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Executive summary 

Problem description 
IBM is one of the biggest IT-companies worldwide. One of their activities is providing hardware 

solutions and offering service contracts to their customers. The Service Parts Operations 

department within IBM is responsible for keeping enough spare part inventory to fulfil these 

contracts. Their goal is to do this at minimal costs and to do so, many processes are automated 

by using the software tool Servigistics. When problems occur for which Servigistics cannot 

make an automated decision, the exception handling process is triggered. Servigistics 

categorizes these problems (called exceptions) into different review reasons and informs the 

planners by sending an alert. In 2018 a total of about 35.000 exceptions were triggered. 

Currently, the performance of the decisions by the planner is unknown. 

 

In this research, we examined the possibilities of using machine learning techniques to predict 

whether an action is required on a review reason or not, with the goal to reduce the number 

of exceptions at which planners should have a look. 

 

Solution approach 
Our research is focused on four review reasons, which account for about 40% of all exceptions:  

• R24: Projected stock out 

• R25: Stocked out 

• R26: Below Must Order Point 

• R83: Project inventory below Must Order Point 

 

Since Servigistics does not allow us to retrieve historical data, data was gathered over a period 

of one-and-a-half months. The exceptions, the actions taken by the planners and the data on 

which the decisions have been taken, are gathered for these review reasons.  From the original 

data, 43 characteristics (called features) were derived, which give information about the 

exception and the part connected to the exception. These features can be categorized as: 

• Part characteristics 

• Inventory information 

• Order information 

• Tactical settings 

• Exception related 

 

Since the performance of the decisions of the planners is unknown, a performance indicator 

is introduced which qualifies the decision taken as good or bad, which revealed that about 

65% of the decisions taken are qualified as good. This performance indicator is used to create 

two data sets: one containing all exceptions and one containing only the exceptions qualified 
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as good. Using the first data set for building a model will only result in a more efficient process, 

whereas the second data set could also make it more effective. 

 

Data exploration revealed that we are dealing with missing data for certain features.  

 

In the data preparation step, missing data is imputed, new features are constructed and the 

most relevant features are explored. Missing data is imputed by using different techniques. 

New features are derived from the original data. These features are introduced, since they 

bring new information about the exception.  

 

Experiments are performed based on several operations which adjust the data. These 

experiments are shown in Table 1 and are conducted per review reason. 

 
Experiment  All exceptions / Good decisions Impute missing data? Feature selection? 

1 All Yes Yes 

2 All Yes No 

3 All No Yes 

4 All No No 

5 Good Yes Yes 

6 Good Yes No 

7 Good No Yes 

8 Good No No 

Table 1: Experiments overview 

For various reasons, we have chosen to use decision tree algorithms as classifier algorithm. 

The auto classifier in SPSS Modeler evaluated 7 decision tree algorithms and C5.0 came out to 

perform best. The C5.0 algorithm settings are tuned by performing experiments for the 

settings minimum number of records per child branch (2 and 5) and the pruning severity (25 

and 75).  

 

To evaluate the performance, the datasets are partitioned in a training set of 80% of the data 

and a testing set of 20% of the data. On the training set, 5-fold cross validation is performed 

to determine the performance of the algorithm. The 5 models built during cross validation are 

combined to one ensemble model and the performance is tested by applying it to the testing 

set.  

 

Results 
Out of all these calculations it shows that the best performance is achieved if the algorithm 

has 2 as value for the minimum number of records per child node and 25 as pruning severity. 

Next to that, on average, the performance is higher for datasets which consist of exceptions 

on which the action taken is qualified as good. Imputing missing data manually seems to 

decrease the performance. Applying feature selection before the modelling step, has barely 

influence on the performance.  
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Decision tree algorithms have the most predicting power for review reason R25 (stocked out) 

and R83 (projected inventory below must order point) in whether an action should be taken 

on an exception or not. The review reason R24 (projected stock out) is less predictable and 

R26 (inventory below must order point) is not predictable at all. The limited size of the data 

sets has a significant impact on the performance of the models, since less extensive decision 

trees can be built. The decision trees built for R83 are much deeper compared to R24, R25 and 

R26 and the standard deviation of the results is much lower. Despite the limited size of the 

data set of R25, the models perform well, possibly because whether an action should be taken 

or not on a current stock out situation is clearer. The models for R83 perform slightly worse, 

but more stable, due to the bigger data set compared to the other three review reasons. For 

both R25 and R83 patterns which make sense are found in the models.  

 

The performance can be further increased by considering only exception for which the 

prediction confidence level exceeds a certain threshold.  

 

The ensemble models perform worse than the cross validated models and on top of that, the 

results deviate significantly from the cross validated results.  

 

Based on these results, we conclude that using machine learning for the exception handling is 

promising, but the performance should increase to be a true planner assistant. The approach 

led to a structured and clear research and it is advised to use this approach in future research 

as well. 

 

Limitations & future research 
Since the main limitations were the lack of involvement of actual planners in India and the 

limited number of records in the dataset, we advise IBM to perform a future research in which 

the planners are involved in the process, such they can provide valuable features, and gather 

data for a longer period to increase the size dataset. This could lead to an increase in 

performance and more stable models. Involving the planners would also replace the 

performance indicator for the decisions, which is currently only an approximation of the 

quality of decisions. 

 

Furthermore, we recommend considering online learning algorithms as a next step, in which 

the exceptions, their circumstances and the action taken by planners are tracked 

automatically and the model is updated after every new exception. An advantage of such an 

algorithm is the possibility of incorporating the reasoning of a decision by a planner. 
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Chapter 1: Introduction 
For completing my Master Industrial Engineering & Management at the University of Twente, 

a research is performed within IBM. This research is a follow-up research on a prior research 

by Schultz (2017), where the possibilities of using machine learning techniques within the 

exception handling processes at the Service Parts Operations department within IBM are 

examined. In this chapter, first an introduction to IBM and the Service Parts Organization is 

given and machine learning is introduced. Next, the research design is explained and finally 

the structure of the report will be given. 

 

1.1  IBM 

IBM is one of the biggest IT-companies worldwide with more than 400.000 employees. IBM 

was incorporated in 1911 as the Computing Tabulating Recording Company, although its 

origins can be traced back to the end of the 19th century. In 1924 the company was renamed 

to IBM. Although IBM was a big player on the consumer electronic products in the 20th 

century, nowadays the main focus of IBM is inventing technology and applying it to business 

and society on a global scale to make the world work better (IBM, 2018). 

 

Spare Parts Management 

One of the activities of IBM is providing hardware solutions to its customers and offering 

service contracts to maintain the hardware at the customer site. Two reasons why customers 

buy products of IBM are their reliability and performance (IBM, 2014). Spare Parts 

Management (SPM) plays an important role for these activities. According to Moncrief et al. 

(2006) SPM contains all activities in order to have exactly in stock what is needed, when it is 

needed. The objective of SPM is to keep enough inventory to be able to deliver a certain 

predefined service level, but at minimal costs.  

 

Within IBM, the SPO organization is responsible 

for SPM. IBM has a dense logistic network that 

can provide spare parts to their customers 

within up to two hours. The last decade IBM has 

focused on globalization of its processes, which 

led to the change of key processes in SPO. Next 

to that, IBM invested money in improving the 

planning of spare parts. Four main SPO departments are located around the world (Figure 1): 

EMEA (yellow), Asia Pacific (green), United States (blue) and Latin America (red) (Koopman, 

2011). The EMEA-region is the focus of this research. The head quarter of the SPO organization 

for the EMEA-region (Europe, Middle-East and Africa) is located in Amsterdam and the central 

inventory buffer for the EMEA-region is located in Venlo, which provides spare parts for the 

local warehouses within the EMEA-region (Figure 2).  

Figure 1: SPO organizations around the world (Koopman, 
2011) 
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The SPO department uses two systems to 

regulate their Spare Parts Management, 

CPPS and Servigistics. CPPS is the database 

where real time information of spare parts 

is stored. To be able to deliver a certain 

service level, Servigistics uses information 

on spare parts from CPPS and makes 

predictions of demand at the central 

buffer for different spare parts every day. 

Based on the predicted demand and 

current spare part information, Servigistics 

automatically places orders to keep 

enough inventory at the central buffer. Although these systems keep getting better and better 

and therefore this process is highly automated, different problems can arise, where a planner 

of the SPO department should have a look at. When the systems encounter something 

unusual, the exception handling process is triggered and Servigistics sends an alert to its 

planners. These exceptions can be of different reasons, so called review reasons. In total, 

there are 81 different review reasons. Some of the review reasons are only informative, but 

some can be problematic, for example a situation where not enough stock will be available in 

the entire EMEA-region for a certain part. In these situations, the planner examines the 

problem and takes and action if needed. Although the SPO department of the EMEA-region is 

located in Amsterdam, the planners (which make decisions or give advice on the decisions) 

and the team leaders (which approve, decline or adjust the decisions made by the planners) 

are located in India.  

 

1.2  Machine learning 

Machine learning (ML) is a methodology that uses statistical techniques and algorithms to be 

able to learn from data and identify patterns in data. ML is getting more and more attention 

and according to Jha (2017) it is expected that ML algorithms will replace a large amount of 

jobs worldwide. The definition of ML according to IBM is as follows: 

 

Machine learning is the science that examines how computers gain knowledge from data, 

using algorithms and analysis models. 

 

One of the learning techniques of ML is supervised learning, where a model is given a 

historical dataset of inputs and corresponding outputs. With this data, classification 

algorithms will try to find hidden patterns in the data and learn from that. When enough 

data is fed to an algorithm and the data is of high quality, the model could be able to predict 

the outcome for new situations. These tools become more and more accurate and are 

Figure 2: Spare parts supply chain (Cohen et al., 2006) 
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approaching human intelligence. For this reason, machine learning becomes a standard in 

companies and is often used as supportive tool to gain competitive advantage (IBM, 2018).  

 

1.3 CRISP-DM 
In literature several methodologies for 

conducting a structured and 

successful machine learning research 

are known. Cross Industrial Standard 

Process for Data Mining is one of them 

and is developed by Daimler Chrysler, 

SPSS and NCR. It provides a uniform 

framework and guidelines for data 

miners and is well accepted due to its 

complete and well documented 

approach (Santos & Azevedo, 2005) 

compared to other methodologies.  

 

The CRISP-DM methodology is visible 

in Figure 3 and consists of six steps: 

1. Business understanding: the first step focusses on getting familiar with the company 

and understand the problem. This step leads to a project plan. 

2. Data understanding: in the second step, the data to collect is defined, initial data is 

gathered and is being evaluated to get insights into the data. 

3. Data preparation: in the third step, the final dataset(s) is (are) constructed from raw 

data. This includes activities like handling missing data, transforming data, feature 

extraction, feature selection and cleaning.  

4. Modelling: in this step, modelling techniques are chosen, parameters are set and 

modelling takes place.   

5. Evaluation: after the modelling, the results are evaluated before going to the 

deployment step.  

6. Deployment: in the final step, the knowledge gained from the research is put into 

practice such that it can be used.  

 

These steps and the tasks per step are visible in Figure 4. This figure is a slightly adapted 

version of the one of Chapman et al. (2000) and does not particularly follow a certain order. 

It is allowed to go back and forth between the different steps.  

Figure 3: Steps of the CRISP-DM methodology (Chapman et al., 2000) 
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1.4 Research design 

In this section the research design is explained. First the motivation of the research is 

explained, next the problem statement is given with its goal and the research questions are 

stated.  

 

Motivation 

Currently, the planners of the SPO organization in the EMEA-region deal with making decisions 

on about 35,000 exceptions triggered by Servigistics for the central buffer on a yearly basis, 

which requires significant time. Servigistics provides information of the part to the planners 

on which a decision should be made. This information could be about the price of the part, 

current inventory position of the EMEA-region or local warehouses, historical and predicted 

demand, open orders for the EMEA-region and so on. Based on this information, a planner 

makes a decision and in some cases a team leader should give an approval on the decision 

made. The center of competence for the exception handling process is located in India. 

However, planners in India change job frequently, which means that planners at IBM are often 

inexperienced. Next to that, currently neither the consistency of these decisions nor the 

quality is known.  

 

Based on these problems, IBM wants to examine the possibility of using machine learning in 

their exception handling process to support their planners and reduce the effort planners put 

in the exception handling process, by removing the exceptions on which no action is required. 

 

In a prior research (Schultz, 2017), the possibility of using machine learning techniques for 

review reason R38 is examined. R38 is one of the many review reasons within the exception 

handling process and is triggered when the recommended orders result in an order increase 

outside lead-time, which means that existing orders would result in the inventory level 

dropping below the safety stock in a four-day period after the current date plus the lead-time. 

Supervised machine learning was applied to examine whether it was possible to reproduce 

the planner’s decisions. However, the derived model was only able to predict a planner’s 

decision in about 59% of the cases. The low performance was explained by the low data 

quality. Even though, since the planner’s decision quality is unknown, the chosen performance 

measure only offers limited explanatory power. Schultz (2017) proposed a performance 
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Figure 4: Tasks per step in CRISP-DM (Chapman et al., 2000) 
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indicator for the quality of decisions, however the performance was not included in the model. 

Finally, Schultz (2017) did not follow a structured approach to create a proper learn set, which 

puts the quality of the learn set at doubt. 

 

Research problem 

As concluded in the previous section, the problem is whether the learn set used for machine 

learning in Schultz’ research (2017) was good enough to learn from. This problem and the 

willingness of IBM to examine the possibilities of using machine learning techniques in the 

exception handling process to reduce the planner’s effort put into the exception handling 

process, by removing the exceptions on which no action is required, led to the following 

research problem: 

 

How can machine learning techniques be effectively applied on different review reasons to 

improve the efficiency and effectiveness of the exception handling process? 

 

Research goal 

In this research we evaluate the possibility to create a data set suitable for supervised machine 

learning. Furthermore, if the data set provides sufficient predictive power, we will build a 

demonstrator to exemplify the possibility to use machine learning techniques during the 

exception handling process.  

   

Research questions 

To conduct a proper research and get an answer on the research problem, it is chosen to 

follow the CRISP-DM methodology. The research problem is divided into research questions, 

which belong to the different steps of the CRISP-DM methodology. 

 

Business understanding & data understanding 
This chapter, Chapter 1: Introduction, belongs to the first step of the CRISP-DM methodology. 

However, to get a better understanding of the problem, it should be known what the SPO 

department is and how their processes take place. Furthermore, review reasons are selected 

and the initial data is evaluated. 

 

Research question 1: What is the current situation regarding the exception handling process 

at the SPO department? 

• What is Service Parts Management? 

• What does the exception handling process look like? 

• What is the current efficiency of the exception handling process? 

• What review reasons are selected to focus on? 
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• On what information are decisions taken and what data is available in the systems of 

IBM and must be gathered? 

• What patterns can already be found in the initial data? 

• How can the decisions made by the planners be made measurable? 

 

Literature review 
After studying the problem setting, we examine the literature to gain insights about how to 

create a learn set and what modelling techniques may be applicable. 

 

Research question 2a: How can a learn set be created? 

• How to deal with missing values? 

• What feature selection methods are available? 

 

Research question 2b: What modelling techniques can be used? 

• Which algorithms are suitable to use? 

• What performance measures should be used? 

 

Data preparation 
In this step, the initial data is processed into a final dataset which can be used for the 

modelling step. 

 

Research question 3: How can a proper learn set be created for the selected review reasons? 

• How should the data be prepared to derive a problem specific learn set? 

• What features are selected? 

 

Modelling 
From the previous step, based on the decision performance metric, different learn sets are 

available. Using these learn sets, we select and apply a suitable machine learning technique. 

 

Research question 4: What does the machine learning model look like? 

• What machine learning techniques are being used and under what settings? 

 

Evaluation 
When machine learning is applied, the results should be evaluated.  
 
Research question 5a: What are the performances of the machine learning models? 

• How do the machine learning models perform per learn set? 

 

Research question 5b: Under which condition(s) is it (not) possible to apply machine learning 

during the exception handling process and why (not)?  
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• Which review reasons can be automated such that they can have a beneficial effect 

on the efficiency of the exception order handling process at the SPO department? 

o For well-performing review reasons: what are the model characteristics? 

 

Deployment 
The final step of the CRISP-DM methodology is to make the results operational.  
 
Research question 6: What would be the next steps to implement a ML-solution? 

 

After the CRISP-DM methodology is finished, a final chapter with the conclusion and 

recommendations will be presented. 

 

Scope 

In order to conduct an efficient and effective research, the scope of this research should be 

clearly demarcated. This is due to the complexity of this research and the time constraints.  

 

The exception handling process is the focus of this research. This process handles all 

exceptions for which Servigistics cannot make an automated decision. Servigistics categorizes 

these problems into different review reasons. Since it is not possible to have a look at all 

review reasons and not all review reasons are suitable to apply machine learning on, a 

selection will be made. For the selection, we consider the review reason frequency, the 

possibility to automate associated actions, and the review reason’s importance. By focusing 

on selected review reasons only, we are able to demonstrate the key steps of our approach. 

If the results of this research are promising, the same approach can be applied to other review 

reasons.  

 

Since IBM is the owner and developer of SPSS Modeler, IBM expressed a preference to use 

SPSS Modeler 18.1 for the execution of this research. SPSS Modeler is a data mining tool, 

which supports the development of predictive models. It contains several data exploration 

options and machine learning algorithms such as decision trees and statistical learning 

methods. 
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1.5  Structure of the report 

The chapters and corresponding research questions are summarized in Table 2.  

Chapter Research question(s) Data sources 

2: Business- and 

data understanding 

RQ 1  IBM employees 

IBM documentation 

IBM databases 

Literature 

3: Literature review RQ 2 Literature 

IBM documentations 

IBM employees 

4: Data preparation RQ 3 

 

Interviews with IBM employees 

IBM databases 

5: Modelling RQ 4 

 

Prior research (Schultz, 2017) 

IBM databases 

IBM SPSS modeler 

(YouTube) tutorials 

6: Evaluation RQ 5 IBM SPSS modeler 

7: Deployment RQ 6  

Conclusion, 

limitations and 

future research 

  

References   

Appendices   
Table 2: Chapters with their corresponding research questions and data sources 
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Chapter 2: Business- and data understanding 
In this chapter, the current processes within the SPO department of the EMEA region at IBM 

will be explained. To do so, first a general introduction to the SPO department will be given, 

the software being used will be introduced and the current exception handling process is 

explained. The first two steps of the CRISP-DM methodology are the focus of this chapter, as 

highlighted in Figure 5. 

 

 
Figure 5: Current focus within CRISP-DM methodology (Chapman et al., 2000) 

2.1 SPO department 

The SPO (Service Parts Operations) department is responsible for the Service Parts 

Management of IBM. As already mentioned, the goal of the SPO department is to provide the 

right service parts required for maintenance and repairs on IBM hardware at the right time 

and the right place at minimal costs. To be able to do so, a balance should be found between 

availability of service parts and 

inventory costs (Figure 6). The SPO 

department in Amsterdam is 

responsible for the EMEA-region. 

Their mission is to manage and/or 

provide service parts solutions and 

logistic consultancy to EMEA clients 

accompanied to their vision of 

being the Service Parts Logistics 

Competence Centre in EMEA.  

 

To follow their mission, the SPO department has the following major processes: 

• Service Data & Parts Data Management: Assure that all relevant information on 

service requirements and parts is timely collected and accurate   

• Parts Planning & Inventory Management: Create and maintain a stocking plan that 

fulfills the service requirements at minimal overall cost 

• Parts Ordering & Stocking Management: Order parts in line with the stocking plan and 

manage these assets in secure stock locations 

• Parts Allocation & Delivery Management: Allocate the requested part to a storage 

location and deliver the part from that location to the right place, at the right time 
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Figure 6: Optimal inventory level (Cavalieri et al., 2014) 
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• Parts Reverse & Reutilization Management: Analyze and execute options to reuse 

parts or dispose 

• Measurements & Controls: Administration of transactions, measurement of key 

performances, reporting, financial management, business controls 

 

In the EMEA-region, IBM has more than one million stock keeping units, about 270 stock 

locations in 63 countries, and service goals for the delivery time at the customer site from two 

business days down to two hours. This results in a highly complex supply chain, which is shown 

in Figure 7. The central warehouse plays an important role in the supply chain, since it 

functions as buffer between the local warehouses and the spare parts suppliers. To be able to 

act according to the service contracts, the SPO department monitors and controls the 

availability of parts at the central and local warehouses.  

2.1.1 Software being used 

In this paragraph the software being used by the SPO department in the EMEA region to 

optimize the inventory at the central buffer are explained. The main software being used are 

Servigistics (formerly known as XelusPlan) and CPPS.  

 

Servigistics 

Servigistics is the software tool that is used within IBM for control and planning purposes. 

These activities are on the tactical and operational level. According to their user manual 

(Xelus, 2006), Servigistics “ensures that the right part is in the right place to maximize service 

at minimum costs”. While the software is highly automated, it is possible to define customized 

Figure 7: Supply chain of the SPO department (IBM, 2005) 



 11 

exceptions, which require a manual assessment by planners. For IBM, Servigistics provides a 

crucial link between customers and suppliers, since lots of work is automated. 

 

Servigistics is able to predict demand on multiple levels in the supply chain and identifies the 

amount to order for different stocking locations. For these forecasts and orders, it uses 

information of other systems and is based on several factors, e.g. historical demand, known 

trends, quantities on hand, availability of sources, lead times and their requirements, 

minimum order quantities, projected orders and more. All this item information is visible in 

the Planner Worksheet. The Planner Worksheet provides its users a comprehensive view of 

item information in graph- and spreadsheet format. Since it is quite time consuming to plan 

thousands of parts, most of the planning decisions are automated, unless a certain condition 

is met. Review reasons are examples of such conditions. The Planner worksheet helps the 

planners making well considered decisions on the review reasons.  

 

The purpose of the Planner Worksheet is to bring supply and demand together over time. The 

decisions made over time can be linked to a plan, from which planning rules are established. 

The Planner Worksheet tracks the result continuously and it gives notifications to the users if 

predefined thresholds are violated. In Figure 8 the Planner Worksheet is shown. At the left 

side, the characteristics of the parts are visible and in the middle the inventory over time is 

visualized with exact inventory levels below the visualization. The vertical black line represents 

the current date, after which the projections are shown. The other vertical lines give the lead 

time of the different kind of suppliers. In the lower left corner, the current review reasons are 

shown and at the lower right corner the notepad can be seen. 

  

Figure 8: Planner Worksheet 
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CPPS 

All real-time data on inventory at warehouses, and inventory in the pipelines between 

warehouses is visible in the Common Parts Processes and Services system (CPPS). CPPS is 

linked to different tools used by IBM and Servigistics extracts data of CPPS. Also, data on the 

decisions made during the exception handling process are extracted from the CPPS 

database.  

 

2.1.2 Exception handling 

Under ideal circumstances orders are placed automatically by Servigistics and exactly the 

amount of inventory is in stock at the central buffer or available in the network to satisfy the 

service level constraints for each customer. However, problems can arise for which manual 

interventions are required. These interventions are referred to as exceptions and are triggered 

by Servigistics because one or more predefined conditions, called review reasons, were 

violated. Examples of review reasons are an expected stock out or an existing backorder 

quantity. One exception could consist of multiple review reasons. The review reasons indicate 

what the problem is. 

 

At the competence center in India, about 15 planners work on exceptions every day. Every 

planner is responsible for a set of parts. Within the Planner Worksheet a so-called Work Queue 

is displayed that informs the planner which parts require a manual assessment. The items in 

the Work Queue are prioritized on the review reason’s priority. If more than one review 

reason is linked to a part, only the review reason with the highest priority is displayed. If one 

of the parts is selected, the Planner Worksheet supports the planner by displaying information 

about the selected part. Based on the review reasons linked to the part, the planners are 

expected to take the following steps according to the Servigistics Manual (Xelus, 2006): 

 

• Check network inventory, open orders and future (planned) orders 

• Review the forecast for the part 

• Check historical demand 

 

Based on the information available on the part, the planner decides what to do. If a decision 

is taken and the associated review reasons were solved, the part is automatically removed 

from the Work Queue. However, if any associated review reason remains unsolved, the 

planner may approve the review reason, which means that the planner had a look at the 

problem, but the planner cannot resolve the condition which triggers the review reason at the 

moment. When approving, the review reason is disables for a certain period. This period is 

review reason specific and is called the disabling days.  
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2.2 Review reasons 
Currently there are 80 different review reasons defined in Servigistics. From these 80 review 

reasons, 25 are active and trigger exceptions. 

 

To get more insight in the occurrence of the review reasons, data on the exceptions was 

gathered from the review reason history log for a period of one year, from 01-09-2017 until 

31-08-2018. In total 21 of the 25 active review reasons appeared in the review reason log. In 

one year, a total of 39,701 review reasons occurred. Since an exception can have more than 

one review reason, the total number of exceptions is lower: 34,474. Handling of this amount 

of exceptions requires significant time.  

 

In Appendix A, a table is given with an overview of the twenty-one active review reasons with 

their occurrence and priority. The table shows that only a few review reasons lead to most of 

the exceptions. The Pareto-chart in Figure 9 shows this effect. Although the Pareto-rule does 

not apply, about 33% of the review reasons (R38, R83, R80, R81, R24, R25 and R26) trigger 

about 80% of the exceptions.  

 

 
Figure 9: Pareto-chart of the review reasons 

2.2.1 Selected review reasons to focus on 

In this research, it is chosen to focus on R83, R24, R25 and R26. This decision has been made 

based on the occurrence, the predefined priority of these review reasons and conversations 

with the team leaders of the exception handling process. On top of that, these review reasons 

are interrelated, which makes it possible to evaluate these four review reasons together. 

Together, these four review reasons account for 40% of the review reasons per year.  

 

Reasons why it was decided against the analysis of R38, R80 and R81 are listed in Table 3. 

Reasons for not focusing on other review reasons are mainly related to the low occurrence of 

the review reasons and limited data availability.  
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Review reason Reasons not to focus  

R38: Order increase outside lead-time This review reason was the focus of Schultz’ 

(2017) research and no useful results were 

found. Next to that, from conversations we 

know that for this review reason always an 

order should be placed and based on 

availability a certain order type should be 

used. 

R80: Projected inventory above XS point Possible actions are limited for this review 

reason. Often a planner cannot cancel an 

order, since penalties are high. Options are 

to scrap an order or balance the order over 

the world. On top of that, this review reason 

occurs much less frequent than R83. 

R81: Supply constraint overconsumed The predefined priority of this review reason 

is lower than the priority of R83. Next to that 

occurrence is much lower as well.   
Table 3: Reasons not to choose R38, R80 and R81 

The chosen review reasons are summarized in Table 4 and are explained in Appendix B. These 

review reasons are similar in the way that they occur when the network stock drops below or 

will drop below a certain value in the future.  

 

Review reason Timing Inventory level 

R24: Projected stock out Within two years -1 

R25: Stocked out Now -1 

R26: Below MOP Now Below MOP 

R83: Projected inventory below MOP Within two years Below MOP 
Table 4: Chosen review reasons 

To explain the definition of the chosen review reasons, in Figure 10 an example is given of the 

inventory level of a part over time (black line). In this figure, the vertical black line represents 

today. The blue line represents the policy safety stock (PSS) and is used to anticipate on 

variations in usage. The red line represents the maximum stock level and is used to prevent 

ordering too many parts. In a healthy situation, the inventory level moves between the PSS 

and the maximum stock level. Next to the PSS and the maximum stock level, a gray area can 

be seen in Figure 10. The lower boundary of the gray surface represents the must order point 

(MOP), which is dependent on the PSS and the planning horizon. The upper boundary of the 

gray area represents the excess stock level. The gray area becomes narrower when the 

planning horizon is further in the future.  
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R24 is triggered when the inventory level drops to 0 somewhere in the future. If the current 

inventory level is 0, R25 is triggered. R26 is triggered when the current inventory level drops 

below the MOP, whereas R83 is triggered when the inventory level drops below the MOP 

somewhere in the future. 

 
 

 

 

 

 

 

 

 

 

 

The review reasons may be a consequence of different factors such as missing suppliers, 

certain parameter settings (e.g. auto-order disabled) or other conditions that prevent 

Servigistics from auto-ordering. Based on the information provided in the Planners Worksheet 

of Servigistics (cf. Section 2.1.1), the planner may take an action to address the factors that 

have caused the review reason.  

 

2.3 Data understanding 
To get a better understanding of the problem, we analyze related data in this section. First, an 

initial set of data is gathered and we provide an overview of the different data types. Next, 

the data is explored for patterns and the quality and cleanse is discussed. 

 

2.3.1 Initial data collection 

Data to be collected can be divided into the exceptions which are triggered, the features which 

have influence on the decision and the decision itself.  

 

Exceptions 

The exceptions are gathered from the review reason history log. In this log, all review reasons 

that are triggered by Servigistics are listed. Part of this table is shown in Figure 11. The most 

important information this table holds, is the name of the triggered review reason, the part 

number on which the review reason was triggered, the date on which the review reason was 

first entered in the planner’s Work Queue, and the date on which the review reason was 

resolved. 

If a review reason is approved (cf. Section 2.1.2), the approval date is given as well.  

Figure 10: Inventory example 
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Features 
From interviews with team leaders within the SPO department, factors on which decisions are 

taken are evaluated. These factors are mainly the information which is provided to the 

planners by Servigistics. Next to that, the tablebook of Servigistics, which explains all tables 

and data which is gathered, is evaluated to find interesting data which can be used. These 

factors are gathered from the databases of IBM and used as initial input for the machine 

learning model. Since the planners base their decision on the information shown in 

Servigistics, it is chosen to extract the data from the Servigistics databases, although this data 

is only updated every 7 days. Since Servigistics does not allow the retrieval of historical data, 

we need to record data over a period of time to generate a data set. Due to the limited time 

of the graduation assignment, the data recording period is limited to the 7th of November until 

the 21st of December. This is a period of seven weeks and will lead to a dataset of about 3.000 

records. 

 

The gathered data can be divided into the following categories: 

• Part characteristics, like the weighted average cost, birth date, end-of-service date, 

material class and shelf life. 

• Inventory information, like current stock level, open orders, historical demand and 

forecasted demand. 

• Order information, like supplier availability and lead time. 

• Settings, like tactical levels, auto-order indicator, last-time-buy indicator and many 

other indicators. 

• Exception related: number of review reasons for the exception, whether it is triggered 

in the weekend or not. 

 

This gathered data is directly and indirectly used as features for the exceptions. In Appendix C 

an overview of the features is given with an explanation. All data of the features are gathered 

weekly, except for inventory level data, which is gathered daily. The queries, which are used 

to retrieve the data of features from the databases are provided as supplementary material 

in the zip-file “MSc Justin Fennis – Queries” and can be found in text in Appendix D. A data 

model is made in SPSS Modeler to process the data. This model is explained in Appendix E. 

 

Planner decisions 
The manual adjustments log, which tracks adjustments the planners make in India, is used as 

reference for the made decisions. This log shows the following categories of actions:  

• Orders and order changes 

• Changes in forecast settings 

• Settings for auto-order and critical parts 

• Changes in schedule values (on which Servigistics does its calculations).  

Figure 11: Review reason history log 
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In this research, two classes are taken into consideration: take action or do nothing. This is 

done to reduce complexity, since in the research by Schultz (2017), many decisions were 

possible, which possibly led to a too complex problem and bad performance of the model. To 

know the initial decision of the planner, manual adjustments performed in the period of the 

review reason trigger date until the approval date are considered. However, since a review 

reason can be approved multiple times and only the most recent approval date is visible, if 

the approval time is more than the number of disable days after the review reason trigger 

date, a period of 7 days is taken. The 7 days time window follows from the guideline that a 

planner should handle their exceptions within 7 days.  

 

Although all adjustments made in Servigistics are tracked in the manual adjustment log, it is 

possible that a planner does not take action within the Servigistics environment (and thus no 

action is tracked in the log), but he decides to take action outside the Servigistics environment. 

Examples could be that a planner triggered an external process, or he decided to communicate 

over e-mail. 

 

2.3.2 Data exploration 

In this section, we explore the data gained from the review reason history log and the 

adjustments log.  First, we show the number of exceptions per review reason, in the time 

period between 06-11-18 and 13-11-18 in Figure 12. Most exceptions are triggered for review 

reason 83 (R83). This can be explained by the fact that R83 (projected inventory below must 

order point) will occur more often than a (projected) stock out, since the must order point is 

typically larger than -1. For the same reason, a stock out situation (R25) occurs more often 

than a below must order point situation (R26). One could argue that if a part is out of stock, it 

is also below the must order point, which induces that there should be at least as much R26 

exceptions as R25 exceptions. However, only for planned parts a must order point is defined. 

Hence, we observe that R25 occurs more often than R26. 

 
Figure 12: Number of exceptions per review reason 
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When combining data from the review reason history log with the adjustments log, we can 

determine the taken actions per exceptions. The chosen approach to combine both data sets 

is explained in Appendix D. The results are summarized in Table 5. We observe that the 

majority of the actions for R24, R26 and R83 is a manual adjustment. However, on R25 often 

no action is taken. This seems odd, but this can be explained by the fact that often before a 

stock-out occurs, other review reasons have already been triggered and actions have already 

been taken, or that no action can be taken at all.  

 

Review 

reason 

% no action % action Action - categories 

Order-

related 

Forecast-

related  

Setting-

related  

Other 

R24 42.3 57.7 40.0 12.2 11.1 46.7 

R25 63.5 36.5 31.5 11.1 16.7 57.4 

R26 46.9 53.1 63.5 1.9 21.2 32.7 

R83 43.3 56.7 49.2 10.8 15.4 39.5 
Table 5: Distribution action/no action 

Overall, we can state that whether a manual adjustment is performed or not is quite balanced, 

which means that for both the classes action and no action are quite evenly represented in 

the dataset. If actions have been taken, we see that most actions are order related or fall in 

the category other adjustment. Only limited forecast related and setting related adjustments 

are done. This holds for all review reasons. 

 

Data quality 
Since a prediction algorithm relies on data, the quality is an important aspect. The data which 

is used, is directly extracted from the Servigistics database. It can be expected that the data in 

the system is correct and therefore is of high quality. As a check, the values of some records 

have been checked in CPPS and it came out that values were the same. The data audit node 

of SPSS Modeler performs a quality check, which can be seen in Appendix F. From this quality 

check we observe that 67.44% of the features have a value for all records. This means that for 

about one third of the features, there are missing values. A total of 14 of the 43 features 

contain missing values. Most features contain missing values in 0% - 15% of the records. Four 

features show more missing values. The feature with most missing values is the shelflife. Only 

0.94% of the records are complete. Although it is clear that records with a missing value for 

the feature shelflife do not have a shelf life, it cannot be simply imputed by a certain value as 

is done for other features, since one would expect an unlimited shelf life. We address this 

issue in Section 4.2, after we examined the literature for different data imputation techniques 

in Section 3.1.1.  

 

Characteristics of exceptions 
When comparing the characteristics of exceptions that were either processed with a manual 

adjustment or with no action, some insights became clear. As can be seen in Figure 13, when 
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a part is not stocked at the hub or the hub is not responsible for the part, often nothing is 

done. This makes sense, but we would expect that no adjustments are performed at all for 

parts for which the hub is not responsible or for which no inventory is kept.  

 

For exception on which no action has been taken, the weighted average cost, which is the 

average value of a part for IBM, is lower and higher for exceptions on which an action has 

been taken. This could indicate that for more expensive parts no action is taken directly and 

thus more risk is taken.  

 

Finally, often an action is performed for parts with a relative high demand over the last period. 

This indicates that often action is taken on exceptions for fast-movers and no action is taken 

on slow-movers. These statistics confirm that different characteristics have influence on the 

decision which is taken. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Performance of decisions 
Not all decisions by the planners are good decisions. Currently, the SPO department does not 

evaluate the performance of the decisions. Since classification algorithms can only learn from 

good decisions, the decisions made should get a performance measure. In the stochastic 

environment of the decisions at the SPO department, it is hard to judge about the decision 

quality. Although a qualitative measure like approval by team leaders is a suitable technique, 

a quantitative method is preferable since it is less time consuming. In accordance with team 

leaders it is chosen to use a simple, though obvious performance evaluator, which evaluates 

whether the initial decision resolved the review reason. Since different situations are possible, 

the following assessment metrics are used: 

Figure 13: Statistics of feature data 
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• Based on the decision of the planner, the review reason is resolved directly and the 

planner does not need to approve the review reason. The decision is qualified as a 

good one. → Good decision 

• Based on the decision of the planner, the review reason cannot be resolved directly. 

The planner had a look at the review reason, did his best to solve the review reason 

and approves the review reason with the possibility that the decision made will lead 

to resolving the review reason in the short future. The following metrics are used for 

this situation: 

o The decision was “no action” and the review reason was approved. After the 

review reason was approved, no other action has been taken and the review 

reason was resolved. The initial decision resolved the review reason after a 

period. → Good decision 

o  The decision was “no action” and the review reason was approved. After the 

review reason was approved, an action has been taken and the review reason 

was resolved. The decision to do nothing did not resolve the review reason and 

an action was required. → Bad decision 

o The decision was “action” and the review reason was approved. After the 

review reason was approved, no other action has been taken and the review 

reason was resolved. The initial decision resolved the review reason after a 

period. → Good decision 

o The decision was “action” and the review reason was approved. After the 

review reason was approved, an action has been taken and the review reason 

was resolved. The initial action did not resolve the review reason and other 

actions were required to resolve the review reason. → Bad decision 

 

The initial decision is the decision whether to take action or not between the review reason 

trigger date and the resolve date (situation 1) or between the review reason trigger date and 

the approval date (situation 2). If an exception has not (yet) been resolved, the performance 

of this exception is unknown.  

 

When applying these rules to this dataset, we observe that between 60% (R24) and 73% (R83) 

of the decisions that are resolved, are quantified as good decisions. The results are shown in 

Table 6. 

 

Review Reason # good decisions # bad %  good decisions 

R24: Projected stock out 62 40 60.8% 

R25: Stocked out 53 20 72.6% 

R26: Below MOP 62 33 65.2% 

R83: Projected inventory below MOP 192 71 73.0% 
Table 6: Performance of decisions 
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2.4 Conclusion 

In this chapter the current situation of the SPO department is explained. To do so, first the 

role of the SPO department and their main software packages are explained. After that the 

exception handling process is described and a selection of review reasons to focus on is made. 

For the chosen review reasons, some preliminary analysis is conducted to provide first insights 

about the current situation. 

 

• SPM contains all processes to keep the right number of spare parts in inventory to 

meet service levels at minimal costs. The SPO depart in Amsterdam is responsible for 

the SPM within the EMEA-region for IBM and uses Servigistics and CPPS for this. 

 

• 34.474 exceptions appeared in one year, divided over 21 review reasons. Four of these 

review reasons are selected to focus on: R24 (projected stocked out), R25 (stocked 

out), R26 (below must order point) and R83 (projected below must order point). These 

review reasons account for 40% of the exceptions. 

 

• It is chosen to look at whether a planner performed a manual adjustment or did 

nothing. Data analysis revealed that for exceptions of R24, R26 and R83 most decisions 

are to take action. 

 

• Data is gathered for a period for the exceptions. The data set has a significant number 

of missing data, which should be dealt with. 

 

• A performance metric is introduced, which qualifies the decisions taken by a planner 

based on whether the initial decision of the planner resolved the exception. A 

performance metric revealed that between 60% and 73% of the decisions are qualified 

as good decisions. 

 

In the next chapter, literature will be examined on data preparation stage and the modelling 

stage. For the data preparation literature is examined on how to deal with missing values and 

how to select important features. For the modelling stage, algorithms are evaluated and 

performance measures of the algorithms are examined. 
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Chapter 3: Literature review 

In this chapter, existing literature relevant for this research is examined. In the first part, the 

focus is on literature on creating a proper dataset. After that, the focus is on literature on 

modelling. 

 

3.1 Dataset 

In this section, the focus is on literature on creating a proper learn set. Data preparation is an 

important step of the project. Often fifty to seventy percent of the time and effort spent is 

used in the data preparation step. In the data preparation step a lot of modifications take 

place: data to exclude or include is selected, the data is cleaned, new attributes are derived 

from original data, data is merged, data is reformatted and features are selected. In this 

section, the focus is on dealing with missing values and feature selection. 

 

3.1.1 Missing values 

Missing values are frequently encountered in any kind of datasets and it is often a major 

problem. To deal with missing data, two approaches could be followed, which are available in 

SPSS Modeler: deletion, single imputation and multi imputation. 

 

When applying deletion, all cases are deleted for which one or more variable values are 

missing. Although this is a straightforward and simple approach, Gelman (2006), Baguley 

(2012) and Kwak and Kim (2017) mention that using a deletion approach may result in an 

increase of the standard errors due to the smaller sample size. This is especially a problem in 

a small dataset with a lot of variables. If the missing values differ systematically from the other 

cases, it could also lead to biased results. Baguley (2012) discourages this approach when 

there are a lot of cases with missing values. Deletion is the most commonly used method to 

handle missing values in SPSS Modeler and deletion can be applied by using the Selection 

Node. 

 

Instead of deleting cases with missing values, substituting values can be a solution, which is 

called imputation. In this way, the complete dataset is kept, which reduces bias. However, 

other bias is introduced since data is estimated. Imputing missing variables vary from simple 

approaches to rather complex approaches. Simple approaches may have a lower standard 

error, since the expected value is pretended to be known (Gelman 2006). He mentions some 

simple approaches: 
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o Imputation by logic rules. 

o Imputation by using the mean or mid-range. 

o Imputation by introducing an indicator for missing values: 

o Categorical: add an extra category which indicates missingness. 

o Continuous: replace the missing value and add a variable which states whether 

a value is missing. 

o Last value carried forward: using a historical value of the same case. 

o Using information from related observations. 

 

More complex approaches suppose that variables have a certain predictive distribution and 

estimates are based on this distribution. Within SPSS Modeler, the only algorithm is C&RT, 

which stands for Classification and Regression Tree. This algorithm imputes a value when it is 

missing, based on the distribution of the data for the feature. For statistical machine learning 

algorithms, often the mean is imputed, such that the imputed value will not have a big 

influence.  

 

Approach for this research 
Since we are dealing with a relatively small dataset, deletion is not preferable. Simple 

imputation approaches are useful for features for which the expected value is known, which 

could lead to a lower standard error. For features for which the values of missing data are not 

known at all, more complex approaches can be used. For this research, deletion approaches 

will be avoided. Simple approaches and complex approaches will be used for missing data. 

 

3.1.2 Feature selection 

Generally, a dataset contains lots of features. Features are measurable properties of the 

object we are analyzing. Speaking in terms of exceptions, features can be the current 

inventory level or the vitality of the part for which the exception is triggered, or the number 

of other review reasons connected to this exception. Selecting relevant features is an 

important task. According to Liu et al. (2010), feature selection has three main advantages: (1) 

removing irrelevant and redundant features, (2) reducing the complexity of the data model 

and increasing the performance of an algorithm and (3) making it more understandable.  

 

To reduce the number of features, different methods are known. Although some authors 

mention the use of domain knowledge for excluding irrelevant and redundant features (Tan 

et al., 2006 and Li et al., 2006), different algorithms exist for selecting the best combination of 

features. Since the number of combinations of features are 2n, where n is the number of 

features, which leads to a significant number of combinations, different methods are known 

in literature to find the most valuable features. Most authors distinguish four methods: filter, 

wrapper, ensemble and hybrid methods. 
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Filter 

Filter methods calculate measures (e.g.: consistency, distance, similarity, statistical measures) 

to select an optimal feature set. Filter methods take place before the modelling algorithm uses 

the features. Univariate measures rank the features one by one, in contrast to multivariate 

measures which ranks subsets of features. Visalakshi and Radha (2014) mentions that filter 

methods are computationally simple, fast in process and independent of algorithms. On top 

of that, filter methods avoid the problem of overfitting. In a limited time, it produces good and 

relevant features. The main disadvantage of these methods is the ignorance of interaction 

effects.  

 

Wrapper 

Whereas filter methods use performance measures, wrapper methods require an algorithm 

to calculate the performance. These methods measure the performance of different subsets, 

based on the algorithm’s performance. The main advantage is that interaction effects are 

evaluated as well. However, they are much slower, since the algorithms needs to be 

performed for every subset. Next to that, results can be biased towards the performance 

measure of the algorithm (Jovic et al., 2015) and there is a high risk of overfitting (Visalahski 

and Radha, 2014). 

 

For both filter and wrapper methods, there are three starting points for subset generation. 

Forward selection (1) starts with an empty set and adds a feature one by one. Backward 

reduction (2) starts with all features and deletes features one by one. Forward selection 

performs best when the optimal subset is small, in contrast to backward reduction where the 

opposite is true. The main disadvantage of (1) is that it is unable to remove features that 

become obsolete after adding features in a next step. The main disadvantage of (2) is that it 

is not able to reevaluate features after it has been discarded (Gutierrez-Osuna, n.d.). Bi-

directional search (3) uses a combination of (1) and (2), where features selected by forward 

selection are not removed and features removed by backward selection are not selected. In 

this way, it deals with the two main disadvantages of (1) and (2). 

 

Hybrid 

Hybrid methods use a combination of filter and wrapper methods. First, a filter method is used 

to reduce the number of features and after that a wrapper method is used to find the best 

subset. These methods generally have a high performance but are still efficient. 

 

Embedded 

In embedded methods, the feature selection is embedded in algorithms. In decision trees like 

C4.5, CART and Random Forest, feature selection is done in the algorithm. In some algorithms 

(e.g.: LASSO or Elastic Net) feature weighting is performed, which minimizes fitting errors. 

Penalties are induced to features that do not contribute. A disadvantage of embedded 

methods is that the selected features are only selected in the algorithm and cannot be used 
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for other algorithms. Next to that, these methods do not always have to perform better. In a 

research by Pereira et al. (2015), embedded methods (LASSO regression and Ridge regression) 

did not perform significantly different than simple filter methods.  

 

Approach for this research 
If decision tree algorithms are chosen as modelling algorithms, feature selection is not 

necessarily needed. However, knowing which features are relevant will reduce the complexity 

of the model and could improve the performance. Since the dataset in this research contains 

a relatively small number of features, the disadvantage of wrapper methods that they are 

slower is not a problem. Since interaction effects should be taken into account, a wrapper 

method will be used as feature selection method. A bidirectional search is will be used, since 

it deals with both disadvantages of forward selection and backward reduction. 

 

3.2 Modelling 

In this section, the focus is on how to balance data, different modelling techniques and their 

performance. In the first part, different approaches on how to balance data are examined. 

Next, different relevant supervised machine learning techniques are discussed. After that, the 

focus is on performance measures of algorithms and finally the comparison of different 

classifiers is discussed. 

 

3.2.1 Algorithms 

Different algorithms can be used as modelling technique. However, as the “No Free Lunch” 

theorem states (Wolpert and Macready, 1997), it is unknown which algorithm will perform 

best for which problems. Many authors (Kuhn and Johnson (2013), Tan et al. (2006)) suggest 

using different algorithms to see how the baseline performance is and which algorithm 

performs well. Kuhn and Johnson (2013) and Kotsiantis (2007) presented frameworks that 

compare different algorithms and their characteristics. These frameworks can be found in 

Appendix G and will both be used to find the pros and cons of algorithms.  

 

In the framework by Kuhn and Johnson (2013), five main classification algorithms are 

distinguished: decision trees, neural networks, k-nearest neighbors, support vector machines 

and naïve Bayes. Next to that, Kotsiantis (2007) discusses regression algorithms as well.  

 

When comparing these models, the main advantage of using decision tree algorithms is that 

they handle continuous, binary and discrete data at the same time. Other algorithms often 

only handle continuous or discrete data and when mixed data is input to the model, the data 

often needs to be transformed. Next to that, decision trees handle missing values well. Other 

advantages of decision tree algorithms are the easiness to understand, limited computation 

time, robustness to noise, embedded feature selection (Gupta et al., 2017). However, in 
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general the accuracy of other algorithms is better. Most decision trees can be used for both 

regression and classification purposes. 

 

Neural networks generally perform better than decision tree algorithms. However, 

computation time is high, the algorithm itself is hard to understand, it is not robust to noise 

and feature selection and scaling needs to take place before the algorithm starts. On top of 

that, discrete values need to be transformed into numerical values and neural networks are 

not robust to feature noise. Neural networks can be used for both regression and classification 

purposes. 

 

KNN is an easy to understand algorithm and computation time is fast (although the 

classification itself is slow). Feature selection needs to take place before the algorithm runs 

and the accuracy is average in general. Discrete values need to be transformed to numerical 

values before the algorithm can start. Neural networks can be used for both regression and 

classification purposes. 

 

Support Vector Machines are one of the most popular algorithms and generally perform well. 

However, the algorithm is hard to explain, and computation time is often high. Although 

feature selection should be performed before the use of the algorithm, the algorithm itself 

can cope with redundant and irrelevant features. Support Vector Machines can be used for 

both regression and classification purposes.  

 

Naïve Bayes algorithms require limited computation time, but the accuracy is limited as well. 

Although there are ways to deal with mixed data, the algorithm is more suited for categorical 

and binary data. Continuous data should be binned to categorical data before applying a Naïve 

Bayes algorithm. Naïve Bayes algorithms do not cope well with redundant and irrelevant data 

and therefore feature selection should take place before the algorithm runs.  

 

Regression algorithms often requires lots of pre-processing, but the computation time is 

limited and the algorithms are easy to understand. Feature selection is embedded in some 

regression algorithms. Disadvantage is that these algorithms are less robust to feature noise 

and handle continuous input data only. Different regression algorithms exist which can be 

used for regression, classification or both. 

 

Selection for this research 
Since we are dealing with mixed data (data which has categorical as well as numerical data), 

decision trees are the only modelling techniques which can be used directly for the final 

dataset, which is a major advantage. Other advantages of using decision trees over other 

classification techniques are the easiness to understand the algorithm and knowledge gained, 

the embedded feature selection, the speed of classification and that they require less data 

preparation compared to other algorithms. Since one of the results of this research is a 
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working tool, the models build should be easily understandable to implement it into a tool, 

which makes the former advantage an important one. Due to these reasons, it is chosen to 

use decision trees as classification algorithms. In Section 5.2 it is found that the C5.0 is the 

best performing algorithm in a test-design. Therefore, this algorithm will be explained. 

 

C5.0 algorithm 

To explain the C5.0 algorithm, first a decision tree will be explained. A decision tree is a series 

of questions about the features of a record, until a conclusion can be made about the class of 

the record.  

 

The C5.0 algorithm is developed by Ross 

Quinlan and is a successor of the ID3 and 

C4.5 algorithm. It is a statistical classifier 

and can handle both continuous and 

categorical data, it deals with missing 

values and it uses pruning to prevent 

overfitting. The order of questions can be 

represented in a decision tree, as shown 

in Figure 14. This decision tree consists of 

a root node, internal nodes and leave 

nodes. A root node (red) is the starting 

point of a decision tree and has no 

incoming arches. Internal nodes (green) 

have one incoming arch and two or more 

outgoing arches. The leaf nodes (blue) do not have outgoing arches and they are assigned to 

a class. Although decision trees are easy to understand, there are exponentially many decision 

trees which can be built (Tan et al., 2006). The C5.0 algorithm starts with the full set of training 

data and splits the data consecutively on the attributes which give the highest information 

gain. The information gain is calculated by subtracting the average information value of the 

child nodes from the information value of the parent node. 

 

The C5.0 algorithm uses entropy to calculate the information gain. The entropy is calculated 

by the following formula: 

 

𝑒𝑛𝑡𝑟𝑜𝑝𝑦 =  − ∑ 𝑝(𝑖|𝑡) ∗ 𝑙𝑜𝑔2(𝑝(𝑖|𝑡))

𝑐

𝑖=1

 

 

 

In this equation, c is the number of classes (action or no action in our case) and p(i|t) is the 

fraction of records belonging to class i at node t. In Figure 15 the function of the entropy is 

Figure 14: Decision tree example 
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plotted. As we can see the entropy value is high if the dataset is equally divided over the 

classes. The more imbalanced, the lower the value. 

 

To calculate the information gain, first the entropy is calculated for the parent node, which is 

the node where a split is going to be made. All possible splits are evaluated and the entropy 

for all child nodes is calculated. For all possible splits, the entropy is calculated for the child 

node and now the information gain can be calculated by the following formula: 

 

𝐼𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 𝑔𝑎𝑖𝑛 = 𝐼(𝑝𝑎𝑟𝑒𝑛𝑡) −  ∑
𝑁(𝑣𝑗)

𝑁
∗ 𝐼(𝑣𝑗)

𝑘

𝑗=1

 

Where I() denotes the entropy, k denotes the number of child nodes, N is the total number of 

records in the parent node and N(vj) is the number of records associated with child node vj. As 

can be observed in the formula, the highest information gain is achieved if the distribution is 

quite evenly balanced in the parent node and the child nodes are quite unbalanced. 

 

The attribute which results in the highest information gain is used as split and the process 

repeats itself.  

 

The stopping criterion for the C5.0 algorithm is the minimum number of records in the child 

node. Aside from this stopping criterion, there are two cases which can occur: 

• All records belong to a certain class. In this case, a leaf node is created.   

• No feature does give any information gain. In this case, no child node is created and 

the expected value of the parent node is assigned as class to the records. 

 

After the decision tree is built, pruning can be applied to reduce the decision tree size.  

 

Figure 15: Plot of entropy function (Tan et al. (2006)) 
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C5.0 in SPSS Modeler 
In Figure 16 the C5.0 algorithm settings available in SPSS Modeler 18.1.1 are shown. 

 

The first setting indicates whether 

partitioned data is used or not. Enabling 

this setting leads to building a model 

based on the training data and the 

performance is evaluated on the testing 

data. If this option is disabled, all data is 

used for building a model and the 

performance of the model is evaluated 

based on the whole dataset.  

 

Using the build model for each split 

setting results in multiple models being 

built for certain values of features. For 

example, if we provide one dataset with 

exceptions of R24, R25, R26 and R83 together, we could make the feature review reason ID a 

split feature, which leads to building models per review reason. These models can be 

evaluated separately. 

 

The output type can be set to a decision tree or a rule set.  

 

If the group symbolics setting is enabled, groups of data that show the same patterns are 

merged. This is helpful to reduce the complexity of a decision tree. 

 

Boosting can be used to improve the accuracy. This algorithm builds multiple models (number 

of trials). The first model is built in the usual way, but for the second model, the focus is on 

the misclassified records in the first model. In this way, the models focus on the errors of the 

previous built model. Finally, voting is used to combine the individual predictions to one final 

prediction. Using boosting for small datasets can result in over-trained models.  

 

Cross-validation is a method which is extremely useful for small datasets (IBM, n.d.-c). This 

method splits the available data into a number of subsets (number of folds) and every subset 

is used once to evaluate the performance of the models built on the other subsets. The 

performance is evaluated by taking the averages of the performance indicators of the 

individual models.  

 

The mode setting can be set to simple or expert. If the simple setting is used, there is less 

control over the control parameters and general settings are applied. One should only indicate 

Figure 16: C5.0 settings 
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the % of expected noise in the data. With the expert option, one can define the pruning severity 

and the minimum number of records per child branch.  

 

The pruning severity is a value between 0 and 100. The higher the number, the more the 

decision tree is pruned and thus the more concise the tree is.  

 

Next to the pruning severity, the minimum records per child branch should be set. Setting this 

value high will lead to a small decision tree. However, setting this value too low, will result in 

a possible over-trained model.   

 

Using global pruning will evaluate all subtrees of the final model to determine weak subtrees. 

Global pruning is performed by default (IBM, n.d.-c) to prevent over-trained models. 

 

The setting winnow attributes indicates whether the features are evaluated on relevance 

before building a model. Enabling this option will decrease the computation time, since only 

relevant features are evaluated at each node.  

 

3.2.2 Performance measures 

To know how well a machine learning algorithm performs, multiple performance measures 

are known in literature. A simple example is given to clarify the performance measures. 

Therefore, a confusion matrix is shown in Table 7. 

 

Since some review reasons are dealing with the decision whether to take action or not, we 

clarify the use of the confusion matrix based on this example. A machine learning algorithm is 

fed with input data and the decision is to take action or not. Since a labeled dataset is fed to 

the model, we already know what the decision should be, but the algorithm will try to learn 

from a part of the data and uses the knowledge gained to predict the outcome for the other 

part of the data. If, for example, the algorithm classifies a certain input with “No action” and 

the actual decision was “action”, the model is 

obviously wrong. After a dataset is run, the 

confusion matrix summarizes the number of 

instances predicted (in)correctly.  

 

 The following terminology is used for the confusion matrix: 

• TP (true positive): the algorithms is correctly telling you to take action. 

• TN (true negative): the algorithm is correctly telling you not to take action. 

• FP (false positive): the algorithm is falsely telling you to take action. 

• FN (false negative): the algorithm is falsely telling you not to take action. 

 

Table 7: Confusion matrix 

Action No action

Action TP FN

No action FP TNActual class

Predicted class
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Based on the confusion matrix, the following performance measures can be calculated, which 

are explained subsequently: accuracy, precision, recall, F1-score and the Area Under the Curve 

(AUC). 

 

Accuracy 

One of the most general performance measures to use is the accuracy. The accuracy is 

measured by dividing the correctly classified instances by the total number of classified 

instances: 

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =   (𝑇𝑃 + 𝑇𝑁)/(𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁) 

 

A major drawback of this performance measure is that it treats all classes as equally important 

(Brownlee (2015), Sunasra (2017), Tan et al. (2006)). This is not a problem when the dataset 

contains an equal number of instances per class, but it can be problematic when the dataset 

is imbalanced. Take for example a company with a production line which performs at six sigma 

level1. A machine learning algorithm will be able to have an accuracy of 0.9999 of the cases if 

it will just classify every instance as “no defect”. This is called the accuracy paradox. In these 

cases, correctly predicting the “defect” has much more value than predicting the “no defect” 

classes. The accuracy performance measure does not deal with this problem. To deal with this 

problem, other performance measures are available. Another option is to balance the data in 

the data preparation phase, which will be explained in 3.2. 

 

Precision, recall and F1-measure 

For the following performance measures, the performance should always be measured for 

the minor class (the class with the least observations). In the following example this means 

that the “action” class is supposed to be the minority class.   

 

The precision is measured by dividing the number of positive predicted instances which are 

actually positive (TP) by the total number of positive predicted instances (TP + FP). In our 

example this is the number of instances predicted as “action” which are actually “action” 

divided by the total amount of instances predicted as “action”.  

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =   𝑇𝑃/(𝑇𝑃 + 𝐹𝑃) 

 

The precision score is a real number between 0 and 1 and it holds that the higher the precision, 

the less false positive errors are made.   

 

Recall on the other hand measures the fraction of positive examples correctly predicted as 

positive. In the example this is the number of instances predicted as “action” which are 

actually “action” (TP) divided by the total number of actual “action” (TP + FN).  

                                                      
1 Six sigma level means producing at 3.4 defects per million products. 
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𝑅𝑒𝑐𝑎𝑙𝑙 =   𝑇𝑃/(𝑇𝑃 + 𝐹𝑁) 

 

The recall score is a real number between 0 and 1 and it holds that the higher the recall, the 

less misclassified positive examples.  

 

It is possible for algorithms to maximize one of these performance measures. To prevent this 

from happening, another performance measure is being used which deals with both precision 

and recall: the F1-score. This performance measure is a harmonic mean between precision and 

recall, which tends to be closer to the smaller one. 

𝐹1 =  
2

1
𝑟𝑒𝑐𝑎𝑙𝑙

+
1

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

 

 

Since the value of recall and precision both lie between 0 and 1, the value of F1 lies between 

0 and 1 as well. The higher the number, the better both recall and precision scores are.  

 

ROC curve and area under the curve (AUC) 

The final performance measure to discuss is the area under the curve (AUC). This performance 

measure gives the capability of a model of distinguishing between classes, the separability. 

The higher the AUC, the better the separability of the model. The AUC will be explained by an 

example. 

 

For most tests, a perfect separation of 

classes will not be observed and overlap 

between the classes will occur, which can 

be seen in Figure 17. In this figure, the 

green distribution represents the action 

class and the red distribution the no action 

class. If we set the criterion value as 

depicted in Figure 17, we predict all values 

to the right of the criterion value as action 

(positive) and all values to the left of the 

criterion value as no action (negative). This will result in the four classes: TN, FN, FP and TP. 

For all criterion values, the sensitivity or precision (the fraction of positive examples correctly 

predicted as positive) and the specificity (the fraction of negative examples correctly predicted 

as negative) are calculated. A lower criterion value will lead to less FN and thus a higher 

sensitivity, but it will increase the number of FP and thus will lead to a lower specificity. 

 

Figure 17: Example distribution of classes 
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If we vary the criterion value, we obtain 

different values for the sensitivity and the 

specificity, as can be derived from Figure 17. 

To calculate the AUC, the ROC-curve should be 

plotted. The ROC curve plots the sensitivity on 

the y-axis and (1 – specificity) on the x-axis, for 

different criterion values. In Figure 18 an 

example of a ROC-curve can be seen. The blue 

line gives the performance of the model. A 

model which makes random guesses resides 

along the red line. The closer to the upper left 

corner, the better the model can distinguish different classes and thus the performance of the 

classifier. The AUC-value is equal to the surface below the blue line.  

 

3.3 Conclusion 

After examining current literature, we know how to deal with missing values, we know how 

to select features to focus on, we know which classification algorithms are known, we know 

how the performance of models made by algorithms can be measured. The following 

conclusions are found: 

 

• Missing features should be imputed and deletion should be avoided. 

 

• A wrapper method will be used to select only the relevant and important features. 

This will decrease the complexity of the model. 

 

• Decision trees algorithms will be used for this research, since they can deal with both 

categorical and continuous data, building models goes relatively fast and results are 

easy to interpret. 

 

• All performance metrics are valuable, since they all measure other performance 

criteria. For balanced datasets the accuracy is a good performance measure. The other 

performance metrics become more valuable if the dataset is imbalanced.  

 
 

 

 
 

  

Figure 18: Example ROC-curve 
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Chapter 4: Data preparation 
In the previous chapters, a selection of review reasons was motivated, an initial dataset is 

gathered, performance metrics were derived for actions taken by the planners, and the 

literature has been reviewed. In this chapter, we first integrate the data to create one dataset. 

After that, the data is cleaned by imputing missing data, and new features are constructed 

from the initial data. Next, the decision whether to train the model to replicate the decision 

of the planners (train based on all observed exceptions) or to make good decisions based on 

the performance metrics defined in Section 2.3.2.  Also, the decision whether the cleaning 

step is performed or the decision tree algorithm should deal with missing values itself will be 

addressed. Finally, valuable features are identified with a feature selection approach. As a 

result, we focus on the third step of the CRISP-DM methodology in this chapter, as shown in 

Figure 19. The results of this step will enable us to continue with the modeling stage in the 

next chapter.  

 
Figure 19: Current focus within CRISP-DM methodology (Chapman et al, 2000) 

4.1 Integrating data 

Since the data is extracted from different databases, SPSS Modeler is used to merge the data 

to one data file. Per exception, the corresponding data of features is merged from different 

tables. As defined in Section 2.3.1. the features can be categorized into part characteristics, 

inventory information, order information, settings and exception related. 

  

The output is a file containing an overview of all exceptions with values for all features. The 

features and their explanation can be found in Appendix C and the model that merges all data 

into one file can be found in Appendix E. 

 

4.2 Cleaning data 

As explored in section 2.3, the dataset contains missing values and one of the activities in step 

3 of the CRISP-DM methodology is imputing missing data. Hence, the features that have 

missing values are evaluated in this section. The results are shown in Table 8. Note however, 

that in Section 5.1 we perform experiments with both, the imputed dataset and the original 

dataset. Thus, we will further evaluate whether the imputation step is recommendable for 

IBM. 
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Feature % complete  Imputation strategy 

Shelf life (years) 2.3% For the feature shelflife only parts which have a shelf 

life will have a value. In the dataset we observe a 

significant number of missing values for the shelf life. 

We may impute the missing values by applying a logic 

rule that assigns a high value (for example 20 years) 

to missing values. However, as will be discussed in the 

next section, we chose instead to change this feature 

from a continuous feature to a categorical feature. 

Open order arrival 37.4% For the feature open order arrival only parts which 

have an open order will have a value. We impute the 

missing values by applying a logic rule that assigns a 

high value (in this case two times the maximum value 

found in other records) to missing values, which 

indicator that it will take a very long time before a 

next order arrives. To isolate unwanted effects of 

imputing values, an imputation indicator is added, 

which will be explained in the next section. 

Forecast method 65.6% For the forecast method, two cases exist: (1) there is 

no forecast and therefore the forecast method 

contains a null value or (2) there is a forecast, 

however a forecast method is missing. The first case 

is solved by adding the category No forecast to the 

forecast method. For the second case, the category 

Undefined forecast is added. 

Lead time (weeks) 72.3% A missing value for this feature implies that no 

supplier is available. Since no supplier is available, we 

choose to use a logic rule: a missing value is imputed 

by a high value, in this case two times the maximum 

value found for other cases. 

Return rate 86.2% A missing value for the return rate means that no 

demand or returns have been recorded in the last 

two years. This value is imputed by the mean of all 

observed values for the return rate. Next to that, the 

binary (yes/no) feature return rate indicator is added 

which states whether the feature return rate had 

initial values. This is done to isolate unwanted effects 

of imputing a missing value by the mean. 

PSS 87.0% A missing value for PSS means that for this part 

currently no predictions of demand are made and 

therefore no tactical inventory levels exist. 
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Therefore, the mean of the PSS of the parts of other 

exceptions is imputed and a new binary feature is 

added which states whether the part was planned 

(yes/no), again to isolate unwanted effects of 

imputation. 

First stock date 89.5% A missing value for stock date implies that the part is 

not yet stocked. Therefore, the value of today will be 

imputed (2019-01-01). However, as will be discussed 

in the next section, this feature will be transformed 

to the number of years difference between the year 

of the exception and the first stock date. 

Usage x price 90.2% This feature categorizes the value of the part by 

making a tradeoff between the usage of a part and 

the price of a part. Since for most parts we know the 

historical usage and the weighted average cost value, 

we multiply these values and use the known Usage x 

price values in an algorithm to predict missing values 

for this feature. The C5.0 algorithm in SPSS Modeler 

is used, which predicts 85% of this feature right. For 

the cases where the algorithm is wrong, it predicts 

the value between one and two values away from the 

actual value, with a total average deviation of 0.21 

values away. 

Usage 90.2% See Usage x price above. The algorithm uses historical 

activity 2 years and usage of other records to derive 

the values. The C5.0 algorithm in SPSS Modeler is 

used, which predicts 76% of this feature right. For the 

cases where the algorithm is wrong, it predicts the 

value about one value away from the actual value, 

with a total average deviation of 0.10 values away. 

EOS date 91.0% For all parts which have a birth date, often an EOS 

date is calculated. If a missing value is encountered, 

it is replaced by the maximum value found for other 

exceptions. Next to that, an indicator will be added 

which indicates whether the feature had an initial 

value for this part. However, as will be discussed in 

the next section, this feature will be transformed to 

number of years difference between the year of the 

exception and the EOS date. 

Division group name 98.8% A missing value for division group name is imputed by 

a new category No value. 
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Birth date 99.5% Since a missing value of the feature birth date 
implies that the part does not exist, records without 
a birth date are removed from the dataset.  

Division owner code 99.6% See Division group name. 

A-code 99.6% This feature specifies where this part should be 

stocked. If this is unknown, the part does get a no 

recommendation value. However, we only 

encountered a few missing values.  

C-code 99.6% This feature specifies how a part should be ordered. 

A value of 0 means that the order method is 

undefined. Therefore, a value of 0 is imputed for 

missing values. 
Table 8: Imputations 

After imputing missing values according to the given strategy in Table 8, our dataset contains 

values for all records and features.  

 

4.3 Feature construction 

In this section, new features are created. Based on information which is not yet covered by 

the current features, new features are created. These features are created by using multiple 

features or by changing the data type of features. The new features, their measurement type 

and why and how they are created are explained in this section. A summary is provided in 

Table 9. 

 

Birth age, first stock age and EOS age 

These features are currently continuous features expressed in a date. To distinguish recent 

parts and old parts, we choose to change the birth date to a value which indicates how many 

years old the part is. This is done by computing the difference in years between the date of 

the exception and the birth date. It is chosen to perform the same approach for the first stock 

date and the EOS date. This approach results in the new continuous features birth age, first 

stock age and EOS age. 

 

Life cycle point 

Currently, no feature is available which provides information in which stage of the life cycle a 

product is. Since it can be assumed that other decisions will be taken for a part which is in the 

beginning of its life cycle compared to a part which is at the end of its life cycle, we introduce 

the life cycle point. The life cycle point is calculated by dividing the birth age by the difference 

in year between the EOS age and the birth age. This results in the continuous feature life cycle 

point. Values for this feature are between 0 and 1. 
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Shelf life-, open order- and supplier indicator 

Since only a few parts have a shelf life, the value of the shelf life is less relevant; therefore, it 

is chosen to create the feature shelf life indicator which indicates whether a part has a shelf 

life or not. Next to that, we introduce the binary feature open replenishment order that 

indicates whether there is an outstanding order. Finally, currently there is no feature that 

specifies whether a supplier is available. Since a missing supplier may indicate a problem, we 

decide to introduce the binary feature supplier indicator. 

 

Inventory position 

Although the inventory level is currently used in the dataset, the inventory position does give 

additional information. The difference between the inventory position and inventory level is 

whether open replenishment orders are included or not. If (a substantial number of) parts are 

on order, it could be the case that a different action is taken. The inventory level alone could 

lead to a misrepresented situation. Therefore, we add the inventory position (inventory level 

+ replenishment open order quantity) as a feature. 

 

Fraction inventory position currently available 

In addition to the inventory position, it is valuable to know what fraction of the inventory 

position is currently available. If most parts are not available yet, this perhaps would result in 

different decisions than for a situation where the inventory position is equal to the inventory 

level. This fraction is calculated by dividing the inventory level by the inventory position. If 

backorders exist, this fraction is set to 0. Although the inventory level gives information about 

the on-hand stock, this feature gives information about the number of parts on open order 

compared to the parts on-hand. On top of that, this feature is comparable between parts. 

 

Fraction recent demand 

Currently, there is no feature that indicates how the recently observed demand behaves 

compared to the demand over a longer period. If the recent demand is relatively high, perhaps 

one may choose a different action if compared to a situation for which the recent demand is 

relatively normal. Therefore, the feature fraction recent demand is introduced, which divides 

the historical demand during the last four weeks by the historical demand during the last two 

years. 

 

Critical severity 

To give more information about the quantity that is or will be critical, the feature critical 

severity is introduced. The critical severity divides the critical quantity by the PSS. The critical 

quantity is the number of pieces deemed to be critical in the supply versus the need of the 

part. Since tactical levels are part specific, the critical severity is a good feature which makes 

it possible to compare the critical problem between different parts.  
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Runout time 

The stock level does not provide much information on its own. Therefore, the number of 

weeks is calculated for which supply is available, which gives an indication when the problem 

will occur. This is done by dividing the inventory level by the forecasted quantity. Since the 

forecasted quantity is the forecast for two years and we want to calculate the number of 

weeks supply left, the ratio inventory level / forecasted quantity should be multiplied by 104 

(number of weeks in 2 years). 

 

Inventory position severity 

Until now, there is no feature that relates the inventory position to the predefined PSS. 

However, such a feature may help to identify the severity of the situation. If the current 

inventory level is low and no parts are on order, this feature has a low value, which indicates 

the severity of the problem. Therefore, we introduce the feature inventory position severity. 

The inventory position severity is a ratio which divides the inventory position by the PSS. In this 

way, it is known whether the inventory position is lower (< 1) or higher (> 1) than the PSS and 

it makes it possible to compare different parts.  

 

We summarize the new feature in Table 9. 

 

Feature Measurement How is it calculated? 

Birth age Continuous The birth age is calculated by taking the 

difference in years between the date of the 

exception and the birth date. 

First stock age Continuous The first stock age is calculated by taking the 

difference in years between the date of the 

exception and the first stock date. 

EOS age Continuous The EOS age is calculated by taking the difference 

in years between the EOS date and the date of 

the exception. 

Life cycle position Continuous The life cycle point is calculated by dividing the 

birth age by the difference in year between the 

EOS age and the birth age. 

Shelf life indicator Binary The shelf life indicator is a binary value the value 

is yes when a part has a shelf life and no when it 

does not. 

Open order indicator Binary The open order indicator is a binary value the 

value is yes when a part has open replenishment 

orders and no when it does not. 

Supplier indicator Binary The supplier indicator is a binary value the value 

is yes when at least one supplier type is available 

for a part and no otherwise. 
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Inventory position Continuous The inventory position is calculated by adding the 

open order quantity to the inventory level (stock). 

Fraction inventory 

position currently 

available 

Continuous The fraction inventory position currently 

available is calculated as follows: (inventory 

position – open order quantity) / inventory 

position. 

Fraction recent 

demand 

Continuous The feature fraction recent demand is calculated 

by the historical demand during the last four 

weeks by the historical demand during the last 

two years. 

Critical severity Continuous The feature critical severity divides the critical 

quantity by the PSS.  

Runout time Continuous The feature runout time is calculated by dividing 

the inventory level by the forecasted quantity 

and multiplying it by 104 (to get the number of 

weeks left). 

Inventory position 

severity 

Continuous The feature inventory position severity is a ratio 

which divides the inventory position by the PSS.  
Table 9: New features 

After the data cleaning step and the feature creation step, the dataset consists of 3.254 

records with 61 features, which are shown in Appendix H . This dataset will be split into four 

datasets, for each review reason one, which is shown in Table 10. Per review reason, the 

number of records is given after the data cleaning step. Next to that, the percentage of 

exceptions on which a good decision has been taken, according to our performance indicator 

explained in 2.3.2, is given.  

 

Review reason # records % good decisions 

R24 648 74.1% 

R25 495 80.3% 

R26 460 73.8% 

R83 1.651 77.2% 
Table 10: Datasets overview 

4.4 Select data 

In the exception gathering period of one-and-a-half month, about 3300 exceptions were 

observed. Using all exceptions in a machine learning algorithm will lead to a model which tries 

to reproduce the decisions from the planners, which would make the process more efficient. 

However, since the goal of the assignment is to make it more effective as well, only exceptions 

for which it was evaluated (cf. Section 2.3.2) that a good decision has been taken, should be 

considered. Hence, we can distinguish between two data sets: one that contains all exceptions 

and one that only contains exceptions with good decisions. The former dataset may be used 
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to improve the efficiency 

and the latter dataset may 

be used for both, the 

efficiency and the 

effectiveness. We 

summarize this situation in 

Figure 20. A possible 

downside of using only 

exceptions on which a 

good decision has been 

taken, is that specific 

exceptions are not included in the dataset, since these exceptions are never classified as good 

decisions.  

 

As mentioned in Section 4.2, decision tree algorithms can handle missing data well. However, 

since we may have more knowledge about the missing values, we chose to impute missing 

data to get one final and complete dataset. To see in what way this has an influence, we will 

experiment with datasets where missing data is imputed as motivated in Section 4.2 and 

datasets where missing data is not imputed. In this way we get four different datasets per 

review reason, as shown in Table 11, for which experiments are performed in Chapter 5. 

 

Which decisions? 

Imputation yes/no? 

All 

Imputation 

All 

No imputation 

Good 

Imputation 

Good 

No imputation 

R24 # records 648 650 341 342 

Action yes / no 331 / 317 332 / 318 154 / 187 155 / 187 

R25 # records 495 508 233 236 

Action yes / no 187 / 308 191 / 317 92 / 141 93 / 143 

R26 # records 460 463 293 295 

Action yes / no 222 / 238 223 / 240 112 / 181 113 / 182 

R83 # records 1652 1658 995 998 

Action yes / no 802 / 850 807 / 851 419 / 576 422 / 576 
Table 11: Datasets statistics 

4.5 Feature selection 

To identify the most valuable features and to decrease the complexity of the model by 

removing irrelevant features, the feature selection tool of WEKA is used to analyze the 

datasets. WEKA is a collection of machine learning algorithms for data mining and is developed 

by the University of Waikato in New Zealand. Although there is an overlap with SPSS Modeler 

in functionality, WEKA possesses more comprehensive feature selection methods. 

 

Figure 20: Selecting data 
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However, based on our research we conclude that using feature selection before the 

modelling step, has barely an effect on the performance of the models built. Therefore, we 

leave the approach out and discuss the results right away. The approach to identify the most 

valuable features can be found in Appendix I. 

 

Based on this approach we found that a significant number of features is not relevant. This 

approach is performed per review reason and the number of irrelevant features per review 

reason and dataset are shown in Table 12. 

 All 

Imputation 

Only good 

Imputation 

All 

No imputation 

Only good 

No imputation 

R24 19 31 22 29 

R25 31 40 27 38 

R26 30 25 27 26 

R83 23 28 21 28 
Table 12: Number of irrelevant features 

Overall, we found the most relevant (left part of the table) and irrelevant features (right part 

of the table), which are shown in Table 13.  

 

Feature # selected   Feature # selected  

AnalyzerCode 3.8125  AirSupportIndicator 0 

WACValue 3.0625  BirthDate 0 

ReturnRate 2.9375  FirstStockDate 0 

LifeCyclePosition 2.8125  GSupplier 0 

ForecastedQuantity 2.75  StockedIndicator 0 

FractionRecentDemand 2.6875  ACode 0.0625 

FirstStockAge 2.625  CCode 0.0625 

BirthYearAge 2.5625  PlannedIndicator 0.125 

InventoryPositionSeverity 2.5625  BSupplier 0.1875 

HistoricalActivity2Years 2.5  CriticalPartUnsatisfiedIndicator 0.1875 

StockLevel 2.375  DivisionOwnerCode 0.1875 

Weekend 2.25  ForecastMethod 0.1875 

HistoricalActivity1Month 2.125  NBOIndicator 0.25 

PSS 2.0625  Shelflife 0.3125 

InventoryPosition 2  Successor 0.3125 
Table 13: Most relevant and irrelevant features 

We observe that the least relevant features can be categorized as part characteristics. For 

some of these characteristics it could be expected that it has no or only little impact on the 

decision, such as the AirSupportIndicator. For the features CCode, ACode, BirthDate and 

FirstStockDate, other features exist which contain similar information and therefore it was no 

surprise these came out as irrelevant features. 
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On the contrary, we find that the most relevant features contain features which give 

information about the supply chain status (e.g. PSS, InventoryPosition, 

InventoryPositionSeverity and StockLevel). Some interesting findings are the relevance of the 

features AnalyzerCode and Weekend. The AnalyzerCode is a code which contains information 

about the planner, the part brand and the part category and came out to be the most 

important feature. It could be the case that different planners make different decisions, but 

since the AnalyzerCode does contain more information than the planner itself, we cannot 

conclude this. Another explanation that the AnalyzerCode came out as one of the most 

important features, is that there are more than 50 unique values for this feature. Since the 

size of the dataset is limited, it could be that the values indicate whether an action should be 

taken or not. The Weekend feature is introduced since some data in Servigistics is only 

updated in the weekends and based on recalculations, exceptions are triggered. It could be 

that whether an action is taken or not, depends on whether the exception was triggered by a 

recalculation or not. 

 

The full results can be found in Appendix I as well. 

 

4.6 Conclusion 

In this chapter, the data preparation step of the CRISP-DM methodology is performed, which 

led to the final datasets. These datasets can be used for modelling. The following tasks were 

performed this chapter: 

 

• We use deletion, simple imputation techniques and complex imputation techniques to 

impute missing data for 15 features. 

 

• We construct 13 new features based on existing features. 

 

• We create four datasets per review reason. That is, one dataset version allows missing 

values while another uses imputed data. Also, one dataset version contains all 

exceptions while another uses only exceptions for which actions were identified as 

good decisions. 

 

• Using feature selection algorithms, we determined the relevant set of features for 

each dataset.  
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Chapter 5: Modelling 

After the final datasets are constructed in the previous chapter, we select the machine 

learning algorithm in this section. Therefore, we first discuss the experimental setup that is 

used to identify the most suitable machine learning algorithm for our problem setting. Next 

to that, the candidate modelling algorithms are selected and the modelling assessing 

measures are given. The fourth step of the CRISP-DM is the focus of this chapter, as can be 

seen in Figure 21. 

 
Figure 21: Current focus within CRISP-DM methodology (Chapman et al., 2000) 

5.1 Experimental design 

The modelling step will be performed on the datasets presented in section 4.4, which are 

summarized in Table 11. Per dataset the algorithms are performed twice: once on the dataset 

on which feature selection is performed and once on the initial dataset without feature 

selection. This leads to 8 experiments per review reason, which are summarized in Table 14. 

 

Experiment  All exceptions / Good decisions Impute missing data? Feature selection? 

1 All Yes Yes 

2 All Yes No 

3 All No Yes 

4 All No No 

5 Good Yes Yes 

6 Good Yes No 

7 Good No Yes 

8 Good No No 

Table 14: Experiments overview 

5.2 Candidate modelling techniques 

In section 3.3 it is chosen to use decision tree algorithms as classification technique. In SPSS 

Modeler the following decision tree algorithms are available: 

- C5.0 

- C&R Tree  

- CHAID 

- QUEST 

- Random Trees 
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- Tree-AS  

- XGBoost Tree 

 

As the “No Free Lunch” theorem states (Wolpert and Macready, 1997), it is unknown 

beforehand which algorithm will work best for which problem. Hence, different algorithms 

should be used to see which one performs well for your problem. We used the auto classifier 

in SPSS Modeler, which evaluates the selected algorithms under different settings. The auto 

classifier only gives the accuracy per model and since all datasets are quite balanced (the 

classes action/no action are equally present in the datasets), the accuracy (cf. Section3.2.2) 

will give a good representation of the performance and is thus used as performance measure 

to select the best algorithm. 

 

Data is partitioned into a training set and a test set. An algorithm uses the training dataset to 

create a model and the test dataset to measure the performance. The percentage data 

assigned to the two sets should be well considered. The more data is used as training data, 

the better a model is able to learn from the data and the model has a better representation 

of the real world. However, the test set will be smaller, which leads to less confidence in the 

results, since the performance is measured on less records. A common and often well 

performing practice is the 80-20 practice (Srinidhi, 2018 and A., 2012). In this practice, 80% of 

the data is used for training and 20% of the data is used for testing.   

 

The auto classifier gives the results shown Appendix J. Based on these results the best 

performing algorithm is selected. The average accuracy is calculated, the number of times an 

algorithm is present in the top 3 is determined and the number of times the algorithm is in 

the first, second and third position is given. This is shown in Table 15. The auto classifier of 

SPSS Modeler does not provide comprehensive results, however, in Chapter 6 a more in-depth 

analysis will be given on the results.  

 

Algorithm Accuracy # in top 3 # on 1st  # on 2nd # on 3rd 

C5.0 65.3% 18 8 8 2 

Tree-AS 64.2% 18 7 7 4 

XGBoost 63.9% 20 6 5 9 

C&R 63.9% 10 2 3 5 

Random trees 63.2% 13 7 2 4 

C&R 63.9% 10 2 3 5 

QUEST 63.2% 8 0 1 7 

CHAID 62.5% 9 2 6 1 
Table 15: Number of times algorithm is in top 3 

Based on these results it is chosen to use the C5.0 algorithm as modelling technique. Although 

the XGBoost algorithm is most often present in the top three performing algorithms, the C5.0 

algorithm is also often represented in this top three. On top of that, the C5.0 algorithm is more 
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often on the first and second place and the average accuracy is higher. The Tree-As algorithm 

has a lower accuracy and is less often on the first and second place. The C5.0 algorithm has 

been explained in section 3.2.1.  

 

5.3 Parameter settings C5.0 algorithm 

Now the algorithm being used is known, the model building settings are chosen. In Section 

3.2.1. the settings are explained. In this section, the values of the settings are motivated. 

 

Since we are dealing with small datasets, 

we use cross-validation to get more 

accurate performance measures of the 

models. However, since the cross-

validation option in SPSS Modeler does 

limit us in the evaluation of the models, 

we built it ourselves in SPSS Modeler. 

Therefore, cross validation is disabled 

and partitioned data is enabled, since we 

are dealing with a training- and a testing 

dataset. In this research it is chosen to 

use 5-fold cross validation. The dataset is 

split into 5 datasets, so called folds. Of 

these folds, 4 are used to build a model 

and the fold left is used as validation set. In this way, 5 models are built where every fold is 

used as validation set only once. We have chosen for 5-fold cross validation, since the ratio of 

the training and validation dataset is in this situation 80/20. The use of cross validation is 

explained in section 5.4. 

 

The option build model for each split is disabled, since we already split the data per review 

reason and we further do not distinguish different datasets.  

 

We want to build a decision tree rather than a rule set, since it is easier to interpret. 

 

The group symbolics setting is disabled. If groups of data show the same patterns, these 

groups will not be merged in this way and the decision tree keeps its distinctive power. 

 

Boosting is disabled since we are dealing with small datasets and we want to prevent over-

trained models.  

 

The mode setting is set to expert option, since we will have more control over the training 

parameters.  

 

Figure 22: C5.0 settings 
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The pruning severity is a value between 0 and 100. The higher the number, the more the 

decision tree is pruned and thus the more concise the tree is. To see what influence the 

pruning severity has on the models, we have chosen to perform experiments with two 

settings: a low value of 25 and a high value of 75. A value of 75 is the default settings of SPSS 

Modeler. Since this value is quite high, we added a lower value of 25. 

 

Next to the influence of the pruning severity, the influence of the minimum records per child 

branch is evaluated, by using two settings: a low value of 2 and a somewhat higher value of 5. 

In combination with the pruning severity, this creates 4 experiments.   

 

The setting winnow attributes is disabled, sine we are dealing with a small dataset and 

computation time is not a problem.  

 

The settings are summarized in Figure 23. 

 

Parameter Value 

Use partitioned data Enabled 

Output type Decision tree 

Group symbolics Disabled 

Use boosting Disabled 

Cross-validate Disabled in settings, enabled by modelling myself 

Mode Expert 

Pruning severity 25 / 75 

Minimum records per child branch 2 / 5 

Use global pruning Enabled 

Winnow attributes Disabled 
Figure 23: C5.0 modelling settings 

5.4 Assess model 

Since we are working with a small dataset, the data which is used as training data will have a 

high impact on the decision tree built. Therefore, we used cross validation to build more than 

one model and the performance is measured by taking the average of the models. Next to 

that, we combined the 5 models built by cross validation to build an ensembled model. Since 

the ensembled model uses multiple models, this model will probably be less sensitive to one 

particular model built on outliers, which is a possible disadvantage due to the limited size of 

the data sets. In order to perform cross validation and to be able to measure the performance 

of the ensembled model, we split the original data into 6 datasets: First the data is split into a 

training dataset (80% of the data) and a test dataset (20% of the data). The test dataset is used 

for measuring the performance of the ensembled model. The records in the test dataset have 

never been seen by the models. The training dataset is used for 5-fold cross validation, which 

is explained in the previous section. Therefore, the training dataset is split into 5 datasets, so 
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called folds. A model is built on 4 of these folds and the remaining fold is used for validation. 

Each fold is only used once as validation set and therefore 5 models are built. The splitting of 

data can be seen in Figure 24. 

 

To measure the ability of a model to predict whether action should be taken or not, the 

following performance measures are used: accuracy, AUC and precision. Individually, these 

performance measure do not give representative results, since they can be biased. However, 

using these together, give a clear view on the performance of a model.  

 

First of all, since the datasets are quite balanced, as showed in Table 11, and therefore the 

accuracy paradox discussed in section 3.2.2 is not a problem, the accuracy is a proper 

performance measure for the overall performance of a model. As a reminder, the accuracy 

measures the percentage of correct classified records by the model and is calculated by the 

following formula: 

 

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =   (𝑇𝑃 + 𝑇𝑁)/(𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁) 

 

Next to the accuracy, the AUC is used as a performance indicator as well. The AUC gives 

valuable information by providing the separability of classes and is equal to the surface below 

the ROC-curve (cf. Section 3.2.2). If the AUC is about 0.5, it indicates that the model is not able 

to distinguish between classes and actually puts all the records into one single class. The 

accuracy and AUC together give valuable information about the performance of the overall 

model, by providing the ability of the model of correctly classifying records and the ability of 

distinguishing classes. 

 

Finally, the precision of the no action class is used as performance measure as well, since IBM 

is interested in reducing the number of review reasons by excluding exceptions on which no 

action should be taken. Therefore, next to the accuracy and the AUC, the precision is used as 

performance measure, which gives the fraction of correctly predicted no action exceptions 

out of all predicted no action exceptions. This measure is calculated by the following formula: 

 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =   𝑇𝑃/(𝑇𝑃 + 𝐹𝑃) 

 

Figure 24: Splitting dataset 
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5.5 Conclusion 
In this chapter, the modelling step of the CRISP-DM methodology is performed. Based on the 

experiments and the chosen modelling techniques, the results are evaluated in the next 

chapter. The following conclusions are found in this chapter: 

 

• Per review reason 8 experiments will be performed. This leads to a total of 32 

experiments. 

 

• The auto classifier of SPSS Modeler is used to determine which of the 7 decision tree 

algorithms perform well. Based on these results the C5.0 algorithm is used as 

modelling algorithm and the different settings for this algorithm are motivated. 5-folds 

cross validation is used on which the performance is evaluated by taking the averages 

of the 5 models. Additionally, these 5 models are combined to one ensemble model 

on which the performance of never seen data is evaluated.  

 

• The accuracy, precision and AUC are identified as most suitable to measure the 

performance in the next chapter. 
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Chapter 6: Evaluation 
After the modelling algorithms are chosen, settings are set, and the performance measures 

are determined, in this chapter the results are evaluated. The fifth step of the CRISP-DM is the 

focus of this chapter, as can be seen in Figure 21. 

 

 
Figure 25: Current focus within CRISP-DM methodology (Chapman et al., 2000) 

6.1 Evaluate results 
In this section, the C5.0 algorithm is run with 4 settings (cf. Section 5.3) on the 8 experiments 

(cf. Section 5.1) per review reason and the results are evaluated. The evaluation of the results 

is divided into 3 sections. In the first section, we evaluate the influence of the algorithm 

settings on the performance of the models. Next, we have a look at the impact of data 

preparation and data selection. Finally, we evaluate the overall results and an in-depth 

analysis is performed on the best performing models.  

 

6.1.1 Algorithm settings impact 

If we have a look at the average performance of the models under the different algorithm 

settings, we find the results visible in Table 16. 

 

Min. records 

pruning severity 

2 

75 

5 

75 

2 

25 

5 

25 

Accuracy 0.629 0.622 0.629 0.624 

AUC 0.617 0.607 0.626 0.614 

Precision 0.643 0.639 0.648 0.643 
Table 16: Algorithm settings result 

As can be seen in the table, the differences are small (maximum difference of 0.019 or 1.9%). 

The averages are based on 160 models each (8 experiments x 5 folds x 4 review reasons) and 

we see that the models with the minimum records in the child branch set to 2 and the pruning 

severity set to 25 perform better on all performance indicators. We would expect that if the 

minimum records in the child branch is set to a low value, a specific tree is built and pruning is 

required to prevent building a too over-trained model. Therefore, we would expect the 

settings “2-75” or “5-25” to perform best. However, as shown in Table 16, the results of the 

settings “2-75” are second best and the differences are only small. 
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6.1.2 Data preparation and data selection impact  

If we analyze the effect of data preparation and data selection, we observe the results shown 

in Figure 26.  

 

Impact on: Accuracy AUC Precision 

Selecting only good exceptions versus all exceptions +3.2% + 0.9 % + 4.2% 

Imputing missing data manually versus no imputation - 1.4% - 1.0% - 0.8% 

Using pre-feature selection versus no feature selection - 0.3% + 0.4% + 0.2% 
Figure 26: Impacts of data preparation and data selection 

Based on these results, we conclude that using only exceptions on which the action is qualified 

as good (cf. Section 2.3.2), results in significant better performances of the models. This 

indicates that the performance measure successfully selects exceptions from which it should 

learn. However, as explained in Section 4.4, this could lead to the exclusion of certain 

situations in the data set. 

  

Imputing missing data manually has a slightly negative effect on the results. Although we know 

that decision tree algorithms can handle missing data well, we expected that imputing data as 

performed in Section 4.2 would result in a better performance, since in general we know more 

about their values. However, these results show the opposite and the algorithms build better 

models with missing data than manually imputed data. 

 

Using feature selection before the modelling step has negligible effect: the accuracy decreases 

slightly, but the AUC and precision increase slightly. If the effect is significant, it would be a 

choice of the management of IBM if they want a model which is less accurate, but which has 

a better performance in predicting if an action should be taken or not, or the other way 

around. However, the results indicate that there is barely an effect of using feature selection.  

 

6.1.3 Overall performance 

In Appendix K, the full results of the models built during cross validation are visible. Based on 

these results, Table 17 is constructed, in which the average performance and best 

performance is given. Since the three performance measures together give a good 

representation of the performance of a model (cf. Section 5.4), the best performing model is 

determined by the sum of the models’ accuracy, AUC and precision.  

RR Average Highest 

 Accuracy AUC Precision S. Dev. Accuracy AUC Precision S. Dev 

R24 0.617 0.621 0.616 0.057 0.635 0.674 0.639 0.081 

R25 0.697 0.664 0.719 0.062 0.744 0.747 0.753 0.075 

R26 0.550 0.526 0.590 0.060 0.600 0.544 0.662 0.060 

R83 0.640 0.652 0.649 0.034 0.666 0.679 0.680 0.036 
Table 17: Average- and highest results cross validation 
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From this table, we observe that the models built for R25 (stocked out) and R83 (projected 

inventory below MOP) perform best. Although the performance of R25 is higher, the standard 

deviation of the models is lower for R83, which can be explained by the size of the data sets: 

the data set of R83 is almost 4 times as big as the data set of R25. The performance should 

increase significantly before it will be really useful for assisting planners during exception 

handling, but these review reasons seem to be promising. The results are somewhat worse 

for R24 (projected stock out), whereas the results for R26 (below MOP) are useless since the 

best model for this review reason scores a value of 0.544 at the AUC, which means that the 

models built based on the dataset of this review reason and under the settings for the 

algorithm, are not able to build a model which can distinguish the different classes (action and 

no action). If we have a look at the cross validated models built for the best performing 

experiments, we observe that for R26 only small trees are built compared to other review 

reasons (Table 18), probably due to the small data set available for this review reason. This 

explains the low performance of the models for R26, since it determines the class of a record 

based on at most two features only. Although the decision trees built for R25 are small as well 

and the data set is about the same size of R26, the models perform much better. This can be 

explained by the fact that for a stock out situation it is clearer whether an action should be 

taken or not. 

 

Fold R24 R25 R26 R83 

 Tree 

depth 

features Tree 

depth 

features Tree 

depth 

features Tree 

depth 

features 

1 3 7 2 3 2 7 6 18 

2 2 5 4 7 2 3 8 14 

3 2 7 2 4 2 6 7 23 

4 3 7 4 5 2 7 3 11 

5 2 3 2 3 2 6 8 17 
Table 18: Decision tree information 

Since R25 and R83 are most promising, a more in-depth analysis is performed on these two 

review reasons.  

 

In Table 19, the settings of the best performing models for R25 and R83 are given, which 

confirm our most interesting finding of Section 6.1.2: only using the exceptions on which the 

action taken is qualified as good are used for training the model and this results in the highest 

performance. 

 

Review 

reason 

Minimum number of 

records in child branch 

Pruning 

severity 

All/good Impute 

missing data 

Feature 

selection 

R25 2 25/75 Good Yes Yes 

R83 2 25 Good No Yes 
Table 19: Settings best performing models 
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Confusion matrices 
In Table 20 the confusion matrices of the best performing models are given. Since the goal of 

IBM is to exclude exceptions on which no action is required, we want to maximize the number 

of correctly predicted no action classes. However, there are two errors the model can make: 

(1) the actual class of an exception is action, but the model predicts it as no action and (2) the 

actual class of an exception is no action, but the model predicts it as action. These two errors 

should be minimized as much as possible. Since the goal of IBM is to exclude the exceptions 

on which no action is required, minimizing the first error (1) is most important, because a low 

error rate indicates that if the model predicts an exception as no action, it has a high certainty 

that the actual class is no action. The second error (2) should be minimized as well, since it will 

lead to a higher number of no action exception correctly classified. However, the focus should 

be on the first (1) error. We observe that most errors are made for the classes where an action 

should be taken, but no action is predicted. This is a result of the small imbalance in the 

dataset: the no action is simply more present in the dataset.  

 

R25  Predicted class  R83  Predicted class 

  No action Action    No action Action 

Actual 

class 

No action 109 12  Actual 

class 

No action 368 92 

Action 36 31  Action 175 160 
Table 20: Confusion matrices 

If we analyze the errors made for the first type error based on the action categories explained 

in Section 2.3.1, the results in Table 21 are found. For every action category the number of 

errors made related to the category is given. The total number of exceptions related to the 

action categories is given as well. The percentage gives the number of errors made for a 

certain action category compared to the total number of exceptions related to a certain action 

category. 

 

 Forecast Order Setting Other 

 # errors Total # errors Total # errors Total # errors Total 

R25 0 (0%) 23 16 (59.3%) 27 3 (75%) 4 18 (81.8%) 22 

R83 10 (14.1%) 71 107 (58.5%) 183 64 (68.1%) 94 15 (44.1%) 34 
Table 21: Error action categories 

From these results we observe that for actions related to forecast changes only a small 

number of errors is made and these actions seem to be well predictable. For R25 no errors are 

made for this category, whereas for R83 only a few errors are made. The other three 

categories seem to be less predictable and a significant number of errors is made for all 

categories. 

 

Prediction confidence level 
Next to the prediction itself, SPSS Modeler provides a confidence level for each prediction as 

well. If we only consider predictions for which the prediction confidence is above a certain 
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threshold, we expect that the performance of the model will increase. However, in this case 

no prediction is made for exceptions with a confidence level below the threshold. This results 

in a set of exceptions which is better to be predicted by the model and a set of exceptions that 

should be evaluated by the planners. 

 

In Figure 27 the graphs for R25 and R83 

are shown, which give the performance 

of the model when we vary the 

prediction confidence threshold. The 

confidence threshold is shown on the x-

axis. In both graphs, we see a blue 

(accuracy) and an orange (precision) 

line, for which the value is shown on 

the left y-axis. The green line is the 

average performance of the precision 

and the accuracy. The black line 

represents the fraction of exceptions 

included in the model for a certain 

confidence threshold. We observe for 

both review reasons that the 

performance indeed is higher when 

only exceptions with a certain 

confidence threshold are evaluated by 

the model, compared to using all 

exceptions. 

 

Setting a confidence threshold typically results in a higher performance. Setting this value at 

a somewhat low value, results in including more exceptions in the model with a lower 

performance, whereas a somewhat higher value results in a higher performance, but less 

exceptions are included in the model.  

 

For R25 two interesting point are observed: when the prediction confidence threshold is set 

to 0.84 and when it is set to 0.77. In the first case, the accuracy is 82.5% and the precision is 

88.6%, but only 33.5% of the exceptions is evaluated. In the second case the accuracy is 77.7%, 

the precision is 78.6% and 83.5% of the exceptions is evaluated. Compared to the performance 

without a threshold (accuracy of 74.4% and precision of 75.3%), these are significant increases. 

 

For R83 the most interesting threshold value is 0.78. In this case, the accuracy is 68.9% and 

the precision is 73.5%, where 42.9% of the exceptions is evaluated. Compared to the 

performance without a threshold (accuracy of 66.6% and precision of 68.0%), it performs 

slightly better, but much less exceptions are evaluated. 

Figure 27: Evaluation of prediction confidence level 
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R25: Evaluation of prediction confidence

Accuracy Precision Average performance % exceptions evaluated
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R83: Evaluation of prediction confidence

Accuracy Precision Average performance 0.006289308
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Decision trees 
The decision trees created during cross validation for R25 and R83 are shown in Appendix L. 

From the decision trees we find that for R25 9 distinct features are used and for R83 26, which 

are shown in Table 22. In this table, the number of times the feature is present in the cross 

validated models is shown and the average effect on the accuracy, AUC and precision if this 

feature is removed from the model is given. 

 

R25  R83 

Feature # present Effect  Feature # present Effect 

Analyzer code 5 -11.0%  Analyzer code 5 -3.1% 

# RR 3 -5.1%  Birth year age 3 -1.0% 

Vitality 1 -0.4%  Division owner code 4 -0.6% 

WAC value 1 -0.3%  Fraction inventory 

available 3 -0.6% 

Return rate 3 -0.2%  Shelf life indicator 3 -0.5% 

Warranty supplier 3 -0.1%  Inventory position 

severity 1 -0.4% 

Birth year age 2 0.1%  Open order indicator 1 -0.3% 

Forecasted quantity 3 0.3%  Stock level 1 -0.3% 

Historical activity 1 M 1 0.4%  Repair supplier 3 -0.2% 

    Weekend 5 -0.2% 

  PSS 4 -0.2% 

 Critical quantity 4 -0.2% 

 Open order quantity 2 -0.2% 

 Inventory position 4 -0.2% 

 Historical activity 1 

month 4 -0.2% 

 Stock level repair 2 -0.1% 

 Life cycle position 1 -0.1% 

 # RR 5 -0.1% 

 Historical activity 2 

years 3 0.0% 

 EOS age 4 0.0% 

 Return rate 3 0.0% 

 First stock age 4 0.1% 

 Minimum lead time 2 0.1% 

 Vitality 4 0.2% 

 Forecasted quantity 5 0.2% 

 Fraction recent 

demand 4 0.3% 

Table 22: Features used in decision trees 
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If we have a deeper look into the models built for each review reason, we observe that most 

decision trees first branch on the analyzer code, which indicates that this is the most important 

feature. In Section 4.5 the feature analyzer code came out as the most important feature as 

well. If we exclude this feature from the model, the effects are significant: the accuracy, AUC 

and precision reduce on average by 11.0% for R25 and 3.1% for R83. We see a significant effect 

(a decrease of 5.1%) on the results of R25 if the # of RR is excluded as well.  

 

If we have a look at the features used in the models of R25, we observe that only original 

features are used. The features which are constructed in Section 4.3, which provide 

information about the supply chain status, are not used at all. This is remarkable, because we 

constructed these features, since we expected these features to bring important information. 

Next to that, we observe that different sets of features are used per cross validated model. 

This indicates that the training data sets are not stable enough, which could be explained by 

the small dataset for R25. However, some logical patterns are found in the decision trees. 

First, we observe that if the # of RR is 1, no action is predicted and if it is higher than 1, action 

is predicted. This could indicate that if the problem is bigger than the original review reason, 

an action is required. Second, if the forecasted quantity is relatively low, often no action is 

predicted, which could indicate that often no action is taken for slow moving parts. A less 

logical pattern is observed as well: the models predict no action if the vitality is 1 and action if 

the vitality is higher than 1. This is remarkable, since a vitality of 1 means that if a part is 

broken, a machine is down and we would expect that action is required for exceptions with a 

vitality of 1. 

 

On the other hand, we observe for R83 that much more features are used and features 

constructed in Section 4.3 are included in the models as well. Next to that, the cross validated 

models for R83 have a significant number of features in common, which indicates that the 

training data set is more stable. Also, the trees built for R83 are deeper than the trees built 

for R25. However, especially for the deeper branches of the trees, we observe some illogical 

patterns. An example is that no action is taken for parts with a vitality of 1 where the critical 

quantity is higher than a threshold, whereas action is taken if the critical quantity is lower than 

a threshold. The opposite would be expected. Another example is that an action is predicted 

if the historical demand 1 month is higher than a threshold and the forecasted demand is lower 

than a threshold, which are interrelated and contradict. These illogical patterns could be a 

result of the algorithm setting minimum number of records per child node, which is set to 2 for 

the best performing models. A low setting for this setting could result in these illogical 

branches. On the contrary, a number of logical patterns are found as well. First of all, the same 

patterns are found for the # of RR and the forecasted quantity as compared to R25. In contrast 

to R25, we observe that for parts with a vitality of 1, often action is taken in these trees. Next, 

we observe that for young parts (low life cycle position, low birth year age or low first stock 

age) often an action is taken, which could be explained by the fact that demand is hard to 

predict for relatively young parts. Finally, we observe that if the fraction inventory position 
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available is low or the fraction recent demand is high, often action is predicted. If we compare 

the patterns found in the models to the important features found in Section 4.5, we see that 

the most important features are found in the models and these features show clear patterns, 

especially for R83.  

 

6.1.4 Results ensemble model 

The models built by cross validation are combined to one ensemble model and the training 
dataset, which has never been seen by the model yet, is used to determine the performance 
of the ensemble model. The ensemble model uses the individual votes of the 5 cross 
validated models on each unseen record. The full results are shown in Appendix K. 
 

RR  Accuracy AUC Precision 

R24 Cross validation 0.635 0.674 0.639 

 Ensemble 0.644 0.639 0.59 

R25 Cross validation 0.744 0.747 0.753 

 Ensemble 0.733 0.75 0.643 

R83 Cross validation 0.666 0.679 0.680 

 Ensemble 0.644 0.62 0.655 
Table 23: Best results cross validation versus ensemble model 

In Table 23, we observe that the results of the ensemble models deviate from the results given 

by the cross validated models for the best performing models. If we look at all ensemble 

models, on average we observe a difference of 3.4% in accuracy, 4.7% in AUC and 3.8% in 

precision between the cross validated models and the ensemble model. The average accuracy 

itself is for the ensemble model -0.4%, the AUC -1.8% and the precision -1.2%, compared to 

the cross validated models. These numbers indicate that the ensemble models do not perform 

better compared to the cross validated models. This is probably the result of the limited size 

of the datasets, which results in unequal folds and sets of data, regarding the exception 

situations within a set. However, we would expect that if cross validated models are 

combined, this would result in a more accurate model.  

 

6.2 Comparison to logic derived rule set 
In this section, a simple decision tree is built, based on the findings in Section 2.3.2 and Section 

6.1.3, to see whether machine learning algorithms are of added value. The performance of 

this decision tree is evaluated on the datasets for which the highest performance is achieved.  

 

In section 2.3.2. we observed that in most cases no action is taken on exceptions of parts for 

which the hub is not responsible or for which the parts are not stocked. Next to that, on slow 

movers often no action is taken, which was observed by a lower average historical demand on 

exceptions on which no action is taken. The threshold is set to 7.5, since the boundaries of the 

mean plus (no action) or minus (action) a certain standard deviation meet at the threshold. 
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Next to the observed statistics in section 3.2.3, we observed in the models that for exceptions 

where only one review reason is connected to the exception, often no action is taken. More 

than one review reason connected to an exception often indicates that an action should be 

taken. Also, we observed that often no action is taken if the fraction recent demand is low. On 

average this threshold is 0.34. Finally, the fraction inventory position available indicates that 

action is taken if this fraction becomes below a certain value. Based on the average value of 

the splits until the second level of the trees, this value is set to 0.188. 

 

Based on these findings, we built a simple set of rules: 

 

• If the hub is not responsible -> no action 

• If the part is not stocked -> no action 

• If the number of review reasons is 1 -> no action 

• If the number of review reasons is 2 or more -> action 

• If the fraction recent demand is lower than 0.34 -> no action 

• If the fraction recent demand is higher than 0.34 -> action 

• If the fraction inventory position available is lower than 0.188 -> action 

• If the fraction inventory position available is higher than 0.188 -> no action 

• If the demand last period is lower or equal to 7.5 -> no action 

• If the demand last period is higher or equal to 7.5 -> action 

 

If these rules contradict, the most predicted class is given to the exception. However, if both 

classes are predicted equally, the predicted class becomes action. These rules are applied to 

the best performing algorithms. However, since feature selection is applied for these 

experiments, the feature hub is not responsible and part is not stocked are excluded from the 

datasets. Next to that, due to feature selection, the feature fraction inventory position 

available is not present in the dataset of R25. The rules lead to the following results: 

 

R25  Predicted class  R83  Predicted class 

  No 

action 

action    No action action 

Actual 

class 

No action 112 9  Actual 

class 

No action 406 54 

action 61 6  Action 289 46 

         

Accuracy 62.8%  Accuracy 56.9% 

Precision 64.7%  Precision 58.4% 
Table 24: Confusion matrices "logic derived rules" 

We observe that, compared to the results of the cross validated models, these simple rules 

lead to a much lower accuracy and precision. On top of that, the model is less able to 
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distinguish between classes. Therefore, we conclude that machine learning algorithms can 

produce better results.  

 

6.3 Conclusion 

In this chapter, the evaluation step of the CRISP-DM methodology is performed, which 

evaluates the results of the models. The following conclusions are found: 

 

• Experiments with the algorithm settings do not give significantly different results, but 

the best performance is found if the minimum records per child branch is set to 2 and 

the pruning severity is set to 75. 

 

• Using only exceptions on which the decisions are qualified as good increases the 

performance significantly, whereas imputing missing data manually decreases the 

average performance. Surprisingly, for the best performing models, missing data is 

manually imputed. Using feature selection before the modelling step does not lead to 

significantly different results.  

 

• R25 and R83 are most promising for assisting planners during the exception handling. 

However, the limited size of the data sets have an impact on the results, which are 

quite unstable. For the models built for R25 and R83: 

 
o Most mistakes are made where no action is predicted, whereas an action 

should be taken. For exceptions of the action category forecast related few 

mistakes are made, whereas for the other categories (order related, setting 

related and other) many mistakes are made. 

o Setting a confidence threshold for the predictions leads to a higher 

performance, but it decreases the number of exceptions handled by the model. 

o The feature analyzer code seems to be the most important feature for both 

models. The models built for R25 are less stable than the models built for R83.  

In the models of both review reasons, patterns are found which make sense.  

 

• Ensemble models perform worse than the cross validated models.  

 

• Machine learning algorithms have a beneficial effect compared to logic rules deduced 

from data analysis and model analysis. 
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Chapter 7: Deployment 
From the previous chapter, we have found that the models of R25 and R83 are most promising 

to use as assistance during the exception handling. The models constructed by the algorithms 

for these two review reasons are deployed, which is the focus of this chapter. Next to that, a 

plan of monitoring and maintaining the tool is introduced. The sixth step of the CRISP-DM is 

the focus of this chapter, as can be seen in Figure 21. 

 
Figure 28: Current focus within CRISP-DM methodology (Chapman et al., 2000) 

 

7.1 Plan deployment 
Since the performance and the models of R25 and R83 are promising, a prototype is built for 

these review reasons based on the models. This prototype is implemented in Excel combined 

with SPSS Modeler. A planner fills in characteristics of the part to which the exception is 

related in an Excel file, saves and closes the file, and runs the model in SPSS Modeler. SPSS 

Modeler shows whether an action should be performed or not. For R25 9 features are used 

and for R83 26 features. These features can be found in Table 22 in section 6.1. 

 

Since filling in the data and running the model is quite intensive, the possibilities of 

implementing such a solution in Servigistics should be considered. In particular, this step may 

be valuable if future research may realize further performance improvements and if, in a next 

step, it may become possible to predict action types as well. 

 

In any case, we suggest IBM to first train a model that is fed with more data to get a more 

accurate model, since we observed variations in results, especially for the review reasons 

where the dataset is smaller. We observed a much lower standard deviation for the models 

built for R83, compared to the other review reasons. The dataset of R83 contained in some 

cases more than four times the number of records compared to the other review reasons. To 

further decrease the standard deviation and therefore increasing the stability of the models, 

it is suggested to use data of at least one year. This could also lead to a higher performance. 
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7.2 Plan monitoring and maintenance 

If the tool is implemented in the work environment of the planners, the tool should be used 

carefully. Since the models are built on historical data, the correctness of the tool should be 

checked by their users in the first place.  

 

Next to that, the models should be rebuilt periodically, since more and possibly different data 

becomes available, which could result in a different and/or better model. If the model is not 

rebuilt from time to time, the accuracy of the model will drop drastically if circumstances have 

changed. Therefore, we suggest IBM to use the tool carefully. Next to that, it may be valuable 

to pay attention to exceptions on which a different action has been taken than predicted and 

especially pay attention to the reasoning why a planner diverges from the predicted class by 

the model. The planners should be able to provide important information on how and why 

they deviate from the recommendation of the tool. Based on this information important 

changes can made to the data fed to the model or the model itself. 
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Conclusion, limitations and future research 
In this final chapter, the research is concluded. Furthermore, the limitations are discussed and 

recommendations for future research are given. 

 

Conclusion 

This research focused on the application of machine learning during the exception handling 

process and resulted in the following research problem: 

 

How can machine learning techniques be effectively applied on different review reasons to 

improve the efficiency and effectiveness of the exception handling process? 

 

Since Schultz’ research resulted in an accuracy of only 59%, the following choices are made to 

find an answer on our research problem: 

• The CRISP-DM methodology is followed for this research  

• The classification categories are simplified to whether an action is taken or not 

• Since machine learning algorithms can only learn from good examples, a performance 

measure is introduced to qualify decisions made by planners. 

• Planners’ expertise is incorporated in this research to determine valuable information 

• Experiments are performed with different settings and approaches to determine the 

best approach 

 

This approach resulted in a model built in SPSS Modeler 18.1, which automatically merges all 

data related to exceptions into a dataset and performs different operations to this dataset. 

Since a clean dataset is essential to effectively apply machine learning algorithms, most time 

should be and is spent to the data exploration and data preparation steps of the CRISP-DM 

methodology. 

 

Based on experiments, the best performing algorithm is found to be the C5.0 algorithm. The 

best performing models are achieved if the minimum number of records in child node set to 2, 

the pruning severity set to 25, only exceptions on which the actions taken are qualified as good 

are used and feature selection is applied before the modelling step. Using cross validation this 

resulted in an accuracy of 74.4%, an AUC of 74.7% and a precision of 75.3% for R25 and an 

accuracy of 66.6%, an AUC of 67.9% and a precision of 68.0% for R83, which is promising. 

However, the consistency of R83 is much higher compared to R25, which is probably a result 

of the differences in the size of the datasets. The results for R24 were lower and the results of 

R26 are not taken into account, since the models were not able to build appropriate models, 

possibly due to the limited size of the data set. Although R25 has about the same data set size, 

it performs well, possibly due to the fact that whether an action should be taken on a current 

stock out situation is clearer. 
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If we have a deeper look into the errors made, we see that primarily the action categories 

order related, setting related and other are wrongly predicted, whereas the forecast related 

actions often are well predicted.  

 

The results for R25 and R83 can be further improved by using a threshold for the prediction 

confidence, however not all exceptions are in this case evaluated. For R26 an accuracy of 

82.5% and a precision of 88.6% can be achieved, where 33.5% of the exceptions is considered. 

For R83 this is 68.9% and 73.5%, where 42.9% of the exceptions is considered. 

 

If we have a look at the models built by the algorithm, we observe that deeper models are 

built and more features are used in the models for R83, compared to R25. On top of this, for 

the different folds of R83 often a similar set of features is used, which indicates that the 

models are more stable, which is in a lesser extent observed for R25. These observations are 

probably a result of the bigger data set available for this review reason. For both models, 

patterns are discovered which make sense.  

 

The ensemble models perform worse than the cross validated models and on top of that, the 

results deviate significantly from the cross validated results. This is probably caused by the 

limited size of the datasets which results in unequal datasets, regarding exception situations 

within a dataset. 

 

If we compare these results with the results of Schultz (2017), we observe that we used a 

structured approach, which resulted in a less complex model with a higher accuracy. 

Simplifying the approach was necessary to examine the possibilities of using machine learning 

algorithms during the exception handling process. 

 

The results for R25 and R83 have both strong sides (R83 is more consistent, the models built 

are intuitively better, whereas the performance of R25 is better), which indicate that using 

machine learning for the exception handling is promising, but the performance is simply not 

high enough to be a true planner assistant. Especially the size of the datasets seems to have 

quite an impact on the models built by the algorithms and their performance. Therefore, we 

suggest IBM to continue gathering data and use the same approach as we did to see whether 

the performance can be increased and be more consistent. 

 

Limitations 

Although this research gave some interesting results, some limitations should be addressed. 

 

Since the planners operate from outside Europe, it was not possible to get familiar with the 

exception handling process by working with the planners. Although team leaders and 

employees who performed the job as planner in the past were available, this sometimes led 
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to contradictory information. It would be valuable to see the planners working on a day to day 

business. Exception handling is a complex process and expertise is needed. 

 

Most analysis is therefore performed on available data. However, the retrieval of historical 

data is not possible, which meant that data should be collected during the assignment. Since 

time is limited, this led to a very limited dataset. Nowadays, algorithms are able to analyze big 

amounts of data in a couple of minutes. The biggest dataset we had, contained less than 2.000 

records. To draw conclusions on such a small dataset, is risky. 

 

Next to the small dataset, it is not known whether all adjustments made by planners are 

recorded in Servigistics, which is a major drawback of this research. It could well be that a 

planner communicates by making a call or sending an e-mail and these adjustments are not 

visible in the data, since these adjustments are not recorded in Servigistics and thus are not 

taken into account. 

 

Future research 

Although the results for R26 are barely better than guessing, the same approach led to 

promising results for R25 and R83. To truly assist planners during the exception handling, 

future research should be considered. In the first place, we would recommend IBM to collect 

data over a longer period, which would lead to a bigger dataset. Building a model on more 

data probably leads to more accurate and stable results. Since a lot of different situations exist 

which trigger exceptions, collecting more exceptions also gives a more complete 

representation of reality. 

 

Next to that, we recommend involving the planners in India in two ways. First, they can 

provide important information about the aspects on which their decision is based and 

therefore, important features can be constructed and included in the model. Secondly, the 

planners could be involved by providing feedback on why the recommended action by an 

algorithm is a good/bad one, which could improve models. 

 

Furthermore, we recommend considering online learning algorithms as a next step, in which 

the exceptions, their circumstances and the action taken by planners are tracked 

automatically and the model is updated after every new exception. A lot of data is available 

in the systems of IBM, which could be included in an online learning algorithm. On the longer 

term, we also recommend incorporating the different action categories in the models. It could 

be interesting to see in what extent it is able to predict the right action category. 

 

Finally, we focused in this research on how an exception is solved. However, we did not have 

a look at the settings of triggering the exceptions. Another interesting future research could 

focus on optimizing the exception triggering process. Possibly different exception triggering 

settings lead to less exceptions and less critical situations arise.   
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Appendices 

Appendix A 

This appendix contains a list of the active review reasons. Data is gathered for a period of 

one year, from 01-09-2017 – 31-08-2018. A total of 39.701 review reasons occurred in this 

period and per review reason the number of corresponding exceptions is showed. The list is 

sorted on the number of exceptions, descending, and the adjusted priority is given.  

 

RR Name # of 

occurrence 

% of occurrence Priority 

R38 Order Increase Outside L/T               7986 20,1% 8 

R83 Projected Inventory Below MOP            7709 19,4% 17 

R80 Projected Inventory Above XS Point       4590 11,6% 11 

R81 Supply Constraint Over Consumed          3296 8,3% 20 

R24 Projected Stock Out                      3270 8,2% 16 

R25 Stocked Out                              3085 7,8% 14 

R26 Below Must Order Point                   1765 4,4% 15 

R4 Backorder Quantity                       1659 4,2% 2 

R17 History Value Out of Range               1436 3,6% 4 

R9 Behind Sched. Over Policy                1390 3,5% 12 

R34 Failed to Auto Approve Orders            1044 2,6% 5 

R78 Order Requires Legal Entity Approval     948 2,4% 21 

R41 Quantity Outside Loc/Hier                409 1,0% 18 

R68 Returned Stock Overused                  289 0,7% 19 

R15 Change Forecast Setting                  283 0,7% 3 

R2 Forced Worksheet                         269 0,7% 1 

R39 Order Decrease Outside L/T               143 0,4% 9 

R37 Unsatisfied Allocation Rqmt              119 0,3% 10 

R5 Order Decrease Inside L/T                5 0,0% 7 

R7 Order Increase Inside L/T                3 0,0% 6 

R19 Order on Sumcode 2 Part                  3 0,0% 13 

Table 25: Active review reasons. Descending on "# of occurrence". 
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Appendix B 
This appendix contains a table with the explanation of the review reasons we focus on. For 
explanation of the other review reason the report of Schultz (2017). 
 

Review reason Description 
R24: Projected 
Stock Out                      

A stock out is projected within the entire future horizon and the order 
recommendations are constrained such that the stock out cannot be 
avoided. 
 
All three of the following conditions must be met to trigger this review 
reason: 
 

• The current on hand balance, calculated over the 
prime/alternate chain must be greater than zero. 

• The sum of the total requirements from the current period 
through the end of the planning horizon must be greater than 
zero. 

• The projected inventory calculated of the prime/alternate chain 
must be negative on one or more days in the future. 

  
R25: Stocked Out                              The onhand balance for the item is equal to zero and the sum of total 

requirements minus any shortfall is greater than zero. The onhand 
balance is calculated over the prime/alternate chain and the total 
requirements are summed over the next two years. 
 

R26: Below Must 
Order Point                   

The onhand balance for the item is below the must order point in the 
current period. The followingen conditions must be met: 
 

• The onhand balance is a nonzero quantity. 

• Must order point is a nonzero quantity. 
 
If the onhand balance is zero, R25 is triggered instead. 
 

R83: Projected 
Inventory Below 
MOP            

The inventory for the part in the network goes below the must order 
point within the entire future horizon, because one or more ordering 
constraints are preventing orders from being recommended.  
 
Order constraints may be one or more of the following: 
 

• No valid sources. 

• “Good as it gets” dates set. 

• Capacity or supply constraints. 
 

Table 26: Explanation of (selected) review reasons 
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Appendix C 
This appendix contains a table with the gathered data from the Servigistics databases.  
 

Data Explanation Data type 

# of review reasons 

If an exception is triggered, this feature gives the number of 

review reasons attached to this exception. 

Discrete 

A code Code which represents the order method code. Nominal 

Air Support Indicator 

Indicator which specifies whether a part is stocked near an 

airport. 

Binary 

Analyzer code Code which specifies the part category, part brand and planner. Nominal 

Auto-order indicator 

Indicator which specifies whether auto-ordering is on for at 

least one order type. 

Binary 

B supplier Indicator whether a NBO supplier is available. Binary 

Birth date Date when the part was first introduced in the system of IBM. Discrete 

C code 

Code which represents where it is recommended to stock the 

part. 

Nominal 

CI144 MFGXFER 

indicator 

Indicator which specifies whether the part is in the process of 

being transferred from Manufacturing source responsibility to 

part logistics source responsibility. 

Binary 

Critical quantity 

Quantity which is the number of pieces deemed to be critical in the 

supply versus need of the part. 

Discrete 

Critical indicator Indicator which specifies whether a part is critical. Binary 

Critical part 

unsatisfied indicator 

Code which specifies whether the status and activities on part 

in a critical supply situation are deemed to be unsatisfactory by 

the planner. 

Binary 

Division group name Identifier of a group of division codes. Nominal 

Division owner code 

Code which specifies the product platform associated with the 

invoice booking. 

Nominal 

End of service date Date which indicates that the part is not supported anymore. Discrete 

First stock date Date when a part was first stocked. Discrete 

Forecast method Forecast method which is used for planning the part. Nominal 

Forecasted quantity 

Demand forecast for the coming 26 periods (4 weeks per 

period). 

Continuous 

G supplier Indicator whether a GARS supplier is available. Binary 

Historical activity 1 

period Actual demand in the last period. 

Discrete 

Historical activity 2 

years Actual demand in the last 26 periods. 

Discrete 

Hub responsible 

indicator 

Indicator which specifies whether the hub is responsible for the 

part. 

Binary 

Last Time Buy 

indicator 

Indicator which specifies whether a last time buy process was 

performed. 

Binary 
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Minimum lead time  The minimum lead time for a part in weeks. Discrete 

Material Class 

Indicator which represents a combination of value of the part 

and demand of the part (A = high value, F = low value). 

Nominal 

NBO indicator 

Indicator which specifies whether the part is a new business 

opportunity part. 

Binary 

New buy supplier  Indicator whether a new buy supplier is available. Binary 

New part indicator 

Indicator which specifies whether the part is a recently 

introduced part. 

Binary 

Open orders quantity Quantity of open orders. Discrete 

Open order arrival Number of weeks before an open order arrives Continuous 

Policy safety stock 

level The PSS is used as buffer to deal with uncertainty in demand. 

Discrete 

Repair supplier Indicator whether a repair supplier is available. Binary 

Return rate Rate which specifies the fraction of parts that return unused. Continuous 

Shelf life The shelf life of a part in years. Continuous 

Stock level / 

inventory level Current on hand balance in the network/hub. 

Discrete 

Stock repair Current on hand repair stock (available for repair) Discrete 

Stock warranty Current on hand warranty stock (available for warranty) Discrete 

Stocked indicator 

Indicator which specifies whether it is allowed to stock a part at 

the Hub. 

Binary 

Successor Indicator which specifies whether a part has a successor. Binary 

Usage 

A categorical value which represents the historical usage of the 

part (1 = low usage, 5 = high usage). 

Nominal 

Vitality 

Indicator which specifies the vitality of a part (1 = vital part, 5 = 

non-vital part). 

Ordinal 

WAC 

Weighted average cost: value of a part. This is an average value 

of the parts on stock, since prices can vary. 

Continuous 

Warranty supplier 

Indicator whether a warranty supplier is available (providing 

warranty parts) 

Binary 

Weekend 

Indicator whether the exception was triggered during the 

weekend or during weekdays. Some information is only 

updated in weekends. 

Binary 

Table 27: Overview of features and their explanation 
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Appendix D 

This appendix contains the queries used for gathering data from different databases. 

 

Vitality data 

 
 

Successor data 

 
 

Return Rate 

 

Part planning data 

 

 

Part data 
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Prime – alternate data 

 

 
 

Material class data 

 
 

Inventory data 
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Historical activity data 

 
 

Forecast data 

 
 

Critical part data 

 
 

Contract info data 

 
 

 

Open orders & auto-order data 

For these two queries we refer to the supplementary file, since they are too extensive to 

include in the report. 
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Appendix E 
In this appendix, the data model built in SPSS Modeler is explained. As can be seen in Figure 

29 this model consists of 15 nodes. The 15 nodes are explained in consecutive order, based 

on this figure. The node RR+ManualAdjustments, which represents the exceptions triggered 

and the action taken, is the input. In the consecutive loop, data related to the status of the 

part is merged and the node FinalModelOutput represents the dataset used for further study. 

Since data is gathered from different databases, data is merged from 15 nodes to one single 

file. The data of each feature of the exceptions is merged based on the week number and the 

part number. 

 

 
Figure 29: Data integration: merging data to exceptions 

As explained in 2.3.1, review reasons are triggered on the parts which are planned, the so-

called prime parts. This has the consequence that for many of the following nodes, alternate 

part numbers are translated to the prime part number. For example: the historical demand of 

a prime part is the sum of the historical demand of the prime and alternate parts. However, 

since data analysis showed that it is not always the case that an exception is triggered on the 

prime part, also the original data is kept. 

 

RR+ManualAdjustments 

In this node, which can be seen in Figure 30, Figure 31 and Figure 32, the review reasons are 

evaluated, adjustments are connected to the review reasons and the performance of 

decisions is evaluated. This node is split into three parts: adjustments, review reasons and data 

set creation. 

 

The adjustments are gathered from the PTITXLUA log. In this log, all manual adjustments made 

worldwide are collected. Since the scope of the research is only the EMEA-region, only the 

adjustments made by the analyzers working for EMEA are considered. This is done in the six 
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steps of the lower left corner of Figure 30. Since review reasons are primarily triggered on the 

prime-part, the adjustments are connected to the prime parts. In this way, a dataset is created 

which consists of adjustments made for the EMEA-region connected to the alternate- as well 

as the prime-part. 

 

The review reasons are gathered from the 3TA1 table. In this table, information about the 

review reasons (like the part number, trigger date, resolve date) is given. This table is used 

and transformed to connect adjustments to the exceptions. In the first four nodes, some data 

is reformatted: the review reason ID, division group name and date. In the aggregate node, 

the number of review reasons connected to an exception is calculated. In the select node, only 

the chosen review reasons to focus on are filtered. Since there were some inconsistencies in 

the timestamps of the derived 3TA1 table, the approval date and resolve date are adjusted. 

The logic behind these modifications is that the code for creating this table assumes that no 

work is performed in weekends and data showed this is not true. Next some extra information 

is derived from data. The decision period determines the date on which the planner took an 

initial decision and follows the following rule: 

1. If the exception is not approved, but it is resolved, the decision period is the resolve 

date. 

2. If the exception is approved and not resolved, the decision period is the trigger date + 

7 days2.  

3. If the exception is approved within the number of disabling days and the exception is 

not yet resolved, the decision period is the approval date. 

4. If the exception is approved and the exception is resolved within 7 days from the 

trigger date, the decision period is the resolve date. 

5. If the exception is approved outside the number of disabling days, then the decision 

period is the trigger date + 7 days2. 

                                                      
2 These 7 days follow from the fact that a planner is supposed to take action within a week. 

Figure 30: Adjustments 
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Finally, the review reasons get an ID number.  

 

The adjustments and review reasons are coupled in the next part, which can be seen in Figure 

32. In the merge node between the RR14_ID and Select, the initial decisions on a review 

reason are coupled. This is done by coupling all adjustments and review reasons on part 

number and for which the adjustment date is later than the trigger date, but earlier than the 

decision period. This node splits into two short streams: one gives per exception whether an 

adjustment has occurred or not, the other examines the adjustments and categorizes the 

adjustments to order related, forecast related, setting related or other. In the other merge 

node (coming from the select node) adjustments after the decision period and before the 

resolve date are examined. These three streams are merged and give per review reason 

whether the initial decision was to take action or not, what kind of adjustments have been 

made and whether adjustments have been made after the decision period. Next to this 

information, some general information about the review reason is still kept. The performance 

indicator is derived and follows the logic introduced in section 2.3.2. Finally, some columns 

are renamed and only relevant information is selected in the filter node. 

Figure 31: Review reasons 

Figure 32: Data set creation 
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Vitality 

In this node, which can be seen in Figure 33, the vitality is gathered for all parts from the RTA0 

database. This node is probably the simplest node. Since the vitality does hardly change, the 

data is gathered once and no adjustments are performed. The filter is used to only pass the 

part number and the vitality and to adjust the names of the data. 

Successor 

In this node, which can be seen in Figure 34, the successor information is gathered from the 

RTA1 table. This gives the information whether a part has a newer part which should be used. 

This node passes a part number with a yes/no indicator whether this part has a successor. 

 

Figure 33: SPSS Model - Vitality 

Figure 34: SPSS Model - Successor 
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Historical Demand 

In this node, which can be seen in Figure 35, the historical demand for the last two years and 

the historical demand for the last four weeks is gathered and calculated from the PTB3 

database. Since this node is quite complex, we advise the reader to see the model in SPSS 

Modeler. In the select node, only relevant historical activity (demand) is selected.  Next a week 

number is added. From the week number, two arcs follow: one will calculate the activity in 

the last four weeks (straight) the other arcs calculate the activity in the last two years (down). 

The activity is given per period and dependent on the current moment, the activity in the last 

four weeks should be gathered from the last one or two periods. Since only the activity of the 

last two years is gathered in the PTB3 database, the activity in the last two years is simply the 

sum of the activity over a part. However, since review reasons are triggered on the prime part 

number and planning is done over the sum of demand of all parts related to the prime, the 

historical demand is summed over all parts connected to the prime. 

ReturnRate 

In this node, which can be seen in Figure 36, the return rate is calculated based on data 

gathered from the CPPS database. The number of returned items over the past two years is 

simply divided by the quantity of historical demand over the past two years. 

 
Figure 36: SPSS Model - Return rate 

Figure 35: SPSS Model - Historical demand 
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OpenOrders 

In this node, which can be seen in Figure 37, information of open orders is gathered form the 

MTA0 and MTA1 database. The quantity of open orders is calculated for alternate and prime 

parts and passed. 

 

 
Figure 37: SPSS Model - Open orders 

Stock 

Every day the current stock position is gathered from the PTB0 database. In this database, 

different kinds of stock exist: warranty, repair and normal stock. Data is transformed in such 

a way that for every part, for every day the current warranty, repair and normal stock is 

passed. This can be seen in Figure 38. 

 
Figure 38: SPSS Model – Stock 
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CriticalParts 
In this node, which can be seen in Figure 39, critical part information is gathered from the 

PTC4 database. It passes a table with information per part and week number whether a part 

is critical and by what quantity.  

 

 
Figure 39: SPSS Model - Critical parts 
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Shelflife 

In this node, which can be seen in Figure 40, the shelf life is gathered for all parts. Since the 

shelf life will not change for a product, this data is gathered only once (first step). In the second 

step the shelf life is transformed to years. The filter is used to only pass the part number and 

the shelf life in years.  

PartPlanning 

In this node, which can be seen in Figure 41, the part planning levels are gathered from the 

PTB1 database. Since this should be summed over all parts related to the prime parts. This 

gives per part the critical stock level, the re-order level, the order up to point and the excess 

level. 

 

 
Figure 41: SPSS Model - Part planning 

 
 
 

Figure 40: SPSS Model - Shelf life 
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Auto-Order 

In this node, which can be seen in Figure 42, auto-order information is gathered from different 

databases. Only the parts for which one or more order types are disabled for auto-ordering 

are given. This node passes a yes/no indicator for whether auto-order is disabled for one or 

more order types.  

 

 
Figure 42: SPSS Model - Auto order 
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Forecast 

In this node, which can be seen in Figure 43, the forecasting method and forecasted demand 

for the next two years is calculated. The forecasted demand is the sum of all parts related to 

the prime part.  

 
Figure 43: SPSS Model – Forecast 

Contracts 

In this node, which can be seen in Figure 44, the existing contracts are gathered from the RTC2 

database. Every week the contract information is gathered and transformed, such that a table 

is created which states per part which kind of supplier is currently available to order from, 

with the given lead time.  

 

 
Figure 44: SPSS Model - Contracts 
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MaterialClass 

In this node, which can be seen in Figure 45, the material class is gathered. In the second step, 

the week number is added to the data and the data is merged. Since the material class consists 

of two character in which the first one represents the usage x price and the second represents 

only the usage, the data is split into two separate columns. The filter is used to only pass the 

part number, the week number, the usage x price and the usage.  

 

 
Figure 45: SPSS Model - Material class 
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PartData 

In this node, which can be seen in Figure 46, different useful data is gathered from the RTA6 

database. Since some data should be only available from the actual part number and some 

data a combination of all parts related to the prime part, this leads to two sections. Finally, 

this stream gives the following information per part, per week: birth date, end of service date, 

first stock date, weighted average cost, air support indicator, analyzer code, c&a code, CI144 

indicator, critical part unsatisfied indicator, division owner code, hub responsibility indicator, 

last time buy indicator, new business opportunity indicator and stocked indicator. 

 

 
Figure 46: SPSS Model - Part data 
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Appendix F 
This appendix contains the data quality check performed in SPSS Modeler.  
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Appendix G 
This appendix contains different frameworks which compare different algorithms. 

Figure 48: Framework by Kotsiantis (2007) 

Figure 47: Framework by Kuhn and Johnson (2013) 
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Appendix H 
This appendix contains a list of the 61 features. 
 

Data 

# of review reasons Last Time Buy indicator 

A code Lead time indicator 

Air Support Indicator Life cycle position 

Analyzer code Material Class 

Auto-order indicator Minimum lead time  

B supplier NBO indicator 

Birth age New buy supplier  

Birth date New part indicator 

C code Open order arrival 

CI144 MFGXFER indicator Open order indicator 

Critical indicator Open orders quantity 

Critical part unsatisfied indicator Planned indicator 

Critical quantity Policy safety stock level 

Critical severity Repair supplier 

Division group name Return rate 

Division owner code Return rate indicator 

End of service date Runout time 

EOS age Shelf life 

EOS Indicator Shelf life indicator 

First stock age Stock level / inventory level 

First stock date Stock repair 

Forecast method Stock warranty 

Forecasted quantity Stocked indicator 

Fraction inventory position currently available Successor 

Fraction recent demand Supplier indicator 

G supplier Usage 

Historical activity 1 period Vitality 

Historical activity 2 years WAC 

Hub responsible indicator Warranty supplier 

Inventory position Weekend 

Inventory position severity  
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Appendix I 
This appendix contains the approach of the feature selection step and the full results.  
 
We used a wrapper method with a bi-directional search. Since WEKA has different algorithms 

embedded in their software compared to SPSS Modeler, we have chosen to use the J48 

decision tree algorithm, which is comparable with the C5.0 decision tree algorithm in SPSS 

Modeler. The search termination, which is the number of consecutive non-improving nodes 

before terminating the search, is set to 15. The default value is 5, but since our datasets 

contain a relatively low number of features, we have chosen to increase this value to evaluate 

more subsets. Next to that, cross-validation is used with 5 folds and 1 seed. This means that 

the algorithm determines 5 times a subset of features which lead to the best results. The 

settings are shown in Table 28.  

 

Settings Value 

Attribute evaluator ClassifierSubsetEval 

Classifier J48 

Evaluation measure Accuracy 

Use training Yes 

Search method BestFirst 

Direction Bi-directional 

SearchTermination 15 

Cross-validation Folds: 5, Seed: 1 
Table 28: Settings feature selection 

Feature selection is performed on the 16 datasets explained in section 4.4. Per feature it is 

given in how many of the 5 folds the feature was selected. These results are shown in Table 

31. Based on these results, Table 32, Table 33, Table 34 and Table 35 are derived. In these 

tables the number of features which are selected in 0, 1, 2, 3, 4 or 5 of the folds are given. The 

more often a feature is selected, the more important the feature is for the algorithm. Features 

which are never selected (0/5) are considered as not relevant, which means they can be 

excluded from the dataset. Features that appear in all folds (5/5), should be considered as 

relevant features. For features that are selected sometimes, a consideration should be made. 

Since decision tree algorithms themselves distinguish relevant and irrelevant features during 

the modelling stage, we choose to consider features which are selected at least once as a 

relevant feature. Based on these results, we conclude that a significant number of features is 

irrelevant, since they are never selected as relevant features. These results are summarized in 

Table 29. These features will be excluded from the datasets when experiments are performed 

with relevant features, which is done in chapter 5.  

 

To determine the most relevant features, the average number a feature is selected is 

calculated, based on all datasets. The most relevant features are shown in Table 30. 
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 All 

Imputation 

Only good 

Imputation 

All 

No imputation 

Only good 

No imputation 

R24 19 31 22 29 

R25 31 40 27 38 

R26 30 25 27 26 

R83 23 28 21 28 
Table 29: Number of irrelevant features 

Feature Selected 

AnalyzerCode 3.8125 

WACValue 3.0625 

ReturnRate 2.9375 

LifeCyclePosition 2.8125 

ForecastedQuantity 2.75 

FractionRecentDemand 2.6875 

FirstStockAge 2.625 

BirthYearAge 2.5625 

InventoryPositionSeverity 2.5625 

HistoricalActivity2Years 2.5 

StockLevel 2.375 

Weekend 2.25 

HistoricalActivity1Month 2.125 

PSS 2.0625 

InventoryPosition 2 

#RR 1.875 

Vitality 1.875 

RunOutTime 1.8125 

MinimumLeadTime 1.75 

OpenOrderQuantity 1.75 

CriticalQuantity 1.5 

FractionInventoryAvailable 1.5 

CriticalSeverity 1.375 

EOSAge 1.375 

RepairSupplier 1.375 

StockLevelRepair 1.125 

WarrantySupplier 1.125 

AutoOrderIndicator 0.9375 

NewBuySupplier 0.9375 

CI144MFGXFERIndicator 0.75 

OpenOrderIndicator 0.75 
 

Feature Selected 

CriticalIndicator 0.6875 

EndOfServiceDate 0.625 

LeadtimeIndicator 0.625 

ReturnRateIndicator 0.625 

EOSDateIndicator 0.5625 

ShelflifeIndicator 0.5625 

DivisionGroupName 0.5 

MaterialClass 0.5 

OpenOrderArrival 0.5 

StockLevelWarranty 0.5 

NewPartIndicator 0.4375 

SupplierIndicator 0.4375 

Usage 0.4375 

LasttimeBuyIndicator 0.375 

HubResposibleIndicator 0.3125 

Shelflife 0.3125 

Successor 0.3125 

NBOIndicator 0.25 

BSupplier 0.1875 

CriticalPartUnsatisfiedIndicator 0.1875 

DivisionOwnerCode 0.1875 

ForecastMethod 0.1875 

PlannedIndicator 0.125 

ACode 0.0625 

CCode 0.0625 

AirSupportIndicator 0 

BirthDate 0 

FirstStockDate 0 

GSupplier 0 

StockedIndicator 0 
Table 30: Feature relevance 
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Per feature it is shown in how many of the folds the feature was selected. This means that the more a feature is selected, the more important 
that feature is, whereas features that are not selected are unimportant.  
 

Review reason R24 
   

R25 
   

R26 
   

R83 
   

Exceptions All Good All Good All Good All Good All Good All Good All Good All Good 

Imputation yes/no Imputation No 
imputation 

Imputation No 
imputation 

Imputation No 
imputation 

Imputation No 
imputation 

ReturnRate 1 1 2 3 2 2 3 2 2 2 2 2 1 1 2 2 

NewBuySupplier 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 

RepairSupplier 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

WarrantySupplier 5 5 5 4 5 5 5 5 0 0 1 1 5 5 5 5 

BSupplier 2 2 2 2 0 0 1 0 1 2 0 1 2 0 0 0 

GSupplier 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

MinimumLeadTime 2 3 3 3 3 2 5 2 1 2 0 4 5 1 2 3 

Usage 0 0 2 0 0 0 1 0 0 0 0 0 0 0 0 0 

StockLevel 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 

StockLevelRepair 1 1 2 0 1 2 1 1 2 0 0 0 0 1 0 0 

StockLevelWarranty 1 1 2 1 2 0 1 0 0 1 0 0 0 0 2 0 

Shelflife 1 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 

PSS 2 1 1 1 1 1 2 1 3 2 3 0 1 1 3 1 

CriticalQuantity 3 1 2 1 1 0 2 0 4 1 1 2 1 1 0 2 

CriticalIndicator 1 0 0 0 0 0 0 0 0 2 0 3 1 0 1 0 

OpenOrderQuantity 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 1 

OpenOrderArrival 0 0 0 0 0 1 0 0 5 2 2 0 0 0 0 0 

HistoricalActivity2Years 2 3 2 2 2 0 0 0 0 2 1 1 4 0 2 1 

HistoricalActivity1Month 0 0 0 0 0 0 3 0 1 1 1 0 1 0 2 0 

Successor 3 2 3 3 5 0 4 3 2 0 2 1 4 3 3 4 

Vitality 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

DivisionGroupName 5 4 4 1 2 2 1 1 3 2 2 2 4 3 4 4 

Weekend 0 0 0 0 0 0 0 0 0 0 0 0 1 2 0 0 
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#RR 1 0 3 0 0 0 1 0 2 2 2 4 1 1 4 3 

AutoOrderIndicator 3 2 4 5 2 1 5 1 2 1 3 0 3 3 4 4 

ForecastedQuantity 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

BirthDate 1 2 2 1 0 2 0 2 2 1 4 2 4 4 4 3 

EndOfServiceDate 3 2 5 3 1 3 3 3 2 1 1 1 4 2 4 2 

FirstStockDate 0 0 0 0 1 0 0 0 0 0 0 1 2 0 1 0 

WACValue 2 2 2 1 1 0 1 2 3 1 2 2 3 2 5 3 

AirSupportIndicator 2 2 3 5 2 0 0 1 3 1 1 2 5 5 5 4 

AnalyzerCode 0 0 2 0 0 0 0 0 0 1 1 1 0 0 1 0 

CI144MFGXFERIndicator 1 0   1 0   1 1   0 1   
CriticalPartUnsatisfiedIndicator 4 4 1 0 5 2 4 0 2 2 2 2 5 4 4 4 

HubResposibleIndicator 0 0 0 1 2 0 0 0 0 0 0 1 1 0 2 1 

LasttimeBuyIndicator 1 1 1 0 0 1 0 2 3 3 2 4 2 2 3 3 

NBOIndicator 1 0 2 0 0 0 0 0 0 0 0 0 0 0 1 0 

NewPartIndicator 1 2 0 1 2 0 0 4 1 0 2 0 0 0 2 0 

StockedIndicator 2 0 0 0 2 0 0 0 0 1 0 1 0 0 1 0 

ShelflifeIndicator 1 0 0 0 0 0 2 0 0 2 2 1 0 0 0 0 

LeadtimeIndicator 2 0 1 1 1 0 1 0 0 1 0 0 0 0 3 2 

ReturnRateIndicator 1 2 2 2 1 3 2 2 1 2 2 2 2 0 1 3 

PlannedIndicator 0 0   1 0   0 0   0 0   
EOSDateIndicator 2 0 4 0 2 1 1 1 3 2 2 3 1 3 4 4 

CCode 1 1 1 2 3 0 2 0 0 1 2 1 2 2 2 2 

ACode 2 1 4 3 2 4 2 0 5 3 3 2 3 5 5 3 

FirstStockAge 0 0   0 1   1 0   0 3   

BirthYearAge 2 1 4 1 0 0 0 0 2 3 3 2 4 2 4 1 

EOSAge 1 0 0 0 0 0 0 0 0 0 0 0 1 3 0 0 

LifeCyclePosition 1 1 1 2 0 0 1 0 0 0 0 0 1 1 0 1 

SupplierIndicator 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

OpenOrderIndicator 5 3 5 2 0 1 2 0 0 2 3 1 5 0 4 5 

InventoryPosition 3 1 1 1 0 0 1 0 2 0 2 0 1 3 1 2 
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FractionRecentDemand 0 2 0 0 0 0 0 0 2 0 0 0 2 0 2 0 

FractionInventoryAvailable 0 0 1 1 0 0 1 0 0 0 0 0 1 1 0 0 

CriticalSeverity 1 0 0 0 0 0 1 1 0 0 0 1 0 1 2 0 

RunOutTime 1 1 0 0 0 0 0 0 0 2 0 0 1 2 0 0 

InventoryPositionSeverity 3 0 2 1 2 2 3 3 2 1 1 2 3 0 2 3 

MaterialClass 3 3 3 2 4 2 4 3 5 1 3 1 5 1 5 4 

DivisionOwnerCode 1 1 1 0 0 3 0 1 1 1 1 2 2 2 2 0 

ForecastMethod 3 0 4 1 2 2 3 2 4 1 3 3 3 1 3 1 
Table 31: Results feature selection 
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R24 All 

Imputation 

Only good 

Imputation 

All 

No imputation 

Only good 

No imputation 

Selected in 0/5 19 31 21 29 

Selected in 1/5 19 13 10 14 

Selected in 2/5 11 10 13 7 

Selected in 3/5 8 4 5 5 

Selected in 4/5 1 2 6 1 

Selected in 5/5 3 1 3 2 
Table 32: Results feature selection (R24) 

R25 All 

Imputation 

Only good 

Imputation 

All 

No imputation 

Only good 

No imputation 

Selected in 0/5 31 40 27 37 

Selected in 1/5 11 7 13 8 

Selected in 2/5 13 9 7 7 

Selected in 3/5 2 3 5 4 

Selected in 4/5 1 1 3 1 

Selected in 5/5 3 1 3 1 
Table 33: Results feature selection (R25) 

R26 All 

Imputation 

Only good 

Imputation 

All 

No imputation 

Only good 

No imputation 

Selected in 0/5 30 25 26 26 

Selected in 1/5 8 18 9 14 

Selected in 2/5 12 15 15 12 

Selected in 3/5 6 3 7 3 

Selected in 4/5 2 0 1 3 

Selected in 5/5 3 0 0 0 
Table 34: Results feature selection (R26) 

R83 All 

Imputation 

Only good 

Imputation 

All 

No imputation 

Only good 

No imputation 

Selected in 0/5 23 28 20 28 

Selected in 1/5 14 13 7 7 

Selected in 2/5 7 8 12 6 

Selected in 3/5 5 7 5 8 

Selected in 4/5 6 2 9 7 

Selected in 5/5 6 3 5 2 
Table 35: Results feature selection (R83) 
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Appendix J 
This appendix contains the results of the auto-classifier used in SPSS Modeler on the 
different datasets. Per dataset, the top three algorithms are given with their accuracy. 
 

R24 All 

Imputation 

Only good 

Imputation 

All 

No imputation 

Only good 

No imputation 

Feature 
selection 

Tree-As 
XGBoost 
CHAID 

57.6 
56.1 
55.4 

Random trees 
Tree-As 
QUEST 

61.3 
60.0 
60.0 

Random trees 
C5 
XGBoost 

60.7 
60.0 
57.9 

XGBoost 
Chaid 
Random trees 

67.5 
63.8 
58.8 

No 
Feature 
selection 

Tree-As 
C5 
Random trees 

57.6 
56.1 
56.1 

Random trees 
Chaid 
XGBoost 

67.5 
65.0 
63.8 

C5 
Random trees 
XGBoost 

60.7 
59.3 
57.1 

Chaid 
C5 
Random trees 

68.8 
63.8 
63.8 

 

R25 All 

Imputation 

Only good 

Imputation 

All 

No imputation 

Only good 

No imputation 

Feature 
selection 

XGBoost 
C5.0 
Tree-As 

72.2 
67.8 
67.0 

C5 
Tree-As 
XGBoost 

75.6 
69.5 
66.1 

C5 
Tree-As 
C&R 

76.5 
73.9 
65.2 

C5 
XGBoost 
C&R 

74.6 
64.4 
64.4 

No 
Feature 
selection 

Random trees 
Tree-As 
QUEST 

68.7 
67.8 
67.0 

Random trees 
C5 
QUEST 

76.3 
74.6 
72.9 

C5 
Tree-As 
C&R 

76.5 
73.9 
66.1 

Chaid 
XGBoost 
QUEST 

64.4 
62.7 
62.7 

 

R26 All 

Imputation 

Only good 

Imputation 

All 

No imputation 

Only good 

No imputation 

Feature 
selection 

Tree-As 
Chaid 
C5.0 

63.9 
59.7 
58.3 

XGBoost 
C5 
Tree-As 

62.9 
61.4 
61.4 

Tree-As 
Chaid 
QUEST 

57.1 
55.4 
53.6 

Tree-As 
C&R 
XGBoost 

66.2 
63.4 
60.6 

No 
Feature 
selection 

XGBoost 
C&R 
C5 

63.4 
58.0 
55.4 

C5 
Tree-As 
C&R 

62.9 
61.4 
61.4 

Random trees 
C&R 
XGBoost 

56.3 
56.3 
55.3 

C&R 
C5 
Quest 

70.4 
62.0 
62.0 

 

R83 All 

Imputation 

Only good 

Imputation 

All 

No imputation 

Only good 

No imputation 

Feature 
selection 

Tree-As 
Random trees 
XGBoost 

63.3 
62.8 
62.8 

XGBoost 
C5 
Random trees 

69.8 
68.3 
65.3 

Random trees 
Tree-As 
XGBoost 

64.7 
64.1 
63 

C&R 
Chaid 
Tree-As 

67.0 
66.0 
65.5 

No 
Feature 
selection 

C5 
XGBoost 
Tree-As 

63.3 
62.5 
58.9 

C5 
XGBoost 
C&R 

69.3 
68.8 
66.8 

C5 
Chaid 
QUEST 

63.8 
63.6 
62.6 

Tree-As 
Quest 
XGBoost 

67.0 
65.0 
64.0 
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Appendix K 
This appendix contains the full results of the models made by the algorithms with cross 
validation and the performance of the ensemble models. The experiments are as explained 
in section 5.1 and the algorithms settings are explained in section 5.3. The first number in 
the algorithm column is the minimum number of records in the child node and the second 
number is the pruning severity. Furthermore, Acc is the accuracy, AUC is the Area Under the 
Curve and Prec is the precision. The colors give an indication of the performance compared 
to other experiments and settings within the review reason. A green color indicates a 
relatively high performance, whereas a red color indicates a relatively poor performance. A 
**** in the table indicates that SPSS Modeler was not able to evaluate the results of an 
ensemble model. 
 

 
Table 36: Results cross validation 

 

Experiment

Acc AUC Prec Acc AUC Prec Acc AUC Prec Acc AUC Prec

1 2 - 75 0.602 0.603 0.593 0.692 0.669 0.718 0.552 0.562 0.608 0.623 0.641 0.622

5 - 75 0.59 0.581 0.586 0.676 0.647 0.703 0.518 0.531 0.582 0.6 0.629 0.605

2 - 25 0.602 0.603 0.593 0.692 0.674 0.718 0.538 0.547 0.61 0.621 0.636 0.604

5 - 25 0.592 0.583 0.587 0.678 0.632 0.709 0.518 0.531 0.582 0.602 0.631 0.608

2 2 - 75 0.61 0.612 0.608 0.689 0.65 0.711 0.507 0.513 0.53 0.621 0.661 0.624

5 - 75 0.6 0.614 0.595 0.689 0.639 0.703 0.514 0.516 0.547 0.609 0.641 0.611

2 - 25 0.612 0.613 0.61 0.689 0.65 0.711 0.504 0.519 0.529 0.624 0.663 0.626

5 - 25 0.607 0.617 0.603 0.686 0.631 0.7 0.483 0.483 0.515 0.607 0.645 0.609

3 2 - 75 0.616 0.644 0.598 0.673 0.64 0.701 0.566 0.565 0.571 0.616 0.649 0.628

5 - 75 0.584 0.616 0.56 0.665 0.637 0.7 0.554 0.55 0.567 0.621 0.657 0.635

2 - 25 0.621 0.658 0.602 0.673 0.64 0.701 0.559 0.57 0.586 0.616 0.651 0.629

5 - 25 0.606 0.632 0.596 0.665 0.637 0.7 0.536 0.544 0.553 0.62 0.659 0.631

4 2 - 75 0.615 0.615 0.601 0.677 0.626 0.7 0.557 0.536 0.566 0.633 0.662 0.64

5 - 75 0.619 0.632 0.61 0.669 0.646 0.699 0.553 0.54 0.565 0.623 0.652 0.634

2 - 25 0.619 0.626 0.602 0.677 0.626 0.7 0.553 0.534 0.561 0.633 0.668 0.639

5 - 25 0.616 0.634 0.602 0.666 0.632 0.693 0.553 0.54 0.565 0.622 0.65 0.634

5 2 - 75 0.635 0.674 0.639 0.744 0.747 0.753 0.469 0.45 0.555 0.667 0.659 0.68

5 - 75 0.635 0.616 0.642 0.703 0.656 0.721 0.501 0.493 0.57 0.656 0.649 0.68

2 - 25 0.635 0.674 0.639 0.744 0.747 0.753 0.49 0.461 0.568 0.66 0.658 0.682

5 - 25 0.635 0.616 0.642 0.744 0.716 0.754 0.527 0.487 0.599 0.651 0.642 0.68

6 2 - 75 0.621 0.643 0.635 0.68 0.576 0.678 0.566 0.495 0.589 0.673 0.665 0.675

5 - 75 0.635 0.616 0.642 0.685 0.595 0.682 0.57 0.561 0.611 0.647 0.637 0.664

2 - 25 0.635 0.665 0.641 0.737 0.663 0.754 0.522 0.526 0.593 0.665 0.663 0.673

5 - 25 0.635 0.616 0.642 0.719 0.698 0.729 0.544 0.534 0.616 0.639 0.64 0.664

7 2 - 75 0.626 0.618 0.632 0.678 0.674 0.723 0.628 0.5 0.628 0.659 0.661 0.669

5 - 75 0.596 0.591 0.621 0.722 0.694 0.739 0.628 0.5 0.628 0.657 0.643 0.67

2 - 25 0.634 0.619 0.633 0.694 0.705 0.745 0.604 0.555 0.643 0.666 0.679 0.68

5 - 25 0.627 0.625 0.629 0.727 0.701 0.741 0.585 0.526 0.63 0.668 0.665 0.679

8 2 - 75 0.646 0.634 0.645 0.717 0.702 0.738 0.609 0.53 0.646 0.667 0.655 0.669

5 - 75 0.593 0.572 0.611 0.722 0.694 0.739 0.601 0.541 0.649 0.667 0.643 0.67

2 - 25 0.643 0.622 0.644 0.706 0.694 0.746 0.6 0.544 0.662 0.669 0.666 0.673

5 - 25 0.614 0.593 0.625 0.727 0.701 0.741 0.589 0.55 0.647 0.668 0.656 0.676

Algorithm 

settings

R24 R25 R26 R83
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Table 37: Results ensemble models 

 
  

Experiment

Acc AUC Prec Acc AUC Prec Acc AUC Prec Acc AUC Prec

1 2 - 75 0.624 0.631 0.565 0.677 0.65 0.672 0.604 0.602 0.68 0.654 0.654 0.688

5 - 75 0.648 0.651 0.594 0.602 0.556 0.603 0.637 0.635 0.75 0.648 0.65 0.691

2 - 25 0.624 0.631 0.565 0.677 0.65 0.672 0.593 0.591 0.667 0.648 0.647 0.676

5 - 25 0.64 0.644 0.585 0.602 0.556 0.603 0.637 0.635 0.75 0.639 0.641 0.685

2 2 - 75 0.632 0.63 0.586 0.645 0.606 0.635 0.505 0.506 0.5 0.63 0.631 0.671

5 - 75 0.632 0.635 0.578 0.634 0.593 0.627 0.538 0.539 0.532 0.645 0.647 0.687

2 - 25 0.632 0.63 0.586 0.645 0.606 0.635 0.495 0.494 0.488 0.627 0.629 0.669

5 - 25 0.632 0.636 0.576 0.634 0.593 0.627 0.527 0.527 0.523 0.636 0.638 0.681

3 2 - 75 0.528 0.524 0.574 0.639 0.594 0.712 0.505 0.505 0.532 0.596 0.597 0.631

5 - 75 0.544 0.545 0.597 0.691 0.64 0.739 0.516 0.62 0.536 0.619 0.62 0.655

2 - 25 0.528 0.524 0.574 0.649 0.602 0.716 0.527 0.531 0.564 0.596 0.597 0.631

5 - 25 0.544 0.545 0.597 0.691 0.64 0.739 0.527 0.522 0.545 0.741 0.744 0.789

4 2 - 75 0.536 0.536 0.587 0.67 0.617 0.725 0.516 0.515 0.542 0.608 0.607 0.638

5 - 75 0.544 0.545 0.597 0.701 0.648 0.743 0.516 0.515 0.542 0.625 0.627 0.665

2 - 25 0.536 0.536 0.587 0.67 0.617 0.725 0.538 0.536 0.56 0.605 0.604 0.634

5 - 25 0.544 0.545 0.597 0.691 0.633 0.732 0.516 0.515 0.542 0.617 0.619 0.66

5 2 - 75 0.644 0.639 0.59 0.733 0.75 0.643 0.571 0.493 0.692 0.66 0.617 0.646

5 - 75 0.644 0.64 0.596 0.733 0.75 0.643 0.714 0.563 0.725 0.695 0.66 0.678

2 - 25 0.644 0.639 0.59 0.733 0.75 0.643 0.625 0.548 0.725 0.67 0.636 0.664

5 - 25 0.644 0.64 0.596 0.733 0.75 0.643 0.661 0.557 0.727 0.72 0.71 0.711

6 2 - 75 0.644 0.639 0.59 **** **** **** 0.696 0.5 0.696 0.64 0.593 0.63

5 - 75 0.644 0.64 0.596 **** 0.646 **** 0.625 0.465 0.68 0.685 0.646 0.667

2 - 25 0.616 0.611 0.571 0.733 0.627 0.633 0.679 0.587 0.744 0.665 0.627 0.656

5 - 25 0.644 0.64 0.596 0.733 0.755 0.633 0.589 0.506 0.7 0.685 0.651 0.673

7 2 - 75 0.658 0.664 0.605 0.667 0.601 0.75 0.571 0.5 0.571 0.644 0.617 0.65

5 - 75 0.699 0.709 0.63 0.667 0.601 0.75 0.571 0.5 0.571 0.634 0.61 0.647

2 - 25 0.658 0.664 0.605 0.667 0.601 0.75 0.536 0.516 0.583 0.644 0.62 0.655

5 - 25 0.685 0.698 0.612 0.667 0.601 0.75 0.589 0.557 0.61 0.614 0.588 0.631

8 2 - 75 0.644 0.65 0.595 0.667 0.601 0.75 0.571 0.5 0.571 0.639 0.611 0.646

5 - 75 0.685 0.693 0.628 0.667 0.601 0.75 0.589 0.531 0.588 0.644 0.617 0.65

2 - 25 0.644 0.65 0.595 0.667 0.601 0.75 0.589 0.557 0.61 0.649 0.621 0.653

5 - 25 0.685 0.694 0.622 0.667 0.601 0.75 0.607 0.568 0.614 0.644 0.617 0.65

Algorithm 

settings

R24 R25 R26 R83
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Appendix L 
This appendix contains the decision trees created during cross validation for review reason 
R25 and R83.  
 
R25 

Fold 1: 
AnalyzerCode in [ "001" "04B" "071" "07B" "08F" "08Y" "09P" "09R" "09X" "0M7" ] [ Mode: Yes ] => Yes  
AnalyzerCode in [ "005" ] [ Mode: No ]  
 Vitality in [ 1 ] [ Mode: No ]  
  #RR in [ 1 ] [ Mode: No ] => No  
  #RR in [ 2 3 ] [ Mode: Yes ] => Yes  
 Vitality in [ 2 3 5 ] [ Mode: Yes ] => Yes  
AnalyzerCode in [ "008" "014" "01B" "01O" "021" "024" "030" "03E" "03V" "05C" "085" "08C" "08L" "08X" "08Z" "09M" "0C6" "0G3" "0G7" 
"0V7" "0W7" ] [ Mode: No ] => No  
AnalyzerCode in [ "018" "020" ] [ Mode: No ] => No  
AnalyzerCode in [ "01A" ] [ Mode: No ]  
 Vitality in [ 1 ] [ Mode: No ]  
  WACValue <= 432,010 [ Mode: Yes ] => Yes  
  WACValue > 432,010 [ Mode: No ] => No  
 Vitality in [ 2 3 5 ] [ Mode: No ] => No 
 
Fold 2: 
AnalyzerCode in [ "001" ] [ Mode: Yes ]  
 LifeCyclePosition <= 0,762 [ Mode: Yes ] => Yes  
 LifeCyclePosition > 0,762 [ Mode: No ] => No  
AnalyzerCode in [ "005" ] [ Mode: No ]  
 HistoricalActivity1Month <= 0,750 [ Mode: Yes ]  
  Vitality in [ 1 ] [ Mode: No ]  
   #RR in [ 1 ] [ Mode: No ] => No  
   #RR in [ 2 3 ] [ Mode: Yes ] => Yes  
  Vitality in [ 2 3 5 ] [ Mode: Yes ] => Yes  
 HistoricalActivity1Month > 0,750 [ Mode: No ] => No  
AnalyzerCode in [ "008" "01O" "021" "024" "030" "03E" "03V" "085" "08C" "08L" "08X" "09M" "0C6" "0G3" "0G7" "0V7" "0W7" ] [ Mode: 
No ] => No  
AnalyzerCode in [ "014" ] [ Mode: No ]  
 BirthYearAge <= 4,500 [ Mode: Yes ] => Yes  
 BirthYearAge > 4,500 [ Mode: No ] => No  
AnalyzerCode in [ "018" "020" "04B" "071" "07B" "09P" "09R" "09X" "0M7" ] [ Mode: Yes ] => Yes  
AnalyzerCode in [ "01A" ] [ Mode: No ]  
 #RR in [ 1 ] [ Mode: No ] => No  
 #RR in [ 2 3 ] [ Mode: Yes ] => Yes  
AnalyzerCode in [ "01B" "08F" "08Y" ] [ Mode: No ] => No  
AnalyzerCode in [ "05C" ] [ Mode: No ]  
 ReturnRate <= 0 [ Mode: Yes ] => Yes  
 ReturnRate > 0 [ Mode: No ] => No  
AnalyzerCode in [ "08Z" ] [ Mode: No ]  
 ReturnRate <= 0,458 [ Mode: No ] => No  
 ReturnRate > 0,458 [ Mode: Yes ] => Yes 
 
Fold 3: 
AnalyzerCode in [ "001" ] [ Mode: Yes ]  
 CI144MFGXFERIndicator = Y [ Mode: Yes ]  
  PSS <= 17 [ Mode: No ] => No  
  PSS > 17 [ Mode: Yes ] => Yes  
 CI144MFGXFERIndicator = N [ Mode: Yes ] => Yes  
AnalyzerCode in [ "005" "008" "01A" "01B" "024" "030" "03E" "03V" "085" "08L" "08X" "08Z" "09M" "0C6" "0G7" "0W7" ] [ Mode: No ] => 
No  
AnalyzerCode in [ "014" "018" "020" "071" "07B" "08F" "08Y" "09P" "09R" "09X" "0M7" ] [ Mode: Yes ] => Yes  
AnalyzerCode in [ "01O" "04B" "08C" "0V7" ] [ Mode: No ] => No  
AnalyzerCode in [ "021" ] [ Mode: No ]  
 PSS <= 12,500 [ Mode: No ] => No  
 PSS > 12,500 [ Mode: Yes ] => Yes  
AnalyzerCode in [ "05C" ] [ Mode: No ]  
 ReturnRate <= 0 [ Mode: Yes ] => Yes  
 ReturnRate > 0 [ Mode: No ] => No  
AnalyzerCode in [ "0G3" ] [ Mode: No ]  
 ForecastedQuantity <= 6,050 [ Mode: No ] => No  
 ForecastedQuantity > 6,050 [ Mode: Yes ] => Yes 
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Fold 4: 
AnalyzerCode in [ "001" "018" "020" "04B" "07B" "08F" "08Y" "09P" "09R" "09X" "0M7" ] [ Mode: Yes ] => Yes  
AnalyzerCode in [ "005" ] [ Mode: No ]  
 #RR in [ 1 ] [ Mode: No ]  
  Vitality in [ 1 ] [ Mode: No ] => No  
  Vitality in [ 2 3 5 ] [ Mode: Yes ] => Yes  
 #RR in [ 2 3 ] [ Mode: Yes ] => Yes  
AnalyzerCode in [ "008" "01B" "01O" "021" "024" "030" "03E" "03V" "05C" "08C" "08L" "08Z" "09M" "0C6" "0G7" "0V7" "0W7" ] [ Mode: 
No ] => No  
AnalyzerCode in [ "014" ] [ Mode: Yes ]  
 BirthYearAge <= 4,500 [ Mode: Yes ] => Yes  
 BirthYearAge > 4,500 [ Mode: No ] => No  
AnalyzerCode in [ "01A" ] [ Mode: No ]  
 #RR in [ 1 ] [ Mode: No ]  
  ForecastedQuantity <= 28,600 [ Mode: Yes ]  
   WACValue <= 448,795 [ Mode: Yes ] => Yes  
   WACValue > 448,795 [ Mode: No ] => No  
  ForecastedQuantity > 28,600 [ Mode: No ] => No  
 #RR in [ 2 3 ] [ Mode: Yes ] => Yes  
AnalyzerCode in [ "071" "085" "08X" ] [ Mode: No ] => No  
AnalyzerCode in [ "0G3" ] [ Mode: No ]  
 ForecastedQuantity <= 6,050 [ Mode: No ] => No  
 ForecastedQuantity > 6,050 [ Mode: Yes ] => Yes 
 
Fold 5: 
AnalyzerCode in [ "001" "008" "01B" "01O" "021" "024" "030" "03E" "03V" "05C" "085" "08C" "08X" "08Z" "09M" "0G7" "0V7" "0W7" ] [ 
Mode: No ] => No  
AnalyzerCode in [ "005" ] [ Mode: No ]  
 CI144MFGXFERIndicator = Y [ Mode: Yes ] => Yes  
 CI144MFGXFERIndicator = N [ Mode: No ]  
  WACValue <= 83,300 [ Mode: Yes ]  
   WACValue <= 11,135 [ Mode: No ] => No  
   WACValue > 11,135 [ Mode: Yes ] => Yes  
  WACValue > 83,300 [ Mode: No ] => No  
AnalyzerCode in [ "014" "018" "020" "04B" "071" "07B" "08F" "08Y" "09P" "09R" "09X" ] [ Mode: Yes ] => Yes  
AnalyzerCode in [ "01A" ] [ Mode: No ]  
 #RR in [ 1 ] [ Mode: No ] => No  
 #RR in [ 2 3 ] [ Mode: Yes ] => Yes  
AnalyzerCode in [ "08L" "0C6" "0M7" ] [ Mode: No ] => No  
AnalyzerCode in [ "0G3" ] [ Mode: No ]  
 ForecastedQuantity <= 3,450 [ Mode: No ] => No  
 ForecastedQuantity > 3,450 [ Mode: Yes ] => Yes 
 

R83 

Fold 1: 
AnalyzerCode in [ "001" "004" "008" "01A" "01B" "01X" "01Z" "026" "027" "03N" "04B" "04F" "05C" "08Z" "099" "09J" "09M" "0C6" "0I3" 
"0U7" ] [ Mode: No ] => No  
AnalyzerCode in [ "005" ] [ Mode: No ]  
 FractionInventoryAvailable <= 0,197 [ Mode: Yes ] => Yes  
 FractionInventoryAvailable > 0,197 [ Mode: No ]  
  Weekend = Weekend [ Mode: No ]  
   BirthYearAge <= 3,500 [ Mode: Yes ] => Yes  
   BirthYearAge > 3,500 [ Mode: No ] => No  
  Weekend = Week [ Mode: No ] => No  
AnalyzerCode in [ "012" "023" "030" "03D" "03E" "04J" "085" "08C" "08F" "09E" "09R" "09X" "09Y" "0A7" "0M7" "0V7" "0W9" ] [ Mode: 
Yes ] => Yes  
AnalyzerCode in [ "013" "018" "0V9" ] [ Mode: No ] => No  
AnalyzerCode in [ "014" ] [ Mode: No ]  
 PSS <= 27,450 [ Mode: Yes ]  
  FirstStockAge in [ 0 1 2 3 4 ] [ Mode: Yes ] => Yes  
  FirstStockAge in [ 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 22 23 53 ] [ Mode: No ]  
   HistoricalActivity1Month <= 1,125 [ Mode: No ] => No  
   HistoricalActivity1Month > 1,125 [ Mode: Yes ] => Yes  
 PSS > 27,450 [ Mode: No ] => No  
AnalyzerCode in [ "021" ] [ Mode: No ]  
 ShelflifeIndicator = Yes [ Mode: Yes ] => Yes  
 ShelflifeIndicator = No [ Mode: No ]  
  DivisionOwnerCode in [ "13" "26" "2D" "44" "48" "4S" "71" "7G" "7H" "APL" "ASC" "BOI" "DUN" "G9" "LP" "LQ" "LU" 
"LX" "MB" "MC" "MN" "MP" "MR" "MS" "MT" "MV" "OBB" "RBS" ] [ Mode: No ] => No  
  DivisionOwnerCode in [ "75" ] [ Mode: No ] => No  
  DivisionOwnerCode in [ "9R" ] [ Mode: Yes ]  



 104 

   Weekend = Weekend [ Mode: No ]  
    RepairSupplier = Yes [ Mode: No ] => No  
    RepairSupplier = No [ Mode: Yes ]  
     Vitality in [ 1 ] [ Mode: Yes ] => Yes  
     Vitality in [ 2 3 4 5 ] [ Mode: No ] => No  
   Weekend = Week [ Mode: Yes ] => Yes  
AnalyzerCode in [ "024" ] [ Mode: No ]  
 InventoryPosition <= 2,500 [ Mode: Yes ]  
  #RR in [ 1 ] [ Mode: Yes ] => Yes  
  #RR in [ 2 3 4 ] [ Mode: Yes ]  
   EOSAge <= 2,500 [ Mode: Yes ] => Yes  
   EOSAge > 2,500 [ Mode: No ] => No  
 InventoryPosition > 2,500 [ Mode: No ]  
  #RR in [ 1 2 ] [ Mode: No ] => No  
  #RR in [ 3 4 ] [ Mode: Yes ]  
   BirthYearAge <= 4,500 [ Mode: No ] => No  
   BirthYearAge > 4,500 [ Mode: Yes ] => Yes  
AnalyzerCode in [ "03V" ] [ Mode: No ]  
 FractionRecentDemand <= 0,375 [ Mode: No ] => No  
 FractionRecentDemand > 0,375 [ Mode: Yes ] => Yes  
AnalyzerCode in [ "04A" ] [ Mode: Yes ]  
 InventoryPosition <= 7,500 [ Mode: Yes ] => Yes  
 InventoryPosition > 7,500 [ Mode: No ] => No  
AnalyzerCode in [ "07B" ] [ Mode: Yes ]  
 CriticalQuantity <= 1 [ Mode: Yes ] => Yes  
 CriticalQuantity > 1 [ Mode: No ] => No  
AnalyzerCode in [ "08L" ] [ Mode: Yes ]  
 DivisionOwnerCode in [ "13" "26" "2D" "44" "48" "4S" "71" "75" "7G" "7H" "9R" "APL" "ASC" "BOI" "DUN" "G9" "LP" "LQ" "LU" 
"LX" "MB" "MC" "MP" "MR" "MS" "MV" "OBB" "RBS" ] [ Mode: Yes ] => Yes  
 DivisionOwnerCode in [ "MN" ] [ Mode: Yes ] => Yes  
 DivisionOwnerCode in [ "MT" ] [ Mode: No ] => No  
AnalyzerCode in [ "0C9" ] [ Mode: No ]  
 ForecastedQuantity <= 15,750 [ Mode: No ] => No  
 ForecastedQuantity > 15,750 [ Mode: Yes ] => Yes  
AnalyzerCode in [ "0G3" ] [ Mode: No ]  
 HistoricalActivity1Month <= 1,250 [ Mode: Yes ] => Yes  
 HistoricalActivity1Month > 1,250 [ Mode: No ] => No  
AnalyzerCode in [ "0G7" ] [ Mode: No ]  
 #RR in [ 1 ] [ Mode: No ] => No  
 #RR in [ 2 3 4 ] [ Mode: Yes ] => Yes  
AnalyzerCode in [ "0W7" ] [ Mode: Yes ]  
 HistoricalActivity2Years <= 29 [ Mode: Yes ] => Yes  
 HistoricalActivity2Years > 29 [ Mode: No ] => No 
 
Fold 2: 
Weekend = Weekend [ Mode: Yes ]  
 AnalyzerCode in [ "001" "004" "008" "013" "01X" "026" "04B" "05C" "09J" "09M" "0C6" "0G7" "0I3" "0V9" ] [ Mode: No ] => No  
 AnalyzerCode in [ "005" ] [ Mode: No ]  
  #RR in [ 1 ] [ Mode: No ] => No  
  #RR in [ 2 3 4 ] [ Mode: Yes ]  
   Vitality in [ 1 ] [ Mode: Yes ] => Yes  
   Vitality in [ 2 3 4 5 ] [ Mode: No ] => No  
 AnalyzerCode in [ "012" "018" "01A" "01B" "021" "023" "03D" "03V" "04A" "04J" "08F" "08Z" "09R" "09X" "0A7" "0M7" "0V7" 
"0W7" "0W9" ] [ Mode: Yes ] => Yes  
 AnalyzerCode in [ "014" ] [ Mode: No ]  
  OpenOrderQuantity <= 3,500 [ Mode: Yes ] => Yes  
  OpenOrderQuantity > 3,500 [ Mode: No ] => No  
 AnalyzerCode in [ "01Z" "027" "03E" "03N" "04F" "085" "08C" "099" "09E" "09Y" "0C9" ] [ Mode: Yes ] => Yes  
 AnalyzerCode in [ "024" ] [ Mode: No ]  
  DivisionOwnerCode in [ "13" "26" "44" "48" "71" "75" "7G" "7H" "9R" "APL" "ASC" "BOI" "DUN" "LP" "LQ" "LU" "LX" 
"MB" "MC" "MN" "MP" "MR" "MS" "MT" "MV" "OBB" "RBS" ] [ Mode: No ] => No  
  DivisionOwnerCode in [ "2D" ] [ Mode: No ]  
   ForecastedQuantity <= 21,350 [ Mode: Yes ]  
    StockLevelRepair <= 1,500 [ Mode: Yes ]  
     Vitality in [ 1 ] [ Mode: Yes ] => Yes  
     Vitality in [ 2 3 4 5 ] [ Mode: Yes ]  
      InventoryPosition <= 6,500 [ Mode: No ]  
       InventoryPosition <= 3,500 [ Mode: Yes ]  
        LifeCyclePosition <= 0,597 [ Mode: No ] => No  
        LifeCyclePosition > 0,597 [ Mode: Yes ] => Yes  
       InventoryPosition > 3,500 [ Mode: No ] => No  
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      InventoryPosition > 6,500 [ Mode: Yes ] => Yes  
    StockLevelRepair > 1,500 [ Mode: No ] => No  
   ForecastedQuantity > 21,350 [ Mode: No ] => No  
  DivisionOwnerCode in [ "4S" ] [ Mode: Yes ] => Yes  
  DivisionOwnerCode in [ "G9" ] [ Mode: No ] => No  
 AnalyzerCode in [ "030" ] [ Mode: No ]  
  BirthYearAge <= 0,500 [ Mode: Yes ] => Yes  
  BirthYearAge > 0,500 [ Mode: No ] => No  
 AnalyzerCode in [ "07B" ] [ Mode: Yes ]  
  CriticalQuantity <= 1 [ Mode: Yes ] => Yes  
  CriticalQuantity > 1 [ Mode: No ] => No  
 AnalyzerCode in [ "08L" ] [ Mode: Yes ]  
  FirstStockAge in [ 0 1 2 3 4 5 ] [ Mode: No ] => No  
  FirstStockAge in [ 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 22 23 53 ] [ Mode: Yes ] => Yes  
 AnalyzerCode in [ "0G3" ] [ Mode: Yes ]  
  Vitality in [ 1 ] [ Mode: Yes ] => Yes  
  Vitality in [ 2 3 4 5 ] [ Mode: No ] => No  
 AnalyzerCode in [ "0U7" ] [ Mode: No ]  
  ReturnRate <= 0,037 [ Mode: No ] => No  
  ReturnRate > 0,037 [ Mode: Yes ] => Yes  
Weekend = Week [ Mode: No ]  
 AnalyzerCode in [ "001" ] [ Mode: No ]  
  RepairSupplier = Yes [ Mode: Yes ] => Yes  
  RepairSupplier = No [ Mode: No ] => No  
 AnalyzerCode in [ "004" "013" "01X" "03D" "03E" "04J" "08F" "09R" "09X" "0I3" "0M7" "0V9" ] [ Mode: No ] => No  
 AnalyzerCode in [ "005" ] [ Mode: No ]  
  OpenOrderQuantity <= 55 [ Mode: No ] => No  
  OpenOrderQuantity > 55 [ Mode: Yes ] => Yes  
 AnalyzerCode in [ "008" "01A" "01B" "024" "026" "027" "03N" "03V" "04B" "04F" "05C" "07B" "08L" "08Z" "099" "09J" "09M" 
"0A7" "0C6" "0G3" "0G7" "0U7" "0W7" "0W9" ] [ Mode: No ] => No  
 AnalyzerCode in [ "012" "018" "01Z" "023" "085" "08C" "09E" "09Y" "0C9" "0V7" ] [ Mode: Yes ] => Yes  
 AnalyzerCode in [ "014" ] [ Mode: No ]  
  InventoryPosition <= 31 [ Mode: Yes ]  
   InventoryPosition <= 6,500 [ Mode: No ] => No  
   InventoryPosition > 6,500 [ Mode: Yes ] => Yes  
  InventoryPosition > 31 [ Mode: No ] => No  
 AnalyzerCode in [ "021" ] [ Mode: No ]  
  DivisionOwnerCode in [ "13" "26" "2D" "44" "48" "4S" "71" "7G" "7H" "APL" "ASC" "BOI" "DUN" "G9" "LP" "LQ" "LU" 
"LX" "MB" "MC" "MN" "MP" "MR" "MS" "MT" "MV" "OBB" "RBS" ] [ Mode: No ] => No  
  DivisionOwnerCode in [ "75" ] [ Mode: No ] => No  
  DivisionOwnerCode in [ "9R" ] [ Mode: Yes ] => Yes  
 AnalyzerCode in [ "030" ] [ Mode: No ]  
  ForecastedQuantity <= 59,800 [ Mode: No ] => No  
  ForecastedQuantity > 59,800 [ Mode: Yes ] => Yes  
 AnalyzerCode in [ "04A" ] [ Mode: No ]  
  #RR in [ 1 ] [ Mode: No ] => No  
  #RR in [ 2 3 4 ] [ Mode: Yes ] => Yes 
 
Fold 3: 
AnalyzerCode in [ "001" ] [ Mode: No ]  
 HistoricalActivity2Years <= 2,500 [ Mode: No ] => No  
 HistoricalActivity2Years > 2,500 [ Mode: No ]  
  StockLevelRepair <= 24,500 [ Mode: No ]  
   HistoricalActivity1Month <= 0,875 [ Mode: Yes ]  
    Vitality in [ 1 ] [ Mode: No ]  
     InventoryPosition <= 6 [ Mode: No ] => No  
     InventoryPosition > 6 [ Mode: Yes ] => Yes  
    Vitality in [ 2 3 4 5 ] [ Mode: Yes ] => Yes  
   HistoricalActivity1Month > 0,875 [ Mode: No ] => No  
  StockLevelRepair > 24,500 [ Mode: Yes ] => Yes  
AnalyzerCode in [ "004" "008" "013" "01A" "01B" "01X" "01Z" "026" "027" "03N" "04B" "04F" "05C" "08Z" "09J" "09M" "0I3" "0U7" "0V9" 
"0W9" ] [ Mode: No ] => No  
AnalyzerCode in [ "005" ] [ Mode: No ]  
 FractionInventoryAvailable <= 0,183 [ Mode: Yes ] => Yes  
 FractionInventoryAvailable > 0,183 [ Mode: No ] => No  
AnalyzerCode in [ "012" "018" "023" "03D" "03E" "04J" "085" "08C" "08F" "09R" "09X" "09Y" "0A7" "0M7" "0V7" "0W7" ] [ Mode: Yes ] => 
Yes  
AnalyzerCode in [ "014" ] [ Mode: Yes ]  
 PSS <= 27,450 [ Mode: Yes ]  
  CriticalQuantity <= 0,500 [ Mode: Yes ]  
   FirstStockAge in [ 0 1 2 3 4 ] [ Mode: Yes ] => Yes  
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   FirstStockAge in [ 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 22 23 53 ] [ Mode: No ]  
    BirthYearAge <= 7,500 [ Mode: No ] => No  
    BirthYearAge > 7,500 [ Mode: Yes ] => Yes  
  CriticalQuantity > 0,500 [ Mode: Yes ] => Yes  
 PSS > 27,450 [ Mode: No ] => No  
AnalyzerCode in [ "021" ] [ Mode: No ]  
 ShelflifeIndicator = Yes [ Mode: Yes ] => Yes  
 ShelflifeIndicator = No [ Mode: No ]  
  DivisionOwnerCode in [ "13" "26" "2D" "44" "48" "4S" "71" "7G" "7H" "APL" "ASC" "BOI" "DUN" "G9" "LP" "LQ" "LU" 
"LX" "MB" "MC" "MN" "MP" "MR" "MS" "MT" "MV" "OBB" "RBS" ] [ Mode: No ] => No  
  DivisionOwnerCode in [ "75" ] [ Mode: No ]  
   Weekend = Weekend [ Mode: No ]  
    StockLevel <= 11,500 [ Mode: Yes ] => Yes  
    StockLevel > 11,500 [ Mode: No ] => No  
   Weekend = Week [ Mode: No ] => No  
  DivisionOwnerCode in [ "9R" ] [ Mode: Yes ]  
   EOSAge <= 11,500 [ Mode: Yes ]  
    RepairSupplier = Yes [ Mode: No ] => No  
    RepairSupplier = No [ Mode: Yes ] => Yes  
   EOSAge > 11,500 [ Mode: No ] => No  
AnalyzerCode in [ "024" ] [ Mode: No ]  
 InventoryPosition <= 2,500 [ Mode: Yes ]  
  #RR in [ 1 ] [ Mode: Yes ] => Yes  
  #RR in [ 2 3 4 ] [ Mode: No ] => No  
 InventoryPosition > 2,500 [ Mode: No ]  
  DivisionOwnerCode in [ "13" "26" "44" "48" "71" "75" "7G" "9R" "APL" "ASC" "BOI" "DUN" "LP" "LQ" "LU" "LX" "MB" 
"MC" "MN" "MP" "MR" "MS" "MT" "MV" "OBB" "RBS" ] [ Mode: No ] => No  
  DivisionOwnerCode in [ "2D" ] [ Mode: No ]  
   Weekend = Weekend [ Mode: No ]  
    PSS <= 82,350 [ Mode: No ]  
     OpenOrderIndicator = Yes [ Mode: No ]  
      CriticalQuantity <= 2,188 [ Mode: No ]  
       #RR in [ 1 ] [ Mode: No ]  
        CriticalQuantity <= 0,500 [ Mode: No ]  
         ReturnRate <= 0,281 [ Mode: No ]  
          RepairSupplier = Yes [ Mode: 
No ] => No  
          RepairSupplier = No [ Mode: 
No ]  
          
 ForecastedQuantity <= 126,100 [ Mode: Yes ] => Yes  
          
 ForecastedQuantity > 126,100 [ Mode: No ] => No  
         ReturnRate > 0,281 [ Mode: Yes ] => Yes  
        CriticalQuantity > 0,500 [ Mode: No ] => No  
       #RR in [ 2 3 4 ] [ Mode: No ] => No  
      CriticalQuantity > 2,188 [ Mode: Yes ] => Yes  
     OpenOrderIndicator = No [ Mode: No ] => No  
    PSS > 82,350 [ Mode: Yes ] => Yes  
   Weekend = Week [ Mode: No ] => No  
  DivisionOwnerCode in [ "4S" ] [ Mode: Yes ] => Yes  
  DivisionOwnerCode in [ "7H" ] [ Mode: No ] => No  
  DivisionOwnerCode in [ "G9" ] [ Mode: No ]  
   ReturnRate <= 0,035 [ Mode: Yes ] => Yes  
   ReturnRate > 0,035 [ Mode: No ] => No  
AnalyzerCode in [ "030" ] [ Mode: No ]  
 BirthYearAge <= 0,500 [ Mode: Yes ] => Yes  
 BirthYearAge > 0,500 [ Mode: No ] => No  
AnalyzerCode in [ "03V" ] [ Mode: No ]  
 FractionRecentDemand <= 0,375 [ Mode: No ] => No  
 FractionRecentDemand > 0,375 [ Mode: Yes ] => Yes  
AnalyzerCode in [ "04A" ] [ Mode: Yes ]  
 OpenOrderIndicator = Yes [ Mode: No ] => No  
 OpenOrderIndicator = No [ Mode: Yes ]  
  HistoricalActivity2Years <= 12,500 [ Mode: Yes ] => Yes  
  HistoricalActivity2Years > 12,500 [ Mode: No ] => No  
AnalyzerCode in [ "07B" ] [ Mode: Yes ]  
 CriticalQuantity <= 1 [ Mode: Yes ] => Yes  
 CriticalQuantity > 1 [ Mode: No ] => No  
AnalyzerCode in [ "08L" ] [ Mode: No ]  
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 DivisionOwnerCode in [ "13" "26" "2D" "44" "48" "4S" "71" "75" "7G" "7H" "9R" "APL" "ASC" "BOI" "DUN" "G9" "LP" "LQ" "LU" 
"LX" "MB" "MC" "MP" "MR" "MS" "MV" "OBB" "RBS" ] [ Mode: Yes ] => Yes  
 DivisionOwnerCode in [ "MN" ] [ Mode: Yes ] => Yes  
 DivisionOwnerCode in [ "MT" ] [ Mode: No ] => No  
AnalyzerCode in [ "099" "09E" ] [ Mode: No ] => No  
AnalyzerCode in [ "0C6" ] [ Mode: No ]  
 #RR in [ 1 ] [ Mode: No ] => No  
 #RR in [ 2 3 4 ] [ Mode: Yes ] => Yes  
AnalyzerCode in [ "0C9" ] [ Mode: No ]  
 ForecastedQuantity <= 15,750 [ Mode: No ] => No  
 ForecastedQuantity > 15,750 [ Mode: Yes ] => Yes  
AnalyzerCode in [ "0G3" ] [ Mode: No ]  
 Vitality in [ 1 ] [ Mode: Yes ]  
  CriticalQuantity <= 1,500 [ Mode: Yes ] => Yes  
  CriticalQuantity > 1,500 [ Mode: No ] => No  
 Vitality in [ 2 3 4 5 ] [ Mode: No ] => No  
AnalyzerCode in [ "0G7" ] [ Mode: No ]  
 #RR in [ 1 ] [ Mode: No ] => No  
 #RR in [ 2 3 4 ] [ Mode: Yes ] => Yes 
 
Fold 4: 
AnalyzerCode in [ "001" "004" "008" "013" "01A" "01B" "01Z" "026" "030" "03V" "04B" "08L" "099" "09J" "09M" "0G3" "0I3" "0U7" "0V9" 
"0W9" ] [ Mode: No ] => No  
AnalyzerCode in [ "005" ] [ Mode: No ]  
 HistoricalActivity1Month <= 19,500 [ Mode: No ] => No  
 HistoricalActivity1Month > 19,500 [ Mode: Yes ] => Yes  
AnalyzerCode in [ "012" "018" "023" "03D" "03E" "04A" "04J" "07B" "08C" "08F" "08Z" "09E" "09R" "09X" "0A7" "0M7" ] [ Mode: Yes ] => 
Yes  
AnalyzerCode in [ "014" ] [ Mode: No ]  
 InventoryPosition <= 44,500 [ Mode: Yes ]  
  DivisionOwnerCode in [ "13" "26" "44" "48" "4S" "71" "7G" "7H" "APL" "ASC" "BOI" "DUN" "G9" "LP" "LQ" "LU" "LX" 
"MB" "MC" "MN" "MP" "MR" "MS" "MT" "MV" "OBB" "RBS" ] [ Mode: Yes ] => Yes  
  DivisionOwnerCode in [ "2D" "75" ] [ Mode: Yes ] => Yes  
  DivisionOwnerCode in [ "9R" ] [ Mode: Yes ]  
   FractionInventoryAvailable <= 0,935 [ Mode: No ] => No  
   FractionInventoryAvailable > 0,935 [ Mode: Yes ]  
    FirstStockAge in [ 0 1 2 3 4 ] [ Mode: Yes ] => Yes  
    FirstStockAge in [ 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 22 23 53 ] [ Mode: No ] => No  
 InventoryPosition > 44,500 [ Mode: No ] => No  
AnalyzerCode in [ "01X" "027" "03N" "04F" "085" "09Y" ] [ Mode: No ] => No  
AnalyzerCode in [ "021" ] [ Mode: No ]  
 ShelflifeIndicator = Yes [ Mode: Yes ] => Yes  
 ShelflifeIndicator = No [ Mode: No ] => No  
AnalyzerCode in [ "024" ] [ Mode: No ]  
 Weekend = Weekend [ Mode: No ]  
  FractionRecentDemand <= 0,450 [ Mode: No ] => No  
  FractionRecentDemand > 0,450 [ Mode: Yes ] => Yes  
 Weekend = Week [ Mode: No ] => No  
AnalyzerCode in [ "05C" ] [ Mode: No ]  
 ReturnRate <= 0,539 [ Mode: No ] => No  
 ReturnRate > 0,539 [ Mode: Yes ] => Yes  
AnalyzerCode in [ "0C6" ] [ Mode: No ]  
 FirstStockAge in [ 0 1 2 3 4 ] [ Mode: No ] => No  
 FirstStockAge in [ 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 22 23 53 ] [ Mode: Yes ] => Yes  
AnalyzerCode in [ "0C9" ] [ Mode: No ]  
 ForecastedQuantity <= 15,750 [ Mode: No ] => No  
 ForecastedQuantity > 15,750 [ Mode: Yes ] => Yes  
AnalyzerCode in [ "0G7" ] [ Mode: No ]  
 #RR in [ 1 ] [ Mode: No ] => No  
 #RR in [ 2 3 4 ] [ Mode: Yes ] => Yes  
AnalyzerCode in [ "0V7" ] [ Mode: Yes ]  
 EOSAge <= 2,500 [ Mode: No ] => No  
 EOSAge > 2,500 [ Mode: Yes ] => Yes  
AnalyzerCode in [ "0W7" ] [ Mode: Yes ]  
 PSS <= 5,075 [ Mode: Yes ] => Yes  
 PSS > 5,075 [ Mode: No ] => No 
 
Fold 5: 
AnalyzerCode in [ "001" "004" "008" "013" "01A" "01B" "01X" "01Z" "021" "026" "027" "030" "03N" "04B" "04F" "08Z" "099" "09J" "09M" 
"0C9" "0G7" "0I3" "0U7" "0V9" "0W9" ] [ Mode: No ] => No  
AnalyzerCode in [ "005" ] [ Mode: No ]  
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 FractionInventoryAvailable <= 0,183 [ Mode: Yes ] => Yes  
 FractionInventoryAvailable > 0,183 [ Mode: No ]  
  Weekend = Weekend [ Mode: No ]  
   #RR in [ 1 ] [ Mode: No ] => No  
   #RR in [ 2 3 4 ] [ Mode: Yes ]  
    ForecastedQuantity <= 6,500 [ Mode: No ] => No  
    ForecastedQuantity > 6,500 [ Mode: Yes ] => Yes  
  Weekend = Week [ Mode: No ] => No  
AnalyzerCode in [ "012" "018" "023" "03E" "04J" "085" "08F" "09E" "09R" "09X" "09Y" "0A7" "0M7" "0V7" ] [ Mode: Yes ] => Yes  
AnalyzerCode in [ "014" ] [ Mode: No ]  
 PSS <= 27,450 [ Mode: Yes ] => Yes  
 PSS > 27,450 [ Mode: No ] => No  
AnalyzerCode in [ "024" ] [ Mode: No ]  
 EOSAge <= 0,500 [ Mode: Yes ]  
  PSS <= 14,150 [ Mode: Yes ] => Yes  
  PSS > 14,150 [ Mode: No ] => No  
 EOSAge > 0,500 [ Mode: No ]  
  DivisionOwnerCode in [ "13" "26" "44" "48" "71" "75" "7G" "7H" "9R" "APL" "ASC" "BOI" "DUN" "LP" "LQ" "LU" "LX" 
"MB" "MC" "MN" "MP" "MR" "MS" "MT" "MV" "OBB" "RBS" ] [ Mode: No ] => No  
  DivisionOwnerCode in [ "2D" ] [ Mode: No ]  
   #RR in [ 1 2 ] [ Mode: No ]  
    #RR in [ 1 ] [ Mode: No ]  
     Vitality in [ 1 ] [ Mode: No ] => No  
     Vitality in [ 2 3 4 5 ] [ Mode: No ]  
      Weekend = Weekend [ Mode: No ]  
       CriticalQuantity <= 2,200 [ Mode: No ] => No  
       CriticalQuantity > 2,200 [ Mode: Yes ] => Yes  
      Weekend = Week [ Mode: No ]  
       HistoricalActivity1Month <= 7,750 [ Mode: No ] => No  
       HistoricalActivity1Month > 7,750 [ Mode: No ]  
        ForecastedQuantity <= 984,100 [ Mode: Yes ] => Yes  
        ForecastedQuantity > 984,100 [ Mode: No ] => No  
    #RR in [ 2 ] [ Mode: No ]  
     PSS <= 0,850 [ Mode: Yes ] => Yes  
     PSS > 0,850 [ Mode: No ] => No  
   #RR in [ 3 4 ] [ Mode: Yes ] => Yes  
  DivisionOwnerCode in [ "4S" ] [ Mode: Yes ] => Yes  
  DivisionOwnerCode in [ "G9" ] [ Mode: No ] => No  
AnalyzerCode in [ "03D" "08C" ] [ Mode: No ] => No  
AnalyzerCode in [ "03V" ] [ Mode: No ]  
 FractionRecentDemand <= 0,375 [ Mode: No ] => No  
 FractionRecentDemand > 0,375 [ Mode: Yes ] => Yes  
AnalyzerCode in [ "04A" ] [ Mode: Yes ]  
 HistoricalActivity2Years <= 12,500 [ Mode: Yes ] => Yes  
 HistoricalActivity2Years > 12,500 [ Mode: No ] => No  
AnalyzerCode in [ "05C" ] [ Mode: No ]  
 ReturnRate <= 0,362 [ Mode: No ] => No  
 ReturnRate > 0,362 [ Mode: Yes ] => Yes  
AnalyzerCode in [ "07B" ] [ Mode: Yes ]  
 CriticalQuantity <= 1 [ Mode: Yes ] => Yes  
 CriticalQuantity > 1 [ Mode: No ] => No  
AnalyzerCode in [ "08L" ] [ Mode: No ]  
 DivisionOwnerCode in [ "13" "26" "2D" "44" "48" "4S" "71" "75" "7G" "7H" "9R" "APL" "ASC" "BOI" "DUN" "G9" "LP" "LQ" "LU" 
"LX" "MB" "MC" "MP" "MR" "MS" "MV" "OBB" "RBS" ] [ Mode: Yes ] => Yes  
 DivisionOwnerCode in [ "MN" ] [ Mode: Yes ] => Yes  
 DivisionOwnerCode in [ "MT" ] [ Mode: No ] => No  
AnalyzerCode in [ "0C6" ] [ Mode: No ]  
 FractionRecentDemand <= 0,163 [ Mode: No ] => No  
 FractionRecentDemand > 0,163 [ Mode: Yes ] => Yes  
AnalyzerCode in [ "0G3" ] [ Mode: No ]  
 Vitality in [ 1 ] [ Mode: Yes ]  
  CriticalQuantity <= 1,500 [ Mode: Yes ] => Yes  
  CriticalQuantity > 1,500 [ Mode: No ] => No  
 Vitality in [ 2 3 4 5 ] [ Mode: No ]  
  MinimumLeadTime <= 15,900 [ Mode: No ] => No  
  MinimumLeadTime > 15,900 [ Mode: Yes ] => Yes  
AnalyzerCode in [ "0W7" ] [ Mode: Yes ]  
 InventoryPosition <= 57 [ Mode: Yes ] => Yes  
 InventoryPosition > 57 [ Mode: No ] => No 


