January 27, 2019

BACHELOR ASSIGNMENT

iy -, COMPARING SELF-
.« ML % HEALING TECHNIQUES IN
" ¥ APPROXIMATE MAC

ACCELERATORS

K. Raben s1568426

Faculty of Electrical Engineering, Mathematics and Computer Science (EEMCS)
Computer Architecture for Embedded Systems

Exam committee:
G.A. Gillani, A. B. J. Kokkeler, M.S. Oude Alink

UNIVERSITY OF TWENTE.

Abstract

Approximate computing is the technique of trading in accuracy

for efficiency in calculations. This efficiency can come in many forms
such as reduction in used hardware area or reduced power consump-
tion. To even further these methods, circuits can be designed that
introduce self-healing, where some portion of the reduced accuracy
can get internally compensated by letting different errors cancel each
other out. One of these circuits is a Multiply Accumulate (MAC)
circuit, where a multiplication is made and then added to the total
result.
This work focuses on comparing two different self-healing techniques
that can reduce the cost of the multiplier in the MAC, one where
a balancing multiplier is added and one where the multiplier is in-
ternally balanced. This work provides results on which technique is
more effective in what situations executed on an FPGA. A model
is made that evaluates different MAC configurations with parame-
ters found by performing FPGA hardware simulations. From these
evaluations the conclusion is drawn that a internal self-healing tech-
nique, where an approximate MAC is build with a multiplier that is
internally balanced, is more effective.

Contents

[1I__Introductionl

Background|

2.1 Approximate Multipliers|
[2.2_ Multiply Accumulate Circuits|
2.3 Selt-Healing Techniques|
2.3.1 Internal Self-Healing|
2.3.2 Mirror Selt-Healingf.
2.4 Error Analysis| Lo oo

3 Method

8.1 Multiplier Creation|. 0oL
3.2 Overflow 1n the multiplier|

[3.3 _Design Space Exploration|

3.5.1 FError Analysis| 0L
3.0.2 Input Creation|

4_Results|

4.1 Area and power of 2x2 multipliers|

A2 rror Analysis of Self-Healing Configurations|

[6__Conclusion

|A~ Multiplier Circuits and Truth Tables|

B—VHDL Code

IB.1 MAC Using 2 8-bit Multipliers|
IB.2° 8-bit multiplier] oo
[B.3_4-bit multiplier| oo oo
[B4 Approximate Multipliers| o oo i v i

13
14
15
15
15
16
16
18
18
20
21

22
22
23

28

29

30

32

32

C RTL Viewl 40

IC.1 MAC Using 2 8-bit Multipliers| 40
IC.2° 8-bit Multiplier| oo 40
IC.3 4-bit Multiplier|o oo 40

D MATLAB Codel 41
41

43

44

45

46

48

48

49

IE Quartus Power Results| 51
I Pareto Optimal Multiplier Configurations| 53
|G Increasing Approximation Multiplier Configurations| 62
IH Quality Evaluation Results| 65

1 Introduction

Approximate computing is the technique of computing with a smaller degree
of precision which creates opportunities for improving systems in terms of used
area, power consumption and performance efficiency. This technique can be uti-
lized in applications which can tolerate approximation errors and will still out-
put information that is useful. Examples of these applications are deep learning
networks, machine learning, web searches and image and video processing[d].

To increase efficiency even further, error balancing can be introduced in cer-
tain structures that will reduce the average error of these structures. One of
these structures is a Multiply-Accumulate Circuit (MAC), which is often used
in radio astronomy[2].

A MAC calculates the dot product of two input vectors, meaning that every
element of vector A gets multiplied with the corresponding element of vector
and the results get added up, as illustrated by Fig.

S ey

" IMUL ——(+ }-+—0

(|

Figure 1: MAC block diagram[3]

When building a MAC with approximate multipliers, there is a chance that
the multiplier will make an error, say d,,. This d,, can however be compensated
in the accumulator stage if another error was made with the same magnitude,
only with a different sign, i.e., —,,.

Using this compensating ability, configurations for a MAC can be found that
have lower measures of error than when using conventional approximate com-
puting techniques while still using the same amount of resources.

Different techniques utilizing this Self-Healing ability have been developed. One
technique focuses on balancing the error internally by configuring the multiplier
in such a way that the produced errors can be healed[4]. The other technique
uses an additional ”mirror” multiplier that balances the first multiplier[5].

In this work, the goal is to answer the question: What approximate multiplier
technique using an FPGA is best when used in accumulation based accelerators?
A model is build to evaluate approximate multiplier configurations. The model
outputs results for different quality metrics and an estimation for the resource
costs. This work will discuss the subjects of approximate multipliers and Self-
Healing techniques more extensively and will show the method for creating the
model and obtaining the parameters used in it.

2 Background

2.1 Approximate Multipliers

One can create a multiplier of nxn-bits by constructing it using multiple elemen-
tary 2x2 multipliers. The realization of an accurate 2x2 multiplier in hardware
can be found in Fig.] The corresponding truth table of Fig. [2 can be found

in Fig. B

A0)

@ o)
A —1 :Di

)
L B
o—7H

Figure 2: Accurate 2x2-bit multiplier

o1y

0(3)

B(1)

A
B 00 01 10 11
00 0000 | 0000 | 0000 | 0000
01 0000 | 0001 | 0010 | OO11
10 0000 | 0010 | 0100 | O110
11 0000 | 0011 | 0110 | 1001

Figure 3: Truth table of an accurate 2x2 multiplier[3]

Using four of these multipliers and some adder logic a 4x4-bit multiplier can
be build. The functioning of the logic can be seen in Fig.] The 4-bit inputs get
divided into two 2-bit elements, after which every possible 2-bit multiplication
is made. Adding these partial products with Shifting the products of the more
significant bits as shown in Fig. [4 will conclude in an 8-bit result of the 4x4-bit
multiplier.

This same process can be repeated to create a 8x8-bit multiplier using four
4-bit multipliers, a 16 x16-bit multiplier with four 8-bit multipliers etc.

To reduce hardware area and power cost, approximate circuits are build that
use a reduced amount of logic to compute the result[6]. This preservation of
resources comes with the cost that not all outputs are correct. One of these
approximate circuits is shown in Fig. This multiplier has one error case,
namely that 3 x 3 — 7 instead of 9. This multiplier thus has an error case of -2.
Different circuits with different error magnitudes and amount of error cases have

Os2

Ay*By |0 0 00
—— 0 0| 4Ayg*B; |0 0
AH AL 9 0 AL*BH 0 0

B: b3 bz bl bo 0000 AL*BL
By B P71 P6 Ps Ps P3 P2 P1 Do
Oy

A: ay ay a; a,

Figure 4: Design of a 4x4-bit multiplier[5]

A0 PO
Al P1
BO — P2
B1 < M

Figure 5: Approximate multiplier M2[4]

been generated[4]. Conventional approximate computing builds bigger multipli-
ers out of these elemental multipliers to create systems that have a certain error
probability but where the gains in hardware area and power consumption make
up for this sacrifice.

When using approximate elementary 2x2 multipliers inside of a larger mul-
tiplier like an 8x8 multiplier a certain error is introduced. Important to note
is that the significance of that error is dependant on where the elementary 2x2
multiplier is placed in the larger multiplier. In Fig. [6] the functioning of an
8x8 multiplier build from elementary 2x2 multipliers can be seen. In a n X n
multiplier, where n always is a power of 2, there are n?/4 elementary 2x2 mul-
tipliers needed. In the case of a 4x4 multiplier like in Fig. [that results in 4
elementary multipliers, and in the case of a 8x8 multiplier like in Fig. [6] 16
elementary multipliers are used. The output Ogxg of the 8 x8 multiplier is given
in Eq., from which it can be seen how significant a certain multiplier, and
the possible error made, is to the end result.

4 0000000 O0O00O00
O44{ | 00 AaBaw [0 00100 0]00 00} pf
00| 4sa*Bar |00 00000000
0000 4azz*Bar |00 (0000 0|0
0000 455*Biz [0 0.0/0 0000
0/0/0/0 0|0 4gg*Brz [0/ 00000 M
Afﬂﬂéfjfiﬁfjw 0000 00 "Bz |0/ 0. 0/0/ 0 0 ¢
Apy Am Ay Ap 0/0/000/00 0| 4*B;;y 0/ 0 0|0
B by by bs by by by by by 00 00| 45*Bgr |0 0. 0/0/0/0 00
=2 =" |00/0/0/0 0] 4Bz |00 0000
Buw Buw Bir Bu 000000 0 4uBaw 0 00 0 00 [
0/0/0/000/0 0| 4z*Ba |0/ 0 0|0
00 0/0/000 0 4Bz (0,000
00 0/0/000/0O00 AsBy |00
0000000000 AuBuloo (M
000000000000ALL“BLL}

+
P15/P14 P13 P12Pu Pro|Py Ps ‘P7 Ps Ps P4 P3 P2 P1 Po

08<8

Figure 6: A 8x8-bit Multiplier Using 2x2-bit multiplier elements|5].

Ogxs = 4096(AyuBum)
+1024(Ap By + AguBur)
+256(AnrBrr + AauBry + AraBrn)
+64(ApaBrr + AgrBra + AraBuar + AL Ban) (1)
+16(ArLLBur + AgrBrr + AruBru)
+4(ALuBrr + ArLLBry)
+ AL Brr

From this the mean error of a conventional approximate multiplier can be
described as in Eq., where 7 is one of the 2x2 multipliers, S; is the shift factor
of that multiplier, F; is the error magnitude that can occur with that multiplier
and P(E;) is the probability that an error will occur in that multiplier.

n?/4
Enur = Z |(Si * B % P(E);)| (2)

=1

2.2 Multiply Accumulate Circuits

A Multiply Accumulate (MAC) Circuit can be seen as having two stages, a
multiplication stage and an accumulation stage. These stages can be clearly
distinguished in Fig. The multiplication stage will calculate the product of
two elements in the input vector after which the accumulator stage will add this
result to the already accumulated total until all elements of the input vectors

are handled. After this the MAC will output a single number. This output of a
MAC is given in Eq.. Here M is the number of elements in the input vectors

and A,, and B, are the mth elements of the input vectors X and

M
Orac=A-B =3 (AnBy) (3)

Using the field of approximate computing both stages can be reduced in cost
by using approximate multipliers and approximate adders. This work solely
focuses on the implementation of approximate multipliers in a MAC and all
used adders in this work are accurate.

2.3 Self-Healing Techniques

Using an approximate multiplier, the quality of the result is decreased in sacrifice
for a more efficient circuit. In case of a MAC, errors will start to accumulate

and the output will start to deviate from the accurate answer. The mean error
of a MAC is described in Eq..

B M
EMAC: Envur
M 2/4
= ZZS’*E x P(E);) (4)

n*/4
ZS*E*P E);)

An important aspect to note is that the absolute value is taken after the
summation of all the multiplications, which differs from Eq. for just a mul-
tiplier. This is because the accumulation stage offers an opportunity to reduce
the total error made by a MAC[]. This Self-Healing effect occurs when the
multiplier stage makes errors with opposing signs, which then can cancel (part
of) another error in the accumulator stage. To achieve this effect, more types of
approximate elementary 2x2-bit multipliers need to be used. For instance for
the multiplier M2, which makes the error 3 x 3 = 7 the multiplier M3 from [4]
can be introduced, which makes the error 3 x 3 = 11 and thus has an error of +2
that can balance the -2 error of M2. The circuit for M3 and the corresponding
truth table can be found in Fig.

2.3.1 Internal Self-Healing

Using multiple elementary approximate multipliers with opposing errors a cir-
cuit can be build that can achieve the Self-Healing effect. One option proposed

A0 PO A
B 00 01 10 11
A1 P1
00 0000 | 0000 | 0000 | 0000
BO P2 01 0000 | 0001 | 0010 [0011
10 0000 | 0010 | 0100 | 0110
B1 1 s I 0000 | 0011 | 0110 JEGIE
(a) Circuit Layout (b) Truth Table

Figure 7: Approximate multiplier M3[4] and the corresponding truth table[5]

by [5] is to configure a larger multiplier to use both types of elementary multi-
pliers inside of its multiplication stage. The created multiplier stage will then
functions as is described in Fig. [8) where both errors of magnitude +¢6 and —d
will occur, which will cancel each other in the accumulator stage.

Approximation Stage ! Healing Stage
i (error cancelation)
Aj Approximate
5 muL L -6 .. +6 { I ME=0 < MAC output

g . »
-6 and + § are errors and ! |

ME is mean error

Figure 8: Internal Self-Healing methodology[5]

For example, looking at Fig. [6] again, if the multiplier Ayy * Bry, is set to
use M2 (which has an error magnitude of -2) and Ay, * Bry is set to use M3
(which has an error magnitude of 42), the errors can cancel each other once
the results get accumulated. In a situation where the input vectors would have
infinite elements that are uniformly distributed, Eq. would then hold, where
the mean error of the MAC becomes zero since the sum of the multiplier errors
becomes zero.

n?/4
Eyac =M|> (S E;x P(E);)| =0
- (5)
n?/4
—) (SixEix P(E);) =0
1=1

10

2.3.2 Mirror Self-Healing

The technique suggested in [4] proposes to instead of balancing the error in one
multiplier internally, an additional multiplier is constructed which produces the
same error, but with an opposite sign. When the results of the approximate
multiplier and the ”"mirror” multiplier are added by the accumulator section,
errors would be canceled. The technique is also described in Fig. [0] The
mathematical description of the error for this technique is given in Eq.(@)7 where
¢ and j are the different elementary 2x2 multipliers in the two larger multipliers.

{ Approximation Stage Healing Stage -éand+gare
(mirror pair) (error cancelation) _errors
: j ME is mean error
Aj E) +6 :
B; i | MUL | ME =0 Approximate
i :]
A _L'_) + > MAC output
i+l : + >
v =
— 5
Figure 9: Mirror Self-Healing methodology|[5]
M/2
Eyac =Y (Emurr + Enure)
m=1
M/2 [n?/4 n?/4
EMAC: Z Z(Sl*EZ*P(E)l)—FZ(S]*E]*P(E)]) (6)
m=1 \ i=1 j=1
n?/4 n?/4
=5 > (Si#Eix P(E);) + Y _(S; * Ej = P(E);)
i—1 j=1

In the case when the input vectors Wouldilave infinite elements that are
Eniformly distributed, Eq. 1 would hold where F ;771 would converge to § and
FEpupe would converge to —§, which would result in the total mean error of the
MAC to reduce to zero.

n?/4
EMULI = Z(SZ * Ez * P(E)Z) = +5
i=1
n? /4
Ervvia =Y (S;* —Ej+ P(E);) = —6 (7)

j=1

11

Since two multipliers are used, the resources needed for the multiplier stage
doubles in comparison with the internal self-healing technique. However, since
the elements of the input vectors are divided over the two multipliers the
throughput is also doubled, resulting in the same performance as two internal
self-healing MACs in parallel.

2.4 Error Analysis

To analyze the two self-healing techniques there are different measures for qual-
ity that can be used. A straightforward error metric is the mean error which is
given in Eq. where Oy (n) is the kth accurate output of a MAC and O,y (n)
the approximate output.

1K
ME = K Z|Oa06(k> - Oapp(k)| (8)
k=1
Another commonly used error metric is the Mean Squared Error (MSE).
Because of the square the MSE is less forgiving to larger errors than it is to
smaller errors resulting in more distinction between different designs. The MSE
is calculated as given in Eq.@.

K
MSE = 03" (Oueelk) ~ Oupy () Q
k=1

A problem with the mean error and mean squared error is that the outcome
highly depends on how large the results from the MAC are. A MAC which uses
an input vector of 200 elements with a uniform distribution will have a much
smaller output than a MAC which uses an input vector of 1000 elements with
that same distribution. To be able to still compare these results, another error
metric is introduced, the mean percentage error.

The mean percentage error (MPE) is calculated as shown in Eq.. Since every
error is divided by the accurate result the size of the result is compensated for.

K
_ i |Oacc(k) — Oapp(k)|
MPE = 100 * — ;) (10)

12

3 Method

To be able to compare the different techniques, they are evaluated in the same
setup. The conventional approximation technique, the internal self-healing tech-
nique and the mirror self-healing technique are implemented in a MAC with 2
multipliers in the multiplier stage, the results of these multiplications are added
and given to the accumulator. This setup can be seen in Fig. Where
the techniques differ in setup is in the configurations of the multipliers. For
both the conventional approximate computing methodology (Where approxi-
mate multipliers are used without a possibility for error balancing) and the
internal self-healing methodology the two multipliers will use the exact same
configurations, M. and M;sy in Fig. The mirror self-healing methodol-
ogy however will have one multiplier configured with multipliers used by the
conventional methodology (M.) and will mirror that multiplier in the second
multiplier used(M). Using this setup, all techniques will use the same amount
of multipliers.

Input Multiplier Stage Accumulator Stage
YN
i
Mc/MishH
B;
Accumulator OmAc
Ai+1 .
Mc/Mish/M'c
Bi+1
./

Figure 10: MAC design under evaluation

To evaluate the techniques, a model is build in MATLAB that outputs fig-
ures for quality against hardware area and quality against power usage for a
certain chosen multiplier configuration. A block diagram of the functioning of
the model is given in Fig. The model computes these figures for quality from
parameters given as input, such as the chosen input distribution, the amount of
elements in the input vector and the configuration of the elementary multipli-
ers. From these inputs the model computes an estimation for the used hardware
area and power consumption for FPGA, based on parameters synthesized by the
Quartus tooling and quality metrics as described in section are calculated.

13

Figures for quality
Input distribution against area

(uniform/normal,
mean, std. deviation)

Figures for quality
‘Mu\tiplier configuration|——| MATLAB model "| against power

‘ Size of input vector }—'
VHDL input files for

‘ Amount of iterations }—r *| verification of model

Quartus Parameters for
synthesisation of > hardware area and
VHDL model power usage

Figure 11: Block overview of the used MATLAB model

3.1 Multiplier Creation

For this work a total of seven multiplier designs are used, one accurate and six
approximate. The error cases of these designs can be seen in Table The
circuits and corresponding truth tables can be found in appendix M1[7] is
a multiplier with three error cases of magnitude -1, M2[6] is the multiplier al-
ready described in section[2.1] These two multipliers are often used for building
conventional approximate multipliers, where there is no error balancing. M3 is
introduced by [4] as a mirror multiplier for M2 as discussed in section M4
is the multiplier introduced by [B] to compensate the bit overflow in adders that
M3 can cause.

The mirror self-healing methodology as introduced by [4] works in that for every
conventional nxn approximate multiplier in a MAC that is constructed, another
nxn approximate multiplier is constructed that exactly mirrors the error of the
first multiplier, as described in Fig. [0} To mirror M2, M3 is already introduced
in [], but to apply this methodology on approximate MAC systems also con-
taining M1 and M4, M5 and M6 are introduced int his work. Through the use of
a technique described by [8] using multiple Karnaugh maps Boolean expressions
are formed. This results in two multipliers M5 and M6 that introduce mirror
errors of M1 and M4 respectively.

14

Type Errors

M1 1%x1—=0;3%x1—>2;1%x3—2

M2 3x3 =7

M3 3x3—11

M4 3x3—>5

M5 3x3 — 13

M6 1x1—>2;3%x1—>4;,1%x3—4
M7(Mge) | none

Table 1: Elementary 2x2 multipliers used

3.2 Overflow in the multiplier

When introducing approximate circuits which can have a higher maximum result
than the accurate case, like M3 and M5, the problem arises that within a larger
multiplier (build of these elementary 2x2 multipliers) overflow can occur. For
instance if a 4x4 multiplier is build using only the M3 multiplier, the maximum
output that can occur is 275, which exceeds the maximum for an 8-bit number,
which is 255. Therefore this should be taken into account when picking designs
as designs that overflow are not usable.

3.3 Design Space Exploration

To see which self-healing technique functions better, the best configurations for
these techniques are needed. To find these configurations the design space ex-
ploration algorithm from [5] is used. This algorithm will evaluate every possible
configuration from a given set of multiplier types and will output the Pareto op-
timal configurations that have the smallest mean error as calculated by Eq.
for a given area or power consumption. The algorithm can calculate these
Pareto optimal configurations for conventional approximate multipliers and for
approximate multipliers that use the internal self-healing technique. The algo-
rithm also computes if a configuration will have the possibility to overflow, and
if so, it will discard that configuration.

3.4 Cost Analysis using Quartus

To get figures for the cost in hardware area and power consumption on an FPGA
the Quartus tooling is used. The VHDL code can be found in appendix [B] This
VHDL code is largely based on the work of [3], where the code for a MAC with
configurable multipliers was already created. The addition made to this code
enables it to synthesize a configurable MAC with two 8x8 multipliers comply-
ing to the mirror self-healing methodology. The Register Transfer Level (RTL)
view of the synthesis can be seen in appendix [C} Another addition is the code
for the newly created multipliers from section |3.1

The outcomes of these simulations are discussed in section [l From these out-
comes for hardware area and power consumption parameters are obtained that

15

are used in the MATLAB model to create cost estimations for multiplier con-
figurations.

3.4.1 Area Calculation

In Table [2| the hardware area costs are shown for an FPGA of the Cyclone IV
E family, EP4CE115F29C8. To find the hardware area for all the types of mul-
tipliers used in the MATLAB model, a MAC is synthesized that always uses a
multiplier section consisting of 2 8-bit multipliers. This means that in total 32
elementary 2x2 multipliers are used. The area used by the larger multipliers
consists of combinational logic and adders. Synthesis optimizes the resource
usage of the setup and therefore is not always using exactly the same amount of
logic cells, which is the hardware building block of an FPGA, for every elemen-
tary multiplier. To compensate for this deviation an 8-bit MAC is synthesized
which uses only 1 type of multiplier. From the area report of that MAC the
amount of logic cells used for the accumulator section is subtracted, leaving the
amount of logic cells used by the 2 multipliers. This number is divided by 32
to conclude the value for 1 multiplier. In this value the accompanying adder
logic is also taken into account. The areas are also shown for the accumulator
section. For the MATLAB model an average of all the accumulator areas is
used as a parameter.

Multiplier | Accumulator Average area

Type Section Section Total Area per multiplier
M1 | 286 49 335 8.9375
M2 | 226 51 277 7.0625
M3 | 294 48 342 9.1875
M4 | 226 51 277 7.0625
M5 | 294 49 343 9.1875
M6 | 270 48 318 8.4375
Macc | 302 48 350 9.4375

Table 2: Hardware area of different multiplier types expressed in logic cells

3.4.2 Power Analysis

Power analysis is performed using both Quartus and ModelSim. The process is
based on the tutorial given in [9]. Using a file with input vectors created by the
MATLAB model and a circuit timing file produced by the Quartus synthesis,
ModelSim simulates the functioning of the system. ModelSim creates a file with
all the signal toggles that occurred when handling the input vector. Quartus
can read this file and create a power consumption report. As with the results for
area, the simulations are performed on an 8-bit MAC with a multiplier section
consisting of only one type of elementary multiplier. The power simulations are
performed four times for each multiplier type. Each time with either an input

16

vector with 496 elements or 4960 elements and a uniform or normal input dis-
tribution with mean 128 and a standard deviation of 40. The clock speed is set
to 50 MHz, which came close to the maximum clock speed Quartus indicated
was possible for this circuit on this FPGA. The results for power usage with the
different input vectors can be found in appendix [E] In Table [3] the results are
shown which were computed with an input vector of 4960 elements, uniformly
distributed. The results shown are the dynamic power consumption numbers
as computed by Quartus, meaning that these results report on the power con-
sumption caused by switching activities of the circuit when it is performing
calculations. Therefore certain aspects like static power consumption to keep
the FPGA running are not taken into account, which gives us a clearer view on
the functioning of the circuit configuration.

Multiplier | Accumulator Total . Average Power
Type . . Dynamic -
Section Section per Multiplier
Power
M1 1.33 1.15 2.48 0.04156
M2 | 1.26 1.09 2.35 0.03938
M3 | 1.52 1.10 2.62 0.04750
M4 | 1.46 1.19 2.65 0.04563
M5 | 1.52 1.24 2.76 0.04750
M6 | 1.38 1.18 2.56 0.04313
Macc | 1.51 1.23 2.74 0.04719

Table 3: Power usage (in mW) of different multiplier types, computed with an
input vector of 4960 uniformly distributed elements.

From these results a few observations are made. When comparing the results
for different input distributions in appendix [E]it can be seen that the difference
between results obtained from uniform and normal distributions is minimal.
The consistency in the results holds not only in case of a uniform or normal
distribution, but also for the different input sizes. The deviation in power usage
between different types of multipliers tends to be bigger than the deviation in
power usage between the different sizes of input vectors, which can be seen as
a positive indication for the accuracy of the results.

Another observation is that unlike the situation for area, the influence of
the accumulator section on the total result is much higher for the case of power
usage. For example, the accumulator section for M1 in terms of hardware area
takes up 14.6% of the total area. In the case of power, the dynamic power usage

of the accumulator section of M1 takes up 46% of the total dynamic power usage
of the MAC.

17

3.5 MATLAB Model

The MATLAB model calculates the quality of a MAC configuration and plots
that quality against the hardware area or power usage of that configuration.
The code for the entire model can be found in appendix

3.5.1 Error Analysis

The functioning of model is also described in pseudo-code in algorithm [I} The
model creates inputs in a desired distribution and uses these inputs to calculate
the output of a MAC system. For the multiplication section a library from [I]
is used that calculates the multiplication result using approximate multipliers.
The outputs of the MAC are compared to the accurate result and the error
metrics as described in are applied. These error metrics are then plotted
against an estimation of the hardware area and power consumption.

18

Algorithm 1 Pseudo-code for quality evaluation

1

2:

o

14:
15:
16:

17:
18:
19:

20:

21
22

Input:

VecAmount: The amount of input vectors that are made, increasing this
number increases the accuracy of the result.

VecSize: The amount of elements in the input vectors.

Config: The configuration of the elementary multipliers in the MAC,
given in a matrix with one configuration on every row.

InputType: Whether the configuration should be evaluated with a uni-
form or normal input distribution.

Mean: The mean to use when evaluating with a normal distribution.

Dev: The standard deviation to use when evaluating with a normal dis-
tribution.

Mirrored: Whether the MAC uses the mirror Self-Healing methodology
or not.

Variables:

Area: Vector with the hardware area costs calculated by the model for
every configuration.

Power: Vector with the power usage costs calculated by the model for
every configuration.

Input: Variable to store the created inputs.

App_Result: Vector that accumulates the outputs of the approximate
multiplier.

Acc_Result: Vector that accumulates the outputs of the accurate multi-
plier.

: for i = {1,...,rows(Config)} do
Area(i) = CalculateArea(Config_row(i), Mirrored)
Power(i) = CalculatePower(Config_row(i),Mirrored)

for j = {1,..., VecAmount} do
if InputType = ’Uniform’ then
Input = CreateUniformInput(VecSize)
else
if InputType = 'Normal’ then
Input = CreateNormallnput(VecSize, Mean, Dev)

End if
for k = {1,..., VecSize} do

App_Result(j) = App_Result(j) +
App_Multiplication(Config_row(i), Input(k), Mirrored)
Acc_Result(j) = Acc_Result(j) + Acc_Multiplication(Input(k))
End for
End for

ME(i) = Calculalte_ ME(App_Result, Acc_Result)
MPE(i) = Calculalte MPE(App_-Result, Acc_Result)
MSE(i) = Calculalte MSE(App_Result, Acc_Result)

End for 19

: Plot(ME, MPE, MSE, Area)
. Plot(ME, MPE, MSE, Power)

3.5.2 Input Creation

The quality of an approximate multiplier is dependant on the distribution of the
input it receives. Uniform and normal distributed inputs are created to evaluate
a MAC on how it behaves in different circumstances since the input vectors in
practical situations will often have a certain distribution. This can highly effect
the performance of a MAC since different multipliers handle different sections of
the input numbers. For instance looking at Fig. [6]again, if a normal distribution
is used with a mean of 128, the probability that a multiplier calculating the
highest significance multiplication, so Ayg * By g, will have to multiply 3 * 3
is very slim. Making it less prone to errors if an approximate multiplier is used
in that position.

For the creation of input vectors the model uses the function randi and
randn, where randi creates random uniformly distributed integers in a certain
number range and randn creates standard normal distributed random numbers.
The standard normal distribution has a mean of 0 and a standard deviation
of 1. These random numbers are multiplied by the desired standard deviation
given as input to the model and shifted to create a distribution that has a mean
value as that specified as input. Since randn does not output integers, but only
integer values are used in the system, the numbers are rounded to the nearest
integer. Any value that is out of the range of the multiplier is rounded to either
2™ for an n-bits multiplier, or to 0, depending on what side the number is out of
range. Examples of a uniform distributed input and normal distributed input
generated by the model for an 8-bit MAC can be seen in Fig. where the
normal distribution has a mean of 128 and a standard deviation of 40. These
values are chosen to ensure that almost all of the generated numbers are within
the bounds but the spread is still enough to not lay the focus too much on a
single section of the multiplier. In this example 248 elements are created in this
input vector. Four of these input vectors are used in the model as input to the
two multipliers in the multiplication stage. This to create the same situation
as if the MAC would handle 2 input vectors of 496 elements which would get
divided over the two multipliers as in the case for radio astronomy applications
[1]. As can be seen from the figures, the distribution is not smooth, since it is
for a limited number of elements. This is to simulate practical scenarios where
there also will be limited inputs from a non-perfect distribution. This aspect
introduces the need for the model to perform the MAC operation multiple times
to create an accurate answer.

20

(a) Uniform Distribution (b) Normal Distribution

Figure 12: Distribution of input vectors with 248 elements to simulate radio
astronomy applications [1]

3.6 Model Verification

To ensure the validity of the created MATLAB model, verification using Mod-
elsim is performed. The MATLAB model can output automatically generated
VHDL, code where input vectors created by the MATLAB model are written
down. This VHDL testbench file is then opened in Modelsim and executed on
the VHDL model of the MAC. This way, the MATLAB model and the model in
Modelsim will receive the exact same inputs. The output of Modelsim is then
compared to that of MATLAB to verify it behaves in the same way.

21

4 Results

4.1 Area and power of 2x2 multipliers

Through Quartus synthesis results are found for the amount of hardware area
used by the different multipliers in a MAC setup. A table of the results is
already shown in section [3.4.1] These average area results are also graphically

displayed in Fig.

10

8
? | I
0
M1 M2 M3 M4 M5 MB

Accurate

Logic Cells
M w = w (=]

-

Figure 13: Area in logic cells of different multiplier types

These results show that all constructed multipliers use a smaller amount of
logic cells in comparison with the accurate multiplier with M2 and M4 standing
out as having the lowest area. M3, M5 and M6 use a significantly larger area,
but are used as mirror pairs for other multipliers and therefore are still relevant.
The mirror pair of M1 and M6 are different in that the circuit produces a low
error magnitude but with a higher error frequency and therefore interesting as
comparison to the other circuits which have a high error magnitude but a low
error rate.

For power, a graphical representation of the performance of the different
types of multipliers can be found in Fig. In contrary to the results for area,
not all multipliers use less power in comparison with an accurate multiplier; M3
and M5 exceed the power usage of the accurate multiplier by a small amount.
It can be seen that the multiplier M2 again has the lowest result. M4 performs
less in power usage than it did for area, but it is still superior to the accurate
case.

22

0.05

0.03

0.02

0.01

0
M1 M2 M3 M4 M5 M6

Accurate Average

[=]
[=]
b

Power Usage (mW)

Figure 14: Power in mW of different multiplier types

4.2 Error Analysis of Self-Healing Configurations

Using the created MATLAB model several configurations are evaluated. Pareto
optimal configurations are found using the design space exploration algorithm
designed by [5]. This algorithm outputs configurations for conventional approx-
imate multipliers and configurations for the Internal Self-Healing methodology.
On the configurations for the conventional approximate multiplier the mirror
self-healing methodology is applied and thus every approximate multiplier is
mirrored. For example, if a conventional configuration for a 4x4 multiplier
would be [M2,M2,M1,M4], the configuration for the mirror multiplier would
then be [M3,M3,M6,M5]. This results in configurations for the three methodol-
ogy’s: Conventional, Internal Self-Healing and Mirror Self-Healing.

The elementary multiplier parameters found by the Quartus synthesis as
discussed in section [£.1] are implemented into the algorithm. Configurations are
found that have the lowest analytic mean error for either hardware area or power
consumption. Configurations are either optimized for a uniform distribution or
a normal distribution. The resulted configurations can be found in appendix [F}

The results of the quality evaluation for all the evaluated configurations can
be found in appendix [H] In this section, a selection of these plots are discussed.
In Fig. an enlarged graph can be seen of a single result plot. This graph
shows the results for Pareto optimal configurations computed for the least area
and using a uniform input. The vector size in this case is 4960.

Overflow configurations
A very important thing to note in Fig. [T is that many designs of the mirror
self-healing technique will cause an overflow. In the graph the distinction is
made between designs that overflow (black) and designs that do not (magenta).
These overflow designs are caused by the fact that the mirror self-healing tech-
nique exactly mirrors the conventional healing configurations. The conventional
healing technique can use multiplier types M1, M2 and the accurate multiplier.
But since the M1 multiplier is using significantly more resources than M2 the

23

, Uniform distribution
10'g T T T

-e-Conventional Pareto Optimal
=+ Internal SH Pareto Optimal -
~*=Mirror SH (Overflow)
~~Mirror SH

100

10?

I I I I
270 280 290 300 320 330 340 350

310
Area (LC)

Figure 15: Results optimized for area and uniform input distribution

Pareto optimal configurations use only M2 and the accurate multiplier. This re-
sults in that the mirror self-healing configurations use only M3 and the accurate
multiplier, and creates many cases where there are too many M3 multipliers in
one 4x4 multiplier creating the possibility for overflow as described in section
To remedy this problem for these configurations it is possible to switch
certain elementary multipliers between the two large multipliers. For instance
if a certain 4x4 multiplier in the conventional setup uses only M2 multipliers
and thus the mirrored 4 x4 multiplier uses only M3 multipliers, one can switch
the most significant elementary multiplier, resulting in 1 multiplier that uses
the configuration [M3,M2,M2,M2] and one that uses [M2,M3,M3,M3] and both
4x4 multipliers will not be able to overflow. The result of a system with those
configurations does not change in comparison. Doing this however is deviating
from the methodology as proposed in [4]. Another option to gain more insight
of the mirror self-healing methodology is to create a design space exploration
specifically for the mirror self-healing technique, which would also filter out
designs that overflow.

minimal cost for mirror self-healing technique
Interesting to note in Fig. [[5]is that the mirror self-healing methodology will
always have a relatively high minimal area it uses, this is caused by the fact
that every multiplier is mirrored and the mirror multiplier types (M3,M5 and
MG6) have a higher cost. The minimal area configuration that this technique can
achieve is a configuration where one 8-bit multiplier is completely build of M2
multipliers, and therefore the other 8-bit multiplier will be completely build of
M3 multipliers.

Comparison of the self-healing techniques From the results the conclu-
sion can be drawn that both the internal self-healing and the mirror self-healing
outperform the conventional approximate computing technique. Interesting to
see is that the two self-healing techniques work in their own regions. The internal
self-healing technique finds the Pareto optimal configurations for the smallest

24

mean error as described in Eq. in section for a certain area. This means
that as soon as a multiplier configuration is fully balanced it has mean error =
0. In Fig. [15| this is the point where the internal self-healing (blue) line stops.
The mirror self-healing however always achieves this mean error = 0, since every
conventional approximate multiplier will get mirrored.

In Fig. the results are shown not for Pareto optimal configurations, but for
configurations where the mean error as described in Eq. is always 0. l.e., every
approximate multiplier will get mirrored with another multiplier with the same
significance. The configurations shown are increasing in approximation and use
only the multipliers M2, M3 and the accurate multiplier. The exact configu-
rations can be found in appendix [G] In this case it is clearly visible that the
mirror self-healing technique is superior to the internal self-healing technique.
The reason for this is that with the mirror technique absolute self-healing can
already happen with the least significant multiplier (multiplier Ay, *Bp, in Fig.
@. This gives the mirror technique an advantage as it can gain the same area
reduction as the internal self-healing technique, but can place the approximate
multipliers on lower significant places.

Uniform distribution
T T

10°F

—~Internal SH
~*Mirror SH

10

I I I I I I
305 310 315 325 330 335 340 345 350

Area (LC)

I
320

Figure 16: Results for configuration with increasing approximation, Vector size:
496

Difference in Area and Power Fig. shows the same circumstances as
Fig. only using configurations optimized for power usage. From comparing
these two figures it can be seen that the results for area and power are quite
alike in shape, and also the found Pareto optimal configurations do not differ
drastically. The main cause for this is that like in the results for area, multiplier
M2 still is the most efficient for power and is therefore used a lot.

The significance of the vector size
In Fig. the results can be seen as computed for different vector sizes. The
vector sizes are 496, 496x«4 and 496x10 elements. It can be clearly seen that
with the increase of the vector size, the effectiveness of both the self-healing

25

Uniform distribution
T

-e-Conventional Pareto Optimal

—+Internal SH Pareto Optimal

+Mirror SH

10%F E
104E 3
1075 L L L L L L L
270 280 290 300 310 320 330 340 350
Power (mW)

Figure 17: Results optimized for Power and uniform input distribution

techniques increases. This is logical since the input distribution is becoming
more uniform when there are more elements in the vector and when the input
is becoming more uniform more errors will cancel each other more evenly.

26

Uniform distribution
T

0
° i -e-Conventional Pareto Optimal
ok ~+~Internal SH Pareto Optimal

=Mirror SH

—~L]

B

<

L 102 |

o

= 0ok |
104 |
10° Il Il Il Il Il Il L

270 280 290 300 310 320 330 340 350
Area (LC)
(a) Vector Size: 496
, Uniform distribution
10 T T
-e-Conventional Pareto Optimal
107 ~+Internal SH Pareto Optimal
~*-Mirror SH

—~.k =

IS

s

L 10%E E

o

= ook E
10 |
10° Il Il Il Il Il Il L

270 280 290 300 310 320 330 340 350
Area (LC)
(b) Vector Size: 1984
| Uniform distribution
" ! ' -Conventional Pareto Optimal
) =+ Internal SH Pareto Optimal
100 |=*Mirror SH

—~.k

2

L 10%E

o

= ok
104
10° Il Il Il Il Il Il L

270 280 290 300 310 320 330 340 350

Area (LC)
(c) Vector Size: 4960

Figure 18: MPE results for different vector sizes with a uniform distribution

27

5 Conclusion

In this work, two different techniques for self-healing in a MAC applied on an
FPGA have been compared. From the results in section [4] can be seen that al-
though both techniques have their advantages, the mirror self-healing technique
as described in [4] comes with a lot of restrictions. To start, the technique is only
usable in cases where there is already a need for 2 MACs to be used in parallel,
otherwise using this technique would already almost double the hardware area
needed. Second, the chance of a mirrored multiplier to have the possibility to
overflow is quite high, rendering a lot of configurations unusable if applying the
exact methodology of mirroring a conventional approximate multiplier. Third,
because of this method of always mirroring, the minimal hardware cost that can
be achieved by this technique is relatively high. An advantage that the mirror
self-healing technique possesses is the ability to balance errors with using only
the lowest significant multipliers. However, in general the quality of the results
produced by the mirroring technique are not able to compensate for the restric-
tions it has.

Evaluating different aspects of the MAC gave the conclusion that there is no
unexpected behaviour change when evaluating a MAC on either hardware area
or power consumption, for either a uniform or normal distribution. All Pareto
optimal configurations had no significant difference in what type of multipliers
were used and the quality evaluations of the techniques gave very similar results.

28

6 Discussion

Evaluating the results questions arise that were not addressed in the time per-
mitted. These subjects are treated below.
Cost results for FPGA
In section [£.1] the hardware costs of a MAC on an FPGA are discussed. From
these results it became apparent that the costs for multipliers on FPGA do not
correspond that well with those for ASIC as discussed in [4] and [5]. For exam-
ple, the newly created multiplier M6 has a lower area cost than that of multiplier
M3, but uses far more gates if it would be build in ASIC and therefore use more
hardware area.
Overflow in the multipliers
As discussed in section [£.2)a lot of the found configurations using the mirror self-
healing technique are able to overflow. This problem arises because the design
space exploration used is build for finding Pareto optimal configurations for the
conventional and internal self-healing techniques without overflow cases. Using
the conventional configurations and mirroring them is the technique as described
in []. However, this technique is build for a Square Accumulator (SAC) and
within a SAC bit overflow is a much smaller problem since a SAC utilizes a
number of 2x2 squarers which compensate for overflow. Using this exact same
technique on a MAC therefore is much harder. The technique can however be
adjusted, as discussed in the overflow configurations part of section
Comparing the different self-healing techniques
When comparing the internal self-healing technique and the mirror self-healing
technique the problem arises that the mirror self-healing methodology is severely
limited in area reduction by the fact that every approximate multiplier should be
mirrored. This increases the minimal hardware costs when using this technique
and can more easily result in configurations with bit overflow.

29

7 Future Work

In the field of approximate computing there is still a lot of room for future
investigations, focusing on the subjects treated in this work, the following items
are still worth investigating:

e As mentioned in section [6] optimization for FPGA can still improve a
great deal. The conventional methodology uses certain approximate mul-
tipliers because they use less gates and therefore make less hardware cost,
which makes sense when working in a ASIC environment. For an FPGA
environment however, it does not, and further investigation could be done
on which multiplier setups are more efficient for FPGA. This was out of
scope for this work, since the goal is to compare the self-healing techniques
as they were presented.

e The mirror self-healing technique is severely limited in performance since
the methodology restricts itself to only exactly mirror a conventional mul-
tiplier, creating problems like bit overflow and a high minimal resource
cost. In future work, an adjusted methodology could be developed that
works around these restrictions by not simply mirroring the conventional
multiplier, but adjust both multipliers in a way that the multipliers bal-
ance each other but do not overflow.

e Since the design space exploration algorithm used in this work only com-
puted the Pareto optimal configurations for the conventional technique
and the internal self-healing technique, not all possible mirror self-healing
options are evaluated and overflow cases are not filtered out. In future
work, the design space exploration algorithm could be expanded to also
consider mirror self-healing configurations, which will allow a better com-
parison between the different techniques.

e This work focused on comparing the internal and mirror self-healing tech-
niques, but an interesting concept is what the results would be if both
techniques were combined, where multipliers are created that are both
balanced internally and with a mirror multiplier in a pair.

30

References

1]

M. Shafique, R. Hafiz, S. Rehman, W. El-Harouni and J. Henkel, ”Invited:
Cross-layer approximate computing: From logic to architectures,” 2016 53nd
ACM/EDAC/IEEE Design Automation Conference (DAC), Austin, TX,
2016, pp. 1-6.

L. D’Addario and D. Wang. ” An integrated circuit for radio astronomy cor-
relators supporting large arrays of antennas,” Journal of Astronomical In-
strumentation, 2016.

B. Verstoep. ” Approximate multipliers for MAC,” Bachelor assignment, Uni-
versity of Twente, Faculty of Electrical Engineering, Mathematics and Com-
puter Science, April 2018.

G. A. Gillani, M. A. Hanif, M. Krone, S. H. Gerez, M. Shafique, and A. B.
J. Kokkeler, ”Squash: Approximate Square-Accumulate With Self-Healing,”
IEEE Access, 6, 49112-49128. 2018.

G. A. Gillani et al. "MACISH: Designing Approximate MAC Accelerators
with Internal-Self-Healing,” [Still to be published] 2019.

P. Kulkarni, P. Gupta, M. Ercegovac, “Trading Accuracy for Power with an
Underdesigned Multiplier Architecture,” 24th International Conference on
VLSI Design (VLSI Design), pp. 346 — 351, 2011.

Semeen Rehman, Walaa El-Harouni, Muhammad Shafique, Akash Kumar,
and Jorg Henkel, ” Architectural-space exploration of approximate multipli-
ers,” In Frank Liu, editor, ICCAD, page 80. ACM, 2016.

A. Marcovitz. "The Karnaugh Map,” in Introduction to Logic Design,
McGraw-Hill, 2009, pp. 111-199.

S. Gerez. "Power Analysis with Quartus II and Modelsim,” University of
Twente, Faculty of Electrical Engineering, Mathematics and Computer Sci-
ence, March 2015.

31

Appendices

A Multiplier Circuits and Truth Tables

(a) Circuit M1

s =
—

T

—

(c) Circuit M2

& =
s =
|
]

(e) Circuit M3

o

B(l)tj}

(g) Circuit M4

—] ————0()

o(1)
0(2)

03)

0(0)

] ———0()
A1) 7—‘

B 00 ‘ 01 ‘ 10 11
00 0000 | 0000 | 0000 | 0000
01 0000 meom 0010
10 0000 | 0010 | 0100 | 0110
11 0000 OO 0110 | 1001
(b) Truth table M1
B 00 01 10 11
00 0000 | 0000 | 0000 | 0000
01 0000 | 0001 | 0010 | 0011
10 0000 | 0010 | 0100 | 0110
11 0000 | 0011 | OL10 [MoNENE
(d) Truth table M2
B 00 01 10 11
00 0000 | 0000 | 0000 | 0000
01 0000 | 0001 | 0010 | 0011
10 0000 | 0010 | 0100 | 0110
11 0000 | 0011 | 0110 [ieANS
(f) Truth table M3
B 00 01 10 11
00 0000 | 0000 | 0000 | 0000
01 0000 | 0001 | 0010 | 0011
10 0000 | 0010 | 0100 | 0110
11 0000 | 0011 | 0110 MO0

(h) Truth table M4

Figure 19: Circuit for M1-M4 and the corresponding truth tables[3]

32

i2[1..0] [’ templ5]
p

i1[1..0]

result~0

= result[3..0]

(a) Circuit M5

A
B 00 01 10 11
00 0000 | 0000 | 0000 | 0000
01 0000 | 0001 | 0010 | OO11
10 0000 | 0010 | 0100 | O110
11 0000 | 0011 | O110 [Eeiox&}

(b) Truth table M5

1

jtemi[s]
d 1

temp[1]

= result[3.0]

1 temp|[0] 0

J— temp[10]
' 1D
D temp[3] d f
i1.0] =
o templ] ’1—. »:(E‘W]i
temp[7] u
D

result~2

2.0 >

result~0
o
0

result~3

(c) Circuit M6

A
B 00 ‘ 01 ‘ 10 11
00 0000 | 0000 | 0000 | 0000
01 0000 0010
10 0000 0100 | 0110
11 0000 0110 | 1001

(d) Truth table M6

Figure 20: Created approximate multipliers M5 and M6 as synthesized by Quar-

tus and the corresponding truth tables
33

B VHDL Code

The VHDL code is based on that used by [3], with additions made so it describes
a MAC with 2 8-bit multipliers and the new multipliers are added.

B.1 MAC Using 2 8-bit Multipliers

LIBRARY IEEE;

USE IEEE. std_logic_-1164 .ALL;
USE IEEE.numeric_std .ALL;

+ USE work .ALL;

entity AcceightParallelMAC is
port (il, i2, i3, i4: in std_logic-vector (7 downto 0);
CLK: in std_logic;
result : out unsigned (24 downto 0) —Max output when using a
vector size of 496 needs 25 bits to be stored
)
end AcceightParallelMAC;

architecture bhv of AcceightParallelMAC is
COMPONENT' eightbitmultiplier is —Multiplier 1
port(il, i2: in std_logic_-vector (7 downto 0);
result: out std-logic-vector (15 downto 0)
)
end COOMPONENT;

signal Ril,Ri2,Ri3,Ri4: std_logic-vector (7 downto 0);
signal mull, mul2: std_-logic-vector (15 DOWNIO 0) ;
signal total, Rtotal: unsigned (24 downto 0) := (others => ’0’);

begin
5 —eight bit multiplier:
; Multl: eightbitmultiplier PORT MAP(il => std_logic_vector (Ril) , i2
=> std_logic_vector (Ri2) , result => mull);
Mult2: eightbitmultiplier PORT MAP(il => std_logic_-vector (Ri3)
=> std_logic_vector (Ri4) , result => mul2);

, Q2

28 —sum up all inputs:

total <= Rtotal + resize (unsigned(mull), 25) 4+ resize (unsigned (mul2

), 25);
PROCESS (CLK)
s BEGIN
IF rising_edge (CLK) THEN
Ril <= il; —update input registers
36 Ri2 <= 12
r Ri3 <= i3;
Ri4 <= i4;
Rtotal <= total; —next clock cycle update output
END IF;

END PROCESS;
result <= Rtotal;
end architecture;

34

B.2 8-bit multiplier

LIBRARY IEEE;
USE IEEE. std_logic_-1164 .ALL;
USE IEEE.numeric_std .ALL;

+ USE work.ALL;

©

entity eightbitmultiplier is
port(il, i2: in std_-logic-vector (7 downto 0);
result: out std_-logic_-vector (15 downto 0)
)

end eightbitmultiplier;

architecture eighttofour of eightbitmultiplier is
COMPONENT' fourbitmultiplier is
port(il, i2: in std_logic-vector (3 downto 0);
result: out std_-logic_vector (7 downto 0)
)
end COMPONENT;

signal templ, temp2, temp3, temp4: std_logic_vector (7 downto 0);
begin

mull: fourbitmultiplier PORT MAP(il
downto 0) ,

\II/

i1(3 downto 0) , i2 => i2(3

result => templ); ——LSB

mul2: fourbitmultiplier PORT MAP(il => i1 (3 downto 0) , i2 => i2(7
downto 4)

result => temp2); —MidSB

mul3: fourbitmultiplier PORT MAP(il => i1(7 downto 4) , i2 => i2(3
downto 0) ,

result => temp3); —MidSB

mul4: fourbitmultiplier PORT MAP(il => il (7 downto 4) , i2 => i2(7
downto 4)

result => temp4); —MSB

result <= std_logic_vector (resize (unsigned (templ), 16) + shift_left
(resize (unsigned (temp2), 16),4) + shift_left (resize (unsigned (
temp3), 16),4) +

shift_left (resize (unsigned (temp4), 16),8)); —shift the results and
add up

end architecture;

B.3 4-bit multiplier

LIBRARY IEEE;

USE IEEE. std-logic-1164 .ALL;
USE IEEE.numeric_std .ALL;
USE work . ALL;

entity fourbitmultiplier is
port(il, i2: in std_logic_vector (3 downto 0);
result: out std-logic_vector (7 downto 0)

5
end fourbitmultiplier;

architecture fourtotwo of fourbitmultiplier is
COMPONENT testmultiplier is

35

port(il, i2: in std-logic-vector (1 downto 0);

result: out std_logic_vector (3

end COOMPONENT;

signal templ, temp2, temp3, temp4:

downto 2) , result => temp4);

downto 0)

—MSB

std_-logic_-vector (3 downto 0);

begin

mull: M?multiplier PORT MAP(il => i1 (1 downto 0) i2 i2 (1
downto 0) , result => templ); —LSB

mul2: M?multiplier PORT MAP(il => i1 (1 downto 0) i2 i2 (3
downto 2) , result => temp2); —MidSB

mul3: M?multiplier PORT MAP(il => i1 (3 downto 2) i2 i2(1
downto 0) , result => temp3); —MidSB

muld: M?multiplier PORT MAP(il => il (3 downto 2) i2 i2(3

result <= std_logic_vector (resize (unsigned (templ), 8) + shift_left (
resize (unsigned (temp2), 8) ,2) + shift_left (resize (unsigned(
temp3), 8), 2) + shift_left (resize (unsigned (temp4), 8),4));

end architecture;
B.4 Approximate Multipliers

M1

LIBRARY IEEE;
USE IEEE. std_-logic_-1164 .ALL;
USE IEEE.numeric_std .ALL;

entity Mlmultiplier is
port(il, i2: in std-logic-vector (1 downto 0);
result: out std_logic_vector (3 downto 0)
)

S

architecture approximate

end MIlmultiplier;

of Mlmultiplier is

signal temp: std-logic-vector (3 downto 0);

begin

i temp (0) <= i1 (0)

temp (1) <= il (1)

temp (2) <= temp(0) and temp(1);
temp (3) <= i1 (1)

and i2(1);
and i2(0);

and i2(1);

temp (2) ;

result <= temp(2) & (temp(2) xor temp(3)) & (temp(0) xor temp(l)) &

end architecture;

M2

LIBRARY IEEE;
USE IEEE. std-logic-1164 .ALL;
USE IEEE.numeric_std .ALL;

entity M2multiplier is

36

6 port(il, i2: in std-logic-vector (1 downto 0);
7 result: out std_logic_vector (3 downto 0)

s)
10 end M2multiplier;

12 architecture approximate of M2multiplier is
13 signal temp: std-logic_vector (1 downto 0);

15 begin

16 temp (0) <= i1(0) and i2(1);

17 temp (1) <= i1 (1) and i2(0);

15 result <= 0’ & (i1 (1) and i2(1)) & (temp(0) or temp(l)) & (il (0)
and i2(0));

19 end architecture;

M3

LIBRARY IEEE;
USE IEEE. std_-logic-1164 .ALL;
USE IEEE.numeric_std .ALL;

entity M3multiplier is
6 port(il, i2: in std-logic-vector (1 downto 0);
7 result: out std_-logic_vector (3 downto 0)

s);
10 end M3multiplier;

12 architecture approximate of M3multiplier is
13 signal temp: std-logic_-vector (3 downto 0);

15 begin

16 temp (0) <= i1 (0) and i2(0);

17 temp (1) <= i1 (0) and 12 (1);

15 temp(2) <= i1(1) and i2(0);

19 temp(3) <= i1 (1) and i2(1);

20 result <= (temp(3) and temp(0)) & (temp(3) and (not temp(0))) & (
temp (1) or temp(2)) & temp(0);

21 end architecture;

M4

1 LIBRARY IEEE;
2 USE IEEE. std_logic_-1164 .ALL;
3 USE IEEE.numeric_std .ALL;

5 entity M4multiplier is

6 port(il, i2: in std_-logic-vector (1 downto 0);
7 result: out std_logic_vector (3 downto 0)

=)
10 end M4multiplier;

12 architecture accurate of Md4multiplier is
13 signal temp: std-logic_-vector (9 downto 0);

15 begin

37

17 temp(0) <= i1 (1) and i2(1); —AC —> 02

15 temp(l) <= i1(0) and i2(0); —DB —> OO0

19 temp(6) <= i2(0) and not il (0);

20 temp (2) <= temp(6) and il(1l); —DB‘A

21 temp (7) <= i2(1) and not il (1);

22 temp(3) <= temp(7) and i1(0); —CA‘B

235 temp(8) <= temp(l) and il (1);

24 temp (4) <= temp(8) and not i2(1); —DBAC’
25 temp(9) <= temp(l) and not il(1);

26 temp (5) <= temp(9) and i2(1); —DBA‘C

28 result <= (temp(0) and temp(l)) & (temp(0)) & (temp(2) or temp(3)
or temp(4) or temp(5)) & (temp(1l));

31 end architecture;

M5

LIBRARY IEEE;
USE IEEE. std_-logic-1164 .ALL;
USE IEEE.numeric_std .ALL;

(S

o

entity Mb5multiplier is
6 port(il, i2: in std_logic.-vector (1 downto 0);
7 result: out std-logic_-vector (3 downto 0)

s)
10 end Mbmultiplier;

12 architecture accurate of Mbmultiplier is

13 signal temp: std_logic_vector (9 downto 0);
14

15 begin

16

17 temp(0) <= i1 (1) and i2(1); —AC — 02

15 temp(l) <= i1(0) and i2(0); —DB —> OO0

19 temp(6) <= i2(0) and not il(0); —DB’

20 temp(2) <= temp(6) and il(1l); —DB‘A

21 temp(7) <= i2(1) and i1(0); —CB

22 temp(3) <= temp(7) and not i2(0); —BCD’
23 temp (8) <= temp(l) and il(1l); —DBA

24 temp (4) <= temp(8) and not i2(1l); —DBAC‘
25 temp(9) <= temp(1l) and not il(1l); —DBA’
26 temp(5) <= temp(9) and i2(1); —DBA‘C

28 result <= (temp(0) and temp(l)) & (temp(0)) & (temp(2) or temp(3)

or temp(4) or temp(5)) & (temp(1l));

31 end architecture;

Meé

LIBRARY IEEE;
USE IEEE. std-logic-1164 .ALL;
USE IEEE.numeric_std .ALL;

entity M6multiplier is

38

6 port(il, i2: in std-logic-vector (1 downto 0);
7 result: out std_logic_vector (3 downto 0)

s)
10 end M6multiplier;

12 architecture accurate of M6multiplier is
13 signal temp: std_logic_vector (14 downto 0);

15 begin
16 temp(0) <= i1(1) and i2(1); —AC
17 temp (1) <= temp(0) and not i2(0); —ACD"~
18 temp (2) <= temp(1l) and not il (0); —ACB~
19 temp(3) <= i1(0) and i2(1); —BC
20 temp(4) <= temp(3) and i2(0); —BCD
21 temp(5) <= temp(4) and not il (1); —BCDA~
22 temp(6) <= i1 (0) and i1 (1); —AB
235 temp(7) <= temp(6) and i2(0); —ABD
24 temp(8) <= temp(7) and not i2(1); —ABC™D
25 temp(9) <= il (1) and i2(0); —AD
26 temp(10) <= temp(9) and not il (0); —AB™D
27 temp(11) <= temp(3) and not i2(0); —BCD"~
28 temp(12) <= i1 (0) and not i1(1l); —A™B

13

14

(11)
(12)
29 temp (13) <= i2(0) and not i2(1); —C™D
(14) temp(12) and temp(13); — A™BC™D

AN
Il

32 result <= (i1(0) and i1 (1) and i2(0) and i2(1)) & (temp(l) or
temp (2) or temp(5) or temp(8)) & (temp(ll) or temp(l4) or temp
(10)) & (i1(0) and i1 (1) and i2(0) and i2(1));

35 end architecture;

39

C RTL View
C.1 MAC Using 2 8-bit Multipliers

Ri3[7.0]

[

i[7..01

CLK[>

eightbitmultiplier:-Mult1 1'h0 ciN_ Add0 1h0 cin_ Add1 Rtotal[24_0]

Al24_0] OuT24_0]
i1[7..0] result{15.0] B124.0)
S
o170 result{24..0]
- L4 2510
27.0| D=t
eightbitmultiplier:-Mult2
Ri4[7..0]
7.0 >
C.2 8-bit Multiplier
oo fourbitmultiplier mul2 fourbitmultiplier-mul3
fourbitmultiplier:mul4
3:0_i1[3_0] result(7..0]
o7 D]D 74 i23.0] :/,: \;lz Z result[7.0]
2L > resuit15.0]
fourbitmultiplier-mul1 1ThO cN Add0 1h0 cin Add1 L 1h0 ciN_ Add2 F i
A[8_0] OUTI8_0] Al7.0] OUTI7 0]
B[8_0] B[7..0]
-
o . .
C.3 4-bit Multiplier
13..0]
-0 , twobitmultipliermul3
twobitmultiplier:mul1
twobitmultiplier:mul4
1
i2[3..0]
eaD > resuit7.0]
1h0 ciN_ Add0 1Thocin - Add1 ThO ciN - Add2 I
[4_0] OUT[4.0] A[5_0] OUT[5.0] 52 A[3.0] OUT[3.0]
= B[5.0] B[3.0]
-

40

[

N

w

D MATLAB Code
D.1 Main

%Script to collect results of approximate multipliers using the
functions

%EvaluateConfig , EvaluateMult, Createlnputs, CalculateArea,
CalculatePower , ParallelMACMir and SequentialMAC, which in turn
uses the

%(very slightly modified) IpACLib (Low Power Approximate Computing
Library) by Vanshika Baoni and

YMuhammad Shafique .

%

7 % Input arguments

0

% Mean: Specified mean when normal distribution is used

9 % Dev: Specified standard deviation when normal distribution is
used

10 % Inputamount: Amount of input vectors, so how many times the MAC
runs

11 % before the ME, MSE, and MPE are calculated.

12 %

13 % VecSize: amount of elements in input vectors, often set to 496 to

12 % correspond with radio astronomy purposes. Since there
are

15 % always 2 N x N multipliers the amount of elements gets
split

16 % between the 2 sets of input vectors, so the size should
be

17 % divided by 2.

18 %

19 % ChosenMult: An array of chosen multipliers that will be used by
the MAC.

20 % Every row contains the type of multipliers for 1 MAC.

21 % The multipliers are used from LSB to MSB, so the
first item

22 % in the row is used in the multiplier for the least

23 % significant bits.

mean8bit = 128;
dev8bit = 40;
Inputamount = 100;
VecSize = 496x5;

meandbit = 7.5;
dev4bit = 2.2;

MultPareConUniArea = ConvertMult (P_16x16_unif_config_convent_Area3)

)

41

61
62
63

64

o

MultPareISHUniArea = ConvertMult (P_16x16_unif_config_ish_Aread);
MirMultPareConUniArea = MirMult (MultPareConUniArea) ;

MultPareConNormArea = ConvertMult (P_16x16_norm_config_convent_Area3
)5
MultPareISHNormArea = ConvertMult (P _16x16_norm_config_ish_Area3);

; MirMultPareConNormArea = MirMult (MultPareConNormArea) ;

MultPareConUniPow = ConvertMult (P_16x16_unif_config_convent_pow3);
MultPareISHUniPow = ConvertMult (P_16x16_unif_config_ish_pow3);
MirMultPareConUniPow = MirMult (MultPareConUniPow) ;

ConvertMult (P_16x16_norm_config_convent_pow3)

MultPareConNormPow

MultPareISHNormPow ConvertMult (P_16x16_norm_config_ish_pow3);
MirMultPareConNormPow = MirMult (MultPareConNormPow) ;

% The chosen multipliers can be defined by using a matrix. Every
row

% inludes the multipliers for one full MAC.

%Test Multiplier configuration which increases in approximation (ME

0) for 8—bit MAC
Test8bit = [7,2,3,2,

9& 9@ g9l g
9& 9@ 9& g

NN W W ow

ESEES QRN IEN (RN T U

NN NN

)

)
)

3
7
7
7
7
7
7

Lo
N w w o o w
NN
I)

))
))
))
))
B i

)
)

%The model also works for a 4—bit MAC and a 16—bit MAC

%Test Multiplier configuration which in approximation (ME

increases

= 0) for 4—bit MAC
Testdbit = [2,2,2,3;
2,2,2,7;
27277’7;
2,7,7,7;
7’77777];
% Computing the results for configurations from the test

configurations

> % Uniform Input distribution

[METest8bit , MSETest8bit , MPETest8bit, AreaTest8bit, PowerTest8bit |
EvaluateConfig (1, mean8bit,dev8bit , VecSize , Inputamount,
Test8bit, 1);
[METest4bit , MSETest4bit , MPETest4bit, AreaTest4bit, PowerTest4bit]
EvaluateConfig (1, mean4bit ,dev4bit , VecSize ,Inputamount,
Testdbit, 1);

s % Normal Input distribution

42

90

91

92
93
94

95

96

98
99
100
101
102

103

104
105
106
107

108

AW N

[METest8bitNorm , MSETest8bitNorm , MPETest8bitNorm, AreaTest8bitNorm ,
PowerTest8bitNorm] = EvaluateConfig (2, mean8bit,dev8bit , VecSize ,
Inputamount, Test8bit, 1);

[METest4bitNorm , MSETest4bitNorm , MPETest4bitNorm, AreaTest4bitNorm ,
PowerTest4bitNorm] = EvaluateConfig (2, mean4dbit,dev4bit , VecSize ,
Inputamount, Test4bit, 1);

%

%Example Plot plotting ME against area

figure (1) ;

ResultPlotl = subplot(3,2,1);

plot (ResultPlotl, AreaTest8bit , METest8bit, —or’,AreaTest4bit ,
METest4bit , '—+b ') ;

title (ResultPlotl , ’Uniform distribution ’)

xlabel (ResultPlotl , >Area (LC)’)

ylabel (ResultPlotl , 'ME’)

set (gca, ’YScale’, ’log’)

legend ('8—bit multiplier’, ’4—bit multiplier ’);

ResultPlot2 = subplot(3,2,2);

plot (ResultPlot2 , AreaTest8bitNorm , METest8bitNorm, '—or’,
AreaTest4bitNorm , METest4bitNorm , '—+b) ;

title (ResultPlot2 , ’"Normal distribution ”)

xlabel (ResultPlot2 , >Area (LC)’)

ylabel (ResultPlot2 , 'ME’)

set (gca, 'YScale’, ’log’)

legend (’8—bit multiplier’, ’4—bit multiplier ’);

D.2 EvaluateConfig

function [MEConfig, MSEConfig, MPEConfig, AreaConfig, PowerConfig]
= EvaluateConfig(distr , mean, dev, VecSize, Inputamount,
ChosenMult, type)

%Allocating memory for the vectors

AreaConfig = zeros(1,size (ChosenMult,1));

PowerConfig = zeros(1,size (ChosenMult,1));

[MEConfig, MSEConfig, MPEConfig] = deal(zeros(1,size (ChosenMult,1))

)

%For every configuration given in the ChosenMult matrix

for i = 1l:size (ChosenMult, 1)

%Calculate estimated hardware costs
AreaConfig (i) = CalculateArea(ChosenMult(i,:) , type);
PowerConfig (i) = CalculatePower (ChosenMult (i ,:), type);

% Calculate results for given distribution (can also output file
with

% used inputs so verification in ModelSim can be done)

[MEConfig (i) ,MSEConfig(i),MPEConfig(i)] = EvaluateMult (distr ,mean,
dev, VecSize ,Inputamount, ChosenMult(i,:), type);

end

43

4

=

42
43
44

45

D.3 CalculateArea

function AreaSize = CalculateArea(ChosenMult, type)
%Calculating dimension of the configuration under evaluation
dim = 2xsqrt(size (ChosenMult,2));

%Find the amounts used of each multiplier type
acc = find (ChosenMult = 7);
approxl = find (ChosenMult =—
of 1 magnitude
approx2 = find (ChosenMult

1); %Multiplier that has 3 error cases

2); %Multiplier that has 1 error case

of 2 magnitude (3%3 = 7)

approx3 = find (ChosenMult = 3); %Mirror pair of approx2 so 3x3 =
11

approx4 = find (ChosenMult 4); %Multiplier that has 1 error case
of 4 magnitude (3x3 =

approxb = find (ChosenMult
approx6 = find (ChosenMult

5);
6) ;

(Y
@

Y%Areas of different multiplier types

Ml = 8.9375;

s M2 = 7.0625;
M3 = 9.1875;
M4 = 7.0625;
M5 = 9.1875;
M6 = 8.4375;
MAcc = 9.4375;

%Calculate the multiplier section area for the different techniques

MultiplierArea = size (acc, 2)xMAcc + size (approxl, 2)«Ml + size (
approx2, 2)xM2 + size (approx3, 2)*M3 + size (approx4, 2)xM4 +
size (approx5,2)*M5 + size (approx6 ,2) *M6;

MirMultiplierArea = size (acc, 2)*MAcc + size (approxl, 2)*«M6 + size (
approx2, 2)*M3 4+ size (approx3, 2)*M2 + size (approx4, 2)xM5 +
size (approxb,2)*M4 + size (approx6 ,2)*Ml;

s %MirMultiplierArea assumes every approximate multiplier gets

mirrored with
Y%another approximate multiplier .

OverheadArea = 0;
switch (dim)
%Checks how big the multiplier is (eg. 2x2, 4x4, 8x8) and gives the
%corresponding overhead area for that MAC.
case 2
OverheadArea
case 4
OverheadArea = 32;
case 8
OverheadArea = 49;
otherwise
OverheadArea = 0;
error (’size of multiplier is irregular/out of bounds —
OverheadArea is set to 07)

16;

end
%Calculate the total area of the MAC
switch (type)
case 1 %If the same set of multipliers is used for both of the

44

46

48

o w N =

~

10

parallel multipliers
AreaSize = MultiplierArea*2 + OverheadArea;
case 2 %If the mirror self healing type is used, so the 2nd
multiplier uses a set of mirrored multipliers
AreaSize = OverheadArea + MultiplierArea +
MirMultiplierArea;
end

end

D.4 CalculatePower

function PowerUsage = CalculatePower (ChosenMult, type)

%Functions mostly the same as the CalculateArea function, but with
the parameters for power

acc = find (ChosenMult = 7);

approxl = find (ChosenMult = 1); %Multiplier that has 3 error cases
of 1 magnitude

approx2 = find (ChosenMult 2); %Multiplier that has 1 error case

of 2 magnitude (33 = 7)

approx3 = find (ChosenMult = 3); %Mirror pair of approx2 so 3%3 =
11

approx4 = find (ChosenMult 4); %Multiplier that has 1 error case
of 4 magnitude (3%3 =

approxb5 = find (ChosenMult
approx6 = find (ChosenMult

5);
6) ;

=y
C

Y%Power consumption of different multiplier types
Ml = 1.33/32;
M2 = 1.27/32;

M3 = 1.52/32;
M4 = 1.46/32;
M5 = 1.52/32;
M6 = 1.38/32;
MAcc = 1.52/32;

MultiplierPower = size (acc, 2)*MAcc + size (approxl, 2)+Ml + size (
approx2, 2)*M2 4+ size (approx3, 2)*M3 + size (approx4, 2)xM4 +
size (approxb,2)*M5 + size (approx6 ,2) *M6;

MirMultiplierPower = size (acc, 2)*MAcc + size (approxl, 2)«M6 + size
(approx2, 2)*M3 + size (approx3, 2)xM2 4 size (approx4, 2)xM5 +
size (approxb,2)*M4 + size (approx6,2)*Ml;

%MirMultiplierPower assumes every approximate multiplier gets
mirrored with

5 %another approximate multiplier.

switch (type)
case 1 %If the same set of multipliers is used for both of the
parallel multipliers
PowerUsage = MultiplierPower %2;
case 2 %If the mirror self healing type is used, so the 2nd
multiplier uses a set of mirrored multipliers
PowerUsage = MultiplierPower + MirMultiplierPower ;
end

45

w W w
QR @

[NEVIN] =

- o

end

D.5 EvaluateMult

function

VecSize , Inputamount, ChosenMult, type)

ModelSimInput = 0; % boolean that

ModelSim

% is

created .

%Allocating space for the arrays
Sequential MACResult = zeros (1,Inputamount) ;
MirrorMACResult = zeros (1,Inputamount);

AccurateResult

zeros (1, Inputamount);

%Calculating the dimension of the NxN matrix.
dim = 2xsqrt(size (ChosenMult,2));

)

)

)

)

indicates whether

[MEMult , MSEMult, MPEMult] = EvaluateMult (Distr , mean, var,

input for

%Creating input vectors

for i = 1l:Inputamount

Inputl = Createlnputs(Distr, mean, var, VecSize

Input2 = Createlnputs(Distr, mean, var, VecSize

Input3 = Createlnputs(Distr, mean, var, VecSize

Input4 = Createlnputs(Distr, mean, var, VecSize

Y%——————Creating testvector file for ModelSim

if ModelSimInput = 1

FileFormat = 'Tvc_Input%dDistr%dMean%dVar%dVecSize.vhd’;
Filename = sprintf(FileFormat ,Distr ,mean,var, VecSize);
fileID = fopen (Filename, 'w’);

fprintf (fileID ,’library

fprintf (fileID ,
fprintf (fileID ,
fprintf (fileID ,
fprintf (fileID , 'port

fprintf (fileID
fprintf
fprintf
fprintf
fprintf
fprintf
fprintf
fprintf
fprintf
fprintf
fprintf
fprintf
fprintf
fprintf
fprintf

(

(fileID
(fileID
(fileID
(fileID
(fileID
(fileID
(fileID
(fileID
(fileID
(fileID
(fileID
(fileID
(fileID
(fileID

)

k)

)

)

b

b

)

‘use

(clk
il out
712 out
i3 out
7i4 out

ieee .

ieee;\n’);

is\n’);

out std-logic;\n’);

"end tvc_8bitPar;\n’);
’architecture behaviour OF tvc_8bitPar is\n’);

’constant half_clock_period:

"begin\n’);

"clock : process\n’);

"begin\n’);

‘clk<= ’’1"7;\n’);

‘wait for

‘elk <= 7707 7;\n’);

wait for

’end process clock;\n’);

46

time

half_clock_period;\n’);

half_clock_period;\n’);

std_logic_vector (7 downto
std_logic_vector (7 downto
std_logic_vector (7 downto
std_logic_vector (7 downto

std_logic_-1164.all;\n’);
’use IEEE.Numeric.STD. all;\n’);
’entity tvc_8bitPar

(e e]

)5\ n
);\n
)i\n’);
))i\n’);

10 ns;\n’);

s0 fprintf (fileID , ’inputs:process\n’);
51 fprintf (fileID , ’begin\n’);
2> fprintf(fileID , wait for 0.5xhalf_clock_period;\n’);

sa for 1 = l:size (Inputl,2)

56 fprintf (fileID , il <= std_logic_vector (to_unsigned(%d,il ’’
length));\n’, Inputl(1l));

57 fprintf (fileID , ’i2 <= std_logic_vector (to_unsigned(%d,i2’’
length));\n’, Input2(l));

58 fprintf (fileID , ’i3 <= std_logic_vector (to_unsigned(%d,i3’’
length));\n’, Input3(1l));

59 fprintf (fileID , ’i4 <= std_logic_vector (to_unsigned(%d,i4’’
length));\n’, Inputd(1l));

60 fprintf (fileID , ’'wait for 2xhalf_clock_period;\n’);

61

62 end

63

64 fprintf(fileID ,’end process inputs;\n’);
fprintf (fileID , ’end behaviour;\n’);

66 fclose (fileID);

6s end

69 %

%Calculate MAC output based on what setup is chosen
switch (type)

76 case 1 %Conventional and Internal Self Healing setup

77 Sequential MACResult (i) = SequentialMAC (Inputl, Input2, Input3,
Input4, dim, ChosenMult);

79 case 2 %Mirror setup

80 MirrorMACResult (i) = ParallelMACMir (Inputl, Input2, Input3,

Input4, dim, ChosenMult);

s2 end
83 %Calculate the accurate result
s1 AccurateResult (i) = sum(Inputl.+*Input2 + Input3.*xInputd);

s6 end

%Calculating the error metrics ME, MPE and MSE

90 switch (type)

91 case 1

92

95 MPEMult = 100*sum (abs (AccurateResult—SequentialMACResult) ./
AccurateResult)/Inputamount ;

94 MSEMult = sum ((AccurateResult—Sequential MACResult)."2) /Inputamount;

o5 MEMult = sum(abs(AccurateResult—SequentialMACResult))/Inputamount;

96

®

97
98 case 2
9o MPEMult = 100#sum (abs (AccurateResult —MirrorMACResult) ./

47

100
101
102

103

IS

N

w

o IS

w

16

AccurateResult)/Inputamount;
MSEMult = sum ((AccurateResult —MirrorMACResult)."2) /Inputamount ;
MEMult = sum(abs(AccurateResult—MirrorMACResult))/Inputamount;

end

D.6 Createlnputs

function Input = Createlnputs(distr , mean, dev, VecSize, dim)

%Function creates input vectors based on the given distribution ,
mean and standard deviation
switch (distr)
case 1
Input = randi(2°dim—1,1,VecSize);

case 2
Input = round(dev.xrandn(1,VecSize) + repmat(mean,l, VecSize
)

%If inputs are out of bounds they will be set to have the value
%of that bound.

Input (Input > 2°dim—1) = 2°dim—1;

Input (Input < 0) = 0;

otherwise
Input = randi(2°dim—1,1,VecSize);

end
end

D.7 MirrorMAC

%Parallel MAC calculator

%Calculates the output of a parallel MAC system with a set of
defined

Y%multipliers. By specifying the input both uniform and a normal

%distribution can be chosen, with a specified mean and standard
deviation .

%An input vector specifies the elementary 2x2 multipliers that are
used ,

s %and this multiplier vector automatically gets mirrored and used.

function ParallelMACresult = ParallelMACMir(il, i2, i3, i4, dim,
ChosenMult)

%

MirMult = ChosenMult; %Creates set of mirrored
approximate

for k = find (ChosenMult = 2) Y%multipliers. Every 3%x3 = 7
case
MirMult (k) = 3; %gets converted to 3%x3 =11,
every

clear k; %3%3=5 case to 3x3=13 etc.

for k = find (ChosenMult = 3)

48

36

IS

w N e

MirMult (k) = 2;

end

clear k;

for k = find (ChosenMult = 4)
MirMult (k) = 5;

end

clear k;

for k = find (ChosenMult = 5)
MirMult (k) = 4;

end

clear k;

for k = find (ChosenMult = 1)
MirMult (k) = 6;

end

clear k;

for k = find (ChosenMult = 6)
MirMult (k) = 1;

end

clear k;

%

mult = [’genericMultiply ’,int2str (dim),’x’,int2str (dim) |;

%Calculates results of multipliers for every input element using
the

%lpACLib library

for i=1l:size (il ,2);

multiplierl (i) = feval (mult,i1(i),i2(i),ChosenMult, ’ACCURATE.ADD’
,0) 5

multiplier2 (i) = feval (mult,i3(i),i4 (i) ,MirMult, "ACCURATEADD’ ,0) ;

end

multland2 = multiplierl + multiplier2;

s ParallelMACresult = sum(multland2); %Accumulates all the

results

end

D.8 ConventionalMAC

%Sequential MAC calculator

%Works in a similar fashion to the parallel version, only it
simulates

%a sequential MAC, meaning that there is only 1 set of multipliers
that

5 %do not get mirrored.

function SequentialMACresult = SequentialMAC(il, i2, i3, i4, dim,
ChosenMult)

%Calculates results of multipliers for every input element using
the

%lpACLib library .

mult = [’genericMultiply ’,int2str (dim),’x’,int2str (dim) |;

for i=1l:size (il ,2); %calculates results of multipliers for every

49

input element
12+ multiplierl (i) = feval (mult,il1(i),i2(i),ChosenMult, ’ACCURATE ADD’

,0) 5

15 multiplier2 (i) = feval (mult,i3(i),i4 (i) ,ChosenMult, ’ACCURATE ADD’
,0) 5

16 end

17 multland2 = multiplierl + multiplier2;

15 Sequential MACresult = sum(multland2); %Accumulates all the
results

19

20 end

50

E Quartus Power Results

Multiplier | Accumulator Total . Average Power
Type . . Dynamic -~
Section Section per Multiplier
Power
M1 | 1.35 1.17 2.52 0.04219
M2 1.30 1.11 2.41 0.04063
M3 | 1.54 1.26 2.8 0.04813
M4 | 147 1.25 2.72 0.04594
M5 | 1.52 1.22 2.74 0.04750
M6 | 1.35 1.17 2.52 0.04219
Macc | 1.55 1.21 2.76 0.04844
Vector Size: 496, Uniform distribution, unit: mW
Multiplier | Accumulator Total . Average Power
Type . . Dynamic .
Section Section per Multiplier
Power
M1 1.33 1.15 2.48 0.04156
M2 | 1.26 1.09 2.35 0.03938
M3 | 1.52 1.10 2.62 0.04750
M4 | 1.46 1.19 2.65 0.04563
M5 | 1.52 1.24 2.76 0.04750
M6 | 1.38 1.18 2.56 0.04313
Macc | 1.51 1.23 2.74 0.04719

Vector Size: 4960, Uniform distribution, unit: mW

o1

Total

T Multiplier | Accumulator D . Average Power
YPE | Section Section ynatie per Multiplier
Power
M1 | 1.33 1.14 2.47 0.04156
M2 | 1.30 1.11 2.41 0.04063
M3 | 1.54 1.25 2.79 0.04813
M4 | 1.48 1.25 2.73 0.04625
M5 | 1.52 1.28 2.8 0.04750
M6 | 1.35 1.19 2.54 0.04219
Macc | 1.54 1.21 2.75 0.04813
Vector Size: 496, Normal distribution, unit: mW
Multiplier | Accumulator Total . Average Power
Type . . Dynamic -
Section Section per Multiplier
Power
M1 | 1.33 1.15 2.48 0.04156
M2 | 1.28 1.12 2.4 0.04000
M3 | 1.53 1.20 2.73 0.04781
M4 | 1.47 1.22 2.69 0.04594
M5 | 1.53 1.39 2.92 0.04781
M6 | 1.38 1.18 2.56 0.04313
Macc | 1.54 1.26 2.80 0.04813

Vector Size: 4960, Normal distribution, unit: mW

92

F Pareto Optimal Multiplier Configurations

93

onbIuyDe} [RUOTIUOATOD ‘UOTINGLIISIP JNdUT WLIOJIUN © pUR ®dIR 10] suoljeIndyuod mrdiymu rewrido ojored

LN | N | eIN | GIN | @GN | @GN | GIN | @N | GIN | GIN | @IN | @IN | GIN | GIN | GIN | GIN | N TTg 1Ty
JN | LJIN | @GN | GIN | GIN | @GN | GIN | @IN | GIN | GIN | @GN | @IN | GIN | GIN | GIN | GIN | N HlgTly
JN | JN | LN | TN | BN | @GN | GIN | @IN | GIN | GIN | @IN | @IN | GIN | GIN | GIN | GIN | N TTgHTy
JIN | LN | LN | LN | BN | @GN | GIN | @GN | GIN | GIN | @IN | @IN | GIN | GIN | GIN | QN | N HIgHTy
JN | LN | LN | LN | AN | EN | GIN | BN | GIN | GIN | N | @GN | GIN | GIN | GIN | GIN | N THgTTy
JN | LN | LN | LN | AN | LN | LN | AN | LN | GIN | @GN | @GN | GIN | QN | GIN | GIN | N HHg Ty
LN | LN | LN | LN | AN | LN | LN | AN | AN | AN | @N | @GN | BN | BN | GIN | QN | N THg HTy
LN | LN | LN | LN | AN | LIN | LN | AN [LN | LN | LN | AN | GIN | BN | GIN | N | @GN HHgHTy
JN | LN | LN | LN | AN | LN | N | BN | GIN | GIN | @IN | @IN | GIN | GIN | GIN | GIN | N Tig1idy
LN | LN | LN | LN | AN | LN | LN | @IN | GIN | GIN | @IN | @IN | GIN | GIN | GIN | QN | N HIg1Hy
JIN | LN | LN | LN | AN | AN | LN | AN | GIN | GIN | @GN | @GN | GIN | GIN | GIN | GIN | N T1g HHYy
LN | LN | LN | LN | AN | LN | LN | AN | LN | LN | LN | @IN | GIN | SN | GIN | N | N HlgHHy
LN | AN | AN | LN | AN | LN | AN | AN AN AN AN LN LN | BN | QN | SN | g THg THy
LN | LN | LN | LN | AN | LN | LN | AN [LN LN | LN | AN | AN | LN | BN | N | EIN THgHHy
JIN | LN | LN | LN | AN | OAIN | LN | AN [AN AN AN | AN | AN | AN | LN | GIN | eI HHg1Hy
LN | LN | LN | LN | AN AN | LN | AN AN AN | AN | AN | AN | LN | AN | LN | eI HHg HHY
410 | 91a | ST | ¥IA | €10 | 2IA | TIA | 0TA | 6d | 84 | 2d | 94 | ¢d | ¥A | €A | 2d | TA | g0 tonmot

o4

aNbIUYo9) [RUOTIUSATOD ‘UOTINGLIISIP NdUT [RULIOU © PUR BOIR I0] sUOIeInIguod trdrnu rewrdo ojared

LN | N | @IN | GIN | GIN | &N | GIN | TN | GIN | GIN | @IN | N | @IN | GIN | GIN | GIN | N TTg 1Ty
JIN | LN | @GN | GIN | BN | @GN | GIN | TN | GIN | @GN | @IN | GIN | GIN | GIN | QN | N | N HlgTly
LN | LJN | LN | GIN | BN | @GN | GIN | @GN | GIN | GIN | @IN | N | @IN | GIN | GIN | GIN | N TTgHTy
LN | LN | LN | LN | LN | LN | LN | LN | GIN | GIN | @IN | GIN | €N | @IN | GIN | ¢IN | N HIgHTy
LN | LN | LN | LN | AN | LN | LN | BN | GIN | @GN | N | @GN | @GN | GIN | GIN | GIN | N THg 1Ty
JN | LN | LN | LN | ZIN | GIN | ZIN | SN | GIN | GIN | @IN | @IN | GIN | SN | N | GIN | GIN HHgTTy
LN | LN | LN [LN | AN | LN | LN | AN [AN AN | LN | AN | BN | GIN | GIN | N | eI THg HTy
LN | LN | LN | LN | AN | AN | LN | LN | LN | LN | @GN | GIN | BN | GIN | QN | N | ¢ HHgHTy
LN | LN | LN | LN | AN | LN | GIN | BN | GIN | @GN | N | GIN | @GN | GIN | GIN | GIN | N TTgTHY
LN | LN | LN | LN | AN | AN | LN | LN | LN | LN | AN | GIN | BN | GIN | N | N | ¢ HIg1Hy
LN | LN | LN | LN | AN | EN | GIN | BN | GIN | @GN | @GN | GIN | GIN | GIN | GIN | GIN | N T1g HHYy
LN | LN | LN | LN | AN | AN | LN | LN | LN | @GN | @IN | QN | GIN | GIN | QN | N | ¢ HlgHHy
LN | LN | LN | AN | AN | LN | LN | AN AN AN | AN AN | AN | AN | AN | LN | eI THgTHYy
LN | LN | LN | AN | AN | LN | AN | AN [AN AN LN AN | LN | LN | BN | EIN | 2N THg HHYy
LN | LN | AN | ZIN | LN | AN | AN | AN AN AN AN AN AN | AN | LN | BN | eI HHgTHYy
LN | LN | LN | LN | AN | LN | LN | AN AN AN AN AN | AN | BN | GIN | GIN | eI HHg HHY
LTd | 9TA | STA | #IA | €1 | 2IA | ITA | 0TA | 6 | 8A | 24 | 90 | €d | ¥4 | €d | ¢A | 1 | susiseq tonmot

uSIso(]

99

anbruyoe} [eUOIUEATO0d ‘UOTINLIYSIp Jndul wojiun © pue Jemod I10j suorjeinsyguod ordimu rewrndo ojereg

LN | N | eIN | GIN | @GN | @GN | GIN | @N | GIN | GIN | @IN | @IN | GIN | GIN | GIN | GIN | N TTg 1Ty
JN | LJIN | @GN | GIN | GIN | @GN | GIN | @IN | GIN | GIN | @GN | @IN | GIN | GIN | GIN | GIN | N HlgTly
JN | JN | LN | TN | BN | @GN | GIN | @IN | GIN | GIN | @IN | @IN | GIN | GIN | GIN | GIN | N TTgHTy
JIN | LN | LN | LN | BN | @GN | GIN | @GN | GIN | GIN | @IN | @IN | GIN | GIN | GIN | QN | N HIgHTy
JN | LN | LN | LN | AN | EN | GIN | BN | GIN | GIN | N | @GN | GIN | GIN | GIN | GIN | N THgTTy
JN | LN | LN | LN | AN | LN | LN | AN | LN | GIN | @GN | @GN | GIN | QN | GIN | GIN | N HHg Ty
LN | LN | LN | LN | AN | LN | LN | AN | AN | AN | @N | @GN | BN | BN | GIN | QN | N THg HTy
LN | LN | LN | LN | AN | LIN | LN | AN [LN | LN | LN | AN | GIN | BN | GIN | N | @GN HHgHTy
JN | LN | LN | LN | AN | LN | N | BN | GIN | GIN | @IN | @IN | GIN | GIN | GIN | GIN | N Tig1idy
LN | LN | LN | LN | AN | LN | LN | @IN | GIN | GIN | @IN | @IN | GIN | GIN | GIN | QN | N HIg1Hy
JIN | LN | LN | LN | AN | AN | LN | AN | GIN | GIN | @GN | @GN | GIN | GIN | GIN | GIN | N T1g HHYy
LN | LN | LN | LN | AN | LN | LN | AN | LN | LN | LN | @IN | GIN | SN | GIN | N | N HlgHHy
LN | AN | AN | LN | AN | LN | AN | AN AN AN AN LN LN | BN | QN | SN | g THg THy
LN | LN | LN | LN | AN | LN | LN | AN [LN LN | LN | AN | AN | LN | BN | N | EIN THgHHy
JIN | LN | LN | LN | AN | OAIN | LN | AN [AN AN AN | AN | AN | AN | LN | GIN | eI HHg1Hy
LN | LN | LN | LN | AN AN | LN | AN AN AN | AN | AN | AN | LN | AN | LN | eI HHg HHY
410 | 91a | ST | ¥IA | €10 | 2IA | TIA | 0TA | 6d | 84 | 2d | 94 | ¢d | ¥A | €A | 2d | TA | g0 tonmot

96

onbIuDe} [RUOTJUOATOD ‘UOINLIISIp jndul [euriou © pue Jomod I10j suorjeinsyuos sordimu rewrdo ojpred

LN | N | eIN | GIN | @GN | @GN | GIN | @N | GIN | GIN | @IN | @IN | GIN | GIN | GIN | GIN | N TTg 1Ty
JN | LJIN | @GN | GIN | GIN | @GN | GIN | @IN | GIN | GIN | @GN | @IN | GIN | GIN | GIN | GIN | N HlgTly
JN | JN | LN | TN | BN | @GN | GIN | @IN | GIN | GIN | @IN | @IN | GIN | GIN | GIN | GIN | N TTgHTy
JIN | LN | LN | LN | AN | LN | LN | AN | GIN | GIN | @GN | @IN | QN | GIN | GIN | N | N HIgHTy
JN | LN | LN | LN | AN | LN | LN | BN | GIN | GIN | @IN | @IN | GIN | GIN | GIN | GIN | N THgTTy
JN | LN | LN | LN | BN | @GN | GIN | @GN | GIN | GIN | @GN | @IN | GIN | SN | GIN | QN | N HHg Ty
LN | LN | LN | LN | AN AN | LN | AN [AN AN | AN | AN | BN | BN | GIN | N | eI THg HTy
LN | LN | LN | LN | AN | LN | LN | AN | LN | LN | @GN | @IN | GIN | SN | GIN | N | N HHgHTy
JN | LN | LN | LN | AN | LN | N | BN | GIN | GIN | @IN | @IN | GIN | GIN | GIN | GIN | N Tig1idy
LN | LN | LN | LN | AN | LN | LN | AN | LN | LN | LN | @IN | GIN | SN | GIN | N | N HIg1Hy
JN | LN | AN | LN | LN | TGIN | TN | @GN | GIN | SN | 2N | GIN | SN | @IN | GIN | GIN | g TigHHy
LN | LN | LN | LN | AN | LN | LN | AN | LN | GIN | @GN | @IN | GIN | SN | GIN | QN | N HlgHHy
LN | AN | AN | AN | AN | AN | AN | AN AN AN AN AN AN | AN LN | LN | eI THg THy
LN | LN | LN | LN | AN | LN | LN | AN [LN LN | LN | AN | AN | LN | BN | N | EIN THgHHy
JIN | LN | LN | LN | AN | OAIN | LN | AN [AN AN AN | AN | AN | AN | LN | GIN | eI HHg1Hy
LN | LN | LN | LN | AN AN | LN | AN AN AN | AN | AN | AN | BN | BN | GIN | eI HHg HHY
410 | 91a | ST | ¥IA | €10 | 2IA | TIA | 0TA | 6d | 84 | 2d | 94 | ¢d | ¥A | €A | 2d | TA | g0 tonmot

o7

anbrutoa) SUI[ea-J[os [RUIDIUT ‘UOTINJLIISIP NdUl UWLIOJIUN © PUR BT I0] suoryenguod tordrnu rewrjdo ojared

PIN | @GN | @N | PIN | @GN | GIN | GIN TTigTly
TIN | PIN | N | #IN | GIN | GIN | N HTgTTy
PIN | PIN | @N | @IN | GIN | GIN | GIN Tig HTy
CIN | ¢IN | 2N | €N | N | SN | CIN HTg HTy
PIN | PIN | @N | PIN | PIN | PIN | GIN THgTTy
CIN | TIN | PIN | PN | PN | PN | CIN HHgTTy
€N | PIN | PIN | GIN | GIN | PN | N THg HTy
JIN | €N | EIN | €N | €N | SN | GIN HHgHTy
PN | PIN | PIN | PIN | PN | QN | GIN TigTHy
PN | PIN | PIN | PN | PN | GIN | GIN HTgTHy
GIN | ¢IN | ¢IN | ¢IN | SN | ¢IN | CIN TigHHy
CIN | €IN | €N | €N | €N | QN | N HTg HHy
JIN | LJIN | LN | SN | N | PN | TN THg THy
CIN | ¢IN | 2N | 8N | GIN | PIN | CIN THg HHY
CIN | EIN | €N | €N | €N | TN | CIN HHgTHy
LN | LN | LN | LN | AN | EIN | TN HHg HHYy

ﬁoﬂmoOQ
L0 |90 | S | VA | €A | 2d | TA | 50

98

onbruoe} SUIeay-J[os [eUIUI ‘UOTINGLIISIP JNdUI [eULIOU © PUR IR I0] suoljem3guod rdrmnu rewrdo ojoreJ

LN | LN | PIN | @N | GIN | PIN | PN | GIN | GIN | @N | GIN TTigTly
CIN | PIN | PN | TIN | TIN | PIN | PIN | @GN | GIN | GIN | GIN HlgTly
€N | PIN | TIN | gIN | @N | WIN | GIN | @N | GIN | SN | eIN Tig HTy
JIN | €N | €N | @GN | @IN | @IN | QN | GIN | GIN | QN | N HIgHTy
EIN | EIN | EIN | PIN | PIN | GIN | GIN | @N | GIN | GIN | EIN THgTTy
€N | SN | @GN | ¢IN | @IN | GIN | PIN | GIN | @IN | N | GIN HHg Ty
€N | SN | 2N | GIN | €IN | GIN | N | GIN | ¢IN | 2N | CIN THg HTy
CIN | €N | €N | ¢IN | @IN | PIN | PIN | QN | @GN | N | SN HHgHTy
GIN | GIN | @GN | N | N | PIN | PIN | GIN | GIN | N | GIN Tig1idy
CIN | €N | €N | AN | PIN | €N | €N | GIN | GIN | N | SN HIg1Hy
GIN | €N | €N | N | GIN | oIN | PIN | GIN | GIN | N | GIN T1g HHYy
€N | SN | @IN | N | GIN | GIN | GIN | GIN | ¢IN | N | SN HlgHHy
JN | LN | LN | EIN | EIN | EIN | €N | EIN | EIN | €N | TIN THg THy
CIN | QN | GIN | LN | ZIN | LN | €N | €N | 2N | BN | GIN THg HHY
€N | €N | €N | €N | €N | €N | €N | EIN | €N | N | GIN HHg1Hy
LN | LN | LN | @IN | GIN | GIN | PN | PIN | GIN | @IN | GIN HHg HHYy

QOE@UOQ
ITd | 0Td | 6d | 8 | LA | 94 | 9 | ¥A | €4 | 2A | TA | (g5

99

onbrute) Jurest-J[os [RUISUI ‘UoTINqLIISTp ndur uniojiun e pue Iomod I0J suorjeindyuod mordiymu rewrido ojoreJ

PIN | TIN | N | GIN | GIN | @GN | @N | @IN | gIN | G TTigTly
FIN | ¥IN | @IN | ¢IN | ¢IN | N | GIN | GIN | GIN | 2N HTgTTy
TIN | TIN | @GN | @GN | 2N | @IN | gIN | GIN | GIN | N Tig HTy
€N | €N | TIN | GIN | €N | @IN | @IN | QN | SN | I HIgHTy
€N | €N | GIN | GIN | GIN | @GN | N | GIN | GIN | G THgTTy
GIN | ZIN | @IN | 2N | N | CIN | GIN | GIN | GIN | 2N HHgTTy
GIN | oIN | ZIN | LN | GIN | @GN | N | GIN | GIN | G THg HTy
JIN | LN | LN | LN | €N | EIN | N | GIN | GIN | GIN HHgHTy
GIN | ¢IN | ¢IN | N | N | ¢IN | ¢IN | GIN | GIN | N TigTHy
CIN | QN | QN | 2N | SN | GIN | GIN | GIN | N | 2N HTgTHy
GIN | ¢IN | ¢IN | N | N | ¢IN | GIN | GIN | GIN | N TigHHy
EIN | €N | €N | €N | €N | €IN | €IN | GIN | SN | GIN HlgHHy
JN | LN | AN | LN | SN | @IN | GIN | SN | 2N | TN THg THy
CIN | QN | @IN | 2N | QN | SN | GIN | GIN | N | 2N THg HHY
EIN | SN | EIN | EIN | €N | €N | €N | €N | GIN | N HHgTHy
LN | 2N | AN LN | AN | AN | LN | AN | LN | BN HHg HHYy

ﬁoﬂmoOQ
OId | 64 | 8 | 20 | 94 | S | ¥A | €A | 2 | TA | (g9

60

onbrute) Jurest-J[os [RUISUI ‘UoTINqLIISTp ndur uniojiun e pue Iomod I0J suorjeindyuod mordiymu rewrido ojoreJ

LN | LN | N | @GN | GIN | @GN | N | N | gIN | GIN | GIN | GIN | N | SN TTg 1Ty
CIN | GIN | TIN | TIN | TIN | TIN | TIN | @N | QN | GIN | GIN | @GN | N | SN HlgTly
CIN | €N | €N | €N | GIN | @N | N | gIN | gIN | GIN | GIN | GIN | N | GIN TTgHTy
JIN | AN | TIN | TIN | @IN | GIN | GIN | @GN | @IN | GIN | GIN | GIN | QN | N HIgHTy
¢N | N | BN | PIN | PIN | TIN | PIN | €N | GIN | GIN | GIN | GIN | N | GIN THgTTy
CIN | €N | PIN | @IN | GIN | @IN | GIN | PIN | QN | GIN | QN | GIN | N | TN HHg Ty
JIN | SN | AN | LN | SN | AN | AN | EIN | €N | €N | EIN | GIN | TN | N THg HTy
JN | GIN | LN | €N | @IN | €N | €N | GIN | N | GIN | SN | GIN | GIN | N HHgHTy
CIN | €N | PIN | N | GIN | TIN | N | gIN | €N | GIN | GIN | GIN | N | GIN Tig1idy
JN | GIN | EIN | €N | AN | €N | GIN | EIN | QN | €N | GIN | GIN | QN | N HIg1Hy
€N | GIN | N | PIN | PIN | PIN | @N | @IN | GIN | GIN | GIN | GIN | N | GIN T1g HHYy
JN | €N | LN | GIN | €N | GIN | €N | @IN | €IN | GIN | GIN | GIN | GIN | ¢IN HlgHHy
LJIN | LN | SN | €N | SN | EIN | €N | €N | €N | €N | EIN | €N | €N | SN THg THy
CIN | GIN | TN | @IN | GIN | @IN | ¢N | TN | GIN | GIN | GIN | ¢IN | N | SN THgHHy
EIN | €N | €N | €N | €N | EIN | EIN | €N | EIN | EIN | EIN | EIN | N | GIN HHg1Hy
JIN | LN | @GN | BN | N | GIN | GIN | N | @IN | @IN | GIN | GIN | GIN | N HHg HHY
vId | €1d | 21d | 1T | 0Td | 6d | 8A | LA | 94 | 9 | ¥ | €A | 2A | TA | 50 tonmot

61

G Increasing Approximation Multiplier Config-
urations

62

onbruyoey Juresy-Jos [ewIojul 10j uoreInsguod Irdimu uoneuwrxordde Sursearouy

LIN | LN | LN | 2N | AN | 2N | LN TTigTly
LJIN | N | GIN | GIN | GIN | GIN | 2N HTgTTy
LN | €N | 8N | €N | €N | EIN | EIN Tig HTy
JIN | LN | @GN | @IN | GIN | GIN | GIN HTg HTy
LN | LN | €N | €N | €N | EIN | EIN THgTTy
JIN | LN | LN | @IN | GIN | TN | GIN HHg Ty
JIN | LN | LN | €N | €N | EIN | EIN THg HTy
LN | LN | LN | LN | AN | LN | LN HHgHTy
LN AN | AN | AN | AN | LN | LN Tig1idy
LN | LN | LN | LN | GIN | TN | GIN HTg THY
JIN | LN | LN | LN | EIN | EIN | EIN TigHHy
LN | LN | LN | LN | AN | TN | GIN HTg HHy
JIN | LN | LN | LN | AN | BN | EIN THg THy
LN | LN | LN | LN | AN | LN | TN THe HHYy
JIN | LN | LN AN | AN | LN | EIN HHgTHy
LN | LN | LN | LN | AN | LN | LN HHg HHYy

ﬁoﬂmoOQ
L0 |90 | S | VA | €A | 2d | TA | 50

63

onbruye} Surres-J[os JolIru 10j uoljeInsyuod rdimu uorjyeurrxoidde Sursearouy

LN | N | eIN | GIN | @GN | @GN | GIN | @N | GIN | GIN | @IN | @IN | GIN | GIN | GIN | GIN | N TTg 1Ty
JN | LJIN | @GN | GIN | GIN | @GN | GIN | @IN | GIN | GIN | @GN | @IN | GIN | GIN | GIN | GIN | N HlgTly
JN | JN | LN | TN | BN | @GN | GIN | @IN | GIN | GIN | @IN | @IN | GIN | GIN | GIN | GIN | N TTgHTy
JIN | LN | LN | LN | SN | EIN | EIN | SN | €N | EIN | EIN | €N | €N | EIN | EIN | EIN | EIN HIgHTy
JN | LN | LN | LN | AN | EN | GIN | BN | GIN | GIN | N | @GN | GIN | GIN | GIN | GIN | N THgTTy
JN | LN | LN | LN | AN | LN | LN | BN | GIN | GIN | @IN | @IN | GIN | SN | GIN | N | N HHg Ty
JN | LN | LN | LN | AN | LN | LN | AN | GIN | GIN | @IN | @IN | BN | GIN | GIN | GIN | N THg HTy
LN | LN | LN | LN | AN | LN | LN | AN [LN | LN | LN | €N | €N | €N | €N | EIN | EIN HHgHTy
JN | LN | LN | LN | AN | LN | N | BN | GIN | GIN | @IN | @IN | GIN | GIN | GIN | GIN | N Tig1idy
LN | LN | LN | LN | AN | LN | LN | AN | LN | GIN | @GN | @IN | GIN | SN | GIN | QN | N HIg1Hy
JN | LN | LN | LN | AN | AN | LN | AN [LN | AN | @IN | GIN | BN | BN | GIN | N | N TTg HHYy
LN | LN | LN | LN | AN | LN | LN | AN [LN | AN | LN | AN | €N | EIN | EIN | EIN | EIN HlgHHy
LN | AN | AN | LN | AN | LN | AN | AN AN AN AN LN LN | BN | QN | SN | g THg THy
LN | LN | LN | LN | AN | LN | LN | AN [LN LN | LN | AN | AN | LN | BN | N | EIN THgHHy
JIN | LN | LN | LN | AN | OAIN | LN | AN [AN AN AN | AN | AN | AN | LN | GIN | eI HHg1Hy
LN | LN | LN | LN | AN | AN | LN | AN AN | AN | AN | AN | AN LN | AN | LN | EIN HHg HHY
LTd | 9TA | ST | P1IA | €1 | 21A | 11 | 0TI | 6d |84 | 2 |90 | S | ¥ | €d | 2d | 1A tonmot

uSIso(]

64

Quality Evaluation Results

6 Uriform ditibuion
fl
& Conventona Paeto Optingl
el S Paco Opiml
it ~+liror SH Parelo Ol
I
2
102 [
it | | | | | | |
N il il il il 2 N M Bl
Hrea L)
Norma distiufion
if
< onventonal Paeto ptingl
~Higmal H Paeto Oing
~+firor $HPaelo Optina
I
2
it | | | | | | |
N il il il il 2 il il M

Hrea L)

65

Uniform lisibution

MPE (=5)
=

| | | |
& Comeniore Paelo Opigl

Hriemal H Py Optine
+llior H

Hiea LG)
Normal distibution

MPE (=)

< onventonal Paeto pting
Higmal HPaeto ting
-+ iror H Paelo Ol

il l il il 2 il il il
Hrea L)

66

Uniform lisibution

" | | | |
< onventonal Paeto ptingl
~Higmal H Paeto Oing
- ~+firor $HPaelo Optina
Il
0
2
105 |
i \ \ \ \ \ \ \
N il il il i) 2 il M M
Hrea L)
Normal distiufion
1010
& Conventond Paeo Optinal
il S Pao Opiml
-+ iror S Paelo Ol
I
i
it | | | | | | |
N il il il il 2 il W Bl

Hrea L)

67

Uniform lisibution

i | | |
< onventonal Paeto ptingl
~Higmal H Paeto Oing
it ~+firor $HPaelo Optina
I
2
1 02 .
i \ \ \ \ \
12 13 1% 14 14 1) 15
Porer (i)
Normal distiufion
if |
& Conventond Paeo Optinal
Higmal HPaeto ting
-+ iror S Paelo Ol
I
2
it | | | | |
129 13 1% 14 14 15 15

68

Uniform lisibution

MPE (2a)

& Comeniore Paelo Opigl
Hriemal H Py Optine
~+liror K Parelo Ol

13 13 14 14 {5 15
Porer (i)
Normal distrbution

MPE (S5)
=

< onventonal Paeto pting
Higmal HPaeto ting
-+ iror S Paelo Ol

125

69

Uniform lisibution

" | | |
< onventonal Paeto ptingl
~Higmal H Paeto Oing
- ~+firor $HPaelo Optina
Il
0
2
105 |
i \ \ \ \ \
12 13 1% 14 14 1) 15
Porer (i)
Normal distiufion
ik |
& Conventond Paeo Optinal
il S Pao Opiml
-+ iror S Paelo Ol
I
i
it | | | | |
129 13 1% 14 14 15 15

70

	Voorkant_bacheloropdracht(3)
	Bacheloropdracht (35)
	Introduction
	Background
	Approximate Multipliers
	Multiply Accumulate Circuits
	Self-Healing Techniques
	Internal Self-Healing
	Mirror Self-Healing

	Error Analysis

	Method
	Multiplier Creation
	Overflow in the multiplier
	Design Space Exploration
	Cost Analysis using Quartus
	Area Calculation
	Power Analysis

	MATLAB Model
	Error Analysis
	Input Creation

	Model Verification

	Results
	Area and power of 22 multipliers
	Error Analysis of Self-Healing Configurations

	Conclusion
	Discussion
	Future Work
	Appendices
	Multiplier Circuits and Truth Tables
	VHDL Code
	MAC Using 2 8-bit Multipliers
	8-bit multiplier
	4-bit multiplier
	Approximate Multipliers

	RTL View
	MAC Using 2 8-bit Multipliers
	8-bit Multiplier
	4-bit Multiplier

	MATLAB Code
	Main
	EvaluateConfig
	CalculateArea
	CalculatePower
	EvaluateMult
	CreateInputs
	MirrorMAC
	ConventionalMAC

	Quartus Power Results
	Pareto Optimal Multiplier Configurations
	Increasing Approximation Multiplier Configurations
	Quality Evaluation Results

