
Summary 
To improve the effectiveness of the material presented during the Communications course, 

the Telecommunication Engineering group at the University of Twente proposed to make use of 
the LabVIEW environment together with the accompanying NI USRP hardware to implement a 
demo. 

The demo is to help the students gain an intuitive grasp of the concepts and theories taught 
during the course, as well as provide them with  necessary tools to allow them experiment and 
apply the knowledge they have gained during the course. 

The finalized demonstration tool accurately covers the digital modulation techniques taught 
during the Communication course by showing both time- and frequency-domain representations 
of simulated signals.

Although, incorporation of the NI USRP hardware was suggested, during this assignment it 
was found that NI USRP added very little educational value and instead proved to be an 
unnecessary complication. 
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Chapter 1. Introduction 
1.1. Motivation 

Telecommunication Engineering (TE) group in the University of Twente is responsible for 
organizing parts of Signal Processing and Communication (SPC) module in the bachelor program. 
One of the constituent courses in this module is Communications, which discusses the fundamentals 
of analog and digital communications; covered topics, among others, span concepts such as analog 
and digital modulation techniques, transition from analog to digital domains, and effects of noise 
in the transmission channel on the desired system performance. 

Due to the fundamental nature of the knowledge presented in this module, it is vital for 
students to be able to grasp the contents of the course as much as possible, preferably on an 
intuitive level. Currently, the study process is confined to the course book Introduction to Analog and 
Digital Communications by Simon Haykin [1]. As a result, this leads to a limited number of 
examples to help students understand the course materials and a lack of interactivity.  To counter 
this, there is a call for creation of demonstration tools that would enable students to interact with 
the concepts given in the book and understand the intricacies that can be made evident only upon 
experimentation.

Simulation and demonstration tools present on the Web or built-in to the various software 
tools as examples, while useful, are often difficult to use, because it is implied that students will 
have some prior knowledge about the syntax or GUI in those programs. 

Moreover, many of the more capable software solutions available on the market are highly 
priced and unavailable for personal use by students. Such obstacles can divert students from 
learning about the principles those programs are meant to show. Given the rather highly 
demanding workload of the Signal Processing and Communications module such a distraction proves 
to be unfavorable.

In the past, at the TE group, an individual research assignment to create a demonstration tool 
specifically tailored for the SPC module was completed [2]. As a result of that assignment, NI 
LabVIEW software and NI Universal Software Radio Peripheral (NI USRP) hardware were used to 
create a LabVIEW Virtual Instrument, that allowed a great deal of interactivity and consequently 
provided more insight into the subject matter. Yet, the scope of said demonstration tool was limited 
to FM modulation. In addition, it was programmed in procedural rather that object-oriented 
manner leading to limited reusability and cumbersome expandability.
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1.2 Assignment Description 
To expand the set of function offered by such demonstration tools an additional individual 

design assignment was proposed. In the course of this assignment, the existing demo was used as 
a starting point to construct a new tool using the same hardware and software, while adhering to 
the key principle of optimizing the demo for educational use by the students involved in the SPC 
module. Furthermore, to enable expansion of the demo to cover more topics in the future, its code 
should be written with reusability in mind. 

Given the ubiquitous presence of digital media nowadays, it was chosen that the scope of the 
new demo will be primarily focused on various digital modulation techniques as well as their 
performance when exposed to noisy communication channels. Using the demo, students would 
have to be able to experiment with the following concepts:

• How are modulated waveforms generated for different modulation techniques?
• What do modulated waveforms look like for a different modulation techniques?
• What are the spectral characteristics of the modulated waveform, for a different modulation 

techniques and a given set of input parameters?
• What are the effects of additive channel noise on the spectral contents and overall 

performance for different modulation techniques?

1.3 Contents of the Final Product 
On the grounds that the demonstration tool was built for educational purposes, the set of 

modulation techniques simulated was chosen from among those that are taught in the course of 
the Communications part of the SPC module. The final product demonstrates the woking 
principles of the following modulation techniques:

1. Binary amplitude shift keying (BASK)
2. Binary phase shift keying (BPSK)
3. Quadriphase shift keying (QPSK)
4. Offset quadriphase shift keying (OQPSK)
5. Sunde’s binary frequency shift keying (SBFSK)
6. Minimum shift keying (type I and type II) [3] (MSK).

While the necessity to implement the behavior of various modulation schemes utilizing the 
USRP hardware is important, it is recognized that the high purchasing cost of the hardware will 
lead to limited availability of the USRP units. Should the implementation of the demo be primarily 
based on having the USRP as a key part, the effectiveness of the final product would be hindered 
by the organizational and logistical aspects, exemplified by, for instance, the fact that the students 
would only have access to the USRP for a limited time.  

Also, in the process of designing the final product, various experiments lead to an 
understanding that employing the USRP does not add much of an educational value to the 
demonstration tool. Because of that the final product was design in a way that makes the use of the 
USRP is completely optional. 
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To provide the students with the necessary information to use the demonstration, a user 
manual will be delivered together with the demonstration tool. 

1.4 LabVIEW Programming Environment 
LabVIEW is a programming environment developed by the National Instruments Inc. 

Programming in LabVIEW is done in G, a graphical programming language. Programs written in 
G language, are canonically called Virtual Instruments (VIs). The interface of each VI consists of 
two parts:

1. Front Panel - Front panel is how the user interacts with the VI. Front panel controls are to 
hold values used by the VI and indicators to hold the values returned by the VI. This is 
where the main GUI of the developed demonstration tool shall be placed.

2. Block Diagram - Various functions that need to be implemented by the VI are coded by 
means of placing blocks on the Block Diagram and connecting the block by the means of 
wires. In addition to a multitude of a functional blocks the block diagram supports 
graphical representation of usual programming paradigms one would expect from a text 
based language, such as ‘if-else’ statements, ‘for’- and ‘while’-loops, etc. 

LabVIEW distinguishes between different types information by having numerous data types 
such as string, boolean, integer, double and so on. Furthermore, LabVIEW supports structural data 
type, such as array, waveform and cluster. The color of the wire on the block diagram indicates the 
data type carried  by that wire. 

LabVIEW and the USRP having been manufactured by the same enterprise are highly 
optimized to work with one another. Such synergy, absent for other hardware/software 
configurations justifies the usage of the USRP together with LabVIEW.

1.5 Outline of the Report 
The rest of this report is organized as follows. In Chapter 2 the theory pertaining to concepts 

of digital modulation as well as other theory necessary to justify some of the design decisions 
made will be overviewed. In Chapter 3 the design procedure and methods used to construct the 
demonstration tool will be explored. Following that, Chapter 4 will be dedicated to the 
presentation of results as well as some of the limitation of the final demo. Chapter 5 will conclude 
the report with discussion and exploration of possible future work concerning this demo.  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Chapter 2. Theory 
In this chapter overview of the theory necessary to implement the demo will be presented.

2.1 Overview of Modulation Principles 

2.1.1 Generation of Baseband Digital Information Signals 
In a digital communication system, the process of transmitting a digital message signal 

begins with a binary data stream denoted as !  consisting of logical zeroes and ones emitted by 
the source of binary information. 

The binary data stream !  is then passed through a level encoder, which assigns 
amplitudes to symbols in !  in a predetermined fashion, resulting in a set of amplitudes ! . 

These amplitudes enable electrical representation of the binary data stream !  as a 
sequence of pulses, formally defined as:

! , (T.1.1) 

where ! (T.1.2)

where !  is the bit duration used in the communication system and !  is the basic shape 
of a pulse shifted to time ! , which is the moment, when k-th bit starts being emitted from 
the source of binary information. 

It should be noted that the basic pulse shape given by the particular formulation in (T.1.2) is 
not the only possible shape for the pulse. Different pulse shaping strategies can be used and and 
each have their own advantages, such as greater margin of error for sampling instances in the 
receiver and less inter-symbol interference. However, due to the fact that they were not 
implemented in the final demonstration tool, other pulse shapes are beyond the scope of this work.

If the system’s design constraints allow it, the serial data stream !  can already be used for 
transmissions across low-pass channels such as twisted wire pair or coaxial cable. However, to 
make transmission over band-pass channels, such as satellite or wireless, a possibility, the 
incoming binary stream must be modulated to a sinusoidal carrier of a higher frequency, hereby 
denoted by ! . The outcome of the modulation process is a high frequency band pass signal, that 
shall be referred to as ! .

2.1.2 Bandpass Assumption 
Before continuing with the discussion, it is important to point out that it is assumed that the 

bandwidth of the modulating binary waveform ! , denoted as ! , is much smaller than the 
carrier frequency ! , or mathematically: 
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! (T.2)

This condition, also called the bandpass assumption, guarantees that there will be no spectral 
overlap between negative and positive frequencies upon modulation and as a consequence it can 
be stated that regardless of the chosen modulation technique, the power spectrum of the 
modulated wave !  will always be centered at the frequency ! , although different modulation 
techniques will exhibit different spectral behaviors.

2.1.3 Modulation to RF Frequencies 
Generic description of a carrier wave  !  is given by:

! (T.3)

where !  is the carrier amplitude, !  is the carrier frequency and !  is the initial phase of the carrier 
wave at time ! . 

It can be observed that there are three parameters that can be varied in accordance with the 
incoming binary message signal ! . Consequently, three distinct categories of digital modulation 
can be identified:

1. Amplitude shift keying: the frequency and the phase of the sinusoidal carrier wave are 
left unaltered, while the amplitude is varied, or keyed, between values corresponding to the 
incoming symbols, as a function of ! .

2. Phase shift keying: the amplitude and the instantaneous frequency of the carrier wave are 
kept constant while the phase of the carrier is modified in accordance to the source symbol.

3. Frequency shift keying: the amplitude and the phase of the carrier waveform are not 
directly influenced, while the instantaneous frequency indicates the transmitted symbol.

2.1.4 Carrier Amplitudes in Digital Modulation 
While the expression for a carrier wave given in equation (T.3) holds in general, when 

considering digital communication systems, it is customary to assume that the carrier wave has 
unit energy, when measured over a bit duration. This translates to assigning a fixed value to  for a 
desired bit duration. 

Recalling, that for a sinusoid !  to have a unit energy over a bit duration ! , its RMS 

amplitude must be !  and that a sinusoid !  with a certain amplitude !  has an RMS 

value defined as:
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!

we can remove !  between the different expressions and obtain the following result, where

! (T.4.1)

Accordingly, rewriting the expression for ! :

! (T.4.2)

for the remainder of this report !  will always be assumed to be equal to ! .

In the meantime, allow for some modulation technique, according to which the band-pass 
signal is generated by multiplying the modulation signal !  by the carrier wave !  as it was the 
equation (T.3). 

! (T.5)

here for sake of simplicity and without loss of generality, phase !  has been set to zero. For the 
remainder of this report, it will remain assumed that the initial phase of the carrier !  is zero.  

Calculating the energy of the resulting modulated waveform !  measured over one bit 
duration it is found that:

! (T.6.1)

! (T.6.2)

! (T.6.3)

! (T.6.4)

where the last line is permissible only if the band-pass assumption holds. 
Thus, using an appropriate value for the amplitude of the carrier wave leads to a situation, 

where the energy spent for transmission of a single bit equals the scaled version of the energy of 
the incoming binary message signal, and the scaling factor is exactly equal to the bit duration. This 
in turn has a consequence of justifying the following corollary:

“whatever factor is multiplied by the amplitude of the carrier wave !   in the formulation of ! is 
in fact what would be the square root of resulting energy spent in one bit duration”. 
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2.1.5 Fundamentals of Quadrature Modulation 
The method of digital modulation presented by equation (T.5), is mathematically identical to 

the DSB-SC modulation technique, which is a member of the amplitude modulation family used in 
analog communication systems. With DSB-SC, since the band-pass signal cannot be demodulated 
using envelope detection, demodulation was carried out using the coherent detection method. Given 
that mathematically the present problem is identical to what happens in DSB-SC, it is warranted to 
continue the development in parallel to it. A schematic representation of a coherent detector is 
depicted in Figure 1 [1].

Coherent demodulation starts with multiplication of the received signal by a locally 
generated carrier that should ideally be synchronized with the transmitter’s carrier wave in both 
frequency and phase. Such a signal can be written as: 

! (T.7)

where !  represent the difference in phase between the transmitter and the receiver. For the ease of 
presentation it shall be assumed that there is no mismatch in frequency. Carrying out the product 
operation, also called mixing: 

! (T.8.1)

! (T.8.2)

!

! (T.8.3)

From equation (T.8.3) it can be observed that the output of the mixer is a superposition of two 
terms. The first term is the scaled version of the modulating binary waveform ! , while the 
second term represents !  modulating a carrier wave of a of twice the frequency . This term is 
subsequently removed by a low-pass filter that follows the mixer, whose output is !  in 
equation (T.8.4).
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! (T.8.4)

Conversely, it is also true, that in case the binary message signal was originally modulating a 
sine carrier !  instead of the cosine carrier !  an identical result would be 
obtained, if the local carrier would be a sine with phase error of !  radians. The output of the low-
pass filter would conform to equation (T.8.4).

Then, from the above derivations, it can be seen that given some non-zero phase error !  in 
the demodulator, !  that was separated in the outcome is now attenuated by amount equal to 
! . This implies that if the error would be !  radians, the desired output signal !  would 
be completely suppressed. Using the trigonometric rule ! :

! (T.9.1)

! (T.9.2)

! (T.9.3)

and with the subsequent removal of the first term by a low-pass filter

! (T.9.4)

This phenomenon is known as the quadrature null effect.

Although at the first glance, it might seem undesirable, quadrature null effect can be utilized 
to have two completely independent messages occupy the same portion of the spectrum, whereas 
they can still be separated at the output.

Suppose that the signal applied to the mixer is a superposition of two modulated signals. 
One signal is obtained by modulating a message signal to an arbitrary sinusoidal carrier wave ! . 
The other is a result of modulating another message signal to the carrier wave !  of the same 
frequency, but 90 degrees offset in phase. Such sinusoidal carrier waves !  and !  are said to be 
in phase quadrature, and therefore referred to as quadrature carriers. 

Since sine and cosine waveforms are in phase quadrature we are allowed to generate !  as 
follows:

! (T.10.1)

! (T.10.2)

where the minus sign is simply a matter of convention.
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If the locally generated carrier wave !  exhibits 0 degrees phase error with ! , at the 
output of the low-pass filter the message signal that was modulating this carrier !  is not 

affected except for being scaled by ! . More importantly, because of the quadrature null effect 

the other message signal !  is completely eliminated, as its carrier wave !  is in phase 
quadrature with the locally generated carrier !  and leads to a zero scaling factor as in equation 
(T.9.4). The other message signal !  can be then extracted using a second carrier wave !  that 
exhibits 0 degree of phase error with ! . 

Assuming ideally synchronized demodulation on the receiver side, the two information 
signals would not interfere with each other and it would be possible to detect each of them in a 
manner as if that modulating signal was the only message signal. 

This effect can be used to conserve bandwidth when system design requires some set bitrate, 
via dividing the !  in a certain fashion between the two quadrature carriers into !  and ! . 
Also, the quadrature null effect can be exploited to utilize some limited bandwidth to the fullest by 
allowing the system designer to double the rate at which the source emits binary information. 
These notions can be further generalized into complex signal representation, an approach to study 
communication systems in a unified and consistent way.

2.2 Complex Signal Representation Approach 
Generalizing the equation (T.10.2), we recognize !  and !  constitute in-phase and quadrature 
components of the complex baseband representation of the modulated band-pass signal ! , or 
mathematically: 

 ! (T.11)

with, !  and !  denoting the in-phase and quadrature components of the band-pass modulated 
signal ! , respectively. 

A system that takes arbitrary signals !  and !  as inputs and places the modulated 
wave !  at its output is referred to as a complex synthesizer. Conversely, given a band-pass signal 
!  the in-phase and quadrature components are derived by a complex analyzer. Schematic 
representations of a complex analyzer and a complex synthesizer are given in (a) and (b) of Figure 
2, respectively [1].
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The in-phase and quadrature components carry the information we wish to transmit, and by 
themselves completely specify the band-pass signal ! , assuming that the carrier frequency !  is 
already known. Generally, for equation (T.10) to hold these signals need not be binary in nature, 
the same way !  is, meaning that they should not necessarily be generated, by pulse shaping a 
set of line encoded symbols, in accordance to equation (T.1). This means that it is possible to 
manipulate binary message signals !  and !  before multiplying them with the quadrature 
carriers. 

Combined, !  and !  are used to define ! , complex envelope of the modulated wave 
! , and similarly quadrature carriers !  and !  define !  as follows:

! (T.12.1)

! (T.12.2)

where the complex signals have been described in both polar and Cartesian forms. Relations 
between ! , ! , !  and !  follow from the general rules of how complex numbers are 
treated:

! (T.13.1)

! (T.13.2)

Using equations (T.11.1) and (T.11.2) !  can be rewritten as:

! (T.14)

In equation (T.13) !  is the envelope of the band-pass signal ! , and thus represents the 
amplitude modulated portion, i.e. !  can be a function of the binary message of that signal ! , 
and !  is its phase relative to the phase of the unmodulated carrier signal ! . This difference in 
phase is otherwise called the phase evolution of the signal !  and it represents the angle modulated 
portion of the modulated wave, meaning that both phase shift keying and frequency shift keying 
techniques vary !  as a function of the incoming binary wave ! . In the former case it is the 
phase evolution itself !  that is a function of !  while in the latter case it is its derivative. 

Equation (T.14) can be reformulated into the same form as equations (T.11) using the 
trigonometric identity !  as follows:

!

!

! (T.15)

where it can be immediately be identified that:

! (T.16.1)

! (T.16.2)
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Equations (T.16.1) and (T.16.2) together with equation (T.11) provide all the instruction 
necessary for the complex synthesizer to generate modulated signals in accordance to an array of 
modulation techniques. Using this complex synthesizer/analyzer model, it is possible to choose 
the desired modulation technique by only specifying the corresponding in-phase and quadrature 
components. 

2.3 Modulation Techniques 
In the previous section, it was shown that modulated band-pass signals can be constructed 

from their respective complex envelopes by means of frequency up-translation. This was 
formulated as the complex synthesizer/analyzer model.  

The advantage of such a model when it comes to the functional design of the demonstration 
tool is that there will not be a necessity to create new “infrastructure” for each and every 
modulation technique covered. In addition, the method used to generate modulated signal !  in 
LabVIEW can naturally be used to feed data to the USRP. 

In literature, the modulation techniques that were chosen to be included in this demo are 
often defined only in terms of modulated waves ! . Both polar and Cartesian representations of 
respective complex envelopes !  are only briefly considered. 

Because of that, in this section modulation techniques implemented in the final demo will be 
individually covered, and how their characterization translates to the complex analyzer/
synthesizer model will be examined.

2.3.1 Binary Amplitude Shift Keying (BASK) 
Prescribed by the BASK modulation scheme, the envelope !  of the resulting band-pass 

signal !  is keyed between !  and 0 for binary symbols 1 and 0, respectively. Formally, 
BASK modulated waveform is defined as follows:

! (T.17)

Recognizing !  as the amplitude of the unmodulated carrier wave ! , it follows that 
the band-pass signal is generated by a sole in-phase component:

! (T.18)

which corresponds to choosing the amplitude !  in the line encoder being equal to !  and 0, for 
!  equal to 1 and 0, respectively. In other words, BASK is generated using a single in-phase 
component, which is equal to !  generated using an ‘on-off’ line code:

s(t)

s(t)
s̃(t)

a(t)
s(t) 2Eb /Tb

s (t) =
2Eb
Tb

cos (2π fct), for bit 1

0,                               for bit 0

2/Tb c(t)

sI(t) = { Eb ,    for bit 1

0,         for bit 0

ak Eb

bk
b(t)
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! (T.19.1)

! (T.19.2)

where ! (T.20)

and ! (T.21)

2.3.2 Binary Phase Shift Keying (BPSK) 
Being the simplest form of phase-shift keying, BPSK involves keying the phase evolution of 

the signal between 0 and ! , for logical 1s and 0s, respectively:

! (T.22)

Owing to the fact that increasing the phase evolution of the sinusoidal signal by half a cycle 
is equivalent to multiplying it by ! , it is possible to reformulate the definition of the modulated 
wave !  as:

! (T.23)

Then, as it was done in case of BASK, we first associate the factor !  with the amplitude 
of the carrier wave, and it follows that the modulated wave !  is created by a sole in-phase 
component, which in this case is equal to the binary message signal formed by employing the non-
return-to-zero line code, where the value of !  is equal to !  and !  for !  equal to 0 and 1, 
respectively. Therefore, for BPSK:

! (T.24.1)

! (T.24.2)

where ! (T.25)

and ! (T.26)

sI(t) = b (t) =
∞

∑
k=−∞
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sQ(t) = 0

g (t) = rect (
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Tb )
ak = {+ Eb ,   for   bk = 1

0,           for   bk = 0

π

s (t) =

2Eb
Tb

cos (2π fct),

2Eb
Tb

cos (2π fct + π)

−1
s(t)

s (t) =
+

2Eb
Tb

cos (2π fct),   for   bk = 1

−
2Eb
Tb

cos (2π fct) ,   for   bk = 0

2/Tb

s(t)

ak − Eb Eb bk

sI(t) = b (t) =
∞

∑
k=−∞

akg (t − kTb)

sQ(t) = 0

g (t) = rect (
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Tb )
ak =

+ Eb ,   for   bk = 1

− Eb ,   for   bk = 0
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2.3.3 Quadriphase Shift Keying (QPSK) 
According to the QPSK modulation scheme the phase evolution !  of the modulated wave 

!  is keyed between one of the four equally spaced values ! , ! , !  or !  to specify the 
pair of bits, otherwise called a dibit, emitted by the source of binary data. The keying action is 
performed every dibit duration ! . Formal definition of a QPSK modulated signal is as 
follows:

! (T.27)

where ! (T.28)

Expanding equation (T.27) using the ‘cosine of a sum’ trigonometric identity we obtain:

!

! (T.29)

Then, upon separating !  and !  as the yet 
unmodulated quadrature carriers, the following identifications can immediately be made:

! (T.30.1)

! (T.30.2)

The manner in which the binary data stream coming from the source of data acts on the in-
phase and quadrature components of the QPSK modulated wave can be more evident by 
incorporating the values, in which !  and !  result into the equations (T.30.1) and 
(T.30.2).

To begin with, for each of the values taken on by !  equations (T.30.1) and (T.30.2) have 
been evaluated and the results have been placed in Table 1, where for convenience the resulting 
values of !  and !  have been placed as well. 

Investigating the values in Table 1 the following facts can be noticed:

θ (t)
s(t) π /4 3π /4 5π /4 7π /4

Td = 2Tb

s(t) =
2Eb

Tb
cos (2π fct + θ (t))

θ (t) =

π
4 ,     for dibit 11
3π
4 ,    for dibit 10

5π
4 ,    for dibit 00

7π
4 ,    for dibit 01

s(t) =
2Eb

Tb
cos (θ (t)) cos (2π fct)

−
2Eb

Tb
sin (θ (t)) sin (2π fct)

c (t) = 2/Tb cos (2π fct) ̂c (t) = 2/Tb sin (2π fct)

sI(t) = Eb cos (θ (t))
sQ(t) = Eb sin (θ (t))

cos (θ (t)) sin (θ (t))

θ (t)

cos (θ (t)) sin (θ (t))
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• !  changes its value only as a function of the first bit (or odd bits in case more than one 
dibit is to be transmitted) with !  representing a logical 1 and !  representing a 
logical 0;

• !  changes its value only as a function of the second bit (or even bits in case more than one 
dibit is to be transmitted) with !  representing a logical 1 and !  representing a 
logical 0.

In light of these observations, it follows that !  and !  can be generated as follows. First 
we split the odd- and even-indexed bits of the original digital message into two different channels.  
Then, each channel is non-return-to-zero line encoded to produce the sequence of amplitudes 

!  and !  that take on one of the values from the set ! . Finally 

!  and !  are pulse shaped with pulses of duration ! , to generate two binary data 
signals !  and !  for odd- and even-indexed bits, respectively. Mathematically, 

! (T.31.1)

! (T.31.2)

where ! (T.32)

and ! (T.33)

2.3.4 Offset Quadriphase Shift Keying (OQPSK) 
As it was previously shown, when using the QPSK modulation scheme, the in-phase and 

quadrature components — which are essentially binary signals originating from the odd- and 
even- indexed bits of the original digital message — of the modulated wave !  assume updated 
values in accordance to the incoming dibits every !  seconds. Since both of the components 
undergo an update simultaneously, this means that every !  seconds the phase evolution !  
might experience:

sI(t)
Eb /2 − Eb /2

sQ(t)
Eb /2 − Eb /2

Table 1: In-phase and Quadrature Components in QPSK
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! 1/2
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sI(t) sQ(t)
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∞
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∞
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ak,eveng (t − kTd)

g (t) = rect (
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s(t)
Td
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• either !  of discontinuity if the next dibit is identical;
• or !  of discontinuity if the next dibit is different in only a single bit;
• or !  of discontinuity if in the next dibit both bits are different.

The latter can be a disadvantage., because in that case, the linearity of the modulated wave 
!  places more stringent requirements on performance of filters further in the communication 
path. One consequence of amplitude of the incoming modulated wave !  crossing zero, is the fact 
that effects of non-linear components will become more substantial. For example, in order to avoid 
large amplitude distortions, it would be critical for filters acting on !  to have linear phase 
characteristics.

One strategy to avoid such undesired amplitude fluctuations would be to offset one of the 
demultiplexed binary signals, for example !  by !  seconds with respect to the other, in this 
case ! . Then, the phase evolution !  is limited to !  and !  with jumps occurring twice as 
often, every !  seconds. Mathematically, with the choice to offset falling on !  this can be 
written as follows:

! (T.34.1)

! (T.34.2)

where !  and !  are defined by equation (T.31.1) and (T.31.2).

Consequently, the quadrature components in this modulation technique are determined as 
follows:

! (T.35.1)

! (T.36.1)

2.3.5 Sunde’s Binary Frequency Shift Keying (SBFSK) 
As the name suggests, BFSK is a modulation scheme, where transmission of binary symbols 0 

and 1 is accomplished by means of alternating the instantaneous frequency of the modulated wave 
!  between two values. A specific type of BFSK, known as Sunde’s BFSK (SBFSK), dictates that 
the alternation should be done between two values that differ by an amount equal to the reciprocal 
of the bit duration, ! , and average to what would be the frequency of the unmodulated carrier 
wave ! . In other words, if we denote the instantaneous frequencies corresponding to logical 1’s 
and 0’s as !  and ! , respectively then: 

!  and !  

It is a matter of convention that the higher frequency tone indicates the bit 1. With these 
relations the band-pass SBFSK modulated signal can be expressed as: 
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±180∘
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! (T.37)

To determine !  and !  that give rise to an !  as defined in equation (T.37) we first 
consider the general description of a CPFSK modulated signal ! . CPFSK is a broader class of 
modulation techniques that encompasses both Sunde’s BFSK and MSK, which will be dealt with in 
the next section [4]. 

! (T.38)

where ! (T.39)

where ! (T.40)

and ! (T.41)

where ! (T.42)

and ! (T.43)

By definition, for Sunde’s BFSK, !  and we assume ! . Then, expanding the 
expression for !  using the “cosine of a sum” rule we obtain:

!

! (T.44)

where we have isolated !  factor as the amplitude of the quadrature carriers. Now, we are able 
to make the following identifications:

! (T.45.1)

! (T.45.2)
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In what follows exactly how !  influences !  and !  will be examined. Since !  for 
Sunde’s BFSK, we see that in any time interval !  the phase evolution !  is being 
increased or decreased by an amount equal to !  radian. More importantly, it should be noted that 
both an increase and a decrease of !  radian lead to the same value of ! , because !  uses 
modulo !  algebra, where ! . Moreover, since the choice between whether in a given time 
interval !  should increase or decrease is made at instance ! .

To see what the effects of these observations are on baseband components !  and ! , for 
an arbitrary bit sequence the phase evolution and the baseband components have been evaluated 
and plotted on Figure 3.

 
Investigating this figure, we see that a reversal in the phase evolution corresponds to the 

sinusoid in the quadrature components going backwards. In fact, both components experience the 
“backwards” trend if there is a switch in the binary sequence, but because the shapes of the 
waveform for a cosine going from !  to !  and from !  to !  are identical this is not observable. 
The in-phase component, does not change its polarity regardless of the information signal. 

Based on these arguments and seeing how the the binary waveform manifests itself in the in-
phase and quadrature components in Figure 3 we reformulate equations (T.45.1) and (T.45.2):

! (T.46.1)

! (T.46.2)

b(t) sI(t) sQ(t) h = 1

[(k − 1)Tb, kTb] θ (t)
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−π π π −π
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1

2Tb
t)

sQ(t) = Eb b(t) sin (2π
1

2Tb
t)
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where !  is defined in equation (T.41).

2.3.6 Minimum Shift Keying of Type I and Type II (MSK) 
In MSK modulation scheme the difference in frequencies for waveforms representing binary 

0’s and 1’s is defined to be equal to half the bit rate, ! . Such a choice is warranted by 
recognizing that for truncated portions of the modulated wave !  signaling a binary 0 or a binary 
1 to stay orthogonal to one another their instantaneous frequencies must differ by at least half a bit 
rate. The baseband components !  and !  in case of MSK are defined in the same way as they 
were for Sunde’s BFSK in equations (T.45.1) and (T.45.2). The phase evolution !  in case of MSK 
is as was formulated in equation (T.39), albeit with ! . 

! (T.47.1)

! (T.47.2)

! (T.48)

Now, consider the quadrature component !  and suppose that there two binary 4-bit 
sequences denoted as !  and !  that are identical in only one bit 
that are to be transmitted. In addition, we shall associate !  and !  with ! , !  and 
! , ! , respectively. 

Starting with the first bit, !  for both sequences will result in a sine function increasing 
from 0 at time !  to !  at time ! , since both  !  and !  have increased from 0 to ! . 
Then, based on the remaining bits in both sequences, !  in the time interval !  would 
increase from !  to !  in increments of ! , while !  will decrease from !  to !  in 
increments of ! . If we then evaluate the quadrature component ! , the resulting waveforms 
are identical, regardless of the fact that the bit streams that gave rise to them were completely 
different. 

This ambiguity occurs because in time interval !  in this particular case and in any 
even-indexed interval !  in general, the waveform for !  would be a sine 
function headed to zero regardless of the information bit. By having an agreement, that the binary 
symbols occurring in these time intervals are not random, but are the same as in the previous bit 
interval, the uncertainty of which binary sequence is responsible for producing a given !  can be 
avoided. A similar phenomenon would be observed for the in-phase component ! , which too 
can be avoided in a similar fashion.
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Duplication of bits for instances, when the cosine in !  and sine !  are headed to zero 
regardless of the message bits, is achieved, by replacing !  in formulas for !  and sine !  by 
!  and ! , respectively. An offset of the odd-indexed binary message signal for !  
is necessary to account for the fact that the cosine waveform is headed to zero from the outset. 
Consequently, based on these arguments we mathematically define the baseband components for 
MSK modulation scheme:

! (T.49.1)

! (T.49.2)

where definitions of !  and !  follow from equations (T.31) and (T.34), with line 
encoder values !  limited to !  and ! , for bits 0 and 1, respectively.

These equation can be reformulated yet again, because !  and ! , change their 
values every !  seconds, and these instances coincide with zero crossings of sine and cosine:

! (T.50.1)

! (T.50.2)

MSK type II modulated signals build upon the last definition of MSK type I signals, by 
replacing !  and !  with !  and ! .

2.4 Binary Symbol Detection 
A complex analyzer takes the band-pass signal !  as an input and extracts its baseband 

components. After this, it is still required to analyze the resulting waveforms to determine the 
binary sequences contained in them. In this section the theory necessary for detection of binary 
symbols will be discussed. It is assumed that !  and !  have been detected by an ideally 
synchronized coherent detector. 

We begin by investigating the expressions for baseband components for each of the 
modulation techniques. For convenience of the reader, these expressions have been reproduced, 
and can be examined in Table 2. 

For all the modulation schemes, the expressions can be divided into two parts. One part is 
! , the the line encoded representation of the binary sequence ! . This is what the receiver 
side has to determine in order to reproduce the digital message. The other part is a scheme-specific 
function. Since it is assumed that both parties are aware of the modulation scheme used, this part 
is known at the receiver. Thus, between any two instances, when !  or !  change their values, 
the only unknown parameter is  ! .
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In any time interval !  is valid, say from !  to ! , the baseband components of the 
modulated wave can analyzed using the concepts pertinent to a one-dimensional Euclidian signal-
space [3]. Note, that the duration of this time interval is modulation scheme-specific. Then, !  plays 
the role of the coefficient, and the term with which it is multiplied, plays the role of a basis 
function. Mathematically,

! (T.51)

where we define !  abstractly denotes the function with which !  is multiplied.

Given a one-dimensional signal-space we can determine the value of the coefficient !  
through a measure of orthogonality between the analyzed waveform and the corresponding basis 
function [3]. This can be done by means of a cross-correlation operation between the received 
baseband component and ! . 

ak (k − 1)T kT
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p(t) ak

Table 2: In-phase and Quadrature Components in Implemented Modulation Schemes
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! (T.52)

where ! (T.53)

here, !  is the energy of the basis function when measure over one interval. 
A device that performs the bit detection using as described by equation (T.52) is commonly 

referred to as the correlator receiver [4]. In general, a time offset !  should be considered in equation 
(T.53), where !  should be replaced by ! , but since the timing issues were not encountered 
in designing of the demonstration tool, any effects stemming from timing errors are beyond the 
scope of this work. 

Closer examination of Table 2 and equation (T.52) and (T.53) reveals that for modulation 
techniques, where the basis functions are exclusively rectangle functions with no other 
multiplicands, the operation performed by the correlator-receiver reduces to a much simpler scaled 
integrate-and-dump function. Scaling factor !  in that case is exactly equal to ! , the reciprocal 
of the integration interval. Such reduction can be explained if it is recognized that for rectangle 
functions the integrand in equation (T.53) is simply unity. 

Then the binary symbol is decided upon, after the calculated !  is processed by a decision 
making device, where it is compared to some a priori known threshold. In all the modulation 
techniques included with the final demo, except BASK, this threshold is 0. In BASK, it is half the 
value of !  for bit 1. In other words, half of the amplitude that the line encoder assigns to bit 1. 

If the bandpass assumption holds, then the cross-correlation operation can be used not only 
to determine ! , but also as a low-pass filter. The advantage of this is that we can use the correlator 
receiver to remove the high-frequency terms coming from the mixing operation in the coherent 
detector. This way, there is no need for another low-pass filter. 
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Chapter 3. Functional Design 
The discussion in this section will serve as a basis for final implementation of the 

demonstration tool and present an overview of what kind of systems have to be realized using the 
LabVIEW programming environment and its tools, to apply the theoretical approach developed in 
the previous chapter. 

To begin the design process of the demonstration, first a high-level block diagram of all the 
functions necessary to replicate a typical digital communication system in software was created 
and can be examined in Figure 4 (a) for the transmitter side and Figure 4 (b) for the receiver side. 

This diagram serves as a summary for the theory presented in the previous chapter. Each 
path in this diagram shows the necessary actions to convert the binary sequence !  into 
appropriate in-phase and quadrature baseband components. Labels on the paths indicate, which 
modulation techniques take that path. Branching of a path means that the modulation techniques 
that previously had to undergo the same operations will have to be treated differently from there 
on. 

First of all, any digital communication starts with the source of binary data emitting an array 
of binary symbols. This is the same for all modulation techniques involved.

{bk}
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(b)

Figure 4: Function block diagram of a band-pass communication system



First branching happens because of the fact that in M-ary modulation techniques such as 
QPSK and OQPSK, and the more involved MSK, the binary data stream !  has to be 
demultiplexed into odd- and even-indexed channels !  and ! . Furthermore, pulse 
shapes for each of these channels have twice the duration of what would be required from the 
binary modulation schemes.

Following this, the binary symbols should be line encoded and pulse shaped using one of the 
available line encoding schemes. It is important to recognize, that different modulation techniques 
require the binary symbols of the digital message to be line encoded in different ways. For 
example, while BPSK and BFSK require their binary signal !  to be ‘non-return-to-zero’ line 
encoded, BASK demands an ‘on-off’ line encoded binary signal. 

An additional function that has to be realized for OQPSK and MSK is the offset for one of the 
demultiplexed binary signals. In the diagram this is reflected as branching of the lower path. QPSK 
goes directly to the complex synthesizer. 

After having been time delayed, paths for OQPSK split, because while OQPSK requires no 
further manipulations and goes into the complex synthesizer, whereas MSK has to be sine shaped. 

In the meantime, in the top path another branching takes place. This is to indicate that much 
like MSK, for Sunde’s BFSK the binary signal has to undergo additional sine shaping. BASK and 
BPSK are to go directly to the complex analyzer. 

After all the necessary actions to convert the binary sequence !  into baseband 
components !  and !  have been completed, they are multiplied with the quadrature carriers 
by the complex synthesizer, which subsequently generates the !  by means of a subtraction. 

On the receiver side the sequence of events begins with a complex analyzer, that takes the 
waveform !  as an input and provides its baseband components !  and ! . 

Throughout the construction of this demonstration tool it was assumed that both parties 
involved in signal transmission are aware of what specific modulation scheme is used. This means 
that the waveform shapes that correspond to binary symbols are known at the receiver end. With 
that in mind, given !  and !  the receiver is able to detect the particular bit sequences encoded 
into these waveforms using the correlator-receiver and a relevant basis function !  as it was 
described in the Section 2.4. 

The output of the correlator is compared to a modulation scheme specific threshold and a 
decision between whether a binary symbol 0 or 1 was transmitted is made. 

Following this, if the modulation scheme was such that it required demultiplexing of the 
binary stream prior to line encoding, in this case QPSK, OQPSK or MSK, the original binary 
sequence can be restored by passing the outputs of the decision making devices though a 
multiplexer.  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b(t)

{bk}
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Chapter 4. Implementation 
The choice was made for students to have all the interaction with the final product through a 

limited set of top-level VIs. The students not concerned with the inner operation of the demo 
would not be required to know about how the VI works. However, because the demonstration tool 
is meant for educational purposes, the code governing its operation was written in a way that a 
student, or someone who is new to LabVIEW could understand it with little as little effort as 
possible. 

The demonstration tool was organized in an object-oriented manner. A top-level VI was 
created to carry the GUI of the demo as well as serve as the communication hub between other VIs. 
To aid to the top-level VI, additional VIs were created to implement various theoretical concepts 
following the design approach presented in the previous chapter. 

Attention was paid in order to ensure reusability of these auxiliary VIs if it is decided to 
extend the demo at some point in the future. Some of the auxiliary parts of the demo were coded in 
a way that would guarantee their satisfactory standalone operation. 

4.1 Block Diagram of the Top-Level VI 
The block digram of the top level VI was exported as an image file and can be viewed in 

Figure 5.
First, the entire code governing the operation of the VI is placed in a while-loop. This is for 

the top level VI to run continuously. It is also possible to launch the VI in the single execution 
mode if so is desired, by pressing the RUN ONCE button present of the front panel. In this mode 
the VI will stop the execution upon completion of the first loop. This proves to be advantageous if 
there is a need to run the VI using very high sampling frequencies or to simulate the transmission 
of very long digital messages. 

The block digram of the demo is divided into frames. In LabVIEW such a structure 
guarantees sequential execution of frames left to right. This is necessary in order to ensure the 
correct order of execution of various operations. For example, this is necessary to prevent having 
the spectrum of the simulated received signal being shown, before the bits of the digital message 
are received and detected.

�27



�28

Figure 5: Block diagram of the top-level VI



4.1.1 Frame 1. Setup 
We begin the discussion with the leftmost pane. This pane is used to allow an “engine lock” 

behavior for the top-level VI. Should the user not flip the START toggle on the front panel, the 
execution of the top-level VI will not continue past this frame. Moreover, a second boolean control 
present in the while-loop included in this frame allows the user to pause the execution of the 
demonstration tool without stopping the execution of the virtual instrument. This is useful in cases 
when one wants to investigate an element on the front panel or place a probe somewhere on the 
block diagram without the problem that the values are soon going to be updated in the next loop 
of the VI.  

4.1.2 Frame 2. Message and Variable Specification. Binary 
Wave Generation 

The main operation of the top-level VI begins in the second frame. Here in the bottom box 
the ‘message’ cluster can be seen. This cluster consists of three variables:

• User input message,
• A boolean variable determining whether the user input string is used, or a random one is 

generated instead,
• An integer that specifies what the length of the randomly generated string should be.

Generation of the random string is done by [randomWord.vi]. The block digram of this subVI 
can be examined in Figure 6, where its operation is explained by the means of comments.

At the left side of the top box in Figure 5 one can see the 5 variables specified by the user on 
the front panel: 
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Figure 6: Block diagram of [randomWord.vi]



• Carrier frequency 
• Modulated energy per bit
• Sampling frequency
• Bitrate
• Modulation scheme

These variables are combined into a cluster and sent to the [globalInitialization.vi] along with 
the ‘message’ cluster created by [randomWord.vi]. [globalInitialization.vi] takes these variables 
and does two functions. Firstly, it calculates new values that will be used later, such as the carrier 
amplitude according to the convention that was discussed in Section 2.1.4. Secondly, it passes all its 
inputs and the values it has calculated into the global variable [globalDigitalModulation.vi]. 

Global variables are a LabVIEW paradigm that allow different VIs to share values regardless 
of whether they are in the same hierarchical tree or not. The main reason to use them in the demo 
is to improve presentation on the block diagram. Calculations are done by placing blocks and 
connecting them with wires, which leads to unnecessary clutter. By having the values be easily 
accessible when needed eliminates the requirement to have them calculated locally every time they 
are needed.

The most important function carried out in this frame is done inside the 
[stringInBinaryComponentsOut.vi] subVI; its block digram can be examined in Figure 7. Here:

• The user-specified or randomly generated string is converted into ASCII values;
• Each ASCII value is converted into binary representation;
• Bits of the ASCII values are demultiplexed;
• Both demultiplexed and original binary streams are line encoded and subsequently pulse 

shaped by [lineEncoder_Mk2.vi], a second-level SubVI.
• The sampling information cluster is generated. 
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Figure 7: Block diagram of [stringInBinaryComponentsOut.vi]



In LabVIEW to be able to use various function generators a special kind of data cluster, called 
“sampling info” is required. Hence, the ‘sampling info’ cluster generated in 
[stringInBinaryComponentsOut.vi] subVI is central to ensure correct operation of the 
demonstration tool. This cluster contains two elements:

• Sampling frequency - Sampling frequency indicates what is the is the sampling interval dt 
used in waveform data types. [stringInBinaryComponentsOut.vi] uses sampling frequency 
specified by the user to define this element. In order to perform any mathematical operations 
on two waveform data type signals they need to have equal sampling frequencies. 

• Number of samples - This element indicates the number of samples contained in the 
waveform data type signal. 

Waveform data type (WDT) signals are used in LabVIEW as a way to represent time-domain 
signals. WDT is a collection of three separate LabVIEW entities:

• dt - This value of type double indicates the time between two samples in the Y-array. It is 
equal to the reciprocal of the sampling frequency specified by the user. 

• Y-array - This is an array that represents the sampled version of an analog signal. 
• t0 - This is a variable of LabVIEW data type called “timestamp”. This is the time of 

occurrence of the first sample in the Y-array. 

4.1.3 Frame 3. Baseband and Bandpass Signal Generation 
In this frame procedures necessary to embed the binary waveform into the baseband 

components of the band-pass signal take place. This frame contains a case structure, which is the 
LabVIEW equivalent of if-else statements found in the text based programming languages. This 
case structure has one case per modulation schemes used. Below, operations done in case of each 
modulation schemes are discussed.

Case 1. BASK.


In [stringInBinaryComponentsOut.vi] the binary sequences were line encoded only using the 
‘non-return-to-zero’ line code. Such a decision was justified by the fact that of all the modulation 
techniques only BASK requires a different line code. ‘On-off’ keying used by the BASK can be 
obtained from the ‘non-return-to-zero’ line code by first offsetting the NRZ line encoded binary 
signal by an amount that represents a logical one and dividing the offset waveform by two. This is 
sufficient to obtain a binary waveform that conforms to what was discussed in Section 2.3.1. 

Case 2. BPSK

BPSK requires no further manipulation of the NRZ line encoded binary signal. The output of 

the [stringInBinaryComponentsOut.vi] subVI can be directly used as the input to the complex 
synthesizer. 
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Case 3. QPSK


Because [stringInBinaryComponentsOut.vi] not only pulse shapes the full original binary 
sequence, but also its odd- and even-indexed bits, the outputs resulting from 
[stringInBinaryComponentsOut.vi] can be already be used to feed the complex analyzer, with no 
additional actions necessary.

Case 4. OQPSK

On the grounds of the fact that the only difference in baseband components of QPSK when 

compared to OQPSK is the time offset necessary for one of the channels, the only extra 
functionality required in order to proceed was the time offset. This was implemented by the 
[bitStreamOffset.vi] subVI. The block diagram of this subVI can be found in Figure 8, where its 
exact operation is explained in the comments. 

Case 5. Sunde’s BFSK

Generation of Sunde’s BFSK was carried out according the equations (T.45.1) and (T.45.2), 

rather than (T.46.1) and (T.46.2). For this purpose a subVI named [sundeModulator.vi] was created. 
In order to perform the integration operation the built-in [integral x(t).vi] block was used, 

and the default option for the integration method — the Simpson’s rule — was not changed, as it 
performance proved to be sufficiently adequate.
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The full binary waveform generated by [stringInBinaryComponentsOut.vi] was normalized 
such that its amplitudes is confined to the values of +1 or -1 to ensure proper operation. Because 
the information about the modulated bit energy was contained in the amplitude of the binary 
waveform, the outputs of the cosine and sine operators had to be multiplied with the initial 
amplitude of the binary waveform. This ensures that the energy per bit in the resulting modulated 
waveform is at the right value. 

Case 6. MSK (type I)

Baseband components for MSK type I were generated using the two odd- and even indexed 

binary waveforms outputted by [stringInBinaryComponentsOut.vi]. 
First, as prescribed by formulation in equations (T.49.1) and (T.49.2), one of the channels was 

offset from the other by one bit duration using the [bitStreamOffset.vi] subVI, previously 
mentioned in Case 4.

[sundeModulator.vi] was used with the same parameters for the integration method and the 
same adjustments were made to the binary waveforms involved to ensure that the energy per bit 
in the resulting modulated waveform is at the right value.

Case 7. MSK (type II)

Using the odd- and even indexed binary outputted by [stringInBinaryComponentsOut.vi], 

in-phase and quadrature components of the modulated wave for MSK type II were obtained 
according to the formulation presented in Section 2.3.6. 

Because of the particular method of operation of [bitStreamOffset.vi] multiplication of the 
even- and odd-indexed binary waveforms with the sine and cosine half-cycles needed to precede 
the offsetting operation rather than succeed it. The multiplication action was realized in 
[mskShaping.vi].

The offsetting operation was carried out using [bitStreamOffset.vi] yet again.  

The Complex Synthesizer

For all modulation techniques cases are terminated at the [complexSynthesizer.vi]. This VI 
performs two monumental tasks:

• It modulates the two quadrature carrier with the incoming in-phase and quadrature 
components. This is done simply by multiplication in agreement with equation (T.11). 

• It sends the waveforms of the baseband components to a global variable [globalUSRP.vi], 
which is used to enable the transmission over the loopback cable using the USRP. 

4.1.4 Frame 4. Noise Simulation. 
In this frame a Gaussian distributed white noise is added to the modulated wave generated 

in the previous frame. The noise variance is defined by the user on the front panel.
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4.1.5 Frame 5. Band-pass to Baseband Demodulation, Bit 
Detection 

Frame 5 is the simulated representation of a receiver. Due to the fact that different 
modulation schemes dictate different detection strategies, a case structure is used to enable 
scheme-specific demodulation. 

The Complex Analyzer

All cases in the case structure begin with a complex analyzer implemented in the subVI 
called [complexAnalyzer.vi]. Design of this subVI only implements ideally coherent demodulation.

The operation of the complex analyzer is governed by the quadrature null effect. Received 
modulated waveform is multiplied by two locally generated quadrature carriers. High frequency 
components created as a result of such mixing in the receiver are to be removed. It Section 2.4, it 
was already mentioned that this can be achieved in two ways: by using a dedicated low-pass filter, 
or leaving the high-frequency components to be removed by a correlator receiver, later in the path, 
when the bit detection is carried out. 

In the final demo both approaches have been realized. Such redundancy was necessary since 
results of both approaches proved to be useful in in implementations of other portions of the 
demo. Because of that, [complexAnalyzer.vi] has four outputs: two for the mixed, but unfiltered 
signals, and two for the mixed and filtered. 

First we will consider the design consideration pertaining to a dedicated lowpass filter. It the 
block diagram of [complexAnalyzer.vi] twin filters can be noticed in the rightmost box. This filter 
was implemented using the built-in LabVIEW Filter Express VI. The filter was configured to be a 
finite impulse response filter with the maximum possible 511 taps for best possible performance, 
and a cut-off frequency equal to the carrier frequency, as it was defined by the user. The choice for 
the carrier frequency is justified because after the mixer, the higher frequency components are 
shifted to twice the carrier frequency. As a result, the spectrum between ! , which denotes the 
bandwidth of the digital message, and !  is empty. 

Filter Express VI executes the filtering process by means of discrete convolution, which has 
an undesirable side effect of introducing 255 leading zeroes to the beginning of the waveform and 
accompanying removal of 255 samples from the end of the waveform. Supposedly, this is to have 
the same lengths for input and output waveforms. 

To counter this a special set of support VI named [zeroPadder.vi] and [zeroRemover.vi] have 
been created. [zeroPadder.vi] introduces 511 trailing zeroes to the waveform before it enters the 
filter. When filtering action happens, the waveform is offset by 255 samples to the right, but since 
the waveform was padded with zeroes no information is lost. Subsequently, to ensure that length 
of the waveform is restored to what it was before the [zeroPadder.vi], [zeroRemover.vi] takes 
action by removing 256 leading and 255 trailing samples. 

W
2fc
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Scheme-specific Demodulation Strategies 

On the grounds of the fact that after the complex analyzer the system behavior in this frame 
is scheme-specific, the discussion is going to continue in the manner similar to Frame 3. Each of the 
cases in the case structure will be individually touched upon. 

Case 1. BASK

For BASK modulation scheme the mixed but unfiltered in-phase component of the 

modulated wave is directly passed to the [integrateAndDump.vi]. This subVI was designed to 
implement the theory that was discussed in Section 2.4.

Integration is carried out every bit duration and the resulting values, in the form of an array, 
are passed to the output terminals for subsequent comparison to a threshold. 

Comparison is accomplished by employing the [comparator.vi] subVI, where each element in 
the output array produced by [integrateAndDump.vi] is compared to a threshold. Threshold for 
BASK was determined to be equal to line encoded amplitude for bit 1 times bit duration divided 
by two. This value conforms to what was said about the BASK threshold in Section 2.4. 
[comparator.vi] outputs the bits as an array of boolean data type.

Case 2. BPSK

To extract the binary information, processing actions executed for BPSK scheme are the same 

as for BASK, with the only difference being the usage of a different value as the input to 
[comparator.vi]. For BPSK — and as it was mentioned in Section 2.4 — for all the other 
implemented schemes, except BASK, the threshold is equal to 0. 

Case 3. QPSK

Based on the fact that one way to interpret QPSK is to view it as two parallel BPSK signals, 

there is significant similarity in methods of detection as well. 
First, mixed and yet unfiltered signals from [complexAnalyzer.vi] are applied to two parallel 

[integrateAndDump.vi] subVIs. Integration intervals are adjusted to be equal to two bit durations, 
in order to correctly reflect the duration of the basis function. 

Finally, two boolean data type arrays, corresponding to the odd- and even- indexed bits of 
the original digital message are interleaved.

Case 4. OQPSK

First, the unfiltered signals obtained from the [complexAnalyzer.vi] subVI are processed in 

order to remove the the offset that was introduced in frame 3 by [bitStreamOffset.vi]. This is 
accomplished by the supporting VI called [bitStreamOffsetRemover.vi]. At the output of this VI the 
signals are identical to what would have been the mixed unfiltered signals obtained from 
[complexAnalyzer.vi] should the modulation scheme have been QPSK instead of OQPSK.

�35



Because of this equivalence, further operations done in this frame are the same as in the case 
of QPSK. The signals are passed through an [integrateAndDump.vi], whose outputs are then 
compared to a threshold in [comparator.Vi]. Two resulting boolean arrays are subsequently 
interleaved.    

Case 5. Sunde’s BFSK

In Sunde’s BFSK, the entire bit sequence can be extracted solely from the quadrature 

component, the role of the in-phase components is only to maintain the envelope of the modulated 
wave constant. For this reason, only the mixed quadrature signal is considered. Detection of binary 
symbols is accomplished as follows.

First the unfiltered quadrature component of the modulated signal is applied to the 
[mskShaping.vi] subVI. Here, the signal is multiplied with the sine function whose half cycle 
equals the bit duration, in order to produce the integrand of equation (T.52). 

Next, the product created in [mskShaping.vi] is fed to [integrateAndDump.vi], whose output 
is then passed to [comparator.vi] to produce the binary sequence. 

Case 6. MSK (type I)

First, in a manner similar to OQPSK, the offset added on the transmitter side is removed by 

[bitOffsetRemover.vi]. Following this, both in-phase and quadrature channels are multiplied with a 
sine waveform, whose period is equal to four bit durations. This is done as it was in case of the 
Sunde’s BFSK using the [mskShaping.vi] subVI to produce the integrand of equation (T.52). Next, 
[integrateAndDump.vi] performs the coefficient detection in accordance to (T.52). Decisions on 
whether bit 0 or a 1 was transmitted are made by twin [comparator.vi] subVIs, and the resulting 
arrays are interleaved. 

Case 7. MSK (type II)

For this scheme, detection method is almost identical to what is mentioned above for MSK 

type I; the only difference being the fact that in [mskShaping.vi] an absolute value operator is used 
to rectify the sine waveform. 

Finalizing the Detection 

Continuing, bit sequences obtained at the end of each case are sent as inputs to 
[binaryArrayToString.vi], where they are converted back into string format to be displayed to the 
user as a proof of the fact that the transmission has ended. In case the noise functionality was 
enabled, the user can then investigate how the message has been affected, as the modulated wave 
became subject to channel noise. 
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Looking at the block diagram of frame 5, one can notice a second case structure labelled 
“USRP path”. This case structure processes the in-phase and quadrature components that were 
received using the USRP. Since USRP only outputs the baseband components of the received band-
pass signal, there is no need for a complex analyzer. To detect the bits sent over the loopback cable, 
all cases in this case-structure are duplicates of the previously described methods used for bit 
detection from the simulated modulated waveform. This is allowed since the correlator-receiver 
has the dual functionality of being both a filter and a line code detection device as was mentioned 
in Section 2.4. 

4.1.6 Frame 6. Determining the Bit Error Rate 
Frame 6 contains a single [bitErrorRate.vi] subVI. Its function is to keep track of how many 

bits were received erroneously. This is accomplished by giving this VI access to two message 
strings, that are the transmitted one and the one received at the end of frame 5. 

Inside the [bitErrorRate.vi] subVI both message strings are converted back into binary 
sequences, which are subsequently compared to one another, on a bit by bit basis. 

4.1.7 Frame 7. Graphing 
Code for graphing of select waveforms is placed in this frame. Such concentration of all the 

graphing functionality of the demo into a single frame greatly reduces clutter and helps the VI stay 
more organized. 

A few graphing subVIs can be seen in this frame. Of these [magnitudeSpectrumAverage.vi] 
and [displayComponentsUnitCircle_Mk2.vi] are worth mentioning.

The former provides a more informative frequency spectrum of the modulated signal, if 
transmission of random words (as opposed to user defined words) was enabled. By averaging the 
magnitudes over multiple random transmissions, displayed frequency spectrum is closer to 
theoretical smooth curve, often shown in literature in comparison to the some simulated curve.

The latter plots the baseband components of the modulated band-pass signal coming out of 
frame 4 on a unit circle. The front panel of this subVI opens automatically when the top-level VI is 
opened.  

4.1.8 Outside the Sequence Structure 
Outside the flat sequence structure one can see a few groupings of LabVIEW code. This code 

governs the execution of some of the implemented front panel functionality, as well as other 
functionality necessary to ensure proper execution of the demonstration tool. 

GUI functionality implemented to increase user-friendliness
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4.2 Incorporating the USRP 
The LabVIEW environment in the host computer is used to generate the in-phase and 

quadrature components of the signal that is to be transmitted. This means that the digitally 
modulated signal can be delivered to the USRP in one of the two ways, which warrant different 
implementation approaches:

1. The band-pass modulated signal for a given digital modulation scheme can be generated 
in the LabVIEW software environment and be assigned to either the in-phase or quadrature 
channel of the USRP, while leaving the other channel vacant. The modulation in LabVIEW 
would be done with a carrier of an intermediate frequency. In this approach, the USRP would 
play the role of a frequency up-converter.

2.  The band-pass signal is not generated in the LabVIEW environment, and instead the 
baseband components expected by the USRP are formed and then sent for transmission to the 
USRP. In this case, the signal sent over the loopback cable would be generated by frequency 
translation of the complex baseband representation of the modulated signal to the carrier 
frequency. 

Both options have their advantages and disadvantages. In the first case, it would be 
advantageous to have the entire modulated waveform go through the loopback cable, because the 
effects of the channel on the modulated waveform would be clearly evident upon reception. The 
major setback in using this approach, however, is the fact that this would require having to 
accommodate sampling rates of at least 185 kS/s in software. For lower end machines this would 
result in sub-par performance of the demonstration tool exemplified by slow response times in 
interactions with the GUI, freezing of the mouse cursor, and could even lead to irresponsiveness 
and subsequent crashing of LabVIEW.

If the second approach is chosen, only the lower frequency baseband components of the 
modulated wave would be accessible at the output of the loopback cable. The obvious advantage 
in choosing this option is the possibility to choose lower values for sampling frequencies, however 
the modulated band-pass signal is then left unseen. 

Since the final purpose of this demo is to be used by students who do not necessarily have 
access to more powerful computers, the second approach was found to be more appropriate. 

4.2.1 USRP Communication Path 
Communication over the USRP was realized to be independent of the simulated 

communication. The USPR is incorporated into the demo in a parallel rather than series manner.
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Separate VIs control the transmitter and receiver sides, when sending data over the USRP. 
Transmission is managed by [usrpSend.vi] and reception by [usrpReceive.vi]. Both of these VIs are 
configured using the global variable [usrpGlobal.vi]. Configuration values in [usrpGlobal.vi] 
include the carrier frequency, the sampling frequency, the transmission and reception gains and 
USRP’s IP address and antenna names. 

In the demonstration tool, data is communicated to the USRP in the following manner. In 
[digitalModulation.vi] VI, simulated transmission path for all the modulation schemes includes the 
[complexSynthesizer.vi] block. Here, the in-phase and quadrature baseband components of the 
modulated wave are written to the [globalUSRP.vi] global variable. In turn, [usrpSend.vi] reads the 
values from this global VI and writes the data to the USRP after necessary configuration routines 
have been completed. This happens continuously and the data is written as long as the 
[usrpSend.vi] is running. 

Similarly, data received from the USRP is accessed by reading the values that 
[usrpReceive.vi] has written to [globalUSRP.vi]

 
Having [globalUSRP.vi] as a figurative middleman, allows the entire USRP communication 

path to operate independently.  Thus, should the main VI be completely replaced, no modification 
will be required to the subVIs pertaining to the USRP. 

4.2.2 USRP Special Considerations 
Using the USRP gives rise to two problems that are not encountered in the transmission 

which is simulated in software. First, the USRP receives a specified number of samples and 
presents these as an array of complex double values. The issues is that unless appropriate 
measures were taken, there is no indication of where the beginning of the waveform is. In other 
words, given a reception of any number number of samples, there no way of knowing which of the 
samples represent the first bit. Second, the USRP is not capable of coherent detection, and thus 
there is mutual leakage between the in-phase and quadrature channels. In what follows, the 
methods used to resolve these problems are going to be shown.

To mark the beginning of the waveform, before it is written to the USRP, the array of samples 
is modified. A single sample is added with an amplitude twice as much as that of any other 
sample. On the receiver side, built-in LabVIEW function block called “Array Max & Min” can be 
used to locate the marked sample. Subsequent samples are then rearranged in order to conform to 
the original sequence that was written to the USRP and the marked sample is removed. 

The second issue manifests itself as follows. Consider the in-phase channel of a complex 
analyzer. With correct operation, i.e phase error ! , the output of the low-pass filter, here 
denoted as !  should be:

ϕe = 0
v0(t)
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! (I.1)

! (I.2)

but with some non-zero phase error the correct value is attenuated by a factor equal to !  and 
the quadrature component scaled by !  is superimposed. This effect can be formulated 
mathematically as follows:

! , (I.3)

where !  represents the erroneous complex envelope at the output of the USRP. It can clearly be 
seen that  correction can be done by multiplying the erroneous complex envelope !  by 
! , however a method needs to be developed in order to determine ! . 

The phase can be determined if it is a priori known that only the in-phase channel of the 
complex analyzer is non zero. 

!  = ! , (I.4)

Then, with in-phase and quadrature components of !  denoted as !  and ! :

! (I.5.1)

! (I.5.2)

! (I.5.3)

! (I.5.4)

Subsequently, !  is defined as:

! (I.6)

To ensure correct operation of the USRP, this method is implemented as a handshake routine 
between the [usrpSend.vi] and [usrpReceive.vi]. The handshake routing takes place automatically 
and requires no user interaction. In what follows how the handshake is established will be 
described as it takes place step-by-step. 

First, when [usrpSend.vi] is run, it checks a boolean variable ‘bool ph error’ in 
[globalUSRP.vi]. This boolean variable indicates whether the correction factor !  has been 
determined. If the boolean is true, the system is already synchronized and the data from 
[globalUSRP.vi] is sent after necessary manipulations such as inclusion of the marked sample to 
indicate the beginning of the waveform and amplitude normalization to avoid DSP overflows.

If the boolean is false, the handshake routine is initiated. A preformed waveform of 1000 
samples is sent over the loopback cable by [usrpSend.vi]. No information samples are sent to the 
USRP as long as the handshake has not been finalized. 

v0(t) = sI(t)cos(ϕe) + sQ(t)sin(ϕe)

v0(t) = sI(t)cos(0) + sQ(t)sin(0) = sI(t)

cos(ϕe)
sin(ϕe)

s̃′�(t) = s̃(t)exp(ϕe)

s̃′�(t)
s̃′�(t)

exp(−ϕe) ϕe

s̃(t) sI(t)

s̃′�(t) sI′�(t) sQ′�(t)

s̃′�(t) = s̃(t)exp(ϕe) = sI(t)cos(ϕe) + jsI(t)sin(ϕe)

sI′�(t) = sI(t)cos(ϕe)

sQ′�(t) = sI(t)sin(ϕe)
sQ′�(t)
sI′�(t)

= tan(ϕe)

ϕe

ϕe = tan−1 (
sQ′�(t)
sI′�(t) )

ϕe
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Next, to continue the handshake establishment, [usrpReceive.vi] should be launched and 
run. When usrpReceive.vi reads data from the loopback cable it check the same boolean variable 
‘bool ph error’  in order to find out if the phase error has been determined. 

Because of the fact that a constraint is placed on [usrpSend.vi] to not send any data samples if 
‘bool ph error’ is false, a true value signals that the incoming samples are data samples, while a 
false value for ‘bool ph error’ tells that the samples read from the USRP are meant to finalize the 
handshake. 

If ‘bool ph error’ is read as false, this results in a function call made to a subVI called 
[usrpFindPhaseError.vi], which determines the phase error as was prescribed by equation (I.some) 
through (I.some). After !  is found, its value is written to [globalUSRP.vi] and ‘bool ph error’ is 
toggled to become true. The handshake routine is  hereby completed.

After this, [usrpSend.vi] is permitted to start sending the data samples to the the USRP, 
because ‘bool ph error’ has changed its value. These samples are received by [usrpReceive.vi], 
corrected in accordance to equation (I.3), and written to [usrpGlobal.vi] to be read from the main 
[digitalModulation.vi].  

ϕe
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Chapter 5. Results and 
Discussion 

A screenshot of the front panel of the finalized demonstration tool has been taken and can be 
observed in Figure A.

The user interface was organized into three main parts: graph tabs, controls and data. 

Controls are the values that are used by the demonstration tool in order to make the 
implementation discussed in the previous chapter possible. Data are the values returned by the 
implemented system. Various signals generated in the demo are displayed as graphs. 

5.1 Operation of the Demonstration Tool 
Correctness of operation of the demo was judged by how accurate the graphs in both time 

and frequency domains are. In what follows, performance of the demo using these criteria will be 
discussed.
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Figure 9: GUI of the demonstration tool



5.1.2 Time Domain View 
In this section, the performance of the demo with regards to correctly displaying the time 

domain representations of signals in various places of the communication system will be assessed. 
Due to the fact that all of the realized modulation techniques were digital in nature, special 
attention was paid to whether or not the time domain graphs of the modulated waves were in 
agreement with theory at the bit switching instances. 

The time waveform view is most useful for the BASK modulation technique, where the shape 
of the modulated wave changes significantly from bit to bit. Looking at the waveform, it is obvious 
whether at any given time a logical zero or a logical one is being signaled, since for the former case, 
the envelope of the modulated wave is reduced to zero. A time domain graph displaying a BASK 
modulated band-pass signal can be observed in Figure 10. 

For other modulation techniques, the envelope of the band-pass signal is constant. 
Examining the time waveforms in their entirety does not provide any reasonable insight into how 
transmission of a certain binary symbol is reflected on the modulated signal. For this reason, 
dedicated controls were introduced on the front panel of the main VI, which focus the X-axis of the 
time waveform on a user-chosen bit transition. This allows the user to clearly observe that for 
example in case of BPSK, at the instance when a different bit is emitted from the source of binary 
data, the modulated wave undergoes a discontinuity of 180 degrees. 

A screenshot of the time waveform graph showing the behavior of the simulated BPSK 
waveform when the binary symbol was switching from 1 to 0 is shown in Figure 11. 
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Figure 10: Time domain view of a BASK modulated signal



For frequency shift keying techniques like Sunde’s BFSK and MSK, the band-pass signal 
should not experience any discontinuities. This is correctly shown in the demo and the behavior of 
the demo agrees with theory. Time waveforms for both SBFSK and MSK, exhibit no phase jumps 
when the bit changes. On Figure 12 it can be seen that for Sunde’s BFSK, when the binary signal 
changes its value, there are no phase jumps in the modulated wave. 
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Figure 11: Time domain view of a BPSK modulated signal

Figure 12: Time domain view of a Sunde’s BFSK modulated signal



However, examining Figure 12 another issue can be identified. This has to do with the fact 
that both to the left and to the right of the switching moment, the modulated waveform seemingly 
looks the same. Since for the waveform on Figure 12, the carrier frequency is 10 kHz, and the bit 
rate is 10 bits per second, the difference in frequencies between transmitting a logical one and a 
logical zero is merely 10 Hz. It is clearly impossible for a user to distinguish between frequencies of 
9990 Hz and 10010 Hz. For this reason, another special control was implemented, which changes 
the carrier frequency from whatever was chosen by the user to 40 Hz to make the waveforms 
corresponding to bits 0 and 1 more distinguishable. The control is realized in the form of a boolean 
button. In the GUI of the demo it can be seen as the green check-mark next to the carrier frequency 
slider. 

In addition to the waveform for the modulated wave, GUI controls of the demo can be used 
to plot a variety of other relevant waveforms. For example, the in-phase and baseband components 
of the modulated wave can be chosen to be displayed alongside the RF waveform to better 
understand its formation. Using the plot visibility checkboxes that can be found on the top right-
hand corner of the graph, the various waveforms can be made visible. 

After examination of the time domain representations for all the implemented modulation 
schemes, the demo’s performance was found to be accurate and satisfactory. 

5.1.2 Frequency Domain View 
The graphs present in the frequency domain tab were assessed on how accurately they 

portray the frequency spectrum of the modulated wave. Spectra for other signals in the 
communication path are rarely studied in the course book. Because of that, it was decided to limit 
the drawn spectra to only include the modulated wave and the binary wave. 

Given the fact that in the course book, for various modulation techniques, both the 
theoretical and the experimental spectrum curves have been depicted, it was decided to include a 
functionality to allow the the demo to imitate the theoretical curve. This was made possible via the 
realization that in case the spectrum is averaged over multiple random binary message 
transmissions, the experimental curve will begin to smooth out. In part (a) of Figure 13 spectrum 
obtained from transmission of single random three-character sequence is shown, while in part (b) 
the spectrum has been averaged over 300 transmissions. It can clearly be seen that the smoothed 
out curve is much better suited for educational purposes. 

It was checked whether the bandwidth of the modulated signal is an agreement with the 
theory presented in the book. Furthermore, it was investigated if the overall shape of the spectrum 
around the carrier frequency is the same as theory predicts. 
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For example, it was confirmed that the spectrum of a BPSK modulated is signal is smooth 
around the carrier frequency and its bandwidth is indeed equal to ! . For Sunde’s BFSK it was 
confirmed that the spectrum of the modulated wave had two peaks centered at the carrier 
frequency with a spacing of !  Hz.  Plots showing this can be found in Figure 14 for BPSK and 
Figure 15 for Sunde’s BFSK.

 For all the modulation techniques realized in the demo, no inaccuracies have been found in 
plots of the spectra.  

5.2 Noise Implementation 
Added channel noise was implemented in the demo. It is specified by the user in terms of 

variance of the random variable that is superposed to each sample of the modulated signal. In 
Figure 16, the time waveform of a noisy QPSK modulated signal with noise variance equal to 4 can 
be observed. For the same signal, the spectrum has been plotted in Figure 17, where presence of 
noise can be observed by noticing a considerable noise floor. 

2/Tb

1/Tb
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(a) (b)

Figure 13: Spectrum of the BASK modulated signal for: 
(a) transmission of a single random binary sequence; 
(b) averaged over 300 transmissions of random binary sequences

Figure 14: Averaged spectrum of 
BPSK modulated signal with bit duration 
of 0.1s.

Figure 15: Averaged spectrum of 
SBFSK modulated signal with bit duration 
of 0.1s.



Due to the time constraints, a full analysis of the effect of the channel noise was not carried 
out. A display was implemented that shows the expected error bit error rate given a certain value 
for the noise variance, according to the theory presented in the in Chapter 10 of the course book 
[1]. 
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Figure 16: Time-domain view of a QPSK modulated signal with 
added Gaussian distributed noise with variance equal to 4.

Figure 17: Frequency-domain view of a QPSK modulated signal 
with added Gaussian distributed noise with variance equal to 4.



The main obstacle preventing the inclusion of the noise analysis into the scope of this work 
was stemming out from the discrete-time nature of the demo. Should the noise analysis be 
completed, then it would have had to be done using the noise theory pertinent to discrete-time 
noise. 

5.3 Discussion about the GUI 
In designing of the graphical user interface particular attention was paid in order to make it 

as intuitive as possible. As a result, all labels for controls and indicators on the front panel of the 
main VI were chosen to coincide with the terminology used in the course book. Controls were 
designed in the form of sliders to imply to the user, what the recommended minimum and 
maximum values for each control are.

Also, as time permitted, functionality of each VI was explained in properties of the VI. This 
would result in a context help window showing the description of a custom made VI. An example 
of this is shown on Figure 18. 

In addition, properties of controls and indicators on the front panel, with functionality that is 
not straightforward or requires more explanation have been modified in order to display tip strips, 
when the mouse cursor is hovered on them. For example, the green check mark button on the front 
panel of [digitalModulation.vi] has been modified in this way and the result is shown in Figure 19. 
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Figure 18: Context help window showing information about a 
custom-made VI.

Figure 19: A tip strip displaying more information.



One of the limitations of the GUI, at the time of completion of this work, was the fact that it 
was not possible to have the front panel of [displayComponentsUnitCircle_Mk2.vi] be included on 
the front panel of [digitalModulation.vi]. The front panel of this VI, that places the baseband 
components of the modulated wave on a unit circle is shown in Figure 20. Possible methods to 
achieve that have been investigated. It was found that do accomplish that much more time would 
needed to be invested into studying LabVIEW environment and its more complicated paradigms.

An advantage of keeping the GUI simple is that the user manual created to help students 
accustom themselves to the demo can be kept short. 

5.4 Discussion about the USRP 
USRP was implemented to be a part of the demo via the auxiliary VIs. This implementation 

allows the USRP to be disconnected form the host computer at any moment and not cause any 
errors to the main VI. In addition, the chosen realization for the USRP allows the the students to 
fully utilize the demo outside of the laboratory environment. 

The performance of phase error correction mechanism of the USRP was found to be highly 
satisfactory. Correction is done in a fraction of a second without paying close attention is almost 
impossible to notice. 
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Figure 20: Front panel of [displayComponentsUnitCircle_Mk2.vi]



However, it should be stated that the claim that using the USRP can help the students better 
understand the concepts given in the course book was found to be highly arguable. Its utilization 
does not provide any valuable information that the simulated communication path does not by 
itself. 

Transmission of an MSK modulated signal through the loopback cable was tested and the 
resulting phase-corrected in-phase and quadrature components have been plotted in Figure 21.

Also, the baseband components of the same, but entirely simulated MSK modulated wave 
were obtained. These are plotted in Figure 22.

As it can be seen, having the signal travel an actual communication medium did not produce 
any observable differences.  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Figure 21: Baseband components of an MSK modulated signal received from the USRP

Figure 22: Baseband components of a simulated MSK modulated signal



Chapter 6. Conclusions 
6.1 Conclusions 

In the course of this bachelor assignment a demo has been created to serve as a helping tool 
for students following the Communications course. For this reason, the demo is highly optimized 
to be used in unison with the course materials. The demo covers the fundamentals of digital 
modulation and provides experimental capabilities to compliment the course material. 

The finalized demo is suitable for both classroom and personal use. This was made possible 
by parallel rather than serial integration of the USRP into the demo.

Implementation of the demo was carried out using the LabVIEW software and 
accompanying USRP hardware. Using the LabVIEW software the demo was realized into a single 
top-level VI and 35 subVIs performing various functions. 

Noise was implemented in the demo in a limited manner, with its effects not being studied, 
due to discrete-time nature of the simulated noise, making it a rather involved subject, together 
with the time restrictions of a B.Sc. assignment.

Although at the outset of this assignment the emphasis was placed on the usage of the USRP, 
a multitude of experiments have shown limited benefits of its addition into the demo. Signals 
received from the USRP did not differ from those obtained entirely from simulation.

The infrastructure created to realize the USRP communication and the main VI with its 
respective subVIs have been designed to operate independently from one another with a LabVIEW 
global variable linking the two together. VIs created to implement the communication over the 
USRP can be used with any similar demonstration tool created in the future. To ensure 
compatibility of the newly created demos and the USRP infrastructure only a limited number of 
requirements have to be met. 

6.2 Future Work  
Given the educational purposes, in the future it is suggested to expand the demo by 

expanding the simulated path of communication rather than stronger USRP incorporation. With a 
strong framework of the present demo it is possible to use various function blocks that can operate 
in a standalone fashion. There is a high degree of reusability to enable expandability with relative 
ease. Possibilities for expansion of the demo include:

• In addition to the rectangular pulse shaping used in this demo, more pulse shaping 
techniques can be demonstrated.

• Furthermore, it is suggested to invest effort into proper simulation of noise to allow better 
understanding of the effects of the channel noise. 
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Finally, in the context of the Communications course, it is strongly suggested to completely 
eliminate the USRP from future demonstration tools, given its limited educational value, high 
operational costs and expensiveness to procure. 
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