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Management summary 

 

Thales Nederland B.V. is mainly involved in naval defence systems, among others radar systems. A quite 

new concept within Thales is the offering of after-sales services in combination with a performance-based 

service contract. The Dutch defence organization has agreed to make use of the services for six radar 

systems. The corresponding service contracts state that Thales is responsible for meeting a supply or 

system availability of 90% per year, otherwise a penalty applies. To be able to meet the requirement, 

Thales needs to set up a supply chain network for the handling of spare parts and execution of repair, 

production and new buy processes in case of LRU (Line-Replaceable Unit) failures in the system.   

The required spare part stock levels are, among others, dependent on the part failure rates. The main 

group of parts in the radar systems can be classified as electronic components. Thales predicts the failure 

rates under the well-founded assumption in the literature that the failure rates of electronic components 

remain constant during their lifecycle. Given the estimates, the initial spare part stock levels would be 

determined. As operational failure data will be gathered in the coming years, failure rate estimates could 

be updated to correct for unknown differences between the initial estimates and the actual failure rates. 

Stock level interventions can be performed accordingly to better align them with reality and reduce the 

risk of backorders and penalties. Goal of this research study is to find a method or protocol to do so. 

Based on literature, the Bayesian estimation (explained in Section 3.3) seems to be suitable for Thales to 

update failure rate estimates. A new estimate of the failure rate is based on both the initial engineering 

estimate and operational failure data from the installed base. The Bayesian estimation is well-known for 

its applicability in situations with little data. The amount of data to be gathered in the coming years at 

Thales is expected to be low, due to a relatively small installed base (6 systems) and relatively low 

failure rates, so this strengthens the preference for the Bayesian estimation. Parameters of the model can 

be configured to be more sensitive or less sensitive to failure data in the estimation process.  

Given the random nature of electronic failures and variability in the corresponding failure data, applying 

the Bayesian estimation as a foundation for stock level interventions (dynamic approach) is not without 

risks. Dependent on the amount of failures (demand) and data coming in, the accuracy of the estimates 

can be low. This leads to the risk of anticipating on the updated estimate and increasing the stock level 

by ordering parts even though the actual failure rate is lower, equal or just slightly higher than initially 

estimated. The opposite also applies, meaning a risk of decreasing the stock level even though the actual 

failure rate is equal or higher than initially estimated. Additionally, even if the actual failure rate is 

higher than initially estimated, this does not necessarily mean that potential penalty cost savings 

outweigh costs associated with increasing the stock level. Therefore, it might be wise to be less sensitive 

to failure data in the estimation process (higher Bayesian weight factor) to lower the beforementioned 

risks. A drawback is however a slower adaptation process to the actual failure rate, meaning a longer 

exposure to higher penalty risks if the actual failure rate is higher than initially estimated.    

The main focus of the research is on the trade-off between stock level intervention costs and potential 

penalty savings during the term of the service contract (15 years). A simulation study has been executed 

to experiment with different Bayesian settings while considering different part characteristics, i.e., part 

price; expected average demand during lead time; and gap between initially estimated and actual failure 
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rate. The static approach, in which no failure rate and stock level updates take place, has been included 

in the experiments as well. Furthermore, given lead times of one year at Thales, stocking issues can 

already arise during the first years of practice before the first stock level intervention could have been 

implemented. Hence, a balance needs to be sought between (possibly adapted) initial stock levels to start 

the contract and data collection with, and the start time of the Bayesian estimation followed by dynamic 

stock level interventions. The next findings emerged from the simulation study:  

 Thresholds of estimated average part demand (failures) during lead time apply before potential 

penalty cost savings outweigh the costs for dynamic stock level interventions. For parts with 

prices of €1.000, €50.000, €100.000 this is respectively: 0.020, 0.774, 2.406 failures per year. 

 Dynamic approach can be applied to save initial stock investment without significantly higher 

average probability of penalty per year.  

 Required responsiveness to data and initial stock level have negative correlation.  

 For relatively high demand parts (initial estimate of at least 2.406 failures on average per year): 

starting Bayesian estimation (possibly followed by stock level interventions) within the first year 

can increase the part availability (in % of time per year) in second year with at most 18%. 

 For expensive parts (€50.000 and €100.000), it is not cost-efficient to increase initial stock levels 

in advance given the uncertainty about the actual failure rate.  

Based on the simulation study, we recommend Thales the following: 

 Apply Bayesian estimation for updating failure rates as a foundation for dynamic stock level 

interventions but use appropriate thresholds for estimated average part demand during lead 

time. Below the thresholds, apply a static approach. 

 Rely more heavily on initial estimates, i.e., less sensitive to data, if part price is relatively high 

(€50.000 and €100.000) and/or if estimated average failures per year is relatively low (≤ 0.475). 

 Only increase initial stock levels in advance for relatively cheap parts. 

 Respond quickly to failure data, after 3 or 4 failures, if initial stock level has not been increased 

and initial estimate of failure rate is relatively high (≥ 2.406 failures per year). 

 For parts with an initial estimate of failure rate lower than 2.406 failures per year, wait at least 

one year of time before updating failure rates (with Bayesian estimation) and possibly stock 

levels. Also, include current level of stock on hand in decision to increase stock level or not.   

 For relatively cheap parts with increased initial stock levels, wait at least one year of time and 

until a certain number of failures have occurred before updating failure rates and stock levels.  

 For relatively expensive parts (€50.000 and €100.000) with relatively high estimated average 

demand (≥ 2.406), consider other stock level interventions, e.g., putting SRUs on stock or fast 

repairs. However, only 2% of parts in radar system at Thales have expected demand of ≥ 2.406. 

 Develop procedures for operational decisions in the periods between tactical stock level 

interventions and for fast repairs to shorten lead times.   
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Abbreviations and definitions 

The underlined phrases in the report refer to one of the alphabetically ordered definitions in the list 

below: 

 Common Random Numbers (CRN): variance reduction technique which applies when two or 

more alternative configurations (of a system) would be compared. It synchronizes the random 

number streams such that the same random number stream is being used for the same 

replication across different configurations/experiments. 

 Configuration: an arrangement of elements in a particular form or combination. Used in 

simulation experiments to describe one situation given a unique combination of variable and 

experimental factors.  

 Economies of scale: proportionate saving in costs gained by an increased level of output.  

 Enterprise Resource Planning (ERP): Business process management software that allows an 

organization to use a system of integrated applications to manage the business and automate 

many tasks related to technology, services and human resources. 

 Fill rate: fraction of customer demand that is met through immediate stock availability, without 

lost sales or backorders.  

 Full factorial: a full factorial experiment is an experiment whose design consist of two or more 

factors, each with discrete levels, and whose experimental units take on all possible combinations 

of these levels across all factors.   

 Mean-Time-Between-Failure (MTBF): the predicted average elapsed time between inherent 

failures of an electronic or mechanical system.  

 Obsolete: part is no longer produced or used; out of date. 

 Original Equipment Manufacturer (OEM): a company that produces parts to be sold under 

another company’s brand. 

 Poisson process: a model for a series of discrete events where the average time between events is 

known, but the exact timing of events is random. A Poisson process meets the following criteria: 

events are independent of each other, the average events per period is constant and two events 

cannot occur at the same time. The Poisson distribution gives the probabilities of events. 

 Product Lifecycle Management: the process of managing the entire lifecycle of a product from 

initiation, through engineering design and manufacturing, to service and disposal of 

manufactured products.   

 Risk pooling effect: demand variability is reduced if one aggregates demand across locations 

because it becomes more likely that high demand from one customer will be offset by low demand 

from another. This reduction in variability makes it possible to reduce safety stock and therefore 

average inventory levels. 

 Total Cost of Ownership (TCO): estimate of all direct and indirect costs associated with an 

asset or acquisition over its entire lifecycle.  
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1. Research introduction 

In Section 1.1 of this chapter we introduce the company Thales in which the research will be conducted. 

Section 1.2 addresses the context of the problem addressed by the logistics department within Thales. In 

Section 1.3 and 1.4 we formulate the goal and respectively the scope of the research. Thereafter, the 

research questions will be defined that need to be answered to be able to solve the problem. We conclude 

the chapter with the methodology, in Section 1.6, and an outline of the report in Section 1.7.  

 

1.1 Thales Group and Thales Nederland B.V.  

Thales Group is a French multinational company that designs, builds and maintains electrical systems 

and provides relating services for the aerospace, space, defence, transportation and security markets. Its 

revenue is roughly 15 billion euros of which 675 million euros is being invested in Research and 

Development. Thales Group is active in 56 countries, employing around 65000 employees worldwide. 

(Thales Group, 2018). 

Thales Nederland B.V. is a Dutch subsidiary of the international Thales Group and is involved primarily 

in naval defence systems. Thales Nederland B.V. specializes in designing, producing and maintaining 

professional electronics for defence and security applications, such as radar and communication systems. 

She employs about 3000 people of which 1500 are located in the headquarters in Hengelo. To give an 

impression of the size, the worth of sales is roughly 500 million euros on a yearly basis (Thales 

Netherlands, 2018).  

 

1.2 Problem context 

In this section, we describe the context of a problem encountered in the logistics department at Thales 

Nederland B.V. The research study discussed in this report would enable Thales to deal with the 

problem context.  

1.2.1 Radar systems  

One of the various types of products Thales Nederland B.V. offers, is naval radar systems. Radar is an 

acronym for “radio detection and ranging” and is used to detect the position and/or movement of 

objects by means of radio waves. Among others, the following objects can be detected: aircrafts, ships, 

spacecrafts, guided missiles, motor vehicles and weather formations. Radar systems are mainly sold to 

national governments as the naval forces and belonging necessary equipment are owned by them. Due to 

this, Thales is currently doing business with more than 50 navies all around the world.  

1.2.2 Performance-based service contracts  

Besides designing, producing and selling radar systems, Thales also offers after-sales services for 

maintaining and repairing the radars. These services, of which the sales volume is growing during recent 

years, are related to a performance-based service contract agreed with the customer. Within the 

contract, it is stated either what fraction of time the radar system should work properly or what fraction 

of time the required spare parts should be available in stock to repair a non-operational radar system. 

Thales is responsible for meeting the agreed performance standard and therefore has increased 

responsibility over their supply chain performance. Inventories of spare parts are needed throughout the 
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entire supply chain network to be able to repair failed radar systems within limited amount of time. In 

case Thales could not achieve the performance level as agreed upon, they may expect substantially high 

penalty costs.  

To determine spare part stock levels required for meeting the performance level, the logic as depicted in 

Figure 1 is being used. Input for this calculation is ERP data and Product Lifecycle Management data. 

The ERP data consists of the replenishment lead times of the spare parts and the costs. The 

replenishment lead times can influence the stock levels because the higher the lead time for sending a 

spare part from a central depot to the customer where the part is needed, the sooner it pays off to place 

stock close by the customer, even though that might diminish the gains of the risk pooling effect. The 

cost price of the spare parts has impact on the stock levels since the cheaper a spare part the more 

attractive it becomes to place parts nearby the customer. The probability of getting penalty costs caused 

by a failure of a relatively cheap part should be minimized as much as possible, even though the stock 

levels may be somewhat higher leading to higher inventory costs. Product Lifecycle Management data 

consists of expectations about how a certain radar system will be used and how it will behave during its 

lifecycle. Based on the data, the failure rate of the system and underlying parts will be predicted forming 

an important indicator of how much stock is required. The higher the expected failure rate, the higher 

the required stock levels and the sooner it becomes cost-efficient to place stock close to the customer, 

again despite ruling out possible risk pooling advantages.  

 

Figure 1 Logic of the system to calculate and adapt stock levels 

After applying initial stock levels in the supply chain network, operational data can be gathered. 

Moreover, the logistic performance can be observed, and it can be concluded whether the performance is 

in line with the required one. Data about the failures of parts may give information whether the 

expected failure rates are correctly predicted or not. Based on the obtained information, the failure rates 

might be adjusted leading to different stock levels. The failure data of Thales becomes more voluminous 

but is not systematically included in their estimations, calculations and decision making yet. Therefore, 

Thales seeks a way to frequently estimate the failure rates and increase their reliability by making use of 

operational failure data which gives Thales the opportunity to dynamically adapt the stock levels in the 

supply chain network accordingly.  

Product Lifecycle Management data, 
e.g.:
- Planned usage of systems
- Planned redesigns
- Required logistic performance
- Expected failure rate

ERP data, e.g.:
- Costs
- Planned lead times

Calculation required 
stock levels

Actual stock 
levels

Operational data 
(observed logistic 

performance)

Operational data, e.g.:
- Failure logs
- Usage of systems

Adapt expected 
failure rate

Adapt stock levels
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Core problem: inventory control does not incorporate operational failure data 

to create reliable estimates of the failure rates and to enable stock level 

interventions in a dynamic fashion. 

By anticipating on failure data, the failure rates can better reflect reality, i.e., the failure rates are more 

in line with the actual failure behaviour of the parts, and upcoming issues like understocking or 

overstocking can be identified early, such that preventive actions can take place. Thales would be able to 

save penalty and inventory cost by narrowing the gap between the required and its actual supply chain 

network performance. Furthermore, by analysing the expected and the observed failure rates, causes of 

potential differences can be identified. Feedback can thereafter be given to the designers of the different 

parts to improve the design and lower the probability of having failures in the future.   

  

1.3 Research goal 

The focus of this research and report lays on designing a protocol to dynamically adapt stock levels after 

the predicted failure rates are being assessed by means of operational failure data.  

Since the failure data can indicate risks of understocking or overstocking, it might be wise to adapt the 

failure rates as they form an essential input for stock level calculations. The research should give 

guidance in decisions whether to adapt the failure rates, and if so, when and how to adapt them. If there 

is little or only unreliable failure data available for parts, it might be wise not to use the data at all. 

Even if there is much data for certain spare parts, there may exist a trend in it reflecting different life 

cycle phases. A portion of the data would become useless as it does not belong to the current life cycle 

phase. This complicates the situation and probably affect the procedures for adapting failure rates.   

Besides adapting the failure rates when the failure data gives reason to assume risks of under or 

overstocking, there are interventions to consider on the tactical level. If there is understocking predicted, 

purchasing new parts to increase the stock level could solve the problem although high lead times and/or 

costs may apply. If there is overstocking predicted, the redundant stock can be removed from the 

location, but this is only a good intervention if the estimated failure rate from the data is reliable. 

Another intervention to consider is adapting initial stock levels of the spare parts.  

As it is not preferable for Thales to perform stock level interventions very often, the number of stock 

interventions should be kept to a minimum. Not only do the logistic movements require time, money and 

effort, but it also may mean that the cycle of stock interventions could be shorter than the 

replenishment lead time of specific parts. Consequently, the last stock interventions would not have been 

applied in practice before next interventions should take place.  

In conclusion, to help Thales coping with dilemmas as mentioned before, the main deliverable of this 

research is a decision and support model that clarifies how to deal with the operational failure data and 

what (preventive) actions to take in case of under or overstocking risks. Since parts can have different 

risk and failure characteristics, different rules to adapt the stock levels may apply. 
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1.4 Research scope 

In this section we clarify what is in and beyond the scope of this research. Given the limited amount of 

time available for executing the research, it is necessary to set some boundaries. 

Level-Of-Repair Analysis (LORA) is outside the scope. The LORA model determines where to 

repair, move or discard the parts or modules of the radar system within the supply chain network while 

considering trade-offs between equipment, transportation and discarding costs. Thales has performed a 

LORA and foresees no gains in changing the current situation. The LORA is therefore out of scope of 

this project. Most repairs are being done at Thales in Hengelo to make use of economies of scale. Since 

the equipment needed for the repairs is expensive, it is unlikely from a financial perspective that 

repairing elsewhere and giving up the economies of scale would outperform the current situation.  

We focus on performance-based contracted radar systems. Although Thales also sells radar 

systems without a performance-based service contract, the focus of this research lays on the radar 

systems with such contracts. Thales has increased responsibility over the supply chain performance for 

these radar systems and, due to this, it becomes relevant anticipating on failure data. Given the fact 

that service contracts are growing in volume and predicted to sustain their growth in the future, it is 

greatly needed to prepare for this and incorporate failure data in the business processes at Thales. Up to 

now, 6 radar systems are related to a performance-based service contract and will get the attention 

during the research.   

Cheap parts are beyond the scope. For cheap parts it is inexpensive to set the stock to a level 

leading to a chance of understocking close to zero. Logically, the more expensive parts have the greatest 

influence on the supply chain network and thus will be focused on during the research.   

The only variable to consider is the failure rate. Although several inputs are in place for 

calculating the stock levels, only the failure rates are considered as non-deterministic during this 

research. For the other inputs like replenishment lead time and costs it may be assumed that they are 

deterministic and resemble reality close enough. Therefore, regarding this research, only the failure rates 

may be adapted based on the operational failure data.   

Root cause analysis beyond scope of this research. If necessary, observed differences between 

expected and measured failure rates will be passed on to specific departments for further investigation. A 

thorough root cause analysis about the differences for an explanation of their existence is beyond the 

scope of this research. The specific departments are more experienced in performing analyses like this 

and do have more knowledge about the design of the parts and corresponding failure risks. 

Only tactical decisions are addressed in this research. To restrict the amount of decisions to 

consider and focus on the ones having the greatest influence on the supply chain network in the mid to 

long term, only the tactical decisions are within the scope of this research. The short-term operational 

decisions, e.g., the processes to build up or reduce the stock levels, do not belong to the responsibility of 

the logistics department at Thales and are therefore left out of consideration. Although the distinction 

between operational and tactical decisions can be vague and equivocal, the expected impact of the 

decision on the mid to long term would determine whether to consider it as an operational or a tactical 

decision.    
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1.5 Research questions 

To achieve the goal of this research and improve the problem context at Thales, the following main 

research question need to be answered:  

“How can Thales use the operational failure data to (dynamically) update 

failure rate estimates and adapt stock levels accordingly?” 

On the way to find an answer to the main research question, several sub-questions are denoted below: 

 

RQ 1: “How does the current supply chain network set up function at Thales?”  

To get an understanding of the current situation at Thales, it is important to be informed on the supply 

chain network of Thales, on what models and procedures stock level determinations are based, what the 

content of the existing service contracts is, and which considerations or actions are in place whenever 

failure data indicates incorrectly estimated failure rates.  

RQ 2: “What is known in the literature about failure behaviour of parts, models to modify the failure 

rate and the tactical stock level interventions that may follow?”  

The problem can be made easier manageable by dividing the spare parts in groups with identical failure 

characteristics. Questions arise what may be viewed as similar failure behaviour, so the literature might 

help. The literature might also contribute in choosing a suitable model to base the failure rate 

modifications on. Lastly, interventions in case of risks to under or overstocking would be investigated. 

RQ 3: “How to apply the failure rate updating model to make it suitable for the situation at Thales?” 

After choosing model(s) for estimating and updating the failure rates, we can investigate how to apply 

the model in an appropriate way. To do so, we need to know which parameters of the model can already 

be set and which parameters require further research before deciding on its value.  

RQ 4: “What is the potential impact of using a dynamic approach and what are risks?  

Given different part characteristics, it is not necessarily the case that a dynamic approach would always 

be preferred. Therefore, we do research to what extent the chosen dynamic model can improve the 

situation and under which circumstances. Furthermore, we focus on the underlying risks when using the 

model, i.e., incorrect decisions due to high variation in demand and unreliable updated estimates.    

RQ 5: “What is the most suitable setting of the updating model and which other decision rules can be 

designed to link a failure rate update to stock level interventions?”   

As a follow-up on previous research question, we like to know the best settings of the model for those 

parts for which the model would be beneficial. Additionally, more variants of the updating model and 

other decision rules to link an updated failure rate to stock level interventions might be applicable. 

RQ 6: “How can the decision model be implemented at Thales to improve the problem context?” 

After designing the decision and support model, it needs to be implemented in practice. An 

implementation plan should highlight the most important aspects to consider from both a theoretical 

and a practical perspective to successfully implement the suggested recommendations.     
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1.6 Methodology 

For every research question, we shortly explain the methodology providing us with the ability to find 

satisfactory answers to them. It is important to note that the methodology describes how things are 

planned to be done and minor changes may apply during the execution of the research project whenever 

new knowledge or information gives reason for that. The research questions are connected to chapters of 

the remaining report. Figure 2 depicts the outline of the report.    

 

With the first research question (chapter 2) we aim to get to know the current situation at Thales. To 

find the necessary information, several interviews should take place with people at Thales given their 

experience and knowledge about the radar system parts and belonging service contracts. They probably 

have files with background information which they can hand over to us.   

The second research question (chapter 3) focuses on the literature. To be able to answer the question, 

scientific articles need to be collected and analysed. To find relevant literature, the (online) Scopus 

library will be used which covers a broad spectrum of subjects. Comparing the collected information and 

deducing conclusions relevant for the situation at Thales will be done in the form of desk research.  

For the third research question (chapter 4), the chosen model from the literature needs to be applied in 

practice. To do so, it should be investigated which parameters to set. Logically, the research will mainly 

be done in the form of desk research. However, whenever questions come up, either an employee at 

Thales or the supervisor at the University of Twente can probably help. 

The fourth research question (chapter 5) is about assessing the impact of the chosen model compared 

with a static situation in which no stock level interventions would take place. It is planned to answer the 

research question with the help of an Excel model. Suitable assumptions will be made in collaboration 

with employees at Thales given their practical knowledge.  

The fifth research question (chapter 6, 7 and 8) concerns the experimentation phase. To perform 

experiments we need a simulation model, either the Simlox model already being used at Thales, or one 

set up by ourselves. This decision will be made on the fly when more information is known from earlier 

research questions. Supervisors at the University of Twente and Thales may help during this process.    

Lastly, the sixth research question (chapter 9) has a focus on implementation of the designed decision 

model. To highlight the most important aspects in an implementation plan, the logistics department at 

Thales will be approached to gain knowledge about what is needed to successfully implement the model. 

Moreover, the literature might deliver some valuable input as well.  
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1.7 Outline of the report  

Figure 2 shows the outline of the remaining report. The research questions as stated in Section 1.5 will 

be handled one by one in separate chapters of the report. The conclusions and recommendations will be 

presented in the last chapter of the report.   

 

Figure 2 Outline of the report 
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2. Business description 

In Section 2.1 we will give background information about the radar systems this research is about. 

Section 2.2 describes the current processes and procedures relevant for determining the initial stock 

levels in Thales’ supply chain network to support the after-sales services for radar systems. In Section 

2.3 the simulation model will be explained which is being used within Thales for scenario analyses. In 

Section 2.4 we shortly summarize the chapter and draw conclusions about our findings. 

 

2.1 Background radar systems  

First, we will give some background information about the radar systems before going into detail about 

the processes concerning the stock level determinations for the spare parts. As mentioned in the previous 

chapter, the research relates to the radar systems being sold with after-sales service and corresponding 

performance-based service contract. This allows the customer to reduce the total cost of ownership by 

outsourcing the responsibility for the maintenance and repairs to Thales.  

Currently, six radar systems have been sold to the Dutch defence organization. The first conversations 

regarding the requirements of the radar systems, the service and the content of the contract already 

started in 2011. Up to today, the radar systems are not operational at the intended place yet. This gives 

an impression of the period it takes before a radar system, which must satisfy the requirements and 

desired functionalities given by the customer, is fully operational and achieving its intended goals. The 

systems are customer-specific which negatively impacts the amount of time needed for designing, 

building, testing and maintaining them. Besides, Thales needs to work in accordance with regulations 

and legislation given by the Dutch national government because of its close collaboration with the 

national defence organization. It is expected that the first radar system would be installed at the 

customer at the end of 2019. The other systems would follow shortly after, but strict deadlines could not 

be set. Till that time, they are somewhere in the process of designing, building, testing or storing.  

Although the systems are not at the customer yet, they already deliver some failure data. Given the 

complexity of the system, parts or components can break down during the production, assembling or 

testing phase. However, a distinction should be made between failures caused by design or production 

mistakes and failures caused by (proper) use of the system. Only the latter type of failures is interesting 

for estimating the failure rate during usage at the customer. As the six radar systems are subdivided into 

four respectively two of the same type both belonging to a different customer and service contract, the 

two types of systems will be discussed separately.  

2.1.1 Naval radar systems  

Four out of the six radar systems are of the same type and are meant for the Dutch navy. Each system 

will be placed on a ship owned by the navy (from now on: frigate), although not simultaneously. As the 

four frigates switch functioning roles per year in a four-year cycle, there is another ship in maintenance 

every year when the installation of the radar system also will take place. Consequently, the service 

contracts of the four systems all have different starting dates. Furthermore, the cycle means that the 

usage of the radar systems will vary in intensity over the years. Logically, the usage is the most intensive 

during years in which the frigate is assigned to safety missions. The service contract belonging to the 

four naval radar systems is based on a service level of 90% supply availability of spare parts per year, 
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i.e., a failed system is waiting for spares at most 10% of the time based on calendar hours (under the 

condition that the system is used for a predefined maximum number of operational hours per year). The 

clock starts ticking when the incident is reported and stops when the right spare part to solve the 

problem has been delivered at the naval base in Den Helder. As the navy has its own maintenance 

organization with personnel, the navy performs the maintenance and repair activities themselves. Thales 

is responsible only for the availability of spare parts. The level of 90% availability per year is given by 

the navy and is a very common percentage used within several defence organizations. Important to note 

is that an availability of (close to) 100% is practically not reachable when costs play a role. 

2.1.2 Air force radar systems  

Two out of the six radar systems are meant for the Dutch air force and are slightly different from the 

naval systems. The air force radar systems have an extra component on top of the radar, namely an 

interrogator. This interrogator can distinguish whether an identified plane is from the enemy or not. The 

two search radars will be installed on land at two different places in the Netherlands to search for 

(un)known objects in the air. Now, the two systems are still on the company site of Thales in Hengelo. 

One of the reasons for this is the fact that there is no permit yet for the construction of the towers to 

place the systems on. Nevertheless, they can be tested, and some failure data can be gathered in order to 

check the reliability of the parts and improve the design whenever necessary. The failure data can reflect 

the failure behaviour of parts in the long term but may also include infant mortality failures. Strictly 

spoken, Thales Nederland B.V. is not allowed to build air force systems as the division for that kind of 

systems is in France. However, an exception has been made for systems meant for its own government.  

As the air force radar systems will be more easily accessible than the naval radar systems, the service 

contract is quite different. Although the service level of 90% per year remains the same, it is based on an 

operational availability, i.e., a radar system may stand still at most 10% of the time. Since the radars 

will run every day of the year for 24 hours, the running hours are theoretically the same as the calendar 

hours. Regarding the operational availability, the clock stops ticking when the failed radar system is 

fully operational again instead of when the spare part has been delivered which is the case with supply 

availability. Concerning the unreachable 100% availability as mentioned in the previous Section 2.1.1, 

the same holds here.  

See Figures 3 and 4 for the Naval respectively the Air Force radar system. 

Figure 3 Naval radar system Figure 4 Air force radar system 



2. Business description   

Thales | University of Twente  10 

 

2.2 Initial stock level determination  

Referring back to Figure 1, the processes for determining the initial stock levels and the stock level 

interventions based on failure data are interrelated. However, the latter process does not exist yet in 

practice at Thales. Therefore, the focus of this research lays on developing a method to handle the failure 

data and allow for (dynamic) stock level interventions. To understand the context in which this new 

process should take place, we describe how the initial stock levels are being established.  

2.2.1 Opus 10 software  

Thales makes use of Opus 10 software to determine initial stock levels. The underlying model of Opus 10 

is VARI-METRIC (Sherbrooke, 1986), an extension of the theoretical METRIC (Multi-Echelon 

Technique for Recoverable Item Control) model published by Sherbrooke (1968). For an explanation of 

the principle of VARI-METRIC, see Appendix A. We refer to the book for the exact formulations of the 

model. VARI-METRIC calculates the required stock levels of spare parts for which on average in the 

long term a certain supply availability can be reached against minimized inventory costs, i.e., for 

different periods in time the availability can be higher or lower as long as the average meets the target. 

Although the VARI-METRIC calculations are based on a supply availability, Opus 10 has some 

extensions to include the operational availability as well.  

Logically, the model requires, besides the costs of the parts, input before inventory options can be 

weighed against each other. The list below addresses the required input. The terms LRU and SRU stand 

for Line Replaceable Unit respectively Shop Replaceable Unit.  

 Expected LRU failures (used interchangeably with: demand) at the customer 

 Mean repair throughput time of item at certain location 

o Provided that all SRUs required for LRU repair are available 

 Order-and-ship time from (intermediate/central) depot to operating site of customer 

 Fraction LRU failures found to be caused by certain SRU at customer 

 Fraction of item demand at certain location that can be repaired there 

In the next section we explain how Thales deals with the required input as listed before. 

2.2.2 Expected LRU failures  

To determine the expected LRU demand and indirectly the demand of SRUs at Thales, both the 

expected failure rate of the LRUs and the number of operating hours of the radar systems is relevant. 

The higher the expected failure rate and the higher the hours of use at the customer, the more failures 

you may expect leading to a higher expected demand. Consequently, more demand means higher 

required stock levels. Important to note, the number of identical LRUs in the system proportionally 

increases the expected demand. 

Operating hours radar systems  

The running hours of the air force radar systems differ from those of the naval systems. The air force 

systems are meant to run 24/7 while the usage of the naval systems depends on whether it is on a 

mission or not. In the latter case, it is stated in the service contract how many hours the system will be 

used at most per frigate per year. This number is based on historical data and holds for every system on 

a frigate per year. Given the similarity between the four systems on four different frigates, the hours not 

being used by one system in one year may be divided over the others as long as it does not exceed a 
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certain maximum number. The hours stated in the contract cannot be changed as the contract is fixed 

over a period of 15 years. To prevent Thales from acting on wrong incentives, every year Thales can get 

a penalty for underperformance and a compensation for previously obtained penalties in case of 

overperformance.  

Initial estimate of the failure rate  

As there is barely operational failure data available yet, an estimate of the failure rate, i.e., number of 

failures per unit of time, is relevant in determining the demand for spare parts. A failure is recognized as 

a failure when the performance of a part deviates from the specified function. First initial estimates of 

the SRU failure rates need to be determined since these can be combined, based on the break-down 

structure of the LRU into several SRUs, to end up with initial estimates of the LRU. The initial estimate 

of the SRU is derived from the expected impact of thermal, mechanical, electrical and chemical processes 

that the part may encounter during the life cycle. To determine the impact, reliability design handbooks 

are being used consisting of many tables with guidelines about relations between for instance pressure, 

vibration and/or temperature on the number of failures. The tables are based on worldwide historical 

research and experience.  

As the failure rates are predictions, operational failure data creates the possibility to make the 

predictions more accurate and let them better describe the situation at Thales. However, the operational 

failure data already gathered during the process is not voluminous and/or reliable enough yet for 

estimating the failure rates in the long term since it may reflect infant mortalities. Another reason for 

the lack of available operational data until now is the fact that Thales has never offered performance-

based services before. Although the collection of operational data could have been started sooner for 

other services and parts, there was no incentive to do so as Thales was not responsible for the customer’s 

supply chain. Additionally, customers are hesitant with releasing (causes of) failure information about 

their radar systems because of the confidential nature of the product. As Thales has supplied spare parts 

to customers anyway, there is some data about those transactions. However, the data is not suitable for 

estimating the failure rate because it does not contain information about causes of failures and whether 

it is a failure or just an order to increase the stock level. The latter may be related to budget spending at 

the end of the year. If Thales suspects certain failure rates of parts from not being representative to the 

actual failure behaviour, it can be requested to start up a process to gather field feedback. However, this 

is not common practice and expensive.   

Thales assumes a constant failure rate during the useful life period of an equipment’s life. Thales does 

not incorporate infant mortalities in calculating the failure rates as it is not representative for the 

failures in the long term. Infant mortalities should not influence the spare part stock levels since it may 

be assumed that the mistakes are caught during the testing phase and eliminated before it is installed at 

the customer. Mechanical parts may have wear-out failures after a certain period of use which also 

rejects the constant failure rate assumption. Thales deals with this by replacing the part in question at 

the point in time for which it is expected that 10% of the parts have been failed. In reliability 

engineering this point in time is called the L10 life expectancy value.  

To calculate the expected number of LRU failures during a period of time, Thales has moved from the 

MIL-HDBK-217F reliability engineering model (Defense, 1995) to the RIAC-HDBK-217PLUS reliability 

engineering model (RIAC, 2006). The difference in the formulas is as follows: 
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217F:   𝑁𝑓 = (𝜆𝑜)𝑂        (2.1) 

217PLUS:  𝑁𝑓 = (𝜆𝑜 − 𝜆𝑐)𝑂 + 𝜆𝑐𝐶       (2.2) 

Where:    Nf  = expected number of failures  

    C  = calendar hours  

    O = operational hours or running hours  

    λo = failure rate when LRU is operational  

    λc = failure rate when LRU is dormant  

The 217PLUS model calculates non-operating failure rates in addition to operating failure rates based on 

the expected impact of thermal, mechanical, electrical and chemical processes during the life cycle. As 

mentioned before, reliability handbooks are being used for this. For new systems and parts with little 

foreknowledge, the failure rate of a similar part will be chosen.  

Since the environment in which the radar systems will be used is unique, together with the fact that 

there is a lot of customization requested by customers, the reliability of the failure rates could be 

disputed (see Goel & Graves, 2007; Gu & Pecht, 2007). Moreover, it is assumed that all stresses are 

known which does not have to be the case. Also, the customer orders are relatively small leading to the 

fact that the impact of the risk pooling effect in stock levels is minor, i.e., great variability in actual 

demand is usual and foreseen. Besides uncertainty in the initial estimate itself, there is no clue about the 

difference between the initial estimate and the actual performance because no failure data could have 

been gathered before. The following factors might increase the gap: 

 Radar systems have different functions with separate failure rates due to intensity differences. It 

has been estimated how many hours the radar systems are operational in each function, but 

there is uncertainty if it corresponds with the actual values.  

 It might be the case that there exists variability in actual field performance between different 

(production) batches of the same parts.  

By considering all the variability and uncertainty factors, Thales assumes that the actual failure rate (in 

the field) does not exceed three times the value of the initial estimate of the failure rate. In exceptional 

cases where it seems to exceed three times the initial estimate, it is believed to be a production or design 

fault. Consequently, a root cause analysis and possibly a redesign process takes place.  

The 217PLUS failure rate prediction might be stated in failures per million calendar hours, not the 

traditional failures per million operating hours in 217F. Nevertheless, the 217PLUS prediction based on 

calendar hours can be converted to a prediction based on operating hours to make comparisons to a 

217F prediction (Nicholls, 2009). Conversion might be necessary given that Thales makes use of three 

channels to collect parts: 

 Commercial off the shelves (COTS): standard parts outsourced to an external supplier. The 

supplier gives an expected failure rate but for Thales it might be unclear how it has been 

determined. Furthermore, it can be given in different forms, for example 217F. 

 Built-to-Spec: parts outsourced to an external supplier but according to specifications given by 

Thales. Usually the most recent 217PLUS model would be used for calculating the failure rate.   

 In-house production: parts produced by and within Thales. Concerns mainly electronic parts like 

PCBs (Printed Circuit Boards). The expected failure rate will be calculated according 217PLUS.  
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Sometimes the calculation or supplier gives the Mean-Time-Between-Failure (MTBF) based on 

operational hours. The next equations show the relation between failure rate and MTBF:  

 

    𝐹𝑎𝑖𝑙𝑢𝑟𝑒 𝑟𝑎𝑡𝑒 (𝜆) = 1/𝑀𝑇𝐵𝐹       (2.3) 

 

𝑀𝑇𝐵𝐹 = 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑎𝑙 ℎ𝑜𝑢𝑟𝑠/𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑠   (2.4) 

 

MTBF is the average elapsed time between one failure to another, excluding the repair time, and is a 

basic measure of a system’s reliability. A common misconception is that it is equivalent to a lower bound 

of the length of period before failure (Torell & Avelar, 2011).  

Given the uncertainty in failure rates and MTBFs, the operational data should improve the predictions. 

This research focuses on developing a method for this. Important to note is that we focus in this research 

on failure rates from a logistical instead of a reliability perspective. In the logistical perspective, for 

instance, human errors will be considered as they are relevant for the stock levels, but they are not 

relevant for reliability measures. Although other input factors which will be shortly discussed in the next 

sections also show some uncertainties, they are not part of this research due to time considerations. 

2.2.3 Lead times  

LRUs are being repaired at Thales or the Original Equipment Manufacturer (from now on: OEM). The 

lead times, i.e., the time it takes to replenish stock after a failure by repairing or producing a part, are 

estimated and put into the VARI-METRIC model. Most lead times at Thales are around one year.  

There are difficulties in estimating the lead times precisely while considering the variability. Especially 

when Thales is dependent on the OEM and its workload, lead times can greatly vary and may become 

unreliable. Thales works with (updated) lead times given by the supplier but logically this is a rather 

conservatively chosen lead time to cover themselves. By including those lead times in the VARI-

METRIC model, the stock levels can be higher than necessary if the lead times appear to be shorter. 

As some parts are not bought or repaired frequently, the corresponding lead times registered in the 

system may be outdated. For these instances, the supplier should be asked to give an updated lead time. 

The purchasing department at Thales does this sort of reviews on a yearly basis but not all (spare) parts 

related to the radar systems with performance-based service contract are included in this review cycle. 

Hence, we suggest Thales to check if all lead times still represent reality. For relatively cheap parts the 

lead time with its variability has less impact on the VARI-METRIC model since those parts fall under 

the all-time buy policy, i.e., parts will be bought in advance for the whole duration of the contract.  

2.2.4 Repair fractions  

The last two input factors of the VARI-METRIC model are: the fraction of item demand at a certain 

location that can be repaired there, and the fraction of failures caused by the different SRUs. Regarding 

the first fraction, it is assumed that the LRUs and SRUs can almost always be successfully repaired. 

Therefore, we do no further research to this fraction. The fractions of LRU failures caused by different 

SRUs are not relevant for this research since mainly LRUs are put on stock at Thales and only LRUs 

will deliver operational failure data.  
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2.3 Simulation based scenario analysis  

Before implementing the stock levels as have been calculated by VARI-METRIC, Thales simulates the 

situation in practice to keep track of multiple performance indicators simultaneously and become aware 

of the consequences in the long term. To explain this further, we describe what VARI-METRIC does not 

consider and how Thales copes with this by means of the simulation model in Simlox.  

2.3.1 Limitations of the VARI-METRIC model  

Since VARI-METRIC is a mathematical optimization model and works with fixed steady-state numbers 

as input, it does not consider the range of stochastic values they can assume. Furthermore, VARI-

METRIC calculates the minimal stock levels to reach on average the (operational/supply) availability 

target in the long term without taking care of the variance in the interval availabilities. At Thales, the 

availability performance will be reviewed on a yearly basis, so the length of the interval is one year. To 

illustrate the problem, nine years performing for 100% and one year performing for 0% is totally 

different, and not preferable for the customer, from 10 years performing around 90%.  

Additionally, as the availability target is 90%, the probability area of underperforming and getting a 

penalty is greater than the area of over performing and getting a reward. Hence, Thales would tend to 

increase the stock levels arising from VARI-METRIC to countervail this negative effect. Since the VARI-

METRIC model works on system level, a possible outcome might be not to stock certain underlying 

parts at all. In that case, Thales increases the stock to at least one to reduce the risk of getting a penalty 

after only one failure that can practically happen any time. Consequently, the average performance level 

in the long term would be somewhat higher than 90%. As a remark, Thales can only be rewarded for 

over performance if there was a penalty before, i.e., the reward functions as a compensation for earlier 

paid penalties rather than increasing the profit for delivering the services.  

2.3.2 Complementary simulation model  

To manage the complications mentioned before, Thales makes use of a simulation model (Simlox) to 

simulate years of practice to consider different realistic scenarios and discover the expected penalties. 

The VARI-METRIC output, namely initial stock levels, is input for the simulation model. By generating 

failures according to a statistical theoretical distribution, a range of values will be generated with an 

average being the same as the fixed number in VARI-METRIC. By keeping track of the penalty costs, 

Thales can set a target for internal use regarding how much penalty costs she is willing to accept. Given 

that it is not possible to predict all arbitrary events and prevent them from happening, it is not realistic 

aiming for zero penalty costs when cost boundaries are in place. The stock levels can be manually 

modified until the penalty performance level can be met according to the simulation model. During the 

simulation runs the mission profiles of the frigates are simulated as well to incorporate the variation of 

use intensities of the radar systems. Opposed to VARI-METRIC, the simulation model is not an 

optimization model and should be used as a complementary tool for scenario analyses. 

Additional benefit of the simulation model is the great visibility of the supply and availability 

performance on both system and part level. This holds for the performance in the long but also the short 

term and makes it possible to test and compare different inventory policies and interventions to learn 

what may work best in the practical, modelled, situation. Simulation can be of good use during this 

research for experimental and validation purposes as we are aiming for a method to do stock level 

interventions that will work well in terms of spare part supply availability in the short and long term.  
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2.4 Conclusion 

In this chapter answers have been found to the first research question. We have learned that Thales has 

signed performance-based service contracts for naval and air force radar systems based on a supply 

respectively operational availability target of 90%. The required stock levels are determined with the 

software Opus 10 with VARI-METRIC as underlying model. It is discussed how Thales deals with the 

necessary input factors. One of those input factors is the failure rate, on which will be focused during 

this research. To create more reliable estimates of the failure rate, operational failure data will be 

gathered. Dynamic stock level interventions can be done according to updates of the failure rate, but the 

process to do so is still unknown.   

Given that VARI-METRIC does not consider all relevant key performance indicators, the practical 

situation is modelled with a simulation model. This simulation model may be useful during this research 

for experimental and validation purposes.  

As Thales assumes constant failure rates during the useful life of parts, we are interested in whether this 

assumption is appropriate and would be supported in the literature for the categories of parts in the 

radar system. Therefore, we perform a literature review in the next chapter. Furthermore, since we need 

to develop a method to deal with incoming failure data, we will consult the literature to discover and 

compare existing failure rate updating models. Lastly, we want to know which stock level interventions 

may be possible and how these interventions could be applied in a dynamic inventory control setting.   
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3. Literature review 

It is wise to consult the literature to prevent doing research in something which has already been 

discovered by other researchers. We first search for confirmation of the assumptions being done by 

Thales (Section 3.1). In Section 3.2 and 3.3, we explore existing models for updating failure rate 

predictions and explain the model of our choice. Sections 3.4 and 3.5 focus on finding possible stock level 

interventions and policies. We will conclude and summarize the chapter in Section 3.6. 

 

3.1 Failure characteristics  

In this research, we want to focus on the categories of parts with the highest influence on the supply 

chain. Given the break-down structure of the radar systems corresponding to a performance-based 

service contract, most parts can be classified as electronic parts, e.g., PCBs. The second largest category 

of parts is mechanical parts. 

The literature might help to predict the failure behaviour of the two categories. Knowing about the 

failure behaviour is necessary before developing a method to update the failure rate. For details about 

the methodology of finding the scientific articles, see Appendix B. 

3.1.1 Bathtub curve  

According to the military handbook (Defense, 

1998), the ‘’Bathtub curve’’ in Figure 5 shows a 

typical time versus failure rate curve for equipment 

in general which, over the years, has become widely 

accepted by the reliability community. It has 

proven to be appropriate for electronic equipment 

and mechanical systems, but it is questioned though 

whether modern electronic equipment, which have 

no short term wear out mechanism, even enters the 

third zone.  

The characteristic pattern of the bathtub curve is a period of decreasing failure rate followed by a period 

of constant failure rate followed by a period of increasing failure rate:  

 The first period is known as the ‘’burn-in’’ or infant mortality period which is characterized by 

an initially high failure rate. This is normally the result of poor design, the use of substandard 

components, or lack of adequate controls in the manufacturing process. Generally, the 

equipment is released for actual use only when it has passed through this period. 

 The second period is the useful life period and is characterized by an essentially constant failure 

rate. It is dominated by failures that result from strictly random or chance causes and cannot be 

eliminated by for example preventive maintenance practices. The period is usually the longest 

one of the three.  

 The third period is the wear out period and is characterized by failures because of equipment 

deterioration due to age or use. The only way to prevent failures due to wear out is to repair or 

replace the deteriorating component before it fails.  

Figure 5 Bathtub curve 
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3.1.2 Mechanical versus electronic parts 

According to the literature (Defense, 1998; Nelson, 1989; Engel, 1993; Pecht & Nash, 1994), mechanical 

components are exposed to wear out failure behaviour which can compromise system performance, 

regardless of how well they are made. This corresponds to the third period of the ‘’bathtub curve’’. 

Replacement would be necessary to prevent failures to occur (Xie, Tang, & Goh, 2002). However, there 

is not a widely acceptable definition for the change point when the replacement should take place, and 

hence the method to estimate the change point can be different (Jiang, 2013). 

Another way of looking at wear-out parts is that the probability distribution of time to the next failure 

does not decrease uniformly like the exponential, which can be used for constant failure rates. Instead 

there is a peak value to the right of the origin as in distributions such as the Gamma, Weibull, or log 

normal (Sherbrooke, 2004).  

Electronic components, on the other hand, probably have constant failure rates and are not exposed to 

wear out failure behavior. Failures occur at a fairly constant rate within the entire population; therefore, 

it can be treated as a homogeneous population of components having constant failure rates (Holcomb & 

North, 1985). Holcomb and North also state that wear 

out of electronic components will probably not occur 

during a forty-year service life. There are also critics 

that consider the constant failure rate assumption as 

incorrect. They state that the failure rate decreases 

over time, perhaps even approaching zero (Watson, 

1992). In that case, the ‘’bathtub curve’’ has become a 

‘’Roller coaster curve’’, see Figure 6. However, many reliability experts take issue with this complaint 

and claim that all causes of failure should be included since the equipment does not discriminate between 

causes. ‘’When all causes are considered, the recorded constant failure rate may well represent actual in-

field performance’’ (Watson, 1992). An underlying assumption considered to be valid in the 217F and 

217PLUS models is the randomness of failures for electronic components, i.e., failures are independent 

and do not depend on time. It is typically invoked to describe failures due to temporally random external 

causes. These external causes include repair blunders, equipment accidents, inadequate failure reporting, 

mixed operational environmental conditions, human error and so on. The totality of these effects 

conspired to produce time-independent ‘’random’’ failures and an approximately constant failure rate 

during its useful life (Wong, 1991). 

If the failures can be described as ‘’random’’ with a constant failure rate, the occurrence of these random 

failures can be considered as a Poisson process, in which the number of failures during any specified time 

period is identically and individually independent distributed (Sherbrooke, 2004). The (state) 

probabilities can be calculated by the Poisson-distribution. Given the Poisson-distribution, the 

exponential distribution is applicable for the mean waiting time till the next failure. 

Given the knowledge from the literature, we conclude that the process to frequently update the failure 

rate would be different and more complex for mechanical parts compared to electronic parts. For this 

reason, together with the fact that radar systems consist mainly of electronic parts, this category would 

be focused on during the research. 

Figure 6 Roller coaster curve 
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3.2 Comparing failure rate updating models  

Now we know the failure characteristics, we can search and compare existing models to modify the initial 

estimate of the failure rate in accordance with gathered failure data. Since spare parts demand for the 

South Korean Navy exhibits non-normal characteristics (Moon, Hicks, & Simpson, 2012), it is likely the 

same is true for the Dutch navy. Demand that has low average values (slow moving demand) or highly 

variable volumes (erratic demand), is known as non-normal characteristics (Boylan, Syntetos, & 

Karakostas, 2008). The non-normal characteristics of spare parts demand make forecasting difficult 

(Syntetos & Boylan, 2005).  

The models found capable of dealing with non-normal demand characteristics have been compared to 

each other: exponential smoothing, (weighted) moving average, Croston’s forecast, baseline method, 

Bayesian estimation and maximum likelihood estimation. See Section 3.3 for details of the Bayesian 

estimation, see Appendix C for details of the other models. The Bayesian Estimate differentiates itself 

from the others as it explicitly incorporates the initial engineering estimate. 

Willemain et al. (1994) and Johnston & Boylan (1996) proved that Croston’s forecast is robustly 

superior to exponential smoothing and moving average for non-normal data and it is the recommended 

method in inventory control textbooks (Willemain, Smart, & Schwarz, 2004). However, Syntetos and 

Boylan (2005) showed that the forecast for the next period is biased. Additional drawbacks include the 

lack of independent smoothing parameters for demand size and interval size, and the assumption that 

demand size and demand interval are independent (which is generally too strong). As a remark, it relies 

heavily on operational data since it does not incorporate initial estimates. The same holds for moving 

average and exponential smoothing. In the absence of any data, the baseline method could be applied.  

An extensive case study performed by Bergman, Noble, McGarvey & Bradley (2017) compared the 

performance of two methods: the baseline method and the Bayesian method plotted against the 

engineering estimate. The two forecasting methods are compared to observed demand using four 

accuracy metrics: mean absolute deviation (MAD), mean absolute percentage error (MAPE), the ratio of 

MAD to mean and the root mean squared error (RMSE). Furthermore, the three forecasting methods’ 

impact on inventory stock levels and costs are compared. Lastly, the study compares the three methods’ 

impact on supply chain performance by means of a simulation study. The Bayesian approach has been 

used to overcome difficulties with limited empirical data and the case study validates that this method 

indeed performs well and even superior to the other methods for parts that have limited data. In 

addition, it supports the use of the Bayesian method for high demand parts most of the time. The 

baseline method and the Bayesian method both outperform engineering estimates, and over time, both 

the baseline method and the Bayesian method result in similar performance. However, the Bayesian 

method significantly outperforms the baseline method in the first few years of data collection because it 

incorporates the experience of early demands. Thus, learning from demand immediately is important. 

Therefore, the Bayesian method is especially recommended when data is limited available, which is the 

case for new programs where most of parts experience low demand.  

To give a visualization of the performance in terms of fill rate of the three methods, see Figure 7. 
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Figure 7 Fill rate performance of three forecasting methods (Bergman et al, 2017) 

To add on this, Aronis, Magou, Dekker & Tagars (2004) utilized a Bayesian approach to compare 

forecasts for electronic equipment spare parts demands versus other approaches. They found that the 

Bayesian approach resulted in lower stock levels at a 95% service level.  

The literature contains relatively little discussion about models for demand that is very low in volume, 

although interestingly Johnston and Boylan (1996) indicate that a simple Poisson process might suffice 

for slow movers. This claim directs towards using the Bayesian approach or Maximum Likelihood 

estimation given the underlying assumption of the Poisson distribution to describe the demand 

behaviour. A possible disadvantage of the Maximum Likelihood estimation is that it does not include 

initial estimates.  

3.2.1 Choice of model  

Now we know the available models to deal with different characteristics of the failure data, we can 

decide which model to apply at Thales.  

According to the information gained from the scientific articles about prediction and forecasting models 

we can link the several possible characteristics of the failure data to the models that seems to be most 

applicable for estimating the amount of failures in the future using operational failure data. When it 

comes to non-normal demand, which may be expected at Thales, the Croston’s forecast seems applicable. 

However, it does not incorporate initial estimates. Moreover, it is believed that the existing initial 

estimate is of some value at Thales, especially in the absence of (much) operational failure data. The 

Bayesian estimation does incorporate initial estimates and can, according to a literature study, not only 

deal with non-normal and low demand but also high demand. Furthermore, it is based on the underlying 

assumption that demand is of random nature and follows a Poisson process. Therefore, the Bayesian 

estimation will be chosen as failure rate updating model.  

In the next section, Section 3.3, we explain the Bayesian estimation more in detail.   
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3.3 Bayesian estimation  

‘’There are two sources of hard data: data collected at a facility – ‘’plant-specific’’ – and data reported 

by industry – ‘’generic’’ data. Although both provide you with some estimates, neither could produce 

representative equipment failure frequencies. This is because plant specific data is statistically invalid 

due to a short duration of data collection or limited population of equipment. Generic data, on the other 

hand, does not reflect the characteristic and conditions of the plant that the equipment is operated 

under. There is another way, which is often known as data augmentation, which is performed using the 

Bayesian methodology. In this approach we use the generic data as a priori and plant specific data as an 

evidence (likelihood) to obtain posterior.’’ (Shafaghi, 2008).  

According to (Shafaghi, 2008), in failure rate estimations often generic data is used as the basis for the 

priori distribution. Evidence is based on the historical data and its statistics collected at a specific 

facility. Note that the evidence must be independent of the prior. The likelihood function is defined by 

the Poisson distribution, which is an appropriate distribution for random variables that involve counts or 

events per unit time, such as number of failures during the useful life of parts. The conjugate family of 

prior distributions for Poisson data is the family of gamma distributions. The meaning of the conjugate 

family is that the gamma distribution and the event/failure data can be combined to result in another 

gamma distribution. In the context of the Bayesian methodology, the uncertainty about the initial 

estimate may be treated by assigning it to a prior probability distribution, to be updated as a posterior 

distribution on the basis of new observations (failures) (Aronis, Magou, & Dekker, 2004). When we 

choose the gamma distribution for the prior and updating it by failure observations during a certain 

period, then the posterior distribution is also constructed by the gamma distribution. The gamma 

distribution for the prior is characterized as follows:  

  

     𝐺𝑎𝑚𝑚𝑎 𝑝𝑟𝑖𝑜𝑟 (𝜆|𝛼, 𝛽) =
𝛽𝛼𝜆𝛼−1𝑒−𝜆𝛽

(𝛼−1)!
      (3.1) 

 

In which 𝛼 and 𝛽 are the scale respectively the shape factor and 𝜆 is the failure rate. The mean of the 

prior Gamma is 𝛼 / 𝛽 and the variance is 𝛼 / 𝛽 2 and the mode is (𝛼 -1)/ 𝛽. Based on an initial 

(engineering) estimate of the failure rate, 𝛼 and 𝛽 can be derived. But specifying the unknown 

parameters is a critical and subjective part of the Bayesian approach because two equations are needed 

to define 𝛼 and 𝛽 and these equations can be specified in several alternative ways (Aronis, Magou, & 

Dekker, 2004). In the first equation either the mean or the mode of the prior Gamma distribution can be 

set equal to the initial estimate of 𝜆0. The second equation may come from expert’s experience, e.g., in 

95% of the cases the actual failure rate does not exceed twice the originally estimated failure rate:  

 

   𝑃 (𝜆 ≤ 2𝜆0) = 0.95 →  ∫  
𝛽𝛼𝜆𝛼−1𝑒−𝜆𝛽

(𝛼−1)!

2𝜆0

0
 𝑑𝜆 = 0.95    (3.2) 

 

After the observation of n failures in t operating hours, updating the parameters is done through:  
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   𝛼′(𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟) = 𝛼 + 𝑛        (3.3) 

 

   𝛽′(𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟) = 𝛽 + 𝑡       (3.4) 

  

    𝜆′(𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟) =
𝛼+𝑛

𝛽+𝑡
=

𝛼′

𝛽′               (3.5) 

 

Thus, updating the parameters is rather simple. Figure 8 gives 

a graphical illustration of how the Bayesian methodology 

operates on the prior distribution (Sherbrooke, 2004). If the 

observed value x exceeds the prior mean, the posterior 

distribution is shifted up toward larger failure rates with a 

mean that exceeds the prior mean. But, the posterior mean is 

less than the observed value x. The other way around also 

holds. ‘’In the large majority of cases a better estimate would 

have been to use the initial estimates and modify them with 

Bayes, giving progressively more weight to the observed data’’ 

(Sherbrooke, 2004).  

 

 

 

Previous research has noted that the prior importance in the posterior diminishes quickly with actual 

failure data (e.g., Aronis, Magou, Dekker & Tagaras (2004); Bergman, Noble, McGarvey & Bradley 

(2017)). This is a very encouraging finding, because it suggests that the effect of the only arbitrary part 

of the Bayesian approach, namely specification of 𝛼 and 𝛽, diminishes quickly with incoming failure 

data. However, if there is little data to update the prior, a weight w might be applied to prior 

parameters to prevent great variation in estimations. The weight parameter is defined to allow managers 

to incorporate their initial relative confidence in the engineering estimates for different parts. In this case 

equation 3.5 changes to:  

 

   𝜆′(𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟) =
𝛼∗𝑤+𝑛

𝛽∗𝑤+𝑡
                   (3.6) 

 

The setting of the prior parameters and the application of the Bayesian model will gain further attention 

during this research and will be discussed in Chapter 4 of this report.  

  

Figure 8 Bayes’ procedure 
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3.4 Dynamic stock level interventions  

If the failure data indicates an exposure to under or overstocking, an intervention may be needed to 

adapt the spare part stock levels. Several interventions are possible (Van Houtum & Kranenburg, 2015): 

1. Decrease stock level: a decrease of the stock level for a consumable part means that one part less 

is procured in the near future. Sometimes it is possible to deliver parts back to the original 

supplier, but one may then receive a lower price back than the original price for which the part 

was bought. A decrease of the stock level for a repairable part may lead to less or postponed 

repairs in the near future. 

2. Increase stock level: an increase of the stock level for a consumable part means that one part 

more is procured in the near future. It should be noted that the purchasing lead time applies 

here. An increase of the stock level for an in-house produced part implies one part more in the 

production process in the near future.  

3. Increase or decrease stock level for another part: if the availability performance is on multi-item 

level instead of on single-item level, it might be that VARI-METRIC places another part on 

stock as for which the risk of understocking or overstocking applies as it may have a greater 

impact on the overall system availability.  

4. Decrease repair and/or purchasing lead time to be more responsive: this can be done by 

increasing the stock level of SRUs to decrease the chance of waiting time for SRUs to perform a 

repair of the LRU. This intervention might especially be interesting for parts with high failure 

rates and long lead times leading to high stock levels. Another option is to perform a fast repair 

against higher costs.   

5. Adapt initial stock levels : due to lead times, it takes time before an intervention following from a 

failure rate update is being implemented. In the meantime, inventory problems can already be 

encountered. Therefore, it might be necessary or desired to adapt initial stock levels in advance.    

Regarding intervention 1, Thales would not proactively decrease stock levels because of the uniqueness of 

parts; they cannot be used outside the pool of six radar systems with service contract. Instead, repair of 

the next failed LRU will be postponed until an increase of the stock level is desired later in time. 

Intervention 3 is based on the compensation principle, like in VARI-METRIC, that the availability of 

one part can compensate for another under the condition that the system level target can be reached. 

This is however counterintuitive and since every LRU can cause severe downtime due to insufficient 

stock levels and equal, long lead times, we decide to value all LRUs the same and leave the 

compensation principle out of consideration. The initial stock levels can be held accountable for 90% 

system availability, so every LRU with a failure rate higher than estimated leads to an increased risk of 

underperformance and getting a penalty. Hence, intervention 3 will not be considered.  

Concerning point 4, SRUs can put to stock to be more responsive. Other options include a fast repair or 

production but the current (execution of the) procedures at Thales are not reliable enough to consider 

them as tactical interventions. Until now, it belongs more to operational interventions. Therefore, and 

because intervention 4 is mainly interesting for parts with relatively high failure rates, it will not get the 

main attention during this research. Nevertheless, we come back to it in Chapter 8 in Section 8.3. 

To conclude, we continue the research by considering interventions 1, 2 and 5. 
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3.5 Dynamic inventory control policy  

According to Van Houtum & Kranenburg (2015), in general one-for-one replenishments will make sense 

for parts that have high inventory holding costs and/or low demand rates. For less expensive parts, 

however, it may be appropriate to order a fixed batch size Q when the stock level drops below a certain 

reorder point s, and thus to follow an (s,Q)-policy instead of a base stock policy. For relatively cheap 

parts, it can even be decided to perform an all-time buy which is actually an extreme form of the (s,Q)-

policy. Here, inventory of spare parts will be bought for the whole duration of the contract. At Thales, 

this policy would be followed for parts with prices below €1.000. Although the (s,Q)-policy is less 

dynamic in nature than the one-for-one policy, the failure data can play an important role to optimize 

the reorder point and the batch size. Nevertheless, this research is about relatively expensive electronic 

equipment which is characterized by low failure rates, so the one-for-one replenishment policy makes 

sense and will only be considered here. It concerns parts with prices of at least €1.000.  

By using the Bayesian estimation, the operational failure data leads to a new estimation of the failure 

rate or MTBF as is shown with equations 3.5 and 3.6. However, the question arises how to use the new 

estimates to determine the required stock levels. Aronis et al (2004), propose a method to do so which is 

based on the compound Gamma-Poisson probability function (is: negative binomial probability function) 

for the number of failures k during the replenishment lead time L, see equation 3.7. 𝛼 and  𝛽 are the 

prior parameters of the Gamma distribution. The demand during lead time is 𝜆𝑛𝐿 in which 𝜆 is the 

failure rate and 𝑛 the number of parts installed in the field.    

 

    𝑃(𝑘|𝛼, 𝛽) = ∫
(𝜆𝑛𝐿)𝑘𝑒−𝜆𝑛𝐿

𝑘!

𝛽𝛼𝜆𝛼−1𝑒−𝜆𝛽

(𝛼−1)!
 𝑑𝜆 

∞

0
       (3.7) 

 

The required base stock level is the lowest stock level S that provides at least the required service level 

p. Hence, S is the lowest value that satisfies the next inequality:  

 

   ∑ ∫
(𝜆𝑛𝐿)𝑘𝑒−𝜆𝑛𝐿

𝑘!

𝛽𝛼𝜆𝛼−1𝑒−𝜆𝛽

(𝛼−1)!
 𝑑𝜆 ≥ 𝑝 

∞

0
𝑆−1
𝑘=0         (3.8) 

 

To apply the method (which will be discussed further in Chapter 5), initial values of the unknown 

parameters 𝛼, 𝛽 of the prior Gamma-distribution must be specified. This would be main topic of the 

next chapter. 
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3.6 Conclusion  

There are two types of parts distinguished at Thales, electronic and mechanical parts. We could learn 

from the literature about the failure behaviour of these types of parts. Generally, the ‘’bathtub’’ curve 

applies to failure behaviour of the parts except that for electronic parts the wear out phase may be 

considered as non-existent. Mechanical parts are characterized by wear out and an increasing failure rate 

after its useful life. Unfortunately, it is rather difficult to find the right moments in time when the 

transition between phases takes place. For sake of simplicity, this research will focus on the most 

important category: electronic parts with constant failure rates.  

After comparing different failure rate updating models, it became clear that the Bayesian estimation 

would be the most suitable one for Thales. This method can deal with different demand characteristics 

that may be expected at Thales and explicitly incorporates the initial estimate which may be the best 

estimate on hand in the absence of (much) operational data. 

We discussed several stock level interventions that may follow a failure rate update. The interventions to 

work further with are: increase stock level, decrease stock level and adapt initial stock level. The 

literature proposes a method to link failure rate estimates to stock level interventions that will be used 

from Chapter 5 on. First, the prior parameters of the Bayesian estimation will be explained and set in 

Chapter 4.   
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4. Applying Bayesian estimation  

In the first section of this chapter, we explain the prior parameters of the Bayesian estimation and the 

impact they have on the estimation of the failure rate. Section 4.2 focuses on the consequence of an 

updated failure rate with the Bayesian estimation. We conclude the chapter by summarizing our findings 

and giving the direction in which the research will be continued.     

 

4.1 Setting prior parameters  

To apply the Bayesian estimation and update the failure rate, we need to determine the Gamma prior 

parameters 𝛼, 𝛽 and the weight factor of the initial estimate (w in equation 3.6). The prior is a starting 

point in which no operational data is included yet. Before diving further into the parameters, we first 

show that the estimated failure rate is an unbiased estimator of the unknown, actual failure rate:   

 

   𝐸[�̅�] =
1

n
∗ 𝐸[∑ 𝑋𝑖

𝑛
𝑖=1 ] =  

1

n
[∑ 𝜆𝑖

𝑛
𝑖=1 ] =

1

𝑛
∗ 𝑛𝜆 = 𝜆    (4.1) 

 

In equation 4.1, 𝐸[�̅�] is the mean number of observed failures, 𝑋𝑖 is the number of observed failures 

during a certain review period 𝑖 and 𝑛 is the total number of periods. The review periods in which the 

number of failures is being observed need to be independent. At Thales, the review period would be a 

year due to dependencies in number of failures during periods shorter than one year. The �̂�, the sample 

standard deviation, and 𝜎, the actual unknown standard deviation, differ a factor 1/√𝑛 meaning that 

the sample standard deviation is half the actual standard deviation after 4 review periods.  

4.1.1 Parameters: α and β 

To set the prior parameters, we can make use of the next equation in which 𝜆0 is the initial estimate of 

the failure rate:  

 

   
𝛼

𝛽
=  𝜆0         (4.2) 

 

 

As there is no operational data in the beginning, we consider the initial estimate as true. Based on 

equation 4.2, we conclude that 𝛽 =
𝛼

𝜆0
. As 𝜆0 is known and given in advance, we need to determine 𝛼 to 

find 𝛽 simultaneously. The Gamma parameter 𝛼 is a shape parameter of the probability distribution. 

If we consider an estimated failure rate of the Poisson distribution, the probability density and the 

coefficient of variation is given by: 𝜆0
−0.5. The coefficient of variation is the ratio of the standard 

deviation divided by the mean. As there is little to no information about the reliability of the initial 

estimate (see Goel & Graves, 2007; Gu & Pecht, 2007), the only assumption that can be made in this 

point in time is: 𝐸(𝜆) =  𝜆0. This means that the Gamma prior density could be constrained by 𝜆0
−0.5 to 

represent the same boundaries for the variance. The form is a limit of the Gamma density with 𝛼 = 0.5. 

Therefore, it might be wise to set 𝛼 = 0.5. In the literature, this is called a constrained noninformative 

prior (Atwood, 1994). If 𝛼 = 0.5 then 𝜆0 =
0.5

𝛽
→ 𝛽 = 0.5/𝜆0. The prior distribution may be thought of as 
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equivalent to half a failure in time 0.5 ∗ 𝑀𝑇𝐵𝐹. The constrained noninformative prior distribution is 

constructed to have little influence on the posterior distribution, other than that its mean value is 

specified. We can modify the prior distribution even after setting the α and differentiate between 

different part characteristics with the weight factor of the initial estimate (w in equation 3.6). Hence, we 

set α to 0.5 and discuss the weight factor in the next section. 

In the Gamma distribution with the parameters as explained before, the probability 𝑃(𝜆 ≤ 3 ∗ 𝜆0) is 

equal to approximately 99%. Since Thales assumes it is exceptional that the unknown, actual estimate 

exceeds three times the value of the initial estimate, it is in line with their claim. 

4.1.2 Parameter: weight factor initial estimate 

Given the uncertainty and variability factors within Thales and the disputable reliability of the failure 

rate prediction methods MIL-HDBK-217F and RIAC 217PLUS (see Goel & Graves, 2007; Gu & Pecht, 

2007), it could be argued that the initial reliability engineering estimate of the failure rate is of low 

value. Hence, it makes sense to use the operational failure data in estimating the failure rate, also 

because the data includes human errors which is not included in the initial reliability estimate but is 

relevant for logistic purposes.  

Regardless the weight factor of the initial estimate in the Bayesian procedure (w in equation 3.6), the 

estimation relies more heavily on the operational data as more data becomes available. The weight factor 

has, in addition to the prior parameter 𝛼 that has just been set, influence on the speed of this process. 

As can be seen in Figures 9 and 10, especially in the beginning of the data collection and/or with limited 

amount of observed failures, the broad chi-squared confidence intervals reflect the high risk of relying 

heavily on the data. As an approximation, at least 3 and 15 failures for the upper respectively the lower 

bound are needed before the bounds on the mean time between failures start becoming flat. It should be 

noted that 100 parts observed for 20 operating hours yield the same number of accumulated test hours 

as 10 parts for 200 hours.   

 

Figure 9 Χ2 upper bound on the mean (RMQSI, 2016)      Figure 10 Χ2 lower bound on the mean (RMQSI, 2016) 

Figure 11 illustrates an example of the influence of the weight factor on the updated MTBF given a 

fixed initial estimate of the MTBF. A weight factor of for example 3 means that more than 3 review 

periods, in which the amount of failures are observed, are needed to put more confidence in the failure 

data than in the initial engineering estimate.  
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Figure 11 Influence of the weight factor on estimation MTBF 

The following conclusions can be drawn: 

 The higher the weight factor, the less sensitive of operational failure data and the less relative 

deviation of the newly estimated MTBF compared to the initial one. 

 If the weight factor is 1 and the observed failures during a certain period is 0, the increase of the 

MTBF is equal to the number of operating hours in the period.  

To give an example of the last finding, if the initial MTBF estimate is 10.000 hours and the period in 

which no failures occur consist of 17.520 operating hours (2 years), the updated MTBF is 27.520 hours 

even though the chance of having 0 failures in that period is only 17%. The lower the failure rate and/or 

the number of parts in the system, the higher the chance of underestimating the number of failures. 

Therefore, together with the fact that Thales wants to minimize the number of stock interventions, we 

tend to aim for a weight factor higher than 1 for that kind of parts. However, more research would be 

needed to decide on this. We explain this further in the next section. 

 

4.2 Consequence of Bayesian estimation  

In the previous section the weight factor of the initial estimate could not be set yet. Different weight 

factors lead to different estimations of the failure rate and therefore possibly different stock level 

interventions. To be able to compare weight factors against each other and choose what factor to use, we 

need to get insight in the consequences of using them. The consequences depend on the stock level 

interventions that would be linked to a failure rate estimate. As became clear in Section 3.4, we focus on 

the following stock level interventions: increase stock level, decrease stock level and/or adapt the initial 

stock level. The first two can be linked to failure rate updates, the latter is independent from that as the 

data collection has not yet started at that point in time.  

Although different weight factors may be applied for parts with different estimated failure rates, it is not 

necessarily the case that the Bayesian estimation would lead to only accurate estimates and “right” stock 

level interventions if they are based on those estimates. Hence, we dive further into the risks of updating 

failure rates with the Bayesian estimation, possibly followed by stock level interventions, in the next 

chapter (Chapter 5).   
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4.3 Conclusion  

It became clear that at least 3 failures would be necessary to get a narrow upper confidence bound of the 

MTBF, i.e., lower bound of the failure rate. This means that for parts with a low failure rate/high 

MTBF it can take a long time before the operational data can deliver reliable estimates. Relying on 

unreliable data can give great fluctuations in the failure rate estimates and stock levels if the estimate 

would be used to intervene in these levels. This effect can be reduced by relying more heavily on the 

initial estimate, this is where the Bayesian weight factor comes into play.  

As it is not necessarily the case that a rather dynamic situation (adapt stock levels based on Bayesian 

estimation) is better than a static situation (maintain initial stock level) in terms of probabilities of 

backorders and penalties, we try to find out in the next chapter what the impact is of using a dynamic 

approach compared to a static approach and where risks lay. We do this for different part characteristics 

and for Bayesian weight factors of 1 to 4. To measure the consequence of updated failure rate estimates, 

the stock level interventions to consider is to either increase or decrease the stock level based on the 

update. Concluding from this chapter, we set the alpha parameter to 0.5 such that the prior Gamma 

distribution is constrained by the variability of the initial estimate. 

After assessing the risks of using the Bayesian estimation and comparing it with a static situation in the 

next chapter (Chapter 5), we continue the research with simulation experiments to determine the 

Bayesian weight factors that should be used, after how much time or failures the Bayesian estimation 

should be started and whether it makes sense to adapt initial stock level in advance even before 

operational data comes in. 
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5. Impact and risks dynamic stock level interventions  

When there is little or no failure data available, it can be risky to let failure rate estimates form the 

foundation of dynamic stock level interventions. In this chapter, we do research on the impact and risks 

that go together with this. In Section 5.1, we explain the research approach in detail. Section 5.2 

addresses the results. In Section 5.3 we draw conclusions and discuss about how to continue.   

 

5.1 Research approach  

In this section, we discuss the approach to investigate the impact and risks of a dynamic situation, in 

which the Bayesian estimation would be used, compared to a static situation, in which no data would be 

used. We measure the impact and risks with the sum of probabilities of getting out of stock (and risking 

a penalty) over 15 years, which is the duration of the service contracts. Concluding from chapter 3, the 

failures/demand arrive according to a Poisson process.  

5.1.1 Demand variation  

Only LRUs and no SRUs are put on stock at Thales, so we only consider LRU demand. There are parts 

with different characteristics within Thales, it concerns the characteristics as listed below. Together they 

form the number of failures/demands during the replenishment lead time.  

 MTBF/failure rate of LRU in hours 

 Running hours radar system   

 Number of identical parts per radar system 

 Number of radar systems 

 Lead time (repair, production, purchase) 

For sake of simplicity, we will only consider uncertainty in the failure rate, and consequently the average 

demand during lead time. The running hours, number of parts in system, number of systems and lead 

time will be set respectively to: 8760 hours per year, 1, 1 and 1 year. The magnitude of demand during 

lead time and a certain stock level together determine the Poisson probability of no backorders (equation 

5.1). 𝑁𝑡 is number of failures during lead time 𝑡, 𝑠 is stock level and 𝜆𝑡 is estimated demand during 𝑡 .  

    

   𝑃(𝑁𝑡 = 𝑠) =
(𝜆𝑡)𝑠

𝑠!
𝑒−𝜆𝑡       (5.1) 

 

5.1.2 Availability target  

To calculate the minimum required stock level with equation 5.1 and estimations of the failure rate and 

average demand during lead time, we set a target for the supply availability (= probability of no 

backorders during lead time). This is in line with the method as explained in Section 3.5 proposed by 

Aronis et al (2004). As we work on part level and leave out the compensation principle, we strive for the 

same availability for every type of LRU. We let 𝑥 denote the unknown target availability per type of 

LRU. Provided that the radars consist of 248 different LRUs, the system availability is 𝑥248 (redundancy 

out of scope). Setting this value to 0.90, which is the system target availability as stated in the contract, 

we find the target availability per LRU: 0.999575. We do not differentiate between operational and 

supply availability because the repair times are very small compared with the replenishment lead times. 

LRU demand during lead time  

= (running hours in lead time/MTBF) * 

number identical parts per system * number 

of systems 
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Although VARI-METRIC results in different targets for different LRUs, the target as just calculated can 

be viewed as an average. The minimum required stock level to reach the availability target can be found 

with the Poisson distribution, in which 𝜆𝑡 is the (estimated) LRU demand during lead time (see equation 

5.1). The lowest stock level 𝑠 in equation 5.1 that meets the target is the minimum required stock level.   

5.1.3 Factor 3 difference between initial and actual failure rate  

It is unclear whether the initial estimate of the failure rate and demand is correct and, if it is not, how 

much it deviates from the actual value. From a logistical perspective, the worst-case scenario occurs if 

the failure rate is 3 times higher than estimated while the initial stock level is based on the initial 

estimate. It might be even higher than a factor 3, but then a root cause analysis (and possibly a redesign 

of the part) takes place. It is no longer the responsibility of logistics then. To check the highest possible 

impact and risks of a dynamic situation with stock level interventions compared to a static situation in 

which the initial stock level would be maintained, we work with a factor 3 difference. We only consider 

the failure rate as not fixed, so the demand during lead time also is a factor 3 higher than estimated.  

5.1.4 Demand ranges  

Given that demand is a continuous variable and the minimum required stock level a discrete variable, 

each stock level applies for a certain demand range. The ranges depend on the availability target as 

mentioned in Section 5.1.2. See Appendix D for the demand ranges per stock level according to the 

availability target of 0.999575. The required stock level of 2 starts at a demand of 0.03. Due to the 

conservative risk averse approach of Thales to put at least 1 part on stock for every type of LRU 

because any part can fail at any time, we do not consider demand below 0.01. It makes no sense to 

dynamically update the failure rate and stock level as the required stock level would remain 1 even if the 

failure rate is a factor 3 higher. For the other demand ranges listed in Appendix D, we check which ones 

apply at Thales. As a result, 9 (expected) demand ranges and related initial stock levels can be seen in 

Table 1. For ease of reading the remaining report, we number the demand ranges by 1 to 9.   

Range number Demand range Initial stock level 

1 0.010-0.029 1 

2 0.030-0.141 2 

3 0.142-0.339 3 

4 0.340-0.609 4 

5 0.610-0.937 5 

6 0.938-1.311 6 

7 2.170-2.641 9 

8 4.194-4.747 13 

9 8.977-9.610 21 

Table 1 Nine demand ranges encountered at Thales with corresponding initial stock levels  

As the initial stock levels are based on initial estimates of the failure rates and demand, one can imagine 

that the initial stock levels would not be enough if the failure rate, and therefore demand, appears to be 

three times higher than initially estimated.  

In a dynamic situation in which the Bayesian estimation is being used to update the failure rate, it is 

possible that the updated failure rate is lower than the initial estimate even though the actual, unknown 

failure rate is higher. If the same availability target would be used, the proposed stock level intervention 
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following from the update could be to decrease the (initially estimated) stock level. We call this: 

“incorrectly decreasing”. The opposite is also possible, meaning that the ‘’proposed’’ stock level is even 

higher than the required/desired stock level based on the demand multiplied by 3. We call this: ‘’overly 

increasing”. We consider both concepts as risks of the Bayesian estimation. Therefore, to get an idea of 

the highest risks that may be encountered, we work further with the lowest and highest value for the 

demand in the beforementioned ranges in the worst-case scenario that the failure rate (and demand) is 

three times higher (Section 5.1.3). Logically, demand low in the range gives the highest risk of 

incorrectly decreasing, demand high in the range the highest risk of overly increasing. Consequences of 

these “wrong” decisions is a higher penalty risk respectively unnecessary part/order cost. 

5.1.5 Excel model: dynamic versus static inventory control approach  

Before going into detail about the Excel model to compare the dynamic with the static approach, we 

first give a schematic overview of the previous sections to clarify the process steps to find the minimum 

required stock level given an estimate of the failure rate (Figure 12). The difference between the dynamic 

and static approach becomes visible as well. 

 

Figure 12 Schematic overview of the process in a dynamic and a static approach 

The process to assess the impact and risks of a dynamic approach and compare it with a static situation, 

is depicted in Figure 13. 

 

Figure 13 Diagram of the research process 
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The failures can be modelled with the Poisson distribution such that it can be calculated in Excel what 

the probability is of observing X failures in years 1-15. To represent the risk that may be encountered in 

the situation at Thales, we model three times more failures than estimated while the initial stock level is 

based on the estimated demand/failures. If the Bayesian estimation (with different weight factors) would 

be applied to update the MTBF/failure rate, the expected demand during lead time and required stock 

level can be derived accordingly. If the ‘’proposed’’ stock level after applying the Bayesian estimation 

would be followed, different stock levels can be ended up with, each with a certain probability. 

Consequently, we multiply the probabilities of having certain stock levels with the probabilities of having 

backorders corresponding to those stock levels and summon over 15 years. The sum can be compared 

with the sum in a static situation to expose the potential impact and risks of the dynamic situation.  

5.1.6 Assumptions  

For simplification purposes, some assumptions have been made in the model: 

 No mission profiles. It is expected that on average the workload of the frigates is equal and 

independent per year regardless the exact mission profiles. This is because they switch roles 

every year in a cycle of four years. Therefore, we do not model the missions specifically.  

 Lead time of 1 year for increasing stock because the repair, production and purchase lead time is 

1 year. Although Thales will not proactively decrease the stock level but will postpone the repair 

of the next failed LRU, the time of the next failure cannot be deduced from the Excel model. 

Hence, for decreasing the stock level, the lead time of 0 would apply. For the worst-case scenario 

considered in this chapter it is not required to model this principle exactly. In the next chapters, 

when more scenarios would be considered, we model this more precisely.  

 Review period of 1 year. Updating the failure rate after a certain amount of time can be 

considered as a time-driven approach. The time between review periods is 1 year and is chosen 

because years can be considered as independent when it comes to number of failures, due to 

workload levelling of the frigates. Moreover, it is planned to do tactical stock interventions and 

(exceptional) problems that arise within each year would be solved by means of operational 

processes, e.g., fast repair. The event-driven approach, i.e., updating after a certain number of 

observed failures, would get attention in next chapters as well. For now, to get insight in the 

potential impact and risks of the Bayesian estimation, the time-driven approach suffices.    

 Running hours of 8760 per year. The number of observed failures, so the demand, decrease or 

increase proportionally with the running hours. Although the systems on frigates may have 

fewer running hours, we work further with 8760 running hours per year for this research.   

 The probability of backorders has been calculated per year since the review period is 1 year and 

the stock level in a certain year is fixed over a whole year. Given the independency of failures 

(characteristic of Poisson process), the static situation encounters the same probability every 

year. Thus, the probability can be multiplied by 15 to get the requested sum.   

 The Bayesian weight factors for the initial estimate to consider in the model are 1 to 4. Later in 

the report, we determine the most suitable weight factors to use for different parts and 

experiment with even higher weight factors.    
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5.2 Results and findings  

Now we have explained the approach, we elaborate on the results and findings. The results are 

summarized in Table 2. The demand ranges and corresponding results are listed in ascending order.  

Probability of backorder: summation over 15 years (worst-case scenario) 

Range 

number 

Demand range  

(high and low in range) 

Static Dynamic (Bayesian estimation) 

w=1 w=2 w=3 w=4 

1 Lowest in range: 0.010 

Highest in range: 0.029 

0.66% 

5.36% 

0.65% 

3.21% 

0.66% 

3.21% 

0.66% 

3.21% 

0.66% 

3.21% 

2 Lowest in range: 0.030 

Highest in range: 0.141 

0.17% 

13.83% 

2.98% 

4.25% 

2.99% 

4.50% 

2.99% 

4.61% 

2.99% 

4.72% 

3 Lowest in range: 0.142 

Highest in range: 0.339 

1.47% 

30.07% 

2.87% 

6.87% 

3.01% 

6.80% 

3.12% 

7.02% 

3.20% 

7.30% 

4 Lowest in range: 0.340 

Highest in range: 0.609 

5.96% 

57.59% 

4.12% 

11.88% 

4.07% 

10.96% 

4.30% 

11.23% 

4.53% 

11.47% 

5 Lowest in range: 0.610 

Highest in range: 0.937 

16.77% 

99.11% 

6.56% 

17.57% 

5.64% 

17.03% 

5.91% 

17.30% 

5.86% 

17.70% 

6 Lowest in range: 0.938 

Highest in range: 1.311 

37.48% 

155.72% 

9.18% 

23.75% 

8.64% 

24.52% 

8.91% 

25.00% 

8.72% 

25.50% 

7 Lowest in range: 2.170 

Highest in range: 2.641 

185.21% 

410.80% 

28.10% 

58.25% 

28.59% 

58.80% 

29.09% 

59.52% 

29.93% 

60.31% 

8 Lowest in range: 4.194 

Highest in range: 4.747 

571.66% 

841.29% 

79.53% 

115.62% 

80.23% 

116.18% 

80.82% 

116.93% 

81.43% 

117.54% 

9 Lowest in range: 8.977 

Highest in range: 9.610 

1280.25% 

1378.29% 

173.85% 

186.91% 

174.43% 

187.42% 

175.07% 

188.08% 

175.75% 

188.70% 

Table 2 Sum of probabilities of backorder over 15 years for static and dynamic situation 

5.2.1 Findings per demand range  

Below we discuss the findings per demand range. For the graphs depicting the probabilities we talk 

about, see Appendix E. In the next section, we discuss the findings in a more generic way.  

When the demand is low in range 1, there is no difference between a static and dynamic situation. When 

high in the range, the probability of backorders could be reduced by the dynamic approach, but this 

would cost money to increase the stock level. The probabilities that the Bayesian estimation would lead 

to a failure rate update corresponding with a lower stock level than the initial stock level (incorrectly 

decreasing) or higher than the desired stock level (overly increasing) are close to zero. 

When the demand is low in range 2, there is a high probability for 15 years that the proposed stock level 

(is: calculated required stock level after updating the failure rate with the Bayesian estimation) is lower 

than the initial stock level, regardless the weight factor. In year 1, the chance is even 90%. This explains 

the increased risk of having backorders compared with the static situation. When high in the range, 

there is a reasonable chance of overly increasing when the Bayesian estimation would be applied with 

weight factor 1. It fluctuates around 6%. This declares the lower number in the table for weight factor 1. 

When the demand is low in range 3, the probability of incorrectly decreasing is 65% in year 1. In 

addition, if Bayes’ weight factor is 1, there is a chance of overly increasing (±6%). When high in the 

range, the chance of overly increasing is even higher (±12%), although it is below the 6% per year for 

weight factors 2, 3 and 4.  
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When the demand is low in range 4, the dynamic approach gives an improvement compared to the static 

situation. This is mainly because the chance of incorrectly decreasing is lower than for smaller demand 

ranges (35% in year 1). When high in the range, the probability of incorrectly decreasing is still 16% if a 

weight factor of 1 would be used and close to zero for other weights. This explains the higher number for 

weight factor 1 in the table. There is a reasonable chance of overly increasing for all weight factors.  

When the demand is low in range 5, the probability that the proposed stock level following from the 

Bayesian estimation would be lower than the initial stock level is 16% in year 1, regardless the weight 

factor. When high in the range, the chance of incorrectly decreasing is still 6% in year 1 for weight 

factors 1, 2 and 3. For weight factor 4 the chance can be considered as zero. The chances of overly 

increasing have risen again compared with lower demand ranges.  

When the demand is low in range 6, the probability of incorrectly decreasing when using the Bayesian 

estimation is 6% in year 1, regardless the weight factor. When high in the range, this chance has fallen 

to 2%. The probability of overly increasing is reasonable for both levels in the range and for all weight 

factors. Again, they are higher than for lower demand ranges.  

For the demand ranges 7, 8 and 9, we see the same kind of risk profile as sketched for demand range 

number 6. Probabilities of incorrectly decreasing become lower, probabilities of overly increasing become 

higher. For demand range 8 and 9, the chance of incorrectly decreasing can be considered as zero.  

5.2.2 General findings  

The dynamic approach seems to have a large potential, which is increasing with the demand, to reduce 

the risk of having backorders (and penalties) over 15 years if the demand would be three times higher 

than estimated. The value of the weight factor seems to have little impact and decreases with demand, 

but it should be noted that we only considered the extreme values in the ranges. The difference between 

weight factors could be more visible when considering all values in the range. In general, the higher the 

weight factor the narrower the range of possible stock levels and the lower the number of interventions 

but the slower the adaptation process. As every intervention would cost money, there is a trade-off 

between costs and risk reduction. Therefore, in the next chapter we do further research in this trade-off.  

For demand ranges 1, 2 and 3 it may be disputed whether it makes sense to apply a dynamic approach, 

given that the impact is relatively low. Furthermore, the chance of incorrectly decreasing the stock level 

is high for demand ranges 2 and 3. Therefore, when the demand is low in those ranges, the probability of 

having backorders is higher than in a static situation. As can be seen in the graphs in Appendix E, the 

probability can be reduced by collecting data for years before updating the failure rate and stock level. 

The probabilities of overly increasing are relatively low.  

For demand ranges 4, 5 and 6 it seems that weight factor 2 gives the lowest probability of having 

backorders. However, given the small relative differences between the weight factors, it should still be 

checked if the differences between the risk reduction is worth the money by taking the number of stock 

level interventions and costs into account. Given the reasonable chances of incorrectly decreasing 

(Appendix E), it can be decided to wait a few years before using the data and updating the failure rate.  

For demand ranges 7, 8 and 9 the dynamic approach has its highest gain potential when it comes to risk 

reduction of getting backorders. It seems that weight factor 1 would deliver the lowest probability of 
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having backorders. Downside, although not dependent on weight factor, is the relatively high risk of 

overly increasing with the consequence of buying too much (expensive) parts. As this risk also exists for 

the other weight factors, although a little lower, there is a trade-off that should gain further attention. 

Concluding, it seems that the weight factor has more impact when the demand is relatively low and 

should be set higher to lower risks compared to higher demand.   

 

5.3 Conclusion  

In this chapter we considered the worst-case scenario that the demand for a part is three times higher 

than estimated due to more failures. If that happens, the initial stock level would be insufficient leading 

to an increased risk of having backorders. Consequently, the probability that Thales needs to pay a 

penalty becomes higher. As the penalties are high, we were interested in whether and to what extent a 

dynamic approach (by updating failure rates with the Bayesian estimation) can improve the situation by 

reducing the probability of having backorders.  

We modelled the situation in Excel and got a view of the impact and risks of using the dynamic 

approach versus the static approach (initial stock level is maintained). Based on the findings, it might be 

disputable to use a dynamic approach for low demand parts due to the risk of incorrectly decreasing the 

stock level and the relatively low gain potential in terms of backorder reduction. For high demand the 

opposite applies. For demand in the midranges, there is still a substantial gain potential but important 

to note is the reasonable chance of incorrectly decreasing the stock level. To lower this risk, start 

updating after a few years seems logical. Hence, this would be investigated in the next chapters.  

As we need to consider the number of interventions and costs to give guidelines how much risk could be 

accepted, the research will be continued in this direction in the next chapters. Furthermore, as we only 

considered one scenario in this chapter, we aim to test other scenarios as well. Lastly, the Excel model 

does not generate failures, but only works with the probabilities of failures, such that we have not 

simulated the actual situation yet. For example, the number of failures in a year and the moment of 

time of these failures affect the stock on hand, the number of backorders and the down time. To find a 

method that works in practice, we simulate the situation with a simulation model in the next chapters.  

The interventions to examine are no longer either to increase or to decrease the stock level following 

from the Bayesian estimation but also adapting the initial stock level comes into play. Before 

experimenting, we first need to design the simulation model in the next chapter (Chapter 6).  
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6. Simulation model  

In this chapter we explain the design of the simulation model in Section 6.1, and the scenarios to 

examine in Section 6.2. In Section 6.3, the experimental design for testing the scenarios will be 

discussed. We conclude the chapter by summarizing the findings and clarifying how to work further. 

 

6.1 Simulation model design  

Continuing on the research approach of previous chapter, we design, build, test and use a simulation 

model to perform scenario analyses. The whole process will be illustrated in the next sections. The 

scenarios to examine and the experimental design will be discussed afterwards.  

6.1.1 Plant Simulation  

First the simulation software to use needs to be determined. Although there is a professional scenario-

based simulation tool within Thales, as explained in Section 2.3.2, it does not include the functionality of 

determining and implementing decisions in a dynamic fashion. In other words, it is not efficiently 

possible to use the results of the simulation to base new decisions on and continue the simulation. Due to 

this, and the flexibility to program functionalities yourself, we have emigrated to the discrete event 

simulation software from Siemens, namely Plant Simulation. Plant Simulation is developed for 

modelling, simulating, analysing, visualizing and optimizing production systems and processes, the flow 

of materials and logistic operations. After building the model, it is possible to efficiently experiment with 

scenarios. The license to get access to the software can be gathered via the University of Twente.  

6.1.2 Details of the model  

Figure 14 depicts the process as modelled in Plant Simulation. As soon as the simulation starts, the 

initial spare part stock level would be determined which is based on the initial estimate of the failure 

rate and average demand during lead time. In the model, failures (exponential interarrival times) will be 

generated according to the initial estimate of average demand multiplied by a certain failure rate factor 

to mimic a situation in which the failure rate (and demand) is different from the initial estimate. The 

failure rate factors to consider will be explained in Section 6.2. The model starts empty and the 

simulation length is 15 years which is the duration of the service contracts. Although the model is not in 

the steady-state in the beginning we do not use a warm-up period before storing statistics, simply 

because the steady-state has not been reached at Thales in the beginning either. If the dynamic approach 

would be applied, the Bayesian estimation will be triggered at the end of each year (time-driven). Later, 

in Chapter 7, we also experiment with an event-driven Bayesian estimation, i.e., triggered by failures.  

The dynamic decision logic in the model is as follows: failure rates will be updated with the Bayesian 

Estimation followed by a new estimation of the average demand during lead time. Given the newly 

estimated demand, the required stock level can be calculated according to the ‘’static’’ availability target 

of 0.999575. Then, the stock level would be kept the same or would be either increased or decreased. In 

this chapter and chapter 7, we work further with the decision logic as explained above. In chapter 8, we 

experiment with a more sophisticated decision rule to determine whether to order parts or not.   

The uniqueness of parts lead to the fact that they cannot be used for other radar systems than the 6 

systems with service contract. Also, due to safety and confidentiality regulations, they cannot be sold to 
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third parties. Hence, the stock level would not proactively be decreased. Instead, the policy would be to 

do nothing until the next failure. After the next failure, the LRU would be stored and not repaired to 

save repair costs. When later in time an increase of the stock level is desired, it will first be checked if 

there are failed LRUs stored which can be repaired to (partly) fulfil the desired intervention. The 

remaining number of desired parts would be ordered, i.e., produced in-house or purchased.  

As will be mentioned again in Section 6.2, we also consider non-repairable, discardable units (from now 

on: DUs) in the scenario analyses. We slightly modify the model for these relatively cheap parts. As it is 

not cost-efficient to repair the parts after replacement at the customer, they will be discarded, and new 

ones will be bought or produced with a lead time of 1 year. Hence, repair costs do not apply anymore. If 

a stock level reduction is desired, next failed parts would be discarded without ordering a new one. 

Compared to repairable parts (from now on: LRUs), it is not an option to place failed DUs in storage. 

For the technical details of the model, see Appendix F.   

 

Figure 14 Process flowchart of the model in Plant Simulation 

6.1.3 Assumptions  

In the simulation model, the next assumptions apply for simplification purposes: 

 Replenishment lead times (repair, production and purchase lead time) are considered as 

deterministic and are set to 8760 hours (1 year).  

 Interarrival times of failures are exponentially distributed.  

 If there is system downtime, the failure generation is paused. 
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 Capacity of the repair shop (at Thales) may be considered as unlimited. 

 Review period Bayesian updating is 1 year. Each year a stock level intervention may take place.    

 If failed LRUs have been stored to decrease the stock level, they can be repaired to increase the 

stock level in a later Bayesian update. If the desired stock level intervention is smaller or equal 

to the number of stored parts, no new parts would be ordered. 

 Stock holding costs are calculated at the end of each year. If the stock level changes during or 

at the end of the year, it only affects the costs of next, coming year.  

 Stock holding costs are also being charged during the repair process.  

 No stock holding costs if failed LRU is in storage as the part has lost most of its value. If part 

will be repaired later, holding costs apply if repair starts. 

 Fixed order costs only apply for orders for new parts in case of increasing stock levels. 

 Penalty costs occur if part availability is below availability target. Penalty costs are higher if 

availability is lower according to the formula that will be discussed in Section 6.2.5.   

 Repair and holding costs per year are approximated by fractions of the part (purchasing) price, 

0.25 respectively 0.10. The part price, order costs and penalty costs are considered to remain 

constant during the years and are estimated by means of expert opinions within Thales.  

 The inventory investment for the initial stock adds up to the total costs.  

 Although parts can become obsolete, this phenomenon is out of scope of this research. The 

salvage value of parts in stock at the end of the life cycle is considered zero.  

6.1.4 Verification and validation model  

Verification is the process of checking whether the model meets the specified requirements. This process 

should take place before using the model for experimental purposes. We compared the model in Plant 

Simulation with the Simlox model that is being used within Thales with the following arbitrary input: 

Input model (no use of Bayesian estimation): 

Estimated demand 2 

Actual demand 6 (based on failure rate factor of 3, i.e., 3 times more demand) 

Availability target 99,9575% 

Initial stock level 8 (based on estimated demand) 

# replications 1000 

Run length 15 years 

Table 3 Model input data for verification purposes 

The results of the model in Plant Simulation and Simlox are as follows: 

KPIs Plant Simulation Simlox 

Availability % 92,67% 92,78% 

Fill rate % 88,43 % 88,42% 

Average waiting hours 112,28 hours 113,33 hours 

# fails in 15 years 83,63 83,30 

# repairs in 15 years 78,05 77,74 

Table 4 Comparison of Plant Simulation model and Simlox model 

We can hereby conclude that the values for the key performance indicators (from now on: KPIs) of the 

Plant Simulation model are close to the Simlox model. The KPI results of the Simlox model are within 

the 95% confidence bounds of the Plant Simulation model. Therefore, we cannot consider the results as 
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significantly different. Additionally, we run the Plant Simulation model for 1500 years with 1000 

replications but now with a failure rate factor of 1. The resulting availability is 99,9816%. Based on the 

manual calculation we expected a steady-state availability of 99,9763%. The difference is 0,005%, the so-

called measurement error. Verification of the Bayesian estimation has been done by running the model, 

manually calculate the decisions and compare them with the decisions the model makes itself. The 

decisions are in line, so it may be assumed that it is implemented correctly.  

Model validation is the process of checking the accuracy of the model’s representation of the actual 

system. As there is little to no data from practice, validation of the model should be done by logic 

reasoning. We do so by experimenting with some input values of the model and try to link remarkable 

outcomes to things that may happen in practice. For example, if we generate more failures than 

anticipated on there should be more downtime and the availability of the system should decrease. 

Mechanisms like this seem to work in the model, so we view the model as validated.  

Given all results, we consider the Plant Simulation model as proper to use for experimentation.  

6.1.5 Number of replications  

The required number of simulation replications follows from obtaining a specified precision that is aimed 

for a certain KPI. The method to find the required number of replications is the “Sequential procedure” 

(Law, 2006). The details of using this procedure can be found in Appendix G. We choose to apply the 

method for the KPI: ‘’number of failures in 15 years’’ since this variable exhibits the greatest relative 

variability, such that the resulting number of replications is certainly enough for the other KPIs given 

the specified precision. In statistics, a confidence interval of 95% is commonly used so we work with the 

same. As the number of replications may differ per demand range, we vary the initial (estimated) 

demand. The following numbers of replications (rounded up) should be used: 

Demand: Number of replications: 

<= 0.5 1000 

> 0.5 and <= 1 500 

> 1 and <= 2 250 

> 2 125 

Table 5 Number of replications for simulation runs 

We differentiate between four ranges of demand to reduce the simulation/computation time.  

6.1.6 Key Performance Indicators  

Before using the model, we need to decide the key performance indicators to base conclusions on. All 

KPIs are measured over 15 years (duration service contracts) of (simulation) time per replication.  

One KPI to keep track of is total costs which consists of other costs: inventory investment, holding 

costs, penalty costs (or savings), order costs and repair costs.   

Second KPI is the average part availability per year, which correlates with the system downtime.  

Third KPI is the probability of penalty per year, i.e., number of years with penalty divided by 15. 

In our model, a penalty applies if the part availability in a year is below the availability target.   

Fourth KPI is the number of new parts ordered, which correlates with the likelihood that a stock 

level increase is followed by a decrease meaning contradictory interventions in different points in time.   
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6.2 Scenarios to examine   

This section addresses the scenario analyses to examine to deal with the trade-off between the costs of 

stock level interventions and the corresponding risk reduction of getting penalties. 

6.2.1 Unknown difference between initial and actual failure rate  

In the previous chapter the unknown difference between the initially estimated and actual failure rate 

was assumed to be a factor three. By considering other variables constant, this gives demand three times 

higher than initially estimated. Although this worst-case scenario gave a good impression of the ultimate 

risks and impact of the Bayesian estimation, the difference can be smaller or opposite in direction in 

practice. The number of possible scenarios is infinite, so we work further with a limited set of scenarios 

as mentioned in Table 6. It reflects the range that might be encountered in practice at Thales. A failure 

rate factor of 1 means that the initially estimated and actual failure rate are equal.  

Failure rate factor: difference between initial and actual failure rate (and demand): 

1/3 1/2 1 2 3 

Table 6 Factors of difference between the initial and actual failure rate 

The demand ranges, on which the factor will be applied, remain the same as mentioned in Table 1. From 

now on, the demand value in the middle of each range would be used for experimentation. We do not 

consider both the highest and lowest value in each demand range anymore, as we did in previous 

chapter, to facilitate the ease of comparisons. We no longer focus on only the “extreme” scenarios but 

are interested in the more rigid ones also, i.e., stock level interventions would be proposed less quickly.  

6.2.2 Bayesian weight factor  

In the previous chapter, we could not get enough certainty to set the weight factor for different demand 

ranges. Thus, it will be part of the scenario analyses and we vary the Bayesian weight factor from 1 to 4. 

It is expected that the use of higher weight factors, i.e., slower adaptation to the data, would not be 

preferred over a static approach. We will decide on the fly if we experiment further with higher factors.  

Bayesian weight factor initial estimate: 

1 2 3 4 

Table 7 Bayesian weight factors to experiment with 

6.2.3 Delay Bayesian estimation updates  

According to previous chapter, it might be risk-reducing to wait a few years before using the data, 

updating the failure rate and perform stock interventions accordingly. This may be interesting mainly for 

low-range and mid-range demand. The maximum delay time to consider is 13 years with steps of 1 year. 

Longer delays would not make sense as the lead time is 1 year, and the contract duration is 15 years. 

Time of starting Bayesian estimation (end of years): 

1 2 3 4 5 6 7 8 9 10 11 12 13 

Table 8 Points in time when Bayesian estimation may start 

6.2.4 Stock level interventions  

The stock level intervention that could follow a Bayesian failure rate update is to either increase or 

decrease the stock level. Of course, keeping the same stock level is also an option. Increasing the stock 

level corresponds with repairing, purchasing or producing a part and a lead time of 1 year applies.  
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For decreasing the stock level, the story is slightly different as mentioned in Section 6.1.2. As there 

already can occur stocking issues before an order could have been arrived, an intervention in advance or 

in the first year of practice might be necessary. Those interventions include: adapting the initial stock 

level, start even before the end of the first year with the Bayesian updating or a combination of both.   

6.2.5 Cost components 

Every risk reduction comes at a price, so to make inferences about how much risk reduction is worth the 

money, the main cost components are defined in Table 9. Some were already mentioned in Section 6.1.3. 

Cost components 

Penalty costs (yearly) 

x: part availability (per year) 

y: availability target (= 0.999575) 

If x ≤ 0.9             €500.000                   

If 0.9 < x < y       €500.000 * [(y-x)/(y-0.9)] 

If x ≥ y              €0 

Part price To be specified in Table 10 

Repair costs 25% of part price per repair 

Holding costs 10% of part price per year per part (on stock or in repair) 

Order costs €5.000 per order for new parts 

Table 9 Cost components to consider 

The maximum penalty costs considered in this research (for supply or operational availability lower than 

a fraction of 0.9 of time in a year), are €500.000. Although defined on system level, it would also be 

charged in case of a part availability performing at least as poorly. For availabilities of at least the target 

(0.999575), no penalty costs will be charged in the model. For part availabilities between the 0.9 and the 

target, the formula in the table above has been determined by approximation to transform penalty costs 

on system level to part level. If the part availability is below the target a penalty would be charged in 

our model because it already increases the risk of getting the full penalty on system level. This effect 

might be compensated in practice by parts performing above its target, but it is unknown if and for 

which parts this will occur. In the remaining of this report, we talk about penalties on part level. 

Repair costs and holding costs per year are approximately 25% respectively 10% of the part price (to be 

specified later in this section). The costs to order new parts, i.e., increasing stock level, are expected to 

be fixed and around €5.000 and emanate from administrative and communication processes. The amount 

does not depend on the size of the order or the part price. In this way, a method with many relatively 

small stock level changes will become less attractive. There are no costs for a stock level decrease as 

LRU repairs will be postponed and holding costs do not apply because the part has lost its value.  

Since there exists variation in costs for parts, and because other cost components depend on the part 

price, the part price would be varied (Table 10). At Thales, €50.000 is approximately the average part 

price, €100.000 is approximately the average of most expensive parts and €1.000 is the lowest price for 

which no all-time buy takes place (Section 3.5). The latter is about discardable, non-repairable parts. 

Part price: 

€1.000 (DU) €50.000 (LRU) €100.000 (LRU) 

Table 10 Part prices to consider 

One can claim that the stock investment would be smoothened out over years, but this is not really the 

case at Thales. Parts are not interchangeable with other systems and may become obsolete.  
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6.3 Experimental design  

As mentioned before, for every demand range we take the value in the middle to perform the scenario 

analyses on. Table 11 shows the demand input values to be used as initial demand. Before the scenario 

analyses can be performed with the model, the experimental design needs to be defined.  

Number range: Demand ranges: Input value: 

1 0.010-0.029 0.020 

2 0.030-0.141 0.086 

3 0.142-0.339 0.241 

4 0.340-0.609 0.475 

5 0.610-0.937 0.774 

6 0.938-1.311 1.125 

7 2.170-2.641 2.406 

8 4.194-4.747 4.471 

9 8.977-9.610 9.294 

Table 11 Demand input values for experimentation 

6.3.1 First round of experiments: Bayesian settings  

Table 12 depicts an overview of the experimental setup of the first round of experiments.  

Experimental setup: Bayesian settings 

Cases Description 

Static  

Dynamic (Bayesian estimation) 

Maintain initial stock level 

Update failure rate and either increase or decrease stock level 

Fixed input variables Value 

Estimated demand 

Availability target 

Cost components 

Value in middle of each 9 demand ranges, see Table 11 

0.999575, based on 248 LRUs 

All cost components except part price, see Table 10 

Non-fixed input variables Values 

Failure rate factor 

Part price 

1/3; 1/2; 1; 2; 3 

€1.000, €50.000 and €100.000 

Experimental variables Values 

Bayes’ weight factor 

Bayes’ start time (end of year) 

1; 2; 3; 4 

1; 2; 3; 4; 5; 6; 7; 8; 9; 10; 11; 12; 13 

Table 12 Experimental setup, first round of experiments 

We first perform experiments in a full factorial design regarding the following variables: failure rate 

factor, the weight factor of the initial estimate, the delay time before starting the Bayesian estimation 

and the part price. We do this for every demand range and let the Bayesian estimation decide the stock 

level interventions to either increase or decrease the stock level. Goal of the experiments is to find the 

most suitable settings of the Bayesian estimation (weight factor and start time) for parts with different 

characteristics. Regarding the availability target, we use the target based on 248 LRUs. This target may 

be viewed as too strong, but that would not be a drawback for this round of experiments because if the 

Bayesian settings function properly for this target, they certainly work for the other, weaker availability 

target. Additionally, we include experiments without doing stock level interventions according to the 

Bayesian estimation, i.e., the static approach. 
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Main KPI to compare the results of configurations on is total costs. This KPI includes all cost 

components such that it can be concluded when the costs for stock level interventions outweighs the 

savings in penalty costs. In this way we can determine when the Bayesian estimation improves the 

situation and, if so, which Bayesian setting leads to the most cost-efficient part availability while 

minimizing the number of interventions.  

To compare whether differences between configurations are significant, the statistical paired-t test (Law, 

2006) would be used, see Appendix H for the details. It can deal with correlation between samples, but it 

requires equal sizes of samples. It is commonly used in simulation studies due to common random 

numbers and the ability to control the number of replications.   

6.3.2 Second round of experiments: adapt initial stock levels  

As it is expected that stocking issues may arise even before the first stock level intervention could have 

been applied in practice if the failure rate is higher than estimated, further experimentation might give 

insights in whether to increase the initial stock level or not. There is another option to start Bayesian 

updating sooner than at the end of the first year. Of course, a combination of both is possible as well. 

Table 13 depicts the experimental setup of the second round of experiments. 

Experimental setup: adapt initial stock levels 

Cases Description 

Adapt initial stock level 

Dynamic (Bayesian estimation) 

Increase initial stock level before start of contract with customer  

Update failure rate and either increase or decrease stock level 

Fixed input variables Value 

Estimated demand 

Availability target 

Cost components 

Bayes’ weight factor 

Value in middle of each 9 demand ranges, see Table 11 

0.999575, based on 248 LRUs 

All cost components except part price, see Table 10  

As found in previous experiments (first round of experiments) 

Non-fixed input variables Values 

Failure rate factor 

Part price 

1/3; 1/2; 1; 2; 3 

€1.000, €50.000 and €100.000 

Experimental variables Values 

Initial stock level  

Bayes’ start time 

Increase initial stock level: see Appendix K 

After specified number of observed failures: see Appendix K 

Table 13 Experimental setup, second round of experiments 

We perform a second round of experiments in a full factorial design while applying the Bayesian weight 

factors as already found in previous experiments. If we have found in previous experiments that the 

Bayesian estimation should be started later than at the end of the first year for certain demand ranges, 

we will only consider initial stock level adaptations as there is apparently no need to start updating 

sooner. In the experiments, we vary the start time of the Bayesian estimation by relating it to a number 

of observed failures (event-driven). This depends on the demand range so see Appendix K for the levels 

to consider. The variation of the initial stock level can be seen in Appendix K as well. We explain the 

details in Section 7.2.    

Main KPI to compare results of the configurations on is total costs such that trade-off between initial 

stock investment and penalty costs can be addressed. To compare whether differences are significant, the 

statistical paired-t test (Law, 2006) would be used, see Appendix H for the details.     
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6.3.3 Additional experiments   

To further develop the application of the Bayesian estimation, additional experiments would be done. 

The simulation model should be changed accordingly to support the intended experiments. As the most 

promising search areas for extensions and variants of decisions rules follows from the first two round of 

experiments, the additional experiments will be designed on the fly when intermediate results are known. 

We will come back to this in Chapter 8.   

 

6.4 Conclusion  

In this chapter, we designed and built a simulation model in Plant Simulation to be used for 

experimental purposes. Plant Simulation is a discrete event simulation software program developed by 

Siemens and provides us with the ability to understand what might happen in practice at Thales. The 

scenarios to experiment with are related to the following variables: estimated demand during lead time, 

failure rate factors, Bayesian weight factors, Bayesian delay times and part prices. Regarding the latter, 

the cheapest replaceable parts (€1.000) to consider can be classified as discardable units (DUs). The two 

highest price classes in this research are €50.000 and €100.000. Parts in these price classes can be 

classified as repairable units (LRUs).  

In the next chapter (Chapter 7), we will show the results of the first two rounds of experiments. The 

first round will focus on the settings of the Bayesian estimation, i.e., the Bayesian weight factors and 

delay times. The second round will elaborate on the outcomes by addressing the issue whether to adapt 

the initial stock levels in advance and whether to start updating failure rates and stock levels before the 

end of the first year. In Chapter 8, we benchmark the Bayesian estimation against another model. Also, 

we aim to find a more sophisticated decision rule for increasing stock levels, i.e., ordering new parts.   
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7. Simulation results 

In this chapter the results of the simulation experiments will be shown and discussed. As we perform the 

experiments in two successive rounds, the results of the experiments will be discussed in Section 7.1 

respectively 7.2. We conclude the chapter in Section 7.3 by summarizing and discussing our findings.     

 

7.1 Bayesian setting experiments   

The first round of experiments relates to the setting of the Bayesian estimation. The results of the 

experiments will be discussed below. Detailed results can be found in Appendix I.   

7.1.1 Experiment results  

For the three price classes, nine demand ranges and five failure rate factors, we experiment with different 

weight factors and start times of the Bayesian estimation. We include the static approach in the 

experiments to compare with the dynamic approach (by applying Bayesian estimation). We are 

interested in the configurations that lay within the 95 % confidence interval of the mean total costs of 

the cheapest configuration. See Appendix I for extensive results per demand range and failure rate factor.  

To summarize, the static approach belongs to the most cost-efficient configurations for the cases 

mentioned in Table 14, i.e., penalty savings do not significantly outweigh the costs for dynamic stock 

level interventions. For the other cases, the dynamic approach is significantly less expensive due to less 

penalties. For parts of €1.000, €50.000 and €100.000 this is at most respectively -77%, -12% and -5%.  

Part price Demand ranges Failure rate factors 

€1.000 1-31 ≤ 2 

€1.000 1-21 ≤ 3 

€50.000 1-7 ≤ 2 

€50.000 1-4 ≤ 3 

€100.000 1-9 ≤ 2 

€100.000 1-6 & 8-92 ≤ 3 
1Although for these ranges the static approach is cost-efficient, we would recommend the dynamic approach as it 

does not significantly increase costs but slightly increases the availability if the failure rate is higher than estimated. 

2 The static approach appears to be cost-efficient for ranges 8 and 9, but this is caused by the fact that it is cheaper 

to accept many penalties than to prevent this by stock level interventions. As this is not desirable for the customer 

and Thales, we would recommend the Bayesian Estimation even though the total costs are significantly higher.

Table 14 Instances for which the static approach appears to be cost-efficient  

If the failure rate is lower than estimated (actual demand turns out to be less), savings in repair and 

holding costs can be achieved by applying the dynamic approach. However, in general the savings are 

not necessary when it comes to penalty risks and smaller than the net savings, i.e., penalty savings 

deducted by part, order and holding cost, if the failure rate and actual demand is higher than estimated.  

As there is no clue about the difference between the estimated and actual failure rate in practice, we 

work further with the average KPI results over the five failure rate factors. We determine the 

configurations leading to the lowest average total cost over 15 years over all failure rate factors to 

recommend on the most cost-efficient configuration for every price class and demand range. Table 15 

lists the recommended spare part control policy per demand range and price part and the resulting 
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confidence intervals (from now on: CI) of the mean availability per year (in % of time) and mean 

probability of penalty per year (below target availability of 0.999575). The CIs are based on the ultimate 

worst-case scenario that the failure rate is three times higher than estimated. 

Experiment results (Bayesian settings) over all failure rate factors: 

Demand 

range: 

Part 

price: 

Recommended stock policy 

 

CI worst-case 

part availability 

in % of time 

CI worst-case 

probability 

penalty 

1: 0.020 €1.000 

€50.000 

€100.000 

Bayes: all settings possible 

Static approach  

Static approach  

[99.8495; 99.9364] 

[99.7952; 99.9042] 

[99.7952; 99.9042] 

[0.0021; 0.0045] 

[0.0030; 0.0060] 

[0.0030; 0.0060] 

2: 0.086 €1.000 

€50.000 

€100.000 

Bayes: weight = 3, start: end year 1 

Static approach 

Static approach 

[99.8563; 99.9240] 

[99.7824; 99.8747] 

[99.7824; 99.8747] 

[0.0034; 0.0062] 

[0.0051; 0.0084] 

[0.0051; 0.0084] 

3: 0.241 €1.000 

€50.000 

€100.000 

Bayes: weight = 3, start: end year 1 

Static approach 

Static approach 

[99.7638; 99.8520] 

[99.3437; 99.5109] 

[99.3437; 99.5109] 

[0.0071; 0.0106] 

[0.0219; 0.0281] 

[0.0219; 0.0281] 

4: 0.475 €1.000 

€50.000 

€100.000 

Bayes: weight = 2, start: end year 1 

Static approach 

Static approach 

[99.7155; 99.8064] 

[98.7595; 98.9740] 

[98.7595; 98.9740] 

[0.0103; 0.0141] 

[0.0505; 0.0594] 

[0.0505; 0.0594] 

5: 0.774 €1.000 

€50.000 

€100.000 

Bayes: weight = 1, start: end year 1 

Bayes: weight = 4, start: end year 11 

Static approach 

[99.5384; 99.6550] 

[99.4337; 99.5612] 

[97.7032; 97.9749] 

[0.0173; 0.0221] 

[0.0245; 0.0303] 

[0.1046; 0.1166] 

6: 1.125 €1.000 

€50.000 

€100.000 

Bayes: weight = 1, start: end year 1 

Bayes: weight = 4, start: end year 11 

Static approach 

[99.4910; 99.6101] 

[99.4285; 99.5488] 

[96.4229; 96.7471] 

[0.0211; 0.0263] 

[0.0267; 0.0325] 

[0.1723; 0.1865] 

7: 2.406 €1.000 

€50.000 

€100.000 

Bayes: weight = 1, start: end year 1 

Bayes: weight = 4, start: end year 1 

Bayes: weight = 4, start: end year 1 

[98.9043; 99.0510] 

[98.8575; 99.0033] 

[98.8575; 99.0033] 

[0.0557; 0.0623] 

[0.0600; 0.0667] 

[0.0600; 0.0667] 

8: 4.471 €1.000 

€50.000 

€100.000 

Bayes: weight = 1, start: end year 1 

Bayes: weight = 4, start: end year 1 

Bayes: weight = 4, start: end year 1 

[98.0405; 98.2035] 

[97.9928; 98.1550] 

[97.9928; 98.1550] 

[0.0934; 0.0993] 

[0.0975; 0.1035] 

[0.0975; 0.1035] 

9: 9.294 €1.000 

€50.000 

€100.000 

Bayes: weight = 1, start: end year 1 

Bayes: weight = 4, start: end year 1 

Bayes: weight = 4, start: end year 1 

[96.6686; 96.8147] 

[96.6510; 96.7950] 

[96.6510; 96.7950] 

[0.1313; 0.1347] 

[0.1367; 0.1373] 

[0.1367; 0.1373] 
1It might be argued to start one or two years later because of minimal differences in total costs and worst-case 

probability of penalties (still below 0.05). Nevertheless, we work further with the numbers stated in the table.  

Table 15 Summary findings of the experiments over all failure rate factors per demand range and part price 

According to Table 15, the higher the part price the higher the demand should be to let dynamic stock 

interventions/investments outweigh the penalty reduction. Figures 15-17 show the impact of the 

Bayesian approach compared to the static approach in terms of average total costs over all failure rate 

factors. It confirms the findings from Chapter 5 that the impact in risk reduction, and therefore costs, is 

minor for low demand ranges but grows with demand. Furthermore, the impact is especially great for 

cheap parts (DUs), which declares the relatively low weight factors in Table 15. Logically, the risk of 

getting a penalty should be minimized. We also experimented with higher weight factors (6 and 8) but 

this gave no significantly lower costs or higher availabilities. The worst-case availabilities decrease 
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rapidly for relatively high demand. Main cause is the period of two years before the first order of parts 

could have been arrived. Therefore, in the next section we investigate whether it is a good idea to 

increase the initial stock levels in advance and/or start updating failure rates and stock levels sooner. 

 

Figure 15 Average total costs per demand range (part price is €1.000) 

 

Figure 16 Average total costs per demand range (part price is €50.000) 

 

Figure 17 Average total costs per demand range (part price is €100.000) 
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7.2 Initial stock level experiments  

As a follow-up on previous section, Figure 18 shows the expected availabilities in the first two years of 

practice for the nine demand ranges in the worst-case scenario that the failure rate is three times higher 

than initially estimated. The availabilities do not depend on whether the static or dynamic approach has 

been applied as the first Bayesian review took place at the end of year 1 and the lead time for new parts 

is one year. It might be interesting though, especially for the relatively high demand ranges, to start 

updating the failure rate and stock level sooner than at the end of the first year and/or to increase the 

initial stock level in advance. Therefore, this would be experimented in this section. Before showing the 

results, first some details of the experiments will be mentioned. 

 

Figure 18 Availabilities in first two years in worst-case scenario (failure rate factor is 3) 

7.2.1 Details of the experiments  

As a starting point, we use the Bayesian weights as listed in Table 15 and do not perform experiments 

for those price classes and demand ranges for which a static approach had been recommended. It 

concerns demand ranges 1-4 for the price class of €50.000 and demand ranges 1-6 for the price class of 

€100.000. For those ranges, there is no need to dynamically intervene in the stock levels or adapt initial 

stock levels in advance due to relatively low demand and high part prices. For the remaining demand 

ranges, updating before the end of year 1 or adapting initial stock levels can make sense so we include 

them in the experiments.   

The reason to increase the initial stock level and/or start sooner with the Bayesian estimation would be 

caused by the desire to be able to handle a worst-case scenario in which the failure rate is three times 

higher than estimated. Hence, we run initial experiments with a failure rate factor of 3 to see how much 

the initial stock level may be increased at most in a cost-efficient way, i.e., the additional initial stock 

investment earns itself back by having lower penalty risks. The results can be seen in Appendix J. If 

Thales wants to be risk averse, Thales should increase the initial stock levels to one of the numbers 

mentioned in the tables. Based on the outcomes, we choose “upper bounds” of initial stock levels to 

consider in the main experiments of this section in which all failure rates factors will be taken into 

account. See Appendix K for these “upper bounds”. Without any prior knowledge about the deviation of 

the estimated and the actual failure rate, it is wise to include all failure rate factors in the experiments. 

1 2 3 4 5 6 7 8 9

Availability year 1 99,909 99,925 99,848 99,674 99,312 99,028 96,633 90,525 77,024
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In the experiments, the Bayesian estimation would be started after a specified number of observed 

failures (event-driven) as we want to know how quick Thales needs to respond if more failures occur 

than estimated. The number of failures that can be observed depends on the demand range. See 

Appendix K for the details of the experiment settings. We assume that if the Bayesian estimation would 

be started after a certain number of failures a new update and stock level intervention may take place 

after one of the next failures at least one year later in time. Updating more often is risky when it comes 

to tactical decisions because it cannot be guaranteed that periods shorter than one year are independent 

in terms of workload of the frigates and expected number of failures.  

We run the experiments in a full factorial design such that every combination would be tested. Again, 

we differentiate between the nine demand ranges and three price classes. The run length of the 

experiments is 15 years. This is wisely chosen because a decision in the first year of practice influences 

the decisions and KPI results for the other 14 years as well.    

7.2.2 Experiment results  

The tables in Appendix L show the results of the experiments per demand range and price class. The 

configurations mentioned in the tables are the most cost-efficient on average over all failure rate factors, 

i.e., the mean of the total costs lays within the 95% confidence interval of the cheapest configuration. 

From the tables, we choose the configuration with the lowest initial stock level to save initial stock 

investment since the uncertainty about the actual failure rates is the highest when there is no data yet. 

When it comes to the most suitable start time of the Bayesian estimation, for every demand range and 

price class there can be found a start time with the lowest expected average probability of getting a 

penalty per year. Starting sooner or later leads to undesired, higher probabilities of penalties. The start 

time represents the trade-off between estimate reliability and response time. Together with the results 

from previous section, we end up with recommended stock policies for every price class and demand 

range, see Table 16.  

We shortly elaborate on some general findings: 

 Do not update after having observed only one failure due to unreliability of the estimate. 

 Relative penalty risk and cost reduction of 1 part extra on initial stock decreases with demand. 

 Absolute penalty risk and cost reduction of 1 part extra on initial stock increases with demand. 

 The Bayesian estimation can be applied to save initial stock investment without significantly 

higher probability of having penalties.  

 The initial stock level and required responsiveness to the data have negative correlation. From 

risk perspective: the higher the initial stock level, the later you may start the Bayesian 

estimation. Otherwise speed/time/responsiveness in adaptation process regarding the actual 

failure rate (and corresponding required stock levels) more important. 

 The higher the demand, the lower the impact of starting the Bayesian estimation one failure 

sooner or later due to shorter time periods between those failures. 

 Increasing initial stock levels is mainly interesting for relatively cheap parts. For relatively 

expensive parts, it is not cost-efficient to increase initial stock levels given the uncertainty about 

the actual failure rate. As a result the Bayesian estimation should start within the first year.  

  

 



7. Simulation results   

Thales | University of Twente  50 

 

Experiment results (initial stock levels + Bayesian settings) over all failure rate factors: 

Demand 

range: 

Part 

price: 

Initial 

stock 

level: 

Recommended stock policy 

1: 0.020 €1.000 

€50.000 

€100.000 

1 

1 

1 

Initial stock +1, no dynamic updates and interventions 

Static approach, no stock level interventions 

Static approach, no stock level interventions 

2: 0.086 €1.000 

€50.000 

€100.000 

2 

2 

2 

Initial stock +1, no dynamic updates and interventions 

Static approach, no stock level interventions 

Static approach, no stock level interventions 

3: 0.241 €1.000 

€50.000 

€100.000 

3 

3 

3 

Initial stock +1, Bayesian estimation(w=3) after 3 failures or 1 year 

Static approach, no stock level interventions 

Static approach, no stock level interventions 

4: 0.475 €1.000 

€50.000 

€100.000 

4 

4 

4 

Initial stock +2, no dynamic updates and interventions 

Static approach, no stock level interventions 

Static approach, no stock level interventions 

5: 0.774 €1.000 

€50.000 

€100.000 

5 

5 

5 

Initial stock +3, no dynamic updates and interventions 

Initial stock +0, Bayesian estimation(w=4) after 2 failures or 1 year 

Static approach, no stock level interventions 

6: 1.125 €1.000 

€50.000 

€100.000 

6 

6 

6 

Initial stock +3, Bayesian estimation(w=1) after 5 failures or 1 year 

Initial stock +0, Bayesian estimation(w=4) after 3 failures or 1 year 

Static approach, no stock level interventions 

7: 2.406 €1.000 

€50.000 

€100.000 

9 

9 

9 

Initial stock +5, Bayesian estimation(w=1) after 5 failures or 1 year 

Initial stock +0, Bayesian estimation(w=4) after 3 failures or 1 year 

Initial stock +0, Bayesian estimation(w=4) after 3 failures or 1 year 

8: 4.471 €1.000 

€50.000 

€100.000 

13 

13 

13 

Initial stock +7, Bayesian estimation(w=1) after 10 failures or 1 year 

Initial stock +0, Bayesian estimation(w=4) after 3 failures or 1 year 

Initial stock +0, Bayesian estimation(w=4) after 3 failures or 1 year 

9: 9.294 €1.000 

€50.000 

€100.000 

21 

21 

21 

Initial stock +14, Bayesian estimation(w=1) after 5 failures or 1 year 

Initial stock +0, Bayesian estimation(w=4) after 4 failures or 1 year 

Initial stock +1, no dynamic updates and interventions1 
1It is cheaper to accept many penalties than to perform dynamic stock level interventions. As this is not desired for 

the customer due to low service performance, we suggest other tactical interventions at the end of this section. 

Table 16 Summary of the experiment results over all failure rate factors per demand range and part price 

To conclude whether the time-driven (previous section) or event-driven (this section) approach should be 

followed for the Bayesian estimation, we set the chosen (possibly increased) initial stock levels as fixed 

and run experiments with both approaches. We compare the two approaches on the mean of the next 

KPIs: total costs, probability (from now on: Prob.) of penalty in year 2 and number of ordered new 

parts. Starting with DUs, we draw the following conclusions: 

Event-driven versus time-driven approach: DUs (€1.000) 

Demand range Total costs Prob. penalty year 2 Number of new parts 

3, 6, 7 and 8 No significant difference 

for all failure rate factors 

No significant difference 

for all failure rate factors 

Significantly ↓ for all 

failure rate factors (event) 

9 No significant difference 

for all failure rate factors 

No significant difference 

for all failure rate factors 

Significantly ↓ if failure 

rate factor ≥ 1 (time) 

Table 17 Time-driven versus event-driven approach for DUs  
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According to Table 17, there is no major difference between the two approaches. Evidently, there is no 

need to intervene in the stock levels within the first year. The initial stock levels are increased so 

responsiveness is less crucial. As the time-driven approach is most convenient to work with in practice, 

we suggest applying this approach and only ordering new parts after the number of observed failures as 

stated in the table has passed. This combination of a time and event-driven approach provides the 

ability to take advantage of both. The event-driven aspect mitigates the risk of ordering parts while the 

failure rate is equal or lower than initially estimated. Especially for low demand parts, it is risky to 

decide on stock level interventions after one year due to lack of (reliability in the) data. 

For LRUs (both price classes) the next conclusions apply: 

Event-driven versus time-driven approach: LRUs (€50.000 & €100.000) 

Demand range Total costs Prob. penalty year 2 Number of new parts 

5 & 6 Significantly ↓* if failure 

rate factor ≤ 1 (time) 

No significant difference 

for all failure rate factors 

No significant difference for 

all failure rate factors 

7 Significantly ↓* if failure 

rate factor ≤ 1 (time) 

Significantly ↓ if failure  

rate factor = 3 (event) 

No significant difference for 

all failure rate factors 

8 & 9 Significantly ↓ if failure  

rate factor ≤ 1 (time) 

Significantly ↓ if failure  

rate factor ≥ 2 (event) 

Significantly ↓ if failure 

rate factor ≤ 1 (time) 

*Although minimal, i.e., confidence intervals almost overlap, and decreases with the failure rate factor  

Table 18 Time-driven versus event-driven approach for LRUs 

According to Table 18, it seems logical to apply the time-driven approach for demand ranges 5 and 6. 

Minimal, but significant, (repair and holding) cost savings can be achieved because repairs can be 

postponed sooner in time if the failure rate appears to be smaller than estimated. For demand range 7, 

the same holds but the availability in year 2 (in % of time) can be increased roughly from 89% to 94% in 

the worst-case scenario (failure rate factor 3) with an event-driven approach. For demand ranges 8 and 

9, this is even from 82% to 92% respectively from to 74% to 92%. Also, when the failure rate factor is 2, 

it goes roughly from 96% to 98% respectively from 92% to 96%. Hence, the event-driven approach is 

mainly interesting for high demand parts to ensure a quick response and significantly increase the 

availability of the second year. However, the negative side-effect is a less reliable failure rate estimate 

leading to more ‘’wrong’’ decisions if the failure rate factor ≤ 1, i.e., more ordered parts when it is not 

needed. This is the price Thales needs to pay if the initial stock level should be kept as low as possible 

and will not be increased in advance. To conclude, we suggest applying the event-driven approach from 

demand range 7 on. At Thales, only 2% of the parts in the radar system belong to those demand ranges. 

By using the recommended stock policies, the mean worst-case availabilities in year 2 are as follows: 

Mean worst-case availabilities in year 2:  

 Demand range 

Part price 1 2 3 4 5 6 7 8 9 

€1.000 100% 99.99% 99.93% 99.95% 99.94% 99.79% 99.54% 98.53% 97.75% 

€50.000 99.88% 99.83% 99.33% 98.73% 97.47% 96.14% 94.11% 92.21% 91.79% 

€100.000 99.88% 99.83% 99.33% 98.73% 97.47% 96.14% 94.11% 92.21% 77.23% 

Table 19 Expected availabilities in year 2 in the worst-case scenario (failure rate factor = 3) 

To account for higher availabilities, Thales should either increase the initial stock levels or emigrate to 

other interventions, e.g., shortening lead times by fast repairs/production or putting SRUs on stock. 
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7.3 Conclusion  

Based on the experiment results discussed in this chapter, we can conclude the following: 

 When the application of a dynamic stock policy, by using the Bayesian estimation, starts 

becoming more cost-efficient (due to penalty reduction) than a static approach depends on 

estimated demand, the difference between estimated and actual failure rate and the part price.  

 The higher the estimated demand during lead time, the higher the failure rate factor and the 

lower the part price, the sooner it pays off to apply a dynamic approach by using the Bayesian 

estimation as a foundation for failure rate updates.  

 Higher weight factors, e.g., 3 or 4, should be given to parts with relatively low estimated 

demand (demand ranges 1-4) and to relatively expensive parts (€50.000 and €100.000). 

 Bayesian updating becomes less sensitive to the weight factor when demand is higher. 

 Minor impact of starting the Bayesian estimation one year later than at the end of the first year 

for low demand ranges (range numbers 1-6).  

 Major impact of starting the Bayesian estimation sooner than at the end of the first year for 

high demand ranges (range numbers 7-9). Impact on availability (in % of time per year) in year 

2 is at most +18% and occurs for demand range 9. 

 Higher initial stock levels lead to lower required responsiveness to failure data and vice versa.  

 It is mainly interesting to increase initial stock levels for relatively cheap parts to lower the risk 

of penalties effective immediately at the start of the contract. Dynamically updating the failure 

rate and stock levels further reduces the risk if demand will be higher than estimated.  

 Event-driven approach mainly relevant for relatively high demand parts (demand ranges 7, 8 

and 9 in this report) to enable responsiveness if failure rate is higher than initially estimated. 

However, at Thales the percentage of parts in these ranges is rather small, i.e., roughly 2%.  

 Given long lead times and high uncertainty about the actual failure rate, stocking issues can still 

occur despite using the recommended cost-efficient tactical stock policies. Operational decisions 

and processes should be in place to ‘’survive’’ the periods between tactical decisions. 

As stated in Table 19, the higher the demand the worse the availabilities can get in the worst-case 

scenario (during all years of practice). To account for higher availabilities, it is not cost-efficient to 

(further) increase initial stock levels or start even sooner with the Bayesian estimation according to our 

model. Instead, Thales might spend its money on other interventions, e.g., SRUs on stock or fast repairs.    

We based the most suitable settings of the Bayesian estimation on the lowest average costs over all 

failure rate factors as there is no clue about how much the actual situation deviates from the estimation. 

However, if it is believed during the years that certain factors are more likely, the Bayesian setting can 

be changed accordingly by consulting the tables and figures in this chapter and the appendices.  

Until now, updating failure rates with the Bayesian estimation was the foundation for dynamic stock 

level interventions. The Bayesian estimation is unique in combining the initial estimate and operational 

data to reduce fluctuations in the updates. It is unclear however if the situation would be worse, and if 

so how much, when the initial estimate would not be included in the estimation. Therefore, we do 

research on this in Chapter 8. In addition, a more sophisticated decision rule for ordering new parts will 

be investigated and we do further research on another tactical intervention: shortening lead times.  
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8. Benchmarking and extensions  

In Section 8.1 we benchmark the Bayesian estimation against another model. In Section 8.2, an 

extension would be addressed regarding a more sophisticated order policy. Section 8.3 focuses on lead 

time shortening. The results and findings will be summarized at the end of the chapter in Section 8.4.  

 

8.1 Benchmarking  

Although our choice for the Bayesian estimation as a foundation for stock level interventions is 

supported in the literature and seems to be particularly applicable in the situation to be encountered at 

Thales, it is unknown if and how much another model would perform worse. Until now, we considered an 

approach without using failure data (static), and an approach unique in combining the failure data with 

the initial estimate (Bayesian estimation). Another approach could be to only use the failure data for 

failure rate updates. According to Efron & Morris (1977), the obvious first choice of an estimator for one 

unknown mean to be estimated is the average of the data related to that mean. For the failure rate 

estimation of Poisson failures, this would come down to the Maximum Likelihood Estimation (MLE) as 

explained in Appendix C.5. The input factors for MLE are the same as for Bayesian estimation, namely 

the number of observed failures and the achieved running hours of the system. Hence, we benchmark the 

Bayesian estimation against MLE to discover if it indeed adds value to include the initial estimate. 

For a fair comparison, we use Table 16 as starting point and run additional experiments with the use of 

MLE instead of Bayesian estimation. We set the (adapted) initial stock levels as fixed as we only want 

to let the reliability of the failure rate estimates influence our conclusions. We consider the number of 

failures after which the estimation should start as an experimental variable because the ones listed in 

Table 16 are configured specifically on the Bayesian estimation. The number of failures after which the 

MLE should start is the one with the lowest expected average probability of penalty per year. After 

running the experiments and analysing results, we come to the conclusions as listed in Table 20 and 21. 

Bayesian estimation versus MLE: DUs (€1.000) 

Demand range Mean total costs Mean prob. penalty Mean # new parts 

3, 6, 7 and 8 No significant difference 

for all failure rate factors 

No significant difference 

for all failure rate factors 

Significantly ↑* if failure 

rate factor ≥ 2 (MLE) 

9 No significant difference 

for all failure rate factors 

No significant difference 

for all failure rate factors 

Significantly ↑* if failure 

rate factor = 3 (MLE) 

*Although minimal, i.e., 95% confidence intervals almost overlap  

Table 20 Bayesian estimation versus MLE for DUs 

Bayesian estimation versus MLE: LRUs (€50.000 & €100.000) 

Demand range Mean total costs Mean prob. penalty Mean # new parts 

5, 6 and 7 Significantly ↑ if failure 

rate factor ≥ 0.5 (MLE) 

Significantly ↓* if failure 

rate factor = 3 (MLE) 

Significantly ↑ if failure 

rate factor ≥ 0.5 (MLE)  

8 Significantly ↑ if failure 

rate factor ≥ 1 (MLE) 

Significantly ↓* if failure 

rate factor = 3 (MLE) 

Significantly ↑ if failure 

rate factor ≥ 0.5 (MLE) 

9 Significantly ↑ if failure 

rate factor ≥ 2 (MLE) 

Significantly ↓* if failure 

rate factor = 3 (MLE) 

Significantly ↑ if failure 

rate factor ≥ 1 (MLE) 

*Although minimal, i.e., 95% confidence intervals almost overlap  

Table 21 Bayesian estimation versus MLE for LRUs 
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According to Table 20, differences in total costs and probability of penalties between the models are not 

significant for DUs. Only the number of ordered new parts is slightly higher with MLE if the failure rate 

is higher than estimated. Due to the low price of parts, it has no significant impact on the costs. The 

great similarity between the models can be declared by relatively low Bayesian weight factors given to 

DUs, i.e., sensitive to failure data like MLE. Also, the risk of penalties is already low due to raised initial 

stock levels. The chance of ordering extra parts has been decreased by this.  

For LRUs in both price classes (Table 21) total costs are significantly higher with MLE, although the 

number of failure rate factors for which this applies decreases with demand. Main cause is a higher 

number of ordered parts without having any or much impact on the probability of penalties. This effect 

of MLE diminishes with demand, i.e., more data, as estimates become more reliable. 

Concluding, the chance of overestimating the failure rate is higher with MLE, leading to (on average) a 

higher number of ordered parts without significant savings in penalty risks and costs. However, when 

using the Bayesian estimation, more small orders will take place instead of fewer orders bigger in size.   

 

8.2 Conservative order policy  

Up to now, we based all dynamic stock level interventions on the outcome of the Bayesian estimation, 

i.e., the updated failure rate estimate. In this section, we try to understand whether it could be wise to 

include more information before deciding to increase the stock level. Being more conservative in ordering 

parts might help to reduce the risk of buying parts when the actual failure rate is (almost) the same as 

initially estimated or even lower. This risk belongs to the use of failure data due to variability.  

8.2.1 Decision rules  

An indication of whether the period until the next Bayesian update, which is the same as the lead time 

(one year), can be survived in terms of part supply is the current stock on hand (excluding repair 

pipeline). During the years, this might be used in the decision process such that the stock level would 

only be increased if the current stock on hand is below a predefined limit. This might save costs for 

ordered new (expensive) parts. The following predefined limits/decision rules will be experimented with: 

 Order limit: initially estimated demand during lead time multiplied by 0.5, 1, 2 or 3. 

 Order limit: updated demand during lead time, based on Bayesian failure rate estimate.  

For experimentation, the recommended stock policies as mentioned in Table 16 would be used. We focus 

on LRUs and not on DUs because of the large impact on costs. According to previous chapter, demand 

ranges 5 and 6 would be approached with a time-driven Bayesian estimation and demand ranges 7, 8 

and 9 with an event-driven Bayesian estimation. Confidence intervals (95%) of the mean of the next 

KPIs determine whether the rule improves the situation with no additional rule: total costs, probability 

of penalty per year and number of ordered parts. Results will be discussed in section 8.2.2.   

Additionally, to reach the same conservative effect it could make sense to use higher Bayesian weight 

factors in case of an event-driven approach since we only experimented with weight factors in the first 

experimentation round in which the earliest start time of the Bayesian estimation was at the end of year 

1. With an event-driven approach this start time can be within the first year. Although the impact is 

expected to be low, we experiment with Bayesian weight factors 5, 6, 7 & 8 to be certain about this. 
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8.2.2 Experiment results  

Here we discuss the decision rules with desired conservative effect without negative side-effects, i.e., 

significantly lower number of ordered parts with no significantly higher costs and/or average probability 

of penalty per year. The different demand ranges and failure rate factors will be distinguished. 

This next rule gives the best results, shown in Table 22, for LRUs in demand ranges 5 & 6 (time-driven): 

Only increase the stock level if the current stock on hand is at most twice the initially estimated demand 

during lead time (based on the initially estimated failure rate). 

Decision rule for conservatively ordering: LRUs (€50.000 & €100.000) 

Demand range Mean total costs Mean prob. penalty Mean # new parts 

5 & 6 

(time-driven) 

Significantly ↓ if failure 

rate factor ≤ 1  

No significant difference 

for all failure rate factors 

Significantly ↓* for all 

failure rate factors 

*Although minimal, i.e., 95% confidence intervals almost overlap  

Table 22 Experiment results concerning conservatively ordering 

According to Table 22, costs can be saved by using the rule due to a lower risk of ordering (unnecessary) 

parts in case the actual failure rate and demand is equal to or lower than initially estimated. 

Furthermore, the rule can be applied without having a significantly higher probability of penalty per 

year for all failure rate factors. Evidently, even if the failure rate is higher than expected, the demand 

during the replenishment lead time is quite low such that a more conservative order policy would not 

affect the risk of getting penalties. Therefore, the current stock on hand can give a good indication 

whether it is required to increase the stock level.  

For LRUs in demand ranges 7, 8 and 9 (event-driven approach), the decision rules cannot reach the 

same effect without having higher penalty risks. The best rule found is the next one: 

Only increase the stock level if the current stock on hand is at most the updated estimated demand 

during lead time (based on the most recently updated failure rate). 

By applying the rule, the total costs and number of ordered parts are significantly lower for failure rate 

factors below or equal to 1. However, the average probability of penalty per year is significantly higher 

for failure rate factors 2 and 3. Hence, the rule only works well if there is certainty that the actual failure 

rate is less than twice as high as initially estimated. Apparently, the demand during lead time becomes 

too high, and the next repair completion time is too late, if the failure rate is higher than initially 

estimated to prevent the conservative order policy from negatively affecting the risk of penalties.   

It might be considered to use a Bayesian weight factor of 5 for parts in demand ranges 7, 8 and 9 as it 

slightly, but not significantly reduces the number of ordered parts for all failure rate factors, and 

therefore the chance of ordering parts when the failure rate is lower than estimated. It has no significant 

impact on total costs and average probability of penalty per year. Higher weight factors continue to 

lower the number of ordered parts, but this comes with a slightly, but significantly, higher average 

probability of penalty per year for failure rates twice or three times as high as initially estimated. 
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8.3 Shortening lead times  

Until now, we only considered deterministic replenishment lead times of one year for repair, production 

and new-buy processes. In practice at Thales, however, they can be shorter although it depends on the 

supplier(s) of (sub)parts. To see the impact of shorter lead times, and because lead time shortening was 

suggested as an interesting intervention at the end of Section 7.2, we consider lead times of half a year in 

this section. By keeping the rest of our model unchanged, it means that the initially estimated average 

demand per year would be divided by two leading to lower initial stock levels. It also affects the dynamic 

updates of estimated demand during lead time (i.e. half a year). For sake of simplicity, the periods 

between Bayesian reviews remain one year and the running time of the model remains 15 years.    

For experimentation, the stock policies as listed in Table 16 would be used. Only the LRUs will be 

included in the experiments as the availabilities of DUs are already relatively high due to increased 

initial stock levels such that lead time shortening would have a minor impact. Again, for demand ranges 

5 & 6 and demand ranges 7, 8 & 9 a time-driven respectively an event-driven approach would be 

followed for the Bayesian estimation. Moreover, the additional rule concerning a conservative order 

policy mentioned in Section 8.2 would be applied for demand ranges 5 & 6. With the mentioned settings, 

we compare three cases on average availabilities per year in the worst-case scenario that the initially 

estimated failure rate is three times higher in practice. The three cases are: original situation with lead 

times of 1 year; situation with lead times of 0.5 year; and situation in which another intervention takes 

place, namely to add an extra LRU to initial stock. See Figure 19 and 20 for the results from the model.  

 

Figure 19 Average worst-case availability per year for LRU of €50.000 

 

Figure 20 Average worst-case availability per year for LRU of €100.000 
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The differences between the two figures can be declared by different stock policies (see Table 16) 

followed for the two price classes. The static approach had been used for demand ranges 1-4 respectively 

demand ranges 1-6 for the price classes €50.000 and €100.000. Furthermore, the relatively low part 

availability for demand range 9 in Figure 20 can be explained by the stock policy to only increase the 

initial stock level with one without any dynamic stock level interventions during the years.  

As can be seen in the figures, the positive impact of shorter lead times in comparison with increasing the 

initial stock level with one is high for relatively high demand parts (demand ranges 7, 8 and 9). 

Certainly more than one part should be added to initial stock, or dynamically added to stock, to reach a 

similar effect. Therefore, it seems interesting for Thales to shorten lead times for high demand and 

expensive parts. Of course, it depends on the associated costs if it is cost-efficient to do so, i.e., potential 

(additional) penalty and stocking cost savings outweigh the costs for securing shorter lead times. Also, 

dependent on those costs, it might be relevant for lower demand ranges as well. The costs for securing 

shorter lead times depend on, e.g., the number of SRUs in the LRU and the failure rates and prices; or 

the additional costs to speed up repair and/or production processes at Thales or the OEM. Although we 

do not have insights in the costs, we recommend Thales to determine those to enable experimentation 

with shortening lead times as a tactical intervention, whether or not in combination with dynamic failure 

rate and stock level updates. Nevertheless, we do have insight in (initial) LRU stock savings if the lead 

times can be shortened to half a year. We elaborate and compare the three cases as mentioned before.  

Initial stock levels per demand range for three cases:  

 Demand range 

Cases 1 2 3 4 5 6 7 8 9 

Lead time 1 year 1 2 3 4 5 6 9 13 21 

Lead time 0.5 year 1 2 2 3 4 4 6 9 13 

Extra part on initial stock 2 3 4 5 6 7 10 14 22 

Table 23 Initial stock levels per demand range for three cases 

As can be seen in Table 23, 2 or more LRUs on initial stock can be saved due to lead time shortening 

from demand range 6 on. In addition, if lead time shortening would be executed in combination with 

dynamic stock level interventions, fewer parts needs to be (dynamically) ordered which saves costs 

during the years of practice. To get an idea, see Figure 21 in which we calculated the average number of 

ordered new parts over all failure rate factors. We selected the demand ranges in which LRUs would be 

ordered given the stock policies as listed in Table 16. With the information it has been indicated how 

many LRUs (and money) can be directly saved with, and could be spent on, shortening lead times.      

 

Figure 21 Average of new parts (dynamically) ordered over all failure rate factors 
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8.4 Conclusion  

After benchmarking the Bayesian estimation against MLE it became clear that the chance of 

overestimating the failure rate is higher with MLE (which is sensitive to failure data) due to a small 

amount of data in the first years, i.e., low demand parts. If stock level interventions would be based on 

the estimates, MLE leads to fewer but bigger orders compared to the Bayesian estimation. As a result, 

the chance of increasing the stock level to a level higher than strictly necessary is greater. Nevertheless, 

the negative effect of MLE decreases with demand and with possible increments of the initial stock level. 

Besides using the updates from the Bayesian estimation to perform stock level interventions, we 

experimented with additional rules/order limits to decide whether the stock level should be increased or 

not. The next order limit came out as successful for LRUs in demand ranges 5 & 6: 

Only increase the stock level if the current stock on hand is at most twice the initially estimated demand 

during lead time (based on the initially estimated failure rate). 

By applying the rule, fewer parts would be ordered without significantly higher penalty risks per year. 

For LRUs in higher demand ranges, this is no longer the case as the penalty risk is significantly higher. 

To conclude, we gave insights in the impact and potential LRU stock (investment) savings if lead times 

would be shortened. Shortening lead times as a tactical intervention appears to be especially relevant for 

expensive parts (LRUs of €50.000 and €100.000) with relatively high estimated average demand/failures 

per year (≥ 2.406).    
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9. Implementation plan 

In this chapter, we shortly discuss the most important aspects that enables Thales to successfully 

implement the tactical decision model and lower the chance of getting a penalty in the future. Moreover, 

the implementation plan contributes in creating an environment in which continuous improvement would 

be encouraged.  

 

Validate input factors VARI-METRIC. As discussed in Chapter 2, the VARI-METRIC model that 

underlies the OPUS10 software for initial stock level calculations requires several input factors, e.g., 

initial estimates of failure rates, replenishment lead times and part prices. Uncertainty in estimates 

makes the outcome of the model less reliable and less representative for the situation that may be 

encountered in practice. Therefore, the input factors should be thoughtfully estimated to mitigate the 

risk of having inaccurate initial stock levels to start the service contracts with. With this is mind we 

suggest Thales to verify the estimates of input factors once again. 

Prepare action plan(s). To enable updates of the failure rate estimates and stock level interventions 

accordingly, it is wise to have some procedures in place for all departments involved in the supply chain. 

This concerns procedures for information sharing, communication, administration, finance, production 

planning, logistics, etcetera. It may be hoped for that stock level interventions would not often be 

necessary, but the consequence is that the processes to follow will not become routine. Due to proper 

preparation, possible barriers in the required processes can be encountered and removed in advance. In 

addition, as time plays an important role in service contracts, preparation can speed up the processes.   

Do not let nonrepresentative data influence estimations of failure rates. The failure data forms 

the basis for tactical stock level decisions, but it may contain failures not representative for ‘’random’’ 

failures in the long term. For example, failures caused by design or production mistakes may be 

considered as exceptional cases. These failures should not be included in the estimation of the failure 

rates unless strong suspicions of those failures happening more often in the future. We suggest Thales to 

think how to assess this in a structured way. However, data can always be “polluted” regardless all the 

efforts being done to prevent this.    

Initiate multidisciplinary review cycles. Meet with stakeholders, e.g., logistic engineers, purchasers, 

supply chain engineers, contract managers and reliability engineers, on a regular basis to discuss whether 

the parameters of the Bayesian estimation still seem appropriate given the new information and what to 

do with the newly updated failure rates when it comes to the stock levels. Regarding the latter, decisions 

should be made by combining data from an integral perspective. Review cycles create the possibility of 

discussing (upcoming) problems and anticipate on them on time. By doing this in a multidisciplinary 

setting, the chance of missing important information and making wrong choices would be reduced.  

Keep track of urgent matters. Although the tactical decision model aims to minimize the probability 

of getting a penalty in a cost-efficient way, it can still happen that a penalty would be expected on a 

short-term basis. This can be caused by many unforeseen circumstances, e.g., design or production 

mistakes, outdated (spare) parts and supply disruption of parts. In situations like this, quick 

(operational) decisions are required because the quicker the problem would be discovered, defined and 

discussed the lower the risk of backorders and penalties. A possible intervention to undertake could be to 
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speed up the repair or production process. To facilitate quick decisions, the prepared action plan(s) and 

procedures might come into play. 

Create awareness and willingness throughout the supply chain. To properly and efficiently 

follow all beforementioned steps, there must be a sense of importance amongst the employees throughout 

the entire supply chain. They should be motivated to work as a team, help each other whenever that 

seems necessary and aim for improvement. To achieve this, Thales should clearly explain and emphasize 

the goal of providing performance-based after-sales services and the (new) challenges this may bring.  
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10. Conclusions and recommendations 

In this chapter we first elaborate on the conclusions of our research in Section 10.1. In Section 10.2 we 

will discuss recommendations enabling Thales to improve the problem context now and in the future. 

Section 10.3 addresses the limitations of this research. We conclude the chapter in Section 10.4 by giving 

recommendations for further research on the same topic as our research.    

 

10.1 Conclusions  

In this thesis we have tried to answer the research question: 

“How can Thales use the operational failure data to (dynamically) update 

failure rate estimates and adapt spare part stock levels accordingly?” 

From the literature it became clear that the failure rate of electronic parts can be considered as constant 

during its useful life and the occurrence of failures is ‘’random’’ according to the Poisson distribution. 

The Bayesian estimation came out as most suitable failure rate updating model. This model is unique in 

combining the initial estimate of the failure rate with failure data and is well-known for its applicability 

to situations with little data, which is also the case at Thales. However, given the variability in the data 

and the unknown gap between the initial estimate and actual failure rate, the accuracy of the estimates 

can be low. To reduce fluctuations in the updates (less sensitive to data), a weight factor could be given 

to the initial estimate, but the adaptation to the actual failure rate would be slower.  

If the updated estimates form the foundation for stock level interventions, a slower adaptation process 

means a longer exposure to higher risks of backorders and penalties if the actual failure rate is higher 

than initially estimated. A simulation study has been executed to address the trade-off between stock 

level intervention costs and potential penalty savings. We conclude the following: 

 Thresholds of estimated average part demand (failures) during lead time apply before potential 

penalty cost savings outweigh the costs for dynamic stock level interventions. For parts of 

€1.000, €50.000, €100.000 this is respectively: 0.020, 0.774, 2.406 failures per year. 

 Dynamic stock level interventions provide the opportunity to save initial stock investment 

without significantly higher average probability of penalty per year.  

 For cheap parts (€1.000 in this report) it is cost-efficient to increase the initial stock levels in 

advance when there is no data yet.  

 For expensive parts (€50.000 and €100.000 in this report), it is not cost-efficient to increase 

initial stock levels in advance given the uncertainty about the actual failure rate.  

 For relatively high demand parts (initially estimated average of at least 2.406 failures per year): 

starting Bayesian estimation (possibly followed by stock level interventions) within the first year 

can increase the part availability (in % of time/year) in second year with at most 18%.  

 For parts with initially estimated average demand below 2.406 failures per year: number of 

(dynamically) ordered parts to increase stock level can be reduced without significantly higher 

penalty risks by including current level of stock on hand in decision process. 
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10.2 Recommendations  

We recommend Thales the following: 

 Apply Bayesian estimation for updating failure rates as a foundation for dynamic stock level 

interventions but use appropriate thresholds for initially estimated average part demand during 

lead time. Below the thresholds, apply a static approach. 

 Rely more heavily on initial estimates, i.e., less sensitive to data, if part price is relatively high 

(€50.000 and €100.000) and/or if estimated average failures per year is relatively low (≤ 0.475). 

 Only increase initial stock levels in advance for relatively cheap parts (in this report: €1.000). 

 Respond quickly to failure data, after 3 or 4 failures, if initial stock level has not been increased 

and initially estimated failure rate is relatively high (≥ 2.406 failures per year). 

 For parts with initially estimated failure rate lower than 2.406 failures per year, wait at least 

one year of time before updating failure rates (with Bayesian estimation) and possibly stock 

levels. Also, include current level of stock on hand in decision to increase stock level or not.   

 For relatively cheap parts with increased initial stock levels, wait at least one year of time and 

until a certain number of failures have occurred before updating failure rates and stock levels.  

To complement the use of our tactical model in practice, we refer to the research of Sleiderink (2015) for 

guidelines concerning tactical decisions about the allocation of spare parts in a performance-based service 

logistics setting. Moreover, Sleiderink recommends to rather spend resources on shortening replenishment 

lead times than reducing the failure rates since the lead times have more influence on expected penalty 

costs. Van Zwam (2010) also claims that it pays off to invest in lead time reduction. Based on our 

experiments results, we find it especially useful for expensive parts with relatively high initially estimated 

failure rates (≥ 2.406 failures per year), although it concerns only 2% of parts in the system. One way to 

reduce lead times is proposed by Van Zwam, namely the allocation of cheaper subcomponents, i.e., 

SRUs, in the supply chain network. Another option is to speed up repair, production and/or new buy 

processes. It saves (initial) LRU stock investment and increases responsiveness. We suggest Thales to 

investigate the (economic) feasibility of both options to shorten lead times and mitigate penalty risks. 

 

10.3 Limitations research  

Main reasons for some limitations of this research are directly related to simplification activities and time 

constraints. Simplification of the situation needed to take place to make the problem manageable. Time 

constraints can be dedicated to the research requirements defined by the University of Twente. We 

shortly discuss the limitations in this section.   

Provided there is little to no representative actual failure data yet, the possibilities for testing and 

validating the model were limited and could not have been exploited.   

We only considered the main cost components and part prices in this research and our simulation model, 

which have been approximated based on expert opinions. Nevertheless, we belief the main cost 

components represent reality close enough to make the model valuable.  

Only a limited amount of available information namely: failure rates; stock levels; and current stock on 

hand, have been included in the decision whether to order parts or not.    
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Based on the literature, the Bayesian estimation as used in this report seems most suitable for the 

problem encountered at Thales. However, other updating models could have been investigated more 

intensively to learn about its behaviour and applicability. Additionally, this might bring up ideas to 

combine different models to benefit from the best of everything.   

 

10.4 Recommendations for further research  

First recommendation for further research is to check (and modify) assumptions being made in this 

research. Also, other or more assumptions can be tested to understand the impact on the decision model. 

As the initial stock levels are based on a system availability of 90%, and because the parts deliver 

operational data separately, they all can cause severe downtime leading to penalties. Therefore, we have 

chosen to value all parts the same and worked on part level instead of system level. In addition, working 

on system level could mean that stock levels will be increased for other parts than for which the failure 

data indicates a higher failure rate than initially estimated. This is counterintuitive and does not 

mitigate the existing risk for the part that fails more often. Nevertheless, the performance of the radar 

systems at the customer would be reviewed on system level, so it might be interesting to do further 

research in the application of the Bayesian estimation on system level meaning that more than one 

availability target and (minor) risk pooling effects would be considered. 

Parts with wear out characteristics show an increasing failure rate at the end of or after its useful life. 

There are two options to deal with this. The first one is to replace the part even before the wear out 

period begins. It is however difficult to find the right point in time to do so. Further research might give 

insight what the optimal point of replacement would be. The second option is to gather operational data 

and keep track of the (increasing) failure rate. As the failure rate updating model would be different 

from the one used in this research, further research should be done to conclude how to use the data, 

which updating model to apply and how to adapt the stock levels accordingly.  

In this research we focused on the demand encountered at Thales. To make the decision model wider 

applicable, e.g., in other companies and industries, it would be worthwhile to investigate more and larger 

demand ranges. Greater demand can be caused by more systems in the field and/or higher failure rates.  

We have considered the Bayesian estimation and MLE as updating models, but other variants of the 

model and/or other models might be better suitable for (slightly) different situations within and across 

companies. To create solutions for a wide range of companies and industries, it might be interesting to 

investigate which model(s) to use, and how to use, in different realistic situations and companies.   

For the highest demand ranges considered in this research, the initial stock levels should be greatly 

increased otherwise the chance of getting a penalty in the first two years of practice is quite high. Due to 

uncertainty about the failure rate (estimate), it is not cost-efficient (especially for expensive parts) to do 

so. Another option is to shorten lead times by putting SRUs on stock or executing fast repairs. 

Experiments gave indeed promising results. Further research might give insights to what extent dynamic 

stock level interventions and shortening lead times should be used as tactical interventions 

simultaneously. Moreover, it might give knowledge about the best practical ways, e.g. SRUs on stock or 

fast repair/production, to achieve shorter lead times in different situations.      
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Appendix A: VARI-METRIC 

The underlying theoretical model for calculating the spare part stock levels is VARI-METRIC 

(Sherbrooke C. , 1986), an extension of the theoretical METRIC (Multi-Echelon Technique for 

Recoverable Item Control) model published by (Sherbrooke C. , 1968). As an addition to METRIC, 

VARI-METRIC takes also the multi-indenture problem into account. Figure A.1 and A.2 illustrate the 

multi-indenture respectively the multi-echelon concept. Without getting too much into detail as we refer 

to the book for the exact formulations of the model, we shortly explain the principle of the model below. 

 

 

 

 

 

 

  

 

VARI-METRIC is an inventory optimization model for allocating LRUs (Line-Replaceable Units), SRUs 

(Shop-Replaceable Units) and components to different stages/echelons in the supply chain, e.g., retailers 

and central depot, in order to reach a specific supply availability while staying within budget 

constraints. When the customer experiences a failed product, the product can be repaired by replacing 

the LRU. The LRU will then be discarded or repaired. For repairing the LRU it might be necessary to 

replace a sub-item, the SRU. It gets even more complex if the SRU is also being repaired which might 

consist of other components as well. Depending on the decisions what to repair and where to install the 

necessary equipment for the repairs, which is managed by the LORA model, spare parts would be 

allocated such that repairs of LRUs and/or SRUs would be possible while still being able to meet the 

agreed supply availability. There are two important trade-offs that play a role: inventory more upstream 

(further from the customer) in the supply chain leads to longer response times but can profit from risk 

pooling advantages and more inventory of spare parts can reduce the risk of having backorders (and 

waiting time) but is more expensive in terms of money.  

To determine how much stock of spare parts is needed at what place in the supply chain, VARI-

METRIC iteratively increases the total stock level by checking all the options and choosing the most 

cost-efficient one. Most cost-efficient means the biggest increment in the supply availability for 1 unit of 

money, or in other words, decline in total expected backorders divided by the spare part cost price. No 

more stock will be added if either the target supply availability or the budget constraint has been 

reached. 

Logically, the model requires, besides the costs of the parts, some input before the options can be 

weighed against each other. This list can be seen in Section 2.2.1 of the report.  

Figure A.2 Multi-echelon concept Figure A.1 Multi-indenture concept 
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Appendix B: Literature review methodology 

For collecting the articles during the literature review, mainly Scopus is being used. Scopus is the world’s 

largest abstract and citation database of peer-reviewed literature, including scientific journals, books and 

conference proceedings.  

The articles consulted during the literature review are listed below. To ensure to only use reliable articles 

of sufficient quality, we keep track of the number of citations, the field-weighted citation impact ratio 

and the year of origin. The field-weighted citation impact ratio is the ratio of the total citations actually 

received by the denominator’s output, and the total citations that would be expected based on the 

average of the subject field. Thus, a ratio of at least one is preferable. Articles published more than ten 

years ago without either more than zero citations or a field-weighted citation impact ratio of at least one 

is excluded from the literature review as there is no indication these articles contributed to the literature 

and, hence, it may be disputed whether they are of good quality.  

Article # Citations Year  

An infant mortality and long-term failure 

rate model for electronic equipment. 

16 1985 

MIL reliability: A new approach 22 1992 

Predicting the reliability of Electronic 

equipment 

69 1994 

Reliability Models for Mechanical 

Equipment 

9 1989 

A modified Weibull extension with 

bathtub-shaped failure rate function 

212 2002 

Failure Models for Mechanical Wear 

Modes & Mechanisms 

33 1993 

Two methods to estimate the change 

points of a bathtub curve 

3 2013 

Specification of change points of failure 

rate or intensity function: a non-

parametric approach 

3 (2.64) * 2012 

The development of a hierarchical 

forecasting method for predicting spare 

parts demand in the South Korean Navy 

– A caste study 

24 (5.97) * 2012 

A Bayesian approach to demand 

forecasting for new equipment programs 

3 (1.36) * 2017 

Equipment failure rate updating – 

Bayesian estimation 

11 2008 

Inventory control of spare parts using a 

Bayesian approach: A case study 

73 (1.49) * 2004 

Tutorial on maximum likelihood 

estimation 

552 (4.35) * 2003 

Exponential smoothing with credibility 

weighted observations 

15 (1.42) * 2013 

* The field-weighted citation impact ratio is stated between the brackets whenever existent  

Table B.1 Summary of main articles literature review  
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Article # Citations Year  

A new approach to forecasting 

intermittent demand for service parts 

inventories. 

161 (7.78) * 2004 

Forecasting and stock control for 

intermittent demands 

288 1972 

Forecasting intermittent demand in 

manufacturing: a comparative evaluation 

of Croston’s method 

126 1994 

The accuracy of intermittent demand 

estimates 

157 (9.82) * 2005 

 

Forecasting for items with intermittent 

demand 

114 (2.11) * 1996 

* The field-weighted citation impact ratio is stated between the brackets whenever existent   

Table B.1 Summary of main articles literature review  

To give an idea of the process to arrive at the articles, the table below shows the search keywords, the 

time frame in which is searched and the number of gathered articles.  

Search key words Years # Results 

Electronic AND equipment AND failures 1960-present 

 

7295 

Reliability AND prediction AND 

electronic AND equipment 

1960-present 585 

Predicting AND reliability AND 

electronic AND equipment 

1960-present 122 

Reliability AND models AND mechanical 

AND equipment 

1960-present 1283 

Bathtub AND failure AND rate AND 

curve 

1960-present 191 

Wear AND mechanical AND systems 1960-present 27 

Wear AND bathtub 1960-present 42 

Change AND points AND bathtub 1960-present 44 

Spare AND parts AND demand AND 

navy 

1960-present 8 

Updating AND failure AND rate AND 

model 

1960-present 145 

Demand AND forecasting AND Bayesian 1960-present 30 

Inventory AND control AND Bayesian 

AND approach 

1960-present 84 

Tutorial AND maximum AND likelihood 

AND estimation 

1960-present 63 

Time AND series AND exponential AND 

smoothing 

1960-present 1002 

Forecasting AND intermittent AND 

demand 

1960-present 300 

Table B.2 The search keywords during literature review  
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Appendix C: Failure rate updating models 

The compared failure rate updating model are discussed below. 

C.1 Exponential smoothing  

The exponential smoothing forecast uses the amount of actual failures during period t and the forecast 

for period t to predict the amount of failures in period t+1. The revised level of the estimate is a 

weighted average of the observed value of the level and the old estimate of the level.  

 

   𝑥𝑡+1 = (1 − 𝛼)𝑥𝑡 +  𝛼𝑑𝑡       (1) 

 

 

In the formula above d is the amount of failed LRUs derived from the operational failure data. The 

smoothing constant 𝛼 has a value somewhere between 0 and 1. The closer the value to zero, the smaller 

the weight of the most recently observations. A higher value for 𝛼 means that the forecast is more 

responsive to recent observations. As becomes clear, this method does not make use of initial estimates 

and there should be sufficient operational data available to get reliable estimates of the failure rates. 

If the observations within a dataset should not be valued the same because they may have different 

importances or credibility, the method of Yager (2013) could be used in which the observations can have 

different importance weights in the smoothing process. 

 

C.2 (Weighted) moving average  

The moving average forecast is the mean of the previous N time periods t:  

 

   𝑥𝑡+1 =
1

𝑁
 ∑ 𝑑𝑡−𝑁+𝑖

𝑁
𝑖=1                  (2) 

 

In the formula above d is the amount of failed LRUs derived from the operational failure data. The 

method does not make use of initial estimates and there should be sufficient operational data available to 

get reliable estimates of the failure rates. By setting N higher, the range becomes greater which means 

that the moving average becomes less responsive to the most recently observations. The weighted 

moving average gives a weighted average of the previous N periods t, where the weighting decreases with 

each previous period. 

 

C.3. Croston’s forecast  

Accurate forecasting of failures/demand is important in inventory control, but the intermittent nature of 

demand, i.e., random demand with a large proportion of zero values, makes forecasting especially 

difficult for service parts (Willemain, Smart, & Schwarz, 2004). Exponential smoothing and weighted 

moving average have been recognized as appropriate forecasting methods for non-normal demand (Moon, 

Hicks, & Simpson, 2012) but Croston (1972) has shown that Croston’s forecast works even better, 

especially if there are period with zero demands. Croston proposes to update the demand size and the 
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demand interval separately using exponential smoothing. Updates are only carried out in periods with 

positive demands. Croston’s forecasting method works as follows:  

 

   �̂�𝑡+1 = {
�̂�𝑡                                    𝑖𝑓 𝑑𝑡 = 0
(1 − 𝛼)�̂�𝑡 +  𝛼𝑑𝑡        𝑖𝑓 𝑑𝑡 > 0 

     (3) 

   �̂�𝑡+1 = {
�̂�𝑡                                    𝑖𝑓 𝑑𝑡 = 0

(1 − 𝛽)�̂�𝑡 +  𝛽𝑘𝑡        𝑖𝑓 𝑑𝑡 > 0 
     (4) 

   𝑥𝑡+1 =
�̂�𝑡+1

�̂�𝑡+1 
         (5) 

 

Where 𝛼 and 𝛽 are both between 0 and 1. The method does not include initial estimates.  

 

C.4. Baseline Method  

The baseline method (Bergman, Noble, McGarvey, & Bradley, 2017) uses engineering estimates to 

forecast demand for spare parts in the future. Once the engineering estimates are determined, managers 

decide when the demand estimates transition from an engineering estimate to observed demand. 

Transitioning to actual demand can be triggered by for example:  

 accumulation of a certain amount of operating hours  

 accumulation of a certain amount of failures/demand 

Of course, there are many variants of the transitioning rule. Once parts transition to observed demand, 

exponential smoothing and causal factors are utilized to calculate the forecast. As the baseline method 

assumes that past data represents future demand, it does not handle forecasting low demand well. The 

same holds for the other mentioned methods so far. Nevertheless, this method includes the initial 

estimate which may be assumed to be more reliable than estimates based on little operational data.  

 

C.5. Maximum Likelihood estimation  

‘’Maximum Likelihood estimation (MLE) is a preferred method of parameter estimation in statistics and 

is an indispensable tool for many statistical modeling techniques, in particular in non-linear modeling 

with non-normal data. MLE requires no or minimal distributional assumptions, is useful for obtaining a 

descriptive measure for summarizing observed data, but it has no basis for testing hypotheses or 

constructing confidence intervals.’’ (Myung, 2003).  

The principle of MLE, originally developed by R.A. Fisher in the 1920s, states that MLE is a method to 

seek the probability distribution that makes the observed data most likely. When the Poisson 

distribution best describes the behavior of (random) failures, the probability of n observed failures over t 

operational hours given a certain failure rate (initial estimate) is:  

 

   𝑃(𝑛|𝜆, 𝑡) = 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜆𝑡) = (𝜆 ∗ 𝑡)𝑛 ∗
𝑒−(𝜆∗𝑡)

𝑛!
              (6) 
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To find the failure rate that gives the highest probability of observing n failures over t operational hours, 

formula 3.6 need to be differentiated:  

 

   𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜆𝑡)′ = 0 →  𝜆 =
𝑛

𝑡
= 𝜆∗                   (7) 

 

The newly estimated failure rate is 𝜆∗ and as becomes clear by the formula the initial estimate is ignored 

in the new estimate. Hence, in case the initial estimates are not believed to have much value, the 

Maximum Likelihood estimation can be a good choice to prevent these estimates from being incorporated 

in failure rate updates.    

  



Appendix D: Demand range per stock level   

Thales | University of Twente  vii 

 

Appendix D: Demand range per stock level 

The demand range for each stock level is listed below. It is based on a (target) probability of 0.999575 

(derived from 248 LRUs) of having no backorders during the replenishment lead time (8760 hours).  

Stock level Demand Stock level Demand 

1 0,010 41 23,000 

2 0,030 42 23,700 

3 0,142 43 24,500 

4 0,340 44 25,200 

5 0,610 45 26,000 

6 0,938 46 26,700 

7 1,312 47 27,500 

8 1,724 48 28,200 

9 2,170 49 29,000 

10 2,642 50 29,800 

11 3,139 51 30,500 

12 3,657 52 31,300 

13 4,194 53 32,100 

14 4,748 54 32,800 

15 5,316 55 33,600 

16 5,898 56 34,400 

17 6,493 57 35,200 

18 7,099 58 36,000 

19 7,715 59 36,700 

20 8,341 60 37,500 

21 8,977 61 38,300 

22 9,620 62 39,100 

23 10,272 63 39,900 

24 10,930 64 40,700 

25 11,596 65 41,500 

26 12,268 66 42,300 

27 12,946 67 43,100 

28 13,700 68 43,900 

29 14,400 69 44,700 

30 15,100 70 45,500 

31 15,800 71 46,300 

32 16,500 72 47,100 

33 17,200 73 47,900 

34 17,900 74 48,700 

35 18,600 75 49,500 

36 19,300 76 50,300 

37 20,100 77 51,100 

38 20,800 78 51,900 

39 21,500 79 52,700 

40 22,300 80 53,500 
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Figure E.6 High in demand range 3 

Appendix E: Proposed stock levels Bayesian estimation – risks  

See below graphs per demand range about the behaviour of proposed stock levels by the Bayesian 

estimation if the actual failure rate would be three times higher than the estimated one. There has been 

focused on the risks that the Bayesian estimation would propose a stock level that is either lower than 

the initial stock level or higher than the desired stock level (according to availability target of 

99,9575%). We call this “incorrectly decreasing” respectively “overly increasing”.  

 

Figure E.1 Low in demand range 2 

 

Figure E.3 Low in demand range 3 
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Figure E.4 Low in demand range 3 

0%

1%

2%

3%

4%

5%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Review periods (years)

% proposed stock level < initial stock level

Weight factor 1 Weight factor 2

Weight factor 3 Weight factor 4

0%
1%
2%
3%
4%
5%
6%
7%
8%
9%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Review periods (years)

% proposed stock level > desired stock level

Weight factor 1 Weight factor 2

Weight factor 3 Weight factor 4

Figure E.5 High in demand range 3 



Appendix E: Proposed stock levels Bayesian estimation – risks   

Thales | University of Twente  ix 

 

 

Figure E.7 Low in demand range 4 

 

Figure E.9 High in demand range 4 

 

Figure E.11 Low in demand range 5 

 

Figure E.13 High in demand range 5       Figure E.14 High in demand range 5 
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Figure E.8 Low in demand range 4 
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Figure E.12 Low in demand range 5 
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Figure E.15 Low in demand range 6 

 

Figure E.17 High in demand range 6 

 

Figure E.19 Low in demand range 7 

 

Figure E.21 High in demand range 7      Figure E.22 High in demand range 7 
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Figure E.16 Low in demand range 6 
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Figure E.18 High in demand range 6 
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Figure E.20 Low in demand range 7 
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Figure E.23 Low in demand range 8 

 

Figure E.25 Low in demand range 9 
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Figure E.24 High in demand range 8 
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Appendix F: Technical details Plant Simulation model 

In Plant Simulation, the model is largely built up with methods and tables. The programming code is 

placed in the methods and is needed to let the right things happen at the right point in (simulation) 

time. All the data and (intermediate) results are stored in tables. The ExperimentManager takes care of 

running the specified experiments. It changes the stream of random numbers for every replication, but 

uses common random numbers across different experiments, such that they can be fairly compared. For 

sake of simplicity and running speed, only the failures are actual entities in the model. The exact 

movements of spare parts are not simulated as they can be deduced from the occurrence of failures. The 

model is built on two frames, one for the simulation of failures and one is being used as a control 

dashboard. The initial settings, experimental variables and results can be modified and observed on the 

dashboard. Figure F.1 depicts how the dashboard in Plant Simulation looks like. For more technical 

details of the model, i.e., logic flowcharts of the methods, see Figures F.2 – F.9. More information about 

the functions, features, debugging, procedures and algorithms of Plant Simulation can be found in the 

Plant Simulation manual (Mes, 2017).   

 

 

Figure F.1 Dashboard of the model in Plant Simulation 

 

 

Figure F.2 Logic flowchart of “Init” method, called at start of simulation 
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Figure F.3 Logic flowchart of “ArriveFail” method, called when failure occurs 

 

 

Figure F.4 Logic flowchart of “DecreaseByDiscard” method, only applied in DU model 

 

 

Figure F.5 Logic flowchart of “RepairLate” method, only applied in LRU model 

 

 

Figure F.6 Logic flowchart of “RepairedPart” method, called after each repair or production process 
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Figure F.7 Logic flowchart of “StatisticsYear” method, called at the end of each year 

 

 

Figure F.8 Logic flowchart of “CalculationBayes” method, called at the end of each year (time-driven) 

During the initial stock experimentation phase the whole process got triggered by failures (event-driven) 

and not by time (time-driven). The logic of the model used for this phase is depicted below. 

 

Figure F.9 Logic flowchart of model used for second round of experiments: adapting initial stock levels  
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Appendix G: Sequential procedure – number of replications 

Here the sequential procedure (Law, 2006) will be explained and performed. With the sequential 

procedure it is possible to calculate the required number of replications (separate simulation runs) to 

achieve a specified precision for a chosen KPI. The more replications, the more certain one can be about 

the mean value of the KPI and the narrower the confidence interval. In statistics it is common to work 

with a confidence interval of 95%, i.e., the significance level (α) is 5%. We take the number of failures 

during 15 years as KPI since it represents the greatest relative variability, so the required number of 

replications that will be found is certainly enough for other KPIs with less variability. The procedure is 

as follows: 

1. Start: make n0 ≥ 2 replications and set n=n0.   

n0 is an initial number of replications.  

2. Calculate �̂�𝑛, 𝑆𝑛
2 and the confidence interval half-width: 

   𝛿(𝑛, 𝛼) = 𝑡𝑛−1,1−
𝛼

2
 √𝑆𝑛

2/𝑛 

�̂�𝑛 is the average over all replications n. 𝑆𝑛
2 is the variance over all replications n.  

3. If 𝛿(𝑛, 𝛼)/�̂�𝑛  ≤  𝛾′, then STOP. The confidence interval is then: 

   [�̂�𝑛 − 𝛿(𝑛, 𝛼), �̂�𝑛 + 𝛿(𝑛, 𝛼)] 

   𝛾′ = 𝛾/(1 − 𝛾) and is the estimated relative error.  

  Else: 

  Set n = n + 1  

 Make additional replication and go to step 2. 

In our case, the required number of replications is at least 1000 for demand till 0.5, 500 for demand till 

1, 250 for demand till 2 and 125 for demand till 3. Thus, we work further with the mentioned numbers of 

replications for the experiments in Plant Simulation.  
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Appendix H: Paired-t test – configuration comparison 

The paired-t test (Law, 2006) is a statistical approach to compare the performance of two configurations 

both being measured in separate experiments. The paired-t test requires that the sample sizes, i.e., the 

number of observations per experiment, are equal. Although other approaches require independence 

between samples, the paired-t test might be applied for correlated samples. In simulation studies, the 

paired-t test is commonly used due to common random numbers and the ability to control the number of 

observations. Therefore, it is also incorporated in the software Plant Simulation. The paired-t test will be 

explained in detail below: 

Define 𝑊𝑗 = 𝑋𝑗 −  𝑌𝑗 in which 𝑋𝑗 is the value of the chosen KPI in replication j and 𝑌𝑗 is the value of the 

chosen KPI in replication j. 𝑊𝑗 is the difference between the values in replication j. n is the total number 

of performed replications. 

The confidence interval would be constructed for �̂� =
1

𝑛
∗  ∑ 𝑊𝑗

𝑛
𝑗=1 . The confidence interval is then: 

  �̂� ± 𝑡𝑛−1,1−
𝛼

2
∗ √𝑣𝑎𝑟 [�̂�] with: 

  𝑣𝑎𝑟 [�̂�] =
1

𝑛
∗ 𝑣𝑎𝑟[𝑊] =

1

𝑛(𝑛−1)
∗ ∑ [𝑊𝑗 − 𝑊]̂2𝑛

𝑗=1  

For α we choose 0.05 such that the result is a 95% confidence interval which is commonly used in the 

statistical field.  

Differences between two samples, i.e., two configurations, are significant if zero does not lie in the 

confidence interval.  
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Appendix I: Experiment results – Bayesian settings 

Below the results of scenarios will be discussed per demand range in ascending order. The simulation 

running time was 15 years. The tables show the configurations that lay within the 95 % confidence 

interval (abbreviated: conf. limits) of the mean total costs of the cheapest configuration. If “No” is stated 

in the column “Bayes?” in the table, it concerns the static approach. Comparing KPI values of different 

configurations is done by means of the statistical paired-t test (Appendix H).    

Demand range 1: 0.020 – Configurations* leading to lowest costs 

 €1.000 €50.000 €100.000 

Failure 

factor 

Bayes 

weight 

Bayes 

delay 

Bayes? Bayes 

weight 

Bayes 

delay 

Bayes? Bayes 

weight 

Bayes 

delay 

Bayes? 

1/3 All All Yes/No - 

3 

4 

- 

9-13 

1-13 

No 

Yes 

Yes 

- - No 

1/2 All All Yes/No - 

3 

4 

- 

10-13 

1-13 

No 

Yes 

Yes 

- - No 

1 All All Yes/No - 

3 

4 

- 

10-13 

1-13 

No 

Yes 

Yes 

- - No 

2 All All Yes/No - 

3 

4 

- 

10-13 

1-13 

No 

Yes 

Yes 

- - No 

3 All All Yes/No - 

3 

4 

- 

10-13 

1-13 

No 

Yes 

Yes 

- - No 

* Within the confidence interval of the cheapest configuration  

Table I.1 Demand range 1, results of the experiments 

Demand range 1: as can be seen in Table I.1, the lowest costs can be reached without making use of the 

Bayesian estimation for the two highest price classes. This confirms the findings from chapter 5 where it 

became clear that the potential gains in terms of risk/penalty reduction are minimal even in the most 

extreme cases. For cheap parts, there are no significant differences in cost and availability between the 

Bayesian dynamic and the static approach. Even if the parts are cheap and the failure rate is two or 

three times as high as estimated, the risk reduction achieved by the Bayesian estimation does not 

outweigh the costs for the interventions and new parts. However, as there are many parts with demand 

somewhere in this demand range at Thales, it may be decided to use the Bayesian estimation for cheap 

parts as this does not significantly increase the costs but can slightly increase the availability if the 

failure rate is higher than estimated.  

Hence, we would recommend using the Bayesian estimation only for cheap parts in this demand range. 

According to the table, the setting of the Bayesian estimation does not matter.     

For the other price classes, we recommend not to use the Bayesian estimation and just stick to the initial 

stock level for the whole duration of the contract. The risk of backorders, and possibly penalties, is and 

remains low even if the failure rate is higher than estimated. Therefore, to reduce the risk of making 

wrong decisions based on (unreliable) data, the situation should be managed with a static approach. 
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Demand range 2: 0.086 – Configurations* leading to lowest costs 

 €1.000 €50.000 €100.000 

Failure 

factor 

Bayes 

weight 

Bayes 

delay 

Bayes? Bayes 

weight 

Bayes 

delay 

Bayes? Bayes 

weight 

Bayes 

delay 

Bayes? 

1/3 - 

 

2 

3 

4 

- 

 

10-13 

8-13 

1-13 

No 

 

Yes 

Yes 

Yes 

- 

1 

2 

3 

4 

- 

12-13 

10-13 

8-13 

1-13 

No 

Yes 

Yes 

Yes 

Yes 

- 

1 

2 

3 

4 

- 

12-13 

10-13 

8-13 

1-13 

No 

Yes 

Yes 

Yes 

Yes 

1/2 - 

 

 

3 

4 

- 

 

 

8-13 

6-13 

No 

 

 

Yes 

Yes 

- 

1 

2 

3 

4 

- 

12-13 

10-13 

8-13 

6-13 

No 

Yes 

Yes 

Yes 

Yes 

- 

1 

2 

3 

4 

- 

12-13 

10-13 

8-13 

6-13 

No 

Yes 

Yes 

Yes 

Yes 

1 - 

1 

2 

3 

4 

- 

12-13 

10-13 

1-13 

1-13 

No 

Yes 

Yes 

Yes 

Yes 

- 

 

 

 

4 

- 

 

 

 

13 

No 

 

 

 

Yes 

- 

 

 

 

4 

- 

 

 

 

13 

No 

 

 

 

Yes 

2 All All Yes/No - - No - - No 

3 All All Yes/No - - No - - No 

* Within the confidence interval of the cheapest configuration  

Table I.2 Demand range 2, results of the experiments 

Demand range 2: looking in the table above, the same story as for demand range 1 applies. Again, this 

confirms the findings from the Excel model in chapter 5 stating that the potential gains of the Bayesian 

estimation are minimal. As the impact of using the Bayesian estimation is limited, we would recommend 

using the dynamic approach only for cheap parts. According to the table, the influence of the settings is 

little but a weight factor of 3 or 4 seems to be most suitable to lower the number of interventions as 

much as possible. For the other price classes, we would recommend using a static approach to save 

efforts, costs and risks belonging to the usage of operational failure data for stock level interventions (the 

static approach is most-efficient for all failure rate factors)  

€1.000: Bayesian estimation with weight factor = 3, start end of year 1   

  Potential relative reduction in costs compared to static: 5%. Not significant.  

€50.000: Static approach    

€100.000: Static approach 
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Demand range 3: 0.241 – Configurations* leading to lowest costs 

 €1.000 €50.000 €100.000 

Failure 

factor 

Bayes 

weight 

Bayes 

delay 

Bayes? Bayes 

weight 

Bayes 

delay 

Bayes? Bayes 

weight 

Bayes 

delay 

Bayes? 

1/3 - - No  

1 

2 

3 

4 

 

6-12 

5-12 

8-12 

10-12 

 

Yes 

Yes 

Yes 

Yes 

 

1 

2 

3 

4 

 

6-12 

5-12 

8-12 

10-12 

 

Yes 

Yes 

Yes 

Yes 

1/2 - - No - 

1 

2 

3 

4 

- 

9-13 

6-13 

8-13 

7-13 

No 

Yes 

Yes 

Yes 

Yes 

- 

1 

2 

3 

4 

- 

7-13 

5-13 

8-13 

7-13 

No 

Yes 

Yes 

Yes 

Yes 

1 - 

2-4 

- 

1-13 

No 

Yes 

- - No - - No 

2 All All Yes/No - - No - - No 

3 1 

2-4 

1-6 

1-5 

Yes 

Yes 

- - No - - No 

* Within the confidence interval of the cheapest configuration  

Table I.3 Demand range 3, results of the experiments 

Demand range 3: from the table above, we can conclude that if the failure rate is equal or greater than 

half of the estimation, the static approach seems most appropriate for parts of €50.000 or more. Only if 

the failure rate is a third of what was initially estimated, some savings can be achieved by applying the 

Bayesian estimation. However, the savings are small and if we determine the average total costs over all 

failure rate factors for all configurations, the static approach is most cost-efficient.  

For cheap parts of €1.000, the static approach works fine for failure rate factors of at most 2 as the 

potential penalty savings do not significantly outweigh the costs for dynamic stock level interventions. 

For factors of 1 or higher, the Bayesian estimation performs equally well or slightly better. That is also 

the reason why the Bayesian estimation with weight factor 3 (starting at the end of year 1) scores the 

highest when we determine the average total costs over all failure rate factors. Therefore, we would 

recommend the next configurations for each part class in this demand range:    

€1.000: Bayesian estimation with weight factor = 3, start end of year 1   

  Potential relative reduction in costs compared to static: 32%  

€50.000: Static approach   

€100.000: Static approach 
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Demand range 4: 0.475 – Configurations* leading to lowest costs 

 €1.000 €50.000 €100.000 

Failure 

factor 

Bayes 

weight 

Bayes 

delay 

Bayes? Bayes 

weight 

Bayes 

delay 

Bayes? Bayes 

weight 

Bayes 

delay 

Bayes? 

1/3 - 

1 

2 

3 

4 

- 

10-13 

9-13 

9-13 

9-13 

No 

Yes 

Yes 

Yes 

Yes 

 

1 

2 

3 

 

4-6 

2-6 

3-5 

 

Yes 

Yes 

Yes 

 

1 

2 

3 

4 

 

4-6 

2-6 

3-4 

3-4 

 

Yes 

Yes 

Yes 

Yes 

1/2 - 

1 

2 

3-4 

- 

12-13 

12-13 

10-13 

No 

Yes 

Yes 

 

1 

2 

3-4 

 

4-10 

2-10 

3-9 

 

Yes 

Yes 

Yes 

 

1 

2 

3-4 

 

4-9 

2-9 

3-8 

 

Yes 

Yes 

Yes 

1 - 

1-2 

3-4 

- 

10-13 

7-13 

No 

Yes 

Yes 

- - No - - No 

2  

1-3 

4 

 

1-8 

1-7 

 

Yes 

Yes 

- - No - - No 

3  

1 

2 

3 

4 

 

1-3 

1-3 

1-2 

1-2 

 

Yes 

Yes 

Yes 

Yes 

- 

 

2 

3 

4 

- 

 

1-4 

1-5 

1-6 

No 

 

Yes 

Yes 

Yes 

- - No 

* Within the confidence interval of the cheapest configuration  

Table I.4 Demand range 4, results of the experiments 

Demand range 4: preferably, there should be one configuration that would be most cost-efficient for all 

failure rate factors as it is unknown what factor represents best the actual situation, i.e., there is no clue 

(yet) about the difference of the initial estimate with the actual, unknown failure rate. Looking in the 

table, the Bayesian estimation can be cost-efficient for most of the failure rate factors but if the failure 

rate is equal or higher than initially estimated, the static approach is not significantly worse for the two 

highest price classes. Explanation for this is that the savings in penalty costs by using a dynamic 

approach does not outweigh the costs for ordering and maintaining new parts.  

To decide on the most cost-efficient configuration, we calculated the average of the total costs over all 

failure rate factors. The next settings came out as the most cost-efficient ones: 

€1.000: Bayesian estimation with weight factor = 2, start end of year 1   

  Potential relative reduction in costs compared to static: 50%  

€50.000: Static approach (compared with best Bayesian setting: weight = 4, start: end of year 4)   

€100.000: Static approach (compared with best Bayesian setting: weight = 4, start: end of year 13) 

The settings can be found back in the table above so besides that they are cost-efficient measured over 

all failure rate factors, they are for (most of) the factors separately as well. As a remark, the impact on 

costs of a higher failure rate than estimated is greater than a smaller failure rate than estimated.   
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Demand range 5: 0.774 – Configurations* leading to lowest costs 

 €1.000 €50.000 €100.000 

Failure 

factor 

Bayes 

weight 

Bayes 

delay 

Bayes? Bayes 

weight 

Bayes 

delay 

Bayes? Bayes 

weight 

Bayes 

delay 

Bayes? 

1/3 - 

1 

2 

3 

4 

- 

4-13 

4-13 

3-13 

3-13 

No 

Yes 

Yes 

Yes 

Yes 

 

1 

2 

3 

4 

 

1-5 

1-5 

1-4 

1-3 

 

Yes 

Yes 

Yes 

Yes 

 

1 

2 

3 

4 

 

1-5 

1-4 

1-4 

1-3 

 

Yes 

Yes 

Yes 

Yes 

1/2 - 

1 

2 

3 

4 

- 

10-13 

10-13 

10-13 

11-13 

No 

Yes 

Yes 

Yes 

Yes 

 

1 

2 

3 

4 

 

3-7 

1-6 

1-7 

1-6 

 

Yes 

Yes 

Yes 

Yes 

 

1 

2 

3 

4 

 

2-7 

1-7 

1-6 

1-6 

 

Yes 

Yes 

Yes 

Yes 

1 - 

1 

2 

3 

4 

- 

8-13 

8-13 

5-13 

4-13 

No 

Yes 

Yes 

Yes 

Yes 

- 

1 

- 

13 

No 

Yes 

- - No 

2 1-4 1-8 Yes - - No - - No 

3 1 

2 

3 

4 

1-3 

1-3 

1-2 

1-2 

Yes 

Yes 

Yes 

Yes 

1 

2 

3 

4 

1-2 

1-3 

1-3 

1-4 

Yes 

Yes 

Yes 

Yes 

- - No 

* Within the confidence interval of the cheapest configuration  

Table I.5 Demand range 5, results of the experiments 

Demand range 5: according to Table I.5, for failure rates higher than estimated, it depends on the part 

price whether it pays off to apply the Bayesian estimation. To get the most cost-efficient configuration 

for all failure rate factors, we calculated the average total costs over all factors for every configuration. 

The next settings came out which we also recommend being applied:  

€1.000: Bayesian estimation with weight factor = 1, start end of year 1  

  Potential relative reduction in costs compared to static: 60%  

€50.000: Bayesian estimation with weight factor = 4, start end of year 1  

  Potential relative reduction in costs compared to static: 1.5%   

€100.000: Static approach (compared with best Bayesian setting: weight = 4, start: end of year 2) 

The configurations make sense when looking at the table. For the most expensive parts, it is still not 

cost-efficient to deviate from a static approach. The costs of dynamic stock level interventions do not 

significantly outweigh the penalty savings. Furthermore, the dynamic approach brings the risk of buying 

parts when it is not necessary, e.g., if the failure rate factor is 1.   
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Demand range 6: 1.125 – Configurations* leading to lowest costs 

 €1.000 €50.000 €100.000 

Failure 

factor 

Bayes 

weight 

Bayes 

delay 

Bayes? Bayes 

weight 

Bayes 

delay 

Bayes? Bayes 

weight 

Bayes 

delay 

Bayes? 

1/3 1-2 

3-4 

5-13 

3-13 

Yes 

Yes 

1-2 

3-4 

1-4 

1-3 

Yes 

Yes 

1-2 

3-4 

1-4 

1-3 

Yes 

Yes 

1/2 All All Yes/No 1-4 1-7 Yes 1-4 1-6 Yes 

1 - 

1 

2 

3 

4 

- 

6-13 

5-13 

5-13 

5-13 

No 

Yes 

Yes 

Yes 

Yes 

- 

1 

2 

3 

4 

- 

11-13 

11-13 

12-13 

9-13 

No 

Yes 

Yes 

Yes 

Yes 

- 

1 

2 

3 

4 

- 

13 

13 

13 

11-13 

No 

Yes 

Yes 

Yes 

Yes 

2  

1-2 

3-4 

 

1-5 

1-4 

 

Yes 

Yes 

- - No - - No 

3  

1 

2 

3 

 

1-2 

1 

1 

 

Yes 

Yes 

Yes 

 

1 

2 

3 

4 

 

1-2 

1-3 

1-3 

1-3 

 

Yes 

Yes 

Yes 

Yes 

- 

 

 

3 

4 

- 

 

 

1-2 

1-3 

No 

 

 

Yes 

Yes 

* Within the confidence interval of the cheapest configuration  

Table I.6 Demand range 6, results of the experiments 

Demand range 6: if the actual failure rate and demand is equal or at most twice as high as initially 

estimated, the static approach would be best to use for parts of €50.000 or more. For parts of €100.000 

the static approach is even in the list of cheapest configurations in case the failure rate is three times 

higher than estimated. For cheap parts, it certainly pays off to use the Bayesian estimation regardless 

the difference between estimated and actual failure rate.  

Given that the difference between the estimated and actual failure rate is unknown, we calculated the 

average total costs over all failure rate factors and come to the next settings:  

€1.000: Bayesian estimation with weight factor = 1, start end of year 1  

  Potential relative reduction in costs compared to static: 68%  

€50.000: Bayesian estimation with weight factor = 4, start end of year 1  

  Potential relative reduction in costs compared to static: 6%    

€100.000: Static approach (compared with best Bayesian setting: weight = 4, start: end of year 1 or 2) 

The settings above are listed in the table above as well. Without a clue about the difference between the 

actual and estimated failure rate, a balanced and cost-efficient solution can be achieved with these 

settings. In addition, compared with lower demand ranges, the potential cost reduction has been 

increased again. 
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Demand range 7: 2.406 – Configurations* leading to lowest costs 

 €1.000 €50.000 €100.000 

Failure 

factor 

Bayes 

weight 

Bayes 

delay 

Bayes? Bayes 

weight 

Bayes 

delay 

Bayes? Bayes 

weight 

Bayes 

delay 

Bayes? 

1/3 1-2 

3-4 

1-12 

1-12 

Yes 

Yes 

1-2 

3-4 

1-3 

1-3 

Yes 

Yes 

1-2 

3-4 

1-3 

1-2 

Yes 

Yes 

1/2 All All Yes/No 1 

2-4 

1-5 

1-5 

Yes 

Yes 

1 

2-4 

1-5 

1-4 

Yes 

Yes 

1 All All Yes/No - 

1-2 

3-4 

- 

6-13 

5-13 

No 

Yes 

Yes 

- - No 

2  

1-4 

 

1-4 

 

Yes 

- 

1-4 

- 

1-12 

No 

Yes 

- - No 

3 1 

2 

3 

4 

1 

1 

1 

1 

Yes 

Yes 

Yes 

Yes 

1 

2 

3 

4 

1 

1 

1-2 

1-2 

Yes 

Yes 

Yes 

Yes 

1 

2 

3 

4 

1 

1-2 

1-2 

1-3 

Yes 

Yes 

Yes 

Yes 

* Within the confidence interval of the cheapest configuration  

Table I.7 Demand range 7, results of the experiments 

Demand range 7: interesting to conclude from the table above is that it is no longer cost-efficient to 

prefer a static approach above the Bayesian estimation for any of the failure rate factors for part prices 

till €50.000. To give an idea of the impact, with a static approach the probability of getting a penalty 

would be 44.48% in case of a factor of 3. Moreover, for the first time the static approach is no longer 

cost-efficient if the failure rate factor is 3 and the part price is €100.000. Only if the failure rate is equal 

or at most twice as high as initially estimated, the static approach would be preferred from an economic 

perspective. The configurations leading to the most cost-efficient spare part control policy when 

considering all failure rate factors are as follows:   

€1.000: Bayesian estimation with weight factor = 1, start end of year 1  

  Potential relative reduction in costs compared to static: 74%  

€50.000: Bayesian estimation with weight factor = 4, start end of year 1  

  Potential relative reduction in costs compared to static: 13%   

€100.000: Bayesian estimation with weight factor = 4, start end of year 1  

  Potential relative reduction in costs compared to static: 1.3% 

The potential reduction has been increased again.  
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Demand range 8: 4.471 – Configurations* leading to lowest costs 

 €1.000 €50.000 €100.000 

Failure 

factor 

Bayes 

weight 

Bayes 

delay 

Bayes? Bayes 

weight 

Bayes 

delay 

Bayes? Bayes 

weight 

Bayes 

delay 

Bayes? 

1/3 1-2 

3 

4 

1-11 

1-11 

1-11 

Yes 

Yes 

Yes 

1-2 

3 

4 

1-2 

1-2 

1 

Yes 

Yes 

Yes 

1-2 

3 

4 

1-2 

1 

1 

Yes 

Yes 

Yes 

1/2 - 

1 

2 

3-4 

- 

5-13 

2-13 

2-13 

No 

Yes 

Yes 

Yes 

 

1 

2 

3-4 

 

1-5 

1-5 

1-4 

 

Yes 

Yes 

Yes 

 

1 

2 

3-4 

 

1-4 

1-4 

1-3 

 

Yes 

Yes 

Yes 

1 - 

1 

2-3 

4 

- 

3-13 

3-13 

2-13 

No 

Yes 

Yes 

Yes 

- 

1 

2-3 

4 

- 

6-13 

5-13 

5-13 

No 

Yes 

Yes 

Yes 

- 

1 

2-3 

4 

- 

6-13 

6-13 

6-13 

No 

Yes 

Yes 

Yes 

2  

1-2 

3-4 

 

1-2 

1-2 

 

Yes 

Yes 

 

1-2 

3-4 

 

1-4 

1-5 

 

Yes 

Yes 

- - No 

3  

1 

2-3 

4 

 

1 

1 

1 

 

Yes 

Yes 

Yes 

 

1 

2-3 

4 

 

1 

1 

1 

 

Yes 

Yes 

Yes 

- 

1 

2-3 

4 

- 

1 

1-2 

1-3 

No 

Yes 

Yes 

Yes 

* Within the confidence interval of the cheapest configuration  

Table I.8 Demand range 8, results of the experiments 

Demand range 8: as can be seen in the table, there is less differentiation between weight factors 

compared to smaller demand ranges, i.e., the data has become voluminous such that the influence of the 

initial estimate is small anyway regardless the weight factor. Consequently, the static approach is 

present in the tables to a lesser extent for higher demand ranges. The negative impact of sticking to a 

static approach becomes larger with higher demand ranges, especially if the actual failure rate is three 

times higher than estimated. Although the settings of the Bayesian estimation are less influential, we 

determine the most cost-efficient configurations in this demand range for different part prices. The 

calculation is based on the average total costs over all failure rate factors.  

€1.000: Bayesian estimation with weight factor = 1, start end of year 1  

  Potential relative reduction in costs compared to static: 75%  

€50.000: Bayesian estimation with weight factor = 4, start end of year 1  

  Potential relative reduction in costs compared to static: 15%   

€100.000: Bayesian estimation with weight factor = 4, start end of year 1  

 Potential relative reduction in costs compared to static: 2% 

The potential cost reduction has been increased again, although less strongly as before. This might be 

caused by many downtime periods and penalties which cannot be prevented by tactical decisions in 

relation with relatively long lead times.   



Appendix I: Experiment results – Bayesian settings   

Thales | University of Twente  xxv 

 

Demand range 9: 9.294 – Configurations* leading to lowest costs 

 €1.000 €50.000 €100.000 

Failure 

factor 

Bayes 

weight 

Bayes 

delay 

Bayes? Bayes 

weight 

Bayes 

delay 

Bayes? Bayes 

weight 

Bayes 

delay 

Bayes? 

1/3 1 

2 

3 

4 

2-11 

2-11 

1-11 

1-11 

Yes 

Yes 

Yes 

Yes 

1 

2 

3 

4 

1-2 

1-2 

1-2 

1-2 

Yes 

Yes 

Yes 

Yes 

1 

2 

3 

4 

1-2 

1-2 

1 

1 

Yes 

Yes 

Yes 

Yes 

1/2 1-4 1-13 Yes 1-4 1-2 Yes 1-4 1-2 Yes 

1 - 

1-3 

4 

- 

4-13 

4-13 

No 

Yes 

Yes 

- 

1-3 

4 

- 

6-13 

6-13 

No 

Yes 

Yes 

- 

1-3 

4 

- 

6-13 

5-13 

No 

Yes 

Yes 

2 1-4 1 Yes 1-4 1-2 Yes - - No 

3  

1-3 

4 

 

1 

1 

 

Yes 

Yes 

 

1-3 

4 

 

1 

1-2 

 

Yes 

Yes 

- - No 

* Within the confidence interval of the cheapest configuration  

Table I.9 Demand range 9, results of the experiments 

Demand range 9: According the data in the table, it is even for cheap parts no longer cost-efficient to 

apply a static approach if the failure rate is lower than estimated. This can be explained by a substantial 

amount of savings in repair and holding costs. For the two highest price classes, this occurred already 

from demand range 4 on.   

Remarkable to observe in the table above is that the Bayesian estimation is no longer cost-efficient if the 

failure rate is three times higher than estimated and the part price is €100.000. Apparently, it is cheaper 

to accept many penalties due to low availabilities than trying to prevent them by applying the Bayesian 

estimation. Nevertheless, since this is all but desirable for Thales and its customers, we would 

recommend applying the Bayesian estimation even though the higher costs. We recommend the next 

settings for the Bayesian estimation based on the average total costs over all failure rate factors: 

€1.000: Bayesian estimation with weight factor = 1, start end of year 1  

  Potential relative reduction in costs compared to static: 74%  

€50.000: Bayesian estimation with weight factor = 4, start end of year 1  

  Potential relative reduction in costs compared to static: 10%   

€100.000: Bayesian estimation with weight factor = 4, start end of year 1  

 Potential relative reduction in costs compared to static: -2.6% (negative reduction) 
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Appendix J: Experiment results – initial stock levels (worst-case) 

Below we discuss the results of the experiments per price class and demand range if the failure rate 

factor is 3. The tables list the most cost-efficient configurations given the trade-off between penalty costs 

and initial stock investment. The most cost-efficient configurations lay within the confidence interval of 

the mean of the total costs of the cheapest configuration. We first show the results for the price class of 

€1.000. For this price class, the Bayesian estimation would be recommended from demand range 1 on. 

Thereafter, we show the results for the price classes €50.000 and €100.000. The Bayesian estimation 

would be recommended from demand range 5 respectively 7 on.  

Demand range 1-9: – Configuration leading to lowest costs* 

 Part price: €1.000 (DU) 

Demand 

range 

Failure 

rate factor 

Adapt initial 

stock? 

Initial stock plus 

parts: 

Use 

Bayes? 

Start updating 

from failure: 

1 3 Yes 

Yes 

1 + 1 

1 + 1 

No 

Yes 

Does not apply here 

1 

2 3 Yes 

Yes 

2 + 1 or 2 

2 + 1 or 2 

No 

Yes 

Does not apply here 

1 

3 3 Yes 

Yes 

3 + 2 or 3 

3 + 2 or 3 

No 

Yes 

Does not apply here 

1 

4 3 Yes 

Yes 

4 + 3 or 4 

4 + 3 or 4 

No 

Yes 

Does not apply here 

1 

5 3 Yes 

Yes 

5 + 4 or 5 

5 + 4 or 5 

No 

Yes 

Does not apply here 

1 or 2 

6 3 Yes 

Yes 

6 + 5 or 6 

6 + 4, 5 or 6 

No 

Yes 

Does not apply here 

1, 2 or 3 

7 3 Yes 

Yes 

9 + 8, 9 or 10 

9 + 7, 8, 9 or 10 

No 

Yes 

Does not apply here 

1, 2, 3, 4, 5, 6 or 7 

8 3 Yes 

Yes 

Yes 

Yes 

13 + 13, 14 or 15 

13 + 12, 13, 14 or 15 

13 + 11 

13 + 10 

No 

Yes 

Yes 

Yes 

Does not apply here 

1-12 

1-7 

1-5 

9 3 Yes 

Yes 

21 + 18, 19 or 20 

21 + 17 

Yes 

Yes 

1-21 

1-4 

* Within the confidence interval of the cheapest configuration  

Table J.1 Experiment results for the price class of €1.000 

Demand range 5-9: – Configurations* leading to lowest costs 

 Part price: €50.000 (LRU) 

Demand 

range 

Failure 

rate factor 

Adapt 

initial stock? 

Initial stock 

plus parts: 

Use 

Bayes? 

Start updating 

from failure: 

5 3 Yes 5 + 1 or 2 No Does not apply here 

6 3 Yes 6 + 2, 3 or 4 No Does not apply here 

7 3 Yes 9 + 4-7 No Does not apply here 

8 3 Yes 13 + 7-11 No Does not apply here 

9 3 Yes 21 + 15-20 No Does not apply here 

* Within the confidence interval of the cheapest configuration  

Table J.2 Experiment results for the price class of €50.000 
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Demand range 7-9: – Configurations* leading to lowest costs 

 Part price: €100.000 (LRU) 

Demand 

range 

Failure 

rate factor 

Adapt 

initial stock? 

Initial stock 

plus parts: 

Use 

Bayes? 

Start updating 

from failure: 

7 3 Yes 9 + 3-5 No Does not apply here 

8 3 Yes 13 + 5-9 No Does not apply here 

9 3 Yes 21 + 13-15 No Does not apply here 

* Within the confidence interval of the cheapest configuration  

Table J.3 Experiment results for the price class of €100.000 

As becomes clear from the tables, the most cost-efficient configurations if the failure rate is three times 

higher than estimated all correspond with an increase of the initial stock level. However, increasing the 

initial stock level is rather expensive since it is uncertain if the failure rate is three times higher, or 

higher at all. The initial stock investment can be reduced by applying the Bayesian estimation for DUs 

within the demand ranges 6 to 9. It is desired to keep the initial stock levels as low as possible and start 

updating with the Bayesian estimation as late as possible to gain more certainty in the data.  

For every demand range and price class, we consider the lowest initial stock levels listed in the tables as 

upper bounds during experimentation because further increasing does not lead to significantly lower 

costs. 
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Appendix K: Experiment settings – initial stock levels 

Table K.1 below clarifies how much the initial stock level would be varied per demand range and price 

class in the experiments. The upper level of the initial stock level is based on the experiment results 

shown in Appendix J. The failure rate factor was 3 such that the upper levels represent the ‘’stock 

buffer’’ that would be needed in a worst-case scenario. However, without foreknowledge whether the 

failure rate is a factor 3 higher, or even higher at all, it might be wise to consider al failure rate factors. 

That is what this experimentation is about.  

Table K.2 lists the Bayesian start times to consider. Again, it depends on the demand range. As the 

numbers of observed failures in certain years depend of the failure rate factor, we decide to derive the 

latest/upper bound start times from the mean number of observed failures after 14 years (rounded down) 

if the failure rate is 1. This means that if the failure rate is 3, this number would be encountered sooner. 

If the failure rate factor is 1/3, there is no updating at all in 15 years. For this experimental variable, we 

do not differentiate between the price classes.  

Range 

number 

Demand 

(year) 

Initial 

stock level 

Initial stock 

level variation 

(part: €1.000) 

Initial stock level 

variation 

(part: €50.000) 

Initial stock level 

variation 

(part: €100.000) 

1 0.02 1 0 to + 1 * * 

2 0.086 2 0 to + 1 * * 

3 0.241 3 0 to + 2 * * 

4 0.475 4 0 to + 3 * * 

5 0.774 5 0 to + 4 0 to + 1 * 

6 1.125 6 0 to + 4 0 to + 2 * 

7 2.406 9 0 to + 7 0 to + 4 0 to + 3 

8 4.471 13 0 to + 10 0 to + 7 0 to + 5 

9 9.294 21 0 to + 17 0 to + 15 0 to + 13 

* Static approach had been recommended so would not be included in this experimentation phase  

Table K.1 Experiment settings regarding initial stock level variation  

 

Range 

number 

Demand 

(year) 

Mean # observed fails after year 14 

if failure rate factor = 1 

Start time Bayes variation  

(after observed # of fails) 

1 0.02 0.28 1 

2 0.086 1.204 1, or 2 

3 0.241 3.374 1, 2 or 3 

4 0.475 6.65 1, 2… or 6 

5 0.774 10.836 1, 2… or 10 

6 1.125 15.57 1, 2… or 15 

7 2.406 33.684 1, 2… or 71 

8 4.471 62.594 1, 2… or 121 

9 9.294 130.116 1, 2… or 211 

1Level of variation during experimentation not based on mean number of observed failures after 14 years, but on the 

mean number of observed failures after year 1 if the failure rate factor is 3. Waiting longer is not desired as the 

availability in year 1 and year 2 would be dramatic such that the 90% system availability cannot be reached. The 

Bayesian estimation must be applied within the first year then. Only increasing initial stock is not desired either.

Table K.2 Experiment settings regarding start time of Bayesian estimation 
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Appendix L: Experiment results – initial stock levels 

The tables show the results of the experiments per demand range and price class. The configurations 

mentioned in the tables are the most cost-efficient on average over all failure rate factors, i.e., the mean 

of the total costs lays within the 95% confidence interval of the cheapest configuration. 

Demand range 1-9: – Configurations* leading to lowest costs (all failure rate factors) 

 Part price: €1.000 (DU) 

Demand 

range 

Adapt initial 

stock? 

Initial stock plus 

extra part(s): 

Use Bayesian 

estimation? 

Start updating 

from failure: 

1 Yes 1 + 1 Yes/No All 

2 Yes 2 + 1 or 2 Yes/No All 

3 Yes 

Yes 

Yes 

3 + 1  

3 + 1 

3 + 2 

No 

Yes 

No 

Does not apply here 

2-3 

Does not apply here 

4 Yes 4 + 2 or 3 No Does not apply here 

5 Yes 5 + 3 or 4 No Does not apply here 

6 Yes 

Yes 

Yes 

6 + 4 

6 + 4 

6 + 3 

No 

Yes 

Yes 

Does not apply here 

3-10 

5-10 

7 Yes 

Yes 

9 + 6 or 7 

9 + 5, 6 or 7 

No 

Yes 

Does not apply here 

3-7 

8 Yes 

Yes 

Yes 

Yes 

No 

13 + 7 

13 + 8 

13 + 9 

13 + 10 

13 + 10 

Yes 

Yes 

Yes 

Yes 

No 

9-12 

4-12 

3-12 

2-12 

Does not apply here 

9 Yes 21 + 14-17 Yes 4-21 

* Within confidence interval of the cheapest configuration  

Table L.1 Experiment results for the price class of €1.000 

Demand range 5-9: – Configurations* leading to lowest costs (all failure rate factors) 

 Part price: €50.000 (LRU) 

Demand 

range 

Adapt initial 

stock? 

Initial stock plus 

extra part(s): 

Use Bayesian 

estimation? 

Start updating 

after failure: 

5 No 

Yes 

5 + 0 

5 + 1 

Yes 

No 

1-10 

Does not apply here 

6 No 6 + 0 Yes 1-10 

7 No 

Yes 

9 + 0 

9 + 1 

Yes 

Yes 

1-7 

1-7 

8 No 

Yes 

13 + 0 

13 + 1 

Yes 

Yes 

1-9 

1-7 

9 No 

Yes 

Yes 

Yes 

21 + 0 

21 + 1 

21 + 2 

21 + 3 

Yes 

Yes 

Yes 

Yes 

1-20 

1-15 

1-10 

2-4 

* Within confidence interval of the cheapest configuration  

Table L.2 Experiment results for the price class of €50.000 
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Demand range 7-9: – Configurations* leading to lowest costs (all failure rate factors) 

 Part price: €100.000 (LRU) 

Demand 

range 

Adapt initial 

stock? 

Initial stock plus 

extra part(s): 

Use Bayesian 

estimation? 

Start updating 

after failure: 

7 No 

Yes 

9 + 0 

9 + 1 

Yes 

No 

1-7 

Does not apply here 

8 No 

Yes 

Yes 

13 + 0 

13 + 1 

13 + 1 

Yes 

No 

Yes 

1-12 

Does not apply here 

1-5 

9 Yes 21 + 1 No Does not apply here 

* Within confidence interval of the cheapest configuration  

Table L.3 Experiment results for the price class of €100.000 

Concluding from the tables, only increasing initial stock level without applying the Bayesian estimation 

is mainly interesting for cheap parts (DUs). For these parts, you want to minimize the risk of getting 

backorders and penalties as much as possible. Nevertheless, from demand range 6 on, savings in initial 

stock investment can be made by applying the Bayesian estimation during the term of the service 

contract. For the two highest price classes, it certainly makes sense to apply the Bayesian estimation to 

save (expensive) initial stock investment without knowing whether the failure rate is even higher than 

initially estimated. For some ranges, you do not even have to add initial stock.  

 



 

 

 


