occurrence every 50
deployments. By estimation, 10% of the deployments will be indoors. Since the Netherlands has little rough
terrain, I assume that no interference will occur because of the terrain. Combined, I estimate that once every 10
deployments, the signal is blocked. I estimate the probability of unknown faults causing an network connection
errors at one failure every 100 deployments. Interference on the network can be filtered or minimized. However,
this is complex and not always implemented. Therefore, a careful estimation of Π = 0.1 seems reasonable.
Operators are trained to maneuver mobile robots indoors. The impact of this on the network connection is not
always clear. However, operators will take this into account. The operator’s experience is also a factor in this
probability. Altogether, the blocking factor is estimated at Π = 0.6. An operator will almost always prevent a
mobile robot from being out of range, since the operator known the range and applies a safety margin. It is a
safe assumption that 90% of the operators will prevent this from happening. Unknown causes can by definition
not have safety barriers. Hence, Π = 0.0. The consequences of a network connection error are moderate.
During covert operations, exposing the mission due to random movement is a likely consequence. Therefore, it
is estimated at 3/8. Injuries to people and damage to the robot or its surroundings are both estimated at 1/8
because the maximum speed of the mobile robot is 7 km/h, which restricts the damage and gives people time to
react to the rover’s random behavior. In the remaining 3/8, the consequences are limited to undermined trust
by emergency services. Solving network connection errors is commonly implemented due to the available
reference material. I assume it will be implemented on the rover with the general failure mode request. I assume
that 30% of the network connection errors will not be detected and solved. Therefore, Πs = 0.7.
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Fig. 6.5 State diagram for network connection errors.
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6.1.5 Battery failures

The state diagram in figure 6.6 describes the probability of negative consequences due to battery failures.
Battery failures can be caused by an expired lifetime of the battery, extreme heat or damage. A Li-ion battery
is used. Typically, these batteries have 300 to 500 charge cycles [21]. One mission generally requires one
charge cycle. Hence, I assumed one battery failure every 400 deployments due to aging. Overheating the
battery is another fault. The maximum temperature of a battery is 60 °C [21]. I estimate that roughly one
in three missions are for firefighter operations (the largest risk operations), and that once every 15 firefighter
deployments the maximum temperature is exceeded. This results in P = 1/3∗1/15 = 1/45 for the probability
of overheating. Damage to a battery is estimated at one occurrence every 20 deployments. This number is
relatively high because deployments also include usage by firefighters. I estimate the probability of unknown
faults causing battery failures at one failure every 1000 deployments. Technicians sometimes keep track of
the number of charge cycles of a battery. Visual inspections can be performed too. I estimate that this blocks
90% of the battery failures due to aging. The housing of mobile robots forms a safety barrier for preventing the
battery to be overheated. I estimate that in 50% of the cases, this protection is sufficient. The same housing will
prevent damage to be done to the battery. Preventing damage is less complex than preventing overheat. Hence,
the blocking factor is higher: Π = 0.8. Unknown causes can by definition not have safety barriers. Hence,
Π = 0.0. A failure of the battery means the mobile robot will stop moving. This means damage to the robot or
its environment are excluded as consequence. They are both 0/8. I estimate that a rover that cannot move will
expose covert missions in half of the deployments: 4/8. In the remaining 4/8, the consequences are limited to
undermined trust by emergency services. In the current setup, a battery failure disables the mobile robot and
the safety layer. Therefore, the consequences cannot be prevented and the blocking factor Πs is set to 0.0.
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Fig. 6.6 State diagram for battery failures.
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6.1.6 Multiple controllers

The state diagram in figure 6.7 describes the probability of negative consequences due to multiple controllers
controlling the same mobile robot. Multiple controllers controlling the same mobile robot can be caused by a
bug in the multi-robot system or a bug in the onboard computer. As calculated in section 6.1.1, the onboard
computer encounters 75 to 250 bugs per deployment. I assume 0.1% of the bugs can cause multiple controllers
to be controlling the same mobile robot. This results in a 16% probability per deployment (P = 1/6) of a bug
in the multi-robot system causing multiple controllers on one mobile robot, which seems a bit high. However,
a careful estimation is recommended. It is estimated that the probability of a bug in the multi-robot system
is equal to the probability of a bug on the onboard computer. This results in P = 1/6 too. I estimate the
probability of unknown faults causing multiple controllers to be linked to the same mobile robot at one failure
every 500 deployments. Bugs can occur in control software. Assuming extensive testing, the blocking factor
can be estimated at Π = 0.8. For the multi-robot system, this is estimated at Π = 0.5 since it is not as widely
used as control software. Unknown causes can by definition not have safety barriers. Hence, Π = 0.0. The
consequences of multiple controllers linked to the rover are moderate. During covert operations, exposing the
mission is a likely consequence. Therefore, it is estimated at 3/8. Injuries to people and damage to the robot or
its surroundings are both estimated at 1/8 because the maximum speed of the mobile robot is 7 km/h, which
restricts the damage and gives people time to react to the rover’s random behavior. In the remaining 3/8, the
consequences are limited to undermined trust by emergency services. Since not many mobile robots operate
in a multi-robot environment, reference material is scarce. Therefore, I estimate that detecting the failure is
complex. I estimate the blocking factor at Πs = 0.4.
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Fig. 6.7 State diagram for multiple controllers.
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6.2 Impact on deterministic behavior

With these estimations, the probabilities for negative consequences can be calculated. To find the probability of
consequence k occurring, all paths leading to the consequence must be considered. The consequence probability
p(k) is calculated by multiplying the probability of failure h leading to the consequence k; P(h → k), with
the failure probability. The failure probability is found by multiplying the probability of fault g; P(g), with
the probability of reaching the failure, for every fault. The probability of reaching the failure depends on the
blocking factor Π, which has a probability of 1−Π of reaching the next state. The summation of all paths that
lead to this consequence yields the consequence probability, as show in equation 6.1.

p(k) =
H−1

∑
h=0

P(h → k)∗
G−1

∑
g=0

P(g)∗ (1−Π(g → h)) (6.1)

With a safety layer added to the mobile robot, an extra barrier Πs is introduced. The effect on p(k) is a factor
1−Πs(h → k). The consequence probability is then recalculated using equation 6.2.

p(k) =
H−1

∑
h=0

P(h → k)∗ (1−Πs(h → k))∗
G−1

∑
g=0

P(g)∗ (1−Π(g → h)) (6.2)

For every consequence, this calculation is done. The calculations are shown in Appendix B and the results are
shown in table 6.1. Without a safety layer implemented to the mobile robot, the total probability of negative
consequences is 43.2%, as calculated in equation 6.3.

p(consequences) = [1− (1−0.186)∗ (1−0.073)∗ (1−0.197)∗ (1−0.062)]≈ 0.432 (6.3)

When the safety layer is implemented, the total probability of negative consequences occurring is reduced to
29.8% as shown in equation 6.4.

p(consequences) = [1− (1−0.125)∗ (1−0.042)∗ (1−0.128)∗ (1−0.039)]≈ 0.298 (6.4)

These two numbers are added to table 6.1 in the bottom row, indicated by the probability of any negative
consequence occurring; p(k1|k2|k3|k4).

Table 6.1 Probabilities of negative consequences with and without implementing a safety layer.

Without

safety layer

With

safety layer

Undermined trust 18.6% 12.5%

Damage to mobile robot

or environment
7.3% 4.2%

Expose mission 19.7% 12.8%

Injuries to people 6.2% 3.9%

p(k1|k2|k3|k4) 43.2% 29.8%
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Next, the improvement must be calculated for every consequence k. This is done by dividing the difference
over the initial probability and yields the relative improvement. The probability of undermined trust is reduced
with 32.9%.

12.5%−18.6%
18.6%

≈−32.9% (6.5)

The probability of damage to the mobile robot or its environment is reduced with 42.4%.

4.2%−7.3%
7.3%

≈−42.4% (6.6)

The probability of exposing the mission is decreased by 35.0%.

12.8%−19.7%
19.7%

≈−35.0% (6.7)

The probability of injuries to people is reduced with 37.1%.

3.9%−6.2%
6.2%

≈−37.1% (6.8)

The effect on the deterministic behavior of this reduction of negative consequences is now determined. It is
assumed that in all states before the safety barrier, deterministic behavior is shown. Once the safety layer
did not block the transition to a consequence state, non-deterministic behavior occurs. This means that the
probability negative consequences is equal to the probability of non-deterministic behavior. Deterministic
behavior is the inverse of non-deterministic behavior. Therefore, the probability of deterministic behavior is
increased from 100% - 43.2% = 56.8% to 100% - 29.8% = 70.2%, as shown in figure 6.8. The improvement is
23.6%, as calculated in equation 6.9.

70.2%−56.8%
56.8%

≈ 23.6% (6.9)

Without safety layer

Non-deterministic behavior

Deterministic behavior
With safety layer

  56.8% 70.2% 

Fig. 6.8 Effect of implementing a safety layer on the probability of deterministic behavior per deployment.





7 | Discussion

We wanted to research how a safety layer can increase deterministic behavior of mobile robots. A safety layer
is designed that mitigates onboard failures, instead of trying to prevent them. The effect of the safety layer on
the deterministic behavior of the mobile robot is determined by estimations. The results, shown in table 6.1, are
discussed next.

Regardless of the safety layer, the probabilities of injuries to people and damage to the mobile robot or its
environment are significantly smaller than the remaining probabilities. This can be explained by the mobile
robot type. It is a rover operating on land, with a maximum speed of 7 km/h. This is less likely to do damage or
cause injuries. The biggest reduction in probabilities of negative consequences is the probability of damage to
the mobile robot or its environment (42.4% reduction). Next are the probabilities of injuries to people (37.1%
reduction) and the probability of exposing the mission (35.0% reduction). The probability of undermined trust
(32.9% reduction) is the smallest reduction. There does not seem to be a trend in which negative consequence
probability is most decreased. This can be explained by the fact that the safety layer adds an additional barrier,
effectively multiplying the probabilities with a certain factor. The impact of this reduction on deterministic
behavior is determined. In this process I assumed that all states up to the barrier of the safety layer show
deterministic behavior, as either the onboard computer or the safety layer has control over the mobile robot. All
states after this point are assumed to show non-deterministic behavior, as no entity controls the mobile robot.
This simplification could make the calculation inaccurate. A state can behave deterministically even though it
is a negative consequence state, and vice versa.

Without implementing a safety layer, the mobile robot has a 56.8% probability of deterministic behavior per
deployment. When the safety layer is implemented, the probability of deterministic behavior per deployment is
improved to 70.2%. This is an improvement of 23.6%, which means an increase in deterministic behavior of
the mobile robot is realized.





8 | Conclusion

Currently, many safety barriers are already implemented on mobile robots that try to prevent non-deterministic
behavior. The safety barriers are mostly aimed towards preventing onboard failures. Examples are voltage
stabilizers, input signal validation and exception handlers for programming errors. However, not all failures can
be prevented by safety barriers. In this thesis I will research how to design a safety layer that mitigates failures
on mobile robots and how this can improve the mobile robot’s deterministic behavior. Hence, the research
question: How to increase deterministic behavior of mobile robots by adding a safety layer?

What are common threats to deterministic behavior? Common threats to deterministic behavior are onboard
failures, such as onboard-computer failures, motor controller failures, network connection errors, battery
failures, multiple controllers liked to a mobile robot and an incorrect output, triggering non-deterministic
behavior. How can threats best be detected? Detection of failures can best be done using a watchdog, requiring
only one implementation location and one output pin. Setting the watchdog timeout to 1.5 seconds leads
to quick detection without introducing false positives. A heartbeat process can only be used for detecting
onboard-computer failures when it is implemented in every independent process on the onboard computer.
Other detection methods were unsatisfactory. What is the appropriate response to failures? An appropriate
response to onboard-computer failures is to initially keep the mobile robot in its current location. Then, a reboot
of the onboard computer must be attempted. If unsuccessful, a hard reset must be attempted. If this too is
unsuccessful, returning to the launch location must be attempted. When the general failure mode is requested
by the onboard computer, the safety layer must keep the mobile robot in its current location until the request
is canceled. How can the responses best be effectuated? Effectuating the responses can best be done by a
stand-alone safety layer, ensuring independence from the onboard computer. Independence from the onboard
computer is necessary for guaranteeing a deterministic response of the mobile robot during failures. The
main part of the safety layer is implemented on an external FPGA which ensures performance, responsiveness
and independence from the onboard computer. The watchdog used for detection is located on the onboard
computer to ensure detecting onboard-computer failures timely and effectively. A request for the general failure
mode allows the onboard computer to solve the remaining onboard failures, while the safety layer ensures
deterministic behavior for the duration of the request. With this general failure mode, the safety layer forms a
framework for all barriers preventing or mitigating failures.

An increase in deterministic behavior is realized by implementing a stand-alone safety layer with a watchdog
detecting onboard failures. The estimation shows that the safety layer increases the deterministic behavior by
23.6% for the mobile robot at the University of Twente. The safety layer is tested for 25 continuous hours, in
which a failure was introduced every 30 minutes. The safety layer caught all failures and resolved them without
false positives or false negatives.





9 | Future work

During the research, some recommendations for future work emerged. Most are not done in this research due to
time limitations.

• The estimations in the results are not verified. I recommend to verify the outcome of this research as
future work.

• A mismatch between the operator’s expected response and the mobile robot’s response implies non-
deterministic behavior. This behavior occurs after onboard failures but can also occur after other events,
such as control commands. This research only considers non-deterministic behavior after onboard
failures. I recommend to research which other events lead to non-deterministic behavior.

• The advanced functionalities (return to launch and maintain location) of the control block are not
implemented and are considered future work before the safety layer can be implemented on any mobile
robot.

• The safety layer reads and reproduces control signals from the onboard computer. This introduces latency
(generally 20 ms) between control commands and control signals, which can negatively impact the
maneuverability of the mobile robot. The impact of this delay must be researched and alternatives must
be found in case the impact is unacceptable.

• Only four negative consequences were identified in this research. There likely are more negative
consequences. This can impact the results of this research. As future work I recommend identifying
more negative consequences and recalculating the effect of the safety layer on mobile robots.
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74 Safety layer PCB schematic

A | Safety layer PCB schematic



B | Consequence probabilities

The calculations provide data to table 6.1. Consequence k∈ [UT,D,EM, I] failure h∈ [OCF,MCF, IO,NCE,BF,MC],
fault g. For the consequences, UT = undermined trust, D = damage, EM = expose mission, I = injuries. For
the failures, OCF = onboard-computer failure, MCF = motor controller failure, IO = incorrect output, NCE =
network connection error, BF = battery failure, MC = multiple controllers.

P(k) without safety layer

p(k) =
H−1

∑
h=0

p(h)∗ p(h → k)

p(UT ) = 1/8∗ p(OCF)+3/8∗ p(MCF)+3/8∗ p(IO)+3/8∗ p(NCE)+4/8∗ p(BF)+3/8∗ p(MC)

p(I) = 1/8∗ p(OCF)+1/8∗ p(MCF)+1/8∗ p(IO)+1/8∗ p(NCE)+0/8∗ p(BF)+1/8∗ p(MC)

p(D) = 3/8∗ p(OCF)+1/8∗ p(MCF)+1/8∗ p(IO)+1/8∗ p(NCE)+0/8∗ p(BF)+1/8∗ p(MC)

p(EM) = 3/8∗ p(OCF)+3/8∗ p(MCF)+3/8∗ p(IO)+3/8∗ p(NCE)+4/8∗ p(BF)+3/8∗ p(MC)

P(k) with safety layer

p(k) =
H−1

∑
h=0

p(h)∗ p(h → k)∗ (1−Πs(h → k))

p(UT ) = 1/8∗ (1−0.7)∗ p(OCF)+3/8∗ (1−0.2)∗ p(MCF)+3/8∗ (1−0.1)∗ p(IO)+3/8∗ (1−0.7)∗
p(NCE)+4/8∗ (1−0)∗ p(BF)+3/8∗ (1−0.4)∗ p(MC)

p(I) = 1/8∗ (1−0.7)∗ p(OCF)+1/8∗ (1−0.2)∗ p(MCF)+1/8∗ (1−0.1)∗ p(IO)+1/8∗ (1−0.7)∗
p(NCE)+0/8∗ (1−0)∗ p(BF)+1/8∗ (1−0.4)∗ p(MC)

p(D) = 3/8∗ (1−0.7)∗ p(OCF)+1/8∗ (1−0.2)∗ p(MCF)+1/8∗ (1−0.1)∗ p(IO)+1/8∗ (1−0.7)∗
p(NCE)+0/8∗ (1−0)∗ p(BF)+1/8∗ (1−0.4)∗ p(MC)

p(EM) = 3/8∗ (1−0.7)∗ p(OCF)+3/8∗ (1−0.2)∗ p(MCF)+3/8∗ (1−0.1)∗ p(IO)+3/8∗ (1−0.7)∗
p(NCE)+4/8∗ (1−0)∗ p(BF)+3/8∗ (1−0.4)∗ p(MC)
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P(h)

p(h) =
G−1

∑
g=0

p(g)∗ (1−Π(g → h))

p(OCF) = 4/5∗ (1−0.95)+1/100∗ (1−0.8)+1/1000∗ (1−0.1)+1/500∗ (1−0)≈ 0.0449
p(MCF) = 1/1000∗ (1−0)+1/1000∗ (1−0)+1/100∗ (1−0.9)+1/100∗ (1−0) = 0.0130
p(IO) = 4/5∗ (1−0.95)+4/5∗ (1−0.8)+1/500∗ (1−0) = 0.2020
p(NCE) = 1/2∗ (1−0.9)+1/10∗ (1−0.6)+1/50∗ (1−0.1)+1/100∗ (1−0) = 0.1180
p(BF) = 1/400∗ (1−0.9)+1/20∗ (1−0.8)+1/45∗ (1−0.5)+1/1000∗ (1−0)≈ 0.0224
p(MC) = 1/6∗ (1−0.5)+1/6∗ (1−0.8)+1/500∗ (1−0)≈ 0.1187

P(k) without safety layer

p(UT ) = 1/8∗0.0449+3/8∗0.0130+3/8∗0.2020+3/8∗0.1180+4/8∗0.0224+3/8∗0.1187 ≈ 0.186
p(I) = 1/8∗0.0449+1/8∗0.0130+1/8∗0.2020+1/8∗0.1180+0/8∗0.0224+1/8∗0.1187 ≈ 0.062
p(D) = 3/8∗0.0449+1/8∗0.0130+1/8∗0.2020+1/8∗0.1180+0/8∗0.0224+1/8∗0.1187 ≈ 0.073
p(EM) = 3/8∗0.0449+3/8∗0.0130+3/8∗0.2020+3/8∗0.1180+4/8∗0.0224+3/8∗0.1187 ≈ 0.197

P(k) with safety layer

p(UT ) = 1/8∗ (1−0.7)∗0.0449+3/8∗ (1−0.2)∗0.0130+3/8∗ (1−0.1)∗0.2020+3/8∗ (1−0.7)∗0.1180+
4/8∗ (1−0)∗0.0224+3/8∗ (1−0.4)∗0.1187 ≈ 0.125

p(I) = 1/8∗ (1−0.7)∗0.0449+1/8∗ (1−0.2)∗0.0130+1/8∗ (1−0.1)∗0.2020+1/8∗ (1−0.7)∗0.1180+
0/8∗ (1−0)∗0.0224+1/8∗ (1−0.4)∗0.1187 ≈ 0.039

p(D) = 3/8∗ (1−0.7)∗0.0449+1/8∗ (1−0.2)∗0.0130+1/8∗ (1−0.1)∗0.2020+1/8∗ (1−0.7)∗0.1180+
0/8∗ (1−0)∗0.0224+1/8∗ (1−0.4)∗0.1187 ≈ 0.042

p(EM) = 3/8∗ (1−0.7)∗0.0449+3/8∗ (1−0.2)∗0.0130+3/8∗ (1−0.1)∗0.2020+3/8∗ (1−0.7)∗0.1180+
4/8∗ (1−0)∗0.0224+3/8∗ (1−0.4)∗0.1187 ≈ 0.128
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