Sustainability enhancement of the new housing estate Boekhorst

K.H.A van der Spek July 2018

UNIVERSITY OF TWENTE.

Sustainability enhancement of the new housing estate Boekhorst

Final version 1.0

Bachelor Thesis Civil Engineering 22 July, 2018

Author: K.H.A. van der Spek s1738275 k.h.a.vanderspek@student.utwente.nl

Organization: RPS

Supervisor: M. Kwakkelstein mar.kwakkelstein@rps.nl

Second supervisor: H. Gaasbeek MSc heike.gaasbeek@rps.nl

Educational institution: University of Twente

Committee chair: S. Bhochhibhoya PhD s.bhochhibhoya@utwente.nl

Committee member: dr. S.R. Miller s.r.miller@utwente.nl

Cover image: Sketch design Nieuw-Boekhorst, Kokon (2016)

PREFACE

In front of you lies the thesis 'Sustainability enhancement of the new housing estate Boekhorst'. In this thesis different sustainable measures for implementation in spatial design are listed and assessed. This thesis is written in completion of the study Civil Engineering at the University of Twente. The research for this thesis is done at RPS, in association with Kokon. From May 2018 till July 2018, I enjoyed being involved with the research and writing of this thesis. During the time spent at RPS, I learnt a lot about the assessment and implementation of sustainability in spatial design.

For this, I would like to thank several people. First of all, I would like to thank my supervisors. Heike Gaasbeek for her help with the framing of the research design, the suggestions on my thesis and for the explanations and discussions about the ambitionwebtool. Mar Kwakkelstein for giving me the opportunity to start on this topic in a great team and for the inspiring ideas he gave. And last, Silu Bhochhibhoya for the answers on my questions and for the fast and useful comments she gave on the proposal and thesis.

Furthermore, I would like to thank my colleagues for the enjoyable time at RPS. A special thank goes out to Anouk Voorn, Sander de Jong and Joy Bakker for the insights they gave me on sustainable measures and the ambitionwebtool. From Kokon, I would like to thank Raimond Jense for giving me the opportunity to work at their office each Friday and lastly, I want to thank the interviewees for all the ideas and knowledge they shared with me about sustainable measures.

Karly van der Spek Delft, July 2018 Urban developers often struggle with the question on how to implement sustainability in spatial design. They are looking for specific measures that can be implemented. In this thesis sustainable measures are assessed and proposed for implementation in the new housing estate Boekhorst.

The goal of this research is to find achievable measures to implement sustainability in spatial design, with help of the ambitionwebtool. The ambitionwebtool is a model in which different scenarios can be assessed on sustainability. This model contains specific sustainable goals on eight themes: energy, materials, cost and value, space usage, living environment, nature, water and soil. With the help of the sustainable goals, ambitions are set on the themes and requirements are determined.

Based on the research goal, the following research question is composed: *Which measures can be implemented in the spatial design of Boekhorst, so that the sustainable ambitions are met?*

To answer this question, first the ambitions for Boekhorst are inventoried in an interview with the architects of Boekhorst. In this interview three scenarios are created in the ambitionweb: 1) the current sustainability ambitionlevel, 2) the required ambitionlevel and 3) the aimed ambitionlevel. For each theme in the ambitionweb, ambitions and goals are determined.

After the this is done, measures to satisfy these goals and thus these ambitionlevels are looked for in literature and found in interviews. The found measures are assessed in an multi criteria analysis. Based on the multi criteria analysis an overview of the feasibility of measures is given.

The measures that proved to be feasible are coupled to the requirements belonging to the ambitions. This is done in the ambitionwebtool. Here specific goals are set based on the ambitions. The measures that help to meet these goals are coupled to their ambition. The result of this research is a list of measures that can be implemented in the design to meet the set ambitions of scenario 2 and 3.

Per scenario, measures are listed that must be implemented to meet the ambitions belonging to these scenarios. Optional measures are listed per theme in another table. These measures can be implemented when, after followup studies, it appears that the proposed measures do not meet the goals in the ambitionwebtool. Following studies can focus on which or how many of the proposed measures are needed to meet the goals.

Table of contents

List of Figures		
List of Tables		
Table of Abbreviations		
Table of terminology	8	
Table of theme translations	9	
1 Introduction	11	
1.1 Problem definition	11	
1.2 Theoretical framework	12	
1.2.1 The ambitionweb	13	
1.3 Research questions	14	
1.4 Thesis outline	14	
2 Research design	15	
2.1 Research design for sub-question 1	15	
2.2 Research design for sub-question 2	16	
2.2.1 MCA method	17	
2.3 Research design for sub-question 3	18	
3 Ambitions and goals for Boekhorst	20	
3.1 Ambitions for Boekhorst	20	
3.2 Initial development goals for Boekhorst	27	
3.2.1 Needed improvement	27	
4 Sustainable measures for Boekhorst	29	
4.1 Measure inventory And assessment	29	
5 Ambitionwebtool scenarios	44	
5.1 Ambition reflection	44	
5.1.1 Ambitions for each sustainability theme	45	
5.1.2 Ambition change for each scenario	47	
5.2 Ambition scenarios	49	
6 Conclusion	56	
7 Discussion	56	
8 Recommendations	58	
Bibliography	59	
Appendix A. Ambition themes of duurzaam GWW	1	
Appendix B. Clarification research design	2	
Appendix B.1. Sustainable performance indicator definitions	2	
Appendix B.2 MCA method clarification		
Appendix B.2.1. SPI weight determination		
Appendix B.2.2. Scoring the measures		
Appendix B.2.3. Sustainable dimension weight determination		
Appendix B.2.4. Sustainability dimension score		

Appendix	B.2.5. Measures total sustainability score	. 5	
Appendix C.	Ambition comparison for Kokon and municipality	. 6	
Appendix D.	Measures for consideration in buildings	. 8	
Appendix E.	Multi-criteria analysis	11	
Appendix E.	1. MCA conduction for the environmental dimension	11	
Appendix	E.1.1. environmental sPI weight determination	11	
Appendix	E.1.2. Environmental measure MCA score	14	
Appendix E.	2. MCA conduction for the economic dimension	20	
Appendix	E.2.1. Economic SPI weight determination	20	
Appendix	E.2.2. Economic measure MCA score	23	
Appendix E.3. MCA conduction for the social dimension			
Appendix	E.3.1. SPI weight determination	29	
Appendix	E.3.2. Social measure MCA score	32	
Appendix E.	4. Total sustainability evaluation	38	
Appendix	E.4.1. Sustainable dimension weight determination	38	
Appendix	Appendix E.4.2. Measures total sustainability score		
Appendix F.	Influence of measures on sub-themes	44	

LIST OF FIGURES

Figure 1.1 Location of Boekhorst in Voorhout	. 11
Figure 1.2 Spatial design for new build area Boekhorst in Voorhout created by Kokon	. 12
Figure 1.3 ambitionweb as developed by Duurzaam GWW (2018)	. 13
Figure 2.1 Process scheme	. 15
Figure 2.2 The hierarchy of sustainability evaluation criteria with sustainability performance indicators, based	l on
Kamali & Hewage (2015)	. 17
Figure 2.3 A view on the ambitionwebtool	. 19
Figure 3.1 Ambitionweb for boekhorst	. 27
Figure 5.1 Result of the Ambitionwebtool for Boekhorst	44
Figure 5.2 Energy ambitionweb for Boekhorst	45
Figure 5.3 Materials and raw materials ambitionweb for Boekhorst	45
Figure 5.4 Costs and value ambitionweb for Boekhorst	45
Figure 5.5 Space ambitionweb for Boekhorst	46
Figure 5.6 Living environment ambitionweb for Boekhorst	. 46
Figure 5.7 Nature ambitionweb for Boekhorst	46
Figure 5.8 Water ambitionweb for Boekhorst	
Figure 5.9 Soil ambitionweb for Boekhorst	47
Figure B.1 Effect of measure on the indicator	5
Figure C.1 Ambitionlevels of kokon	6
Figure C.2 Ambitions of municipality Teylingen	6
Figure C.3 Required ambitions of kokon and municipality Teylingen	7
Figure C.4 Normative ambition for Boekhorst	8

LIST OF TABLES

Table 3.1 Ambitions for Boekhorst	21
Table 3.2 Needed ambition level improvement	28

	٥
Table 4.2 Measures sorted on MCA score24	
Table 4.3 Division of measures per MCA score4	3
Table 5.1 Comparison ambitionlevels interview and ambitionwebtool scenario 1	7
Table 5.2 Comparison ambitionlevels interview and ambitionwebtool scenario 2	8
Table 5.3 Comparison ambitionlevels interview and ambitionwebtool scenario 3	
Table 5.4 Measures to implement in boekhorst for the scenarios	0
Table 5.5 Measures for when the provided measures do not satisfy the goals	2
Table 5.6 Recommended measures to meet the ambitions	
Table B.1 Environmental SPI definition based on Kamali & Hewage (2015)	2
Table B.2 Economic SPI Definition based on Kamali & Hewage (2015)	
Table B.3 Social SPI definition based on Kamali & Hewage (2015)	3
Table C.1 normative ambitoinlevel based on Kokon and municipality Teylingen	7
Table D.1 Sustainable measures to implement within buildings	8
Table E.1 Environmental SPI importance score	
Table E.2 Environmental SPI importance comparison	2
Table E.3 Normalized table environmental SPI importance comparison	
Table E.4 MCA for the environmental dimension	4
Table E.5 Economic SPI importance score	0
Table E.6 Economic SPI importance comparison	1
Table E.7 Normalized table economic SPI importance comparison	2
Table E.8 MCA for the economic dimension	
Table E.9 Social SPI importance score	9
Table E.10 Social SPI importance comparison	0
Table E.11 Normalized table social sPI importance comparison for social SPI weight	1
Table E.12 MCA for the social dimension	
Table E.13 Sustainable dimension weight determination	
Table E.14 Total sustainability score per measure	8
Table F.1 Influence of measures on theme number44	4

Abbreviation	Term	Definition
EIA	Environmental Impact Assessment	Assessment of the environmental consequences of a
		plan.
GWW	Grond- Weg en Waterbouw	The civil engineering industry (ground, road and
		water construction)
LCC	Life Cycle Costs	Sum of all the occurring costs over the full life span.
MCA	Multi Criteria Analysis	A decision-making tool to compare several options.
MKI	Milieu Kosten Indicator	Environmental Cost Indicator: one value to measure
		the total environmental costs.
SPI	Sustainability Performance Indicator	Indicators which make sustainability measurable.
WKO	Warmte- en Koude Opslag	Heat and cold storage. A method to store energy in
		the soil in the form of heat and cold.

TABLE OF ABBREVIATIONS

TABLE OF TERMINOLOGY

Term	Definition	
Ambitionlevel	A score of 1 to 3 on themes in the ambitionweb, based on ambitions. One	
	means low ambitions and three means high ambitions.	
Ambitionweb	A figure of a web with several themes belonging to sustainability.	

Ambitionwebtool	A model to measure sustainability. This model creates Ambitionwebs for
	several scenarios, based on project goals.
Asphalt heat	Hot/cold network in which water pipes are implemented in the road and
	combined to a heating system. The road heats water during summer for
	heating of buildings and the water coming from buildings cool the road.
Black water	Waste water from the toilet.
Circular building	Reuse of 'waste' materials. So, no waste in generated.
Domotica	Electronic communication between all kinds of electrical applications in
	the home and living environment.
DuboCalc	Method to calculate the environmental impact of a material or building
Duurzaam bouwen ++	A guideline with regulation on sustainable building.
Free migration	In ecology the movement from species to a different environment.
Grey water	Relatively clean waste water from bathroom, kitchen and washing
	machines.
Helophyte filter	A sand filter that is generally planted with reeds. The actual treatment of
	the water is done by bacteria living in the roots.
Materials passport	Registration of materials based on financial value, life span and quality.
	Gives insight in recycle possibilities.
Geothermic energy	Energy generated and stored in the earth.
Greenlabel	A company that created a method to measure sustainability. They provide
	assessments and sustainability scores.
Quickscan	A limited and fast research.
Riothermic energy	Hot/cold network with heat from waste water in the sewerage system.
Smart energy floor	Floor that produces energy from movement.
Smart grid	An electricity supply network that uses digital communications
	technology to detect and react to local changes in usage.
Surface water heating	Hot/cold network in which heat is drawn from surface water.
Sustainability themes	Sustainability factors. The themes belonging to the ambitionweb. These
	themes can be different per ambitionweb.
Sustainable dimension	The aspects of sustainability: people, planet and profit.
Theme-ambitionweb	The ambitionweb of sub-themes belonging to the themes in the main
	ambitionweb
Water impact assessment	Maintain insight on issues relating to declining water quality, managing
	and allocating water, wastewater collection and treatment, and stormwate
	management
Weight	Importance value. A higher value means a higher importance.

TABLE OF THEME TRANSLATIONS

Theme number	Dutch	English
1	Energie	Energy
1	Energieverbruik tijdens gebruik	Energy consumption during use
1.2	Energieverbruik, productie & werkproces	Energy consumption, production & work process
1.3	Energieverbruik onderhoud	Energy consumption maintenance
1.4	Energieverbruik door gebruik	Energy consumption through
1.5	Energieverbruik door sloop	Energy consumption by demolition
2	Materialen & grondstoffen	Materials & raw materials
2.1	Ontwerp algemeen	Design generally
2.2	Hoeveelheid gebruikt materiaal	Amount of material used
2.3	Herkomst materialen	Origin materials

2.4	Milieu-impact van materialen	Environmental impact of materials
2.5	Afval bij sloop	Waste at demolition
2.6	Hernieuwbare materialen	Renewable materials
3	Kosten & waarde	Cost & value
3.1	Kosten	Costs
3.2	Toekomstige opbrengsten	Future revenues
3.3	Maatschappelijke waarde	Social value
4	Ruimte	Space
4.1	Belevingswaarde	Experiential value
4.2	Gebruikswaarde	Usage value
4.3	Toekomstwaarde	Future value
4.4	Educatieve waarde	Educational value
4.5	Klimaatbestendigheid	Climate resistance
4.6	Aansluiting ontwikkelingsvraag	Connection development demand
4.7	Adaptiviteit/flexibiliteit	Adaptivity / flexibility
4.8	Gebruik bestaand gebied	Use existing area
4.9	Meervoudig	Multiple use of space / multifunctionality
	ruimtegebruik/multifunctionaliteit	
4.10	Robuust mobiliteitssysteem	Robust mobility system
4.11	Efficiënt gebruik infrastructuur	Efficient use of infrastructure
4.12	Bereikbaarheid functies	Accessibility functions
4.13	Adaptief mobiliteitsbeleid	Adaptive mobility policy
5	Leefomgeving	Living environment
5.1	Gezondheid algemeen	Health general
5.2	Hinder tijdens uitvoering	Nuisance during execution
.3	Veiligheid	Safety
5.4	Demografische samenstelling	Demographic composition
5.5	Sociaal welzijn	Social well-being
5.6	Sociaal draagvlak	Social support
5.7	Vestigingsklimaat bedrijvigheid	Business climate activity
5.8	Vestigingsklimaat bevolking	Business climate for the population
5	Natuur	Dustriess chinate for the population Nature
5.1	Natuurgebieden	Nature areas
5.2	Landbouwomgeving	Agricultural environment
5.3	Flora & fauna (algemeen)	Flora & fauna (general)
5.4	Verstoring	Disturbance
5.5	Natuurlijk kapitaal	Natural capital
7	Water	Water
7.1	Kwaliteit	Quality
7.2	Waterkwantiteit (wateroverlast, veiligheid)	Water quantity (flooding, safety)
7.3	Waterkwantiteit (droogte, tekorten)	Water quantity (drought, shortages)
3	Bodem	Soil
3.1	Bodemkwaliteit	Soil quality
3.1 3.2	Ruimtelijk beslag	Son quanty Spatial attachment
8.3	Grondverzet	Earthmoving
8.4	Bodemwaarde	Soil value
8.5	Delfstoffen	Minerals
		111101010

1 INTRODUCTION

Greenhouse gas emissions are causing global warming. Effects of global warming are extreme temperatures, extreme weather conditions, flooding, melting ice and disturbance of the ecosystem. (Bradford & Pappas, 2017)

To reduce greenhouse gas emissions 195 countries, including the Netherlands, signed the 'Paris Agreement 2020-2050'. The 'Paris Agreement' contains specific requirements for the countries which they have to meet, concerning climate change and global warming. (Framework Convention on Climate Change, 2015) In addition to the 'Paris Agreement', in the Netherlands the 'Green Deal; Duurzaam GWW (Grond, Weg en Waterbouw)' is developed with the ambition to make sustainability in 2020 an integral part of rail, ground, water and road construction projects. 'Duurzaam GWW' contains an approach to determine ambitions and possibilities on different aspects of sustainability and translate them into specific designs. Duurzaam GWW does not describe how and where to make sustainable gains, because each project contains different possibilities and drawbacks for sustainability. (Duurzaam GWW, 2018)

Due to the 'Paris Agreement and Duurzaam GWW the attention and importance for urban sustainability is growing. Urban sustainability is the idea that a city can be organised without excessive reliance on the surrounding countryside and be able to power itself with renewable sources of energy. The aim of this is to create the smallest possible ecological footprint and to produce the lowest quantity of pollution, to efficiently use land, compost used materials, recycle it or convert waste-to-energy and to make the city's overall contribution to climate change minimal. (Siemens, 2018)

A study is done to look at sustainable measures to implement in the design in a new housing estate. This research is done at RPS in collaboration with Kokon.

RPS is an independent consultancy and engineering company for environmental and safety issues, that works from different disciplines on a better living and working environment. RPS is a company located in several countries around the globe, with six offices in the Netherlands. This assignment is done at the department location development and infrastructure in Delft.

Kokon architecture and urban development, is an architectural office in Rotterdam that provides housing plans, urban planning, non-residential construction, care construction and transformation of buildings. They give room for sustainability and implement it in their designs in discussions with their client.

1.1 PROBLEM DEFINITION

Architectural firm Kokon desined a new housing estate called Boekhorst for one of their clients. Boekhorst is going to be located in Voorhout. The precise location can be seen as the cross-marked area in Figure 1.1.

FIGURE 1.1 LOCATION OF BOEKHORST IN VOORHOUT

The design is shown in Figure 1.2. In the design, a lot of nature (green) and water (blue) is already implemented. The orange planes show where buildings can be build; There is a possibility to shift these locations, only the grey planes are already existing buildings that cannot be relocated. The design is approved on the spatial part but is not accepted by their client, because it must be more sustainable. The new housing estate is aimed to be the most sustainable area of the province South-Holland. The problem for this research is a lack of measures in the design to justify the design on the part of sustainability. To justify the spatial design for Boekhorst Kokon consulted RPS.

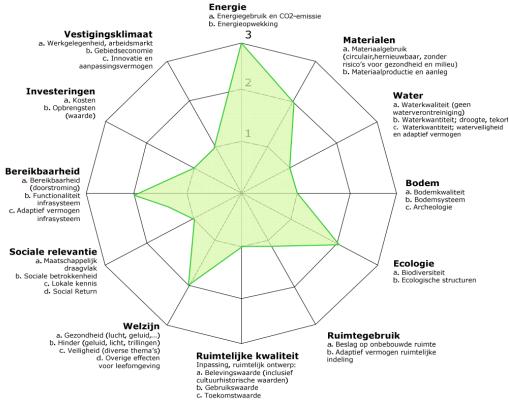
FIGURE 1.2 SPATIAL DESIGN FOR NEW BUILD AREA BOEKHORST IN VOORHOUT CREATED BY KOKON

1.2 THEORETICAL FRAMEWORK

Sustainability is a broad aspect and it means something different for everyone. In this theoretical framework the general definition of sustainability is given.

Because sustainability is a concept that can be interpreted in a lot of different ways, the general description is given from the Brundtland report (1987): *'Sustainable development is development that meets the needs of the present without compromising the ability of future generations to meet their own needs''*

This means that beside the financial aspects of projects also a social and environmental aspect must be considered. This is further explained in "The triple bottom line" defined by John Elkinton in 1994. In the triple bottom line, the social, environmental and financial aspects are included in the 3P's:


- *People;* The social pillar of sustainability. This pillar contains the labour involved in a corporation's work, and wider the community where a corporation does business.
- *Planet;* The environmental pillar of sustainability. This pillar focuses on the stimulation of biodiversity and the prevention of global warming.
- *Profit;* The economic pillar of sustainability. This pillar focuses on business plans with profit and cost effects.

(University of Wisconsin Sustainable Management, 2018)

The goal is to create a balance between these three pillars to reach an optimal situation. Therefore, it is important to address these three pillars in projects.

1.2.1 THE AMBITIONWEB

To make sustainability concrete and measurable Duurzaam GWW developed the ambitionweb as shown in Figure 1.3. The ambitionweb is developed so that at the start of projects an insight can be obtained in what is possible on several aspects in the project. When it is clear from the start where the focus should lie, these aspects can get more attention immediately. During all the time frames in each project can be reflected with the ambitionweb if the ambitions as set are still achievable. This gives focus in projects. In the ambitionweb the ambitions on different sustainable themes are visualized. (Duurzaam GWW, 2018)

FIGURE 1.3 AMBITIONWEB AS DEVELOPED BY DUURZAAM GWW (2018)

The ambitionweb covers all the pillars within the *3P's (people, planet and profit)* of sustainability, but they are further broken down in several themes. The themes and sub-themes as used by Duurzaam GWW are Shown in Dutch in Figure 1.3 and listed in English in Appendix A.

The ambition web consists of three ambitionlevels as indicated in Figure 1.3. These ambitionlevels show the ambitions on each theme in a project. The meaning of the ambitionlevels is as followed:

- 1) Insight in the sustainability effects of a theme and thereby achieving a minimum sustainability performance. In any case, this means meeting the existing situation and the legal ambitionlevel.
- 2) Setting concrete improvement goals to achieve a significant sustainability gain on the theme.
- Maximum effort to achieve the most possible on a theme. It means that no negative contribution is made or even positive contributions takes place. You can hereby think of the aspects climate neutral, energy neutral, profitable, air cleaning.

Inspired by Duurzaam GWW, RPS advice and Engineering company works with the ambitionweb. They have developed the ambitionwebtool to make the ambitionlevels more measurable. The ambitionwebtool is a model in which goals are defined per sub-theme. When choosing an ambition, the tool makes it possible to determine the goals that must be achieved to reach this ambition. However, since they believe that all the themes of the ambitionwebtool from Duurzaam GWW are too much to discuss in every project, they combined some pillars to one. In the ambitionwebtool of RPS eight fixed themes are established instead of the twelve from Duurzaam GWW. All the twelve themes are included in these eight themes.

The eight themes used in the ambitionwebtool of RPS are:

- Energy
- Materials and raw materials
- Costs and value
- Space
- Living environment
- Nature
- Water
- Soil
 - (RPS, 2018)

1.3 RESEARCH QUESTIONS

Based on the problem definition and theoretical framework, the research objective is stated as follows:

Find concrete and achievable measures to implement sustainability in the spatial design for Boekhorst with the help of the ambitionwebtool.

From the research objective follows the main research question:

Which measures can be implemented in the spatial design of Boekhorst, so that the sustainable ambitions are met?

To find an answer to this question, the main-question is divided in the following sub-questions:

Sub-question 1:	What are the ambitions for Boekhorst and what are the preconditions on the different sustainability themes in the ambitionweb?
Sub-question 2:	What are achievable sustainable measures that can be implemented in the new housing estate?
Sub-question 3:	At what ambitionlevel in the ambitionwebtool do the measures fit and which measures are thus fitting within the different scenarios for Boekhorst?

1.4 THESIS OUTLINE

Chapter 2	Research design. In this chapter the methods used to answer the research questions are described.
Chapter 3	Ambition and goals for Boekhorst. In this chapter the ambitions for Boekhorst are inventoried in an ambitionweb.
Chapter 4	Sustainable measures for Boekhorst. Measures for Boekhorst are inventoried and assessed in this chapter. An overview of possible sustainable measures for Boekhorst is given.
Chapter 5	Ambitionwebtool scenarios. The measures found in chapter 3 are coupled to requirements in the ambitionwebtool. With this coupling scenarios are proposed.
Chapter 6	Conclusion. The conclusion is presented in this chapter
Chapter 7	Discussion. This chapter discusses the used methods and the outcomes of the research.
Chapter 8	Recommendations. This chapter contains recommendations of the research for the companies where this research is done.

The methods used in this research are part of a continuous process during projects. The followed process in this research is shown in Figure 2.1.

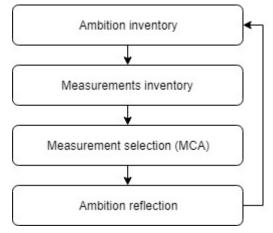


FIGURE 2.1 PROCESS SCHEME

The process consists of the following steps:

- 1. Ambition inventory: The ambitions are firstly inventoried during an interview.
- 2. Measure inventory: Measures are looked for and found based on the ambitions as determined in step one.
- 3. Measure selection: Measures are selected with a multi criteria analysis (MCA). Feasible measures are used in the following step.
- 4. Ambition reflection: After the selection of measures the measures are coupled to the ambition scenarios as determined in step one. This reflection shows if the ambitions as determined are realistic or not. Ambitions might have to be adjusted which leads to step 1 again.

Each time the process is followed, measures are selected on more precise criteria and assessments. This can lead to new ambitions and extra needed measures.

By consecutively answering the sub-questions this process is followed and an answer can be given on the main question.

2.1 RESEARCH DESIGN FOR SUB-QUESTION 1

Sub-question 1: What are the ambitions for Boekhorst and what are the preconditions on the different sustainability themes in the ambitionweb?

For the development of Boekhorst it is important that agreement is reached on the goals and ambitions. That is why ambitions for Boekhorst are determined in an interview with the client, Kokon. Goals, interpretations and ideas for each theme in the ambitionweb were discussed. Based on the interview three scenarios are created in the ambitionweb:

- Scenario 1: Current sustainability ambitionlevel
- Scenario 2: Required ambitionlevel
- Scenario 3: Aimed ambitionlevel

In this interview the ambitionwebtool is used with the following themes:

- Energy
- Materials
- Soil and water
- Nature and ecology
- Space
- Living environment
- Investments
- Mobility

Except for mobility all these themes were used in the standard ambitionwebtool at RPS. Mobility is normally implemented under space and living environment. Since the architects mentioned there where quite some possibilities for mobility, this theme was added separately to the ambitionwebtool. For each scenario, ambitionlevels are determined on all the sustainability themes during the interview.

After this is done, the set ambitions are compared with the ambitions of the municipality. The ambitions of Kokon and the municipality are compared to form a normative ambitionlevel, which is shown as the required ambitionlevel. Because the municipality eventually has to approve the design, their considerations must be taken into account as well. The municipal required ambitionlevel is determined based on their vision of 2014: 'Structuurvisie 2030, Gemeente Teylingen Duurzaam Bloeiend!'. The specific ambitions for Boekhorst could be different from the structure vision, however since the project is still in tender for the developers of Boekhorst, an interview with the municipality is impossible. That is why the vision is used. The ambitions of municipality Teylingen and Kokon are explained in a table and visualized in an ambitionweb.

Based on the created scenarios in the interview and with the municipal vision, the general goals, for the ambition themes are determined. These goals specify where to focus on. At the start of the research it was not possible to set quantifiable goals, due to a lack of knowledge. More quantifiable goals are set with the ambitionwebtool.

The improvement needed on each ambitionlevel is shown in a table. This is calculated as follows:

Required level improvemnet = *Required ambition level* - *Current sustainability level*

Aimed level improvement = Aimed ambition level - Current sustainability level

With the help of the required ambitionlevel improvement and the aimed ambitionlevel improvement a priority ranking is made. This is done by firstly looking at the required ambitionlevel improvement. Based on required ambitionlevel improvement a ranking is made. The theme on which the highest ambitionlevel improvement is needed, is ranked one, the theme with the second highest required ambitionlevel is ranked two and so on. When themes have the same required ambitionlevel improvement they are ranked double. For the double ranked numbers, the is determined which number they receive by use of the aimed ambitionlevel improvement is higher in priority ranking and thus receives the lowest of the double numbers. The priority answer is made so, that a targeted measure search can take place to answer sub-question 2

2.2 RESEARCH DESIGN FOR SUB-QUESTION 2

Sub-question 2: What are achievable sustainable measures that can be implemented in the new housing estate? The integration of house and environment in a sustainable way is done in different steps:

1. To find right measures for Boekhorst, first a lot of general measures are considered to give an overview of measures with their advantages and disadvantages. These measures are found in literature and in open interviews with six sustainability experts. In literature the measures are looked for on theme. Measures with the highest priority ranking (1), got the highest priority in search. Measures mentioned by the experts are also looked up in literature for reference. All the found measures are listed in a table with their advantages, disadvantages and sources.

- 2. The measures for buildings and environment are separated, because the measures for the houses are to be considered in a later stage in the project. They are not considered in the stage for the spatial design, since the spatial architects cannot influence the houses. Measures for the buildings are given as advice for when the buildings are designed. Only the measures that are of influence for the environment or for both are considered in this research.
- 3. The achievability of the measures relevant for the new estate is determined with a multi criteria analysis (MCA). This makes clear how profitable or risky measures are. A conclusion is drawn on the possibility to implement each measure in the new housing estate.

2.2.1 MCA METHOD

The MCA is based on a method described by Kamali and Hewage (2015). In this method the MCA consists of three layers. The first layer consists of all the Sustainability evaluation criteria. The second layer consists of the three sustainability dimensions: people (social), planet (environmental) and profit (economic). The third layer consists of the Sustainability performance indicators (SPIs). The layers of which the MCA consists are shown in Figure 2.2. Here all the SPIs are shown.

The SPIs are determined based on research by Kamali and Hewage (2015). On top of the SPIs from Kamali and Hewage (2015) are added in interest of the developers of Boekhorst: heat stress efficiency strategies, alternative transportation, required skills and knowledge and educational value. All the used SPIs belonging to their sustainability dimension are defined in Appendix B.1.

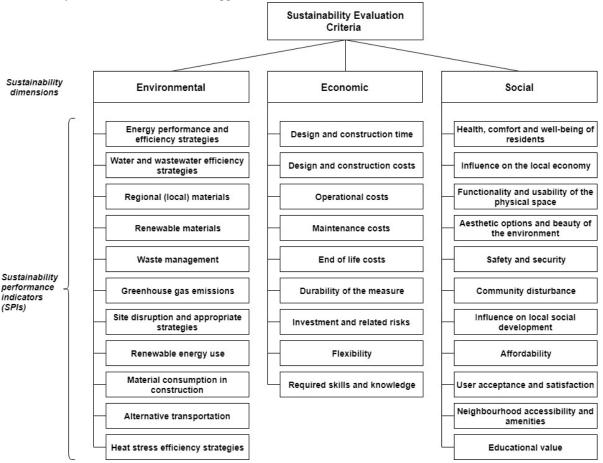


FIGURE 2.2 THE HIERARCHY OF SUSTAINABILITY EVALUATION CRITERIA WITH SUSTAINABILITY PERFORMANCE INDICATORS, BASED ON KAMALI & HEWAGE (2015)

In the MCA several steps are taken:

- 1. MCA conduction for each sustainable dimension
 - 1.1. MCA for the environmental dimension
 - 1.1.1. Environmental sustainability performance indicator (SPI) weight determination
 - 1.1.1.1. Environmental SPI ranking by experts
 - 1.1.1.2. Environmental SPI comparison against each other in a matrix
 - 1.1.1.3. Normalization of environmental SPI comparison matrix
 - 1.1.1.4. Environmental SPI weight determination
 - 1.1.2. Scoring the measure on the environmental indicators
 - 1.1.3. Determining the total environmental score for each measure
 - 1.2. MCA for the economic dimension
 - 1.2.1. Economic SPI weight determination
 - 1.2.1.1. Economic SPI ranking by experts
 - 1.2.1.2. Economic SPI comparison against each other in a matrix
 - 1.2.1.3. Normalization of economic SPI matrix
 - 1.2.1.4. Economic SPI weight determination
 - 1.2.2. Scoring the measure on the economic indicators
 - 1.2.3. Determining the total economic score for each measure
 - 1.3. MCA for the social dimension
 - 1.3.1. Social SPI weight determination
 - 1.3.1.1. Social SPI ranking by experts
 - 1.3.1.2. Social SPI comparison against each other in a matrix
 - 1.3.1.3. Normalization of social SPI matrix
 - 1.3.1.4. Social SPI weight determination
 - 1.3.2. Scoring the measure on the social indicators
 - 1.3.3. Determining the total social score for each measure
- 2. Total sustainability evaluation
 - 2.1. Weight determination of each sustainability dimension by experts
 - 2.2. Total sustainability determination through combination of the sustainable dimensions

Further explanations and used formulas in the MCA are given in Appendix B.2.

2.3 RESEARCH DESIGN FOR SUB-QUESTION 3

Sub-question 3: At what ambitionlevel in the ambitionwebtool do the measures fit and which measures are thus fitting within the different scenarios for Boekhorst?

This question is answered by coupling the measures from sub-question 2 to goals in the ambitionwebtool.

To get an idea of how the ambitionwebtool works, a piece of the ambitionwebtool is shown in Figure 2.3. In the utmost left column goals on sub-themes belonging to each theme are given. These goals transcend each other. The first goal is easy to achieve, but how higher the ambitionlevel, how harder the goals are to achieve. The ambitionwebtool in this research is used as developed at July 5, 2018.

For each scenario is determined which goals have to be achieved. The requirements that must be achieved in each scenario are determined, firstly based on the ambitionwebtool created by answering sub-question 1 and on what seems realistic for Boekhorst. After this assessment, is reviewed with Kokon if these ambitionlevels and goals fit their wishes and ambitions or if changes must be made.

To each goal used in the scenarios, the belonging measures from sub-question 2 are added. These are added in the utmost right column as seen in Figure 2.3. The added measures are the measures that help to achieve the mentioned requirement. Sometimes several measures are mentioned with their MCA score. In that case the developers of Boekhorst can choose which requirements to use.

The measures are coupled to the goals they influence, based on their advantages and disadvantages determined in sub-question 2. When no measures are fitting to a goal in the ambitionwebtool, recommendations for measures to satisfy the goals and thus the ambitions are given.

<u>*</u> .									
	9	_	C	. En .	Ň.				22
ERZICHT	ENERGIE	MATERIALEN	KOSTEN R			NATUUR/N		WATER	BODEM
	-		ROSTEIN R		FOIVIGEVIIVG	NATOUR/N	AILIEU	WATER	
1		E GEBIED							
					Current	Required	Aimed		
					ambition	ambition	ambition		
					level	level	level		
AATREG	ELEN				1,5	2,0	3,0	max 3 ptn	opmerkingen
homa int	troductie								
		CO2-reductie en	toepassing van duu	rzame alternat	ieven.				
J. J. L	5 1		3						
								↓WEGING ↓	
	ieverbruik tijder				1,0	2,0	3,0	20	
nergieverb	bruik tijdens gebr	uik			Let op: maar (één antwoord r	nogelijk		
-						1		1,0	
		daan van de CO ₂ -u Sycle Assessment	uitstoot van het ontw	verp in de	x			1,0	no measures needed
		-							
Er is een berekening gedaan van de CO ₂ -uitstoot van het ontwerp in de gebruiksfase aan de hand van DuboCalc of een vergelijkbare Life Cycle					1,5				
			emaakt van de leven						
de gemide	delde CO2-uitsto	oot per jaar bepaal	ld.						
Er is een	berekening geda	aan van de gemidd	delde CO2-uitstoot/ja	aar van het		x		2,0	2. CO2 emissions calculation with Dubocalc or a
			lc of een vergelijkbar						comparable program (1.4)
		referentiesituatie.	ealiseerd van ten mi	nste 30% per					
			itstoot/jaar van het o	ntwern				2,5	
		-	vergelijkbare Life Cy	-					
			ealiseerd van ten mi	nste 60% per					
-		met de referentie						3.0	
			itstoot van het ontwe oare Life Cycle Asse				x	3,0	 CO2 emissions calculation with Dubocalc or a comparable program (1.4)
			eutraal of opwekkend						
2 Energi		uctie & werkproo	ces		1,0	2,0 één antw oord n	2,5	20	
roductie c		emaakt van de C(O2-uitstoot gedurend	de de	x			1,0	no measures needed
		en in de CO2-prest	-						
Er is geer	-		Er wordt een inventarisatie gemaakt van de CO2-uitstoot gedurende de			x	x	2,0	2. CO2 emissions calculation with Dubocalc or a
Er is geer productie	zoals beschreve) gemaakt van de	CO ₂ -uitstoot gedure	ende de					
Er is geer productie Er wordt e	e zoals beschreve	-	CO ₂ -uitstoot gedure statieladder en er wo						
Er is geer productie Er wordt e productie	e zoals beschreve	en bij de CO ₂ -prest	-						
Er is geer productie Er wordt e productie reductie v	e zoals beschreve een inventarisatie zoals beschreve van 30% nagestre	en bij de CO ₂ -prest eefd.	-	ordt een				3,0	maintenance work, work process and waste processi
productie Er wordt e productie reductie v Er wordt e productie	e zoals beschreve een inventarisatie zoals beschreve van 30% nagestre een inventarisatie	en bij de CO ₂ -prest eefd. e gemaakt van de en bij de CO2-pres	statieladder en er wo	ordt een ende de				3,0	

FIGURE 2.3 A VIEW ON THE AMBITIONWEBTOOL

3 AMBITIONS AND GOALS FOR BOEKHORST

To determine which sustainability themes, require extra focus in this project the ambitions are determined with help of the ambitionweb. By doing this sub-question 1 is answered:

Sub-question 1: What are the ambitions for Boekhorst and what are the preconditions on the different sustainability themes in the ambitionweb?

3.1 AMBITIONS FOR BOEKHORST

The ambitions for Boekhorst are explained on each theme in Table 3.1. This table shows the ambitionlevel on the sustainability themes, as determined in the interview with Kokon, for the scenarios: 1) Current sustainability ambitionlevel, 2) Required sustainability ambitionlevel and 3) Aimed sustainability ambitionlevel. In the column 'What does this mean?' is explained what it means to meet the determined ambitionlevel. In the column motivation is explained why the determined ambitionlevel is chosen.

For the Required ambitionlevel, the municipal vision is also considered. The differences in ambitionlevel of Kokon and the municipality are mentioned in the utmost left column. The highest ambitionlevel is used as normative. In Appendix C. the comparison of the ambitions of Kokon and the municipality is further explained. Here separate ambitionwebs, for Kokon in Figure B.1 and for the municipality in Figure B.2, are shown and compared in Figure B.3.

TABLE 3.1 AMBITIONS FOR BOEKHORST

Theme	Current sustainability ambitionlevel	What does this mean?	Motivation	Aimed ambitionlevel	What does this mean?	Motivation	Required ambitionlevel	What does this mean?	Motivation
Energy	1	Insight into the most important energy flows of the project during its entire lifetime. In any case not worse, preferably small improvement.	Energy is not considered in the current plan.	3	Measurable and verifiable targets with which the most feasible in the field of energy reduction is achieved. Energy neutral and/or energy providing.	Ambitionlevel 3 makes it possible to meet the requirements of Greenlabel. Collaboration with Hooghkamer is possible. Clean energy production should take place as much as possible.	2,5	Insight into the most important energy flows of the project during its entire lifetime. Measurable verifiable targets for improvement. Relevant energy saving.	According to Kokon the contractors ambitionlevel is not higher than 2. It is not known if plus-on-the-meter building is feasible. However, the municipal ambitionlevel is 2,5, because municipality Teylingen has the vision to use "Duurzaam bouwen ++" (in English "sustainable building ++") in new build projects. They also want to stimulate geothermic energy and WKO (hot/cold transmission) by use of the deep underground.

Materials	1	Insight into the most important materials flows and types.	Materials are not considered in the current plan.	3	Goals to achieve "most feasible" on sustainable material use.	The ambition is to receive a greenlabel score of A+. Greenlabel pays a lot of attention to materials.	2	Measurable and verifiable targets for sustainable material use. Relevant improvement.	Kokon mentioned the ambition on materials is dependent on municipal requirements, which are still unknown. Demountable building is not possible according to Kokon. They mention that the developers ambition is larger than the municipal ambition. There should at least be label A+ according to Kokon. Opposite to Kokon municipality Teylingen wants demountable building for Boekhorst. They both strive for ambitionlevel 2 on materials.
Investments	1	Cost savings in the long term. Insight into life cycle costs (LCC), attention to management and conscious design. Compared to the reference situation, the LCC and maintenance costs are slightly lower.	Investments are not considered in the current plan. There is not a budget yet. There is nothing done with a payback period. The management is done by municipality. They look at cost-saving.	2,5	The client explicitly weighs long- term costs instead of only on investment costs. Insight into the economic aspects in the long term. Investments should be balanced with social-economic benefits.	According to Kokon, the municipality wants the investments balanced with the benefits on nature, ecological, social and economic aspects.	2	The client explicitly weighs long- term costs (LCC) instead of only on investment costs. Insight into the economic aspects in the long term.	Kokon mentioned that the municipality wants the investments balanced with the benefits on nature, ecological, social and economic aspects. This is not important for them yet. Ambitionlevel 2 is given. The municipalities ambition on investments is 1, since the municipality wants investments to be as low as possible and investments and future cost management are not included in their vision. They only mention that investments take place in main shopping areas to attract people and that shops should not be located in Boekhorst, but in the centre of Voorhout.

(land take)trajectory is stillwithoutand a green(land take)other cities is provided. CInsight into thechangeable. Thenegative effectswalking parkInsight into thewalking in Boekhorst andeffects on thenew estate can beon space andcan beeffects on thewalking in Boekhorst andspatial qualitybuild up in partsany negativeimplemented.spatial qualityprevented.andwhen financing iseffects arePossibilities forandenvironment(impairment ofaccess to othercompensated orfast access to(impairment ofthe onucipality watts ofculturalcities. Targetingimprovedprovided.historicalexpansion and widening ivalue).Voorhout. NoProjectCycling andvalue).value).antention is paid to maintaitobjectives thatso tha green canenvironmentBoekhorst andobjectives thatspatial qualityinimit thebe given back.around theVoorhout arelimit thenegative effectson the use ofspace andwhere possible.are used.planned toquality as muchspace andquality as muchas possible.on sustainableprevented fornucie proofdesign.Opportunities inopportunities inplanned to takeas possible.as possible.as possible.finance to takesoil raising isspace andspoustian.design.opportunities ino
Changes in the environment are identified.could be prevented.Changes in the environment are identified.

Living environment	2	Insight into the most important effects from project on people and environment (health, safety, nuisance, visual aspects social). Measurable and verifiable objectives to minimize and, where possible, improve negative effects on people and the living environment. Relevant improvement and opportunities for added value.	Car traffic is limited. Social cohesion is stimulated in smaller neighbourhoods. Community formation is stimulated. Opportunities for work-living possibilities still have to be assessed, but distances from supermarkets are alright. Building low is hard because of the water, that is why levelling up is needed.	3	Circuits closed, negative effects on nature fully compensated. Objectives with which most achievable in this area is achieved.	Car traffic is limited. Social cohesion is stimulated in neighbourhoods . Community formation is stimulated. Opportunities for work-living possibilities still have to be checked, but distances from supermarkets are alright. Building low is hard, that is why levelling up is needed.	2,5	Circuits closed, negative effects on nature fully compensated. Objectives with which most achievable in this area is achieved.	Kokon has ambitionlevel 2,5 on living environment, because car traffic is limited. Social cohesion is stimulated in neighbourhoods. Community formation is stimulated. Opportunities for work-living possibilities still have to be checked, but distances from supermarkets are alright. Building low is hard, that is why levelling up is needed. There might be a possibility to build below water ambitionlevel. Stimulation of diversity needs to take place. The municipalities ambitionlevel on living environment is 2. The attention goes to improvement of the touristic recreational infrastructure and to make it sustainable. They want to facilitate good sport facilities, by firstly improving the existing ones and expand when they are not satisfying enough. They want to stimulate small recreation areas. New buildings are possible if the spatial quality and other specific values on site are maintained, improved or compensated.
Nature and Ecology	2,5	Closed cycles, negative effects on nature fully compensated. Objectives with which practically the	There is a sound barrier/contour around the road and an ecological zone is created. The specifics about the	3	Circuits closed, negative effects on nature fully compensated. Objectives with which most achievable in	All the effects on nature should be compensated and biodiversity is stimulated in the ecological	3	Circuits closed, negative effects on nature fully compensated. Objectives with which most achievable in	Kokon mentions ambitionlevel 3 as the required ambitionlevel, because all the effects on nature should be compensated and biodiversity is stimulated in the ecological zone. Emissions should be as low as possible.

Ambitions and goals for Boekhorst

	most achievable in this area is achieved.	ecological zone are unknown		this area is achieved.	zone. Emissions should be as low as possible.		this area is achieved.	The municipalities ambitionlevel on this theme is 1,5. They want to preserve nature and maintain the current biodiversity. Nature should be coupled to the surroundings. Flowery roadsides are considered and small-scale natural values, like parks are stimulated in the urban area.
Soil and Water 1,5	Maintaining effects on soil quality (preventing soil pollution) and the soil system. Prevent soil and water pollution as much as possible and to maintain the soil structure, clean up contamination and implement climate adaptation.	Storage capacity already included. The plan is said to limit the contamination, but this is not done yet. Water carries the current plan.	3	Cycles are closed, project is executed without (if possible) negative consequences on soil and water, otherwise negative effects are fully compensated. There is even improvement where possible. Objective measurably and verifiably determined with which most feasible in the field of soil is achieved.	Water carries the current plan. Water can be stored. There should not be negative effects on water. Soil should be clean.	2	Effects on soil quality (preventing soil contamination) and maintaining the soil system. Verifiable targets to prevent soil and water pollution as much as possible and to maintain the soil structure, clean up contamination and implement climate adaptation.	Kokon's ambitionlevel on soil and water is 2. Contamination should be limited and water can be stored according to Kokon. The municipal ambitionlevel on soil and water is 1,5. According to the municipality water storage is not needed, because it is arranged elsewhere. Hardening is compensated with water storage and contributions to a sustainable water system should take place.

Mobility	2	Cycling and walking are encouraged. Good connection to public transport and car sharing options. Encourage electric driving.	Car use in the area is limited. Walking and cycling are stimulated. The station is very accessible.	3	Stimulation of sustainable development and innovation within mobility. Mobility is combined with other aspects, such as energy. Integration of mobility is involved in the big picture (electric car charging by infrastructure)	Car use in the area is limited. Walking and cycling are stimulated. The station is very accessible. Car sharing should be assessed. Possibilities for electric driving and car sharing have to be examined.	2.5	Stimulation of sustainable development and innovation within mobility. Mobility is combined with other aspects, such as energy.	Kokon wants to stimulate electric care use in the area and stimulate walking and cycling. The station is very accessible. Possibilities for electric driving and car sharing have to be examined. They mention that the required ambitionlevel on mobility should be 2.5. The municipality has ambitionlevel 2 on mobility. They want improved and reliable accessibility, greater liveability and higher road safety, especially through better flow-through for the car, bicycle and bus. They strive to double the use of public transport and realise enough bike parking at stations and bus stops. Optimal safe and fast bike routes between centres in the municipality have to be provided. Enough unpaid parking areas should be available. Electric cars and sailing are stimulated.
----------	---	---	---	---	---	--	-----	---	---

3.2 INITIAL DEVELOPMENT GOALS FOR BOEKHORST

Based on the minimum ambitionlevel on the sustainability themes as the guideline for this project, the ambitions for Boekhorst are summarized in goals as formulated below:

Energy: Clean energy production must take place to make the neighbourhood energy-neutral.

Materials: Greenlabel must at least be A+

Soil and water: Contamination has to be limited, flooding is prevented.

Nature and Ecology: Negative effects on nature are compensated and emissions have to be as low as possible.

Space: Green walking space has to be added. Cycling and walking are stimulated by offering save cycling paths and sidewalks

Living environment: Community formation is stimulated. Opportunities for a work-living environment should be used.

Investments: Investments have to be balanced with the benefits on nature, ecological, social and economic aspects.

Mobility: Emissions are limited by restriction of car use and stimulation of cycling and walking in Voorhout.

3.2.1 NEEDED IMPROVEMENT

The ambitionlevels as described in Table 3.1 are visualized in Figure 3.1. Here, the ambitionlevel on each theme for the scenarios 1) current sustainability ambitionlevel, 2) the required ambitionlevel and 3) the aimed ambitionlevel is shown. It becomes clear that all the themes are very important, but investments is less important than the other themes, since its aimed ambitionlevel is 2,5 instead of 3. On the theme nature and ecology, the maximum sustainable goals are to be reached. This theme has ambitionlevel 3 on the required and aimed ambitionlevel. After nature and ecology, living environment, mobility and energy are the most important with a required ambitionlevel of 2,5 and then come materials, space, soil and water and investments on ambitionlevel 2.

For the required ambitionlevel the highest ambition level of the comparison of Kokon and municipality is used. The separate ambitionswebs of Kokon and municipality are shown in Appendix C.

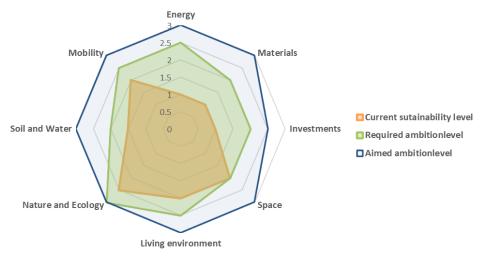


FIGURE 3.1 AMBITIONWEB FOR BOEKHORST

Based on these ambitionlevels, the needed improvement to reach the required ambition and aimed ambitions is shown in Table 3.2.

Theme	Current sustainability level	Required ambitionlevel	Required ambitionlevel improvement	Aimed ambitionlevel	Aimed ambitionlevel improvement
Energy	1	2,5	1,5	3	2
Materials	1	2	1	3	2
Investments	1	2	1	2,5	1,5
Space	2	2	0	3	1
Living environment	2	2,5	0,5	3	1
Nature and ecology	2,5	3	0,5	3	0,5
Soil and water	1,5	2	0.5	3	1,5
Mobility	2	2,5	0,5	3	1

TABLE 3.2 NEEDED AMBITION LEVEL IMPROVEMENT

With the needed ambitionlevel improvement in Table 3.2 a priority ranking on which themes to focus on can be made. This is done by first looking at the required ambitionlevel improvement.

By looking at the aimed ambitionlevel improvement in combination with the first priority as described in the methodology, the priority of the themes is:

- 1. Energy
- 2. Materials
- 3. Investments
- 4. Space
- 5. Soil and water
- 6. Living environment and Mobility
- 7. Nature and ecology

This ranking shows that energy needs the most improvement to reach the ambitions and nature and ecology needs the least improvement.

4 SUSTAINABLE MEASURES FOR BOEKHORST

In this chapter sustainable measures are found and assessed to answer sub-question 2:

Sub-question 2: What are achievable sustainable measures that can be implemented in the new housing estate?

4.1 MEASURE INVENTORY AND ASSESSMENT

The measures considered in this research are shown in Table 4.2. Measures that seemed not feasible where not considered. This where electricity storage in a battery and hydrogen usage instead of gas. Two interviewees mentioned that a neighbourhood battery is way too costly, and one of them also mentioned that it is even damaging for the environment when produced. For hydrogen as replacement of gas was mentioned that this should happen on large scale. At the moment it still too far in the initial phase, which means there is too little knowledge, too much inefficiency and it is too costly.

The measures that are assessed are sorted based on their MCA score in Table 4.2. The conduction of the MCA score can be seen in Appendix E. The MCA score is to be interpreted as in Table 4.1.

TABLE 4.1 MCA SCORE INTERPRETATION

Measure total sustainability score	Interpretation
$2 \leq$ sustainability score ≤ 3	Very advantageous, these measures should be implemented
$1 \leq$ sustainability score < 2	Expected to be advantageous, however effects of these measures should be reconsidered.
$0 \leq$ sustainability score < 1	Possibly advantageous, however the effects of these measures are very unsure and further feasibility studies must be done.
-3 ≤ sustainability score < 0	Disadvantageous, these measures are not expected to be feasible and are not further considered.

TABLE 4.2 MEASURES SORTED ON MCA SCORE

Number	Measure	MCA Score	Advantage	Disadvantage	Source
37	Green gardens without (much) pavement	2	 Easy drainage possible Cheap construction and maintenance Stimulate biodiversity 	 Maintenance needed Unstable garden furniture 	• Operatie Steenbreek (2018) • Woonderij Eos (2018)
86	Daylight accessible	2	 Feeling of comfort Less energy needed 	• Limits design options and placings	• RPS (2018)
23	Life cycle analysis (LCA)	1,9	 Helps planning Effects of change in strategy can be shown 	• LCA is not always right. Materials may not reach a next stage of life	• RPS (2018) • LaMarco (2018)
24	Waste management plan	1,9	• Known who is responsible	Time consumingSustainable	• Rebri (2018) • RPS (2018)

33	Verge cuttings recycling	1,8	 Clear targets for recyclable materials Easy progress check possible Known where products go when demolished Betters the soil Can be fed to animals Cheap reusable options 	waste management may develop over time • Still being researched	• Rijkswaterstaat (2018) • Spijker et al. (2013)
44	Environmental Impact Assessment (EIA) with water and soil as subject of protection	1,8	 Impact on water and soil known Opportunity to change project and limit risks 	 Limited effects known: not the whole picture is considered Links are not always known 	 Huber (2012) International Institude for Environment and Development (2018)
45	Green area prioritization in urban planning	1,8	 Stimulate biodiversity Feeling of comfort 	• Not enough available space for other needs	• Huber (2012)
97	Adequate and uniform lighting conditions	1,7	 Visibility on pathways Immediately adjacent spaces Less biodiversity disturbance 	• Planning needed	• International well building institute (2017)
26	New objects made from cut down trees	1,6	• No waste of valued trees	Skills needed nearby	• Greenlabel(2018)
15	Smart Grid	1,5	 Optimal energy use Accurately monitoring and managing of energy use by checking smart- meters Real-time pricing possible Improving production and distribution of clean energy by sending back to the grid 	• Privacy and security risk by providing real- time data	• U.S. Department of Energy (2013) • Wichmann (2014)
16	Domotica systems	1,5	 Automatic energy saving Only needed energy use 	• Danger of hacking	One Smart Control (2018) QwikSense (2018)

			• Insight in energy use		
20	Materials passport	1,5	 Insight in the life cycle and total worth of materials planning for reuse 	• Time consuming	• Madaster (2017) • Voorn (2018)
21	Material loss chart of production	1,5	• Insight in material loss and costs and benefits	Time consumingMay change over time	• RPS (2018)
30	Roadway of reinforced grass or water- permeable paving (half open paving)	1,5	 Facilitate water infiltration Cheap construction and maintenance Easy maintenance Green appearance 	 More maintenance needed More risk of damage by heavy transport People with walking sticks, heels, strollers and wheelchairs can get stuck 	 Van der Burg (2018) De Vree (2018) NL Greenlabel (2018)
35	Water impact assessment	1,5	 Opportunity to learn from previous experience Long-term effects known 	 Limited effects known: not the whole picture is considered Links are not always known 	 Huber (2012) International Institude for Environment and Development (2018)
54	Adoption green	1,5	 Responsible residents Stimulate health 	• Prevent lacking maintenance	• RPS (2018)
91	Communal gardens for food production	1,5	 Stimulate healthy nutrition Educate residents about food production Provide social contact 	• Space needed	• International well building institute (2017)
2	CO2 emissions calculation with Dubocalc	1,4	• Environmental Cost Indicator Value (MKI value) known	 Insight in processes needed Time consuming and thus costly 	• RPS (2018)
8	Windows on the south side of buildings with trees in front of them	1,4	• Sun during winter, so that less heating is needed.	• Warmer during summer. A solution for this are trees that lose their leaves during winter	Vereniging Aardehuis (2018)Blavier (2015)
71	Flexible building	1,4	 Question-based adaption possible Future proof design 	• Different scenarios need to be considered	• Rijkswaterstaat (2018) • Kokon (2018(

			• No waste of	• Waste	
			space • Less costs during usage phase	management needed	
34	Water resource investigation (with a water-resource evaluation matrix)	1,4	 Insight in the effects of urban planning on water Possibility of plan changing 	 Time consuming Data needs to be available 	• Schneider, Rickert & Spieker (1973)
51	Management scheme for the maintaining of the diversity of urban nature	1,4	 Maintaining and stimulation of biodiversity and nature Responsibility known 	• Time consuming	• Niemelä (1999)
70	Design based on the environment	1,4	 Opportunities for shared energy and other sustainable options are used Residential area fits and uses the climate Feeling of comfort 	 Area knowledge needed Collaboration with many stakeholders 	 Rijkswaterstaat (2018) Giovagnorio & Chiri (2016)
74	Small private garden, large community garden	1,4	 Less garden space needed per person Large garden provides comfort Less maintenance Less trips taken Guaranteed water infiltration possible with unpaved parts 	 Less privacy Organization needed Dependent neighbours on maintenance Vandalism needs to be prevented 	 Van der Burg (2018) De Kersentuin (2018) Nancy (2013) MuConsult (2000)
75	Flexible building (for example demountable)	1,4	 Less waste and maintenance Fits municipal vision Easy construction Reusable Construction costs are estimated more accurate Possible to eliminate air gaps, so less heating and cooling is needed Quality is easier achieved, by tools available in production site Easy adding or removing of 	 Not necessarily cheaper than conventional construction Transport and position placing can be difficult Limits specific design options Time and planning needed to consider different options 	 Van der Burg (2018) Gemeente Teylingen (2018) Boyne (2014) Rijkswaterstaat (2018) Van der Burg (2018)

			 building parts, so that space can be optimally used Future-proof design Less costs during usage phase 		
84	Heat and cold warning mechanism and strategy plan to react	1,4	 React to weather and prepare Facilitate health provision 	• Mechanism needed	• International well building institute (2017)
85	Different function options in the environment	1,4	 Future-proof design Less costs during usage phase 	 Limits specific design options Time and planning needed to consider different options 	 Rijkswaterstaat (2018) Van der Burg (2018)
74	Small private garden, large community garden	1,4	 Less garden space needed per person Privacy available 	• Less comfort	• Less garden space needed per person
4	Efficient use of building tools/construction machines: switch them of when they are not needed	1,3	Cost efficient Minimize damaging emissions	Planning time	• McClung-Logan (2015)
38	Existing water enlargement	1,3	 Prevention of flooding by water storage Water recreation possible: relaxation 	Space occupied by waterOperation costs	• Gemeente Teylingen (2018)
41	Water extraction area to capture clean rain water from roofs, Street water is guided away from the extraction area to wade's to infiltrate in the soil	1,3	 Optimal use of water Prevent sewerage nuisance Possibility to use rain water in homes (for example toilet flushing) 	• More feasible if cleaning works are nearby	• Eva-Lanxmeer (2018)
42	Helophyte filters to rinse grey wastewater from washing machines, showers, kitchen etc,	1,3	 Aesthetic green High efficiency Clean water 	• Space needed (3 à 4 cubic meter per person)	 Wetlantec (2018) Vereniging Aardehuis (2018) Kilian Water (2018) Eva-Lanxmeer (2018)
90	Virtual meeting place to organise activities in neighbourhood and	1,3	Stimulate social cohesionVery cheap	• Risk it is not used	• De Kersentuin (2018)

	community house (internet and app)					
93	Pet-friendly environment	1,3	 Stimulates pet ownership. Pet ownership has a positive influence on mental and emotional well- being Stimulate physical activity 	• Space needed	• International well building institute (2017)	
1	Feasibility study into renewable energy	1,2	• Insight in options, benefits and drawbacks of renewable energy sources	• Time consuming	• RPS (2018)	
3	CO2 emission mapping of maintenance work, work process and waste processing,	1,2	• Insight into emissions and processes	 Insight in processes needed Time consuming and thus costly 	• RPS (2018)	
17	Led lighting/ lights with integrated solar panels and battery	1,2	Energy efficientLong life-time	 Colour limitations Sensible to temperature 	• Greenlabel (2018)	
28	Shared sheds containing shared tools that people need occasionally	1,2	 Optimal use of space Less objects produced More usage of objects and less waste Cost saving 	• Walking to the shed, possibly through rain	 Van der Burg (2018) Vereniging de Buitenkans (2018) 	
47	Demolition practice plan	1,2	 Prevent contaminated soil Relatively easy demolition, because of material knowledge and planning 	 Upfront time investment needed Plan should be updated, during usage phase, when new options arise 	• Environmental Protection Agency (2011)	
65	Streetscape greenery	1,2	 Aesthetically appealing Stimulate health Stimulate biodiversity 	• Maintenance needed	• International well building institute (2017)	
100 LCC for the planning, 1,2 construction, usage and demolition phase,		1,2	 Costs and benefits during life time are known Benefits during life time can be very different than in construction 	 Estimations can be wrong Assumptions are made 	• Rijkswaterstaat (2018) • Aaron (2014)	

6	Prioritization of walking and cycling in the design instead of car usage	1,1	 Stimulate health by motivating physical activity Reduce car emissions 	• Longer travel time by car	• International well building institute (2017)
18	Multipurpose charging stations with led lighting	1,1	 Multifunctional use of sustainable resources Low amount of energy loss 	• Space needed	• Greenlabel(2018)
22	Material origin substantiation	1,1	 Insight in material loss, costs and benefits Production costs known, transportation costs known 	 Time consuming May lead to choice in easy trackable materials that are not the most sustainable 	• RPS (2018)
31	Narrow walking strip in baked bricks	1,1	 Facilitate water infiltration Use of raw material, no toxic substances Short transport Reusable Warm appearance 	• Depending on the size it can be hard for strollers to pass	NL Greenlabel (2018)De Jong (2018)
43	Water storage for rain water to use in black (toilet) water systems	1,1	 Optimal use of water Prevent water flooding 	• Water storage needed	• De Hobbitstee (2018)
64	Hedge with various native species	1,1	 Stimulate biodiversity Green comfortable appearance 	• Maintenance needed	• NL Greenlabel (2018)
81	Sharing bikes	1,1	 Stimulate health by motivating physical activity Reduce car emissions 	 Enough bikes needed to meet question in peak hours Planning needed for usage Maintenance needed 	• International well building institute (2017)
104	Room for co-creation with inhabitants	1,1	 Stakeholder involvement causes a higher rate of approval Reduced development costs Continuous improvement Lots of ideas to distract from 	• Choice and distinction in contradictory ideas must be made	• O'Hern & Rindfleisch (2008) • RPS (2018)

5	fuel/energy-efficient construction and machinery	1	 Cost efficient Minimize damaging emissions 	• Machinery needs to be available nearby	 McClung-Logan (2015) Younis & Fahmy (2018)
9	Asphalt heat	1	 Heat from homes saves energy Less energy needed Less road maintenance needed, through road heating during winter and cooling during summer. Earned back in +/-10years 	• Investment costs	• Agentschap NL (2010) • RVO (2017)
25	Circular building materials	1	 No waste generation Optimal use of materials Less emissions 	• Extended material analysis needed	• Van der Burg (2018) • Hellinga (2018)
36	Groundwater level analyzation	1	 Knowledge for options to use groundwater Insight in building risks 	• Right instruments needed	• RPS (2018)
40	Separate sewer for grey and black water	1	• Prevent sewer overload	• Underground space needed • Costs	• RPS (2018)
46	Reduction areas for soil consumption (soil sealing)	1	• Optimal distribution of space possible	 Crowded housing space Change needed based on population density 	• Huber (2012)
55	Garden layout support for residents	1	 Provide water infiltration Stimulate health Happy residents Aesthetically appealing 	 Time consuming Conflicting interests in design 	• RPS (2018)
57	Waste bins integrated in the design to reduce waste damage	1	 Reduce waste Keep the are clean and comfortable 	• Aesthetic design needed	• RPS (2018)
61	Green and blue dry and wet spots realization	1	 Diverse nature Provide recreation 	• Space needed	 NL Greenlabel (2018) De Kersentuin (2018)
62	Reed edge in water	1	 Stimulate biodiversity Reduce CO2 Work as 	 Slowly flowing water may attracts mosquitoes Slow flowing 	• Rijkswaterstaat (2018) • Duel (1990)

			helophyte filter and clean water	water may smell • Obstacles for boat traffic, thus reduce of recreation	
63	Pond for water capture with open space to relax	1	 Create relaxation Create recreation Biodiversity stimulation 	Investment costsPlace needed	 Eva-Lanxmeer (2018) Boogaard, Jeurink & Gels (2006)
66	Nature-friendly banks	1	 Open character Long grasses Water depths 		• RPS (2018)
69	Flora and fauna in relation to target species	1	• Stimulate biodiversity	• Limited choice in flora and fauna	• RPS (2018)
82	Aesthetic signs for easy way finding and to stimulate waking	1	 Easy wayfinding Stimulate walking and thus health Inform and stimulate available facilities 	• Aesthetically appealing signs needed	• International well building institute (2017)
83	Background noise map	1	• Insight into sound levels and thus comfort	 Time consuming Noise can change over time Hard to estimate based on surroundings 	• RPS (2018) • Kaliski & Cowan (2007)
101	Measures for which subsidy is given	1	• Less costs for sustainability	• Subsidy application must be done on time	• Gaasbeek (2018) • Gemeente Teylingen (2014)
14	Sun-/PV-panels	0,9	 Sun is always available; It's a renewable energy source Electricity bills are reduced Can be used for electricity and heating Low maintenance costs 	 Higher investment costs Weather dependent Energy storage is expensive Enough space needed to place the panels Toxics material used in production and transportation of solar panels 	 Van der Burg (2018) GreenMatch (2014)
53	Compost plants	0,9	 No transportation costs of waste Clean the soil Prevent erosion Degrade chemicals 	 Effort required Only works with good weather 	 NL Greenlabel (2018) RPS (2018) Dray (2017)

56	Maintenance plan to promote ecological quality	0,9	 Aesthetically greenery Stimulate health 	• Cost	• RPS (2018)
60	Greenery diversity with native trees, shrubs, perennials and seeds	0,9	 Stimulate economy Stimulate biodiversity Low transportation emissions 	• Limited plant choice	• NL Greenlabel (2018)
52	Noise nuisance prevention	0,9	 Prevent animals from fleeing Comfort for residents 	• Planning and controlling costs time	• Chesire West and Chester (2018)
77	Fast cycling lanes to promote cycling to the centre of Voorhout	0,9	 Stimulate health by motivating physical activity Reduce car emissions 	• Dependent on surrounding space	• International well building institute (2017)
29	Smart led lighting to show half hardened parking spots	0,8	 Visible where to park in the dark Optimal use of lighting Feeling of safety and comfort 	• Energy connection needed	• NL Greenlabel (2018)
48	Quickscan: Inventory the current flora & fauna	0,8	 Insights on current flora and fauna Change possible to estimate 	• Time needed	• RPS (2018)
59	Plant species that increase biodiversity and better the living environment	0,8	 Stimulate biodiversity Comfortable living 	• Maintenance needed	• RPS (2018) • NL Greenlabel (2018)
67	Free migration stimulation	0,8	 Lifting barriers Connection zones inside and outside the area 	• Space needed	• RPS (2018)
68	Bee strips	0,8	• Stimulate biodiversity	• Limited choice in flora and fauna	• RPS (2018)
87	Suitable trails for rollators, wheelchairs and mobility scooters	0,8	• Stimulate equity	 Investment costs needed More paving needed and thus less water infiltration 	• RPS (2018)
92	Activity spaces	0,8	 Stimulate physical activity and thus health Provide a meeting place 	• Space needed	• International well building institute (2017)

102	Budget to prevent harm on area interests	0,8	 Insight in where money goes Plan ahead Less financial worries 	 Unexpected surprises are hard to consider Might under- or overcompensate Time needed to create budgets 	 Rijkswaterstaat (2018) Simond (2018)
32	Mineral Olivine to absorb CO2	0,7	 CO2 extraction from the air Possibility to buy CO2 cleaning certificate 	Waste generationDebatable effect	 NL Greenlabel (2018) Greensand (2018)
50	Agricultural backgrounds with natural values inventory	0,7	• Changes and risks known	• Information needed	• RPS (2018)
58	Variation in landscape	0,7	 Stimulation of biodiversity Interesting landscape attracts recreation 	• Needs to be aesthetically appealing for comfort	• Rijkswaterstaat (2018)
78	Bicycle parking spots	0,7	 Stimulate health by motivating physical activity Reduce car emissions 	• Space needed	• International well building institute (2017)
94	Outdoor playing and sport places	0,7	 Stimulate health by exercising Stimulate social cohesion 	• Space needed	• International well building institute (2017)
95	Sound barrier around road	0,7	 Comfort for Residents Natural materials used 	• Rising construction costs	• Jense (2018)
103	Educational value through visible sustainable measures	0,7	 Involvement of local residents Insight in the importance and possibilities of sustainable design 	 Measures need to be aesthetically appealing or made fit into the environment Residents should not be disturbed (but inspired) 	• RPS (2018) • Oomen, Van der Linden, Van Haalen & Hulsen (2011)
10	Riothermic energy: extract heat from waste water in the sewerage system	0,6	 Renewable infinite energy source Earned back in +/- 15 years High efficiency Subsidy possible Lower water temperature in 	 Technical space with heat pump needed 30-meter riothermic tube needed Still in pilot phase in the Netherlands 	 Marsaki (2018) Stowa (2018) Boswinkel, Palsma & Sukkar (2018) DTI (2018) Straver (2016) Wielders & Scholten (2016)

			sewerage system is better for the pipes	• 0,5 million euro construction costs	
19	Smart Energy Floor	0,6	 Energy from movement and sun energy Fitting in play garden Interactive 	Cost Maintenance needed	• Veranu (2018)
49	Ecological target type determined	0,6	• Targeted design possible		• RPS (2018)
72	Reduced parking norm	0,6	 More usable space Less cars, thus less damaging trips Possible in combinations with sharing cars 	 Increase of construction costs with 10% Overcrowded parking's in Voorhout Legislation for parking norms must be met 	 Van der Burg (2018) Anderson, Braun Thörn, Gomér & Mandell (2015)
79	Access to public transport	0,6	 Stimulate walking to and from public transport, and thus health Reduce damaging emissions 	• Communication with transport company needed: administrative and time costs	• International well building institute (2017)
96	Public toilet available, possibly in community Centre	0,6	• Stimulate biodiversity	• Limited choice in flora and fauna	• RPS (2018)
99	Long term budget and look at the long-term investments	0,6	 Costs and benefits during life time are known Benefits during life time can be very different than in construction 	 Estimations can be wrong Assumptions are made 	• Gaasbeek (2018) • Aaron (2014)
7	Pipe length reduction of heating and ventilation systems	0,5	 Reduce energy loss Reduce material needed 	• Costs for movement of obstacles	• Kennis Centrum Duurzaam bouwen (2018)
11	Surface water heating	0,5	 Clean heating 'Warm' water always available Works with low water temperature Financial valuable with more than 50 buildings and very valuable with more than 100 building Colder water: 	 Limited by low temperature Requirements water pump to prevent freezing Filters needed to prevent waist in the pumps Maintenance needed Risk for ecology impact 	 Van der Burg (2018) Kodi (2018) Kleiwegt, van Opstall & Budding (2017) Deltares (2011) de Ruijter (2012)

			•Less algae blooms, which causes more oxygen in the water and thus better ecological circumstances.	 Earned back in 25-30 year Investment costs: +/- 250 EUR/KWth 		
73	(Electric) Car sharing (in collaboration with companies)	0,5	 Efficient car use Less parking space needed Avoid second cars for households Cars can be electric, at least fuel-efficient 	 Enough cars needed to meet question in peak hours Electric cars need loading time It may stimulate car use for people that normally do not drive Less costs for insurance, depreciation and maintenance Planning needed for usage 	 Van der Burg (2018) De Kersentuin (2018) Profita (2015) 	
76	Safe intersections	0,5	 Less usage of space Feeling of comfort Predictable road usage Prevent unintended road use 	 Investment costs Safety check consumes time Regulations 	• Rijkswaterstaat (2018) • Wegman(1998)	
88	Community gardens	0,5	 Less garden space needed per person Large garden provides comfort Less maintenance Less trips taken Guaranteed water infiltration possible with unpaved parts 	 Less privacy Organization needed Dependent neighbours on maintenance Vandalism needs to be prevented 	 Van der Burg (2018) De Kersentuin (2018) Nancy (2013) MuConsult (2000) 	
89	Community centre as a central meeting place and to organise activities, such as cooking, community eating, tv watching, yoga, drama class, a drink, etc,	0,5	 Social cohesion Enough room to organise parties or sports Less heating needed Less material and stuff needed 	Investment costsLand take	 Vereniging de Buitenkans (2018) Van der Burg (2018) 	
105	Recyclable products	0,5	• Recycling minimizes pollution	Capital costsRecycling costsenergy	 RPS (2018) Rinkesh (2018) Josephson (2018) 	

			 Reduce extraction of raw materials: conserve natural resources Less waste Reduction of energy consumption in processing of raw materials 	• Recycled products are not always durable or recyclable	
80	Shared working space	0,4	 Work outside home Less distractions Less travelled kilometres Flexible work option Social cohesion Less travel costs 	 Distractions available Competition possible May close after work hours Space needed in the neighbourhood 	• Van der Burg (2018) • Harris (2017)
12	Geothermal heating	0,3	 Environmental friendly Geothermal reservoirs are renewable, because they are naturally replenished Heating and cooling possible Comfortable heating Flexible home layout No costs fluctuations, stable electricity prices (Stable costs: 4.267.656 €/MWth, Production Costs: 0.041 €/kWh th) Soil offers possibilities in Voorhout Energy generation: 7.000 MWh /MWe 	 High investment costs Adapted heating for existing homes needed Risk of soil freckling Managing of reservoirs needed 	 Van der Burg (2018) Gemeente Rijswijk (2017) Maehlum (2018) Wielders & Scholten (2016)
98	Art	0,3	 Stimulate well- being Provide happiness Possibly provide education 	• Space needed	• International well building institute (2017)

13 Compressed air for 0,1 underground heat storage	 cooling Half the costs of competing battery technologies More capacity 	needed • High investment	 Van der Burg (2018) Patel (2017) Trouw (2014)
--	--	-----------------------------	---

For 104 measures the MCA score, advantages, disadvantages and source are shown. All the measures have a positive score in the MCA. This was to be expected, because all the considered measures are meant to be sustainable. Measures that scored high on several SPIs and sustainable dimensions received the highest score and measures that scored low on one SPI received the lowest score. In Table 4.3. is seen that most measures, 63, have a score that is expected to be advantages, then 39 measures are possibly advantageous and only 2 measures are very advantageous.

TABLE 4.3 DIVISION OF MEASURES PER MCA SCORE

Measure total sustainability score	Interpretation	Number
$2 \leq$ sustainability score ≤ 3	Very advantageous, these measures should be	2
	implemented	
$1 \leq$ sustainability score < 2	Expected to be advantageous, however effects of	63
	these measures should be reconsidered.	
$0 \leq$ sustainability score < 1	Possibly advantageous, however the effects of these	39
	measures are very unsure and further feasibility	
	studies must be done.	
$-3 \leq$ sustainability score < 0	Disadvantageous, these measures are not expected	0
	to be feasible and are not further considered.	

Green gardens and accessible daylight received a score of 2. This is because green gardens do not only influence the water infiltration, but also the material usage and flora and fauna in a positive way. The only negativity is that maintenance in the garden is needed. Accessible daylight does not have large drawbacks, but it is relatively easy to take into account, it saves electricity and it stimulates well-being and health.

Geothermal heating, art and compressed air for heat storage score 0.3 or lower in the MCA. For geothermal heating and compressed air this is, because there is little known about it and sources were contradictive. Art scored low, because it only influences the well-being of some-people that like the art, but on other aspects it has non or even a negative effect.

Measures for the buildings to combine with the environment are listed in Table 4.2. Measures that are relevant for building design, but irrelevant for the spatial design are listed in Table D.1 in Appendix D. These measures are not further considered during this research, because they are not relevant for the architects of the area. They are given as advice for consideration in the design process of the buildings.

This chapter provides the recommended measures coupled to ambitions, to give an answer to sub-question 3:

Sub-question 3: At what ambitionlevel in the ambitionwebtool do the measures fit and which measures are thus fitting within the different scenarios for Boekhorst??

5.1 AMBITION REFLECTION

The ambitions as created chapter 3 are reflected and reconsidered in the ambitionwebtool at the same time with the coupling of the feasible measures from chapter 4. With the use of the ambitionwebtool is examined if the ambitions as determined in chapter 3 are achievable and if it is possible to connect measures to the ambitionlevel.

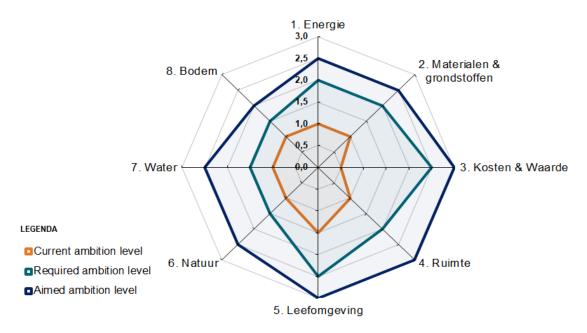


FIGURE 5.1 RESULT OF THE AMBITIONWEBTOOL FOR BOEKHORST

The new version of the ambitionweb for Boekhorst is visualized in Figure 5.1. All the goals per scenario are too extensive too list, but paragraph 5.1.1 discusses each sustainability theme, with the sub-themes to which the requirements belong. The ambitionwebtool shows the themes written in Dutch as can be seen in Figure 5.1. To make the figures from the ambitionwebtool understandable for English readers, the translation of all the themes is given in the 'table of theme translations'. The themes can be looked up based on their number.

5.1.1 AMBITIONS FOR EACH SUSTAINABILITY THEME

All the earlier mentioned themes in the ambitionweb have sub-themes. In the ambitionwebtool the ambitionambitionlevels for each sub-theme as mentioned are visualized in a theme-ambitionweb. For example, energy is a theme shown in Figure 5.1. The ambitionlevel for energy is determined based on several sub themes shown in Figure 5.2. One sub-theme here is for example 1.1. Energy consumption during use. For all the three scenarios in the ambitionweb is determined which ambitionlevel must met on the sub-themes. With these sub-themes the overall ambitionlevel is determined. Figure 5.2, Figure 5.3, Figure 5.4, Figure 5.5, Figure 5.6, Figure 5.7, Figure 5.8 and Figure 5.9 all use the legend from Figure 5.1.

ENERGY

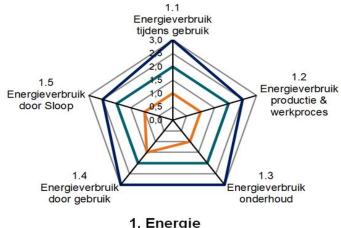
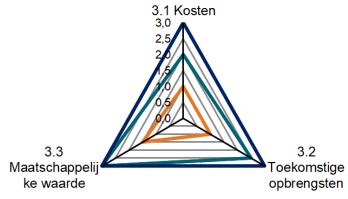

In Figure 5.2, is visible that for scenario 2 all the subthemes should be focused on evenly. Energy consumption by usage is what is already focused on most, because here the current ambitionlevel is 1,5 instead of 1. This is also what the aimed ambitionlevel scenario focuses on most, together with energy consumption during usage and energy consumption by maintenance. Energy consumption by production and demolition is also important, but this is focussed on less.

FIGURE 5.3 MATERIALS AND RAW MATERIALS AMBITIONWEB FOR BOEKHORST

COSTS AND VALUE


The ambitionweb for costs and value is shown in Figure 5.4. For the theme costs and value, the social value is seen as very important for Boekhorst. The social value must be as high as possible in the required and aimed ambitionlevels, social value must reach ambitionlevel 3. For the future required revenues, the value is 2,5. This means that adaptions are easy to make in the design. Costs are important, so assessment must be made to see where improvements are possible.

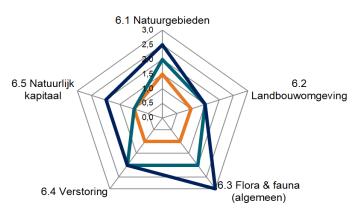
1. Energie FIGURE 5.2 ENERGY AMBITIONWEB FOR BOEKHORST

MATERIALS AND RAW MATERIALS

The ambitionweb for materials is shown in Figure 5.3. For materials the general design, materials origin and waste by demolition are most important. The amount of material and environmental impact of materials are also important, but a little less than the earlier mentioned sub-themes. Renewable materials are focussed on less for Boekhorst, since the developers of Boekhorst want to work with materials they know and there are less opportunities for renewable materials on the scale of the urban estate.

3. Kosten & Waarde

FIGURE 5.4 COSTS AND VALUE AMBITIONWEB FOR BOEKHORST



4. Ruimte

FIGURE 5.5 SPACE AMBITIONWEB FOR BOEKHORST

LIVING ENVIRONMENT

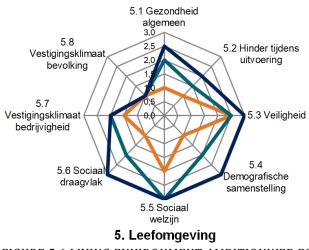
The sub-themes of living environment have scores that lie very far apart as can be seen in Figure 5.6. Health general does not have a score of 3, because the area becomes less healthy than the current situation. Nuisance during the execution is hard to prevent. For the safety, are already a lot of measures implemented, such as enough lighting, visibility of spaces and traffic safety. Social health is required in ambition scenarios 2 and 3. Social health is stimulated by shared places in the environment and activity spaces. Business climate activity is less important for Boekhorst and not really considered, although the area is possibly made attractive by shared working spaces and recreation possibilities in the environment. The ambitionwebtool focuses on the ability to reach work and this is not something that is focussed on in this project.

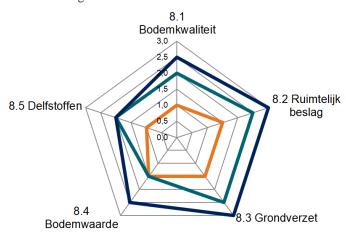
6. Natuur

FIGURE 5.7 NATURE AMBITIONWEB FOR BOEKHORST

SPACE

Space is an extensive theme, with a lot of subthemes. In Figure 5.5 is visible that the required ambitionlevel on all the sub-themes is 2. On most sub-themes the aimed ambitionlevel is 3. However, on multiple use of space / multifunctionality and the robustness of the mobility system the score is lower. The robustness of the mobility system does not have a score of 3, because there is room for new mobility inventions such as shared cars. Inventions like these, provide an uncertainty in the predictability of the mobility system.




FIGURE 5.6 LIVING ENVIRONMENT AMBITIONWEB FOR BOEKHORST

NATURE

The ambitionwebtool for nature is shown in Figure 5.7. For nature is in the current plan mostly focussed on nature areas. This is seen as important, but since a new build are is build current nature is disturbed and changed. Only compensation and stimulation can take place. Agricultural environment is not really considered in this project, but a score of 1,5 is given because flora and fauna are added for compensation to reduce negative agricultural effects. Total nuisance of nature cannot be totally prevented since it is a residential estate, but nuisance is prevented as much as possible. That is why a score of 2,0 is given in scenario 2 and 3. Flora and fauna (general) has a required score of 2,0 because nature fragmentation is prevented as much as possible and a lot of migration through water can happen. When the right flora and fauna is chosen and connected a score of 3 can be reached.

WATER

The ambitionweb for water is shown in Figure 5.8. For water, the quantity (flooding, safety) is already focussed on, so that ambitionlevel 2,0 is already reached in scenario 1. This is done with the plan to raise the area and with the provided room for water. There are even more possibilities to store water than what is already done. and safety is needed. That is why the required ambition is even higher than the current ambition. Water quality should be focused on more in both scenarios and water quantity against drought and shortages should be considered more as well.

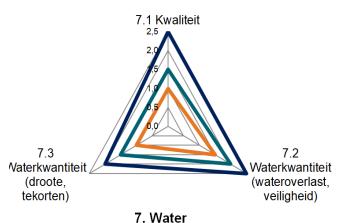


FIGURE 5.8 WATER AMBITIONWEB FOR BOEKHORST

SOIL

The ambitionweb for soil is shown in Figure 5.9. On the theme soil spatial attachment, earthmoving and soil value are already considered, because fragmentation is prevented, soil is raised and natural capital is considered. However, an even higher focus should be on spatial attachment, since the underground space should be used as optimal as possible to give room for WKO systems, cables and pipes. Earthmoving should be considered more as well, so that safety is guaranteed.

8. Bodem FIGURE 5.9 SOIL AMBITIONWEB FOR BOEKHORST

5.1.2 AMBITION CHANGE FOR EACH SCENARIO

Different ambitions are created based on interview in chapter 1 than with the ambitionwebtool. A comparison with the ambitionweb created in chapter 3, Figure 3.1, is made with the ambitionweb created in the ambitionwebtool, Figure 5.1.

Scenario 1 current ambitionlevel:

al itionweb ne	'gy	erials	stments	e	ng ronment	ire and ogy	and sr	ility
nitia mbit	nerg	Iate	nves	pace	ivin, nvir	latuı coloş	oil a ⁄ater	Iobi

TABLE 5.1 COMPARISON AMBITIONLEVELS INTERVIEW AND AMBITIONWEBTOOL SCENARIO 1

Initial ambitionw theme	Energy	Materials	Investmen	Space	Living environme	Nature and ecology	Soil and	water	Mobility
Ambitionwe b theme ambitionweb tool	Energy	Materials and raw materials	Cost and value	Space	Living environment	Nature	Water	Soil	
Interview score	1	1	1	2	2	2,5	1,5		2
Ambitionwebtool score	1	1	1 (0,5)	1,5	1	1	1	1	-

In the ambitionwebtool is determined which requirements are met already and thus which ambitionlevels are met. Ambitionlevel 1 is the minimum ambitionlevel that must be reached. Lower ambitionlevels cannot be chosen. This means that when ambitionlevel one is not reached in the current design of Boekhorst, the current ambitionlevel is nonetheless placed at ambitionlevel 1. Ambitionlevel 0 is not possible to fill in. In Figure 5.1 the ambitionlevel for cost and value is placed at 0,5. However this is because of a wrong script in the ambitionwebtool. The ambitionlevel for cost and value must be 1,0.

When the ambitions, determined in chapter 3, are assessed in the ambitionwebtool, the ambitionlevels change as shown in Table 5.1. The ambitionlevels of energy, materials and raw materials, costs and value and space are the same as in chapter 3. The ambitions for soil, water and living environment dropped 0,5 in ambitionlevel. This is because there are plans, but very little specific goals on the part of sustainability. The ambitionlevel for space dropped 1,0 in ambitionlevel, because the ecological zone is not further developed than the allocated space. Overall the current ambitionlevel is lower than first thought. This means that there are lots of possibilities to improve the current plan.

Scenario 2 Required ambitionlevel:

Initial ambitionweb theme	Energy	Materials	Investments	Space	Living environment	Nature and ecology	Soil and	water	Mobility
Ambitionwe b theme ambitionweb tool	Energy	Materials and raw materials	Cost and value	Space	Living environment	Nature	Water	Soil	
Initial score	2,5	2	2	2	2,5	3	2		2,5
Ambitionwebtool score	2	2	2,5	2	2,5	1,5	1,5	1,5	-

TABLE 5.2 COMPARISON AMBITIONLEVELS INTERVIEW AND AMBITIONWEBTOOL SCENARIO 2

The change in ambitions for the required ambitionlevel is shown in Table 5.2. For the required ambitionlevel, the ambitions for energy, materials, space and living environment stayed the same as in chapter 1. The ambitionlevel of costs and value rose with 0,5 points, from 2,0 to 2,5. This is because in the ambitionwebtool, educational value is a part of costs and value. This was not considered in the first ambitionweb. Boekhorst provides lots of possibilities for educational values from measures.

The ambitionlevel of nature dropped from 3,0 to 1,5. This is a significant drop of 1,5 in ambitionlevel. This is because Boekhorst is a newly developed estate, meaning that previous nature on the place where Boekhorst is build disappears and nuisance is created. Although nature is considered, compared to the old situation nuisance cannot be prevented.

Soil and water dropped 0,5 in ambitionlevel from 2,0 to 1,5. This because the prevention of soil and water pollution is not considered in this stage of the project yet.

Scenario 3 Aimed ambitionlevel:

Initial ambitionweb theme	Energy	Materials	Investments	Space	Living environment	Nature and ecology	Soil and	water	Mobility
Ambitionwe b theme ambitionweb tool	Energy	Materials and raw materials	Cost and value	Space	Living environment	Nature	Water	Soil	
Initial score	3	3	2,5	3	3	3	3		3
Ambitionwebtool score	2,5	2,5	3	3	3	2,5	2,5	2	-

TABLE 5.3 COMPARISON AMBITIONLEVELS INTERVIEW AND AMBITIONWEBTOOL SCENARIO 3

Table 5.3 shows the change in aimed ambitionlevel when the ambitionwebtool is used. The high ambitionlevel 3,0 set in chapter 3, proves to be possible for space and living environment. It turns out that also an ambitionlevel 3,0 is possible on costs and value. At first ambitionlevel 2,5 was aimed on this theme, but since ambitionlevel 3,0 seems quite easily achievable in the ambitionwebtool the new ambitionlevel for costs and value is set at 3,0.

The aimed ambitionlevel dropped with 0,5 in ambitionlevel from 3,0 to 2,5 for energy, materials and raw materials, nature and water. This is because it is unachievable to guarantee how all the measures work out in the future. Since future developments cannot be guaranteed, the ambitionlevels are set at 2,5 instead of 3,0.

For soil the ambitionlevel dropped 1 ambitionlevel from 3,0 to 2,0. This is because aspects as salinization and soil impoverishment are hard to predict and prevent.

5.2 AMBITION SCENARIOS

The specific goals for Boekhorst are fixed in the ambitionwebtool. The measures from chapter 4, are in the ambitionwebtool coupled to the goal belonging to the ambitionlevels. In this way it can be seen which measures help to meet the goals. Appendix F. shows for each measure the number of the sub-themes on which it has an influence.

Table 5.4 shows the measures that need to be implemented in scenario 2 and scenario 3 to meet the ambitions. Table 5.5 shows measures that are recommended to implement when the measures in Table 5.4 are not satisfying on the requirements in the model

In Table 5.4 can be seen that all the measures in scenario 2 are also recommended in scenario 3. This is, because scenario 3 is an surpassing scenario of scenario 2. The most goals to meet are surpassing as well. In scenario in scenario 2 for example, 40% of CO2 emissions are to be reduced and in scenario 3, 60% CO2 emissions are to be reduced. These requirements can be met with the same measures. However, when a reduction of 60% is needed, more measures are needed to implement than when a reduction of 40% is needed. Further research is needed to see if the goals are indeed satisfied with the proposed measures.

When the proposed measures are not satisfying, measures from Table 5.5 are needed. Table 5.5 shows several measures from which a choice can be made, these themes are classified on the themes they influence most. On space and living environment the measures often influence both, that is why these measures are listed together. WKO-systems are shown separately in Table 5.5 and some are shown in Table 5.4, because a study on which WKO systems are the best to implement in Boekhorst is needed, although a WKO-system is recommended.

In the ambitionwebtool, not all the goals could be met with the proposed measures. To get an insight in what needs to be done to meet all the goals,

Table 5.6 provides a list of recommendations. The recommendations in this list should be taken into account to meet the set ambitionlevels.

TABLE 5.4 MEASURES TO IMPLEMENT IN BOEKHORST FOR THE SCENARIOS

Scenario 2	Scenario 3
37. Green gardens without (much) pavement (2.0)	37. Green gardens without (much) pavement (2.0)
86. Daylight accessible (2.0)	86. Daylight accessible (2.0)
24. Waste management plan (1.9)	24. Waste management plan (1.9)
33. Verge cuttings recycling (1.8)	33. Verge cuttings recycling (1.8)
44. Environmental Impact Assessment (EIA) with	44. Environmental Impact Assessment (EIA) with
water and soil as subject of protection (1.8)	water and soil as subject of protection (1.8)
45. Green area prioritization in urban planning (1.8)	45. Green area prioritization in urban planning (1.8)
97. Adequate and uniform lighting conditions (1.7)	97. Adequate and uniform lighting conditions (1.7)
27. New objects made from cut down trees (1.6)	27. New objects made from cut down trees (1.6)
8. Windows on the south side of buildings with trees	8. Windows on the south side of buildings with trees
in front of them (1.4)	in front of them (1.4)
15. Smart Grid (1.5)	15. Smart Grid (1.5)
16. Domotica systems (1.5)	16. Domotica systems (1.5)
20. Materials passport (1.5)	20. Materials passport (1.5)
21. Material loss chart of production (1.5)	21. Material loss chart of production (1.5)
23. Life Cycle Analysis (LCA) (1.5)	23. Life Cycle Analysis (LCA) (1.5)
35. Water impact assessment (1.5)	35. Water impact assessment (1.5)
2. CO2 emissions calculation with DuboCalc or a	2. CO2 emissions calculation with DuboCalc or a
comparable program (1.4)	comparable program (1.4)
34. Water resource investigation (with a water-	34. Water resource investigation (with a water-
resource evaluation matrix) (1.4)	resource evaluation matrix) (1.4)
70. Design based on the environment (1.4)	70. Design based on the environment (1.4)
71. Flexible design plan to build question based, so	71. Flexible design plan to build question based, so
that space can be used different in the future (1.4)	that space can be used different in the future (1.4)
85. Different function options in the environment (1.4)	85. Different function options in the environment (1.4)
51. Management scheme for the maintaining of the	51. Management scheme for the maintaining of the
diversity of urban nature (1.4)	diversity of urban nature (1.4)
4. Efficient use of building tools/construction	4. Efficient use of building tools/construction
machines: switch them of when they are not needed	machines: switch them of when they are not needed
(1.3)	(1.3)
1. Feasibility study into renewable energy (1.2)	1. Feasibility study into renewable energy (1.2)
3. CO2 emission mapping of maintenance work, work	3. CO2 emission mapping of maintenance work, work
process and waste processing (1.2)	process and waste processing (1.2)
17. Led lighting/ lights with integrated solar panels	17. Led lighting/ lights with integrated solar panels
and battery (1.2)	and battery (1.2)
47. Demolition practice plan (1.2)	47. Demolition practice plan (1.2)
65. Streetscape greenery (1.2)	65. Streetscape greenery (1.2)
26. Stimulate walking (1.2)	26. Stimulate walking (1.2)
100. LCC for the planning, construction, usage and	100. LCC for the planning, construction, usage and
demolition phase (1.2)	demolition phase (1.2)
6. Prioritization of walking and cycling in the design	6. Prioritization of walking and cycling in the design
instead of car usage (1.1)	instead of car usage (1.1)
18. Multipurpose charging stations (with LED	18. Multipurpose charging stations (with LED
lighting) (1.1)	lighting) (1.1)

22 Material aniain substantiation (1.1)	22 Material aniain and stantistics (1.1)
22. Material origin substantiation (1.1)	22. Material origin substantiation (1.1)
25. Circular building materials (1.0)	25. Circular building materials (1.0)
36. Groundwater ambitionlevel analyzation (1.0)	36. Groundwater ambitionlevel analyzation (1.0)
57. Waste bins (1.0)	57. Waste bins (1.0)
61. Green and blue dry and wet spots realization (1.0)	61. Green and blue dry and wet spots realization (1.0)
69. Flora and fauna in relation to target species (1.0)	69. Flora and fauna in relation to target species (1.0)
83. Background noise map (1.0)	83. Background noise map (1.0)
101. measures for which subsidy is given (1.0)	101. measures for which subsidy is given (1.0)
14. Sun-/PV-panels (0.9)	14. Sun-/PV-panels (0.9)52. Noise nuisance prevention (0.9)
52. Noise nuisance prevention (0.9)60. Greenery diversity with native trees, shrubs,	60. Greenery diversity with native trees, shrubs,
perennials and seeds (0.9)	perennials and seeds (0.9)
56. Maintenance plan to promote ecological quality	56. Maintenance plan to promote ecological quality
(0.9)	(0.9)
48. Quickscan: Inventory the current flora & fauna	48. Quickscan: Inventory the current flora & fauna
(0.8)	(0.8)
59. Plant species that increase biodiversity and better	59. Plant species that increase biodiversity and better
the living environment (0.8)	the living environment (0.8)
67. Free migration stimulation (0.8)	67. Free migration stimulation (0.8)
87. Suitable trails for rollators, wheelchairs and	87. Suitable trails for rollators, wheelchairs and
mobility scoters (0.8)	mobility scoters (0.8)
92. Activity spaces (0.8)	92. Activity spaces (0.8)
50. Agricultural backgrounds with natural values	50. Agricultural backgrounds with natural values
inventory (0.7)	inventory (0.7)
103. Educational value through visible sustainable	103. Educational value through visible sustainable
measures (0.7)	measures (0.7)
49. Ecological target type determined (0.6)	49. Ecological target type determined (0.6)
99. Long term budget and look at the long-term	99. Long term budget and look at the long-term
investments (0.6)	investments (0.6)
76. Safe intersections (0.5)	76. Safe intersections (0.5)
105. Recyclable products (0.5)	105. Recyclable products (0.5)
	41. Water extraction area to capture clean rain water
	from roofs. Street water is guided away from the
	extraction area to wades to infiltrate in the soil (1.3)
	90. Virtual meeting place (1.3)
	93. Pet-friendly environment (1.3)
	43. Water storage for rain water to use in black (toilet)
	water systems (1.1) 64. Hedge with various native species (1.1)
	104. Room for co-creation with inhabitants (1.1)
	40. Separate sewer for grey and black water (1.0)66. Nature friendly banks (1.0)
	77. Fast cycling lanes to promote cycling to the centre
	of Voorhout (0.9)
	58. Variation in landscape (0.7)
	94. Outdoor playing and sport places (0.7)
	95. Sound barrier around road (0.7)
	73. Electric car sharing hub (0.5)
	, 5. Licente en sharing nue (0.5)

TABLE 5.5 MEASURES FOR WHEN THE PROVIDED MEASURES DO NOT SATISFY TH	IE GOALS

Concerning	Scenario 2	Scenario 3
Theme Water	30. Roadway of reinforced grass or water-	30. Roadway of reinforced grass or water-
	permeable paving (half open paving) (1.5)	permeable paving (half open paving) (1.5)
	91. Communal gardens for food production	84. Heat and cold warning mechanism and
	(1.5)	strategy plan to react (1.4)
	74. Small private garden, large community	38. Existing water enlargement (1.3)
	garden (1.4)	42. Helophyte filters to rinse grey
	84. Heat and cold warning mechanism and	wastewater from washing machines,
	strategy plan to react (1.4)41. Water extraction area to capture clean	showers, kitchen etc. (1.3)
	rain water from roofs. Street water is guided	31. Narrow walking strip in baked bricks (1.1)
	away from the extraction area to wades to	55. Garden layout support for residents (1.0)
	infiltrate in the soil (1.3)	63. Pond for water capture with open space
	38. Existing water enlargement (1.3)	to relax (1.0)
	42. Helophyte filters to rinse grey	
	wastewater from washing machines,	
	showers, kitchen etc. (1.3)	
	31. Narrow walking strip in baked bricks	
	(1.1)	
	43. Water storage for rain water to use in	
	black (toilet) water systems (1.1)	
	40. Separate sewer for grey and black water (1.0)	
	55. Garden layout support for residents (1.0)	
	63. Pond for water capture with open space	
	to relax (1.0)	
Soil	46. Reduction areas for soil consumption	46. Reduction areas for soil consumption
	(soil sealing) (1.0)	(soil sealing) (1.0)
Themes Living	88. Community gardens (1.7)	91. Communal gardens for food production
environment	91. Communal gardens for food production	(1.5)
and	(1.5)	74. Small private garden, large community
Space	93. Pet-friendly environment (1.3)	garden (1.4)
	28. Shared sheds containing tools that people need occasionally (1.2)	28. Shared sheds containing tools that people need occasionally (1.2)
	77. Fast cycling lanes to promote cycling to	19. Smart Energy Floor (0.6)
	the centre of Voorhout (0.9)	96. Public toilet (0.6)
	94. Outdoor playing and sport places (0.7)	89. Community centre as a central meeting
	95. Sound barrier around road (0.7)	place and to organise activities (0.5)
	79. Access to public transport (0.6)	80. Shared working space (0.4)
	89. Community centre as a central meeting	
	place and to organise activities (0.5)	
	80. Shared working space (0.4)	
	19. Smart Energy Floor (0.6)	
Theme Nature	54. Adoption green (1.5)64. Hedge with various native species (1.1)	54. Adoption green (1.5)62. Reed edge in water (1.0)
	62. Reed edge in water (1.0)	53. Compost plants (0.9)
	66. Nature friendly banks (1.0)	68. Bee strips (0.8)
	53. Compost plants (0.9)	00. Dec sulps (0.0)

Theme Energy	18. Multipurpose charging stations with	75. Demountable building (1.4)
	LED lighting (1.1)	81. Sharing bikes (1.1)
	4.Fuel/energy-efficient construction and	82. Aesthetic signs (1.0)
	machinery (1.0)	29. Smart led lighting to show half hardened
	7. Pipe length reduction of heating and	parking spots (0.8)
	ventilation systems (0.5)	78. Bicycle parking spots (0.7)
		72. Reduced parking norm (0.6)
		79. Access to public transport (0.6)
		7. Pipe length reduction of heating and
		ventilation systems (0.5)
WKO	8. Asphalt heating (1.0)	9. Asphalt heating (1.0)
	10. Riothermia: extract heat from waste	10. Riothermia: extract heat from waste
	water in the sewerage system (0.6)	water in the sewerage system (0.6)
	11. Surface water heating (0.5)	11. Surface water heating (0.5)
	12. Geothermal heating (0.3)	12. Geothermal heating (0.3)

TABLE 5.6 RECOMMENDED MEASURES TO MEET THE AMBITIONS

Recomm	endations for scenario 2 and scenario 3
	Energy
•	Implement measures to reduce CO2 during production, delivery and work process (RPS, 2018)
•	Instead of DuboCalc SimaPro can be used for an LCA (Voorn, 2018)
•	Less to- and back- trips (Movares, 2016)
•	Buy materials as close as possible (Movares, 2016)
•	Lower friction resistance in roads (Movares, 2016)
•	Waste processing/Material re-usage as close as possible (RPS, 2018)
•	Calculate the expected energy consumption, so expectations can be made about the needed
	generation of energy (RPS, 2018)
	Materials
•	Inventory of materials is needed to create a waste management plan (RPS, 2018)
	Cost and value
•	Visible measures are needed for eduction in material, biodiversity, energy and in recreational
	space (RPS, 2018)
	Space
•	Assess the experiential value of the area (RPS, 2018)
•	Implement measures that have a positive effect on the experiential value (RPS, 2018)
•	Assess the use value of the area (RPS, 2018)
•	Implement measures that have a positive effect on the use value (RPS, 2018)
•	Assess the future value of the area (RPS, 2018)
•	Implement measures that have a positive effect on the future value. (RPS, 2018)
•	Assess the current use value of the area (RPS, 2018)
•	Asses the changes to use space effectively (RPS, 2018)
•	Asses the accessibility with surrounding area's (RPS, 2018)
•	Asses travel the reliability and predictability of the mobility system (RPS, 2018)
•	Assess the effects of infrastructure (RPS, 2018)
•	Assess the connectivity and accessibility of the most important facilities (RPS, 2018)
•	Assess the future mobility developments for at least 25 years. (RPS, 2018)
	Living environment
•	Asses the effects of the project on air quality in the plan area (RPS, 2018)
•	Greenery to capture particulate matter (PM) (Kokon, 2018)
•	Assess the ambient radiation and any radiation effects of the project (RPS, 2018)

- Assess the current background noise (RPS, 2018)
- Assess the future background nois (RPS, 2018)
- Assess heat stress (RPS, 2018)
- Assess soil quality and safety (RPS, 2018)
- Carry out soil research (milieu centraal, 2018)
- Rinse the soil by soil remediation (milieu centraal, 2018)
- Map out current propulsion possibilities of non-drivers and cyclists (RPS, 2018)
- Create a maintenance plan for cycling- and walking paths (RPS, 2018)
- Implement recreational facilities for elderly and disabled (RPS, 2018)
- Assess the vibration effects of the project (RPS, 2018)
- Monitor risk locations of vibration effects (RPS, 2018)
- Assess light disturbance of the project (RPS, 2018)
- Prevent traffic disturbance during the construction phase (RPS, 2018)
- Provide measures for roadblock and detour when needed (RPS, 2018)
- Reduce whirling dust (RPS, 2018)
- Take preventive measures to prevent flooding during the construction phase (RPS, 2018)
- Assess if social safety is provided enough (RPS, 2018)
- Look at possibilities for green gulfs in traffic (Crow, 2018)
- Assess and reduce environmental risks (RPS, 2018)
- Communicate environmental risks with the residents (RPS, 2018)
- Keep the environmental risks within the legal norms (RPS, 2018)
- Assess the demographic formation of the area (RPS, 2018)
- Assess the social well-being in the area (RPS, 2018)
- Assess the social support for the project (RPS, 2018)

Nature

- Insights in estates own threated, protected flora and fauna (RPS, 2018)
- Provide nature and ecological compensating measures during construction (RPS, 2018)
- Inventory the needed area maintenance (RPS, 2018)
- Assess how human usage has a negative impact on the areas nature and ecology. (RPS, 2018)
- Maintain insights in the natural capital (RPS, 2018)

Water

- Water quality is assessed.
- Provide groundwater quality, so that the water is at least suitable as process water. (RPS, 2018)
- Assess the soil water quality. (RPS, 2018)
- Possibly provide soil and water rinsing. (RPS, 2018)
- Assess the salinization of the area. (RPS, 2018)
- Asses the ecological water quality. (RPS, 2018)
- Implement measures to improve the ecological water quality. (RPS, 2018)
- Assess the diffuse contamination. (RPS, 2018)
- Assess the 'point contamination' of the area (RPS, 2018)
- Assess the water ground ambitionlevel. (RPS, 2018)
- Assess shelter possibilities and exits in case of flooding. (RPS, 2018)
- Assess the total drainage system of the area. (RPS, 2018)
- Assess the infiltration ability of the soil (k-value). (RPS, 2018)
- Assess freshwater supply. (RPS, 2018)
- Assess the moisture content of the soil and the project effects on possible desiccation. (RPS, 2018)
- Regulate the groundwater ambitionlevel. (RPS, 2018)
- Make the chemical soil quality transparent by use of the risk toolbox. (RPS, 2018)
- Limit environmental risks, by limiting bad soil quality. (RPS, 2018)
- Assess the microbiological soil quality. (RPS, 2018)
- Assess physical properties and concentrations of minerals / nutrients in the soil. (RPS, 2018)

Soil

- Assess the erosion possibility of the soil. (RPS, 2018)
- Assess the amount of nutrients and the ability of the soil to retain them (risk of impoverishment). (RPS, 2018)
- Assess the soil density and the effects of the project on soil density. (RPS, 2018)
- Assess the physical power on the soil. (RPS, 2018)
- Assess the diffuse contamination. (RPS, 2018)
- Assess the soil subsidence risk. (RPS, 2018)
- Limit soil subsidence. (RPS, 2018)
- Limit soil contaminations (RPS, 2018)
- Assess the underground infrastructure. (RPS, 2018)
- Assess the possibilities for hot/cold networks. (RPS, 2018)
- Align the soil so that hot/cold networks are possible. (RPS, 2018)
- Assess the environmental fragmentation. (RPS, 2018)
- Assess the effects of earthmoving on biodiversity. (RPS, 2018)
- Assess flawed explosives in the soil. (RPS, 2018)
- Limit the risks of flawed explosives to a minimum. (RPS, 2018)
- Assess the transport movement by earthmoving. (RPS, 2018)
- Assess the important landscape forms or natural variation in geology, typical of the area. (RPS, 2018)
- Assess the archaeological and cultural-historical soil value. (RPS, 2018)
- Assess the effects of delving on the geological values of the area. (RPS, 2018)

Recommendations only for scenario 3

Costs and value

- Co-creation with start-ups is recommended (RPS, 2018)
- Space
- Historical research soil contamination (milieu centraal, 2018)
- Create a traffic plan that takes into account issues such as peak movements, efficiency and local residents. (RPS, 2018)

Nature

• Habitat/ecological conditions connect flawlessly to local, protected and endangered flora and fauna. (RPS, 2018)

Water

- Provide groundwater quality, so that the water is suitable as drinking water. (RPS, 2018)
- Block shifting of water pollution from the plan area to the outside. (RPS, 2018)
- Provide flexible water ambitionlevel management. (RPS, 2018)
- Implement at least one measure to prevent salinization (RPS, 2018)
- Provide an emergency plan, so that everyone can leave the area safe in case of flooding. (RPS, 2018)
- Regulate the groundwater ambitionlevel so that it is always round its optimum. (RPS, 2018) Soil
- Limit soil contamination to 50% below the norms.
- Take future changes into account when designing the underground infrastructure. (RPS, 2018)

In this research an answer is sought to the question: 'Which measures can be implemented in the spatial design of Boekhorst, so that the sustainable ambitions are met?'

To find the right measures for Boekhorst first the ambitions are determined in an interview. In this interview the current plan was assessed as scenario 1: current sustainability ambitionlevel. Apart from the assessment the ambitions for Boekhorst are set. A required ambitionlevel is created in scenario 2 and an aimed ambitionlevel is created in scenario 3. It became clear that the aimed ambitions were very high. Boekhorst is aimed to be as sustainable as possible. Therefore, the aimed ambitionlevel is as high as possible and the required ambitionlevels are also high, but lower than the aimed ambitionlevel.

After the ambitions are determined measures fitting the ambitions are proposed. With a multi-criteria analysis is found how feasible these measures are. 2 measures are to be implemented. For 63 measures, expected to be advantageous further research is recommended before implementation and for and 39 possibly advantageous measures, further research is needed.

Based on their score the measures are coupled to the ambition scenarios in the ambitionwebtool. With a reflection of ambitions in the ambitionwebtool became clear that on specific aspects the ambitions changed. The actual ambitions for Boekhorst are lower than first thought. This is because, some goals in the ambitionwebtool cannot be met.

With the coupling of measures to the ambitions requirements, ambition scenarios became measure scenarios as well. The measure scenarios as shown in Table 5.4 and Table 5.5 and Table 5.6 are the result of this research. The measures listed in Table 5.4 must be implemented to meet the set ambitions. For the measures in Table 5.5 further research is needed to see if they are desired and the recommendations in Table 5.6 have to be considered to meet the ambitions for Boekhorst.

7 DISCUSSION

This research used several methods. Firstly, interviews are done to gather measures. The outcomes of these interviews are validated with literature research. All the measures found have several sources, which makes most of the advantages and disadvantages in the measure list reliable. However, sometimes sources gave different information. In the cases where sources did not match, it concerned measures that are little implemented. Since these measures are little implemented, little information is available. This gives uncertainty in advantages and disadvantages. This uncertainty is mentioned in the column disadvantages in Table 4.2.

After the measures are found a multi-criteria analysis is conducted on the measures. The measures that had an uncertainty in their advantages and disadvantages got a lower score on the SPI 'required skills and knowledge' since little knowledge is available.

The multi-criteria is used to roughly select measures on their sustainability influence. The expected outcome was that all the measures would be sustainable, which was the case. The selection with a multi criteria is very rough, because scores of measures on indicators are sometimes given with little information. For example, when it is only known that measures will need maintenance, but it is not known how much the maintenance costs or over how many years maintenance needs to be done. In the MCA a lot of assumptions are made. The MCA would be more precise when a performance matrix with the same indicators, exact costs will be mentioned here for example and then scores are added based on the performance measures on an indicator (Department for Communities and Local Government, 2009). This method would be more precise, but also a lot more time consuming. Because of time constraints the decision is made to not make a performance matrix in this stage of the project. A decision matrix can be used for the assessment of scenarios when the developers of Boekhorst make choices on which measures to implement.

For the weight determination of the SPIs in the multi-criteria analysis, six experts are asked to rank the criteria. Based on these rankings the indicators are compared. It could be that when different experts were asked to give a ranking, different weights would be determined. This could be solved by asking more experts, so that one expert more or less does not change the SPI ranking. However, for Boekhorst there are only few experts, which makes it hard to determine the weights in a more reliable way.

Another option than ranking the SPIs would be, to let experts give scores from 0 to 3 or over another scale, based on importance. This may have caused another difference in SPI weights. However, it cannot be said which method is better.

In the measures that use a hot and cold network, were specifically a lot of uncertainties and contradictory literature. Therefore, a separate study to the feasibility of the different hot and cold networks is recommended.

In this study the ambitionwebtool is used for the first time to assess spatial designs. Because of this a lot of defects in the ambitionwebtool are noticed. First of all, some requirements used for the assessment of scenarios are vague. For example, to reach ambitionlevel 2 the requirement is '' Measures that have a significant positive influence on the usage value in the area are taken.'' And to reach ambitionlevel 3 the requirement to meet is ''Measures that have the highest possible positive influence on the usage value in the area are taken.''. Since it is unknown where the margin lies between a significant positive influence and the highest possible influence it is hard to determine which measures to place where.

Several debatable requirements should be reassessed in the ambitionwebtool. To reach ambitionlevel 2 on the subtheme experiential value, the requirement is ''50% of the defined measures are taken'' and when for the accomplishment of ambitionlevel 3 the requirement is '' 100% of the defined measures are taken''. It is unclear what the defined measures are. Sometimes it might even be better to only implement 50% of the measures when these already accomplish all the wanted effects. In that case the other 50% would be unnecessary and thus costly. Like these, a lot of requirements also have a large difference in percentages that have to be reached between different ambitionlevels.

Secondly, the ambitionlevels coupled to requirements are not always right. Sometimes there were missing requirements at ambitionlevel 3, which made it only possible to reach ambitionlevel 2 on certain themes. This has an influence on the ambitionlevel of the sub-theme and it can also influence the ambitionlevel on the main theme in the ambitionweb. Another problem for the determination of ambitionlevels is that on some sub-themes the ambitionlevels are determined by a sum of several requirements. These requirements form a score of 3 together. In some cases, there were only two requirements that did not belong to ambitionlevel3, but when they are both satisfied, ambitionlevel 3 is reached anyway.

In the ambitionweb it is required that ambitionlevel 1 must always be reached. Therefore, even when no requirements are satisfied, ambitionlevel one is reached. An exception to this is when the ambitionlevel is determined by the sum of several requirements. In these cases, an ambitionlevel of 0 is possible. This is also why cost and value got a score of 0,5 in the current sustainability ambitionlevel scenario.

For the assessment of the current sustainability scenario it was a problem that ambitionlevel 1 must always be reached. This was, because in the ambitionwebtool it was filled in that requirements at ambitionlevel 1 where met, while they were not met. In this way it cannot become clear on which themes the legal level is not met yet. This also leads to the third defect of the ambitionwebtool, which is that sometimes to reach ambitionlevel 1 nothing needed to be done and sometimes, to reach ambitionlevel 1, measures that go beyond legal standards had to be taken. Since level 1 must always be reached, level 1 should not contain requirements that exceed the legislation.

Apart from ambitionlevel 1, sometimes ambitionlevel 3 is unrealistic. One requirement for example mentions that all the material used in the project is fully renewable. Requirements like these are at the moment of writing unrealistic for a whole residential estate. But not only requirements like these are unrealistic. Sometimes ambitionlevel 3 contains requirements that mention that an improvement of the current situation has to be made. This is not possible for new housing estates, for example in nuisance.

A fourth default of the ambitionweb is that the same requirements are placed in one theme under the different subthemes. This makes that these double mentioned requirements have a large influence on the main theme they belong to. This is because the score they help to reach on the sub-themes form the score on the main theme together with other sub-themes. This does not have to be a problem, if these requirements indeed have a large influence on all these sub-themes. Since this may mean that they are very important, but when they are only of small importance on the sub-themes their large effects are a problem.

Another point to mention is that not for all the set goals of the ambitionwebtool measures are found and assessed. This is, because measures are first looked for and then assessed in the ambitionwebtool. A wrong method order is followed in this research. When the ambitionwebtool would have been available from the start, the goals to meet the measures could have been determined before measures were looked for. In this case measures would have been found for all the goals in the model and the recommendations would not be needed.

To sum it up uncertainties in this research exist, due to assumptions and a disputable model and when a likewise research is conducted, it is recommended to use the ambitionwebtool immediately after an interview with the client. In that way a more target search for measures can take place from the start.

8 **RECOMMENDATIONS**

This study provided a lot of measures the developers of Boekhorst may consider. The developers are recommended to look at the ambitionwebtool to see the goals combined to measures. When the MCA scores of measures is seen, in combination with the number of requirements the measure helps to meet, extra measures can be chosen based on what they would like to implement and promote the area with.

In the used model, the ambitionwebtool, is room for a lot of improvement. RPS is first of all recommended to make all the goals measurable. Secondly, the reliability can be improved when in between ambitionlevels, for example ambitionlevel 2,5, are added on goals with a large difference in scores. Thirdly, the goals should be made even and realistic. This means that ambitionlevel 1 should not be more than the legal requirements and ambitionlevel 3 should be possible to accomplish, although hard. Lastly, it would be convenient for the assessment of current plans to add a level of 0 to the ambitionwebtool for when legal requirements are not me.

At RPS, the ambitionwebtool is being further developed. The ambitionwebtool is being put in a web application instead of Excel. In this web application the measures can be added as advice or information on how the requirements belonging to the ambitionlevels can be met. In this web application it can help to give weights to requirements instead of sub-themes. In this way the influence of double requirements in a theme can be limited.

During the time of this research at RPS percentages in the ambitionwebtool were changed based on estimations of what is realistic. This was done on estimations by sustainability experts working on the ambitionwebtool. To get more certainty on the specifics of the requirements it is recommended to assess the goals of each theme with experts who have specific knowledge about the separate themes. They can give an advice on which measures and belonging percentages are realistic to meet per ambitionlevel.

When all these changes are made in the ambitionwebtool, the ambitionwebtool would be a good tool to use for the assessment of spatial designs.

- Aaron, H. J. (2014). *The Economics and Politics of Long-Term Budget Projections*. Brookings: Hutchings Center on Fiscal & Monetary Policy.
- Agentschap NL. (2010, June). *B6-Asfaltwermte, collectieve warmtepompen, collectief warmte/koude Netwerk.* Retrieved May 29, 2018, from Ministerie van Binnenlandse zaken en Koninkrijksrelatie: https://www.rvo.nl/sites/default/files/bijlagen/Concept%20B6%20asfaltwarmte.pdf
- Al-Oqla, F. M., & Omari, M. A. (2017). Sustainable Biocomposites: Challenges, Potential and Barriers for Development. *Green Energy and Technology DOI 10*, Springer International Publishing AG.
- Anderson, M., Braun Thörn, H., Gomér, Y., & Mandell, S. (2015). *The Effect of Minimum Parking Requirements on the Housing Stock*. Stockholm: Centre for Transport Studies.
- Azkorra, Z., Pérez, G., Coma, J., Cabeza, L., Bures, S., Álvaro, J., et al. (2015). Evaluation of green walls as a passive acoustic insulation system for buildings. *Applied Acoustics 89*, 46-56.
- Blavier. (2015, June 15). *Impact van de oriëntatie van de woning*. Retrieved May 28, 2018, from Blavier: https://www.blavier.be/nl/blog/impact-van-de-orientatie-van-de-woning/
- Boogaard, F., Jeurink, N., & Gels, J. (2006). *Wadi's*. Retrieved May 30, 2018, from Amsterdam Rainproof: https://www.rainproof.nl/toolbox/maatregelen/wadis
- Boyne, A. (2014, September 15). *The pros and cons of prefabricated homes*. Retrieved May 30, 2018, from houzz: https://www.houzz.com.au/ideabooks/32165194/list/the-pros-and-cons-of-prefabricated-homes
- Bradford, A., & Pappas, S. (2017, August 12). *Effects of Global Warming*. Retrieved July 12, 2018, from Live Science: https://www.livescience.com/37057-global-warming-effects.html
- Chesire West & Chester Council. (2018). *How to prevent nuisance during construction work.* Chester: Chesire West and Chester.
- Cobouw. (2018, May 20). *Start-up wil met plastic tegels sint-maarten opbouwen*. Retrieved from Cobouw: https://www.cobouw.nl/paginated?content_type%5B%5D=Vakmedianet%3A%3ANews Article&excludes=210076%2C210075%2C210074%2C210073%2C210072%2C210071
- Connolly, D., Mathiesen, B. V., & Lund, H. (2015). *Smart Energy Europe: From a Heat Roadmap to an Energy System Roadmap.* Aalborg Universitet.
- Crow. (2018). *Groene Golf Team*. Retrieved June 21, 2018, from kennisplatform Crow: https://www.crow.nl/thema-s/verkeersmanagement/groene-golf-team
- Cuéllar-Franca, R. M., & Azapagic, A. (2012). Environmental impacts of the UK residential sector: Life cycle assessment of houses. *Building and Environment 54*, 86-99.
- Darko, A., & Chan, A. P. (2016). Critical analysis of green building research trend in construction journals. *Habitat International 57*, 53-63.
- Darko, A., Zhang, C., & Chan, A. P. (2017). Drivers for green building: A review of empirical studies. *Habitat International 60*, 34-49.

- De Hobbitstee. (n.d.). *Circulaire Nieuwbouw*. Retrieved May 30, 2018, from De Hobbitstee: http://www.dehobbitstee.org/nieuwbouw
- de Jong, G. (2013, September 24). *Gft door de gootsteenvermaler: een slecht idee*. Retrieved May 30, 2018, from Vereniging Afvalbedrijven: https://www.verenigingafvalbedrijven.nl/nieuws/nieuwsbericht/gft-door-de-gootsteenvermaler-een-slecht-idee.html
- de Jong, P. (n.d.). *Sierbestrating: materialen en legverbanden*. Retrieved May 30, 2018, from tuintuin: http://tuintuin.nl/en/blogs/252/sierbestrating
- De Kersentuin. (2018). *Wonen in de kersentuin*. Retrieved May 29, 2018, from De Kersentuin: https://kersentuin.nl/index.php/wonen-in-de-Kersentuin-new/
- de Vree, J. (n.d.). *Halfverharding*. Retrieved May 30, 2018, from Joost de Vree: http://www.joostdevree.nl/shtmls/halfverharding.shtml
- de Vree, J. (n.d.). *pcm*. Retrieved May 29, 2018, from joostdevree: http://www.joostdevree.nl/shtmls/pcm.shtml
- Department for Communities and Local Government. (2009). *Multi-criteria analysis: a manual.* London: Crown.
- Do ityourself. (2018). *Green Construction Materials: Light Permitting Concrete*. Retrieved May 29, 2018, from do ityourself: https://www.doityourself.com/stry/green-construction-materials-light-permitting-concrete
- Dray, T. (2017, June 13). *Pros & Cons of Composting*. Retrieved May 30, 2018, from Livestrong: https://www.livestrong.com/article/193315-pros-cons-of-composting/
- Duel, H. (1990). *Helofytenfilters voor verbetering van de kwaliteit van het oppervlaktewater in het landelijk gebied, een programmeringsstudie.* Delft: TNO Studiecentrum voor Milieu-Onderszoek.
- Duurzaam GWW. (2018). *Duurzaam GWW*. Retrieved July 7, 2018, from Duurzaam GWW: https://www.duurzaamgww.nl/
- Duurzaam GWW. (2018). *Teksten Digitaal Ambitieweb, Toelichting ambitieniveaus voor 12 thema's.* Duurzaam GWW.
- Elkington, J. (1994). Enter the Triple Bottom line.
- Energy, U. D. (Director). (2013). What Is the Smart Grid [Motion Picture].
- EnergyPLAN (Director). (2016). Smart Heating Europe [Motion Picture].
- European Vacuum Drainage Systems. (n.d.). *Benefits of Waste Water Solutions*. Retrieved May 30, 2018, from European Vacuum Drainage Systems: http://www.evds.org.uk/solutions/waste-water-solutions/benefits
- Eva-Lanxmeer. (n.d.). *Infrastructuur*. Retrieved May 29, 2018, from Eva-Lanxmeer: http://www.eva-lanxmeer.nl/over/ontstaan/infrastructuur
- Framework Convention on Climate Change. (2015, December 11). *Adoption of the Paris agreement*. Retrieved July 7, 2018, from United Nations Framework Convention on Climate Change: https://unfccc.int/resource/docs/2015/cop21/eng/l09.pdf

- Gaasbeek, H. (2017). *Uitwerking workshop duurzaamheid ambitieweb oostelijke randweg de Lier.* Leerdam: RPS.
- Gaasbeek, H. (2018, May 17). Investeringsthema binnen het ambitieweb. (K. van der Spek, Interviewer)
- Gemeente Rijswijk. (2017, May 09). *Douche WTW*. Retrieved May 29, 2018, from Rijswijk Buiten: Een wijk vol nieuwe energie: https://www.rijswijkbuiten.nl/duurzaam/douche-wtw/
- Gemeente Rijswijk. (2017, May 09). *Warm tapwater*. Retrieved May 29, 2018, from Rijswijk Buiten: Een wijk vol nieuwe energie: https://www.rijswijkbuiten.nl/duurzaam/warmtapwater/
- Gemeente Rijswijk. (2017, May 09). *Warmte uit de bodem*. Retrieved May 29, 2018, from Rijswijk Buiten: Een wijk vol nieuwe energie: https://www.rijswijkbuiten.nl/duurzaam/warmteuit-de-bodem/
- Gemeente Teylingen. (2014). *Structuurvisie 2030, Gemeente Teylingen Duurzaam Bloeiend!* Teylingen: Gemeente Teylingen .
- Giovagnorio, I., & Chiri, G. M. (2016). The Environmental Dimension of Urban Design: A Point of View. In M. Ergen, *Sustainable Urbanization* (pp. 37-60). IntechOpen.
- GreenMatch. (2014, August 26). *Heat Pumps: 7 Advantages and Disadvantages*. Retrieved May 29, 2018, from Greenmatch: https://www.greenmatch.co.uk/blog/2014/08/heat-pumps-7-advantages-and-disadvantages
- GreenMatch. (2014, August 28). *Pros and Cons of Solar Energy; 10 advantages and disadvantages of solar power*. Retrieved Mai 22, 2018, from GreenMatch: https://www.greenmatch.co.uk/blog/2014/08/5-advantages-and-5-disadvantages-of-solar-energy
- Greenne. (n.d.). *The pros and Cons of Installing Solar Boiler Systems*. Retrieved May 29, 2018, from Greenne: http://www.greenne.com/the-pros-and-cons-of-installing-solar-boiler-systems/
- GreenSand. (n.d.). *Strooi mee tegen CO2*. Retrieved May 28, 2018, from greensand: http://www.greensand.nl/
- Gruis, V., Visscher, H., & Kleinhans, R. (2006). *Sustainable neighbourhood transformation.* Amsterdam: IOS Press BV.
- Harris, A. (2017, June 13). *What Are The Pos and Cons of Shared Office Space?* Retrieved May 30, 2018, from Rocket Space: https://www.rocketspace.com/tech-startups/what-are-the-pros-cons-of-shared-office-space
- Hellinga, C. (2018, May 23). Maatregelen voor duurzame nieuwbouwwijk Boekhorst. (K. van der Spek, Interviewer)
- Huber, S. (2012). Framework "Soils in spatial planning". Wien: URBAN SMS.
- Installatieprofs.nl. (2015, Novembre 03). *Kozijn met balansventialtie en warmteterugwinning*. Retrieved May 29, 2018, from https://www.installatieprofs.nl/nieuws/klimaat-enventilatie/ventilatie/kozijn-met-balansventilatie-en-warmteterugwinning

- International Institude for Environment and Development (IIED). (n.d.). *Profiles of Tools and Tactics for Environmental Mainstreaming.* London.
- International WELL Building Institute. (2017). *The WELL Community Standard.* New York: International WELL Building Institute pbc (IWBI).
- Jense, R. (2018, May 05). Workshop ambitieweb. (K. van der Spek, Interviewer)
- Josephson, A. (2018, May 21). *The Pros and Cons of Recycling*. Retrieved May 30, 2018, from Smartasset: https://smartasset.com/insights/the-pros-and-cons-of-recycling
- Kaliski, K., & Cowan, J. (2007). *Community and Regional Noise Mapping in the United States.* Vermont: Resource Systems Group Inc.
- Kamali, M., & Hewage, K. (2017). Development of performance criteria for sustainability evaluation of modular versus conventional construction methods. *Journal of Cleaner Production*, 3592-3606.
- Kenniscentrum Duurzaam Bouwen. (n.d.). *Kennis Centrum Duurzaam Bouwen.* Retrieved May 24, 2018, from http://www.kenniscentrumduurzaambouwen.nl/wp-content/uploads/2013/07/kdb_online.pdf
- Khanoussi, N. E. (2018, March 09). *Breda kiest voor vuilniswagens op waterstof*. Retrieved May 30, 2018, from Trouw: https://www.trouw.nl/samenleving/breda-kiest-voor-vuilniswagens-op-waterstof~a29891ef/
- Killian Water. (n.d.). *Helofytenfilters*. Retrieved May 30, 2018, from Kilian Water: http://www.kilianwater.nl/nl/helofytenfilters.html
- Kleiwegt, E., van Opstall, E., & Budding, B. (2017). *Thermische energie uit oppervlaktewater 35.* Amersfoort: Stowa.
- Kodi. (n.d.). *Oppervlaktewater als bronsysteem*. Retrieved May 29, 2018, from Kodi: http://www.kodi.nl/diensten/warmtepompsystemen/bronsystemen/oppervlaktewater/
- Kokon. (2016). Schetsontwerp Nieuw-Boekhorst, Voorhout. Rotterdam: Kokon.
- Kokon. (2018, June 19). Particulate matter. (K. van der Spek, Interviewer)
- LaMarco, N. (2018, May 18). *Pros & Cons of a Product Life Cycle*. Retrieved May 29, 2018, from Chron: http://smallbusiness.chron.com/pros-cons-product-life-cycle-11801.html
- Laminack, H. F. (2011, August 31). *Pros and cons of solar water heaters*. Retrieved May 29, 2018, from Proudgreenhome: https://www.proudgreenhome.com/blogs/pros-and-cons-of-solar-water-heaters/
- Lotteau, M., Yepez-Salmon, G., & Salmon, N. (2015). Environmental assessment of sustainable neighborhood projects through NEST, a decision support tool for early stage urban planning. *Procedia Engineering* (pp. 69-76). Elsevier.
- Madaster. (2017, September 29). *Madaster: Kadaster voor materialen voor iedereen vanaf nu beschikbaar*. Retrieved May 29, 2018, from Madaster: https://www.madaster.com/nl/pers/persberichten/madaster-kadaster-voor-materialen-voor-iedereen-vanaf-nu-beschikbaar

- Maehlum, M. A. (2018, May 16). *Geothermal Energy Pros and Cons*. Retrieved May 29, 2018, from energy informative: http://energyinformative.org/geothermal-energy-pros-and-cons/
- marsaki. (2018, May). *Bijzondere duurzame innovatie riothermie*. Retrieved May 29, 2018, from marsaki vastgoedadvies: https://www.marsaki.nl/bijzondere-duurzame-innovatie-riothermie-hollandiaplein-locatie-3-goes-west/
- McCLung-Logan . (2015). *Heavy Equipment fuel efficiency guide*. Retrieved May 29, 2018, from McClung-Logan : http://mcclung-logan.com/fuel-efficiency/fuel-efficiency-guide/
- milieu centraal . (2018). *Bodemverontreiniging*. Retrieved July 21, 2018, from Milieu Centraal: https://www.milieucentraal.nl/in-en-om-het-huis/gezondeleefomgeving/bodemverontreiniging/
- Milieu Centraal. (n.d.). *Infraroodpanelen voor verwarming*. Retrieved May 29, 2018, from Milieu Centraal : https://www.milieucentraal.nl/energie-besparen/energiezuinighuis/energiezuinig-verwarmen-en-warm-water/infraroodpanelen-voor-verwarming/
- Mortimer, R. J. (n.d.). *American Scientist*. Retrieved May 29, 2018, from Switching Colors with electricity: https://www.americanscientist.org/article/switching-colors-with-electricity

Movares. (2016). *Stappenplan voor CO2-reductie bij beheer en onderhoud*. Movares.

MuConsult. (2000). *Mobiliteit begint bij de woning*. Amersfoort: MuConsult B.V.

- Nancy. (2013, February 12). *Community Gardens: A Few Things to Consider*. Retrieved May 30, 2018, from Livin' in the Green: http://livininthegreen.blogspot.com/2013/02/community-gardens-few-things-to-consider.html
- New Marble. (n.d.). *New Marble made from old plastic bottles*. Retrieved May 29, 2018, from New Marble: http://www.newmarble.nl/
- Niemelä, J. (1999). Ecology and urban planning. *Biodiversity and Conservation 8*, 119-131.
- NL Greenlabel. (n.d.). *Cool Nature Park Hengelo*. Retrieved May 29, 2018, from NL Greenlabel: https://www.nlgreenlabel.nl/cool-nature-park/
- NL Greenlabel. (n.d.). *Grijs, groen & gelukkig*. Retrieved May 29, 2018, from NL Greenlabel: https://www.nlgreenlabel.nl/concepten/
- Novem. (1997). *Energiebesparing in verkeer en vervoer door ruimtelijke ordening.* Utrecht, The Netherlands.
- O'Hern, M., & Rindfleisch, A. (2008). *Customer Co-creation: A Typology and Research Agenda*. Winsconsin: WinsconsInnovation.
- One Smart Control. (n.d.). *Energie besparen met één druk op de knop*. Retrieved May 21, 2018, from One Smart Control: http://onesmartcontrol.com/functiesdomoticasysteem/energiebeheer/
- Oomen, C., van der Linden, J., van Haalen, J., & Hulsen, M. (2011). *Duurzaamheid in de brede school.* Utrecht: Oberon.
- Operatie Steenbreek. (n.d.). *Samen voor meer groen in de buurt*. Retrieved May 30, 2018, from Operatie Steenbreek: http://www.operatiesteenbreek.nl/

- OVO Energy. (n.d.). *Pros and cons of underfloor heating*. Retrieved May 29, 2018, from Ovo Energy: https://www.ovoenergy.com/guides/energy-guides/pros--cons-of-underfloorheating.html
- Patel, P. (2017, April 12). *Hydroster Is Building Underground Caverns for Affordable Compressed Air Energy Storage*. Retrieved May 29, 2018, from IEEE Spectrum: https://spectrum.ieee.org/energywise/energy/renewables/hydrostor-buildingunderground-caverns-for-affordable-compressed-air-energy-storage
- Profita, C. (2015, February 18). *The Pros And Cons Of Car-Sharing*. Retrieved May 30, 2018, from OPB: https://www.opb.org/news/blog/ecotrope/the-pros-and-cons-of-car-sharing/
- provincie Zuid-Holland. (2018, April 04). *visie ruimte en mobiliteit*. Retrieved April 04, 2018, from provincie Zuid-Holland: https://www.zuid-holland.nl/onderwerpen/ruimte/visieruimte/
- provincie Zuid-Holland. (2018, January 19). *Visie Ruimte en mobiliteit (geconsolideerd, in werking per 19 januari 2018)*. Retrieved April 04, 2018, from ruimtelijke plannen Zuid-Holland: https://ruimtelijkeplannen.zuid-holland.nl/VRM
- QwikSense. (2017, February 10). *Data driven building optimization by IoT and machine learning*. Retrieved May 29, 2018, from QwikSense: https://qwiksense.com/
- rebri. (n.d.). *Develop a Waste Management Plan*. Retrieved May 29, 2018, from Branz: https://www.branz.co.nz/cms_display.php?sn=106&st=1&pg=12526
- Renn, A. M. (2011, August 1). The Mark of a great city is in how it treats its ordinary spaces, not its special ones. Retrieved July 12, 2018, from Aaron Renn: http://www.urbanophile.com/2010/08/01/the-mark-of-a-great-city-is-in-how-ittreats-its-ordinary-spaces-not-its-special-ones/
- Rijksdienst voor Ondernemend Nederland. (2010). *WTW+ (EOS Korte Termijn)*. Retrieved May 29, 2018, from Rijksdienst voor Ondernemend Nederland: https://www.rvo.nl/subsidies-regelingen/projecten/wtw-eos-korte-termijn
- Rijkswaterstaat . (n.d.). *Vragenlijst*. Retrieved May 21, 2018, from Omgevingswijzer: https://www.omgevingswijzer.org/vragenlijst/
- Rinkesh. (n.d.). Advantages and Disadvantages of Recycling. Retrieved May 30, 2018, from Conserve Energy Future: https://www.conserve-energy-future.com/advantages-anddisadvantages-of-recycling.php
- Rinkesh. (n.d.). *Biomass Energy Pros and Cons*. Retrieved May 29, 2018, from Conserve Energy Future: https://www.conserve-energy-future.com/pros-and-cons-of-biomassenergy.php
- RPS. (2018, July 05). Ambitiewebtool. Delft, Zuid-Holland, Netherlands: RPS.

RPS. (2018, May 29). Ambitiewebtool 1.0. Delft.

Schenk, D. (2017, November 13). *nrc.nl*. Retrieved May 30, 2018, from Wijk in Nieuwegein draait straks op zonne-energie en regenwater: https://www.nrc.nl/nieuws/2017/11/13/wijk-in-nieuwegein-draait-straks-op-zonne-energie-en-regenwater-14005259-a1580997

- Schneider, W. J., Rickert, D. A., & Spieker, A. M. (1973). *Role of Water in Urban Planning and Management.* Washington: United States Department of the Interior.
- Siemens. (2018). *What is urban sustainability?* Retrieved July 07, 2018, from Siemens: https://www.siemens.co.uk/education/pool/teachers/crystal/downloads/what_is_urba n_sustainability_v1.pdf
- Simond, J. (2018, May 30). *Considering the Pros and Cons of Personal Budgeting*. Retrieved May 31, 2018, from The International Finance: http://www.theinternationalfinance.com/2012/08/considering-pros-and-cons-of-personal.html
- Spijker, J., Bakker, R., Ehlert, P., Elbersen, H., de Jong, J., & Zwart, K. (2013). *Toepassingsmogelijkheden voor natuur- en bermmaaisel.* Wageningen: Alterra Wageningen UR.
- Teade. (2018, April 03). *Composiet*. Retrieved May 30, 2018, from bewonen: https://bewonen.nl/kennisbank-badkamer/materialen-kleuren/composiet/
- Tesla. (n.d.). *Maak kennis met Powerwall, uw batterij voor thuis.* Retrieved May 29, 2018, from Powerwall: https://www.tesla.com/nl_NL/powerwall?redirect=no
- The World Commission on Environment and Development. (1987). Our Common Future, Chapter 2: Towards Sustainable Development. In *Our Common Future* (p. 41).
- TU Delft. (2010, September 13). 7. TU Delft: voedselrestenvermaler verbetering voor GFT-systeem. Retrieved May 31, 2018, from The Green Machine: https://www.thegreenmachine.nl/studies-onderzoeken/11-tu-delftvoedselrestenvermaler-verbetering-voor-gft-systeem.html
- United States Envionmental Protection Agency. (2011). *Improving Demolition Practices*. Office of Solid Waste and Emergency Response.
- University of Wisconsin Sustainable Management. (2018). *The Tripple Bottom Line*. Retrieved July 7, 2018, from University of Wisconsin sustainable management: https://sustain.wisconsin.edu/sustainability/triple-bottom-line/
- van der Burg, L. (2018, May 05). Duurzame maatregelen voor Boekhorst. (K. van der Spek, Interviewer)
- Vereniging Aardehuis. (n.d.). *Bouw van aardehuizen*. Retrieved May 29, 2018, from Vereniging Aardehuis: http://www.aardehuis.nl/nl/aardehuizen/het-project/bouw-vanaardehuizen
- Vereniging de Buitenkans. (2006). *Wijk en huizen*. Retrieved May 29, 2018, from Vereniging de Buitenkans: http://www.debuitenkans.nl/pages/wijk.php
- Voorma, M. (2016, August 24). *Energypaint*. Retrieved May 29, 2018, from nudge: https://www.nudge.nl/plans/born-be-green/plan/energypaint/
- Walsh. (2012, December 18). *Pros and cons of rammed earth*. Retrieved May 29, 2018, from Walsh: http://www.swalsh.com/blog/pros-and-cons-of-rammed-earth/bp6/
- Wegman, F. (1998). Sustainable road safety in the Netherlands; An overview. *Traffic Safety in the Future* (pp. 1-22). Leidschendam: SWOV Institute for Road Safety Research.

- Wetlantec. (n.d.). *Helofytenfilter*. Retrieved May 30, 2018, from Wetlantec: http://www.wetlantec.com/nl/helofytenfilter/
- Wichmann, B. (2014, December 17). *The pros and cons of smart grid technology*. Retrieved May 05, 2018, from Arttemia: http://artemia.com/the-pros-and-cons-of-smart-grid-technology/
- Woonderij Eos. (n.d.). *Achtergrond*. Retrieved May 30, 2018, from Woonderij Eos: http://www.woonderijeos.nl/achtergrond
- Younis, O., & Fahmy, S. (2018). *HEED: A Hybrid, Energy-Efficient, Distributed Clustering Approach* for Ad-hoc Sensor Networks. West Lafayette: Purdue University.
- Zielinska, M., & Ciesielski, A. (2017). Analysis of Transparent Concrete as an Innovative Material Used in Civil Engineering. *IOP Conference Series: Materials Science and Engineering 245* 022071. IOP Conference Series.
- Zospeum. (n.d.). *Zospeum building with daylight*. Retrieved May 30, 2018, from Zospeum: http://www.zospeum.com/

APPENDIX A. AMBITION THEMES OF DUURZAAM GWW

The ambitionweb as developed by Duurzaam GWW contains 12 themes with sub-themes:

- 1) Energy
 - a) Energy use and CO2 emissions
 - b) Energy production
- 2) Materials
 - a) Use of materials (circular, renewable, without risks for health and the environment)
 - b) Material production and construction
- 3) Water
 - a) Water quality (no water pollution)
 - b) Water quantity; drought, shortages
 - c) Water quantity; water safety and adaptive ability
- 4) Soil
 - a) Soil quality
 - b) Soil system
 - c) Archeology
- 5) Ecology
 - a) Biodiversity
 - b) Ecological structures
- 6) Space use
 - a) Fittings on unbuilt space
 - b) Adaptive power spatial layout
- 7) Spatial quality
 - Integration, spatial design:
 - a) Experience value (including cultural-historical values)
 - b) Usage value
 - c) Future value
- 8) Well-being
 - a) Health (air, sound, ...)
 - b) Nuisance (noise, light, vibrations)
 - c) Safety (various themes)
 - d) Other effects for living environment
- 9) Social relevance
 - a) Public support
 - b) Social involvement
 - c) Local knowledge
 - d) Social return
- 10) Accessibility
 - a) Accessibility (throughflow)
 - b) Infrasystem functionality
 - c) Adaptive power infrasystem
- 11) Investments
 - a) Costs
 - b) Yields (value)
 - c) Business climate
 - d) Employment, labour market
 - e) Area economy

APPENDIX B.1. SUSTAINABLE PERFORMANCE INDICATOR DEFINITIONS

TABLE B.1 ENVIRONMENTAL SPI DEFINITION BASED ON KAMALI & HEWAGE (2015)

Environmental Sustainability Performance	Description
Indicator	
Energy performance and efficiency strategies	Energy monitoring, minimizing space for
	heating/cooling, integrating daylight to reduce the
	need for electrical lighting, among others.
Water and wastewater efficiency strategies	Reducing the potable water consumption by reuse and
	recycling systems, water monitoring, among others.
Regional (local) materials	Using building materials and products which are
	extracted, processed and manufactured within the
	region.
Renewable materials	Using renewable materials to reduce the use and
	depletion of finite raw and non-renewable materials.
Waste management	Strategies for diverting waste from disposal in
	landfills and incineration facilities(Reuse, Recycling,
	etc.).
Greenhouse gas emissions	The amount of greenhouse gas emissions leading to
	global warming, ozone depletion, etc.
Site disruption and appropriate strategies	Promoting natural biodiversity (e.g., providing
	adequate open space, planning for storm water
	management, avoiding blocking fresh air or sunlight
	or natural waterways for adjacent developments, and
	so forth.
Renewable energy use	Reducing the negative impacts of non-renewable
	energy consumption by using renewable energy
	sources (e.g., solar).
Material consumption in construction	The amount of any product or natural resource used
	during the design and construction phase of the
	building.
Alternative transportation	Availability of public transportation access, cycling
	facilities, among others.
Heat stress efficiency strategies	Heat monitoring, provision of greenery for cooling,
	minimize dark surfaces that heat up.

TABLE B.2 ECONOMIC SPI DEFINITION BASED ON KAMALI & HEWAGE (2015)

Economic Sustainability Performance Indicator	Description
Design and construction time	Total duration of the measure design and construction (e.g., planning, manufacturing, installation, finishing, etc.)
Design and construction costs	Pre-construction and construction costs (e.g., coordination, drawings, materials, workforce, transportation, defect/damage to the product before final completion, etc.)

Operational costs	Costs of the measure operation during the usage phase.
Maintenance costs	Costs of repair and maintenance of the measure during
	the usage phase.
End of life costs	Costs of dismantling and waste treatment (recycling,
	disposal, etc.)
Durability of the measure	Specify durable and low-maintenance building
	materials and assemblies in order to have a measure
	with a long usable life leading to economic benefits.
Investment and related risks	The speed of return on loans or other investments and
	the associated risks.
Flexibility	Compatibility of the product and adaptability to
	accommodate substantial changes in the future at a
	lower cost (e.g., using fastening systems that allow for
	easy disassembly).
Required skills and knowledge	Ways of handling the management functions and
	procedures that are conducted during the design and
	construction of the measure.

TABLE B.3 SOCIAL SPI DEFINITION BASED ON KAMALI & HEWAGE (2015)

Social Sustainability Performance Indicator	Description
Health, comfort and well-being of residents	Health, comfort and well-being of the end users in the usage face of the spatial design (e.g., preventing air pollution)
Influence on the local economy	Influence on the region of construction (e.g., job market employment, workforce stability etc.)
Functionality and usability of the physical space	Usability of the physical space for engineering systems as well as future occupants (e.g., physical spans, openings, etc.)
Aesthetic options and beauty of the environment	Containing design features intended for human delight, spirit and place appropriate to its function, internal and external beauty and visual appearance.
Safety and security	Providing adequate measures and equipment that promote low risk, safe and secure use of the environment (e.g., fire/seismic resistance).
Community disturbance	Impacts of the construction activities on residents and surrounding local communities (e.g., construction noise and dust, traffic congestion, etc.)
Influence on local social development	Influence on culture, interaction of people and development of new local communities
Affordability	Ability to purchase the measure.
User acceptance and satisfaction	The ambitionlevel of residents and user satisfaction when interacting with the measure.
Neighbourhood accessibility and amenities	Proximity to local facilities (e.g., recreational centres, parks, etc.)
Educational value	Visibility and clarity in effects, so that residents and visitors of the neighbourhood see the effect of the sustainable measure.

APPENDIX B.2.1. SPI WEIGHT DETERMINATION

For each sustainability dimension (environmental, economic and social) in the MCA the same steps are taken.

SPI weight determination is done with the following steps:

1. Ranking of SPIs by experts

This ranking is determined with the help of six experts who are involved in the development of Boekhorst. The experts ranked the SPIs based on their importance. After experts ranked the SPIs the average score of each SPI is determined.

$$Average \ score \ = \frac{\sum_{i=SPI \ score \ given \ by \ expert_1}^{n=number \ of \ consulted \ expert_1}(score \ given \ by \ expert_i)}{n}$$

Because each sustainability dimension has a different number of SPIs, and thus a ranking reaching higher or lower, the SPI importance is converted from 0 to 1 with the following formula:

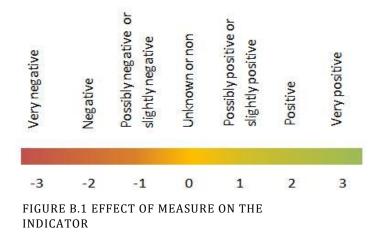
$$SPI importance_i = \frac{Average \ score_i}{Sum \ Average \ score}$$

2. Comparison of SPIs against each other in a matrix.

This is done in a table with the SPIs in a matrix plotted against each other. In this matrix the Importance score of the upper SPI in the horizontal row is divided with the importance score of the left SPI in the vertical row.

3. Normalization of the SPI comparison matrix

The SPI comparison matrix is normalized by use of the matrix of step 2. The matrix of step 2 is normalized by dividing the number in each box with the sum of the numbers in the vertical row of the SPI comparison matrix made at step 2.


4. SPI weight determination

The weight for each SPI is determined by taking the sum of all the normalized numbers in the horizontal column next to the each SPI. Then this sum is divided by the number of SPIs.

$$Weight SPI = \frac{\sum_{i=normalized SPI comparison 1}^{n} (normalized number_i)}{n}$$

APPENDIX B.2.2. SCORING THE MEASURES

In a table the measures are listed in the vertical row, with the SPIs in the horizontal row. Based on the measures advantages and disadvantages a score from -3 to 3 is given for the effect of the measure on the SPI. -3 means that the measure has a very negative effect on the indicator, 3 means that the measure has a very positive effect on the indicator. The meaning of each score from -3 to 3 is displayed in Figure B.1.

APPENDIX B.2.3. SUSTAINABLE DIMENSION WEIGHT DETERMINATION

The weights of the sustainable dimensions are determined by consulting the same experts as for the weight determination of the SPIs. This time the experts are asked to divide the sustainable dimensions in percentages, based on importance for Boekhorst in the initiation phase of the project, so that a total of 100% is created. The experts are asked to divide the sustainable dimensions in percentages, because this gives a more accurate score than a division in ranking. Since there are only three sustainable dimensions assessed a division in percentages is not as hard and time consuming, as it would be with dividing the SPIs.

Average score =
$$\frac{\sum_{i=Sustainable dimension \% given by expert_1}^{n=number of consulted experts}}{n}$$

The sustainable dimension importance and in this case the weight is converted from 0 to 1 with the following formula:

 $Dimension \ weight_i = \frac{Average \ score_i}{Sum \ Average \ score}$

APPENDIX B.2.4. SUSTAINABILITY DIMENSION SCORE

For each sustainability dimension, the score is determined by adding the multiplication of each measures score on each SPI with the SPI weight:

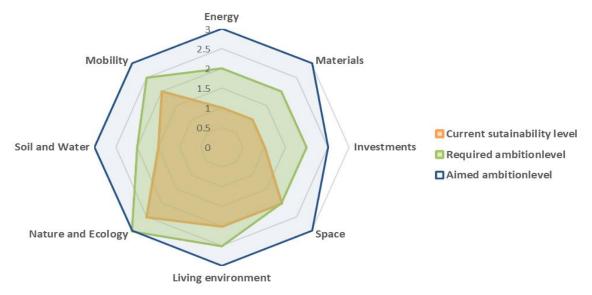
Total sustainability dimension score =
$$\sum_{i=1}^{n=3} (SPI \ score_i \ * \ SPI \ weight_i)$$

The outcomes of the total sustainability score can lie between -3 and 3.

APPENDIX B.2.5. MEASURES TOTAL SUSTAINABILITY SCORE

The total sustainability score is determined by adding the multiplication of each measures score on each sustainable dimension with the sustainable dimensions weight:

Total sustainability score


n-3

$$= \sum_{i=1}^{n-3} (sustainability dimension \ score_i \ * \ sustainability \ dimension \ weight_i)$$

The outcomes of the total sustainability score can lie between -3 and 3.

APPENDIX C. AMBITION COMPARISON FOR KOKON AND MUNICIPALITY

Based on table 3.1 in chapter 3 the ambitionweb of Kokon is formed in Figure C.1. In this ambitionweb the current sustainability level and the aimed ambitionlevel are the same as in Figure 3.1. Only the required ambition has a lower ambitionlevel of 0,5 on the theme energy. Because only the required ambition level is different only this level is explained.

For Kokon Nature and Ecology is the most important with a score of 3. Living environment and mobility are next with an ambitionlevel of 2,5, then come energy, materials, investments, space and soil and water with a minimum ambitionlevel of 2.

The ambitionlevel of municipality Teylingen is described in the column required ambition level in Table 3.1. Their ambitions on the themes are visualized in Figure C.2. The municipality has the heighest ambition on energy with an ambition of 2,5. This is because they aspire geothermic energy. On the themes materials, space, living environment and mobility the municipality has an ambitionlevel of 2. Next the municipality has an ambition of 1,5 on the theme soil and water. The municipality has the least ambitions on the theme investments. There they have an ambitionlevel of 1.

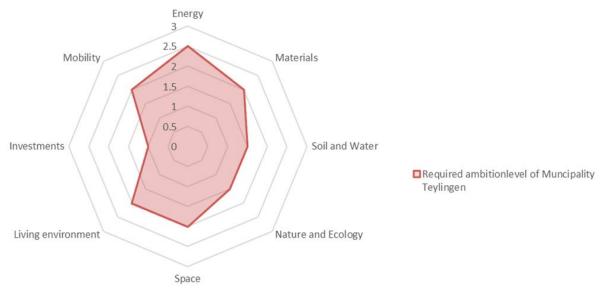


FIGURE C.2 AMBITIONS OF MUNICIPALITY TEYLINGEN

Figure C.3 shows both the required ambitions of Kokon and municipality Teylingen. On the themes energy, materials and space both the ambition of Kokon and the municipality are the same. However, on the theme soil and water the ambition of the municipality Teylingen is higher than the ambition of Kokon. When proposing measures on the part of soil and water, the advice is based on the ambition of the municipality. On the themes nature and ecology, living environment, investments and mobility the ambition of Kokon is higher than the ambition of the municipality. To make sure both Kokon and municipality Teylingen are satisfied with the spatial design and plans for Boekhorst, all the outer ambitionlevels are considered normative. The normative ambitionlevels are shown in Table C.1.The required ambitionlevel, and thus the normative ambitionlevel, based on the ambitions of Kokon and the municipality is shown in Figure C.4.

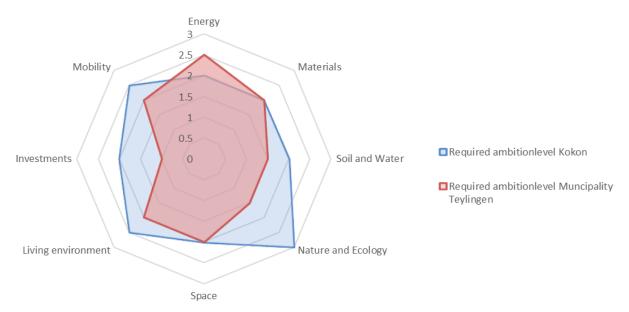
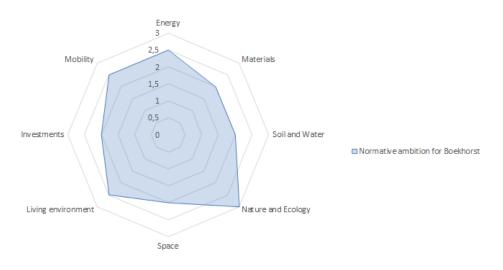



FIGURE C.3 REQUIRED AMBITIONS OF KOKON AND MUNICIPALITY TEYLINGEN

Ambition theme	Ambitionlevelto meet
Energy	2,5
Materials	2
Investments	2
Space	2
Living environment	2,5
Nature and Ecology	3
Soil and water	2
Mobility	2,5

FIGURE C.4 NORMATIVE AMBITION FOR BOEKHORST

APPENDIX D. MEASURES FOR CONSIDERATION IN BUILDINGS

Measure	Advantages	Disadvantages	Source
Tiles from old PET bottles	 Prevent waste Less energy needed in production and demolition Warm marble look 	 Only available in 3 colours Production costs unknown Recently developed (in 2017), so long-term effects unknown Low capacity production 	• New Marble (2018) • Cobouw (2017)
Translucent concrete that	Provide strength	Cannot be made on	• zospeum (2018)
provides support and	 Less heating needed 	site	• Do ityourself (2018)
insulation	• Aesthetic	 High production 	• Zielinska & Ciesielski
		costs	(2017)
Wall of rammed earth	 Easily identifiable 	 Issues have arisen 	 Vereniging Aardehuis
	appearance	about its durability,	(2018)
	 Natural and plentiful 	particularly during	• Walsh (2012)
	resource	extreme weather	
	 Low carbon emissions 	conditions	
	associated with	 Other construction 	
	manipulating, delivering	materials are needed	
	and building with	to help stabilise a	
	material	structure made out of	
	 Material reusable when 	rammed earth	
	building is demolished	• Not a popular	
	• Due to high moisture	construction	
	mass, the humidity of the	technique in the EU,	
	building is well regulated	therefore may be	

TABLE D.1 SUSTAINABLE MEASURES TO IMPLEMENT WITHIN BUILDINGS

	 Good at regulating internal temperature of buildings Airtight construction is possible 	unstable in certain EU conditions • Unable to be fully insulated without additional materials (i.e polystyrene insulation) • Only certain types of soil can be used in construction of this type • Construction labour can be expensive due to quality regulations • Longer construction	
Sun boiler	 Use the free energy of the sun to heat your water Lower monthly electric (or gas) utility bills Great for climates that receive a lot of sunshine Federal tax credits help lower upfront cost, and there are often local incentives that also help offset part of the initial investment Investment costs earned back in 10-15 years 	 Process Tank takes up more space than tankless units Higher up front cost for equipment & installation May not have as great of performance in climates that do not receive a lot of sunshine Tank can produce a significant amount of heat, so its location will need to be planned accordingly More equipment = more maintenance 	 Vereniging de Buitenkans (2018) Greenne (2018) Laminack (2011)
Boiler with air heat pump	 Prevention of legionella Lower running costs Less maintenance than combustion heating Safer than combustion heating Reduce carbon emissions Provide cooling Long life span 	 Investment costs Knowledge needed for instalment Damaging fluids needed Less efficient with cold weather 	• Gemeente Rijswijk (2018) • Greenmatch (2014) • Van der Burg (2018)
Energy Paint that changes colour based on temperature: white in the summer to repel sun energy and black in the winter to absorb sun energy	Less heating and ventilation neededMaintenance costs	 Changeable colours (only 2) Darkness during winter 	 Voorma (2016) Mortimer (2018)

Shower heat recovery (warmetterugwinning = WTW)	• Less heating from boiler required	• Special pipe investment needed	Gemeente Rijswijk (2017)
WTW+ in windows frames	 Financing available Easy instalment Less heating required Comfortable climate 	• Investment costs	 Rijksdienst voor Ondernemend Nederland (2010) Installatieprofs (2015)
Infra-red heating in less used places in house	Less energy neededFast heating	• Strategic placing needed, because of focused heating	• Milieu Centraal (2018)
Wall and ground heating	Comfortable heatingEvenly distributed heating	• Longer warm up time	 Vereniging de Buitenkans (2018) OVO Energy (2018)
High efficient insulation	 Less heating needed, thus emission reduction Eliminate inner condensation in walls and prevent mould Improvement of acoustic properties 	• Investment costs dependent on the choice of insulation material	 Van der Burg (2018) Azkorra et al. (2015)

APPENDIX E. MULTI-CRITERIA ANALYSIS

APPENDIX E.1. MCA CONDUCTION FOR THE ENVIRONMENTAL DIMENSION

APPENDIX E.1.1. ENVIRONMENTAL SPI WEIGHT DETERMINATION

TABLE E.1 ENVIRONMENTAL SPI IMPORTANCE SCORE

	Expert 1	Expert 2	Expert 3	Expert 4	Expert 5	Expert 6	Average score	SPI importance = Average score / Sum average score
Environmental category (1-11)								
Energy performance and	2,5	1	2	2	3	3	2,3	0,034091
efficiency strategies								
Water and wastewater efficiency	5	3	4	6,5	3	4	4,3	0,064394
strategies								
Regional (local) materials	10	7	11	11	7,5	7	8,9	0,135101
Renewable materials	8	4	8	6,5	7,5	6	6,7	0,10101
Waste management	9	9	10	8,5	7,5	8	8,7	0,131313
Greenhouse gas emissions	6,5	8	1	4,5	10,5	1	5,3	0,079545
Site disruption and appropriate	1	6	5	2	3	9	4,3	0,065657
strategies								
Renewable energy use	2,5	2	3	2	3	2	2,4	0,036616
Material consumption in	11	10	9	4,5	3	10	7,9	0,119949
Construction								
Alternative transportation	4	11	6	10	10,5	5	7,8	0,117424
Heat stress efficiency strategies	6,5	5	7	8,5	7,5	11	7,6	0,114899
Sum							66,0	1

TABLE E.2 ENVIRONMENTAL SPI IMPORTANCE COMPARISON

	Energy performance and efficiency strategies	Water and wastewater efficiency strategies	Regional (local) materials	Renewable materials	Waste management	Greenhouse gas emissions	Site disruption and appropriate strategies	Renewable energy use	Material consumption in Construction	Alternative transportation	Heat stress efficiency strategies
Energy	1	1,888	3,962	2,962	3,851	2,333	1,925	1,074	3,518	3,444	3,370
performance and		8889	963	963	852	333	926	074	519	444	37
efficiency											
strategies											
Water and	0,529	1	2,098	1,568	2,039	1,235	1,019	0,568	1,862	1,823	1,784
wastewater	412		039	627	216	294	608	627	745	529	314
efficiency											
strategies											
Regional (local)	0,252	0,476	1	0,747	0,971	0,588	0,485	0,271	0,887	0,869	0,850
materials	336	6355		664	963	785	981	028	85	159	467
Renewable	0,337	0,637	1,337	1	1,3	0,787	0,65	0,362	1,187	1,162	1,137
materials	5	5	5			5		5	5	5	5
Waste	0,259	0,490	1,028	0,769	1	0,605	0,5	0,278	0,913	0,894	0,875
management	615	3846	846	231		769		846	462	231	
Greenhouse gas	0,428	0,809	1,698	1,269	1,650	1	0,825	0,460	1,507	1,476	1,444
emissions	571	5238	413	841	794		397	317	937	19	444
Site disruption	0,519	0,980	2,057	1,538	2	1,211	1	0,557	1,826	1,788	198
and appropriate	231	7692	692	462		538		692	923	462	
strategies											
Renewable	0,931	1,758	3,689	2,758	3,586	2,172	1,793	1	3,275	3,206	3,137
energy use	034	6207	655	621	207	414	103		862	897	931
Material	0,284	0,536	1,126	0,842	1,094	0,663	0,547	0,305	1	0,978	0,957
consumption in	211	8421	316	105	737	158	368	263		947	895
Construction											
Alternative	0,290	0,548	1,150	0,860	1,118	0,677	0,559	0,311	1,021	1	0,978
transportation	323	3871	538	215	28	419	14	828	505		495
Heat stress	0,296	0,560	1,175	0,879	1,142	0,692	0,005	0,318	1,043	1,021	1
efficiency	703	4396	824	121	857	308	051	681	956	978	
strategies											
Sum	5,128 937	9,687 9915	20,32 579	15,19 685	19,75 59	11,96 752	9,311 574	5,508 858	18,04 626	17,66 634	213,5 364

TABLE E.3 NORMALIZED TABLE ENVIRONMENTAL SPI IMPORTANCE COMPARISON

	Energy performance and efficiency strategies	Water and wastewater efficiency strategies	Regional (local) materials	Renewable materials	Waste management	Greenhouse gas emissions	Site disruption and appropriate strategies	Renewable energy use	Material consumption in Construction	Alternative transportation	Heat stress efficiency strategies	Weight environmental SPI
Energy	0,194	0,194	0,194	0,194	0,194	0,194	0,206	0,194	0,194	0,194	0,015	0,179
performance and	972	9722	972	972	972	972	831	972	972	972	784	76
efficiency												
strategies												
Water and	0,103	0,103	0,103	0,103	0,103	0,103	0,109	0,103	0,103	0,103	0,008	0,095
wastewater	221	2206	221	221	221	221	499	221	221	221	3560	167
efficiency											16	
strategies												
Regional (local)	0,049	0,049	0,049	0,049	0,049	0,049	0,052	0,049	0,049	0,049	0,003	0,045
materials	199	1986	199	199	199	199	191	199	199	199	983	36
Renewable	0,065	0,065	0,065	0,065	0,065	0,065	0,069	0,065	0,065	0,065	0,005	0,060
materials	803	8031	803	803	803	803	806	803	803	803	327	669
Waste	0,050	0,050	0,050	0,050	0,050	0,050	0,053	0,050	0,050	0,050	0,004	0,046
management	618	6178	618	618	618	618	697	618	618	618	098	669
Greenhouse gas	0,083	0,083	0,083	0,083	0,083	0,083	0,088	0,083	0,083	0,083	0,006	0,077
emissions	56	5595	56	56	56	56	642	56	56	56	764	04
Site disruption	0,101	0,101	0,101	0,101	0,101	0,101	0,107	0,101	0,101	0,101	0,927	0,176
and appropriate	236	2356	236	236	236	236	393	236	236	236	242	887
strategies	0.101	0.101	0.101	0.101	0.101	0.101	0.102	0.101	0.101	0.101	0.014	0.1/7
Renewable	0,181 526	0,181 5258	0,181 526	0,181 526	0,181 526	0,181 526	0,192 567	0,181 526	0,181 526	0,181 526	0,014 695	0,167 363
energy use Material	526 0,055	0,055	0.055	0,055	0,055	0,055	0,058	0,055	0,055	0,055	0,004	0,051
consumption in	0,055 413	0,055 4131	0,055 413	0,055 413	0,055 413	0,055 413	0,058 784	0,055 413	0,055 413	0,055 413	0,004 486	0,051
Construction	-15	-131	115	-15	115	115	704	-15	115	-13	00	09
Alternative	0,056	0,056	0,056	0,056	0,056	0,056	0,060	0,056	0,056	0,056	0,004	0,052
transportation	605	6048	605	605	605	605	0,000	605	605	605	582	189
Heat stress	0,057	0,057	0,057	0,057	0,057	0,057	0,000	0,057	0,057	0,057	0,004	0,047
efficiency	849	8489	849	849	849	849	542	849	849	849	683	806
strategies											-	
Sum	1	1	1	1	1	1	1	1	1	1	1	1

APPENDIX E.1.2. ENVIRONMENTAL MEASURE MCA SCORE

TABLE E.4 MCA FOR THE ENVIRONMENTAL DIMENSION

Indicator	Energy performance and efficiency strategies		Regional (local) materials	Renewable materials	Waste management	Greenhouse gas emissions	Site disruption and appropriate strategies	Renewable energy use	Material consumption in Construction		Heat stress efficiency strategies	Environmental score
Weight	0,18	0,10	0,05	0,06	0,05	0,08	0,18	0,17	0,05	0,05	0,05	
Measure												
1. Energy												
Insights												
Feasibility study into	2	0	0	0	0	3	0	3	0	0	0	1,09
renewable energy												
CO2 emissions calculation	2	0	3	3	3	3	0	1	2	1	0	1,37
with DuboCalc or a												
comparable program												
CO2 emission mapping of	1	0	1	1	3	3	0	1	1	1	0	0,93
maintenance work, work												
process and waste												
processing.												
Management												
Efficient use of building	3	0	0	0	0	3	2	0	0	0	0	1,12
tools/construction machines:												
switch them of when they are												
not needed		0	0	0	0				0	0		0.00
fuel/energy-efficient	2	0	0	0	0	3	0	2	0	0	0	0,93
construction and machinery												
Design	_								_		_	
Prioritization of walking and	0	0	0	0	0	3	0	0	0	3	0	0,39
cycling in the design instead												
of car usage	2	0	0	0	0	1	0	0	2	0	0	0.77
Pipe length reduction of	3	0	0	0	0	1	0	0	3	0	0	0,77
heating and ventilation systems												
Windows on the south side of	3	0	0	0	0	3	0	0	0	0	1	0,82
buildings with trees in front	5	0	0	0	0	5	0	0	0	0	1	0,02
of them												
Hot/cold networks:												
	3	0	0	0	0	3	1	3	-1	0	1	1,45
Asphalt heat Riothermia: extract heat from	2	2	0						-1 -1	Ŭ.		· ·
	2	2	U	-1	1	2	1	2	-1	0	0	1,15
waste water in the sewerage												
system	2	2	0	0	0	2	-1	2	1	0	1	0,96
Surface water heating			~	-					-	, e	-	
Geothermal heating	3	1	0	-1	0	3	0	2	-2	0	0	1,04

Compressed air for	3	-1	0	0	0	3	0	2	-1	0	0	0,96
underground heat storage	5	-1	0	0	0	5	0	2	-1	0	0	0,70
Sun-/PV-panels	3	-1	0	-1	0	3	0	2	-1	0	0	0,90
Smart Grid	3	0	0	0	1	3	2	2	0	0	0	1,51
Domotica systems	3	0	0	-1	0	3	2	0	0	1	0	1,12
Led lighting/ lights with	3	0	-1	-3	0	3	1	0	-1	1	0	0,72
integrated solar panels and	3	0	-1	-3	0	3	1	0	-1	1	0	0,72
battery												
Multipurpose charging	3	0	-1	-3	0	2	1	0	-1	2	0	0,70
stations with LED lighting												Í
Smart Energy Floor	1	-1	-1	-3	0	0	0	2	-1	1	0	0,19
2. Materials												
Insights												
Materials passport	2	0	3	3	2	2	0	0	2	0	0	1,03
Material loss chart of	1	0	1	2	3	0	0	0	2	0	0	0,59
production					_		-					- ,
Material origin substantiation	0	0	3	1	0	1	0	0	0	1	0	0,33
Life cycle analysis (LCA)	2	0	2	3	2	2	0	1	2	1	0	1,20
Management												_
Waste management plan	2	1	0	2	3	0	1	0	2	0	0	1,00
Circular building materials	1	0	0	3	3	1	0	0	2	0	0	0,68
Design							_				_	
Flexible building	0	0	0	0	2	0	2	0	0	0	1	0,49
New objects made from cut	0	0	3	3	3	1	1	0	3	0	0	0,15
down trees	0	0	5	5	5	1	1	0	5	0	0	0,07
Shared sheds containing	1	0	0	0	3	0	0	0	2	0	0	0,42
shared tools that people need												,
occasionally												
Smart led lighting to show	0	1	0	0	0	0	1	0	0	0	0	0,27
half hardened parking spots												
Roadway of reinforced grass	0	3	0	0	0	0	2	0	2	0	2	0,84
or water-permeable paving												
(half open paving)	0				0		-					
Narrow walking strip in	0	2	2	1	0	-1	2	0	0	2	1	0,77
baked bricks Mineral Olivine to absorb	0	0	-2	-1	0	3	0	0	0	0	1	0,13
CO2	0	0	-2	-1	0	3	0	0	0	0	1	0,15
Verge cuttings recycling	0	0	3	3	2	0	1	0	0	0	1	0,64
3. Water	Ŭ	Ŭ	-		-	Ŭ	-	Ŭ	Ŭ	-	-	
Insights		+			_					+		-
Water resource investigation	0	3	0	0	0	0	3	0	0	0	1	0,86
(with a water-resource	0	5	0	0	0	0	5	0	0	0	1	0,00
evaluation matrix)												
Impact assessment	0	3	1	0	0	1	3	0	0	0	1	0,99
Groundwater ambitionlevel	0	3	0	0	0	0	2	0	0	0	0	0,64
analyzation	-		Ŭ	Ĩ	Ť	0	-	Ŭ	Ŭ	Ĭ	Ĭ	.,
•	1	-	-						-	_		

Roadway of reinforced grass	0	3	0	0	0	0	2	0	2	0	2	0,84
or water-permeable paving												
(half open paving)												
Green gardens without	0	3	1	3	2	0	3	0	3	0	3	1,43
(much) pavement												
Existing water enlargement	0	3	0	0	0	0	3	0	-1	1	1	0,87
Pond for water capture with	0	3	0	0	0	1	3	0	-1	0	2	0,94
open space to relax												
Separate sewer for grey and	0	3	0	0	3	0	2	0	-1	0	1	0,78
black water	0	-						0				0.06
Water extraction area to	0	3	0	0	1	0	3	0	-1	0	1	0,86
capture clean rain water from												
roofs. Street water is guided												
away from the extraction area to wade's to infiltrate in the												
soil												
Helophyte filters to rinse	1	3	2	3	2	1	2	0	-1	0	2	1,31
grey wastewater from	1	5	-	5	-	1	-		1	0	2	1,51
washing machines, showers,												
kitchen etc.												
Water storage for rain water	2	3	0	0	0	1	1	0	-1	0	0	0,85
to use in black (toilet) water												,
systems												
4. Soil												
Insights												
Environmental Impact	0	3	0	0	2	2	1	0	2	0	2	0,91
Assessment (EIA) with water	Ŭ	0	Ũ	Ŭ	-	-	-	Ŭ	-	Ű	-	0,92 =
and soil as subject of												
protection												
Management												
Green area prioritization in	0	0	2	3	0	2	3	0	2	1	3	1,26
urban planning												,
Reduction areas for soil	0	0	2	1	1	0	2	0	2	0	0	0,65
consumption (soil sealing)												
Demolition practice plan	1	0	0	1	3	1	2	0	1	0	0	0,86
5. Nature and Ecology												
Insights												
Quickscan: Inventory the	0	0	3	1	0	0	2	0	0	0	0	0,55
current flora & fauna	Ť		-	-					Ť	-	-	-,
Ecological target type	0	0	0	0	0	0	1	0	0	0	0	0,18
determined												
Agricultural backgrounds	0	0	0	0	0	0	3	0	0	0	0	0,53
with natural values inventory												
Management												
Management scheme for the	0	0	0	0	0	0	3	0	0	0	2	0,63
maintaining of the diversity												
of urban nature												
Noise nuisance prevention	0	0	0	0	0	0	3	0	0	0	0	0,53
Compost plants	0	0	2	1	3	2	3	0	1	0	0	1,03
Adoption green	0	1	0	0	0	2	3	0	3	0	3	1,08
Adoption green	0	1	0	0	0	~	5	0	5	0	5	1,00

Garden layout support for	0	1	2	1	1	2	2	0	1	0	1	0,90
residents	0	0	0	0	1	3	3	0	0	0	1	0.96
Maintenance plan to promote ecological quality	0	0	0	0	1	3	3	0	0	0	1	0,86
Design												
Waste bins integrated in the	0	0	0	0	3	0	1	0	0	0	0	0,32
design to reduce waste	0	0	0	0	5	0	1	0	0	0	0	0,34
damage												
Variation in landscape	0	0	0	0	0	0	3	0	0	2	1	0,68
Plant species that increase	0	0	1	2	0	2	3	0	1	0	1	0,95
biodiversity and better the		Ĩ	-		Ĩ			Ŭ		Ť	-	
living environment												
Greenery diversity with	0	0	3	2	0	2	3	0	1	0	2	1,09
native trees, shrubs,												
perennials and seeds												
Green and blue dry and wet	0	3	0	0	0	2	3	0	0	1	2	1,12
spots realization												
Reed edge in water	0	0	1	2	0	2	3	0	0	0	2	0,95
Pond for water capture with	0	3	0	0	0	1	3	0	-1	0	2	0,94
open space to relax												
Hedge with various native	0	0	3	2	0	2	3	0	0	0	2	1,04
species								0	0			0.04
Streetscape greenery	0	0	1	1	0	2	3	0	0	1	2	0,94
Nature-friendly banks	0	0	1	0	0	1	3	0	0	1	1	0,75
Free migration stimulation	0	0	1	2	0	1	3	0	0	0	2	0,87
Bee strips	0	0	1	1	0	1	2	0	0	0	2	0,63
Flora and fauna in relation to	0	0	2	1	0	1	2	0	0	0	2	0,68
target species												
6. Space												
Design												
Design based on the	0	2	2	0	2	0	3	0	0	1	1	1,01
environment												
Flexible plan to build	0	0	0	1	1	1	1	0	2	0	1	0,51
question based											_	
Reduced parking norm	0	0	0	0	0	1	1	0	2	2	0	0,46
(Electric) Car sharing (in	0	0	0	1	0	0	0	0	1	1	0	0,16
collaboration with												
companies)		1	1	0	0	0	-	0	-	1		0.54
Small private garden, large	0	1	1	0	0	0	2	0	2	1	2	0,74
community garden Flexible building (for	0	0	0	0	2	0	2	0	0	0	1	0,49
example demountable)	0	0	0	0	2	0	2	0	0	0	1	0,49
7. Mobility			_								_	
Design	+										_	_
Safe intersections	0	-1	0	0	0	0	-1	0	-1	1	0	-0,27
		-1	-			2				3		
Fast cycling lanes to promote cycling to the centre of	0	-1	0	0	0	2	-1	0	-1	5	0	-0,01
Voorhout												
	0	0	0	0	0	2	-1	0	-1	2	0	0.03
Bicycle parking spots	0	0	0	0	0	2	-1	0	-1	2	0	0,03

Access to public transport	0	0	0	0	0	2	0	0	1	3	0	0,36
Shared working space	0	0	0	0	0	2	-2	0	-2	1	-1	-0,30
(Electric) Car sharing (in collaboration with	0	0	0	1	0	0	0	0	1	1	0	0,16
companies)												
Sharing bikes	0	0	0	1	0	1	0	0	1	2	0	0,29
Aesthetic signs for easy way finding and to stimulate waking	0	0	2	2	0	1	0	0	-1	1	0	0,29
8. Living environment												
Insights												
Background noise map	0	0	0	0	0	0	3	0	0	0	0	0,53
Management												
Noise nuisance prevention	0	0	0	0	0	0	3	0	0	0	0	0,53
Heat and cold warning	0	0	0	0	0	0	3	0	0	0	3	0,67
mechanism and strategy plan to react		0	0	0	0		5		0		5	0,07
Design												
Different function options in	0	0	0	0	0	0	3	0	0	1	0	0,58
the environment	0	0	0	0	0	0	5	0	0	1	0	0,50
Flexible design, so that space	0	0	0	0	2	0	2	0	0	0	1	0,49
can be used different in the		Ĩ	Ĩ	Ĩ		Ĩ		Ŭ	Ŭ	Ĩ		- ,
future												
Daylight accessible	3	0	0	0	0	0	0	3	0	0	0	1,04
Suitable trails for rollators,	0	0	0	0	0	2	-1	0	-1	3	0	0,08
wheelchairs and mobility scooters												
Fast cycling lanes to promote	0	-1	0	0	0	2	-1	0	-1	3	0	-0,01
cycling to the centre of												
Voorhout												
Community gardens	0	3	1	2	1	0	2	0	1	1	3	1,10
Shared working space	0	0	0	0	0	2	-2	0	-2	1	-1	-0,30
Community centre as a	0	-1	0	0	0	0	-2	0	-1	0	-1	-0,55
central meeting place and to												
organise activities, such as												
cooking, community eating,												
tv watching, yoga, drama												
class, a drink, etc.	0	0	0	2	0	0	0	0	0	0	0	0.12
Virtual meeting place to organise activities in	0	0	0	2	0	0	0	0	0	0	0	0,12
neighbourhood and												
community house (internet												
and app)												
Small private garden, large	0	1	1	0	0	0	2	0	2	1	2	0,74
community garden												
Communal gardens for food	0	3	1	0	2	0	2	0	1	0	3	0,97
production												
Activity spaces	0	0	0	0	0	1	0	0	-1	1	0	0,08
Pet-friendly environment	0	0	0	0	0	0	0	0	0	0	2	0,10

Outdoor playing and sport	0	0	0	0	0	0	0	0	0	0	1	0,05
places	Ŭ	Ŭ	Ŭ	Ŭ	Ŭ	Ũ	Ŭ	Ũ	Ŭ	Ŭ	1	0,00
Sound barrier around road	0	0	0	0	0	0	2	0	-2	0	0	0,25
Public toilet available,	0	0	0	0	0	0	-1	0	-1	2	0	-0,12
possibly in community												, í
Centre												
Adequate and uniform	2	0	0	0	0	0	3	0	0	1	0	0,94
lighting conditions												
Art	0	0	1	1	0	0	0	0	-1	0	0	0,05
9. Investments												
Insights												
Long term budget and look at	0	0	0	0	0	0	0	0	0	0	0	0,00
the long-term investments												, i
LCC for the planning,	0	0	0	2	2	0	0	0	2	0	0	0,32
construction, usage and												
demolition phase.												
Management												
Measures for which subsidy	1	1	0	1	0	2	1	1	0	0	1	0,88
is given												
Budget to prevent harm on	0	1	1	0	1	1	1	0	0	0	0	0,44
area interests												
Educational value through	0	0	0	0	0	0	0	0	0	0	0	0,00
visible sustainable measures												
Design												
Room for co-creation with	0	1	1	1	0	1	1	1	0	1	1	0,72
inhabitants												
Recyclable products	1	0	0	3	2	1	0	0	0	0	0	0,53

APPENDIX E.2. MCA CONDUCTION FOR THE ECONOMIC DIMENSION

APPENDIX E.2.1. ECONOMIC SPI WEIGHT DETERMINATION

TABLE E.5 ECONOMIC SPI IMPORTANCE SCORE Importance score

	Expert 1	Expert 2	Expert 3	Expert 4	Expert 5	Expert 6	Average score	SPI importance = Average score / Sum average score
Economic category (1-9)								
Design and construction time	7	5	8	8,5	1,5	7	6,2	0,137037
Design and construction costs	6	2	6	8,5	1,5	6	5,0	0,111111
Operational costs	4	1	4	5,5	5	2	3,6	0,07963
Maintenance costs	3	3	5	5,5	5	3	4,1	0,090741
End of life costs	8	8	7	5,5	5	5	6,4	0,142593
Durability of the measure	1	6	1	2,5	5	4	3,3	0,072222
Investment and related risks	5	7	2	2,5	8,5	8	5,5	0,122222
Flexibility	2	4	3	1	5	1	2,7	0,059259
Required skills and knowledge	9	9	9	5,5	8,5	9	8,3	0,185185
Sum							45,0	1

TABLE E.6 ECONOMIC SPI IMPORTANCE COMPARISON

	Design and construction	Design and construction	Operational costs	Maintenance costs	End of life costs	Durability of the measure	Investment and related risks	Flexibility	Required skills and knowledge
Design and construction time	1	0,8	0,58	0,66	1,04	0,53	0,89	0,43	1,3514
Design and construction costs	1,2	1	0,72	0,82	1,28	0,65	1,1	0,53	1,6667
Operational costs	1,7	1,4	1	1,14	1,97	0,91	1,53	0,74	2,3256
Maintenance costs	1,5	1,2	0,88	1	1,57	0,8	1,35	0,65	2,0408
End of life costs	1	0,8	0,51	0,64	1	0,51	0,86	0,42	1,2987
Durability of the measure	1,9	1,5	1,1	1,26	1,97	1	1,69	0,82	2,5641
Investment and related risks	1,1	0,9	0,65	0,74	1,17	0,59	1	0,48	1,5152
Flexibility	2,3	1,9	1,34	1,53	2,41	1,22	2,06	1	3,125
Required skills and knowledge	0,7	0,6	0,43	0,49	0,77	0,39	0,66	0,32	1
SUM	12	10	7,21	8,27	13,2	6,59	11,1	5,4	16,887

TABLE E.7 NORMALIZED TABLE ECONOMIC SPI IMPORTANCE COMPARISON

	Design and construction time	Design and construction costs	Operational costs	Maintenance costs	End of life costs	Durability of the measure	Investment and related risks	Flexibility	Required skills and knowledge	Weight economic SPI
Design and construction	0,1	0,1	0,08	0,08	0,08	0,08	0,08	0,08	0,08	0,079962
time										
Design and construction	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,0987	0,09862
costs										
Operational costs	0,1	0,1	0,14	0,14	0,15	0,14	0,14	0,14	0,1377	0,139131
Maintenance costs	0,1	0,1	0,12	0,12	0,12	0,12	0,12	0,12	0,1208	0,120767
End of life costs	0,1	0,1	0,07	0,08	0,08	0,08	0,08	0,08	0,0769	0,076055
Durability of the measure	0,2	0,2	0,15	0,15	0,15	0,15	0,15	0,15	0,1518	0,151724
Investment and related	0,1	0,1	0,09	0,09	0,09	0,09	0,09	0,09	0,0897	0,089655
risks										
Flexibility	0,2	0,2	0,19	0,19	0,18	0,19	0,19	0,19	0,185	0,184913
Required skills and	0,1	0,1	0,06	0,06	0,06	0,06	0,06	0,06	0,0592	0,059172
knowledge										
SUM	1	1	1	1	1	1	1	1	1	1

APPENDIX E.2.2. ECONOMIC MEASURE MCA SCORE

TABLE E.8 MCA FOR THE ECONOMIC DIMENSION

Indicator	Design and construction time	Design and construction costs	Operational costs	Maintenance costs	End of life costs	Durability of the measure	Investment and related risks	Flexibility	Required skills and knowledge	Economic score
Weight	0,08	0,10	0,14	0,12	0,08	0,15	0,09	0,18	0,06	
Measure										
1. Energy										
Insights										
Feasibility study into	-1	1	1	2	3	3	3	3	2	2,02
renewable energy										
CO2 emissions calculation with DuboCalc or a comparable program	-1	1	2	1	3	3	3	2	2	1,86
CO2 emission mapping of	-1	1	2	2	3	3	3	2	2	1,98
maintenance work, work										
process and waste processing.										
Management										0,00
Efficient use of building tools/construction machines: switch them of when they are not needed	0	1	3	0	1	0	3	2	3	1,41
fuel/energy-efficient construction and machinery	0	1	2	0	1	0	3	2	3	1,27
Design										
Prioritization of walking and cycling in the design instead of car usage	-1	-1	1	0	-1	1	3	1	3	0,67
Pipe length reduction of heating and ventilation systems	-2	-1	2	4	2	1	3	-4	1	0,40
Windows on the south side of buildings with trees in front of them	0	1	3	4	3	3	3	4	5	2,99
Hot/cold networks:										0,00
Asphalt heat	-1	0	1	0	0	1	1	2	1	0,73
Riothermia: extract heat from waste water in the sewerage system	-2	0	0	0	0	2	-1	0	1	0,11
Surface water heating	-1	-1	0	-1	0	1	-2	3	1	0,29
Geothermal heating	-3	-3	0	0	0	3	0	-3	0	-0,64
	-	-						-		- 7

Compressed air for	-3	-1	0	0	0	3	0	-3	-1	-0,50
underground heat storage	5	1	Ŭ	0	Ŭ		Ŭ		1	0,20
Sun-/PV-panels	3	-1	0	-1	-1	2	2	2	3	0,97
Smart Grid	1	-1	2	0	0	3	2	3	1	1,51
Domotica systems	1	-1	2	0	0	2	2	3	1	1,36
Led lighting/ lights with	3	1	1	0	0	2	2	2	3	1,51
integrated solar panels and battery										
Multipurpose charging stations with LED lighting	2	-1	1	0	0	2	2	1	2	0,99
Smart Energy Floor	3	-1	0	-1	-1	1	1	0	1	0,24
2. Materials										
Insights										
Materials passport	-2	-1	5	5	4	5	4	3	4	3,25
Material loss chart of	-2	1	5	5	5	5	5	5	4	3,99
production										
Material origin substantiation	-1	1	5	5	1	5	5	3	4	3,39
Life cycle analysis (LCA)	-3	4	5	5	5	5	5	5	4	4,20
Management										
Waste management plan	4	1	5	1	5	4	5	5	5	3,89
Circular building materials	0	0	0	2	5	5	1	2	4	2,08
Design										0,00
Flexible building	4	4	3	0	4	5	4	5	3	3,66
New objects made from cut down trees	1	5	1	3	4	5	5	1	5	3,07
Shared sheds containing shared tools that people need occasionally	0	2	5	1	1	4	3	3	3	2,70
Smart led lighting to show half hardened parking spots	1	-1	3	-1	0	0	1	2	5	1,03
Roadway of reinforced grass or water-permeable paving (half open paving)	3	2	5	-2	3	4	4	2	2	2,57
Narrow walking strip in baked bricks	3	2	5	0	3	3	4	2	4	2,78
Mineral Olivine to absorb CO2	3	-2	5	3	0	5	-1	3	4	2,56
Verge cuttings recycling	5	5	5	5	5	5	4	5	3	4,79
3. Water										
Insights										
Water resource investigation (with a water-resource evaluation matrix)	-2	4	-1	5	5	5	5	0	0	2,29
Impact assessment	-3	3	-1	5	5	5	5	0	0	2,11
Groundwater ambitionlevel analyzation	-3	4	-1	5	1	2	5	0	0	1,45
		1	1	1	1					

			-			4	4		4	2 (0
Roadway of reinforced grass	3	2	5	-2	3	4	4	2	4	2,69
or water-permeable paving										
(half open paving)										
Green gardens without (much)	5	5	2	-1	5	3	5	4	5	3,37
pavement										
Existing water enlargement	0	0	0	-2	5	5	0	5	3	2,00
Pond for water capture with	0	0	0	-2	5	5	5	5	3	2,45
open space to relax	Ŭ	-			-	-	-	-		_,
	0	0	0	1	4	-	-	2		0.07
Separate sewer for grey and	0	0	0	-1	4	5	5	3	2	2,06
black water										
Water extraction area to	0	0	0	-1	1	5	5	4	3	2,08
capture clean rain water from										
roofs. Street water is guided										
away from the extraction area										
to wade's to infiltrate in the										
soil										
Helophyte filters to rinse grey	0	0	0	-1	4	3	5	3	5	1,94
wastewater from washing										
machines, showers, kitchen										
etc.										
Water storage for rain water to	0	0	0	0	3	3	3	2	5	1,62
use in black (toilet) water		0		0	5	5	5	-	5	1,04
systems										
4. Soil										
Insights										
Environmental Impact	0	2	3	5	5	3	4	4	5	3,45
Assessment (EIA) with water										
and soil as subject of										
protection										
Management										
Green area prioritization in	-1	0	0	3	5	5	5	5	5	3,09
urban planning	_	-		-	-	-	-	-		-,
Reduction areas for soil	3	3	3	4	5	4	4	2	5	3,45
	5	5	5	-	5	-	-	2	5	3,73
consumption (soil sealing)										
Demolition practice plan	3	4	0	2	5	5	4	2	4	2,98
5. Nature and Ecology										
Insights	1									
Quickscan: Inventory the	-1	0	-1	0	0	2	0	3	4	0,88
current flora & fauna	1			5	Ŭ	-	Ŭ			0,00
Ecological target type	2	1	0	1	0	5	3	-2	4	1,27
determined	2	1	0	1		5	5	-2	-	1,41
	2	1	-1	0	0	4	3	0	4	0.71
Agricultural backgrounds with	-2	-1	-1	U	U	4	3	U	4	0,71
natural values inventory										
Management										
Management scheme for the	3	0	-1	5	0	4	4	5	-1	2,54
maintaining of the diversity of										
urban nature										
Noise nuisance prevention	-1	-2	1	0	0	4	2	-1	3	0,64
	-1	1	-2	4	0	4	4	3	5	2,04
Compost plants	-1	1	-2	4	U	4	4	5	5	2,04

Adoption green	1	3	4	4	3	5	3	3	4	3,46
Garden layout support for	-2	-1	-2	0	3	3	3	4	5	1,45
residents										
Maintenance plan to promote	0	-2	0	-1	1	5	4	2	-1	1,19
ecological quality										
Design										
Waste bins integrated in the	2	0	0	-1	-1	-1	5	4	5	1,30
design to reduce waste damage										
Variation in landscape	-1	2	0	0	0	3	5	-2	4	0,89
Plant species that increase	-3	0	0	0	4	3	4	-1	1	0,75
biodiversity and better the										
living environment										
Greenery diversity with native	-1	2	0	0	4	3	3	-1	1	1,02
trees, shrubs, perennials and										
seeds										
Green and blue dry and wet	-1	-1	0	-1	4	5	4	1	2	1,43
spots realization	2	4	0	0	4	2	5	2	4	2.22
Reed edge in water	-2	4	0	0	4	3	5	3	4	2,23
Pond for water capture with	-3	-3	3	-1	4	5	3	-4	2	0,47
open space to relax										
Hedge with various native	-1	3	-1	0	4	3	4	3	3	1,93
species			1	1	4		4	-	4	216
Streetscape greenery	2	3	-1	1	4	3	4	2	4	2,16
Nature-friendly banks	1	3	0	0	4	4	4	0	3	1,82
Free migration stimulation	-1	3	3	4	4	3	2	0	2	2,17
Bee strips	2	3	4	4	4	4	4	-2	3	2,57
Flora and fauna in relation to	1	3	4	3	4	3	4	-1	3	2,41
target species										
6. Space										
Design										0,00
Design based on the	-1	4	0	2	0	5	5	2	4	2,37
environment										
Flexible plan to build question	3	4	3	4	1	4	5	5	3	3,77
based	2		1	4	5	2		1	1	1.50
Reduced parking norm	2	5	-1	4		3	-2	-1	1	1,53
(Electric) Car sharing (in	-1	3	-1	2	5	3	0	-2	1	0,84
collaboration with companies)							_		_	
Small private garden, large	4	3	3	4	3	5	-1	4	4	3,39
community garden		4		0	4			~	2	2.65
Flexible building (for example	4	4	3	0	4	5	4	5	3	3,66
demountable)							_		_	0,00
7. Mobility									_	
Design	2	2	5	2	1	A	A	2	F	0,00
Safe intersections	-3	-3	5	-2	-1	4	4	-2	5	0,73
Fast cycling lanes to promote	-2	-4	5	0	-2	4	2	-1	4	0,83
cycling to the centre of Voorhout										
	-1	-1	2	0	-1	4	4	1	4	1,41
Bicycle parking spots	-1	-1	2	U	-1	4	4	1	4	1,41

Access to public transport	-3	-2	-1	0	0	3	3	2	-1	0,46
Shared working space	-3	-4	4	-1	-1	4	0	3	2	1,01
(Electric) Car sharing (in	1	3	5	2	2	4	0	5	2	3,11
collaboration with companies)										
Sharing bikes	0	2	3	2	3	4	0	4	2	2,55
Aesthetic signs for easy way	-1	1	1	-1	0	2	4	4	5	1,73
finding and to stimulate										
waking			_	_		_	_	_		0.00
8. Living environment									_	0,00
Insights										0,00
Background noise map	-2	1	2	3	0	5	4	-1	2	1,63
Management										0,00
Noise nuisance prevention	-1	0	2	0	5	5	4	-2	0	1,33
Heat and cold warning	3	2	5	0	5	5	4	0	3	2,81
mechanism and strategy plan										
to react			_	_		_	_			0,00
Design	2	2	A	0	3	5	2	5	2	
Different function options in the environment	2	2	4	0	5	Э	-2	Э	2	2,76
Flexible design, so that space	3	3	1	0	3	4	5	5	3	3,06
can be used different in the	5	5	1	0	5	-	5	5	5	5,00
future										
Daylight accessible	0	1	5	4	5	5	5	4	5	3,90
Suitable trails for rollators,	-1	-3	0	-2	-1	3	4	0	3	0,30
wheelchairs and mobility										·
scooters										
Fast cycling lanes to promote	-2	-4	5	0	-2	4	2	-1	4	0,83
cycling to the centre of										
Voorhout	4	2	2	4	2	5	1	4	4	2.20
Community gardens	4	3	3	4	3	5	-1	4	4	3,39
Shared working space	-3	-4	4	-1	-1	4	0	3	2	1,01
Community centre as a central	-3	-3	2	-3	-2	5	4	3	3	1,08
meeting place and to organise activities, such as cooking,										
community eating, tv										
watching, yoga, drama class, a										
drink, etc.										
Virtual meeting place to	-2	3	3	0	0	5	5	4	3	2,68
organise activities in										
neighbourhood and community										
house (internet and app)		-								
Small private garden, large	4	3	3	4	3	5	-1	4	4	3,39
community garden Communal gardens for food	-1	2	4	2	5	3	1	4	4	2,82
production	-1	2	4	2	5	3	1	4	4	2,02
Activity spaces	-2	-2	0	-1	-2	4	4	2	3	0,88
Pet-friendly environment	2	3	2	3	3	4	5	5	3	3,48
Outdoor playing and sport	-2	-2	0	-1	-2	4	4	2	3	0,88
places	-2	-2	0	-1	-2	4	4	2	5	0,00

Sound barrier around road	-2	-2	0	0	3	5	4	1	0	1,17
Public toilet available, possibly in community Centre	2	2	-2	-1	-1	5	5	-4	4	0,59
Adequate and uniform lighting conditions	-1	0	4	0	0	4	4	3	3	2,17
Art	0	-3	0	-1	0	0	0	1	3	-0,05
9. Investments										0,00
Insights										0,00
Long term budget and look at the long-term investments	1	1	0	1	4	1	5	3	5	2,05
LCC for the planning, construction, usage and demolition phase.	-2	4	4	4	4	4	3	3	3	3,19
Management										0,00
Measures for which subsidy is given	0	4	0	0	0	3	2	-1	5	1,14
Budget to prevent harm on area interests	0	0	2	0	0	3	0	3	4	1,52
Educational value through visible sustainable measures	0	0	3	0	0	3	4	2	5	1,90
Design										
Room for co-creation with inhabitants	2	0	4	0	0	0	0	5	5	1,94
Recyclable products	0	0	0	0	5	0	0	1	2	0,68

APPENDIX E.3. MCA CONDUCTION FOR THE SOCIAL DIMENSION

APPENDIX E.3.1. SPI WEIGHT DETERMINATION

TABLE E.9 SOCIAL SPI IMPORTANCE SCORE

	Expert 1	Expert 2	Expert 3	Expert 4	Expert 5	Expert 6	Average score	SPI importance = Average score / Sum average score
Social category (1-11)								
Health, comfort and well-being of residents	2	1	2	2,5	5,5	1	2,3	0,035088
Influence on the local economy	10	11	9	8,5	10	8	9,4	0,141604
Functionality and usability of the physical space	4	3	5	6	5,5	4	4,6	0,068922
Aesthetic options and beauty of the environment	9	4	8	6	5,5	3	5,9	0,088972
Safety and security	5	2	4	8,5	1,5	6	4,5	0,067669
Community disturbance	8	5	11	10,5	10	11	9,3	0,139098
Influence on local social development	7	9	6	6	10	2	6,7	0,100251
Affordability	6	8	7	1	5,5	9	6,1	0,091479
User acceptance and satisfaction	1	6	4	2,5	1,5	7	3,7	0,055138
Neighbourhood accessibility and amenities	3	7	3	4	5,5	5	4,6	0,068922
Educational value	11	10	10	10,5	5,5	10	9,5	0,142857
Sum							66,5	1

TABLE E.10 SOCIAL SPI IMPORTANCE COMPARISON

	Health, comfort and well-being of residents	Influence on the local economy	Functionality and usability of the physical space	Aesthetic options and beauty of the environment	Safety and security	Community disturbance	Influence on local social development	Affordability	User acceptance and satisfaction	Neighbourhood accessibility and amenities	Educational value
Health, comfort and well-being of residents	1	4,035 7	1,964 3	2,535 714	1,928 57	3,964 286	2,857 14	2,607 1	1,571 429	1,964 3	4,071 4285 7
Influence on the local economy	0,247 79	1	0,486 7	0,628 319	0,477 88	0,982 301	0,707 96	0,646	0,389 381	0,486 7	1,008 8495 6
Functionality and usability of the physical space	0,509 09	2,054 5	1	1,290 909	0,981 82	2,018 182	1,454 55	1,327 3	0,8	1	2,072 7272 7
Aesthetic options and beauty of the environment	0,394 37	1,591 5	0,774 6	1	0,760 56	1,563 38	1,126 76	1,028 2	0,619 718	0,774 6	1,605 6338
Safety and security	0,518 52	2,092 6	1,018 5	1,314 815	1	2,055 556	1,481 48	1,351 9	0,814 815	1,018 5	2,111 1111 1
Community disturbance	0,252 25	1,018	0,495 5	0,639 64	0,486 49	1	0,720 72	0,657 7	0,396 396	0,495 5	1,027 0270 3
Influence on local social development	0,35	1,412 5	0,687 5	0,887 5	0,675	1,387 5	1	0,912 5	0,55	0,687 5	1,425
Affordability	0,383 56	1,547 9	0,753 4	0,972 603	0,739 73	1,520 548	1,095 89	1	0,602 74	0,753 4	1,561 6438 4
User acceptance and satisfaction	0,636 36	2,568 2	1,25	1,613 636	1,227 27	2,522 727	1,818 18	1,659 1	1	1,25	2,590 9090 9
Neighbourhood accessibility and amenities	0,509 09	1	1	1,290 909	0,981 82	2,018 182	1,454 55	1,327 3	0,8	1	2,072 7272 7
Educational value	0,245 61 5,046	1 19,32	0,482 5 9,913	0,622 807 12,79	0,473 68 9,732	0,973 684 20,00	0,701 75 14,41	0,640 4 13,15	0,385 965 7,930	0,482 5 9,913	1 20,54
SUM	5,040 65	19,52	9,913	685	9,732 82	20,00 635	14,41 9	13,15 7	7,930 443	9,913	20,54 7057 5

TABLE E.11 NORMALIZED TABLE SOCIAL SPI IMPORTANCE COMPARISON FOR SOCIAL SPI WEIGHT

Health, comfort and well- being of residents0,190,100,100,100,100,100,0100,0100,0100,0100,0100,0100,0100,0100,0100,0100,100,1000,100,1000,100,1000,100,1000,100,1000,100,100		Health, comfort and well- being of residents	Influence on the local economy	Functionality and usability of the physical space	Aesthetic options and beauty of the environment	Safety and security	Community disturbance	Influence on local social development	Affordability	User acceptance and satisfaction	Neighbourhood accessibility and amenities	Educational value	Weight social SPI
and well- being of residentsI.s. <thi.s.< th="">I.s.I.s.I.s.<</thi.s.<>	Health,												
being of residents <th>comfort</th> <th>815</th> <th>89</th> <th>82</th> <th>151</th> <th>815</th> <th>151</th> <th>815</th> <th>82</th> <th>151</th> <th>82</th> <th>5142</th> <th>126</th>	comfort	815	89	82	151	815	151	815	82	151	82	5142	126
residents(n)	and well-												
Influence on the local economy0.04 910.05 180.04 910.04 	being of												
on the local economy9118910.99910.9991910.99910.999191.09947341Functiona lity and usability of the physical space0.100.100.100.100.1000.1000.1000.1000.1000.1000.1000.1000.1000.1000.1000.1000.1010.1000.1010.1030.0710.0780.070.0780.070.0780.070.0780.070.0780.070.0780.070.0780.070.0780.0710.0780.070.0780.0710.0780.0710.0780.0710.0780.0710.0780.0710.0780.0710.0780.0710.0780.0710.0780.0710.0720.0710.0720.0710.0720.0710.0720.0710.0120.1030.0110.1020.1030.0110.1020.1030.0110.1020.1030.0110.1020.1030.0110.1020.1	residents												
local economy	Influence	0,04	0,05	0,04	0,049	0,04	0,049	0,04	0,04	0,049	0,04	0,0490	0,049
economyImage: second secon	on the	91	18	91	099	91	099	91	91	099	91	9947	341
Functiona 0,10 0,10 0,10 0,100 0,10 0,100 0,10 0,100 0,007	local												
lity and usability of the physical space088630987708887708887708887708809877097709373Aesthetic options and beauty of the environm ent0,070,070,070,070,070,0780,078	economy												
usability of the physical spaceII <t< th=""><th>Functiona</th><th>0,10</th><th>0,10</th><th>0,10</th><th>0,100</th><th>0,10</th><th>0,100</th><th>0,10</th><th>0,10</th><th>0,100</th><th>0,10</th><th>0,1008</th><th>0,101</th></t<>	Functiona	0,10	0,10	0,10	0,100	0,10	0,100	0,10	0,10	0,100	0,10	0,1008	0,101
of the physical spaceI.I	lity and	088	63	09	877	088	877	088	09	877	09	7709	373
physical spaceImage: spaceImage: s	usability												
spaceimage: space													
Aesthetic options and beauty of the environm ent 0,07 24 0,07 81 0,07 0,078 0,07 814 0,078 814 0,07 814 0,078 814 0,07 814 0,078 814 0,010 814 0,102 815 0,102 814	physical												
options and beauty of the environm ent 814 24 81 144 814 144 814 81 144 81 <t< th=""><th>_</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></t<>	_												
and beauty of the environm ent Image: Safety environm ent 0,10 0,10 0,10 0,102 0,10 0,102 0,10 0,102 0,10 0,102 0,10 0,102 0,103 0,102 0,10 0,102 0,103 0,102 0,103 0,102 0,103 0,102 0,103 0,102 0,103 0,102 0,103 0,102 0,103 0,102 0,103 </th <th></th> <th>· ·</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>-</th> <th></th>		· ·										-	
beauty of the environm ent Image: Safety environm 0,10 0,10 0,102 0,10 0,102 0,10 0,102 0,10 0,102 0,10 0,102 0,10 0,102 0,10 0,102 0,10 0,102 0,10 0,102 0,10 0,102 0,10 0,102 0,10 0,102 0,10 0,102 0,10 0,102 0,10 0,102 0,10 0,102 0,10 0,102 0,10 0,102 0,10 0,102 0,103 0,103 0,103 0,104 0,102 0,103 0,10	-	814	24	81	144	814	144	814	81	144	81	4422	529
the environm ent Image: Safety ent 0,10 0,10 0,10 0,10 0,102 0,10 0,102 0,10 0,102 0,10 0,102 0,10 0,102 0,10 0,102 0,10 0,102 0,103 0,102 0,10 0,102 0,103 0,102 0,102 0,102 0,10 0,102 0,103 0,102 0,103 0,102 0,103 0,102 0,103 0,102 0,103 0,102 0,103 0,102 0,103 0,102 0,103 0,104 0,104 0,004 0,004 0,004													
environm ent Image: Safety ent 0,10 0,10 0,10 0,102 0,103 0,102 0,103 0,102 0,103 0,102 0,103 0,102 0,103 0,102 0,103 0,102 0,103 0,102 0,103 0,102 0,103 0,102 0,103 0,102 0,103 0,102 0,103 0,102 0,103 0,102 0,103 0,102 0,103 0,103 0,103 0,103 0,102 0,103 0,103 0,103 0,104 0,104 0,104 0,104 0,104 0,104 0,004 0,004 0,004 0,004 0,004 0,004 0,004 0,004<	-												
ent <th></th>													
Safety and 0,10 0,10 0,10 0,102 0,103 251 security 275 83 27 745 27 745 27 4518 251 Communi 0,04 0,05 0,05 0,049 0,04 0,049 0,05 0,049 0,05 0,049 0,05 0,049 0,05 0,049 0,05 0,049 0,05 0,049 0,05 0,049 0,05 0,049 0,05 0,049 0,05 0,049 0,05 0,049 0,05 0,049 0,05 0,049 0,05 0,049 0,05 0,049 0,05 0,049 0,05 0,049 <t< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></t<>													
and security 275 83 27 745 275 745 27 745 27 4518 251 Communi 0,04 0,05 0,05 0,049 0,04 0,049 0,04 0,05 0,049 0,050 0,049 0,050 0,049 0,050 0,049 0,050 0,049 0,050 0,049 0,050 0,049 0,050 0,049 0,050 0,049 0,050 0,049 0,050 0,049 0,050 0,049 0,050 0,050 0,069 0,06 0,06 0,06 0,06 0,06 0,06 0,06													
security Image: security </th <th>-</th> <th></th>	-												
Communi ty disturban ce 0,04 0,05 0,05 0,049 0,04 0,04 0,05 0,049 0,05 0,0499 0,050 ty disturban ce 998 27 984 984 998 984 998 984 998 984 998 984 998 984 998 984 998 984 985 935 935 935 945 353 94 </th <th></th> <th>275</th> <th>83</th> <th>27</th> <th>745</th> <th>275</th> <th>745</th> <th>275</th> <th>27</th> <th>745</th> <th>27</th> <th>4518</th> <th>251</th>		275	83	27	745	275	745	275	27	745	27	4518	251
ty 998 27 984 998 984 998 984 998 984 984 984 984 984 8414 23 Influence on local social developm ent 0,06 0,07 0,06 0,069 0,069 0,069 0,069 0,066 0,069 0,066 0,069 0,066 0,069 0,066 0,069 0,066 0,069 0,066 0,069 0,066 0,069		0.01	0.07	0.07	0.040	0.01	0.040	0.01	0.07	0.040	0.07	0.0400	0.050
disturban ce Image: Social social developm ent 0,06 0,07 0,06 0,069 0,066 0,069 0,066 0,066 0,069 0,066 0,066 0,069 0,066 0,066 0,069 0,066 0,069 0,066 0,069 0,066 0,069 0,066 0,069 0,066 0,069 0,066 0,069 0,066 0,069 0,066 0,069 0,066 0,069 0,069 0,069 0,066 0,069		, i	· ·	0,05	<i>,</i>	· ·	<i>'</i>	· ·	0,05	· ·	0,05	<i>,</i>	· ·
ce	-	998	27		984	998	984	998		984		8414	23
Influence on local social developm ent 0,06 31 0,06 94 0,069 353 0,069 935 0,06 935 0,06 935 0,069 94 0,069 353 0,069 94 0,069 53 0,0693 0,0693 0,0693 0,0693 0,069 0,069 0,061 0,069 0,061 0,069													
on local social developm ent 935 31 94 353 935 353 935 94 353 94 53 694 Affordabi 0,07 0,08 0,07 0,076 0,07 0,07 0,076 0,07 0,076 0,07 0,076 0,07 0,076 0,07 0,076 0,076 0,07 0,076 0,07 0,076 0,07 0,076 0,077 0,076 0,07 0,076 0,07 0,076 0,077 0,076 0,07 0,076 0,077 0,076 0,07 0,076 0,077 0,076 0,03 6 003 6 0328 377 User 0,12 0,13 0,12 0,126 0,12 0,126 0,12 0,126 0,12 0,126		0.04	0.07	0.04	0.070	0.04	0.070	0.04	0.07	0.070	0.07	0.0602	0.070
social developm ent k		· ·		· ·	-	· ·	,		· ·			-	· ·
developm ent <t< th=""><th></th><th>733</th><th>51</th><th>94</th><th>555</th><th>733</th><th>555</th><th>933</th><th>94</th><th>555</th><th>94</th><th>22</th><th>094</th></t<>		733	51	94	555	733	555	933	94	555	94	22	094
ent <th></th>													
Affordabi 0,07 0,08 0,07 0,076 0,076 <th< th=""><th>-</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></th<>	-												
lity 6 01 6 003 6 003 6 003 6 0328 377 User 0,12 0,13 0,12 0,126 0,12 0,12 0,126 0,12 0,126 0,12 0,126 0,12 0,126 0,12 0,126		0.07	0.08	0.07	0.076	0.07	0.076	0.07	0.07	0.076	0.07	0.0760	0.076
User 0,12 0,13 0,12 0,126 0,12 0,126 0,12 0,12 0,126<					-		,		· ·	,		,	· ·
acceptanc 61 29 61 096 61 096 61 61 096 61 9636 717													
e and	-	01	27	01	090	01	090	01	01	090	01	2050	/1/

satisfactio												
n												
Neighbou	0,10	0,05	0,10	0,100	0,10	0,100	0,10	0,10	0,100	0,10	0,1008	0,096
rhood	088	18	09	877	088	877	088	09	877	09	7709	412
accessibili												
ty and												
amenities												
Education	0,04	0,05	0,04	0,048	0,04	0,048	0,04	0,04	0,048	0,04	0,0486	0,048
al value	867	18	87	669	867	669	867	87	669	87	6877	95
SUM	1	1	1	1	1	1	1	1	1	1	1	1

APPENDIX E.3.2. SOCIAL MEASURE MCA SCORE

TABLE E.12 MCA FOR THE SOCIAL DIMENSION

Indicator	Health, comfort and well- being of residents	Influence on the local economy	Functionality and usability of the physical space		Safety and security	Community disturbance	Influence on local social development	Affordability	User acceptance and satisfaction	Neighbourhood accessibility and amenities	Educational value	Social score
Weight	0,20	0,05	0,10	0,08	0,10	0,05	0,07	0,08	0,13	0,10	0,05	
Measure												
1. Energy												
Insights												
Feasibility study into	0	0	0	0	0	1	0	3	3	0	1	0,71
renewable energy												
CO2 emissions calculation with DuboCalc or a comparable program	1	0	0	0	1	2	0	3	3	0	1	1,06
CO2 emission mapping of maintenance work, work process and waste processing.	1	0	0	0	0	1	0	3	3	0	1	0,91
Management												
Efficient use of building tools/construction machines: switch them of when they are not needed	2	0	1	0	1	3	0	3	3	0	0	1,36
fuel/energy-efficient construction and machinery	1	0	0	0	0	1	0	3	3	0	0	0,86
Design												

Prioritization of walking	3	1	3	-2	3	3	2	2	3	2	1	2,17
and cycling in the design												
instead of car usage												
Pipe length reduction of	0	0	1	0	0	0	0	3	0	-1	0	0,23
heating and ventilation												
systems			_									
Windows on the south side	3	-1	-1	3	-1	0	0	3	3	-1	1	1,14
of buildings with trees in												
front of them							_	_				
Hot/cold networks:												
Asphalt heating	1	-1	0	0	2	1	0	-1	3	1	0	0,81
Riothermia: extract heat	0	1	0	0	1	-1	0	-2	3	0	1	0,38
from waste water in the												
sewerage system												
Surface water heating	0	1	0	-1	0	-1	0	-1	2	-1	3	0,15
Geothermal heating	0	0	0	0	-1	-1	0	-3	3	0	0	0,00
Compressed air for	0	0	0	0	-2	-1	0	-3	1	0	0	-0,36
underground heat storage												,
Sun-/PV-panels	0	1	1	-1	0	1	0	2	3	0	2	0,75
Smart Grid	3	1	2	0	1	2	0	1	3	0	1	1,56
Domotica systems	3	2	3	1	2	3	0	2	3	0	3	2,12
•	2	2		1	1	0	0	3	3	0	2	
Led lighting/ lights with	2	2	1	1	1	0	0	3	3	0	2	1,49
integrated solar panels and												
battery Multipurpose charging	2	2	3	-1	1	0	0	3	3	0	3	1,58
stations with LED lighting	2	2	5	-1	1	0	0	5	5	0	5	1,50
Smart Energy Floor	1	0	1	2	1	0	1	3	3	0	3	1,39
2. Materials	1	0	1	2	1	0	1	5	5	0	5	1,07
					_							_
Insights												
Materials passport	1	1	0	0	1	0	0	3	3	0	0	0,96
Material loss chart of	1	0	0	0	1	1	0	3	3	0	0	0,96
production												
Material origin	0	1	0	0	0	0	0	2	3	0	0	0,58
substantiation		_										
Life cycle analysis (LCA)	1	2	0	0	1	1	0	3	3	0	0	1,06
Management												
Waste management plan	3	1	0	0	0	3	1	3	3	0	1	1,53
Circular building materials	0	0	0	0	0	1	0	2	3	0	1	0,63
Design		1				1						
Flexible building (for	1	1	3	2	0	-1	0	1	1	1	1	1,01
example demountable)	-	-			Ŭ	-	Ť		-	-	1	-,•-
New objects made from	1	2	2	3	0	0	0	3	3	0	3	1,49
cut down trees	-	-			Ŭ		Ť		Ĩ	Ŭ		_,
Shared sheds containing	2	-1	1	0	0	-1	3	1	2	-1	3	0,99
shared tools that people	-	-		Ŭ	Ŭ	-			-	-		
need occasionally												
Smart led lighting to show	1	1	1	1	2	0	0	2	2	1	1	1,19
half hardened parking							-	-	_			
spots												
1	I											

		1	1		1	1	0			1		1.42
Roadway of reinforced	2	1	1	0	1	1	0	3	2	1	3	1,43
grass or water-permeable												
paving (half open paving)		-		-								0.41
Narrow walking strip in	0	0	1	0	0	0	-1	3	0	1	1	0,41
baked bricks					_							
Mineral Olivine to absorb	-1	0	-1	0	0	0	0	1	2	0	3	0,18
CO2					_							
Verge cuttings recycling	1	2	1	0	0	-1	0	3	3	0	2	1,06
3. Water												
Insights												
Water resource	1	0	2	1	2	1	0	3	3	0	0	1,35
investigation (with a												,
water-resource evaluation												
matrix)												
Impact assessment	3	0	1	0	3	2	0	3	3	0	0	1,72
Groundwater	1	0	1	0	2	2	0	1	3	0	0	1,06
ambitionlevel analyzation	1	0	1	0	-	-		1	5			1,00
Design												
	2	1	1	0	1	1	0	2	2	1	2	1.42
Roadway of reinforced grass or water-permeable	2	1	1	0	1	1	0	3	2	1	3	1,43
paving (half open paving)	2	1	1	2	1	-	2	2	0	0	1	1.60
Green gardens without	3	1	1	3	1	2	2	3	0	0	1	1,60
(much) pavement	2	0			1	1	1	1	-	1	1	1.01
Existing water	3	0	0	3	1	-1	1	-1	3	-1	1	1,21
enlargement												
Pond for water capture	3	1	-1	3	0	-1	3	-1	3	0	1	1,29
with open space to relax		-		-								0.50
Separate sewer for grey	1	0	2	0	1	-1	0	-1	2	0	0	0,63
and black water								-				
Water extraction area to	2	0	3	1	1	-1	0	1	2	0	3	1,31
capture clean rain water												
from roofs. Street water is												
guided away from the									1			
extraction area to wade's to												
infiltrate in the soil		-	-	-		-	-		-		2	0.01
Helophyte filters to rinse	2	1	1	1	0	-1	0	1	2	-1	3	0,96
grey wastewater from									1			
washing machines,									1			
showers, kitchen etc.	1		-	-		0	0	1	-		0	0.04
Water storage for rain	1	0	2	0	1	0	0	1	3	0	0	0,96
water to use in black												
(toilet) water systems					_							
4. Soil			_									
Insights												
Environmental Impact	1	0	2	1	3	3	0	3	3	0	1	1,60
Assessment (EIA) with												
water and soil as subject of												
protection												
Management												
2		1						1	1	1	1	

Green area prioritization in urban planning	3	1	-1	3	0	2	1	3	3	-1	1	1,51
Reduction areas for soil consumption (soil sealing)	0	0	-2	0	0	1	0	1	0	-1	1	-0,12
Demolition practice plan	0	1	0	1	0	1	0	3	1	0	0	0,53
5. Nature and Ecology												,
Insights												
Quickscan: Inventory the	0	0	1	2	0	2	0	2	3	0	0	0,89
current flora & fauna		-					Ŭ			Ŭ	Ŭ	- ,
Ecological target type	0	0	1	1	0	3	0	3	1	0	0	0,69
determined												
Agricultural backgrounds	0	1	1	2	0	1	1	2	1	0	1	0,76
with natural values												
inventory		_										
Management												
Management scheme for	2	2	1	3	0	2	0	3	3	0	0	1,54
the maintaining of the												
diversity of urban nature	3	0	0	0	0	3	0	0	3	0	0	1,13
Noise nuisance prevention	0	0	0	-1	0	-2		-	-1	0		
Compost plants		-	-				0	2		-	3	-0,01
Adoption green	2	0	0	0	0	0	1	3	0	-1	1	0,65
Garden layout support for residents	1	0	1	1	0	0	1	2	2	0	2	0,95
Maintenance plan to	0	2	0	2	0	0	0	3	3	0	0	0,87
promote ecological quality	0	2	0	2	0	0	0	3	3	0	0	0,07
Design		_										
Waste bins integrated in	3	0	1	-1	1	3	0	3	3	0	1	1,53
the design to reduce waste	5	Ŭ	1	1	1	5	Ŭ	5	5	Ŭ	1	1,00
damage												
Variation in landscape	1	0	2	2	0	0	0	0	0	0	1	0,61
Plant species that increase	1	0	0	1	0	0	0	2	2	0	1	0,73
biodiversity and better the												
living environment												
Greenery diversity with	0	0	-1	2	0	0	0	2	2	0	1	0,51
native trees, shrubs,												
perennials and seeds	2	0	-2	3	0	-1	1	-1	2	0	1	0.69
Green and blue dry and wet spots realization	2	0	-2	3	0	-1	1	-1	2	0	1	0,68
Reed edge in water	1	0	-1	0	0	-1	0	3	0	-1	1	0,23
Pond for water capture	3	1	-1	3	0	-1	3	-1	3	0	1	1,29
with open space to relax	5	1	-1	5	0	-1	5	-1	5		1	1947
Hedge with various native	1	0	0	2	-1	0	0	3	2	-1	2	0,74
species												,
Streetscape greenery	1	0	-1	3	0	0	0	1	3	-1	1	0,74
Nature-friendly banks	0	0	1	3	0	0	0	1	2	0	1	0,72
Free migration stimulation	0	0	-2	0	0	0	0	0	0	-1	3	-0,15
Bee strips	0	0	-2	0	0	0	0	0	1	-1	3	-0,03
	-											
Flora and fauna in relation	0	0	0	0	0	0	0	2	3	0	1	0,58

6. Space												
Design												
Design based on the	0	1	2	2	0	1	1	2	3	1	0	1,16
environment												
Flexible plan to build	1	0	3	2	0	1	0	1	1	1	1	1,06
question based												
Reduced parking norm	0	0	0	1	0	0	0	3	-1	-1	1	0,13
(Electric) Car sharing (in	0	1	0	0	0	0	2	3	1	1	2	0,74
collaboration with												
companies)												
Small private garden, large	1	1	1	1	-1	0	2	3	0	1	1	0,84
community garden												
Flexible building (for	1	0	3	2	0	-1	0	-1	1	1	1	0,81
example demountable)												
7. Mobility												
Design												
Safe intersections	1	0	0	-1	3	-1	1	1	3	3	0	1,20
Fast cycling lanes to	3	1	3	-1	1	0	1	2	3	3	1	1,92
promote cycling to the												Í
centre of Voorhout												
Bicycle parking spots	1	0	0	-1	1	0	0	3	3	2	0	1,03
Access to public transport	1	1	0	0	1	0	0	0	3	3	0	1,02
Shared working space	1	2	1	-1	0	-1	3	0	2	0	1	0,78
(Electric) Car sharing (in	0	1	0	0	0	0	2	3	1	1	2	0,74
collaboration with	0	1	Ŭ	Ū	Ŭ	Ū	2	5	1	1	2	0,74
companies)												
Sharing bikes	1	1	0	0	0	0	2	3	1	2	1	0,99
Aesthetic signs for easy	1	0	1	3	0	0	0	3	3	1	3	1,39
way finding and to	1	Ŭ	1	5	Ŭ	Ŭ	Ŭ	5	5	1	5	1,05
stimulate waking												
8. Living environment				_		_						
Insights				_		_						
0	3	0	0	0	0	1	0	1	3	0	0	1,10
Background noise map	3	0	0	0	0	1	0	1	3	0	0	1,10
Management												
Noise nuisance prevention	3	0	0	0	0	3	0	0	3	0	0	1,13
Heat and cold warning	2	1	0	0	3	0	0	0	3	0	2	1,24
mechanism and strategy												
plan to react			_	_		_			_			
Design												
Different function options	1	1	3	0	0	0	1	2	3	1	1	1,30
in the environment												
Flexible design, so that	1	1	3	2	0	0	1	-1	1	1	1	0,98
space can be used different												
in the future												
Daylight accessible	3	0	1	1	3	2	0	3	3	0	0	1,80
Suitable trails for rollators,	3	0	1	-1	2	0	3	2	3	3	0	1,86
wheelchairs and mobility												
scooters												

												1.00
Fast cycling lanes to	3	1	3	-1	1	0	1	2	3	3	1	1,92
promote cycling to the												
centre of Voorhout												
Community gardens	1	1	1	2	0	0	2	3	2	1	1	1,27
Shared working space	1	2	1	-1	0	-1	3	0	2	0	1	0,78
Community centre as a	2	2	2	0	1	-1	3	-1	3	0	2	1,36
central meeting place and												
to organise activities, such												
as cooking, community												
eating, tv watching, yoga,												
drama class, a drink, etc.												
Virtual meeting place to	1	1	2	0	3	3	3	3	1	0	3	1,62
organise activities in	-	-	-	Ű	0	2	0	0	-	0	0	-,
neighbourhood and												
community house (internet												
and app)												
Small private garden, large	1	1	1	1	-1	0	2	3	0	1	1	0,84
community garden	1	1	1	1	-1	0	2	5	0	1	1	0,04
Communal gardens for	3	0	1	1	0	0	2	2	1	-1	2	1,20
-	3	U	1	1	0	U	2	2	1	-1	2	1,20
food production	3	1	2	2	0	0	3	-1	2	0	1	1,44
Activity spaces	-	-		_	-	-	-		_	-		
Pet-friendly environment	3	2	0	1	1	0	2	2	1	0	0	1,30
Outdoor playing and sport	3	1	2	2	0	0	3	-1	2	0	0	1,39
places												
Sound barrier around road	3	0	-1	0	0	-1	1	-1	3	0	0	0,82
Public toilet available,	3	1	1	-1	1	0	2	1	3	1	0	1,47
possibly in community												
Centre												
Adequate and uniform	3	1	3	1	3	0	2	3	3	2	0	2,28
lighting conditions												
Art	2	0	-1	3	0	0	0	-1	2	0	1	0,76
9. Investments												
Insights					_		_			_		
•	0	1	0	0	0	2	0	-1	3	0	0	0,45
Long term budget and look at the long-term	U	1	0	U	0	2	U	-1	5	0	0	0,45
•												
investments	0	1	0	0	0	2	0	3	3	0	0	0.7(
LCC for the planning,	0	1	0	0	0	2	0	3	3	0	0	0,76
construction, usage and												
demolition phase.						_				_		
Management						_						
Measures for which	0	2	0	0	1	1	0	3	3	0	1	0,91
subsidy is given												
Budget to prevent harm	0	3	0	0	1	2	0	0	2	0	0	0,61
on area interests												
Educational value through	0	2	1	0	0	0	0	2	1	0	3	0,63
visible sustainable												
measures												
Design												
Room for co-creation with	1	1	2	1	0	0	2	2	1	0	1	1,00
				1	1							1 C C

Recyclable products	0	0	0	0	0	0	0	1	2	0	0	0,33
---------------------	---	---	---	---	---	---	---	---	---	---	---	------

APPENDIX E.4. TOTAL SUSTAINABILITY EVALUATION

APPENDIX E.4.1. SUSTAINABLE DIMENSION WEIGHT DETERMINATION

TABLE E.13 SUSTAINABLE DIMENSION WEIGHT DETERMINATION

	Expert 1	Expert 2	Expert 3	Expert 4	Expert 5	Expert 6	Average score	Dimension weight
Category (%)								
Environmental indicators	35	43	40	33	50	40	40	0,401667
Economic indicators	30	23	20	33	25	10	24	0,235
Social indicators	35	34	40	34	25	50	36	0,363333
Sum							100	1

APPENDIX E.4.2. MEASURES TOTAL SUSTAINABILITY SCORE

TABLE E.14 TOTAL SUSTAINABILITY SCORE PER MEASURE

	Sustainable dimension	Social Score	Environmental score	Economic score	Total sustainability score
	Dimension weight	0,36	0,40	0,24	
	Measure				
	1. Energy				
	Insights				
1	Feasibility study into renewable	0,7	1,1	2,0	1,2
	energy				
2	CO2 emissions calculation with	1,1	1,4	1,9	1,4
	DuboCalc or a comparable				
	program				
3	CO2 emission mapping of	0,9	0,9	2,0	1,2
	maintenance work, work process				
	and waste processing.				

	Management				
4	Efficient use of building tools/construction machines: switch them of when they are not needed	1,4	1,1	1,4	1,3
5	Fuel/energy-efficient construction and machinery	0,9	0,9	1,3	1,0
	Design				
6	Prioritization of walking and cycling in the design instead of car usage	2,2	0,4	0,7	1,1
7	Pipe length reduction of heating and ventilation systems	0,2	0,8	0,4	0,5
8	Windows on the south side of buildings with trees in front of them	1,1	0,8	3,0	1,4
	Hot/cold networks:				
9	Asphalt heat	0,8	1,4	0,7	1,0
10	Riothermia: extract heat from waste water in the sewerage system	0,4	1,2	0,1	0,6
11	Surface water heating	0,1	1,0	0,3	0,5
12	Geothermal heating	0,0	1,0	-0,6	0,3
13	Compressed air for underground heat storage	-0,4	1,0	-0,5	0,1
14	Sun-/PV-panels	0,8	0,9	1,0	0,9
15	Smart Grid	1,6	1,5	1,5	1,5
16	Domotica systems	2,1	1,1	1,4	1,5
17	Led lighting/ lights with integrated solar panels and battery	1,5	0,7	1,5	1,2
18	Multipurpose charging stations with LED lighting	1,6	0,7	1,0	1,1
19	Smart Energy Floor	1,4	0,2	0,2	0,6
	2. Materials				
	Insights				
20	Materials passport	1,0	1,0	3,3	1,5
21	Material loss chart of production	1,0	0,6	4,0	1,5
22	Material origin substantiation	0,6	0,3	3,4	1,1
23	Life cycle analysis (LCA)	1,1	1,2	4,2	1,9
	Management				
24	Waste management plan	1,5	1,0	3,9	1,9
25	Circular building materials	0,6	0,7	2,1	1,0
	Design				
75	Flexible building (for example demountable)	1,0	0,5	3,7	1,4
27	New objects made from cut down trees	1,5	0,9	3,1	1,6

28	Shared sheds containing shared tools that people need occasionally	1,0	0,4	2,7	1,2
29	Smart led lighting to show half hardened parking spots	1,2	0,3	1,0	0,8
30	Roadway of reinforced grass or water-permeable paving (half open paving)	1,4	0,8	2,6	1,5
31	Narrow walking strip in baked bricks	0,4	0,8	2,8	1,1
32	Mineral Olivine to absorb CO2	0,2	0,1	2,6	0,7
33	Verge cuttings recycling	1,1	0,6	4,8	1,8
	3. Water				
	Insights				
34	Water resource investigation (with a water-resource evaluation matrix)	1,3	0,9	2,3	1,4
35	Water impact assessment	1,7	1,0	2,1	1,5
36	Groundwater ambitionlevel analyzation	1,1	0,6	1,4	1,0
	Design	0,0			
30	Roadway of reinforced grass or water-permeable paving (half open paving)	1,4	0,8	2,7	1,5
37	Green gardens without (much) pavement	1,6	1,4	3,4	2,0
38	Existing water enlargement	1,2	0,9	2,0	1,3
63	Pond for water capture with open space to relax	1,3	0,9	2,4	1,4
40	Separate sewer for grey and black water	0,6	0,8	2,1	1,0
41	Water extraction area to capture clean rain water from roofs. Street water is guided away from the extraction area to wade's to infiltrate in the soil	1,3	0,9	2,1	1,3
42	Helophyte filters to rinse grey wastewater from washing machines, showers, kitchen etc.	1,0	1,3	1,9	1,3
43	Water storage for rain water to use in black (toilet) water systems	1,0	0,8	1,6	1,1
	4. Soil				
	Insights				
44	Environmental Impact Assessment (EIA) with water and soil as subject of protection	1,6	0,9	3,4	1,8
	Management				
45	Green area prioritization in urban planning	1,5	1,3	3,1	1,8

46	Reduction areas for soil consumption (soil sealing)	-0,1	0,7	3,4	1,0
47	Demolition practice plan	0,5	0,9	3,0	1,2
	5. Nature and Ecology				
	Insights				
48	Quickscan: Inventory the current flora & fauna	0,9	0,6	0,9	0,8
49	Ecological target type determined	0,7	0,2	1,3	0,6
50	Agricultural backgrounds with natural values inventory	0,8	0,5	0,7	0,7
	Management				
51	Management scheme for the maintaining of the diversity of urban nature	1,5	0,6	2,5	1,4
52	Noise nuisance prevention	1,1	0,5	0,6	0,8
53	Compost plants	0,0	1,0	2,0	0,9
54	Adoption green	0,6	1,1	3,5	1,5
55	Garden layout support for residents	1,0	0,9	1,5	1,0
56	Maintenance plan to promote ecological quality	0,9	0,9	1,2	0,9
	Design				
57	Waste bins integrated in the design to reduce waste damage	1,5	0,3	1,3	1,0
58	Variation in landscape	0,6	0,7	0,9	0,7
59	Plant species that increase biodiversity and better the living environment	0,7	1,0	0,8	0,8
60	Greenery diversity with native trees, shrubs, perennials and seeds	0,5	1,1	1,0	0,9
61	Green and blue dry and wet spots realization	0,7	1,1	1,4	1,0
62	Reed edge in water	0,2	0,9	2,2	1,0
63	Pond for water capture with open space to relax	1,3	0,9	0,5	1,0
64	Hedge with various native species	0,7	1,0	1,9	1,1
65	Streetscape greenery	0,7	0,9	2,2	1,2
66	Nature-friendly banks	0,7	0,8	1,8	1,0
67	Free migration stimulation	-0,2	0,9	2,2	0,8
68	Bee strips	0,0	0,6	2,6	0,8
69	Flora and fauna in relation to target species	0,6	0,7	2,4	1,0
	6. Space				
	Design				
70	Design based on the environment	1,2	1,0	2,4	1,4
70	Design based on the environment	1,2	1,0	2,4	

71	Flexible design plan to build question based, so that space can be used different in the future	1,1	0,5	3,8	1,5
72	Reduced parking norm	0,1	0,5	1,5	0,6
73	(Electric) Car sharing (in collaboration with companies)	0,7	0,2	0,8	0,5
74	Small private garden, large community garden	0,8	0,7	3,4	1,4
75	Flexible building (for example demountable)	0,8	0,5	3,7	1,4
	7. Mobility				
	Design				
76	Safe intersections	1,2	-0,3	0,7	0,5
77	Fast cycling lanes to promote cycling to the centre of Voorhout	1,9	0,0	0,8	0,9
78	Bicycle parking spots	1,0	0,0	1,4	0,7
79	Access to public transport	1,0	0,4	0,5	0,6
80	Shared working space	0,8	-0,3	1,0	0,4
81	Sharing bikes	1,0	0,3	2,5	1,1
82	Aesthetic signs for easy way finding and to stimulate waking	1,4	0,3	1,7	1,0
	8. Living environment				
	Insights				
83	Background noise map	1,1	0,5	1,6	1,0
	Management				
52	Noise nuisance prevention	1,1	0,5	1,3	0,9
84	Heat and cold warning mechanism and strategy plan to react	1,2	0,7	2,8	1,4
	Design				
85	Different function options in the environment	1,3	0,6	2,8	1,4
71	Flexible design plan to build question based, so that space can be used different in the future	1,0	0,5	3,1	1,3
86	Daylight accessible	1,8	1,0	3,9	2,0
87	Suitable trails for rollators, wheelchairs and mobility scooters	1,9	0,1	0,3	0,8
77	Fast cycling lanes to promote cycling to the centre of Voorhout	1,9	0,0	0,8	0,9
88	Community gardens	1,3	1,1	3,4	1,7
80	Shared working space	0,8	-0,3	1,0	0,4
89	Community centre as a central meeting place and to organise activities, such as cooking,	1,4	-0,5	1,1	0,5

	community eating, tv watching, yoga, drama class, a drink, etc.				
90	Virtual meeting place to organise activities in neighbourhood and community house (internet and app)	1,6	0,1	2,7	1,3
74	Small private garden, large community garden	0,8	0,7	3,4	1,4
91	Communal gardens for food production	1,2	1,0	2,8	1,5
92	Activity spaces	1,4	0,1	0,9	0,8
93	Pet-friendly environment	1,3	0,1	3,5	1,3
94	Outdoor playing and sport places	1,4	0,0	0,9	0,7
95	Sound barrier around road	0,8	0,3	1,2	0,7
96	Public toilet available, possibly in community Centre	1,5	-0,1	0,6	0,6
97	Adequate and uniform lighting conditions	2,3	0,9	2,2	1,7
98	Art	0,8	0,1	-0,1	0,3
	9. Investments				
	Insights				
99	Long term budget and look at the long-term investments	0,5	0,0	2,1	0,6
100	LCC for the planning, construction, usage and demolition phase.	0,8	0,3	3,2	1,2
	Management				
101	Measures for which subsidy is given	0,9	0,9	1,1	1,0
102	Budget to prevent harm on area interests	0,6	0,4	1,5	0,8
103	Educational value through visible sustainable measures	0,6	0,0	1,9	0,7
	Design				
104	Room for co-creation with inhabitants	1,0	0,7	1,9	1,1
105	Recyclable products	0,3	0,5	0,7	0,5
	1	1		1	

TABLE F.1 INFLUENCE OF MEASURES ON THEME NUMBER

Measure	MCA	Scenario 1	Scenario 2	Scenario
	score			3
37. Green gardens without (much) pavement	2		4.5, 5.1,	4.5, 5.1,
		4.5, 5.1, 7.2, 7.3, 8.5, 8.6 5.3, 5.5 4.8, 5.1, 5.3, 5.5 4.8, 5.1, 5.3, 5.5 4.8, 5.1, 9 2.3, 2.4 1.5, 2.3, 2.4, 2.6 9 2.2, 2.3, 1.5, 2.1, 2.4, 2.5 8 5.1, 7.1, 5.1, 7.1, 7.2, 8.1, 7.2, 8.1, 7.2, 8.1, 7.2, 8.1, 8.3, 8.4, 8.2, 8.3, 8.5, 8.6 8.4, 8.5, 8.6 8 5.1 7 4.2, 4.8, 4.9, 5.1 7 4.2, 4.8, 5.5 5.1, 5.3, 5.5 5.1, 5.3, 5.5 5.1, 5.3, 5.5 5.1, 5.3, 5.5 1.1, 3.3, 5.5 1.1, 3.3, 5.5 1.1, 3.3, 5.5 1.1, 3.3, 5.5 5.1, 5.1, 5.5 5.3, 7.2, 5.5 5.3, 7.2, 5.5 5.5, 5.1,	7.2, 7.3,	
			8.5, 8.6	8.5, 8.6
86. Daylight accessible	2	5.3, 5.5	4.8, 5.1,	4.8, 5.1,
			5.3, 5.5	5.3, 5.5
23. Life cycle analysis (LCA)	1,9	2.3, 2.4	1.5, 2.3,	1.5, 2.1,
			2.4, 2.6	2.3, 2.4,
			$\begin{array}{c} 4.5, 5.1, \\ 7.2, 7.3, \\ 8.5, 8.6 \\ 4.8, 5.1, \\ 5.3, 5.5 \\ 1.5, 2.3, \\ 2.4, 2.6 \\ \hline 1.5, 2.1, \\ 2.2, 2.3, \\ 2.4, 2.5 \\ \hline 5.1, 7.1, \\ 7.2, 8.1, \\ 8.2, 8.3, \\ 8.4, 8.5, \\ 8.6 \\ \hline 5.1 \\ 4.2, 4.8, \\ 4.9, 5.1 \\ 4.2, 4.8, \\ 4.9, 5.1 \\ 4.2, 4.8, \\ 5.1, 5.3, \\ 5.5 \\ 2.2, 2.3, \\ 2.5, 2.6, \\ 3.3 \\ 1.1, 3.3, \\ 5.1 \\ 1.1 \\ \hline 1.5, 2.2, \\ 2.3, 2.4, \\ 2.5 \\ \hline 4.5, 5.1, \\ 7.3, 8.5, \\ 8.6 \\ \hline 4.5, 5.1, \\ 7.1, 7.2, \\ 7.3, 8.5, \\ 8.6 \\ \hline \end{array}$	2.6
24. Waste management plan	score 3 gardens without (much) pavement 2 4.5, 5.1, 4.7, 7.3, 7.8, 8.8, 8.6, 8.8 ht accessible 2 5.3, 5.5 4.8, 5.1, 4.5, 5.1, 4.5, 5.5, 5.5 icle analysis (LCA) 1.9 2.3, 2.4 1.5, 2.3, 1.5, 2.4, 1.5, 2.3, 1.5, 2.4, 2.4, 2.6, 2.5, 2.6, 2.4, 2.2, 2.3, 2.4, 2.2, 2.3, 2.4, 2.2, 2.3, 2.4, 2.4, 2.5, 2.5, 2.5, 2.5, 2.5, 2.5, 2.5, 2.5	1.5, 2.1,		
		2.4	2.2, 2.3,	2.2, 2.3,
	score3) pavement2 $4.5, 5.1, 4$ $7.2, 7.3, 7$ $8.5, 8.6825.3, 5.54.8, 5.1, 45.3, 5.551,92.3, 2.41.5, 2.3, 12.4, 2.621,92.2, 2.3, 1.5, 2.1, 12.4, 2.2, 2.3, 22.4, 2.511,92.2, 2.3, 1.5, 2.1, 12.4, 2.5, 211,8$	2.4, 2.5		
33. Verge cuttings recycling	1,8			
44. Environmental Impact Assessment (EIA) with water	1,8	5.1, 7.1,	5.1, 7.1,	5.1, 7.1,
and soil as subject of protection	score 3) pavement 2 4.5, 5.1, 7.2, 7.3, 85, 8.6 4.5, 5.1, 7.2, 7.3, 85, 8.6 2 5.3, 5.5 4.8, 5.1, 4.8, 5.1, 5.3, 5.5 5.3, 5.5 1,9 2.3, 2.4 1.5, 2.3, 2.4, 2.6 1.5, 2.1, 2.4, 2.6 1,9 2.2, 2.3, 2.4, 2.5 1.5, 2.1, 2.4, 2.5 1.5, 2.1, 2.4, 2.5 1.8	7.2, 8.1,		
		8.3, 8.4,	8.2, 8.3,	8.2, 8.3,
 7. Green gardens without (much) pavement 5. Daylight accessible 6. Life cycle analysis (LCA) 6. Waste management plan 7. Verge cuttings recycling 8. Environmental Impact Assessment (EIA) with water and soil as subject of protection 7. Green area prioritization in urban planning 8. Community gardens 7. Adequate and uniform lighting conditions 7. New objects made from cut down trees 5. Domotica systems 7. Led lighting/ lights with integrated solar panels and attery 9. Materials passport 1. Material loss chart of production 9. Roadway of reinforced grass or water-permeable pavin alf open paving) 5. Water impact assessment 		8.5, 8.6	8.4, 8.5,	8.4, 8.5,
			8.6	8.6
45. Green area prioritization in urban planning	1,8		5.1	5.1
88. Community gardens	1,7		4.2, 4.8,	4.2, 4.8,
			4.9, 5.1	4.9, 5.1
97. Adequate and uniform lighting conditions	1,7	4.2, 5.3,	4.2, 4.8,	4.2, 4.8,
		5.5	5.1, 5.3,	5.1, 5.3,
			5.5	5.5, 6.4
27. New objects made from cut down trees	1,6	3	2.2, 2.3,	2.2, 2.3,
			2.5, 2.6,	2.5, 2.6,
			3.3	3.3
16. Domotica systems	1,5		1.1, 3.3,	1.1, 3.3,
			5.1	5.1
17. Led lighting/ lights with integrated solar panels and	1,5		1.1	1.1
battery				
20. Materials passport	1,5	2.3	1.5, 2.2,	1.5, 2.2,
			2.3 ,2.4,	2.3, 2.4,
33. Verge cuttings recycling 44. Environmental Impact Assessment (EIA) with water and soil as subject of protection 45. Green area prioritization in urban planning 88. Community gardens 97. Adequate and uniform lighting conditions 27. New objects made from cut down trees 16. Domotica systems 17. Led lighting/ lights with integrated solar panels and battery 20. Materials passport 21. Material loss chart of production 30. Roadway of reinforced grass or water-permeable pa (half open paving) 35. Water impact assessment			2.5	2.5
21. Material loss chart of production	1,5			
30. Roadway of reinforced grass or water-permeable paving	1,5		4.5, 5.1,	4.5, 5.1,
(half open paving)				5.3, 7.2,
				7.3, 8.5,
35. Water impact assessment	1,5			4.5, 5.1,
				7.1, 7.2,
				7.3, 8.5,
		8.6		
54. Adoption green	1,5		3.3, 5.1,	3.3, 5.1,
			5.4, 8.2	5.4, 8.2

71. Flexible design plan to build question based, so that	1,4		4.6, 4.7,	3.2, 4.6,
space can be used different in the future	±,1		4.9	4.7, 4.9
91. Communal gardens for food production	1,5		4.2, 4.5,	4.2, 4.5,
i communar garachis for rood production	1,0		4.8, 4.9,	4.8, 4.9,
			5.1, 5.4,	5.1, 5.4,
			5.5	5.5
2.CO2 emissions calculation with DuboCalc or a	1,4		1.1, 1.2,	1.1, 1.2,
comparable program	-,.		2.4	2.4
8. Windows on the south side of buildings with trees in front	1,4		1.1	1.1
of them	,			
34. Water resource investigation (with a water-resource	1,4	4.5, 5.1,	4.5, 5.1,	4.5, 5.1,
evaluation matrix)		7.2, 8.5,	7.2, 8.5,	7.2, 8.5,
		8.6	8.6	8.6
51. Management scheme for the maintaining of the diversity	1,4		6.3, 6.4,	6.3, 6.4,
of urban nature			6.5, 8.1,	6.5, 8.1,
			8.2	8.2
70. Design based on the environment	1,4		4.7	4.7
74. Small private garden, large community garden	1,4		4.5, 4.7,	4.5, 4.7,
			5.3, 5.5	5.1, 5.3,
				5.5
75. Flexible building (for example demountable)	1,4		(2.1,4.7,	2.1, 3.2,
			4.9)	4.7, 4.9
84. Heat and cold warning mechanism and strategy plan to	1,4		(5.1)	4.5, 5.1
react				
85. Different function options in the environment	1,4		4.8, 4.9	4.8, 4.9
4.Efficient use of building tools/construction machines:	1,3		1.2, 1.3,	1.2, 1.3,
switch them of when they are not needed			1.5	1.5
38. Existing water enlargement	1,3	4.5	(4.5, 5.1,	4.5, 5.1,
			7.2, 7.3)	7.2, 7.3
41. Water extraction area to capture clean rain water from	1,3		4.5, 5.1,	4.5, 5.1,
roofs. Street water is guided away from the extraction area			7.2, 8.1,	7.2, 7.3,
to wade's to infiltrate in the soil			8.2	8.1, 8.2
42. Helophyte filters to rinse grey wastewater from	1,3		(7.1, 7.2,	7.1, 7.2,
washing machines, showers, kitchen etc.			7.3, 8.1)	7.3, 8.1
90. Virtual meeting place to organise activities in	1,3		4.8, 4.9,	4.8, 4.9,
neighbourhood and community house (internet and app)			5.3, 5.4,	5.3, 5.4,
			5.5	5.5
93. Pet-friendly environment	1,3		4.2, 4.8,	4.2, 4.8,
			5.1, 5.3,	5.1, 5.3,
			5.5	5.4, 5.5
1.Feasibility study into renewable energy	1,2	1.7	1.7	1.7
3. CO2 emission mapping of maintenance work, work	1,2	1.2, 1.5	1.2, 1.5	1.2, 1.5
process and waste processing.				
18. Multipurpose charging stations with LED lighting	1,2		(1.1)	1.1
28. Shared sheds containing shared tools that people need	1,2			
occasionally				
47. Demolition practice plan	1,2			
65. Streetscape greenery	1,2		5.1, 6.4,	5.1, 6.4,
			8.2	8.2

100 I CC for the planning construction usage and	1,2		3.2	3.2
100. LCC for the planning, construction, usage and demolition phase.	1,2		3.2	3.2
6. Prioritization of walking and cycling in the design instead	1,1		(5.3)	5.3
of car usage	1,1		(5.5)	0.0
9. Asphalt heat	1,0		(1.1, 1.7)	1.1, 1.7
19. Smart Energy Floor	0.6			1.7, 3.3
22. Material origin substantiation	1,1		2.3	2.3
31. Narrow walking strip in baked bricks	1,1			
43. Water storage for rain water to use in black (toilet)	1,1		(4.5, 5.1,	4.5, 5.1,
water systems			7.2, 7.3,	7.2, 7.3,
			8.5, 8.6)	8.5, 8.6
64. Hedge with various native species	1,1		5.1, 6.4,	5.1, 6.4,
			8.2	8.2
81. Sharing bikes	1,1		(4.8, 4.13)	4.8, 4.10,
				4.13
104. Room for co-creation with inhabitants	1,1		3.1, 3.2,	3.1, 3.2,
			4.1, 5.6	4.1, 5.6
5. Fuel/energy-efficient construction and machinery	1		4.11	1.2, 1.3,
	1			1.5, 4.11
10. Riothermia: extract heat from waste water in the	1			1.1
sewerage system 25. Circular building materials	1	2.4	2.3, 2.4,	1.5, 2.2,
25. Circular building materials	1	2.4	2.5, 2.4, 2.5, 2.6	1.3, 2.2, 2.3, 2.4,
			2.3, 2.0	2.5, 2.4, 2.5, 2.6
36. Groundwater ambitionlevel analyzation	1		5.1, 7.1,	5.1, 7.1,
50. Groundwater amoniomever analyzation	1		7.2, 7.3,	7.2, 7.3,
			8.5, 8.6	8.5, 8.6
40. Separate sewer for grey and black water	1		(8.2, 8.5,	5.1, 7.1,
			8.6)	7.2, 7.3,
				8.2, 8.5,
				8.6
46. Reduction areas for soil consumption (soil sealing)	1			
55. Garden layout support for residents	1			5.1
57. Waste bins integrated in the design to reduce waste	1		5.1	5.1
damage				
61. Green and blue dry and wet spots realization	1		5.1, 6.4,	5.1, 6.4,
			7.1, 8.2	6.5, 7.1,
	1		62.64	8.2
62.Reed edge in water	1		6.3, 6.4, 7.2	6.3, 6.4, 7.1, 7.2
63 Dond for water conture with onen grace to relay	1			
63. Pond for water capture with open space to relax	1		(4.5, 5.1, 7.2, 8.5,	4.5, 5.1, 7.2, 7.3,
			8.6)	7.2, 7.3, 8.5, 8.6
66. Nature-friendly banks	1		5.1, 6.3,	5.1, 6.3,
	-		6.4, 7.1,	6.4, 7.1,
			7.2, 8.2	7.2, 8.2
69. Flora and fauna in relation to target species	1		6.3, 6.4,	5.1, 6.3,
····· 0····I····			7.2, 8.2	6.4, 6.5,
				7.1, 7.2,
				8.2

82. Aesthetic signs for easy way finding and to stimulate	1		4.8	4.8, 4.10,
waking	1		1.0	5.1
83. Background noise map	1	5.1	5.1, 5.2	5.1, 5.2
101. Measures for which subsidy is given	1		3.1, 3.2,	3.1, 3.2,
	-		4.1	4.1
14. Sun-/PV-panels	0,9		1.1, 1.7,	1.1, 1.7,
L.	,		3.3	3.3
15. Smart Grid	1,5		1.1	1.1, 8.2
53. Compost plants	0,9			6.4, 8.2
56. Maintenance plan to promote ecological quality	0,9		4.7, 6.3,	4.7, 6.3,
			6.4, 8.1,	6.4, 6.5,
			8.2	8.1, 8.2
60. Greenery diversity with native trees, shrubs, perennials	0,9	3.3	3.3, 5.1,	3.3, 5.1,
and seeds			5.6, 8.2	5.6, 6.5,
				8.2
77. Fast cycling lanes to promote cycling to the centre of	0,9		(4.2, 4.8,	4.2, 4.8,
Voorhout			4.10, 4.11,	4.10, 4.11,
			4.12, 5.1,	4.12, 5.1,
			5.5)	5.5
29. Smart led lighting to show half hardened parking spots	0,8			5.1
48. Quickscan: Inventory the current flora & fauna	0,8	5.1, 6.4,	5.1, 6.3,	5.1, 6.3,
		7.1, 7.2,	6.4, 6.5,	6.4, 6.5,
		8.1	7.1, 7.2,	7.1, 7.2,
	0.0	7 1	8.1	8.1, 8.2
52. Noise nuisance prevention	0,8	5.1	4.8, 5.1, 5.2	4.8, 5.1,
59. Plant species that increase biodiversity and better the	0,8		3.3, 5.1,	5.2, 6.4
living environment	0,8		5.5, 5.1, 6.3, 6.4,	5.3, 5.1, 6.3, 6.4,
nving environment			8.1, 8.2	6.5, 8.1,
			0.1, 0.2	8.2
67. Free migration stimulation	0,8		(3.3, 6.4,	3.3, 6.3,
····	-,-		7.2, 8.2)	6.4, 7.1,
			. ,	7.2, 8.2
68. Bee strips	0,8			3.3, 6.3,
				6.4, 8.2
87. Suitable trails for rollators, wheelchairs and mobility	0,8		4.8, 4.11,	4.8, 4.11,
scooters			4.12, 5.1,	4.12, 5.1,
				5.3
92. Activity spaces	0,8		4.2, 4.8,	4.2, 4.8,
			5.1, 5.4,	5.1, 5.4,
			5.5	5.5
102. Budget to prevent harm on area interests	0,8			
32. Mineral Olivine to absorb CO2	0,7			
50. Agricultural backgrounds with natural values inventory	0,7		5.1, 6.4,	5.1, 6.4,
			6.5	6.5, 7.1
58. Variation in landscape	0,7		4.7, 5.4,	4.7, 5.4,
			6.4	6.4, 6.5
78. Bicycle parking spots	0,7		(4.8)	4.8

94. Outdoor playing and sport places	0,7	3.3, 4.8,	3.3, 4.8,	3.3, 4.8,
		4.9, 5.1,	4.9, 5.1,	4.9, 5.1,
		5.5	5.4, 5.5	5.4, 5.5
95. Sound barrier around road	0,7	4.2, 4.8,	4.2, 4.8,	4.2, 4.8,
		5.1	5.1	5.1
103. Educational value through visible sustainable measures	0,7	3.2, 3.3,	3.2, 3.3,	3.2, 3.3,
		4.4	4.4	4.4
11. Surface water heating	0,6		(1.1, 1.7)	1.1, 1.7
49. Ecological target type determined	0,6		6.3, 7.2	6.3, 6.5,
				7.2
72. Reduced parking norm	0,6		(4.13)	4.13
79. Access to public transport	0,6			4.8, 4.10,
				4.11, 4.12
96. Public toilet available, possibly in community Centre	0,6			4.2, 4.8,
				5.1, 5.4,
				5.5
99. Long term budget and look at the long-term investments	0,6		3.2	3.2
7. Pipe length reduction of heating and ventilation systems	0,5		1.1, 8.2	1.1, 8.2
12. Geothermal heating	0,5			1.1, 1.7
73. (Electric) Car sharing platforms (in collaboration with	0,5		4.8, 4.11,	4.8, 4.10,
companies)			4.13	4.11, 4.13
76. Safe intersections	0,5		4.8, 4.11,	4.8, 4.11,
			4.12, 5.3	4.12, 5.3
89. Community centre as a central meeting place and to	0,5			4.8, 5.4,
organise activities, such as cooking, community eating, tv				5.5
watching, yoga, drama class, a drink, etc.				
105. Recyclable products	0,5		3.2, 3.3	3.2, 3.3
80. Shared working space	0,4		(4.7, 4.8,	4.7, 4.8,
			4.9)	4.9, 4.13
13. Compressed air for underground heat storage	0,1			1.1, 1.7
				4.8