
The potential of synthetic
training data for training deep

learning models  

Student: Max van Vugt

Student Number: S1735659

Study: Bachelor Creative Technology

Supervisor: Andreas Kamilaris

Client: Andreas Kamilaris

Critical Observer: Faiza Bukhsh  

!1

Abstract
This report was written in accordance with the graduation project “The potential of synthetic

training data for training deep learning models”. As the title suggests, this report will look into

the potential of synthetic training for training deep learning models. First, an overview will be

given regarding the problems for training deep learning models such as data scarcity and the

proposed solution, which is to train deep learning models on simulated data. In the state of

the art, the current methods of data simulation will be given and based on these current

methods, the correct method for the problem at hand will be chosen. The ideation chapter

will describe the work process in advance to the ideation and realisation of the project.

During the ideation phase, the two different types of simulations will be presented as well as

the motivation on why these types of simulations were chosen. The first objective is to

simulate pictures of smoke as a result of forest fires. This is a type of data that is lacking in

sources and thus is a scarce data type. Also, the detection of smoke as a result of forest fires

can have a lot of potential for limiting and preventing natural disasters. By the use of

synthetic data, the training dataset becomes larger. It is expected that this will also improve

the accuracy of the model. When trained on synthetic data, the model was able to reach a

validation accuracy of 1.0. which is very promising and shows that synthetic data can be used

for smoke detection.

After the smoke vs forest scenario, a different scenario was tried out. Namely, the use of

simulated data for training houses from satellite images. Unfortunately, the results of the

houses scenario were not as promising as they were with the smoke vs forest scenario. This

could be because of the limitations of the model that was used or because the simulated data

was not designed properly to train a deep neural network.

In conclusion, this report proves that synthetic data has potential when training deep neural

networks. It also shows that no scenario is the same and that each scenario requires a different

approach. In some cases, it might be nearly impossible as is shown by the houses scenario.

!2

Table of Contents

Abstract	 2
Table of Contents	 3
1. Introduction	 5

1.1 Problem description	 5

1.2 Proposed solution	 6

1.3 Project description	 6

1.4 Research question	 8

2. Background Research	 9
2.1 State of the art	 9

3. Ideation 	 12
3.1. Client background and needs	 12

3.2. Ideation with the client	 12

3.3. Tinkering Phase	 13

3.4. Requirements	 15

3.5. Conclusion	 16

4. Realisation	 17
4.1. overview	 17

4.2. Creating proper simulations of smoke	 18

4.3. Creating proper simulations for houses	 22

4.4. Implementing the code in Jupyter	 24

4.5. Running the code on a cloud platform	 24

4.6. Making accurate predictions based on simulated data for smoke	 25

4.7. Making accurate predictions based on simulated data for houses	 30

5. Results	 34
5.1. Smoke VS Forest	 34

5.2. Houses	 38

!3

6. Conclusion and future work	 44
6.1. Smoke VS Forest	 44

6.2. Houses scenario	 45

References	 47

!4

1. Introduction

1.1 Problem description
Deep learning is a form of artificial intelligence loosely inspired by the anatomy of the

biological brain. Over the last several years, deep learning has shown many promising results

with its techniques being applied to different fields such as speech recognition and computer

vision. In order to properly train a deep learning neural network (from here on referred to as

a deep learning model or model for short) data is needed. The data is used to train the model

to make predictions about data the model has not seen before.

One of the problems faced in the field of deep learning is the shortage of data for training

deep learning models. When performing a simple task like the distinguishing of MNIST

digits, a small dataset will still give a sufficient outcome (Cireşan et al 2012). However, if the

task becomes more complex like distinguishing real-world objects, data shortage becomes a

problem (Krizhevsky et al 2012). This report will deal with cases in which data sources are

scarce and thus the simulation of data becomes a viable option. This shortage is a problem

since the accuracy of a model is highly dependent on the size of the dataset when working

with self-learning artificial intelligence. A recent study in which models were trained using

data sets with sizes of 5, 10, 20, 50, 100 and 200 images show that a low dataset negatively

affects the accuracy of the model and that the accuracy starts improving once the dataset size

is increased (Cho et al 2015). Different fields of study are faced with a shortage of data. This

prevents researchers from obtaining conclusive results, as is the case with Too et al (2018) in

which the deep learning model was unable to properly distinguish plant diseases due to a

shortage in available data. One field especially that suffers from this data shortage is the

medical field (Fakoor et al 2014). This shortage is mainly due to ethical, legal and social issues

(Cios & Moore 2002). By solving or at least reducing the problems of data scarcity in certain

fields that face data shortage, a huge door of potential is opened that previously was

unreachable.

Another problem that should be noted is the labor intensity of labelling the data that is

needed to train deep neural networks. The labelling has to be done by humans and is a very

tedious and a monogamous job to do. Currently, a Chinese firm called Beijing-based Mada

Code employs 10,000 freelancers working on minimum wage, labelling data for organisations

!5

such as Microsoft and Carnegie Mellon University (Dai 2018). Making one wonder whether

data labelling will be the blue-collar job of the future..

1.2 Proposed solution

A solution to the problems described in the previous section is to use synthetic training data

when training a deep learning neural network. By using synthetic data, both the problem of

data shortage and the labor intensity is reduced.

Firstly, the problem of data shortage will be eradicated since the data available through

synthetic data is theoretically infinite. As mentioned before, a shortage of data results in a

lower validation accuracy. By having a dataset that is theoretically infinite, the researcher is

able to simulate a dataset as large as they need it to be. By doing so the validation accuracy

will improve when the low validation accuracy was the result of a short dataset.

Secondly, when data is synthesised, it is automatically labeled as well. Reducing the costs as

opposed to when data is labeled by humans, while also giving these humans the opportunity

to persuade more fulfilling careers. Different studies on the use of synthetic data have already

been done, showing promising results (Douarre et al 2016), (Rahnemoonfar & Sheppard,

2017), (Odengaard et al 2016).

1.3 Project description

During the course of this project, a set of different tasks will be presented to test the

effectiveness of the model with the classification of images. Firstly the project deals with a

relatively easy problem. namely the classification of images that either contains smoke or

don’t contain smoke. The dataset consists of a collection of images taken by drones,

helicopters, airplanes, etc taken from a top-down perspective. The dataset is divided into two

classes. The first class consists of pictures of forests without any smoke. The second class

consists of pictures of forests or urban areas that do contain smoke. Depending on the results

and the process of the project, more complicated cases will be examined afterward.

The model will be trained using both real and simulated data during the training phase and

tested on real data during the testing phase. Also, a hybrid approach will be examined during

the training phase in which both real and simulated data is used to train the model.

!6

Afterward, the performance of these three approaches will be compared to determine

whether simulated training data might be beneficial for classifying the type of images it was

trained on.

!7

1.4 Research question

This paper is written in regard to the 2018 graduation project “The potential of synthetic

training data for training deep learning models”. As the title suggests, the goal of this project

is to examine the possibilities of using simulated data when training deep learning models

with the focus on computer vision (The ability of a computer to observe and interpret the real

world by the use of visual stimuli such as foto and video). To do this, every aspect of the use

of simulated data has to be examined with regard to the potentials, constraints, reliability and

different methods. This is done by answering the following sub-questions:

1. “What is the potential of synthetic data when training deep neural networks?”

2. “What are the constraints of synthetic data when training deep neural networks?”

3. “Is synthetic data reliable enough to replace real data when training deep neural

networks? if yes, in which cases and problem types?”

The research question is constructed by encompassing all these sub-questions into one

research question. The research question is thus formulated as follows:

“What are the capabilities of synthetic data when training deep neural networks?”

When all the sub-questions are answered, a conclusive answer to the research question can be

formulated.  

!8

2. Background Research
2.1 State of the art
There are different types of neural networks, each with their own distinct advantages and

disadvantages. When testing the potential of simulated data in machine learning, the right

type of model has to be selected that is in accordance to the given problem. In the case of this

project, the goal is to distinguish images belonging to two classes; smoke vs none-smoke,

melanoma vs mole, etc. The client of this project advised to experiment with the capabilities

of two different types of neural networks; shallow neural networks and (deep) convolutional

neural networks. The difference between shallow neural networks and deep neural networks

are distinguished by the depth of their credit assignment paths, which are chains of possibly

learnable, causal links between actions and effects (Schmidhuber 2015). Deep learning models

generally have more depth than shallow models, producing more precise and reliable

outcomes. When working with simple tasks, shallow neural networks can be sufficient enough

at performing the task. When working with more complex tasks, deep neural networks are

best suited (Mhaskar et al 2017). The experiments in this report focus on distinguishing real

world pictures. Thus, it is assumed that the use of deep neural networks will be more suitable

to the tasks presented in this report. In order to test the validity of this claim, two cases will

be presented in this project. One in which a shallow neural network is used and another one

in which a deep neural network is used.

Different research on the use of simulated data has already been done, yielding positive

results. In one study the deep learning neural network was successfully able to count the

number of tomatoes in different photos by learning from foto’s that contained simulated

tomatoes (Rahnemoonfar & Sheppard, 2017). In another study, the model was able to detect

melanoma’s by the use of simulated pictures with a validation accuracy of 0.775, Slightly

surpassing the validation accuracy of the real dataset by 0.6% (Kamilaris 2017).

There are different methods of simulating data when it comes to deep learning models see

table 1 for an overview of the different methods with their corresponding advantages and

disadvantages. The first approach is to simulate the entirety of the image as done in a 2017

study, in which the model was trained using images of simulated Captcha texts to later be able

to break real Captcha’s used by Facebook and Wikipedia (Le et al 2017). This method is most

likely the best approach when working with images that can easily be simulated and can exist

outside the real-world space such as the simulation of texts, basic shapes, colors, etc. A second

!9

approach is to simulate the objects that are of importance to the given task, and adding these

objects to real images or manipulating the real image based on the simulated object as is done

by Douarre et al (2016) in which the model was successfully able to detect roots from soil by

using training data of simulated roots added to real images of soil coming from X-ray

tomography. This approach might be best suited to situations in which the object of

importance is easily simulated, but must exist in a real-world environment which is harder to

simulate. A third approach is to first simulate the general features of an object and later

refining the object using real images as is done in a 2017 experiment in which the human eye

was first simulated and later refined using real images of the human eye (Shrivastava et al

2017). This method might be most beneficial when working with tasks in which details that

can’t easily be simulated are of great importance to the classification of the image. A fourth

approach is to exploit the power of deep learning to create new data sets by the use of

generative models. generative models distinguish themselves from discriminative models by

their ability to use deep learning to generate new data while discriminative models deal with

prediction and classification of data (Goodfellow et al 2014). Currently, generative models can

create simulated images that are, when assessed by human evaluators, mistaken for real

images around 40% of the time (Denton 2015). This approach might be beneficial in the

future when generative models are able to create more realistic simulations. Although not

being a simulation technique, a fifth approach is to enlarge the dataset by using augmentation

techniques (Krizhevsky et al 2012). augmentation deals with the manipulation of real images

through, for example, rotation, scaling, transposing, cropping, etc and can enlarge the dataset

by as much as 4 or 5 times. But since the enlarged dataset is based on images initially in the

dataset, there is a boundary to the learning capability of the model (Kamilaris 2017). A sixth

approach which can be seen as more of an addition to the previously mentioned approaches

is to use a hybrid dataset consisting of both simulated and real data (Bousmalis et al 2018).

This report deals with the classification of objects that exist within a real-world space. The

objects themselves are relatively easy to simulate. For this reason, the second approach is

chosen in which the object is first being simulated and later placed in a real world image. In

order to further enlarge the dataset the fifth and sixth approach is used in combination with

the second approach. To summarise; the datasets consists of both simulated and real images.

The simulated images are made by adding the object of importance to a real image. To

further enhance the size of the datasets, the training images will be manipulated through the

use of augmentation. In this chapter, a variety of current methods and future possibilities of

!10

the use of simulated data in deep learning were presented. This field of research is still very

primitive and its applications are still scarce. The goal of this research is to find some new

method of simulation, in a field that has not been done before, that will improve the general

understanding of using simulated data for training deep learning models. Most examples

shown in this chapter are problems that exist in a relatively small space, visually speaking. Like

the counting of tomatoes or the detection of melanomas. Also, none of the problems deal

with situations of immediate danger. The detection of big clouds of smoke is within a larger

space so it’s findings might be beneficial to other research that has to work with large objects

as well. Also, the detection of smoke deals with situations of immediate danger. Using

artificial intelligence in these situations could be highly beneficial to the people involved. the

camera’s could be placed in different parts of the forest, all connected to a single computer

that uses deep learning to detect smoke and warns the people involved before the situation

gets dire.

Table 1: Overview of simulation methods
Current research Advantages Disadvantages

Simulate Entire Image (Le et al 2017),

(Rahnemoonfar &
Sheppard, 2017)

(Kamilaris 2017)

(Jaderberg 2014)

- More control, every
part of the simulation is
determined by the
researcher

- Harder to apply to tasks
were the object of
importance exists within
the real world space.

Place simulated object in
real picture

(Douarre et al 2016)

(Odengaard et al 2016)

- Only the object of
importance is simulated
reducing the effort taken
in also simulating the
background.

- Still dependent on real
data

Refine simulation by real
image

(Shrivastava et al 2017) - Can create very realist
images

- Still dependent on real
data

Create simulation using
deep learning

(Denton 2015)

(Reed et al 2016)

- Can create very realistic
images.

- Complex field of and
uses a lot of computer
power.

Augmentation (Krizhevsky et al 2012)

(Kamilaris 2017)

- Easily enlarges dataset
without complex
algorithms.

- Boundary due to
learning capabilities since
new data is based on
existing data in the
dataset.

Hybrid (Kamilaris 2017) - Can be applied to the
previous mentioned
simulation techniques

- Still dependent on real
data

!11

3. Ideation
This chapter will focus on the ideation phase of the project. The goal of the ideation phase is

to acquire the relevant information related to a certain problem and to use this information to

create something novel that is useful to the client. Rather than user interaction, the focus of

this project lies on proving or disproving a hypothesis. To do so, the right software has to be

created that can properly perform the experiments needed for the research as well as showing

the output of the experiments. To achieve this, the following research question is formulated:

“What are the proper requirements for a set of programs that can simulate images and test the validity of these

simulations when they are used to train deep neural networks to make predictions about real data?”

3.1. Client background and needs
This project was made together with Andreas Kamilaris. The goal of the end product should

be evaluated with him and focus on his needs. Dr. Kamilaris is a researcher based in the

University of Twente originally from Cyprus. Dr. Kamilaris has previously worked on the

Internet of Things and Smart Buildings and is currently doing research in Big Data. Dr.

Andreas has seen that data shortage can often be a problem when training neural networks. A

solution he proposes is too use simulated data instead of real data. In order to test the validity

of simulated training data, he proposed the project “simulated data in neural networks”. At

the first meeting, the desired conduction of the research was discussed. He proposed to start

with a scenario that is simple to implement and do more complicated tasks with there was

extra time. During the first quartile of the project, the goal was to simulate smoke as a result

of forest fires. The simulation of smoke is relatively simple since it is clearly distinguishable

from things that are not smoke and since smoke does not have many complex features.

3.2. Ideation with the client
During the course of this project, the ideas and requirements were discussed with the client.

meetings were scheduled each week when possible to discuss the progress that was made so

far and come up with future ideas. The first proposal was to start with a scenario that is

simple to implement and do more complicated tasks with there was extra time. During the

first quartile of the project, the goal was to simulate smoke as a result of forest fires. The

simulation of smoke is relatively simple since it is clearly distinguishable from things that are

!12

not smoke and since smoke does not have many complex features. Also, the classification of

smoke can be useful in preventing future disasters. By embedding camera’s in large forests

and assessing the imagery with the imagined deep neural network, smoke can be detected at

an early stage of a forest fire and be dealt with at an early stage. By choosing smoke detection,

not only an academic requirement is met but also a real-world requirement in which it can be

directly beneficial to the people involved. If the smoke idea was realised in a short amount of

time and extra time was available, a more complex scenario would be dealt with. The client

proposed to work with a counting problem. Using deep neural networks for counting can be

especially beneficial in cases where the counting has to be done over a large dataset. Having

the counting be done by humans in such cases can be very time-consuming and prone to

errors, not to mention it is a very mundane and unfulfilling task. After discussing with the

client, it was agreed that a counting neural network has to be made that can count the

number of houses from a satellite image. Houses, as seen from a satellite perspective, are

relatively objects of low complexity. usually, a simple rectangle object will be enough to

properly represent a house as seen from a satellite perspective. Also, the edges of the house

make it easily detectable by a neural network since it is so distinctly different from its

background. The counting of houses also satisfies a real life need in cases of urban planning,

for instance in slums in underdeveloped countries.

3.3. Tinkering Phase
Tinkering can be a useful approach to come to a final product and become familiar with the

technologies to do so. Before starting with the simulations and test relating to the final

product. Dr. Kamilaris proposed to first tinker around with Python and the different Python

libraries as well as getting familiar with the Keras environment. A big part of designing the

product was to install every Python library and the Keras environment correctly and make

them compatible with each other. After this was successfully done the goal was to get familiar

with each library and the Keras environment. This was done by starting with trying small and

simple things and by working up from there. When getting familiar with the Pillow library (a

Python library that allows the user to draw shapes and manipulate images using Python

code), the first goal was to create simple shapes. When successfully creating simple shapes the

next step was to manipulate these shapes by transformation, colour manipulation, distortion

and finally to implement these shapes into other existing images. This tinkering later became

useful when creating the simulations that were used as training data since it minimised the

!13

time spent on learning the basics of image manipulation and creation. In order to successfully

test the validity of the simulated images when training deep neural networks, one has to

become familiar with some form of machine learning environment. For this project, the

Keras environment was used. Keras is an open source neural network library writing with the

Python programming langue. Information about Keras and how to use it was gathered from

different sources found online ranging from video tutorials, articles and scientific papers. By

using these sources of information, small applications were made that helped in gaining

knowledge that was used to create the final product. One example in particular that helped a

lot in gaining new knowledge was a tutorial on the development of an MNIST-digit predictor.

The goal was to write a program using Keras that can successfully predict handwritten digits

taken from the MNIST dataset. In the end, a program was written that was able to predict

handwritten digits with a validation accuracy of 98%. The tutorial itself only focused in

achieving a high validation accuracy but did not explain how to display the images together

with the predicted output also it was only tested on images from the MNIST dataset and did

not allow the user to create their own handwritten digit and feed it to the model to be tested.

This was something that would be useful later on in the project when working with the

simulated data. So the original program was modified to also implement this feature.

Experimenting in Keras and following different tutorials and explanations has helped a lot in

acquiring new skills relating to Keras such as preparing data, designing a deep neural model

and fitting the data to the model. By trying out new things in an improvised informal fashion,

a lot of knowledge and skill was acquired in regards to simulating images and deep learning

that sped up the process during the realisation phase.

!14

3.4. Requirements
Based on the clients needs the following requirements are set out for the the project.

1. A program has to be written to simulate images.

1.1. The images made using the program have to be of a certain level or realism in order

to successfully use the images when training deep neural networks.

1.2. The program has to be written in Python and make use of some type of image

creation/manipulation library.

1.3. The code has to be useable for other researchers, use clear semantics and stick to one

type of coding convention.

1.4. The program does not require a user interface; it is assumed that the user is familiar

with Python.

1.5. The program must be able to create multiple images with an amount specified by the

user.

1.6. The program must be able to save these images to a specified folder on the users

computer

2. The type of image has to be in an application domain where it has not been used before.

3. The type of image that is simulated has to be identifiable by itself.

4. The type of image that is simulated also has to be useful outside of the scope of artificial

intelligence itself. For instance, relating to the environment, disaster prevention,

agriculture etc.

5. A deep neural network has to be created that can be trained on the simulated data and

also validated on real data.

5.1. The neural network must be able to successfully learn from simulated data.

5.2. The neural network must be made using some deep learning environment

5.3. The neural network must be able to detect false positives and true positives and

display them to the user.

5.4. The neural network must allow the user to input new data and make accurate

predictions about this data.

!15

3.5. Conclusion
As described in this chapter two programs have to be made. The first program is used to

make simulations. The second program uses these simulated images to make predictions

about real data. For the sake of consistency, both programs have to be made using Python.

Since the final result from the project is aimed at researchers, no user interface is needed.

Instead they are provided with the code. However, as goes without saying the code must be

properly structured and stay to the same coding confessions. Unlike many other Creative

Technology thesis's, this project does not focus on the the user interface. Instead the goal is to

scientifically prove or disprove a hypothesis. By sticking to the requirements presented in this

chapter, the right code is created to do so.  

!16

4. Realisation
This chapter describes the realisation phase of the the project. Each section focuses on a

specific problem during the realisation phase and how this problem was solved. the conclusion

can be found in the end of this chapter. The introduction provides a short overview of the

overall process of the project. The conclusion describes how the requirements as shown in the

ideation chapter are met.

4.1. overview
The goal of the research is to determine whether the use of simulated data as training data in

deep neural networks is a reliable training method when working with image classification. To

test its validity, the model was trained on real data as well as on simulated data. After the tests

were performed, the validation accuracy when using real data is compared to the validation

accuracy when using simulated data. At the beginning of the project, the aim was to create a

simple scenario to test the validity of the use of simulated data. In order to create a simple

scenario for image classification, the object in the images has to meet a few requirements.

Firstly, the object has to be of a complexity that is low enough to be simulated using computer

software. For instance, creating simulations of different breeds of dogs is a more difficult task

than creating simulations of different types of fruit since the number of features is less in the

second case. Secondly, the object has to be of a type that is easily detectable by a deep neural

network. In order to meet these requirements, the first goal of the project was to simulate

smoke as a result from large fires and test its validity as data source for deep neural networks.

Smoke was chosen because it is easily simulated using computer software, also it has a distinct

colour and shape that is easy to distinguish from its background. The simulations of smoke

were made using the Pillow and the Perlin Noise libraries in python. After the simulations of

smoke were made, they had to be used to train a deep neural network. In order to test the

validity of the simulated data, the validation accuracy as a result of the use of simulated data

had to be compared to that of the use of real data. Finally, a hybrid approach was also used

which combines both real and simulated data in it’s learning process.

Also to achieve the highest validation accuracy possible, two different types of deep neural

networks were used. One shallow neural network that consists of a small number of hidden

layers and one pre-trained neural network. The pre-trained neural network used in this

project is called ‘Inception V3’. This network was chosen since it can produce a very high

!17

accuracy with very little computational power. It is one of the best pre-trained deep neural

networks as of today.

When trying to train the models on a computer locally it quickly became apparent that the

computer power was not sufficient enough for training these types of deep neural network.

Instead of a local computer, a cloud computing service that possesses more computer power

called Linode was used.

Applying the three different training types and the two different types of deep neural

networks, six tests were run. After the tests were run it became apparent that the shallow

model outperformed the pre-trained model. with a validation accuracy of 0.8, 0.9 and 0.9 for

the simulated data, real data and hybrid data respectively. Here it seemed that although not

perfect the use of real data was still superior to the use of simulated data. In order to improve

the validation accuracy of the shallow model, two dropout layers were added. By adding the

dropout layers, the validation accuracy for both the real, simulated and hybrid approach

improved to a value of 1.0. meaning a perfect validation accuracy for each of the approaches.

4.2. Creating proper simulations of smoke

The first goal was to create simulations of smoke in Python using the Pillow library. It soon

became clear that Pillow has it’s limitations when working with more complex image

generation. A crucial functionality, that was missing in Pillow, when making realistic smoke is

Perlin-noise. Perlin-noise is a type of semi-random noise that is used in computer graphics to

create realistic looking natural phenomena such as clouds, mountains, smoke etc. Since the

Perlin-noise functionality is not part of Pillow, an extra library was used called Noise. Noise

allows the user to create different types of Perlin-noise by specifying certain parameters. With

the use of the Noise library, successful simulations of smoke were made. One problem,

however, was that the simulated image only contains smoke without a background on which

the smoke is displayed. In order to create a background, two options were evaluated. The first

option was to create a background using image generation methods as done by

(Rahnemoonfar & Sheppard, 2017). In this research images of tomato plants were simulated

by generating red circles for tomatoes and circles of varying shades of green to simulate the

background. The green circles were blurred to create one coherent background. The second

method was to take pictures of existing forests and pasting the smoke simulations on top of

these images, creating the impression that the smoke is coming from the forests. The

!18

advantage of this approach is that the simulated picture is more like a real picture since the

backgrounds are taken from actual foto’s. These backgrounds have a level of realism that

can’t be achieved using simulation methods. See figure 1 for an example of the final result.

Figure 1. synthetic smoke with background from real image 

!19

When using these images to train the neural network and detecting for false negatives

(pictures that are classified as not containing smoke but actually do) it became apparent they

had their shortcomings. Figure 2 shows the pictures of smoke that were wrongly classified as

being pictures not that contain smoke..

Figure 2. False positives, smoke and fire

As can be seen by these pictures, most of the time pictures that contain a large portion of fire

are wrongly classified as a picture that does not contain smoke. In order to prevent these false

negatives from happening, the simulated images were modified to contain objects of varying

shades of red and orange to represent fire. This was done by using the images of forests that

were originally used to train the model on pictures that do not contain smoke. A set of circles

of random size and varying shades of red and orange were created and lumped together at a

random position on the image of a forest using the Pillow library. After this was done, every

circle was given a gaussian blur to make the entire object more representative of fire and look

less like a set of random circles. After the fire simulation was placed on the image, the smoke

simulation that was previously used was layered on top of the fire simulation. Making it look

as if the fire is coming from the forest shown in the image. Figure 3 shows an example of the

final result.

False Positives - smoke and fire

!
0.96

!
0.99

!
0.99

!
0.98

!
0.99

!
0.86

!
1.00

!
0.97

!20

Figure 3. Synthetic smoke and fire with the background taken from real image

As can be seen from the picture above, a large portion of red material is added to represent

fire. In must be noted that not every picture from the real image dataset contains a fire, most

of the pictures in this dataset only contain smoke. It is because of this that the simulation

program was modified to only simulate pictures containing fire a 30% of the time. When

adding the simulated fire and testing for false positives, still a number of pictures that contain

mostly fire show up. However, the pictures that only partly contain fire are no longer being

detected as “not smoke”. See figure 4 for a view examples of false positives as a result from

adding the synthetic fire.

Figure 4. false positives as a result from adding synthetic fire in the training dataset.  

!21

4.3. Creating proper simulations for houses
After the smoke simulations were made and tested, simulations of houses as if taken from

satellite images were made. This was possible because, after the smoke phase, there was still

time left to explore other areas of simulated data for deep learning. The initial idea was to test

the simulations on drone images from the Open Tanzania Challenge from werobotics.org.

However, after contacting them, no response was given. So instead, satellite images of slums

in Tanzania taken from google earth were used. These images were later segmented into

images of dimensions of 100x100 pixels. See figure 5 for a couple of examples of such an

image.

Figure 5. Examples of validation images for the houses scenario

Dataset 1

Based on these images, the requirements for the simulated images were set. The simulated

images need to have some have a background in some type of light brownish colour. Also, the

images need to consist of multiple rectangle-like objects of different colours of blue, red and

orange. Also, each house was given a border of 2 pixels similar to the colour of the

background. This was done to prevent the houses from merging into one object as a result of

overlapping Finally the number of houses in the simulated images have to be somewhere

between 10 and 25. Based on these requirements, a set of 1200 simulated images were

created. See figure 6 for a couple of examples of such an image.  

!22

Figure 6. Examples of the images in the synthetic training dataset for dataset 1.

Dataset 2

As can be seen, by the images above, a lot of houses were created that were too small to be

accurately predicted. This is a result of overlapping houses and their borders. After this was

noticed, a new program was written that prevents the houses from overlapping and thus also

prevent houses that are too small from being generated. The new program segmented each

image into 25 segments as follows:

Figure 7. Grid layout used to create synthetic images for dataset 2.

!23

Depending on the number of houses in the image, each segment was filled with either one

house of random size and location or no house at all. This prevents the houses from

overlapping and creates an evened out image. See figure 8 for a couple of examples of such

an image.

Figure 8. Examples of the images used in the synthetic training dataset for dataset 2.

4.4. Implementing the code in Jupyter
When working with deep neural networks, running the code can often be time-consuming

because of the large amount of time needed to properly train a neural network. Jupyter

allows the user to run different sections of the code by using a graphical user interface run on

a web browser. This way the code segment used from training the neural network can be run

separately from other code segments, reducing the time needed for debugging when other

code segments are not working properly. Also, Jupyter allows the user to display graphical

outputs relating to each individual code segment creating a more organised and structured

work environment and as a result improving the workflow. Because of these advantages, the

client requested to use Jupyter.

4.5. Running the code on a cloud platform
One of the problems when working with deep learning is that it requires a lot of computing

power. This became apparent when running the code on a local computer. One epoch took

several hours, resulting in a training phase of multiple days when running multiple epochs.

One idea was to use a fast computer provided by the University of Twente. The idea was to

work on the code at home and import it to the computer at the University of Twente to start

the training phase. By using a faster computer the time needed to train is reduced, thus

improving the overall tempo of the project. One problem, however, is that this computer is

only available at the University of Twente and cannot be accessed at all times. The second

!24

option was to run the code on a cloud that employs superior computing power. This would be

preferable to the first option since the services of the cloud are available at all times. At first,

the Google cloud platform was looked into. However, it quickly became apparent that this

was not the right platform for the research since it requires the user to use the interface

provided by Google making it overly complex and limiting the user's freedom. A second

option which was more reliable was to use the cloud platform provided by Linode. Linode is a

virtual private server that allows the user to run several Linux distributions. The advantage of

this is that the user can work on a familiar operating system and install the right packages and

libraries like one would do on a local Linux distribution by using the terminal. The chosen

operating system was Ubuntu 16.04. Ubuntu is a widely used Linux distribution backed by a

large community ready to answer questions when running into different types of problems. It

must be noted that when running an operating system on Linode, no graphical user interface

is given. This means that every operation like for instance copying files, installing libraries,

editing files, etc has to be done via the terminal. One disadvantage of the absence of a

graphical user interface is the absence of a web browser used for Jupyter. Unfortunately, this

deprives the research of the usability of an environment such as Jupyter. Because it was

impossible to run Jupyter on the Linode server, python files were used when running the codes

on the server. The following list provides an overview of the specifications of the Linode

instance used in the research:

- RAM: 8GB

- Cores: 4 CPU’s

- Storage: 160 GB SSD

- Transfer 5TB

- Network in: 40 Gbps

- Network out: 5000 Mbps

- Operating system: Ubuntu 16.04 64bit

4.6. Making accurate predictions based on simulated data for
smoke
In order to check the validity of the simulated images, different scenarios were tested using

different datasets and different deep neural network models. The dataset was divided into two

folders; training data and validation data. With each folder having two subfolders named

!25

‘Smoke’ and ‘Forest’ containing their representative images. The validation metrics used in

this case was accuracy. The accuracy calculates the percentage of data points (in this case

images) that were properly predicted. For instance, if out of a set of hundred images, eighty

were properly predicted, the validation accuracy would be 0.8.

The first thing to consider is whether the use of simulated data is superior to the use of real

data in regards to validation accuracy. This is done by comparing the validation accuracy of

the simulated data scenario and to the validation accuracy of the real data scenario. This

results in two approaches; the real data approach in which real data is used and the simulated

approach in which simulated data is used. Additionally, a hybrid approach was proposed in

which both real and simulated data were used. The second thing to consider is which type of

model is best suited for training the deep neural network model. Two types of models were

used; a shallow model and a pre-trained model. Bellow is an explanation of each of these two

models. Bellow is an explanation for each of the different approaches as well as the types of

models that were used.

Real data approach:

The training data consisted only of real data. The folder named ‘Smoke’ consisted of pictures

taken from the internet that contain smoke as a result from some form of disaster or forest

fire. The folder named ‘Forest’ contained pictures of forest taken from a helicopter

perspective.

The validation folder also consisted of pictures that contain either smoke or forest. Although

the images in the validation folder were of the same type as the images in the training folder,

it is very important that not exactly the same pictures as from the training folder are used in

the validation folder and vice versa.

Simulated data approach:

The training data consisted of both real and simulated data. The folder named ‘Smoke’

consisted of simulated images as shown in section 1 of this chapter. The folder named ‘Forest’

consisted of the same images that were used in the testing on real data scenario.

The validation folder also consisted of the same images as used in the testing on real data

scenario.

!26

Hybrid approach:

The model was first trained using only real data. The weights from the model were saved and

later retrained on simulated data to achieve a higher validation accuracy.

Shallow model:

A shallow model is a type of model used in neural networks that have a small number of

hidden layers. The advantage of shallow networks is that they take less time when training.

The disadvantage of shallow networks is that it is less suited for more complicated tasks. For

instance, images that contain a lot of complex and different features. The following diagram

represents the architecture of the shallow model that was used:

Figure 9. The architecture of the shallow model that was used.

Pre-trained model:

As the name suggests, a pre-trained model has already been heavily trained on a large data

set. In this case, the pre-trained model was trained using the ImageNet data set. By training

on this data set, the model is able to detect a wide range of images. It is however not able to

detect images that fall outside the ImageNet dataset. This is where re-training comes into

play. During the training process, a pre-trained model called InceptionV3 was used.

InceptionV3 is just one of the many pertained models that Keras provides to us. As seen in

figure 10, InceptionV3 is one of the most optimal, with regard to accuracy and amount of

operations, pre-trained models during the time of the conduction of this research.

!27

Figure 10. Graph of the current pre-trained models located on the graph in regard to the

number of operations (x) and the top-1 accuracy in percentage (y)

In the ideation chapter of this report, several requirements are laid out that have to be

fulfilled. The first two main requirements are to make a program that can simulate visual data

that can be used to train neural networks. The second main requirement is to design a deep

neural network that can use this data to make classifications on real data. By trying out

different methods and different types of deep neural networks, the most optimal deep neural

network was designed for the given task. mainly a shallow neural network that employs two

dropout layers of 10%. By adding the dropout layers, the requirement for a model that can

accurately make classifications on real data using simulated training data is met. Also by

choosing a scenario such as smoke vs not smoke, the requirement of having a simulation that

is easy to generate and can easily be used as training data is met. The models were trained

with a learning rate of 0.0001. In the end, six different scenario’s were tested with regard to

the type of data and the type of model that was used:

!28

- Real data was used to train a shallow model

- Simulated data was used to train a shallow model

- A hybrid of real and simulated data was used to train a shallow model

- Real data was used to train a pre-trained model

- Simulated data was used to train a pre-trained model

- A hybrid of real and simulated data was used to train a pre-trained model

By segmenting the experiment into six different scenario’s, the most optimal scenario can be

found with the highest validation accuracy.

!29

4.7. Making accurate predictions based on simulated data for
houses
In order to test the validity of the simulated images a model based on the model used by

Rahnemoonfar & Sheppard (2017) was used. In their research on using simulated data to

count the amounts of tomatoes in a tomato plant, a deep convolutional neural network was

used with several modified ResNet-50 layers. The overall architecture of the model used in

this study looked as follows:

Figure 11. The architecture of the model used in by Rahnemoonfar & Sheppard. Used as

inspiration to create the model. 

!30

The Modified Inception-ResNet-A layers, as well as the modified Inception layer, were altered

to look as follows:

Figure 12. Modified inception ResNet-A layer.

Using alternations of this architecture, the model was trained on 1200 simulated images and

validated on 50 real images over 10 epochs. Instead of using accuracy as a validation metric

as was done in the smoke VS forest scenario, mean squared error was used as a validation

metric. Mean squared error differs from accuracy in that is does not deal with classification

problems, it deals with regression problems instead. Regression is better suited for counting

problems since it allows the model to make predictions on validation data that lies outside the

scope of the training data and does not limit the model to the classes that are available as is

the case with a classification model. For instance, A regression model that was trained to

count a certain object in an array of images and the quantity of the object in the images lies

between five and ten, is more applicable to make predictions on validation images that

contain a number of objects that lie outside of the scope of five and ten. The mean squared

error is calculated by taking the average of the squares of all the errors. In this case, the error

is an indicator of how far the prediction of the model deviated from the actual value. For

instance, if an image contains eight objects and the model predicted the image to have ten

objects the error would be two. The formula for calculating the mean squared error can be

!31

formulated as follows, with n being the amount of data points, Y being the predicted value

and Ŷ being the actual value:

!

Figure 13. The formula for calculating the Mean Squared Error.

For each training session, the model was slightly modified to find the model with the lowest

mean squared error. Also, for each training session, the weights of the epoch that resulted in

the lowest mean squared error were saved. Figure 14 shows each modification A, B, and C of

the model as shown in figure 11.

Figure 14. The three modifications (A, B and C) made on the model designed by

Rahnemoonfar & Sheppard as depicted in figure 11.

MSE =
1
n

n

∑
i=1

(Yi − ̂Yi)2

!32

Also, the drop out layer was changed from 65% to 10% drop out for each of the three

models. The validation metrics used in this case was mean squared error since the model was

dealing with a regression problem instead of a classification problem as was the case in the

smoke vs forest scenario. In total the following six different types of models were trained and

later validated.

- model a with 65% dropout

- model b with 65% dropout

- model c with 65% dropout

- model a with 10% dropout

- model b with 10% dropout

- model c with 10% dropout 

!33

5. Results
5.1. Smoke VS Forest
For the smoke VS forest scenario, two types of models were used, each with three types of

data, in the end, six scenario’s were tested. The following graphs show the testing results over

multiple epochs. For each training session, the best epoch was saved.

Figure 15. Graphs of the validation accuracy and training accuracy of the shallow model as

a result of training the model on real (A), synthetic (B) and hybrid data (C).

!34

(B) Accuracy of the model trained
on synthetic data.

0,5

0,6

0,7

0,8

0,9

1

1 2 3 4 5 6 7 8 9 10

(C) accuracy of the model trained
on hybrid data.

0,5

0,6

0,7

0,8

0,9

1

1 2 3 4 5

(A) Accuracy of the model trained
on real data.

0,5

0,6

0,7

0,8

0,9

1

1 2 3 4 5 6 7 8 9 10

Figure 16. Graphs of the validation accuracy and training accuracy of the pre-trained

model as a result of training the model on real (A), synthetic (B) and hybrid data (C).  

!35

(A) Accuracy of the model trained
on real data

0,5

0,6

0,7

0,8

0,9

1

1 1 2 3

(B) Accuracy of the model trained
on synthetic data

0,5

0,6

0,7

0,8

0,9

1

1 1 2 3

(C) Accuracy of the model trained
on hybrid data

0,5

0,6

0,7

0,8

0,9

1

1 2 2

After the previous six scenario’s, two dropout layers of 10% were added to the shallow model.

the following graphs show the testing results over multiple epochs

Figure 17. Graphs of the validation accuracy and training accuracy of the shallow model

with 10% dropout as a result of training the model on

real (A), synthetic (B) and hybrid data (C).

!36

0,5

0,6

0,7

0,8

0,9

1

1 3 5 7 9 11 13 15 17 19

Validation Accuracy - Real - 10% dropout
Training Accuracy - Real

0,5

0,6

0,7

0,8

0,9

1

1 3 5 7 9 11 13 15 17 19

Validation Accuracy - Sim - 10% dropout
Training Accuracy - Sim

0,5

0,6

0,7

0,8

0,9

1

1 2 3 4 5 6 7 8 9 10

Validation Accuracy - hybrid - 10% dropout
Training Accuracy - hybrid

For each epoch of each model, the weights of the best epoch were saved. The validation

accuracies can be seen in table 1 and table 2 As can be seen in Table 1, By using a shallow

model trained on real data, a validation accuracy of 0.9 can be reached. And when using a

shallow network trained on simulated data, a validation accuracy of 0.8 can be reached. Also,

the shallow network outperforms the Inception V3 network for each type of data it was

trained on. When adding a dropout of 10%, the model can reach a validation accuracy of 1

for each type of data used.

Table 1: Best validation accuracy for each method - no dropout.
Shallow Inception V3

Simulated data 0.8000 0.62

Real Data 0.9000 0.69

Hybrid 0.9000 0.71

Table 2: Best validation accuracy for each method - with 10% dropout.
Shallow

Simulated data 1.0000

Real Data 1.0000

Hybrid 1.0000

!37

5.2. Houses
For the houses scenario, two types of synthetic data were used as described in chapter 4.3.

Both types of synthetic data were used to train the three types of models as shown in figure

14, each model was tested with 65% dropout and 10% dropout, in the end, twelve scenario’s

were tested. In order to test the reliability of the simulated training data as well as the models,

the models were validated on both real and simulated data. The metrics for validation was the

mean squared error. Each training session was done over 10 epochs.

Model trained on synthetic data and validated on real data when using dataset
1:

At first, dataset 1 was used as shown in chapter 4.3. The validation mean squared error more

or less stayed the same and showed little fluctuations after the first epoch. The following table

shows the lowest validation mean squared error for each scenario tested when using real data

in the validation set.

When testing the reliability of the predictions the model with the lowest mean squared error

was tested, which in this case was model c with 65% dropout. In order to accurately interpret

the results of the model, a couple of data points have to be tested and evaluated. In this case,

the validation images were also used as testing images. The following list shows the predicted

output of the first nine validation images as well as the actual value:

Table 3: Lowest mean squared error for each model using 65% dropout or 10%
dropout. Validated on real data

65% dropout 10% dropout

Model A 43.33 43.01

Model B 42.92 41.93

Model C 41.65 42.75

!38

1: predicted: 8.70288467407 actual: 32

2: predicted: 8.57694149017 actual: 20

3: predicted: 8.58588504791 actual: 10

4: predicted: 8.64188098907 actual: 17

5: predicted: 8.63617610931 actual: 10

6: predicted: 8.60346412659 actual: 19

7: predicted: 8.61840629578 actual: 17

8: predicted: 8.6007976532 actual: 16

9: predicted: 8.68910503387 actual: 7

As can be seen by this list, al validation images are predicted to contain a quantity of houses

around 8.6, independent on the actual data. This means that the model was not able to

accurately predict the number of houses located in each picture.

Model trained and validated on synthetic data when using dataset 1:

As can be seen by the predictions on the model that is validated on real data, the output is not

reliable. In order to investigate the issue and see if the problem lies in the validation data, the

model was trained on synthetic data and also validated on synthetic data. The validation

mean squared error more or less stayed the same and showed little fluctuations after the first

epoch. The following table shows the lowest validation mean squared error for each scenario

tested when using real data as the validation set.

Table 4: Lowest mean squared error for each model using 65% dropout or 10%
dropout. Validated on synthetic data

65% dropout 10% dropout

Model A 23.36 23.42

Model B 22.34 21.93

Model C 21.54 22.46

!39

When testing the reliability of the predictions the model with the lowest mean squared error

was tested, which in this case was model c with 65% dropout. In order to accurately interpret

the results of the model, a couple of data points have to be tested and evaluated. In this case,

the validation images were also used as testing images. The following list shows the predicted

output of the first nine validation images as well as the actual value:

1: predicted: 7.21706771851 actual: 22

2: predicted: 7.1572303772 actual: 16

3: predicted: 7.16448640823 actual: 13

4: predicted: 7.18330430984 actual: 20

5: predicted: 7.18099308014 actual: 24

6: predicted: 7.17154598236 actual: 10

7: predicted: 7.1847615242 actual: 20

8: predicted: 7.17476129532 actual: 16

9: predicted: 7.21042251587 actual: 15

As can be seen by this list, the same problem arises as was the case when validating on real

data. Al validation images are predicted to contain a quantity of houses around 7.1,

independent on the actual data. This means that the model was not able to accurately predict

the number of houses located in each picture.

Results when using dataset 2

Because of the bad results of the previous scenario, new simulations were made to see if the

predictions of the model can be improved by using a new training source. In this case dataset

2 was used as shown in chapter 4.3. The validation mean squared error more or less stayed

the same and showed little fluctuations after the first epoch. The following table shows the

lowest validation mean squared error for each scenario tested when using real data as the

validation set.

!40

As can be seen in the previous table, no improvements were made using dataset 2, in fact the

results got worse. It is for this reason that the model was not tested to make predictions about

individual images as done for dataset 1. 

Table 5: Lowest mean squared error for each model using 65% dropout or 10%
dropout. Validated on real data

65% dropout 10% dropout

Model A 45.84 44.06

Model B 44.47 44.37

Model C 43.75 43.47

!41

Training and validating the model with simple counting data

As can be seen by the results of dataset 1 and dataset 2, either the data is not a reliable source

for training deep learning models or the wrong type of model is used. To test the validity of

the model, the model was trained on a dataset of pictures that contain a multitude of dots of

colours red, blue and green. Figure 18 shows an example of such an image.

Figure 18. Example of an image taken from the simple dataset.

The advantage of this dataset is that the type of images of the dataset are very simple and

have low complexity. Also, the dataset contains 42500 images for the training dataset and

7500 images for the validation dataset, which is a large number of images and should thus

improve the reliability of the model when trained on this dataset. Because of the simplicity of

the images and the large number of images that are in this dataset, it is a very reliable source

for testing the validity of the model. If the model is trained on this dataset and still shows a

mean squared error that is too high, the problem most likely has to do with the model itself.

Having this knowledge will be helpful in future research. The model was trained to count the

amount of red dots that were located in each picture. By using model c with a 65% dropout a

validation mean squared error of 3.67 was reached. This might seem like an improvement to

the validation mean squared error of the previously used cases with dataset 1 and dataset 2.

However, it must be noted that the maximum dots of one colour per image is five. A

validation mean squared error of 3.67, in this case, is still very significant.

!42

Finally, a classification model was used instead of a regression model and the metrics used

was validation accuracy instead of validation mean squared error. By using this new type of

model a validation accuracy of 0.985 was reached. This shows that sometimes a counting task

can be seen as a classification problem instead of a regression problem. The following figure

shows a few examples of the predictions of the classification model:

	 	 	

actual: 4 - predicted: 4		 actual: 3 - predicted: 3		 actual: 3 - predicted: 3

Figure 19. Actual values and predictions of the classification model trained on simple data

To see whether this method also applies to the counting of houses, the same model was used,

using dataset 2 as both the training and the validation data. A validation accuracy of 0.4225

is reached. The model was also tested on the validation data, the following image shows a few

examples of the predictions of the classification model:

actual: 15 - predicted: 22	 actual: 22 - predicted: 16		 actual: 6 - predicted: 13

Figure 20. Actual values and predictions of the classification model trained on house data

!43

6. Conclusion and future work
6.1. Smoke VS Forest
As can be seen by the results, the shallow model outperforms the inception V3 model for each

of the three types of data used. This is most likely because the Inception V3 model was to

complex for the given task and a more simple model might be more sufficient when the task is

also more simple. By using simulated data, the model reached a validation accuracy of 0.8.

This proves that synthetic data can be sufficient when training deep learning models. By

adding a dropout of 10%, the model reached a validation accuracy of 1 when trained on

synthetic data as well as when trained on real data.

When training the shallow model a validation accuracy of 0.8 is reached for synthetic data

without dropout and a validation accuracy of 1.0 with 10% dropout. These results are very

promising. However, one has to be aware that due to the scarcity of real data the value of the

validation accuracy might be susceptible to chance and that this high validation accuracy is

partly the result from a model that is guessing the right classification. In order to get a more

reliable value for the validation accuracy, more data is needed for the validation dataset.

Looking at the false positives, it becomes clear that the model is unable to classify pictures

containing mostly fire as ‘smoke or fire’. This is the case for both synthetic and real data. By

adding in blobs of synthetic fire the false positives were partly resolved. However, some

validation images that contained mostly fire were still wrongly classified as ‘forest’. This is

most likely because these images consisted of hardly any smoke and only consisted of fire. See

figure 21 for such an image.

Figure 20. Image from the ‘smoke vs forest’ data set that mostly contains fire.

!44

As can be seen by this picture it hardly consists of any smoke that is similar to the smoke

created in the synthetic data set. In order to make better classifications in the future, the

synthetic dataset has to be improved by adding larger simulations of fire and smaller

simulations of smoke on top of the data already generated in this research.

In conclusion, when using synthetic data, the model can reach a validation accuracy as high

as with synthetic data. However, this could just be a case of the model guessing the right

answer. In further research, using a larger more varied dataset is advised. Also, the synthetic

training dataset could be improved by adding more pictures that represent the pictures in the

validation dataset such as pictures that mostly or only contain fire.

6.2. Houses scenario
As can be seen by the results the model performs best with just one modified inception resent

layer and a dropout of 65% for both types of simulation. The best epoch of the model using

synthetic dataset 1 had a validation mean squared error of 41.65 when validated on real data

and a validation mean squared error of 21.54 when validated on synthetic data.

Unfortunately, this is a higher mean squared error than was originally intended. When

training the model on synthetic dataset 2, the model was able to reach a validation mean

squared error of 43.75 when validated on real data.

The high errors could be the result of two flaws. The first being that the architecture of the

model itself is not the right one for the given task, more types of models have to be tested in

order to find the optimal model. The second flaw could be the simulations themselves. When

looking at the pictures of the simulations, the houses have no rotation while in the real images

they do, rotations could not be implemented due to the limitations of the Pillow library. To

see if the model performs better on other types of data, a simple data scenario was tried out.

The model was able to reach a validation mean squared error of 3.67 when trained on simple

data. This is a lower value than was the case for dataset 1 and dataset 2. However, because

the number of detectable objects in the simple dataset were also smaller than the number of

detectable objects in both dataset 1 and dataset 2 of the house dataset, a validation mean

squared error becomes more significant as well. It can therefore be concluded that the high

validation mean squared error is because of a faulty model being used. It might also be

because of an improper dataset. However, this can not be proven until a more reliable model

is designed and tested. A possible solution to this problem could be to tread the task as a

classification problem instead of a regression problem. In this case, an image counting five

!45

houses would belong to the class ‘five’, an image of six houses to ‘six’, etc. When treating the

task as a classification problem for the simple dataset, a validation accuracy of 0.985 was

reached. This shows that treating counting tasks as a classification problem might be

beneficial in some cases. Again, the large dataset and the simplicity of the images should be

taken into consideration; this method might not be beneficial when working with more

complicated images. In order to tests this, The same approach was used to train and validate

the model on house images from dataset 2. A validation accuracy of 0.4225 was reached

which is fairly low. Also, the predictions showed inaccurate results. It can thus be concluded

that using a classification method for a counting task might not be a viable solution if the

images reach a certain level of complexity. 

!46

References

Oates, T., & Jensen, D. D. (1998, August). Large Datasets Lead to Overly Complex Models:
An Explanation and a Solution. In KDD (pp. 294-298).

Garcia, J., Barbedo, A. (2018). Impact of dataset size and variety on the effectiveness of deep
learning and transfer learning for plant disease classification. Computers and Electronics in
Agriculture (pp. 46-53).

Cho, J., Lee, K., Shin, E., Choy, G., & Do, S. (2015). How much data is needed to train a
medical image deep learning system to achieve necessary high accuracy?

Too, E. C., Yujian, L., Njuki, S., & Yingchun, L. (2018). A comparative study of fine-tuning
deep learning models for plant disease identification. Computers and Electronics in Agriculture.

Fakoor, R., Ladhak, F., Nazi, A., & Huber, M. (2013, June). Using deep learning to enhance
cancer diagnosis and classification. In Proceedings of the International Conference on Machine
Learning (Vol. 28). New York, USA: ACM.

Cios, K. J., & Moore, G. W. (2002). Uniqueness of medical data mining. Artificial intelligence
in medicine, 26(1-2), 1-24.

Dai, S. (2018) AI promises jobs revolution but first it needs old-fashioned manual labour –
from China. South China Morning Post.

Schmidhuber, J. (2015). Deep learning in neural networks: An overview. Neural networks, 61,
85-117.

Cireşan, D., Meier, U., & Schmidhuber, J. (2012). Multi-column deep neural networks for
image classification. arXiv preprint arXiv:1202.2745.

Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification with deep
convolutional neural networks. In Advances in neural information processing systems (pp. 1097-1105).

!47

Jaderberg, M., Simonyan, K., Vedaldi, A., & Zisserman, A. (2014). Synthetic Data and
Artificial Neural Networks for Natural Scene Text Recognition.

Odengaard, N., Knapskog, A. O., Cochin, C., & Louvigne, J. C. (2016) Classification of ships
using real and simulated data in a convolutional neural network.

Rahnemoonfar, M., & Sheppard, C. (2017). Deep count: fruit counting based on deep
simulated learning. Sensors, 17(4), 905.

Le, T. A., Baydin, A. G., Zinkov, R., & Wood, F. (2017). Using synthetic data to train neural
networks is model-based reasoning. In Neural Networks (IJCNN), 2017 International Joint
Conference on (pp. 3514-3521). IEEE.

Mhaskar, H., Liao, Q., & Poggio, T. A. (2017). When and why are deep networks better than
shallow ones?. In AAAI(pp. 2343-2349).

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., ... & Bengio,
Y. (2014). Generative adversarial nets. In Advances in neural information processing systems (pp.
2672-2680).

Shrivastava, A., Pfister, T., Tuzel, O., Susskind, J., Wang, W., & Webb, R. (2017, July).
Learning from Simulated and Unsupervised Images through Adversarial Training.
In CVPR(Vol. 2, No. 4, p. 5).

A. Kamilaris, A. Kartakoullis and F. X. Prenafeta-Boldú. A Review on the Practice of Big
Data Analysis in Agriculture. Computers and Electronics in Agriculture International
Journal, 143(1): 23-37, 2017.

Kamilaris, A. (2017). Simulating Training Data for Deep Learning Models. Presented at
EnviroInfo 2018.

DOUARRE, C., SCHIELEIN, R., FRINDEL, C., GERTH, S., & ROUSSEAU, D. (2016).
Deep learning based root-soil segmentation from X-ray tomography. bioRxiv, 071662.

Denton, E. L., Chintala, S., & Fergus, R. (2015). Deep generative image models using a
laplacian pyramid of adversarial networks. In Advances in neural information processing systems (pp.
1486-1494).

!48

Bousmalis, K., Irpan, A., Wohlhart, P., Bai, Y., Kelcey, M., Kalakrishnan, M., ... & Levine, S.
(2018, May). Using simulation and domain adaptation to improve efficiency of deep robotic
grasping. In 2018 IEEE International Conference on Robotics and Automation (ICRA) (pp. 4243-4250).
IEEE.

Reed, S., Akata, Z., Yan, X., Logeswaran, L., Schiele, B., & Lee, H. (2016). Generative
adversarial text to image synthesis. arXiv preprint arXiv:1605.05396.

!49

