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Abstract 
This report was written in accordance with the graduation project “The potential of  synthetic 

training data for training deep learning models”. As the title suggests, this report will look into 

the potential of  synthetic training for training deep learning models. First, an overview will be 

given regarding the problems for training deep learning models such as data scarcity and the 

proposed solution, which is to train deep learning models on simulated data. In the state of  

the art, the current methods of  data simulation will be given and based on these current 

methods, the correct method for the problem at hand will be chosen. The ideation chapter 

will describe the work process in advance to the ideation and realisation of  the project. 

During the ideation phase, the two different types of  simulations will be presented as well as 

the motivation on why these types of  simulations were chosen. The first objective is to 

simulate pictures of  smoke as a result of  forest fires. This is a type of  data that is lacking in 

sources and thus is a scarce data type. Also, the detection of  smoke as a result of  forest fires 

can have a lot of  potential for limiting and preventing natural disasters. By the use of  

synthetic data, the training dataset becomes larger. It is expected that this will also improve 

the accuracy of  the model. When trained on synthetic data, the model was able to reach a 

validation accuracy of  1.0. which is very promising and shows that synthetic data can be used 

for smoke detection.  

After the smoke vs forest scenario, a different scenario was tried out. Namely, the use of  

simulated data for training houses from satellite images. Unfortunately, the results of  the 

houses scenario were not as promising as they were with the smoke vs forest scenario. This 

could be because of  the limitations of  the model that was used or because the simulated data 

was not designed properly to train a deep neural network. 

In conclusion, this report proves that synthetic data has potential when training deep neural 

networks. It also shows that no scenario is the same and that each scenario requires a different 

approach. In some cases, it might be nearly impossible as is shown by the houses scenario.  
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1. Introduction 
  

1.1 Problem description 
Deep learning is a form of  artificial intelligence loosely inspired by the anatomy of  the 

biological brain. Over the last several years, deep learning has shown many promising results 

with its techniques being applied to different fields such as speech recognition and computer 

vision. In order to properly train a deep learning neural network (from here on referred to as 

a deep learning model or model for short) data is needed. The data is used to train the model 

to make predictions about data the model has not seen before.  

One of  the problems faced in the field of  deep learning is the shortage of  data for training 

deep learning models. When performing a simple task like the distinguishing of  MNIST 

digits, a small dataset will still give a sufficient outcome (Cireşan et al 2012). However, if  the 

task becomes more complex like distinguishing real-world objects, data shortage becomes a 

problem (Krizhevsky et al 2012). This report will deal with cases in which data sources are 

scarce and thus the simulation of  data becomes a viable option. This shortage is a problem 

since the accuracy of  a model is highly dependent on the size of  the dataset when working 

with self-learning artificial intelligence. A recent study in which models were trained using 

data sets with sizes of  5, 10, 20, 50, 100 and 200 images show that a low dataset negatively 

affects the accuracy of  the model and that the accuracy starts improving once the dataset size 

is increased (Cho et al 2015). Different fields of  study are faced with a shortage of  data. This 

prevents researchers from obtaining conclusive results, as is the case with Too et al (2018) in 

which the deep learning model was unable to properly distinguish plant diseases due to a 

shortage in available data. One field especially that suffers from this data shortage is the 

medical field (Fakoor et al 2014). This shortage is mainly due to ethical, legal and social issues 

(Cios & Moore 2002). By solving or at least reducing the problems of  data scarcity in certain 

fields that face data shortage, a huge door of  potential is opened that previously was 

unreachable. 

Another problem that should be noted is the labor intensity of  labelling the data that is 

needed to train deep neural networks. The labelling has to be done by humans and is a very 

tedious and a monogamous job to do. Currently, a Chinese firm called Beijing-based Mada 

Code employs 10,000 freelancers working on minimum wage, labelling data for organisations 
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such as Microsoft and Carnegie Mellon University (Dai 2018). Making one wonder whether 

data labelling will be the blue-collar job of  the future.. 

1.2 Proposed solution 

A solution to the problems described in the previous section is to use synthetic training data 

when training a deep learning neural network. By using synthetic data, both the problem of  

data shortage and the labor intensity is reduced.  

Firstly, the problem of  data shortage will be eradicated since the data available through 

synthetic data is theoretically infinite. As mentioned before, a shortage of  data results in a 

lower validation accuracy. By having a dataset that is theoretically infinite, the researcher is 

able to simulate a dataset as large as they need it to be. By doing so the validation accuracy 

will improve when the low validation accuracy was the result of  a short dataset.  

Secondly, when data is synthesised, it is automatically labeled as well. Reducing the costs as 

opposed to when data is labeled by humans, while also giving these humans the opportunity 

to persuade more fulfilling careers. Different studies on the use of  synthetic data have already 

been done, showing promising results (Douarre et al 2016),  (Rahnemoonfar & Sheppard, 

2017), (Odengaard et al 2016). 

1.3 Project description 

During the course of  this project, a set of  different tasks will be presented to test the 

effectiveness of  the model with the classification of  images. Firstly the project deals with a 

relatively easy problem. namely the classification of  images that either contains smoke or 

don’t contain smoke. The dataset consists of  a collection of  images taken by drones, 

helicopters, airplanes, etc taken from a top-down perspective. The dataset is divided into two 

classes. The first class consists of  pictures of  forests without any smoke. The second class 

consists of  pictures of  forests or urban areas that do contain smoke. Depending on the results 

and the process of  the project, more complicated cases will be examined afterward.  

The model will be trained using both real and simulated data during the training phase and 

tested on real data during the testing phase. Also, a hybrid approach will be examined during 

the training phase in which both real and simulated data is used to train the model. 
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Afterward, the performance of  these three approaches will be compared to determine 

whether simulated training data might be beneficial for classifying the type of  images it was 

trained on. 
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1.4 Research question 

This paper is written in regard to the 2018 graduation project “The potential of  synthetic 

training data for training deep learning models”. As the title suggests, the goal of  this project 

is to examine the possibilities of  using simulated data when training deep learning models 

with the focus on computer vision (The ability of  a computer to observe and interpret the real 

world by the use of  visual stimuli such as foto and video). To do this, every aspect of  the use 

of  simulated data has to be examined with regard to the potentials, constraints, reliability and 

different methods. This is done by answering the following sub-questions: 

1.    “What is the potential of  synthetic data when training deep neural networks?” 

2.    “What are the constraints of  synthetic data when training deep neural networks?” 

3.    “Is synthetic data reliable enough to replace real data when training deep neural 

networks? if  yes, in which cases and problem types?” 

The research question is constructed by encompassing all these sub-questions into one 

research question. The research question is thus formulated as follows:  

“What are the capabilities of  synthetic data when training deep neural networks?”  

When all the sub-questions are answered, a conclusive answer to the research question can be 

formulated.  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2.  Background Research 
2.1 State of  the art 
There are different types of  neural networks, each with their own distinct advantages and 

disadvantages. When testing the potential of  simulated data in machine learning, the right 

type of  model has to be selected that is in accordance to the given problem. In the case of  this 

project, the goal is to distinguish images belonging to two classes; smoke vs none-smoke, 

melanoma vs mole, etc. The client of  this project advised to experiment with the capabilities 

of  two different types of  neural networks; shallow neural networks and (deep) convolutional 

neural networks. The difference between shallow neural networks and deep neural networks 

are distinguished by the depth of  their credit assignment paths, which are chains of  possibly 

learnable, causal links between actions and effects (Schmidhuber 2015). Deep learning models 

generally have more depth than shallow models, producing more precise and reliable 

outcomes. When working with simple tasks, shallow neural networks can be sufficient enough 

at performing the task. When working with more complex tasks, deep neural networks are 

best suited (Mhaskar et al 2017). The experiments in this report focus on distinguishing real 

world pictures. Thus, it is assumed that the use of  deep neural networks will be more suitable 

to the tasks presented in this report.  In order to test the validity of  this claim, two cases will 

be presented in this project. One in which a shallow neural network is used and another one 

in which a deep neural network is used. 

Different research on the use of  simulated data has already been done, yielding positive 

results. In one study the deep learning neural network was successfully able to count the 

number of  tomatoes in different photos by learning from foto’s that contained simulated 

tomatoes (Rahnemoonfar & Sheppard, 2017). In another study, the model was able to detect 

melanoma’s by the use of  simulated pictures with a validation accuracy of  0.775, Slightly 

surpassing the validation accuracy of  the real dataset by 0.6% (Kamilaris 2017).  

There are different methods of  simulating data when it comes to deep learning models see 

table 1 for an overview of  the different methods with their corresponding advantages and 

disadvantages. The first approach is to simulate the entirety of  the image as done in a 2017 

study, in which the model was trained using images of  simulated Captcha texts to later be able 

to break real Captcha’s used by Facebook and Wikipedia (Le et al 2017). This method is most 

likely the best approach when working with images that can easily be simulated and can exist 

outside the real-world space such as the simulation of  texts, basic shapes, colors, etc. A second 
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approach is to simulate the objects that are of  importance to the given task, and adding these 

objects to real images or manipulating the real image based on the simulated object as is done 

by Douarre et al (2016) in which the model was successfully able to detect roots from soil by 

using training data of  simulated roots added to real images of  soil coming from X-ray 

tomography. This approach might be best suited to situations in which the object of  

importance is easily simulated, but must exist in a real-world environment which is harder to 

simulate. A third approach is to first simulate the general features of  an object and later 

refining the object using real images as is done in a 2017 experiment in which the human eye 

was first simulated and later refined using real images of  the human eye (Shrivastava et al 

2017). This method might be most beneficial when working with tasks in which details that 

can’t easily be simulated are of  great importance to the classification of  the image. A fourth 

approach is to exploit the power of  deep learning to create new data sets by the use of  

generative models. generative models distinguish themselves from discriminative models by 

their ability to use deep learning to generate new data while discriminative models deal with 

prediction and classification of  data (Goodfellow et al 2014). Currently, generative models can 

create simulated images that are, when assessed by human evaluators, mistaken for real 

images around 40% of  the time (Denton 2015). This approach might be beneficial in the 

future when generative models are able to create more realistic simulations. Although not 

being a simulation technique, a fifth approach is to enlarge the dataset by using augmentation 

techniques (Krizhevsky et al 2012). augmentation deals with the manipulation of  real images 

through, for example, rotation, scaling, transposing, cropping, etc and can enlarge the dataset 

by as much as 4 or 5 times. But since the enlarged dataset is based on images initially in the 

dataset, there is a boundary to the learning capability of  the model (Kamilaris 2017). A sixth 

approach which can be seen as more of  an addition to the previously mentioned approaches 

is to use a hybrid dataset consisting of  both simulated and real data (Bousmalis et al 2018). 

This report deals with the classification of  objects that exist within a real-world space. The 

objects themselves are relatively easy to simulate. For this reason, the second approach is 

chosen in which the object is first being simulated and later placed in a real world image. In 

order to further enlarge the dataset the fifth and sixth approach is used in combination with 

the second approach. To summarise; the datasets consists of  both simulated and real images. 

The simulated images are made by adding the object of  importance to a real image. To 

further enhance the size of  the datasets, the training images will be manipulated through the 

use of  augmentation. In this chapter, a variety of  current methods and future possibilities of  
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the use of  simulated data in deep learning were presented. This field of  research is still very 

primitive and its applications are still scarce. The goal of  this research is to find some new 

method of  simulation, in a field that has not been done before, that will improve the general 

understanding of  using simulated data for training deep learning models. Most examples 

shown in this chapter are problems that exist in a relatively small space, visually speaking. Like 

the counting of  tomatoes or the detection of  melanomas. Also, none of  the problems deal 

with situations of  immediate danger. The detection of  big clouds of  smoke is within a larger 

space so it’s findings might be beneficial to other research that has to work with large objects 

as well. Also, the detection of  smoke deals with situations of  immediate danger. Using 

artificial intelligence in these situations could be highly beneficial to the people involved. the 

camera’s could be placed in different parts of  the forest, all connected to a single computer 

that uses deep learning to detect smoke and warns the people involved before the situation 

gets dire. 

Table 1: Overview of  simulation methods
Current research Advantages Disadvantages

Simulate Entire Image (Le et al 2017),  

(Rahnemoonfar & 
Sheppard, 2017) 

(Kamilaris 2017) 

(Jaderberg 2014)

- More control, every 
part of  the simulation is 
determined by the 
researcher

- Harder to apply to tasks 
were the object of  
importance exists within 
the real world space.

Place simulated object in 
real picture

(Douarre et al 2016) 

(Odengaard et al 2016)

- Only the object of  
importance is simulated 
reducing the effort taken 
in also simulating the 
background.

- Still dependent on real 
data

Refine simulation by real 
image

(Shrivastava et al 2017) - Can create very realist 
images

- Still dependent on real 
data

Create simulation using 
deep learning

(Denton 2015) 

(Reed et al 2016)

- Can create very realistic 
images.

- Complex field of  and 
uses a lot of  computer 
power.

Augmentation (Krizhevsky et al 2012) 

(Kamilaris 2017)

- Easily enlarges dataset 
without complex 
algorithms.

- Boundary due to 
learning capabilities since 
new data is based on 
existing data in the 
dataset.

Hybrid (Kamilaris 2017) - Can be applied to the 
previous mentioned 
simulation techniques 

- Still dependent on real 
data

!11



3. Ideation  
This chapter will focus on the ideation phase of  the project. The goal of  the ideation phase is 

to acquire the relevant information related to a certain problem and to use this information to 

create something novel that is useful to the client. Rather than user interaction, the focus of  

this project lies on proving or disproving a hypothesis. To do so, the right software has to be 

created that can properly perform the experiments needed for the research as well as showing 

the output of  the experiments. To achieve this, the following research question is formulated: 

“What are the proper requirements for a set of  programs that can simulate images and test the validity of  these 

simulations when they are used to train deep neural networks to make predictions about real data?” 

3.1. Client background and needs 
This project was made together with Andreas Kamilaris. The goal of  the end product should 

be evaluated with him and focus on his needs. Dr. Kamilaris is a researcher based in the 

University of  Twente originally from Cyprus. Dr. Kamilaris has previously worked on the 

Internet of  Things and Smart Buildings and is currently doing research in Big Data. Dr. 

Andreas has seen that data shortage can often be a problem when training neural networks. A 

solution he proposes is too use simulated data instead of  real data. In order to test the validity 

of  simulated training data, he proposed the project “simulated data in neural networks”. At 

the first meeting, the desired conduction of  the research was discussed. He proposed to start 

with a scenario that is simple to implement and do more complicated tasks with there was 

extra time. During the first quartile of  the project, the goal was to simulate smoke as a result 

of  forest fires. The simulation of  smoke is relatively simple since it is clearly distinguishable 

from things that are not smoke and since smoke does not have many complex features.  

3.2. Ideation with the client 
During the course of  this project, the ideas and requirements were discussed with the client. 

meetings were scheduled each week when possible to discuss the progress that was made so 

far and come up with future ideas. The first proposal was to start with a scenario that is 

simple to implement and do more complicated tasks with there was extra time. During the 

first quartile of  the project, the goal was to simulate smoke as a result of  forest fires. The 

simulation of  smoke is relatively simple since it is clearly distinguishable from things that are 
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not smoke and since smoke does not have many complex features. Also, the classification of  

smoke can be useful in preventing future disasters. By embedding camera’s in large forests 

and assessing the imagery with the imagined deep neural network, smoke can be detected at 

an early stage of  a forest fire and be dealt with at an early stage. By choosing smoke detection, 

not only an academic requirement is met but also a real-world requirement in which it can be 

directly beneficial to the people involved. If  the smoke idea was realised in a short amount of  

time and extra time was available, a more complex scenario would be dealt with. The client 

proposed to work with a counting problem. Using deep neural networks for counting can be 

especially beneficial in cases where the counting has to be done over a large dataset. Having 

the counting be done by humans in such cases can be very time-consuming and prone to 

errors, not to mention it is a very mundane and unfulfilling task. After discussing with the 

client, it was agreed that a counting neural network has to be made that can count the 

number of  houses from a satellite image. Houses, as seen from a satellite perspective, are 

relatively objects of  low complexity. usually, a simple rectangle object will be enough to 

properly represent a house as seen from a satellite perspective. Also, the edges of  the house 

make it easily detectable by a neural network since it is so distinctly different from its 

background. The counting of  houses also satisfies a real life need in cases of  urban planning, 

for instance in slums in underdeveloped countries. 

3.3. Tinkering Phase 
Tinkering can be a useful approach to come to a final product and become familiar with the 

technologies to do so. Before starting with the simulations and test relating to the final 

product. Dr. Kamilaris proposed to first tinker around with Python and the different Python 

libraries as well as getting familiar with the Keras environment. A big part of  designing the 

product was to install every Python library and the Keras environment correctly and make 

them compatible with each other. After this was successfully done the goal was to get familiar 

with each library and the Keras environment. This was done by starting with trying small and 

simple things and by working up from there. When getting familiar with the Pillow library (a 

Python library that allows the user to draw shapes and manipulate images using Python 

code), the first goal was to create simple shapes. When successfully creating simple shapes the 

next step was to manipulate these shapes by transformation, colour manipulation, distortion 

and finally to implement these shapes into other existing images. This tinkering later became 

useful when creating the simulations that were used as training data since it minimised the 
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time spent on learning the basics of  image manipulation and creation. In order to successfully 

test the validity of  the simulated images when training deep neural networks, one has to 

become familiar with some form of  machine learning environment. For this project, the 

Keras environment was used. Keras is an open source neural network library writing with the 

Python programming langue. Information about Keras and how to use it was gathered from 

different sources found online ranging from video tutorials, articles and scientific papers. By 

using these sources of  information, small applications were made that helped in gaining 

knowledge that was used to create the final product. One example in particular that helped a 

lot in gaining new knowledge was a tutorial on the development of  an MNIST-digit predictor. 

The goal was to write a program using Keras that can successfully predict handwritten digits 

taken from the MNIST dataset. In the end, a program was written that was able to predict 

handwritten digits with a validation accuracy of  98%. The tutorial itself  only focused in 

achieving a high validation accuracy but did not explain how to display the images together 

with the predicted output also it was only tested on images from the MNIST dataset and did 

not allow the user to create their own handwritten digit and feed it to the model to be tested. 

This was something that would be useful later on in the project when working with the 

simulated data. So the original program was modified to also implement this feature. 

Experimenting in Keras and following different tutorials and explanations has helped a lot in 

acquiring new skills relating to Keras such as preparing data, designing a deep neural model 

and fitting the data to the model. By trying out new things in an improvised informal fashion, 

a lot of  knowledge and skill was acquired in regards to simulating images and deep learning 

that sped up the process during the realisation phase. 
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3.4. Requirements 
Based on the clients needs the following requirements are set out for the the project. 

1. A program has to be written to simulate images. 

1.1. The images made using the program have to be of  a certain level or realism in order 

to successfully use the images when training deep neural networks. 

1.2. The program has to be written in Python and make use of  some type of  image 

creation/manipulation library. 

1.3. The code has to be useable for other researchers, use clear semantics and stick to one 

type of  coding convention. 

1.4. The program does not require a user interface; it is assumed that the user is familiar 

with Python. 

1.5. The program must be able to create multiple images with an amount specified by the 

user. 

1.6. The program must be able to save these images to a specified folder on the users 

computer 

2. The type of  image has to be in an application domain where it has not been used before.  

3. The type of  image that is simulated has to be identifiable by itself. 

4. The type of  image that is simulated also has to be useful outside of  the scope of  artificial 

intelligence itself. For instance, relating to the environment, disaster prevention, 

agriculture etc. 

5. A deep neural network has to be created that can be trained on the simulated data and 

also validated on real data.  

5.1. The neural network must be able to successfully learn from simulated data. 

5.2. The neural network must be made using some deep learning environment 

5.3. The neural network must be able to detect false positives and true positives and 

display them to the user. 

5.4. The neural network must allow the user to input new data and make accurate 

predictions about this data. 
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3.5. Conclusion 
As described in this chapter two programs have to be made. The first program is used to 

make simulations. The second program uses these simulated images to make predictions 

about real data. For the sake of  consistency, both programs have to be made using Python. 

Since the final result from the project is aimed at researchers, no user interface is needed. 

Instead they are provided with the code. However, as goes without saying the code must be 

properly structured and stay to the same coding confessions. Unlike many other Creative 

Technology thesis's, this project does not focus on the the user interface. Instead the goal is to 

scientifically prove or disprove a hypothesis. By sticking to the requirements presented in this 

chapter, the right code is created to do so.  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4. Realisation 
This chapter describes the realisation phase of  the the project. Each section focuses on a 

specific problem during the realisation phase and how this problem was solved. the conclusion 

can be found in the end of  this chapter. The introduction provides a short overview of  the 

overall process of  the project. The conclusion describes how the requirements as shown in the 

ideation chapter are met.  

4.1. overview 
The goal of  the research is to determine whether the use of  simulated data as training data in 

deep neural networks is a reliable training method when working with image classification. To 

test its validity, the model was trained on real data as well as on simulated data. After the tests 

were performed, the validation accuracy when using real data is compared to the validation 

accuracy when using simulated data. At the beginning of  the project, the aim was to create a 

simple scenario to test the validity of  the use of  simulated data. In order to create a simple 

scenario for image classification, the object in the images has to meet a few requirements. 

Firstly, the object has to be of  a complexity that is low enough to be simulated using computer 

software. For instance, creating simulations of  different breeds of  dogs is a more difficult task 

than creating simulations of  different types of  fruit since the number of  features is less in the 

second case. Secondly, the object has to be of  a type that is easily detectable by a deep neural 

network. In order to meet these requirements, the first goal of  the project was to simulate 

smoke as a result from large fires and test its validity as data source for deep neural networks. 

Smoke was chosen because it is easily simulated using computer software, also it has a distinct 

colour and shape that is easy to distinguish from its background. The simulations of  smoke 

were made using the Pillow and the Perlin Noise libraries in python. After the simulations of  

smoke were made, they had to be used to train a deep neural network. In order to test the 

validity of  the simulated data, the validation accuracy as a result of  the use of  simulated data 

had to be compared to that of  the use of  real data. Finally, a hybrid approach was also used 

which combines both real and simulated data in it’s learning process. 

Also to achieve the highest validation accuracy possible, two different types of  deep neural 

networks were used. One shallow neural network that consists of  a small number of  hidden 

layers and one pre-trained neural network. The pre-trained neural network used in this 

project is called ‘Inception V3’. This network was chosen since it can produce a very high 
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accuracy with very little computational power. It is one of  the best pre-trained deep neural 

networks as of  today. 

When trying to train the models on a computer locally it quickly became apparent that the 

computer power was not sufficient enough for training these types of  deep neural network. 

Instead of  a local computer, a cloud computing service that possesses more computer power 

called Linode was used. 

Applying the three different training types and the two different types of  deep neural 

networks, six tests were run. After the tests were run it became apparent that the shallow 

model outperformed the pre-trained model. with a validation accuracy of  0.8, 0.9 and 0.9 for 

the simulated data, real data and hybrid data respectively. Here it seemed that although not 

perfect the use of  real data was still superior to the use of  simulated data. In order to improve 

the validation accuracy of  the shallow model, two dropout layers were added. By adding the 

dropout layers, the validation accuracy for both the real, simulated and hybrid approach 

improved to a value of  1.0. meaning a perfect validation accuracy for each of  the approaches. 

4.2. Creating proper simulations of  smoke 

The first goal was to create simulations of  smoke in Python using the Pillow library. It soon 

became clear that Pillow has it’s limitations when working with more complex image 

generation. A crucial functionality, that was missing in Pillow, when making realistic smoke is 

Perlin-noise. Perlin-noise is a type of  semi-random noise that is used in computer graphics to 

create realistic looking natural phenomena such as clouds, mountains, smoke etc. Since the 

Perlin-noise functionality is not part of  Pillow, an extra library was used called Noise. Noise 

allows the user to create different types of  Perlin-noise by specifying certain parameters. With 

the use of  the Noise library, successful simulations of  smoke were made. One problem, 

however, was that the simulated image only contains smoke without a background on which 

the smoke is displayed. In order to create a background, two options were evaluated. The first 

option was to create a background using image generation methods as done by 

(Rahnemoonfar & Sheppard, 2017). In this research images of  tomato plants were simulated 

by generating red circles for tomatoes and circles of  varying shades of  green to simulate the 

background. The green circles were blurred to create one coherent background. The second 

method was to take pictures of  existing forests and pasting the smoke simulations on top of  

these images, creating the impression that the smoke is coming from the forests. The 
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advantage of  this approach is that the simulated picture is more like a real picture since the 

backgrounds are taken from actual foto’s. These backgrounds have a level of  realism that 

can’t be achieved using simulation methods. See figure 1 for an example of  the final result.  

Figure 1. synthetic smoke with background from real image 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When using these images to train the neural network and detecting for false negatives 

(pictures that are classified as not containing smoke but actually do) it became apparent they 

had their shortcomings. Figure 2 shows the pictures of  smoke that were wrongly classified as 

being pictures not that contain smoke..  

Figure 2. False positives, smoke and fire 

As can be seen by these pictures, most of  the time pictures that contain a large portion of  fire 

are wrongly classified as a picture that does not contain smoke. In order to prevent these false 

negatives from happening, the simulated images were modified to contain objects of  varying 

shades of  red and orange to represent fire. This was done by using the images of  forests that 

were originally used to train the model on pictures that do not contain smoke. A set of  circles 

of  random size and varying shades of  red and orange were created and lumped together at a 

random position on the image of  a forest using the Pillow library. After this was done, every 

circle was given a gaussian blur to make the entire object more representative of  fire and look 

less like a set of  random circles. After the fire simulation was placed on the image, the smoke 

simulation that was previously used was layered on top of  the fire simulation. Making it look 

as if  the fire is coming from the forest shown in the image. Figure 3 shows an example of  the 

final result. 

False Positives - smoke and fire
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Figure 3. Synthetic smoke and fire with the background taken from real image 

As can be seen from the picture above, a large portion of  red material is added to represent 

fire. In must be noted that not every picture from the real image dataset contains a fire, most 

of  the pictures in this dataset only contain smoke. It is because of  this that the simulation 

program was modified to only simulate pictures containing fire a 30% of  the time. When 

adding the simulated fire and testing for false positives, still a number of  pictures that contain 

mostly fire show up. However, the pictures that only partly contain fire are no longer being 

detected as “not smoke”. See figure 4 for a view examples of  false positives as a result from 

adding the synthetic fire. 

 

Figure 4. false positives as a result from adding synthetic fire in the training dataset.  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4.3. Creating proper simulations for houses 
After the smoke simulations were made and tested, simulations of  houses as if  taken from 

satellite images were made. This was possible because, after the smoke phase, there was still 

time left to explore other areas of  simulated data for deep learning. The initial idea was to test 

the simulations on drone images from the Open Tanzania Challenge from werobotics.org. 

However, after contacting them, no response was given. So instead, satellite images of  slums 

in Tanzania taken from google earth were used. These images were later segmented into 

images of  dimensions of  100x100 pixels. See figure 5 for a couple of  examples of  such an 

image. 

Figure 5. Examples of  validation images for the houses scenario 

Dataset 1 

Based on these images, the requirements for the simulated images were set. The simulated 

images need to have some have a background in some type of  light brownish colour. Also, the 

images need to consist of  multiple rectangle-like objects of  different colours of  blue, red and 

orange. Also, each house was given a border of  2 pixels similar to the colour of  the 

background. This was done to prevent the houses from merging into one object as a result of  

overlapping Finally the number of  houses in the simulated images have to be somewhere 

between 10 and 25. Based on these requirements, a set of  1200 simulated images were 

created. See figure 6 for a couple of  examples of  such an image.  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Figure 6. Examples of  the images in the synthetic training dataset for dataset 1. 

Dataset 2 

As can be seen, by the images above, a lot of  houses were created that were too small to be 

accurately predicted. This is a result of  overlapping houses and their borders. After this was 

noticed, a new program was written that prevents the houses from overlapping and thus also 

prevent houses that are too small from being generated. The new program segmented each 

image into 25 segments as follows: 

Figure 7. Grid layout used to create synthetic images for dataset 2. 
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Depending on the number of  houses in the image, each segment was filled with either one 

house of  random size and location or no house at all. This prevents the houses from 

overlapping and creates an evened out image. See figure 8 for a couple of  examples of  such 

an image. 

Figure 8. Examples of  the images used in the synthetic training dataset for dataset 2. 

4.4. Implementing the code in Jupyter 
When working with deep neural networks, running the code can often be time-consuming 

because of  the large amount of  time needed to properly train a neural network. Jupyter 

allows the user to run different sections of  the code by using a graphical user interface run on 

a web browser. This way the code segment used from training the neural network can be run 

separately from other code segments, reducing the time needed for debugging when other 

code segments are not working properly. Also, Jupyter allows the user to display graphical 

outputs relating to each individual code segment creating a more organised and structured 

work environment and as a result improving the workflow. Because of  these advantages, the 

client requested to use Jupyter. 

4.5. Running the code on a cloud platform 
One of  the problems when working with deep learning is that it requires a lot of  computing 

power. This became apparent when running the code on a local computer. One epoch took 

several hours, resulting in a training phase of  multiple days when running multiple epochs. 

One idea was to use a fast computer provided by the University of  Twente. The idea was to 

work on the code at home and import it to the computer at the University of  Twente to start 

the training phase. By using a faster computer the time needed to train is reduced, thus 

improving the overall tempo of  the project. One problem, however, is that this computer is 

only available at the University of  Twente and cannot be accessed at all times. The second 
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option was to run the code on a cloud that employs superior computing power. This would be 

preferable to the first option since the services of  the cloud are available at all times. At first, 

the Google cloud platform was looked into. However,  it quickly became apparent that this 

was not the right platform for the research since it requires the user to use the interface 

provided by Google making it overly complex and limiting the user's freedom. A second 

option which was more reliable was to use the cloud platform provided by Linode. Linode is a 

virtual private server that allows the user to run several Linux distributions. The advantage of  

this is that the user can work on a familiar operating system and install the right packages and 

libraries like one would do on a local Linux distribution by using the terminal. The chosen 

operating system was Ubuntu 16.04. Ubuntu is a widely used Linux distribution backed by a 

large community ready to answer questions when running into different types of  problems. It 

must be noted that when running an operating system on Linode, no graphical user interface 

is given. This means that every operation like for instance copying files, installing libraries, 

editing files, etc has to be done via the terminal. One disadvantage of  the absence of  a 

graphical user interface is the absence of  a web browser used for Jupyter. Unfortunately, this 

deprives the research of  the usability of  an environment such as Jupyter. Because it was 

impossible to run Jupyter on the Linode server, python files were used when running the codes 

on the server. The following list provides an overview of  the specifications of  the Linode 

instance used in the research: 

- RAM: 8GB 

- Cores: 4 CPU’s 

- Storage: 160 GB SSD 

- Transfer 5TB 

- Network in: 40 Gbps 

- Network out: 5000 Mbps 

- Operating system: Ubuntu 16.04 64bit 

4.6. Making accurate predictions based on simulated data for 
smoke 
In order to check the validity of  the simulated images, different scenarios were tested using 

different datasets and different deep neural network models. The dataset was divided into two 

folders; training data and validation data. With each folder having two subfolders named 
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‘Smoke’ and ‘Forest’ containing their representative images. The validation metrics used in 

this case was accuracy. The accuracy calculates the percentage of  data points (in this case 

images) that were properly predicted. For instance, if  out of  a set of  hundred images, eighty 

were properly predicted, the validation accuracy would be 0.8.  

The first thing to consider is whether the use of  simulated data is superior to the use of  real 

data in regards to validation accuracy. This is done by comparing the validation accuracy of  

the simulated data scenario and to the validation accuracy of  the real data scenario. This 

results in two approaches; the real data approach in which real data is used and the simulated 

approach in which simulated data is used. Additionally, a hybrid approach was proposed in 

which both real and simulated data were used. The second thing to consider is which type of  

model is best suited for training the deep neural network model. Two types of  models were 

used; a shallow model and a pre-trained model. Bellow is an explanation of  each of  these two 

models. Bellow is an explanation for each of  the different approaches as well as the types of  

models that were used. 

Real data approach: 

The training data consisted only of  real data. The folder named ‘Smoke’ consisted of  pictures 

taken from the internet that contain smoke as a result from some form of  disaster or forest 

fire. The folder named ‘Forest’ contained pictures of  forest taken from a helicopter 

perspective. 

The validation folder also consisted of  pictures that contain either smoke or forest. Although 

the images in the validation folder were of  the same type as the images in the training folder, 

it is very important that not exactly the same pictures as from the training folder are used in 

the validation folder and vice versa. 

Simulated data approach: 

The training data consisted of  both real and simulated data. The folder named ‘Smoke’ 

consisted of  simulated images as shown in section 1 of  this chapter. The folder named ‘Forest’ 

consisted of  the same images that were used in the testing on real data scenario. 

The validation folder also consisted of  the same images as used in the testing on real data 

scenario. 
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Hybrid approach: 

The model was first trained using only real data. The weights from the model were saved and 

later retrained on simulated data to achieve a higher validation accuracy. 

Shallow model: 

A shallow model is a type of  model used in neural networks that have a small number of  

hidden layers. The advantage of  shallow networks is that they take less time when training. 

The disadvantage of  shallow networks is that it is less suited for more complicated tasks. For 

instance, images that contain a lot of  complex and different features. The following diagram 

represents the architecture of  the shallow model that was used: 

Figure 9. The architecture of  the shallow model that was used. 

Pre-trained model: 

As the name suggests, a pre-trained model has already been heavily trained on a large data 

set. In this case, the pre-trained model was trained using the ImageNet data set. By training 

on this data set, the model is able to detect a wide range of  images. It is however not able to 

detect images that fall outside the ImageNet dataset. This is where re-training comes into 

play. During the training process, a pre-trained model called InceptionV3 was used. 

InceptionV3 is just one of  the many pertained models that Keras provides to us. As seen in 

figure 10, InceptionV3 is one of  the most optimal, with regard to accuracy and amount of  

operations, pre-trained models during the time of  the conduction of  this research. 
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Figure 10. Graph of  the current pre-trained models located on the graph in regard to the 

number of  operations (x) and the top-1 accuracy in percentage (y) 

In the ideation chapter of  this report, several requirements are laid out that have to be 

fulfilled. The first two main requirements are to make a program that can simulate visual data 

that can be used to train neural networks. The second main requirement is to design a deep 

neural network that can use this data to make classifications on real data. By trying out 

different methods and different types of  deep neural networks, the most optimal deep neural 

network was designed for the given task. mainly a shallow neural network that employs two 

dropout layers of  10%. By adding the dropout layers, the requirement for a model that can 

accurately make classifications on real data using simulated training data is met. Also by 

choosing a scenario such as smoke vs not smoke, the requirement of  having a simulation that 

is easy to generate and can easily be used as training data is met. The models were trained 

with a learning rate of  0.0001. In the end, six different scenario’s were tested with regard to 

the type of  data and the type of  model that was used: 
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- Real data was used to train a shallow model 

- Simulated data was used to train a shallow model 

- A hybrid of  real and simulated data was used to train a shallow model 

- Real data was used to train a pre-trained model 

- Simulated data was used to train a pre-trained model 

- A hybrid of  real and simulated data was used to train a pre-trained model 

By segmenting the experiment into six different scenario’s, the most optimal scenario can be 

found with the highest validation accuracy. 
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4.7. Making accurate predictions based on simulated data for 
houses 
In order to test the validity of  the simulated images a model based on the model used by 

Rahnemoonfar & Sheppard (2017) was used. In their research on using simulated data to 

count the amounts of  tomatoes in a tomato plant, a deep convolutional neural network was 

used with several modified ResNet-50 layers. The overall  architecture of  the model used in 

this study looked as follows: 

Figure 11. The architecture of  the model used in by Rahnemoonfar & Sheppard. Used as 

inspiration to create the model. 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The Modified Inception-ResNet-A layers, as well as the modified Inception layer, were altered 

to look as follows: 

Figure 12. Modified inception ResNet-A layer. 

Using alternations of  this architecture, the model was trained on 1200 simulated images and 

validated on 50 real images over 10 epochs. Instead of  using accuracy as a validation metric 

as was done in the smoke VS forest scenario, mean squared error was used as a validation 

metric. Mean squared error differs from accuracy in that is does not deal with classification 

problems, it deals with regression problems instead. Regression is better suited for counting 

problems since it allows the model to make predictions on validation data that lies outside the 

scope of  the training data and does not limit the model to the classes that are available as is 

the case with a classification model. For instance, A regression model that was trained to 

count a certain object in an array of  images and the quantity of  the object in the images lies 

between five and ten, is more applicable to make predictions on validation images that 

contain a number of  objects that lie outside of  the scope of  five and ten. The mean squared 

error is calculated by taking the average of  the squares of  all the errors. In this case, the error 

is an indicator of  how far the prediction of  the model deviated from the actual value. For 

instance, if  an image contains eight objects and the model predicted the image to have ten 

objects the error would be two. The formula for calculating the mean squared error can be 
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formulated as follows, with n being the amount of  data points, Y being the predicted value 

and Ŷ being the actual value:  

!  

Figure 13. The formula for calculating the Mean Squared Error. 

For each training session, the model was slightly modified to find the model with the lowest 

mean squared error. Also, for each training session, the weights of  the epoch that resulted in 

the lowest mean squared error were saved. Figure 14 shows each modification A, B, and C of  

the model as shown in figure 11. 

 

Figure 14. The three modifications (A, B and C) made on the model designed by 

Rahnemoonfar & Sheppard as depicted in figure 11. 

MSE =
1
n

n

∑
i=1

(Yi − ̂Yi)2
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Also, the drop out layer was changed from 65% to 10% drop out for each of  the three 

models. The validation metrics used in this case was mean squared error since the model was 

dealing with a regression problem instead of  a classification problem as was the case in the 

smoke vs forest scenario. In total the following six different types of  models were trained and 

later validated.  

- model a with 65% dropout 

- model b with 65% dropout 

- model c with 65% dropout 

- model a with 10% dropout 

- model b with 10% dropout 

- model c with 10% dropout 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5. Results 
5.1. Smoke VS Forest 
For the smoke VS forest scenario, two types of  models were used, each with three types of  

data, in the end, six scenario’s were tested. The following graphs show the testing results over 

multiple epochs. For each training session, the best epoch was saved.  

 

Figure 15. Graphs of  the validation accuracy and training accuracy of  the shallow model as 

a result of  training the model on real (A), synthetic (B) and hybrid data (C).  
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Figure 16. Graphs of  the validation accuracy and training accuracy of  the pre-trained 

model as a result of  training the model on real (A), synthetic (B) and hybrid data (C).  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After the previous six scenario’s, two dropout layers of  10% were added to the shallow model. 

the following graphs show the testing results over multiple epochs 

 

 

Figure 17. Graphs of  the validation accuracy and training accuracy of  the shallow model 

with 10% dropout as a result of  training the model on  

real (A), synthetic (B) and hybrid data (C). 
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For each epoch of  each model, the weights of  the best epoch were saved. The validation 

accuracies can be seen in table 1 and table 2 As can be seen in Table 1, By using a shallow 

model trained on real data, a validation accuracy of  0.9 can be reached. And when using a 

shallow network trained on simulated data, a validation accuracy of  0.8 can be reached. Also, 

the shallow network outperforms the Inception V3 network for each type of  data it was 

trained on. When adding a dropout of  10%, the model can reach a validation accuracy of  1 

for each type of  data used. 

Table 1: Best validation accuracy for each method - no dropout.
Shallow Inception V3

Simulated data 0.8000 0.62

Real Data 0.9000 0.69

Hybrid 0.9000 0.71

Table 2: Best validation accuracy for each method - with 10% dropout.
Shallow

Simulated data 1.0000

Real Data 1.0000

Hybrid 1.0000
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5.2. Houses 
For the houses scenario, two types of  synthetic data were used as described in chapter 4.3. 

Both types of  synthetic data were used to train the three types of  models as shown in figure 

14, each model was tested with 65% dropout and 10% dropout, in the end, twelve scenario’s 

were tested. In order to test the reliability of  the simulated training data as well as the models, 

the models were validated on both real and simulated data. The metrics for validation was the 

mean squared error. Each training session was done over 10 epochs.  

Model trained on synthetic data and validated on real data when using dataset 
1:  

At first, dataset 1 was used as shown in chapter 4.3. The validation mean squared error more 

or less stayed the same and showed little fluctuations after the first epoch. The following table 

shows the lowest validation mean squared error for each scenario tested when using real data 

in the validation set. 

When testing the reliability of  the predictions the model with the lowest mean squared error 

was tested, which in this case was model c with 65% dropout. In order to accurately interpret 

the results of  the model, a couple of  data points have to be tested and evaluated. In this case, 

the validation images were also used as testing images. The following list shows the predicted 

output of  the first nine validation images as well as the actual value: 

Table 3: Lowest mean squared error for each model using 65% dropout or 10% 
dropout. Validated on real data

65% dropout 10% dropout

Model A 43.33 43.01

Model B 42.92 41.93

Model C 41.65 42.75
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1: predicted: 8.70288467407 actual: 32 

2: predicted: 8.57694149017 actual: 20 

3: predicted: 8.58588504791 actual: 10 

4: predicted: 8.64188098907 actual: 17 

5: predicted: 8.63617610931 actual: 10 

6: predicted: 8.60346412659 actual: 19 

7: predicted: 8.61840629578 actual: 17 

8: predicted: 8.6007976532 actual: 16 

9: predicted: 8.68910503387 actual: 7 

As can be seen by this list, al validation images are predicted to contain a quantity of  houses 

around 8.6, independent on the actual data. This means that the model was not able to 

accurately predict the number of  houses located in each picture. 

Model trained and validated on synthetic data when using dataset 1: 

As can be seen by the predictions on the model that is validated on real data, the output is not 

reliable. In order to investigate the issue and see if  the problem lies in the validation data, the 

model was trained on synthetic data and also validated on synthetic data. The validation 

mean squared error more or less stayed the same and showed little fluctuations after the first 

epoch. The following table shows the lowest validation mean squared error for each scenario 

tested when using real data as the validation set. 

Table 4: Lowest mean squared error for each model using 65% dropout or 10% 
dropout. Validated on synthetic data

65% dropout 10% dropout

Model A 23.36 23.42

Model B 22.34 21.93

Model C 21.54 22.46
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When testing the reliability of  the predictions the model with the lowest mean squared error 

was tested, which in this case was model c with 65% dropout. In order to accurately interpret 

the results of  the model, a couple of  data points have to be tested and evaluated. In this case, 

the validation images were also used as testing images. The following list shows the predicted 

output of  the first nine validation images as well as the actual value: 

1: predicted: 7.21706771851 actual: 22 

2: predicted: 7.1572303772 actual: 16 

3: predicted: 7.16448640823 actual: 13 

4: predicted: 7.18330430984 actual: 20 

5: predicted: 7.18099308014 actual: 24 

6: predicted: 7.17154598236 actual: 10 

7: predicted: 7.1847615242 actual: 20 

8: predicted: 7.17476129532 actual: 16 

9: predicted: 7.21042251587 actual: 15 

As can be seen by this list, the same problem arises as was the case when validating on real 

data. Al validation images are predicted to contain a quantity of  houses around 7.1, 

independent on the actual data. This means that the model was not able to accurately predict 

the number of  houses located in each picture. 

Results when using dataset 2 

Because of  the bad results of  the previous scenario, new simulations were made to see if  the 

predictions of  the model can be improved by using a new training source. In this case dataset 

2 was used as shown in chapter 4.3. The validation mean squared error more or less stayed 

the same and showed little fluctuations after the first epoch. The following table shows the 

lowest validation mean squared error for each scenario tested when using real data as the 

validation set. 
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As can be seen in the previous table, no improvements were made using dataset 2, in fact the 

results got worse. It is for this reason that the model was not tested to make predictions about 

individual images as done for dataset 1. 

Table 5: Lowest mean squared error for each model using 65% dropout or 10% 
dropout. Validated on real data

65% dropout 10% dropout

Model A 45.84 44.06

Model B 44.47 44.37

Model C 43.75 43.47
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Training and validating the model with simple counting data 

As can be seen by the results of  dataset 1 and dataset 2, either the data is not a reliable source 

for training deep learning models or the wrong type of  model is used. To test the validity of  

the model, the model was trained on a dataset of  pictures that contain a multitude of  dots of  

colours red, blue and green. Figure 18 shows an example of  such an image. 

Figure 18. Example of  an image taken from the simple dataset. 

The advantage of  this dataset is that the type of  images of  the dataset are very simple and 

have low complexity. Also, the dataset contains 42500 images for the training dataset and 

7500 images for the validation dataset, which is a large number of  images and should thus 

improve the reliability of  the model when trained on this dataset. Because of  the simplicity of  

the images and the large number of  images that are in this dataset, it is a very reliable source 

for testing the validity of  the model. If  the model is trained on this dataset and still shows a 

mean squared error that is too high, the problem most likely has to do with the model itself. 

Having this knowledge will be helpful in future research. The model was trained to count the 

amount of  red dots that were located in each picture. By using model c with a 65% dropout a 

validation mean squared error of  3.67 was reached. This might seem like an improvement to 

the validation mean squared error of  the previously used cases with dataset 1 and dataset 2. 

However, it must be noted that the maximum dots of  one colour per image is five. A 

validation mean squared error of  3.67, in this case, is still very significant. 
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Finally, a classification model was used instead of  a regression model and the metrics used 

was validation accuracy instead of  validation mean squared error. By using this new type of  

model a validation accuracy of  0.985 was reached. This shows that sometimes a counting task 

can be seen as a classification problem instead of  a regression problem. The following figure 

shows a few examples of  the predictions of  the classification model: 

	 	 	  

actual: 4 - predicted: 4		            actual: 3 - predicted: 3		       actual: 3 - predicted: 3 

Figure 19. Actual values and predictions of  the classification model trained on simple data 

To see whether this method also applies to the counting of  houses, the same model was used, 

using dataset 2 as both the training and the validation data. A validation accuracy of  0.4225 

is reached. The model was also tested on the validation data, the following image shows a few 

examples of  the predictions of  the classification model: 

 

actual: 15 - predicted: 22	         actual: 22 - predicted: 16		     actual: 6 - predicted: 13 

Figure 20. Actual values and predictions of  the classification model trained on house data 
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6. Conclusion and future work 
6.1. Smoke VS Forest 
As can be seen by the results, the shallow model outperforms the inception V3 model for each 

of  the three types of  data used. This is most likely because the Inception V3 model was to 

complex for the given task and a more simple model might be more sufficient when the task is 

also more simple. By using simulated data, the model reached a validation accuracy of  0.8. 

This proves that synthetic data can be sufficient when training deep learning models. By 

adding a dropout of  10%, the model reached a validation accuracy of  1 when trained on 

synthetic data as well as when trained on real data. 

When training the shallow model a validation accuracy of  0.8 is reached for synthetic data 

without dropout and a validation accuracy of  1.0 with 10% dropout. These results are very 

promising. However, one has to be aware that due to the scarcity of  real data the value of  the 

validation accuracy might be susceptible to chance and that this high validation accuracy is 

partly the result from a model that is guessing the right classification. In order to get a more 

reliable value for the validation accuracy, more data is needed for the validation dataset. 

Looking at the false positives, it becomes clear that the model is unable to classify pictures 

containing mostly fire as ‘smoke or fire’. This is the case for both synthetic and real data. By 

adding in blobs of  synthetic fire the false positives were partly resolved. However, some 

validation images that contained mostly fire were still wrongly classified as ‘forest’. This is 

most likely because these images consisted of  hardly any smoke and only consisted of  fire. See 

figure 21 for such an image. 

Figure 20. Image from the ‘smoke vs forest’ data set that mostly contains fire. 
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As can be seen by this picture it hardly consists of  any smoke that is similar to the smoke 

created in the synthetic data set. In order to make better classifications in the future, the 

synthetic dataset has to be improved by adding larger simulations of  fire and smaller 

simulations of  smoke on top of  the data already generated in this research.  

In conclusion, when using synthetic data, the model can reach a validation accuracy as high 

as with synthetic data. However, this could just be a case of  the model guessing the right 

answer. In further research, using a larger more varied dataset is advised. Also, the synthetic 

training dataset could be improved by adding more pictures that represent the pictures in the 

validation dataset such as pictures that mostly or only contain fire. 

6.2. Houses scenario 
As can be seen by the results the model performs best with just one modified inception resent 

layer and a dropout of  65% for both types of  simulation. The best epoch of  the model using 

synthetic dataset 1 had a validation mean squared error of  41.65 when validated on real data 

and a validation mean squared error of  21.54 when validated on synthetic data. 

Unfortunately, this is a higher mean squared error than was originally intended. When 

training the model on synthetic dataset 2, the model was able to reach a validation mean 

squared error of  43.75 when validated on real data.  

The high errors could be the result of  two flaws. The first being that the architecture of  the 

model itself  is not the right one for the given task, more types of  models have to be tested in 

order to find the optimal model. The second flaw could be the simulations themselves. When 

looking at the pictures of  the simulations, the houses have no rotation while in the real images 

they do, rotations could not be implemented due to the limitations of  the Pillow library. To 

see if  the model performs better on other types of  data, a simple data scenario was tried out. 

The model was able to reach a validation mean squared error of  3.67 when trained on simple 

data. This is a lower value than was the case for dataset 1 and dataset 2. However, because 

the number of  detectable objects in the simple dataset were also smaller than the number of  

detectable objects in both dataset 1 and dataset 2 of  the house dataset, a validation mean 

squared error becomes more significant as well. It can therefore be concluded that the high 

validation mean squared error is because of  a faulty model being used. It might also be 

because of  an improper dataset. However, this can not be proven until a more reliable model 

is designed and tested. A possible solution to this problem could be to tread the task as a 

classification problem instead of  a regression problem. In this case, an image counting five 
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houses would belong to the class ‘five’, an image of  six houses to ‘six’, etc. When treating the 

task as a classification problem for the simple dataset, a validation accuracy of  0.985 was 

reached. This shows that treating counting tasks as a classification problem might be 

beneficial in some cases. Again, the large dataset and the simplicity of  the images should be 

taken into consideration; this method might not be beneficial when working with more 

complicated images. In order to tests this, The same approach was used to train and validate 

the model on house images from dataset 2. A validation accuracy of  0.4225 was reached 

which is fairly low. Also, the predictions showed inaccurate results. It can thus be concluded 

that using a classification method for a counting task might not be a viable solution if  the 

images reach a certain level of  complexity. 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