
1

Master thesis

A QA-pair generation system for the
incident tickets of SSC-ICT

University of Twente

Mick Lammers

m.r.lammers@student.utwente.nl

15th of March 2019

Supervisors:

Dr. A.B.J.M. Wijnhoven

Dr. F.A. Bukhsh

Company:

SSC-ICT, Dutch Ministry of Interior and Kingdom Relations

2

Abstract
The days of AI have begun, Artificial Intelligence becomes a common term in our vocabulary, even

though most of us know and understand so little about it. It seems like only the huge and elusive

companies like IBM and Google understand its use and potential fully.

In customer service, chatbots arise that answer customer questions based on most often manually

crafted data structures called Question Answer-pairs, making companies look like one of the elite.

However, what about those organizations that process so many questions that manual labeling is not an

option? Should they remain old fashioned static servants that only react to their customer’s inquiries

that do not see a way to cater them proactively? The large companies provide the solution but with a

price tag of millions of dollars. There must be something in between right? TopDesk, capping 80% market

share in the Dutch incident management branch (Datanyze, 2019) does not see how.

In this study, we propose a low threshold QA-pair generation system using state-of-the-art

technologies with the purpose of automatically identifying unique problems, and their solutions from a

large and high variety incident ticket dataset of the nation-wide public IT Shared Service Center.

In order to achieve this, we researched the in related works applied components and techniques, and

determined the for SSC-ICT best combination using identified characteristics of the dataset and

organizational context. Furthermore, a set of component-based evaluation measures is designed in order

to evaluate the different techniques and determine the best solutions. Then, a recommendation is

provided with a system architecture, its use cases, and potential further improvements.

The result is a system consisting of 4 components: categorizational clustering, intent identification,

action recommendation, and reinforcement learning. For categorizational clustering, we determine

categorizational keywords using an existing Latent Semantic Indexing (LSI) algorithm to which we

allocate the tickets using Levenshtein distance, which overcomes misspelling exclusions.

For the intent identification component, we compared two very different but state-of-the-art

techniques: POS Patterns and Topic Modeling (LDA). After applying the evaluation measure, Topic

modeling came out as the winner with a slightly lower QA-pair quality score, but higher improvement

potential and a much higher ticket coverage rate.

The actions are cleaned, clustered and provided using a recommended application, a knowledge base

application with reinforcement learning capabilities for use by the 40.000 customers of SSC-ICT. With

enough feedback, the expected success rate of the system is about 50%. With further improvements, we

believe this can lead up to 70-80%.

Other uses of the system’s QA-pairs are Business Intelligence, FAQ extraction, and Anomaly

Detection.

3

1 Introduction
IT Shared Service Centers are the beating heart of large organizations. They take on everything that

has to do with the facilitation of IT: Personal computers, mobile devices, workplaces, servers,

applications, VPN’s. Now that more and more tasks and communication is done using computer devices,

organizations are more dependent on them as well. IT Incident management, which manages the IT-

related incidents within an organization and is a large part of Shared Service Centers’ responsibility, is

therefore crucial to the productivity of an organization.

As of now, incident management is performed in almost all service centers using a ticketing system.

A ticketing system is a system in which incident calls or requests for service by users are registered by a

service desk into a form which is called a ticket. The ticket is then either sent to the person within an

organization that can act on the ticket or the person that knows the most about the context of a ticket.

These ticketing systems do well what they are primarily meant for, and are especially very useful in large

organizations in which alternatives for incident management like direct communication or e-mail would

be inefficient.

However, what is often the case with these systems, is that the ticket data that they generate has

excellent potential but often remains unused. The data often contains a description of the incident as

well as the action that was performed upon this incident. This information could be used to create

knowledge that could be used to automate service desk operator tasks or to be able to offer common

solutions via a self-service portal or chatbot. In this research a system is designed by which the ticket

data of a large Shared Service Center is used to create this knowledge in a manner that limits the amount

of manual work as much as possible, using Natural Language Processing and Machine Learning.

The organization where the research is performed at is SSC-ICT. SSC-ICT is the IT Shared Service

Center of 8 Dutch ministries. It supports about 40.000 civil servants that almost all have a company-

laptop and phone as well as a virtual working environment. Furthermore, SSC-ICT provides service for

over one thousand applications, and they have their own Data Center. All service-desks combined

(phone(60%), e-mail (15%), physical(10%) and other (15%) generate around 30.000 tickets a month in

ticket management system TopDesk.

Currently, SSC-ICT wants to increase its user satisfaction level. It is at a 6.7; their goal is a 7.0 at

least. Monthly questionnaires show that this user satisfaction depends for a very high part on the

customer service department, as well as on repeating complaints that are not taken care of. Management

has spoken out and started a series of projects regarding being able to act more pro-actively instead of

reactively on customer requests in order to increase the service satisfaction. One of these projects is meant

to analyze the available data within the company with the purpose of finding use cases for it. This thesis

research is part of this project.

When starting the project, in the first two weeks, we identified the data sources through interviews

and calls. Very quickly, it was clear that the data of the service management system had the most

potential to increase customer satisfaction and this data was yet unused. Literature research showed that

application of Artificial Intelligence (AI) in the customer service management had great potential and

was by far the number one researched subject in the field. However, this was more due to lack of research

in the customer service field then due to the amount of research in AI, which is not that large.

The potential of implementing AI in customer support is very promising. According to recent

research among 1082 senior IT-professionals from 11 European countries (ServiceNow & Devoteam,

2018), 72% of those that use AI in the customer service indicates to experience benefits from the

4

technologies. However, less than a third of the customer service companies in the EU uses AI and only

22% of the Dutch customer service companies. Topdesk, the ticket management provider of SSC-ICT, has

a whopping 88% market share but do not have any AI in their system, to show the differences.

Under AI in the customer service is understood virtual assistants and chatbot, Natural language

processing tools, Sentiment analysis and text mining (ServiceNow & Devoteam, 2018). not have any AI

in their system, to show the differences.

Furthermore, data analysis, as well as interviews with the managers of the service desk, has shown

that 85% of all telephone calls to the service desk are first-line calls. They are thus answerable by the

operator without him or her needing extra resources; this means that these tickets are rather easy to solve

and therefore potentially automatically solvable or solvable by users themselves when provided with the

right information. Thus, there are significant opportunities for automatization with AI at SSC-ICT.

A virtual agent can do all of the above and more. It would make the service be able to be available

24/7: also at night and the weekends. Furthermore, there would be no waiting times, and customers would

receive consistent information, not having to rely on the operators’ experience. Not to speak about the

benefits of a business perspective like reduction in service operator’s cost.

However, complete AI systems like IBM Watson or Amelia of IPSoft are expensive. Estimates point

towards investments of multiple millions of dollars for a company like SSC-ICT. Also, they require

substantial changes in infrastructure, as they built on learning from feedback, namely reinforcement

learning. Training such a system from scratch takes at least 12 months to catch up with the organization’s

processes and be more efficient than without such a system. A leap this far, costly and with little

transparency is something that not many organizations are willing to take.

However, we think that this is not where it ends. There is an area between a fully automatic cognitive

AI system and a static ticketing system. What is needed is a first step on the ladder towards AI, a low

threshold system that shows quick benefits of applying AI in customer service and is transparent in its

results. SSC-ICT has the perfect environment to build this, due to its scale, quick win potential and

number of users. This research describes a low threshold bootstrapping system (Dhoolia, Chugh, Costa,

Gantayat, et al., 2017) for AI in customer service that serves as a foundation for continuous improvement.

 Problem statement

How can AI make use of ticket data? The tickets of SSC-ICT consists among other fields on the

description of the problem and the action that is performed on the problem by the service desk operator.

What AI techniques can do is identifying unique problems from the tickets, compare them to similar

problems, and provide suitable action, based on history, all the while without much manual effort. There

are different components in this process needed due to the distinction between problem and solutions

and the matching between those. A component that large cognitive systems like IBM Watson are very

advanced in is reinforcement learning. Reinforcement learning is learning from feedback mechanisms,

and it requires much feedback. In this research, we focus on “bootstrapping” the cognitive system by

identifying problems and matching solutions, i.e., generating Question-Answer pairs (QA-pairs). The

reinforcement learning part is given a start with but is not developed in-depth due to the need for long-

term feedback and continuous improvement. In the next chapter, we formulate the research scope in a

research question and sub-questions.

5

 Research questions

What is a “State of the Art” QA-pair generation system for incident management of SSC-ICT?

1. What components, techniques, and characteristics of QA pair generation systems are used in

related works?

A literature review will be performed to identify all available components and techniques in QA-

pair generation. We perform a literature review on a wide array of AI applications for ticket management

systems and extract the general topics which we will describe in chapter 2. Next, from this same literature

review, we extract a short-list of the most similar research cases to this research, and we will analyze

them thoroughly. We provide summaries of these related works in chapter 2.5, and we accumulate

requirements from them for our system in chapter 2.6.

2. What potentially useful, other techniques are there?

Apart from literature, online communities are, especially in Data Science, a great way of collecting

inspiration. In chapter 2.7, we accumulate all the techniques that we use in this research, and we will

explain how and why.

3. What are the characteristics of the SSC-ICT dataset?

Based on this research question we analyze the dataset of SSC-ICT, with the perspective of building

the system. We analyze the data fields, their use, we describe the ticket input process, and how the final

dataset is composed.

4. How can QA pair quality best be measured?

To evaluate the system and to be able to compare the results of different techniques, measures for

the quality of the QA-pairs are needed. In the literature review among related works, the encountered

evaluation techniques are evaluated. Furthermore, we apply literature research on evaluation techniques

specific to the components of the system.

5. What is the minimal quality level needed for the evaluation corpus to produce relevant

performance measures?

Setting a minimum quality level helps to see the system’s results in perspective. We base the quality

level on achieved results of related works as well as on prognoses of field experts.

6. How can QA pairs best be used at SSC-ICT?

QA-pairs have multiple use cases. Based on the characteristics of SSC-ICT we recommend one or two

use cases. Furthermore, we will provide a prototype version of such an application, based on the ticket

data of SSC-ICT.

6

 Research approach

For this research, we chose to use a custom research framework. Our framework is based on the

Cross Industry Standard Process for Data Mining (Crisp-DM). This model is a widely used methodology

for data mining projects and has use cases in projects within immature research fields. Furthermore, this

model is very practically oriented rather than theoretical which suits this research project well.

In figure 1 the dimensions of the Crisp-DM model are provided along with their generic tasks, this

helps to understand the dimensions better. In figure 2 the adapted version of the Crisp-DM model is

visualized. In this version, we combine data preparation and data modeling due to the synergy of these

tasks in Natural Language Processing (NLP). Furthermore, we added another dimension, namely

determining the high-level architecture. We did this because NLP systems other than most data mining

projects, often consist of a pipeline of components, rather than one, that have different input and produce

different results.

In the next paragraph, each of the dimensions is described in more detail as well as where in the

report the elaboration on it is described.

Figure 1: Generic tasks of Crisp-DM Reference model (Chapman et al., 2000)

7

Figure 2: Adapted version of CRISP-DM research approach

Domain understanding

In this first phase, the research domain is explored and understood. A literature review is applied to

find similar cases, to scope down the research domain as well as to find technologies and components

that are potential candidates for this research project. We describe similar cases, components, and

technologies in chapter 2: Background.

Data understanding

Data understanding is about understanding the potential and limitations of the data regarding its

expected results. We describe this topic in chapter 2.6: The ticket data.

8

Determine high-level architecture

This dimension is about determining what components are best for the system. Once this is

determined, it remains as is and the modeling of processes and evaluation can advance. In short, it is the

foundation of the system. This dimension is described in chapter 3: High-level architecture.

Data Preparation & Modeling

Modeling is for this research the process of choosing, designing, building and evaluating of models

and algorithms with the goal of reaching the expected results. This process, as well as visualized

architectures, are described in chapter 5: Modeling.

Evaluation

Evaluation criteria are defined componentwise. For each of the design iterations, we measure and

evaluate the effectiveness of the solution using the criteria. In chapter 4 the criteria are defined, and in

chapter 5 they are applied.

Deployment

In chapter 6, the final system is described and the performance is determined and compared to the

minimal quality level, which is described in chapter 6 as well.

9

 Research taxonomy

- Intent: an intent is an identified problem or the Question in Question & Answer pair.

- Short description: a field of the ticket dataset containing a summary of the problem, used for

identifying the intent

- Categorical clustering: clustering on the highest level

- SSC-ICT: Shared Service Centre – ICT

- AI: Artificial Intelligence

- NLP: Natural Language Processing, an AI subject for natural language

- Deep Learning: Machine Learning using neural networks

- QA-pair: A question-answer pair, a combination of a question and a suitable answer.

- Customer/user: The Dutch civil servants

- Operators: Service-desk employees

10

2 Background
This chapter describes background information regarding this research. First, we describe the main

domains of Artificial Intelligence in customer service. Then, we describe the evolution of AI systems

based on a literature review among 50 articles regarding AI systems in the customer service. Followed up

by common applications of QA-pairs which is based on the literature review. After that, common

techniques in QA-pair systems are summed up. Next, we describe the ticket dataset of SSC-ICT. Then,

we describe related systems to this research system. We summarize these articles and extract

characteristics from them. These characteristics are then applied to SSC-ICT.

 Artificial intelligence, Machine Learning, and Natural

Language Processing

Russell & Norvig (2013) define Artificial Intelligence in four different approaches: machines that act

humanly, machines that think humanly, machines that act rationally and machines that think

rationally. For this research we will use the definition of machines that act rationally, or “Computational

Intelligence is the study of the design of intelligent agents”. This definition is most fitting because in this

research an agent is designed that acts rationally; it offers rational solutions to problems.

Natural language processing (NLP) is a big part of AI that is used in the customer service. NLP is

defined as all techniques used for the processing of natural language text. Since all explicit knowledge is

stored in either digits or natural language, natural language processing is a big subject within AI.

Natural Language Processing consists of but is not limited to reading, extracting information,

creating new information and generating natural language. NLP makes use of techniques that are part

of Machine Learning, which is the other big subject within Artificial Intelligence. Machine Learning can

be another topic, Deep learning, which can be seen as a subtopic within Machine Learning is also often

used in combination with NLP.

Summarized, figure 3 in which the subjects within AI, Natural Language Processing and Machine

Learning and their overlap are visualized, explains the definition of these topics best for this research.

Figure 3: AI, ML, DL and NLP

11

 QA-pairs

The results of the system that we describe in this report are what are called Question Answer (QA)

pairs. QA pairs are a combination of a question and an answer. In incident management the question is

often referred to as “intent”, we use this term in the rest of this report as well. The intent is the user’s

intent for creating the ticket. The answers are called actions, resolutions or just answers, in this report

we will use the term “action”, because this term is also used in the TopDesk ticketdata. The combination

of the intent and the action we call the QA pair. The idea behind the creation of QA pairs from ticket

data is that the tickets with the same intents are clustered and the applied actions on the tickets are

provided as potential answers.

Figure 4: Intents and actions as QA-pairs from ticketdata

 Applications of QA-pairs

In this paragraph, the different applications of AI in the customer support service are discussed. This

list is built based on a literature review that we performed among 50 articles regarding AI applications

in Customer service. The list of materials can be found in Appendix A. The literature research

methodology is found in Appendix B. The list is the following:

 Chatbot/virtual agent

 Knowledge base

 Business Intelligence

 Anomaly detection

A chatbot or virtual agent is a system that can answer questions of users and drill down with a

specific follow-up question in a chat environment. A knowledge base is an internally used system in

which complex low-level information is stored that can be called intuitively.

A Business Intelligence system is a decision-making system used by management or analysts to get

a high-level perspective on a particular aspect of an organizations practice.

Anomaly detection is a technology in which major incidents are automatically detected based on

triggering of certain thresholds that are set based on AI generated features.

12

 Techniques in QA-pair generation systems

In this chapter, we summarize and explain the techniques used in scientific research for AI systems

in customer service. This chapter serves to provide a global view of the topic. We describe the techniques

that are prevalent in pre-processing of text. Furthermore, we describe techniques that are common for

clustering text.

Why pre-processing, clustering and synonyms? Pre-processing is important for getting the data in

the right form. Clustering is essential for classifying. Synonyms are important for normalization of text

so that clustering can be applied more successfully. In this chapter, we describe these techniques that are

used further in the report. It provides an overview of the subjects.

2.4.1 Natural Language Pre-processing
Natural Language pre-processing is the process of preparing and normalizing text for machine

learning processes. The following are the most common pre-processing techniques: tokenization,

capitalization, stop-word removal, stemming, lemmatization, spelling correction, noise removal, n-gram

creation, word embeddings, and part-of-speech tagging.

Tokenization is the process to split sentences into words, of which the collection is commonly called

a “bag of words”. To be able to compare all of these words, they are turned into lowercase words. Next,

stop words can be removed for topic extraction, as stopwords are not contributing to this end and are

consequently considered as noise. Stemming is a process in which the last characters of words are cut off

using a simple algorithm removing common prefixes. This process further increases the normalization of

words. Next to stemming there is also a more advanced variant called lemmatization. This process is

mostly based on deep learning and brings back words to their root form. For instance: is > be, and

bought > buy. Spelling correction is mostly performed using an edit-distance or Levenshtein algorithm.

This algorithm computes the number of operations to change one word into another. Then noise removal

is typically the process of removal of specific system or text-type related characters like timestamp or

mail-signatures. Noise removal can be performed using many different techniques ranging from regular

expressions to deep learning. N-gram extraction is the process of finding common sequences of n-amount

of words. It is used to find topics within sentences or to find common concatenations of words. It can

range from frequency-based calculations to advanced deep learning models. Finally, word embedding is

the most abstract technique in this list as it is the transformation of words into digits with the purpose

of preparing text for Machine Learning. The most common word embedding technique is used in more

than 80% of search-related systems is TF-IDF (Term Frequency-Inverse Document Frequency). TF-IDF

is a vector for a word depicting how often the word appears in a document to how often it appears in a

larger set of documents. Thus the less often the term occurs in other documents, the higher its TF-IDF

score.

Finally, Part of Speech (POS) tagging is a Natural Language Process of labeling words with their

grammatical word-form. POS tagging is either done based on a library or on an algorithm that uses

syntax and positioning and uses Deep Learning or a combination of both.

There are numerous applications of POS tagging. The identification of word forms can help for

instance with finding entities or operations as most entities are nouns and most operations are verbs.

Entities and verbs can, in turn, be used to summarize sentences.

13

2.4.2 Clustering
Clustering is a grouping name for all technologies that group data according to similar

characteristics. In Natural Language Processing, the input is often word embeddings which are explained

in the previous paragraph “Pre-processing”.

The most established text clustering methodology that uses word embeddings is Latent semantic

analysis (LSA). In LSA, a term-document matrix is constructed using the word vectors for all the terms

and then using a methodology called Singular Value Decomposition patterns and relationships among

these terms are identified, and concepts can be compared.

One other common and recent use of TF-IDF for clustering documents is topic modeling, or Latent

Dirichlet Allocation (LDA). LDA is an unsupervised algorithm that essentially determines a set of topics

over a corpus and provides a weight of accordance of each document to each topic. This way it can

identify dominant topics.

Now these word embedding clustering methodologies are in essence all statistical. There are however

also syntactical clustering methodologies. For these methodologies, no data is needed as they appoint a

label to data based on only that data itself. The most common syntactical clustering methodology is that

of POS patterns in which patterns of specific Part of Speech are recognized as containing important

aspects of a sentence.

2.4.3 Synonyms
Synonyms are an important challenge in customer service AI systems.

In synonym detection, there is a separation between domain-specific and general synonyms. General

synonyms are synonyms of ordinary daily used words, domain-specific synonyms are only found In their

respective domain, examples are names of applications or processes.

General synonyms can be identified using large lexical databases which are almost always open-

source. Domain synonym detection is not possible using lexical databases, as the keywords are generally

domain-unique and therefore not found in lexical databases. For this task, there are no tools available as

of yet as well. However, many research has been done on this topic; different technologies are used with

different results on different types of text. For one, word2vec is a technology created by Google in 2013.

This technique makes use of word vectors and two-layer neural networks that compute similarity based

on linguistic contexts of words. Its advantage is that it is rapid and that the technology is readily

applicable. However for it to be accurate, large amounts of text (more than 10 million words) are needed,

preferably with documents with multiple sentences.

Another technique that applies to domain synonym detection is from S. Agarwal et al. (2017). They

designed an entity similarity algorithm that computed similarity based on similar operations among

entities, it would be especially useful for short text documents and needs a medium-sized corpus. Its’

downside is its speed and inaccuracy for documents with multiple sentences. It was designed because

other techniques, like word2vec, created too much noise on their dataset.

2.4.4 Reinforcement learning
Reinforcement learning is the third dimension of machine learning next to supervised learning and

unsupervised learning. It is a very general problem description for the goal-oriented interaction of an

agent (system) with the environment (user) as is shown in figure 4. The agent provides the best form of

action it knows to a situation in the environment, and the environment sends back a response which is

interpreted by the agent as either positive or negative feedback from which it can adjust its future action

regarding similar situations. We call it general because there are so many ways by which reinforcement

14

learning can be applied, the most common one being dynamic programming, and recent research is

diving into using deep learning for reinforcement learning in NLP (Sharma & Kaushik, 2017).

Figure 5: Reinforcement learning

 Related works

In this chapter we summarize and analyee the most related works to this research case from a

literature review among 50 articles regarding AI systems in the customer service. All the systems that we

descreibe are QA-pair systems from incident tickets. We have not found other relevant systems in the

scientific literature.

The articles are discussed below and are in order of relevance to this research.

(1) In P. Dhoolia et al. (2017) a cognitive support system is designed for a specific client that has 450

factories and operates in 190 countries. The system is aimed to answer level-1 and level-2 support

questions associated with IT applications used by enterprise WW users. In order for that system to work

effectively, they attempt to extract question and answer pairs from tickets with the goal of

bootstrapping a cognitive system. For extracting the intents, they used a combination of n-gram and

Lingo techniques (Osinski, Stefanowski, & Weiss, 2004), as well as field experts to manually identify

intents. These intents were then used to match live tickets to.

To identify intents from live tickets they applied the following processes: 1) group the repeating or

similar tickets into problem clusters, 2) select the appropriate cluster, and 3) extract the representative

question-answer pair from the cluster. They did this by parsing user questions to extract business entities

and actions into a knowledge graph. During a conversation with the user, they explore the neighborhood

of the sub-graph in order to find probable intents.

Furthermore, continuous feedback learning was applied to continuously improve the system. When

helped, the customer could leave feedback regarding the process which information was placed in a

human expert verification queue and applied after approval by the human expert. They made use of the

feedback in 6 different ways: identifying question variations, identifying probable new questions,

identifying flaws in the intent disambiguation process, learning new intents, learning the new mapping

between knowledge units and intents

In the end, 130 support intents were identified in the domain. The system was able to answer 50% of

the questions.

15

Figure 6: System architecture (Dhoolia, Chugh, Costa, Gantayat, et al., 2017)

(2) In S. Agarwal et al. (2017) a cognitive system was designed by researchers from IBM for the use

in service providers’ service desks. The knowledge extraction processes applied is divided into three steps:

problem diagnosis, root cause analysis, and resolution recommendation. For the problem diagnosis

process, logical structures in ticket texts were identified to pre-classify tickets into either simple or

complex groups. Next, a classification engine based on a support vector machine with a Radial Basis

Function is built. To train this engine, 5000 problem tickets were manually labeled by experts into 15

categories.

For the Automated Root Diagnosis (RCA) process linkages between a problem and its probable cause

were extracted. These linkages are based on using features such as time of occurrence and similarity of

the IT entity on which they occurred, as well as common terms in the text descriptions of the problem

and change (S Agarwal et al., 2017).

For the resolution recommendation, three processes were used: identifying the action phrases from

the resolution texts, deducing domain dictionary and semantic similarity and finally building the

summary phrases. Identifying the action phrases is needed to focus on the right information in large

texts. This was done by determining the most relevant POS patterns and finding phrases that match

these patterns. For deducing a domain dictionary, a custom algorithm was built that identified similarity

based on common operators on entities and the other way around. Action phrases were then built by

combining entities and operations in a summary phrase.

The system was able to find a solution to 67% of incoming tickets. The system was able to reduce

the time needed to solve a ticket by half by being able to offer probable solutions from 70 minutes to 35

minutes. Dataset was 1000 IT tickets.

16

Figure 7: System architecture (S Agarwal et al., 2017)

(3) In Mani et al. (2014) an approach is proposed to automatically analyze problem tickets to discover

groups of problems being reported in them and to provide meaningful labels to help interpret these

groups. The method is based on incorporating multiple text clustering techniques and is evaluated

qualitatively and quantitively.

Their process can be divided into four steps: cleansing the tickets, preprocessing the ticket texts,

clustering tickets using Lingo (Osinski et al., 2004) and then further grouping the tickets using their novel

hierarchical n-gram based clustering technique and finally merging similar clusters.

Mani et al. (2014) also applied the algorithm in two real case scenarios and evaluated the usefulness

of the algorithm in practice. They observed that project teams used the identified clusters to find the

most occurring problems in order to focus their attention on those problems. In another case, the software

maintenance had been transferred over to a new service provider, and the knowledge of the repetitive

problem patterns helped the new team to come up to speed quickly. Furthermore, they note that

exploring clusters beyond cluster size, for instance, resolution time, SLA adherence could provide great

business insights. 2 datasets: one of 1084 tickets and one of 80787 tickets.

(4) Vlasov et al. (2017) designed an AI user support system for a large Russian company. Their

system can be divided into three main processes: a request classifier, a causes generation database and

an answer merging process. For each of the three processes, they make use of a database in which the

respecting data is stored separately.

Their problem classification algorithm is the most interesting for this research, so this will be focused

on. For text pre-processing, they applied conversion to lowercase, deletion of whitespaces, number, and

punctuation. Also, they deleted stopwords and reduced words to their word stems and base form

(stemming). When this was done they used n-gram retrieval to find contiguous sequences. The text

mining process was ended with the unification of synonymic constructions. For this process they

identified three types of synonyms, namely: acronym expansions: “RFS” – “request for supply”,

synonyms in the sense of the Russian language: “storekeeper” – “warehouse manager” and synonymous

words in the context of SAP: “budget indicator red” – “insufficient budget”. The specification of the

synonyms was done manually. For the clustering, TF-IDF was attempted but found not useful as specific

words for small classes remained invaluable. Instead, they applied TF-SLF. This method is based on the

fact that the term is important within a category if it occurs in most documents of this category. Finally,

17

clustering algorithms were applied and tested. SVM and MaxEntropy appeared most useful over Naïve

Bayes and K-nearest neighbors’ algorithm. They use a test sample of 12554 tickets.

Figure 8: System architecture (Vladimir, Victoria, Marat, & Sergey, 2017)

(5) In Jan et al. (2014) a concept annotation system for tickets in IT service desk management is

proposed. Their method consists of first generating n-gram phrases for which they use predefined POS

patterns. To their mentioning, this methodology works very effectively for cleaning up n-gram phrases.

Next, they determine the most suitable phrase using a formula consisting of different algorithmic

likelihood scores of phrases. The resulting phrase is then used as a topic model and along with all other

phrases clustered using Latent Dirichlet Allocation (LDA) as well as pLSA (Probabilistic Latent semantic

analysis). According to (Jan et al., 2014), LDA is different from LSA in that “LSA assumes that the model

parameters are fixed and unknown; while LDA places additional a priori constraint on the model

parameters, i.e., thinking of them as random variables that follow Dirichlet distributions.”. Their results

show that both LDA and pLSA perform better than Lingo does. Two sets of 20k tickets each.

Figure 9: System architecture (Jan et al., 2014)

(6) In Potharaju & Nita-rotaru (2013) a system is designed to automatically analyze natural language

text in network trouble tickets. Their case is a large cloud provider of whom they analyze 10k tickets.

The system focuses on inferring three key features: (1) Problem symptoms indicating what problem

occurred, (2) Troubleshooting activities describing the diagnostic steps, and (3) Resolution actions

denoting the fix applied to mitigate the problem.

The problem tickets used in this research consist mostly of longer textual form. Therefore the

methodology starts with hot sentence extraction. Next, a number of filters is applied in order to extract

the important domain-specific patterns: Phrase length/frequency filter, Part of Speech filter and an

18

Entropy filter. The phrase length/frequency filter builds on the idea that important phrases often appear

often and are short in length. The POS filter builds on research of Justeson et al. in which was found that

technical phrases can often be placed in one of seven patterns. Each sentence is then tagged with a fitting

pos tagger, and if the pos patterns coincide with one of the seven patterns, the sentence is accepted. The

third patterns used information theory algorithm to calculate the information richness of sentences using

Mutual Information theory and Residual Inverse Document frequency. Next to finding information-rich

sentences there was also built an ontology in order to infer the lexical meaning of words.

Figure 10: NetSieve system architecture (Potharaju & Nita-rotaru, 2013)

Something unique but useful that is part of their report is that they provide a chapter with

challenges, indicating the challenges that they are confronted with.

2.5.1 Summary of articles
In this paragraph, the points of interests of the articles in chapter 2.4 to this research are

summarized.

One large insight is that the datasets are small relative to the dataset of SSC-ICT. The largest dataset

used in the articles is 80.000 tickets, less than half of the number of tickets of this research, others are

mostly 20.000 tickets or even less. However, the datasets from the articles also consist of fewer categories,

and they identify relatively few problems, 130 at the most, this to an expected 500 problems from this

research. So even though the dataset of SSC-ICT is larger, the variety is also higher. The implication of

this is that per category the number of tickets does not differ that much. Therefore, similar techniques

as those used in the articles may be useful for this research. This, however, does not count for manual

techniques like labeling and categorizing; it becomes more demanding when variety and scale increases.

Another insight is the clustering techniques that are used. In 4 out of 6 articles, POS patterns are

extracted from sentences in order to identify problems. Furthermore, Jan et al. (2014) apply LDA topic

modeling (see), and a couple of articles use Lingo’s LSA clustering methodology (see).

Furthermore it can be concluded that synonyms are essential aspects of these systems. Agarwal et

al. (2017) determine synonyms using their entity-operation similarity algorithm. This is a custom

algorithm that calculates entity similarity based on familiar operators. Vlasov et al. (2017) differentiate

three types of synonyms: acronym expansions, language-specific synonyms and domain-specific

synonyms which they then manually identified.

Then, the topic of reinforcement learning within this topic was implemented only once in all six

articles. P. Dhoolia et al. (2017) used customer feedback for optimizing nearly all system components, of

which a domain expert first checked the adaptations.

Another recurrent component is detecting action/hot phrases; this is important when tickets consist

of large pieces of text.

19

 The ticket data

In this chapter, the ticket data that will be used is described. This is the data understanding

dimension. At the end of this chapter, the dataset is compared to the datasets of comparable research

and characteristics of the SSC-ICT dataset are identified as well as implications for designing the system.

Currently, all tickets of SSC-ICT are divided into two TopDesk systems. One for the Ministry of

External Affairs and one for the other ministries that SSC-ICT administers. This is the case since

February 2018. Before, SSC-ICT had four systems.

For this reason, the ticket data that will be used for this research will be the dataset from the start

of February 2018 till the 31st of December 2018. This is a dataset of 340.000 tickets. See Appendix C for a

practitioner’s perspective on the tickets in the TopDesk system. See table x for an impression of a ticket

and its respective fields.

TicketI

D

Short

description Category

Sub-

category Ticket type Entry type

Practitioners

group Action

xxxxx

Outlook

ontvangt

geen mail Applicaties Basis Incident Telefonisch

S-GOS-

Servicedesk

12-02-2018

10:31 lastname,

firstname:

Via credential

manager oude

wachtwoorden

weggehaald.

Outlook werkt

weer.

Table 1: An example of an incident ticket of SSC-ICT

2.6.1 Ticket fields
The tickets have a large number of fields (40+). However, most are redundant or remain unused by

the customer support operators and are therefore empty. The relevant fields are the following:

Field

Ticket id A unique id for each ticket, automatically generated

Short description A summary of the ticket problem, written by the service desk

operator

Request The full description of the ticket, in case of an e-mail, the full

e-mail is displayed here. In other cases, it is similar to a short

description

Action A summary of the action that follows upon the tickets, it is

written by the operator.

Type of ticket Type of customer request, either (in order of frequency):

incident, request for service, internal management

notification, request for information, security incident,

SCOM (a monitoring system), complaint. The operator picks

these.

20

Category The highest level of categorization: User-bound services,

Applications, Premise-bound services, Housing & hosting,

Security.

Sub-category The second level of categorization. Each of the main

categories has at least five subcategories. In total there are

42 sub-categories. 50% of the tickets are covered by three

subcategories. See figure x.

Practitioners group This is the division that solved the ticket, 85% of the ticket

has the service desk as practitioners group, the other tickets

amongst about 300 small groups.

Entryp Means by which customer contacted the service desk upon

creation of the ticket, either telephone, e-mail, physical

service desk, portal, website, manually.

Table 2: SSC-ICT relevant ticket fields

Of these fields, we further determine which of them are relevant for this research project. After data

analysis, we concluded that short description and the action field are the primary resources for the

project. The request field appeared too inconsistent for use. Only in the case of tickets generated by e-

mails, there would occasionally be more information provided than in the short description, but it would

be among much unuseful information (noise) as well. We, therefore, chose for the sake of simplicity to

keep the request field out of the scope. We also decided to keep the category and subcategory fields out

of this research scope. We decided this because the categorization is not problem-focused but rather

organization-focused. The same problems can and do -after data analysis- occur in different sub-

categories. This is not useful for intent identification.

Furthermore, data analysis showed that 30% of the tickets are categorized in the wrong sub-

category. We chose not to make this inaccuracy influence our system. The remaining fields we chose to

use for optimizing the training set, this is described in the next paragraph.

Figure 11: Ticket division by category and subcategory

21

2.6.2 Data selection
In total the dataset from February to end December comprises of 340.000 tickets. After selection,

210.000 tickets remain. First, we focused on all first line tickets; with this step, we remove 40.000 tickets.

Then, we chose to include only the following types of tickets: incidents, requests for service and requests

for information. The other ticket types had not much to do with customers and were generally generic.

2.6.3 The input process
In this paragraph, we describe the way that tickets are registered. This provides contextual

information from which we conclude some things.

Down below an overview of the division of the tickets for the different entry types: by phone

(telefonisch), e-mail, physical service desk (balie), registered by user themselves (zelf geconstateerd), SSC-

ICT web portal (portal) and automatically registered on event (Event).

Figure 12: Ticket division by entry-type

Al tickets from all entry-types are stored in the same system in the same format and in the same

database. In total, a ticket has about 40 fields that are generated (e.g., timestamp), filled in from a list of

options, or typed manually. The fields that can be filled in from a list of options are the following: entry-

type, category, subcategory, state, practitioners’ group. The entry-type is mentioned in figure 12. The

practitioner groups are the functional groups within SSC-ICT that can find a solution to a ticket. In all

cases of ticket solving, as is explained by the two service desk managers that are interviewed, initially

the operators try to answer the tickets themselves if they cannot find the solution, they will generate a

second-line ticket that is passed on to the practitioner group that is most likely to solve the ticket, this

happens in 15% of all tickets, the first line operators solve 85% of the tickets.

Fields of potential interest that are generated automatically in TopDesk are timestamp and

throughput-time. Other generated fields are either not used or complementary to mentioned fields.

The manually filled-in fields are a short description, request, and action. In the short description,

the ticket problem is described in one sentence. In the request field further context regarding the ticket

can be provided, and in the action field, the action taken on solving the ticket is described.

22

 System characteristics

From the related works we identify differences among the articles that impact the way the systems

are built. In this paragraph, we describe these differences, how they are identified, how they are at SSC-

ICT and their implication of the system. In table 3 an overview of the characteristics is shown, after that

they are described in more detail.

Characteristic SSC-

ICT

Implication

Language Dutch - Limited availability of

software/applications.

Size of dataset Large - Limited efficiency of manual

processes.

Length of documents Short - Topic modeling is less useful.

Variation in intents High - Not suitable for topic modeling.

Variation in domains High - Advanced categorization

The speed of structural

change in topics

High - Minimize the need for manual work

Amount of future

development

Low - System results should be directly

useful

Amount of manual work

availability

Low - Minimize manual work

Amount of potential users High - The potential for user feedback;

reinforcement learning

Privacy restrictions High - Remove names from text

Table 3: QA-pair system characteristics

Language

We identify language as the language in which the tickets are written. From the related works, we

see that most articles managed English systems. SSC-ICT’s tickets however are all written in the Dutch

language; this impacts the research in some ways. The most impactful one is that specific algorithms like

POS Taggers or synonym detection techniques are trained on English datasets. They are therefore not

useful for this research. A challenge, therefore, is to find accurate Dutch software.

Size of Datasets

One significant insight is that the datasets are small relative to the dataset of SSC-ICT. The largest

dataset used in the articles is 80.000 tickets, less than half of the number of this research's tickets, others

are mostly 20.000 tickets or even less. However, the datasets from the articles also consist of fewer

categories, and they identify relatively few problems: 130 at the most, to an expected 500 problems from

this research. The implication of this is that per category the number of tickets does not differ that much.

Therefore similar techniques as those used in the articles may be useful for this research. This, however,

does not count for manual techniques like labeling and categorizing; they become more demanding when

variety and scale increases.

23

Length of documents

We see a difference in length of documents between the articles with an accompanied difference in

of choice of techniques. Potharaju et al. (2015) manage documents with multiple sentences; they tackle

this problem by first identifying the useful phrases. Furthermore, from online research, we found that

topic modeling (LDA) is especially useful for documents with multiple phrases. For short phrases, POS

pattern techniques are used by the related works.

SSC-ICT’s short descriptions are short phrases of on average 4,5 words long, which is short. Their

action fields, however, consist of one to multiple phrases and even multiple documents like a conversation

from one operator to another regarding a ticket solution. The implication is that POS pattern techniques

should probably be used for the short description. For the action fields, a process of hot phrase extraction

could be useful; however, this is not very accurate and should only be chosen if longer documents can for

some reason not be used for action recommendation.

Number of intents

The related works all identify a small number of intents from their datasets. The largest amount is

130 intents. For SSC-ICT we expect to find over 1000 different problems, which is far beyond the number

of related works. The implication for this is that manual work and correction should be minimized, at

the cost of system accuracy; this impacts the choice of techniques for synonym detection as in most

related works, these are identified manually.

The speed of structural change in topics

We did not identify this characteristic from the related work. However, we think it is an essential

characteristic of this research because SSC-ICT has an environment that changes quickly, relative to

other organizations. The implication for the system of this characteristic is that the system must be as

scalable as possible, that it requires little effort to rerun the system and extract new intents.

Future development

Future development is regarding the degree to which the research’s results is an actual end-product

or instead, a product in continuous development. From the articles, we identified multiple different

stages. For instance, Dhoolia et al. (2017) built the system with the purpose for bootstrapping an

advanced cognitive system, Potharaju & Nita-rotaru (2013), Vlasov et al. (2017) built an end-product,

Mani et al. (2014) and Agarwal et al. (2017) built a first-version with the purpose of applying

improvements in the future. For SSC-ICT, future development depends on the results of the system. This

implicates that a research result like that of Mani et al. (2014) and Agarwal et al. (2017) is needed.

Availability of maintenance

What we see from the related works is that in multiple processes manual work is used to improve

the accuracy of the system or to improve the evaluation measures. In other cases, like Jan et al. (2014),

was mentioned that due to limited resources manual labeling could not be performed. We, therefore,

conclude that the availability of maintenance of the system is a characteristic that impacts the way a

system is designed. For SSC-ICT is the case that at least for this research results the maintenance

requirements should be limited and that on research following up on this research there would potentially

be made more resources available.

24

Amount of potential users

The amount of users impacts the opportunities of gathering feedback which can, in turn, be used to

improve the system using reinforcement learning. When there is too little potential for enough amount

of feedback, implementing reinforcement learning would be a waste of resources, because for

reinforcement learning counts: the more data, the better. On the other hand, when there is enough

potential feedback, the system can benefit from this. From the related works, only Dhoolia et al. (2017)

make use of user feedback to improve the system. They also happen to have the most extensive research

case with a company with 450 factories and operating in 190 countries. For SSC-ICT also counts that the

amount of potential of feedback is vast with over 40.000 customers. We, therefore, choose to start with

reinforcement learning. However, for the first stages of the system, we should focus on the operators of

the central service desk as being the users.

Privacy restrictions

Privacy restrictions is not a characteristic that we implied from the related works; however, we think

it is an essential aspect for building a closed-domain system, which QA-pair system mostly are (Vlasov

et al., 2017). Especially in the case of SSC-ICT, that is, a public organization, privacy is very relevant. The

implications for this characteristic is that techniques by which names are filtered out of the system’s

results should be implemented. Moreover, that thresholds for chances of the occurring of privacy-related

items in system’s results need to be set.

 Summary

The SSC-ICT dataset contains 340.000 tickets. The short description field and the action field contain

all the information necessary for the AI components. Furthermore, we conclude that the categorization

of SSC-ICT is not useful for this research. For one, it is organization centered instead of problem-focused,

which we believe is not useful for intent identification. Secondly, the accuracy of the manual registration

is very low with 33%; we do not want this inaccuracy to influence the performance of our system’s results.

However, we also see that compared to the systems of the related works, we are handling a dataset in

this research with a very high variety of topics. We believe we do need initial high-level clustering, in

order to go deep into the intent identification. For this reason, we choose to add a component called

categorical clustering.

Regarding Root Cause Analysis, this component requires structural background information that is

not available in the data. Examples of this are certain operations that led to the cause of the problem.

.

25

3 High-level architecture
In this chapter the high-level architecture required for the system, based on the requirements, the

data characteristics and literature research, is proposed. It is decided to build a system that can be divided

into three subsystems: intent identification, resolution recommendation, and reinforcement learning (see

figure 13).

The system will be trained on a large dataset and applicable to new datasets or smaller subsets of

data. The process for building and training the system is described in this chapter.

Figure 13: high-level system architecture

 Categorical clustering

First, the tickets need to be ordered on categories. We decided this because detecting intents right

away led to very inconsistent and noisy clusters. For detecting main clusters, there are some possibilities

to be applied: keyword based-clusters (supervised), word-embedding based clustering, topic-based

clustering. We see that overall, topics are very easily identifiable from the tickets based on recurring

keywords like Blackberry, Outlook, and Printer.

For this reason, it is best to apply either keyword or word-embedding based categorization, as these

profit most from these recurring (single) keywords. The downside to keyword-based categorization is

that unimportant words like operations or adjectives may also be identified as clusters as these words are

common even though they do not have a highly added value. Categorization using word-embeddings, or

LSA, is the best and chosen method for this process, as it can really benefit from the single keyword

categories and it excludes low-informative words automatically.

 Intent Identification

Intent identification or problem identification is the process in which specific problems are identified

from tickets. This can be done in a supervised methodology in which intents are identified beforehand,

and new tickets are classified based on one of these intents or in an unsupervised way in which topics are

created using either POS patterns in tickets or from topical word embeddings.

3.2.1 Supervised
Supervised intent identification is best applied for a closed environment. It makes use of ontologies.

IT is rule-based and best applied for datasets with little variation and a constant environment, as in that

the content of tickets does not change rapidly over time. This is because ontologies need to be created

largely manually and will need to be manually adapted to new environments. A downside is that the

input needs no be updated continuously, which is a very tough task in the case of SSC-ICT due to its

scale.

26

3.2.2 Unsupervised
Unsupervised methodologies for intent identification are mostly either word embeddings (LDA/LSA)

or patterns in word or POS forms.

Word embedding technologies are best used for longer pieces of text and very large text corpora

(1.000.000+ documents), this methodology is also very fast. POS patterns work best on short pieces of

text and take relatively long to process, for why they are better suited for smaller but still relatively

sizeable text corpora (100 – 100.000 documents). However, for this research’s system, it does not matter

that much whether the processing either takes hours or minutes, as for its research goal, there is no need

for processing continuously.

LDA

Jan, Chen, and Ide (2014) describe the high accuracy of topic modeling for intent identification,

compared to LSI techniques. Furthermore, from conversations with data science companies was

concluded that they are also working with topic modeling in numerous text clustering cases. The

processed documents are however always larger than the short descriptions of the SSC-ICT dataset, and

LDA performs best on larger documents.

POS Patterns

POS-Patterns are applied in four out of six of the reviewed related articles. POS patterns are in all

cases a combination of a form of a verb (past, present etcetera) to that of either a noun, proper noun or

adjective. The patterns are the order in which they occur and the number of nouns or adjectives.

 Resolution recommendation

Resolution recommendation, action recommendation, regarding the A in Q&A, is the process of

identifying actions from resolutions texts. This process is different from intent identification for some

reasons. For one, resolution texts are often much longer than problem descriptions, they contain multiple

sentences instead of just one. Furthermore, resolutions often consist of multiple steps instead of

containing just one problem.

 Reinforcement learning

Reinforcement learning or feedback learning, regarding the & in Q&A, it is the process of increasing

the accuracy of the system based on user feedback. Intents can contain multiple probable actions.

Reinforcement feedback helps in finding the correct action for a specific intent. User feedback will act as

being the assessor on the accuracy of the action recommendation of the system. This assessment can then

be used to classify the action as relevant or irrelevant to the intent based on which new intents can be

solved better.

What needs to be decided is what feedback mechanisms are used to gather feedback. This depends

on the type of application in which the Q&A system is applied. Examples of feedback mechanisms are

amount of clicks on a specific action, a like/dislike option or search history as well as others. Combinations

are also possible.

27

What also needs to be decided is what parameters are changed based on the feedback. Examples are

looking for certain words that consistently occur in an intent with a specific action. Neural networks

work very well for this process, as they find the parameters themselves. Only needs to be decided what

input should be delivered to them. However neural networks work like a backbox so in many cases their

inner workings cannot be evaluated. The only way to control them is to have accurate measures for their

output which will have to be decided on as well.

 Expected results

The in this chapter explained system outputs QA-pairs. However, because the system is composed

of multiple different processes, it is reasoned that it also produces multiple results that combined produce

QA-pairs. We believe that in order for the performance of the system to be measured accurately, not

only the end-result should be evaluated, but the processes as well. Another argument for splitting the

system’s results up in its processes is due to its practical use. Categorical clusters, for instance, are a

valuable resource for SSC-ICT’s analytics division. Synonyms can potentially be used to create an SSC-

ICT ontology which could be helpful for numerous reasons and intents could be used for more advanced

business analytics. Optimizing these processes apart from each other and not only their aggregate

function will benefit SSC-ICT’s future potential use of these individual processes.

The system’s results are split up in the following sections:

- Categorical clusters

- Sub-level clusters (intents)

- Set of actions per intent

- Front-end application

28

4 Performance measurement
In order to provide evidence of the effectiveness of chosen solutions and components, the system’s

performance will be measured and evaluated. For this research a component evaluation methodology is

chosen in contrast to end-to-end evaluation, combined with both formative and summative evaluation

methods as well as both automatic and manual (Resnik & Lin, 2010). A component evaluation

methodology is a way of evaluating not only the end-result of the system but also its components

individually. Component-based evaluation is decided for because the components are very different and

the system is build in phases which are based on its components. Formative evaluation is an evaluation

method that tends to be lightweight (so as to support rapid evaluation) and iterative (so that feedback

can be subsequently incorporated to improve the system).

In contrast, summative evaluations are typically conducted once a system is complete (or has

reached a major milestone in its development). They are intended to assess whether the intended goals

of the system have been achieved (Resnik & Lin, 2010). For this research, formative evaluation is applied

in all cases in which it is possible as it greatly increases development speed. In other cases, summative

evaluation is applied.

Furthermore, there is a spectrum between automatic and manual evaluation. With automatic

evaluation, performance can be found using custom scripts rather than manual evaluation. The same as

for formative/summative evaluation counts for this, when automatic evaluation is possible and deemed

faster, it is chosen.

For each of the components, unique measurements will be presented. Due to the complexity of NLP

systems’ output, measurements are almost always unique to their case (Paroubek et al., 2010; Resnik &

Lin, 2010). In this research for each of the measurements will be explained why they are chosen.

Due to that evaluation methods are not described in the literature for QA-pair generation, the

metrics are made up for this system.

 Evaluation metrics

The system has two dimensions of characteristics. First the accuracy of the clustering: do tickets

belong in this (sub)cluster, and two: does the cluster describe an accurate subject? Whether it is either a

category or an intent; are these right and useful?

29

4.1.1 Categorical clusters
The high-level clusters are partially assessed manually with the help of a field expert. We chose this

method due to the complexity of evaluating the accuracy of labels, and due to that there is only a

relatively small number of high-level clusters and that categorization only needs to be repeated ever so

often, for why it costs little time. The field expert has to decide whether the cluster labels that the system

identifies are unique, value adding and not hierarchically dependent on another cluster. We implement

the results into the system and re-evaluate the new resulting clusters. This re-evaluation is done using

the minimal cluster size threshold, the number of clusters and the percentage of tickets clustered. These

three measures are correlated. The smaller the minimal cluster size; the higher the number of clusters

and the larger the percentage of tickets clustered. At some point in this process, the system will start

recommending low-informative labels for categories. At this point, the limit for minimal cluster-size

needs to be set.

4.1.2 Intent identification
The intents identification process is the most decisive and time-consuming part of the system

regarding the accuracy of the system’s results. It is also the hardest component to evaluate due to the

subjectiveness of the intents. Intents are not either good or bad; there is a whole spectrum between that.

Clusters may consist of some items that should not be part of them; a cluster may, in fact, better be split

into two separate clusters; a cluster may be synonymous to another cluster. Due to this high complexity,

determining accurate measurements is crucial.

Jan et al. (2014) use the Dunn Index and Davies-Bouldin Index, which are intrinsic evaluation

methods. They calculated the inter-cluster similarity. However, this is a very minimal approach for

natural language cluster evaluation due to that there are very few automatic features for similarity (their

features are actually the same as the algorithm that they are testing it on, which is very dubious). Their

results are also very inconsistent with findings from this research, regarding LDA. They also mention

that they do not have the resources for manual evaluation or labeling, which indicates they would have

used these methods otherwise.

Internal and External cluster evaluation

Cluster evaluation is divided into two groups: internal evaluation and external evaluation. They

differ in whether or not external information is used to validate the goodness of the partitions (Liu, Li,

Xiong, Gao, & Wu, 2010). For internal cluster evaluation thus only internal features of clusters are used.

Categorical cluster evaluation metrics

Labels:

Unique

Value adding

Hierarchically independent

Results:

Number of categories

Percentage of tickets clustered

Minimal category size

Figure 14: Categorical cluster evaluation metrics

30

We believe this is not a very accurate method to determine whether intents are actually unique and

specific, as for these measures external information is needed.

External evaluation, however, generally relies on a predefined structure. For these structures,

accurate labels are needed. Moreover, labels we do not have and do not want to have since it limits the

dynamism of the system. Manually labeling clusters is much work when we expect to identify up to a

1000 different intents. For this reason, we came up with a new cluster evaluation methodology.

Custom evaluation methodology

We create a golden evaluation set that is manually created by some field experts and evaluated

multiple times. Then, we compare the items that are found in the cluster of the system and that of the

golden set to each other. We calculate for each ticket which tickets are in the system’s parent cluster

compared to which tickets are in the cluster of the golden set, divided by the sum of the number of tickets

in the cluster of the golden set and the system’s set divided by two. We then sum up the scores of each of

the tickets and divide it by the total amount of tickets.

Due to that, we divide the mutual ticket count by the average of the two cluster sizes we avoid the

problems that occur when creating a cluster set of a unique cluster for each ticket or one large cluster

with all of them. The tickets that are in a large cluster in a golden set would get a very low score due to

that. On the other hand, the clustering problem of clustering all tickets in one big cluster also gets a low

score due to that the score is divided by the number of tickets in the system’s cluster. The resulting score

is then the average percentage of mutual tickets in a cluster for each ticket on a range of 0 to 1. A score

of 0.5 for the system means that

We determine the minimal quality score to be the scores for both the case of generating all unique

clusters or that of all tickets in the same cluster. Random assigning of tickets to clusters leads to scores

that are almost always lower than those.

Manual creation golden test set

Regarding manual evaluation cluster evaluation; we identify three options: manually evaluating all

ticket and clusters, manually evaluating a sample of tickets, or using a golden evaluation set.

Manually evaluating all tickets and clusters is an option in case the amount of tickets is low, the

amount of clusters is high, and the amount of evaluation iterations is low as well. Manually evaluating

a sample set of the results is useful in the case that the amount of tickets is high, the variation is low, and

the amount of design iterations is relatively low. When using a golden evaluation set, a sample of the

tickets is clustered most optimally, manually. This set is then compared to extracts of a system’s cluster

results using a multitude of different algorithms. Using a golden evaluation set is chosen due to its use

for large amounts of tickets, high variation and a large number of evaluation iterations. It is applied by

making three field experts of SSC-ICT cluster 333 tickets from 3 cluster categories, totaling to 1000

tickets, manually. It is chosen to select samples from categories and not from the whole dataset because

in the second case there would be too many clusters that would consist of 1 ticket, which is useless to

evaluate since only the clusters that contain multiple tickets are relevant.

Furthermore, it is decided to use multiple categories instead of one due to the differences between

the categories. Some are larger; some contain a relatively high amount of intents; some consist of very

concise short descriptions. We chose three categories; a large one, a medium sized one and a small one

with around 333 tickets so that the evaluation covers it fully. The topics are also variative, one major

subject, one application, and one small service.

31

Coverage of the system means the number of tickets that are successfully combined in subclusters

to the total amount of tickets. A threshold is used to minimize the number of small clusters for that the

really small clusters are of little use to the system. The threshold parameter will have a very high

influence on the coverage rate, as potentially every ticket can be clustered in an intent of its own which

results in a 100% coverage rate with a threshold of 1, so the chosen threshold has to be provided with the

coverage rate. This measure is objective, it can be directly inducted from the system’s results, so there is

no need for a domain expert.

Processing speed is the speed of the system. Practically, this can be either the speed of processing

one ticket to recommend action or the time it takes to process the whole dataset, in order to train the

system. The last one is chosen as the metric as this gives the most accurate results. In general, this

evaluation metric is not critical in case it stays under about 10 hours, as the system does not need to be

updated daily.

4.1.3 Set of actions per intent
As is concluded in the chapter Data Understanding, only a small portion of the actions contain

valuable information for the system.

The challenge in the actions is to filter out irrelevant actions, of which there are many, and to keep

thus only the actions that are relevant to the intent. The measure will, therefore, be the number of useful

actions to the total amount of actions proposed by the system; this can be calculated by manually testing

on a sample.

4.1.4 System end-result
We determine the end-result of the system by combining the scores for all independent components.

Only for the intent identification, we will use a new measurement due to that the measurement that we

used for that is useful for comparing two techniques automatically, but not for determing the accuracy

of the end-system. We will do this by manually evaluating the intents on their specificity. Specificity is

the degree to which the tickets in a cluster describe in fact the same problem. We will use a 75% threshold

for this. If at least 75% of the tickets belonging to in intent are about the same problem it passes. If the

specificity score is lower than 75%, the cluster is deemed incorrect.

% of useful actions

Coverage

Custom evaluation score

Processing speed

32

 Tool selection

In this paragraph, we describe the tools that we chose for the different processes, as well as the

arguments for the choice of these tools.

Building the system

We use Python as the primary programming language for building the system and most of the

components and features. We made this choice because of the number of available libraries regarding

Data Science of Python. Also, Python is very well suited for building systems from scratch. A

disadvantage of Python to for instance R is its processing speed. However, this is not a significant

problem due to the relatively small amount of data compared to other data science projects. We use the

Spyder IDE from Anaconda Open Source Distribution as Integrated Development Environment for

Python.

High-level clustering

Lingo3g

Initially, we chose Lingo3G for performing the high-level clustering process. This application was

found from multiple scientific articles (Mani et al. (2014); Jan et al. (2014); P. Dhoolia et al. (2017)). The

application uses latent semantic indexing to generate clusters of topics from a set of documents. The

strength of this application is the ease with which parameters are tested and adjusted. A testing process

that would otherwise take weeks now takes a couple of days. After some initial testing the results showed

potential, and after adjusting the parameters of the system, the results were quickly useful. Adjusting

weights for individual labels, as well as adding custom stopwords perfected the system.

Carrot2

Carrot2 is the free version of Lingo3g. In contrast to Lingo3g, carrot2 is memory based and has a

limit of clustering up to 10.000 documents.

POS tagging

The big problem with finding a good POS tagger is that these applications are language-specific. The

availability of Dutch POS taggers is very sparse. After a thorough search in which we compared multiple

systems, we found the following two taggers which both have their advantages and disadvantages.

Frog POS Tagger

The Frog POS tagger was by far the most accurate POS Tagger, this was identified by testing the

tagger on a subset of the SSC-ICT dataset and comparing the results to manually determined results. A

downside of this POS Tagger is its speed and its difficulty to use. In order to use it a separate LINUX

virtual machine (VM) needs to be created on which multiple large packages need to be installed and on

which the Frog application can be run. This machine then needs to communicate with the Python server

to send data and retrieve results. Its speed is very low relative to other POS taggers with the processing

of 900 words per second. Processing all short descriptions of all SSC-ICT tickets takes therefore about 5

hours.

NLTK-Spacy tagger

33

The NLTK-Spacy POS tagger is much faster than the FROG tagger. About 20 times as fast. The

accuracy is however much less. It is a python library and therefore easy to call. We used this POS tagger

while building parts of the system in which the accuracy of the results did not matter as much.

LDA

Gensim

For the topic modelling process in the intent identification component we use the Gensim library for

Python. This library is the most used Library next to the SciKit library, and we find it has the most

documentation.

Lemmatization

- Frog Lemmatizer

Just like with the POS tagging, the lemmatizer of the frog system was much more accurate than

other algorithms. Again, the application was much slower than other applications. We used this

lemmatizer for when we evaluated results on quality. Frog does not include a stemmer.

Stemming

- NLTK-Snowball stemmer

This system was much faster than the other one and was used when the accuracy of the results did

not matter as much. Stemming did not lead to better clusters than lemmatizing did.

Deep Learning scripts

Python has several options regarding solutions that use deep learning. However, the solutions from

the Gensim library had by far the most use cases and document support and were up-to-date.

- Gemsin Library

o Word2vec synonyms

o Bi-gram model

Synonym database

The OpenDutchWordNet (ODWN) database was by far the largest open-source Dutch lexical

database and acknowledged by multiple large parties, among which the NLTK library. For this reason,

this database is chosen for finding ordinary Dutch synonyms.

FastText

FastText is a technique developed by Facebook in 2016. It is a very accurate classification method

for small documents using neural networks. The documents require labels. They have a python API.

Custom scripts

Due to the large community (and therefore feedback and use-cases) behind Python and its ease of

use in creating scripts from scratch, it was decided to use this programming language for building the

custom scripts.

34

5 Modeling and results
This chapter first describes the chosen tools for this research and then the choice of techniques for

the processes intent identification, resolution recommendation and reinforcement learning for the

system.

5.1.1 Categorizational clustering
In this section we describe

The column with the short description of all tickets, along with their ticket ids, is exported from the

excel dataset and converted to XML-format, this is a file of 450.000 lines. We then process this file in

Lingo3G with the following custom parameters on top of the standard parameters (see table 2)

Table 1: Parameters Lingo3G

For the categorizational clustering, three techniques are attempted based on domain research: LDA,

POS Patterns and Lingo3G clustering. LDA did not show good results. The resulting clusters are

overlapping.

POS patterns were also not effective. The POS patterns were too specific and did not capture the

global category.

Lingo3g however, worked very well on the dataset. After having tweaked with the attribute settings,

amongst other things promoting short (one-word) labels and increasing the expected number of clusters,

a decent process-based ticket cluster overview came forward (see figure 6).

- Minimum cluster size: 0,0010%

- Cluster count base: 20

- Maximum hierarchy depth: 1

- Phrase-DF cut-off scaling: 0,20

- Word-DF cut-off scaling: 0,00

- Maximum top-level clustering passes: 8

- Default clustering language: Dutch

- Language aggregation strategy: Cluster

all documents assuming the language of

majority

35

Figure 15: 20/150 clusters from Lingo3G

5.1.2 Iteration 1: Lingo3G
Lingo3G applies LSA (Latent Semantic Analysis) using TF-IDF word embeddings on a text corpus

and then applies SVD for dimensionality reduction. Its algorithm consists of multiple steps: pre-

processing, frequent phrase extraction, cluster label induction and cluster content discovery. The pre-

processing step removes stop words from an external list that is created by a field expert.

Furthermore, this expert also identifies synonyms and label name. Because the input consists of only

one sentence, we skip the frequent phrase extraction process. The pre-processing step is supervised, as in

label preference, synonyms and stop-words can be predefined. The other processes are unsupervised. As

such the resulting labels are made up by the system. SSC-ICT currently has no accurate problem-based

categorization of their tickets, and we believe the categorization of Lingo3G (after removal of stop words

and non-relevant labels) is an accurate, specific, and data-driven representation of the problem topics

within SSC-ICT.

Results

Lingo3G generates 117 clusters from the ticket data. With the largest being 10% of the whole ticket

corpus and the smallest 0,05%. The ten largest clusters accumulate to 65% of the ticket corpus. 20% is

not categorizable, 15% is part of the other 107 clusters. A visualization of the weighted clusters is provided

in figure 7.

of tickets: 210.000

of clusters: 117 (can be determined

manually)

% of tickets clustered: 80%

Speed: Couple of seconds

36

Figure 16: High-level cluster results from Lingo3G

5.1.3 Iteration 2: Carrot2 + Levenshtein distance
Since Lingo3g is not open source and after having contact with the company that owns the software

it would be known that a business license is costly. For this reason, we sought a solution that could do

the same but then for free. We deemed this possible due to the limited usage of lingo3G’s capabilities, as

the system mostly only used single word labels for categories, whereas Lingo3G is, in contrast, especially

good at detecting clusters for sensemaking multi-word labels. The problem is however that no such

solution exists. Therefore, we looked at the free version of Lingo, which is carrot2. The downside to this

version was that it is a memory-based algorithm whereas Lingo3G works with indexes.

For this reason, only 10.000 tickets can be clustered at the same time. A solution to this was found

in that we generated a random sample of 10.000 tickets from the complete dataset. We then fed this

sample through the carrot2 system and extracted the clusters. Next, using a custom script, tickets were

classified based on the labels of carrot2’s clusters. This was done by first tokenizing the short descriptions

and then searching for the cluster labels from the cluster list from top to bottom, based on the cluster

size of the extracted clusters from the 10k sample. Additively, we decided that we could add the

Levenshtein distance to the custom script for word labels of at least five characters (in order to prevent

misclassification of the algorithm finding smaller labels like "i.e.” (internet explorer) in for instance “is”

or “be”). This way typos or concatenations of word labels are also clustered, something that the Lingo3G

algorithm did not always do automatically; this increased the coverage by another 10% whereas before

the coverage was about the same as Lingo3G’s clustering method. The custom script, however, does take

some time to classify the tickets to the clusters of the carrot2 algorithm: about 30 minutes for 210.000

tickets. See Appendix X for the resulting clusters and their document count.

of tickets: 210.000

of clusters: 150 (can be determined

manually)

Coverage: 88%

Speed: ~30 minutes

37

 Intent-level clustering

This paragraph describes both successful and unsuccessful iterations of building the intent

identification component. First, we apply POS patterns which we continue to use for intent identification.

The iterations after the POS pattern iteration build on the POS pattern process, so these results are

compared to the results of the POS patterns. Next, we describe the application of Topic Modelling (LDA)

on the dataset and evaluate the results.

5.2.1 Iteration 1: POS patterns
For the identification of unique problems, we applied POS Patterns to the “Korte omschrijving” text.

From the related works, it was clear that this was the go-to method to extract intents for short text and

high variety corpus. We use the combination of operation-entity POS patterns, that is described in P

Dhoolia et al. (2017). The operations are verbs; the entities are nouns and adjectives.

For preprocessing, first stopwords are removed using an online freely available stopword-list. Labels

of the categories in which the tickets are classified are removed as well, to avoid redundant intent labels.

Next, we tag the remaining words on Part of Speech. If a verb is detected, the system combines the nearest

nouns or adjectives with them in order to form a two-word phrase. If no verb is detected the system uses

the remaining words as intent. In most cases that no verb exists in sentences, the sentence is short, so

that the phrase remains short. In the exception of longer phrases with no verbs, the whole sentence is

ignored.

Results

We show the results in table x. The total amount of tickets that the system converts to intents is

about 110.000; this is slightly more than 50% the categorized tickets. After looking at the unclustered

tickets, we conclude that ignoring the sentences that have no verb and contain more than two of the

nouns and adjectives is the cause of this.

Total tickets covered: 109908

Threshold: 10

Coverage: 75955

of intents: 1490

Quality Scores:

Large: 0.3747

Medium: 0.4954

Small: 0.2520

Average: 0.3740

38

5.2.2 Iteration 2: POS patterns: bigrams added

Bigrams

Identifying and combining bigrams makes sure important concatenations of words that are

separated with spaces are not separated when POS patterns are applied. For instance, the virtual

environment application “DWR Next” becomes DWR_Next. The software that we use for this is Gensim.

We chose this module because it makes use of neural networks and thus can be easily and effectively

trained on a training corpus. The advantage of this over database-based modules is that domain-unique

words like “DWR Next” can now be identified.

In order to avoid that the bigram model combines verbs with entities as bi-grams which appeared

to happen during a test run, we trained the model on a ticket dataset in which we removed all verbs. The

resulting model is then stored and can be applied at any moment on any sentence to identify SSC-ICT

unique bi-grams. Examples are DWR_Next, PST_bestand, ontgrendel_code, UEM_client and

activation_password.

Results:

The results were not as big as expected. The coverage only went up slightly, overall, and also slightly

for the intents. The quality scores went below the scores they would have without applying them. We

conclude that bi-grams may look nice in the labels, which they do, but for the actual performance of the

system, they provide little benefit.

5.2.3 Iteration 3: POS patterns: adding synonyms
The adding of synonyms is an advanced and challenging step. It is difficult because the boundary

between whether words are synonyms or not is somewhat inconsistent and a grey area. Furthermore,

words can have multiple meanings. However, we hypothesize that the advantages of implementing

synonyms overrule the disadvantages. An advantage is increased merging of clusters, which decreases

the number of redundant clusters and increases the number of useful actions per cluster.

Total tickets covered: 111938

Threshold: 10

Coverage: 77414

of intents: 1504

Quality Scores:

Large: 0.3739

Medium: 0.4729

Small: 0.2492

Average: 0.3653

39

As we described in chapter “Background”, there are two types of synonyms: general language

synonyms and domain synonyms. We hypothesize that implementing domain synonyms is less risky but

less rewarding as well.

Initially, the idea was to use the dutch synonyms list of lexical database OpenDutchWordnet to

identify the general synonyms for the SSC-ICT corpus. However, after identifying the synonym sets for

the SSC-ICT corpus using a custom script that put all the words of the SSC-ICT vocabulary against the

ODWN synset, we found the resulting synsets unuseful. Most synonym sets contained words that were

indeed similar but did not mean the same in the context of SSC-ICT. We, therefore, chose to use a custom

Word2Vec deep learning model to devise suitable synonym sets.

First, we trained a model on the complete corpus. Before this, we lemmatized the corpus to increase

normalization; this showed a positive effect in higher similarity scores for similar words when compared

to unlemmatized versions of the model. Next, we split up the vocabulary in verbs and

nouns/spec/adjectives, and we wrote a script that calculated the similarity score of all combinations of

the words for each of the vocabularies. Then, we computed lists of words that were similar with a

similarity score of at least 0.70 (on a range of 0 to 1). We sorted the lists on the frequency of the words in

the vocabulary with the purpose of that the most frequent word would come first in the list. This word

would be the “alfa” word by which all other similar words are replaced. The resulting synonym sets were

exported to a list and manually checked. About 50% of the synonyms were accepted. In total, we

identified about 100 synonym sets for entities and 30 for verbs, with on average 3-4 words per synonyms

set. See Appendix E for the list of synonyms.

In order to implement the synonyms in the system we wrote a script that simply replaced the

respective synonyms by their alpha synonym in the dataset that is input for the POS Tagging process.

Results

The coverage went up by 5000 (7,5%). The quality scores remained about the same. We conclude

that the synonyms have a positive effect on the system, but not drastically. Increasing the number of

synonyms would possibly improve the system more. In order to do this, the similarity threshold would

need to be lowered, and more manual work would be needed to check them. However, the process of

checking the synonyms is very fast since it is very intuitive. Checking 100 synonym sets takes about 10

minutes.

Total tickets covered: 114512

Threshold 10:

Coverage: 81052

of intents: 1500

Quality Scores:

Large: 0.4106

Medium: 0.4844

Small: 0.2403

Average: 0.3784

40

5.2.4 Iteration 4: POS Patterns: multi-threaded processing
Training a new iteration of the model took about 4,5 hours. We identified the bottleneck to be the

Frog POS tagger which runs on an Ubuntu Virtual Machine (VM). The developers of Frog warn on their

website for the slowness of the software. However, we found a way to increase the speed of the software

by more than 250% by using multiple ubuntu instances. We split up the processing script using the

ThreadPool Library of Python: we wrote a script that divided the categorical clusters over the Ubuntu

instances.

5.2.5 Iteration 5: Topic modeling (LDA)
Due to the high expectations of LDA in text clustering (in research but also in online communities

and data science companies that we had contact with) and also the high scores of the technique in the

article of Jan et al. (2014) (even though they used internal evaluation scores) we decided we had to

attempt this technique. Before using the intent evaluation datasets, we first attempted to apply LDA on

one complete large cluster, because LDA requires a large number of documents as input and we could

immediately see the results from this and conclude whether we should continue testing the technique.

 For this experiment, we used the complete dataset of the outlook cluster, which comprises about

15.000 tickets. For pre-processing, we lemmatized the dataset, and we used a dutch stopword list. Then

we extract the complete vocabulary (unique word list) and convert the documents to a TF-IDF matrix

using the Gensim library. We use these files as input for training the LDA model. For determining the

number of topics, we tried using a widely known methodology which makes use of the perplexity score

of the clustering results. However, this methodology recommends to use a maximum of 30 topics, which

we find very small and the results also show very general topics. We then choose to go for 100 topics,

which is a rough estimate.

Figure 17: Visualization of LDA topic distribution of the "Outlook" category

41

Results

In figure 18 we show a plot of the topic distribution; this is a two-dimensional grid in which the

distances between the word embedding vectors of the topically related words are visualized. When

looking at the terms that each topic describes we see LDA does cluster topics indeed relatively neatly. For

instance, the largest cluster, number 1, which contains about 6% of all tickets from the category describes

the words “PST”, “bestand” and “koppelen”, or “pst bestand koppelen” which is indeed an intent in the

outlook cluster and also the largest one. Some of the smaller topics are not correct due to certain terms

that provide little informative quality.

The scores are slightly lower than that of the POS tagging but still pretty good considering little

preprocessing is done, and no synonyms are applied. Especially the smallest cluster scores better than on

POS Tagging; we do not know why this is.

 Resolution recommendation

In this section is described how the resolution recommendation process should work.

For the resolution recommendation process, we combine the tickets in the clusters with their

respective actions.

Using a custom algorithm that makes use of the ratio of verbs as well as numbers in a sentence

successfully removes all e-mail related noise like signature and salutation as well as TopDesk related

noise consisting of the name of the operator and timestamp.

Next, we remove empty actions fields and combine double actions; this increases the weight rate

that we match to these actions.

A domain expert has labeled 2.000 actions in order to identify what actions contain valuable

information regarding the actual solution to the problem. 30% of the actions appear to be useful. This

rate can be used to evaluate the system's recommendation to a bottom limit. Another conclusion of this

analysis is that shorter actions more often contain valuable information rather than longer action texts.

For this reason, only the shorter action texts, those that contain less than 300 characters (on average

three sentences), are analyzed.

Total tickets covered: 100%

Quality Scores:

Large(100): 0.4063

Medium(50): 0.4200

Small(25): 0.3062

Average: 0.3775

42

 Front-end application

In order to acquire feedback on the system, an application needs to be decided for and built. In

chapter 2 an overview of applications of QA-pairs is provided. In this chapter is explained what

application is chosen and for what reasons. Furthermore, we discuss the details of the application.

Application description

It is decided to build a customer knowledge base system primarily for use by the customers of SSC-

ICT. This system provides the option for a user to type in a short description of any incident, and the

system will recommend intents and actions belonging to these intents. Furthermore, it will provide the

possibility for the user to provide feedback on the results. This feedback is used for evaluation as well as

for use by the reinforcement learning algorithm.

Argumentation for the choice of the system

We chose this system because of the substantial benefits it can provide. It would save a significant

amount of the service desk operators’ work as the most straightforward tickets can be answered by the

customers autonomously.

Furthermore, providing the application to the 40.000 customers of SSC-ICT comes with a large

amount of feedback. This feedback can be used using reinforcement learning to improve the system

further.

Application’s process:

The application processes the input text live. We apply the same pre-processing to the text that we

use for training the system. After that, we determine the corresponding category in the same way that

the tickets are appointed to categories while training the system. Then, the input text is classified using

the trained LDA model for that category. The outcome of this is a list of topics along with their

contribution percentage. The topic with the highest percentage is chosen as the being the intent for the

input.

Feedback mechanisms

The system provides two ways to gather feedback from users:

- Possibility to classify an intent as right or wrong (mark)

- Possibility to select actions as useful (like)

A system expert manually reviews the feedback, and if accepted it is incremented in the

reinforcement learning algorithm.

 Chapter conclusion

In this section, we look back at the modeling that we describe in this chapter and built conclusions

for the system’s design based on the results.

For the categorization component, we decide to use the Carrot2 LSI clustering implementation along

with assignation of tickets to the cluster using the Levenshtein distance. The score of more than 88%

coverage is an excellent score for categorization.

43

In the intent identification process, we focussed on the POS patterns that arose from the related

works and LDA Topic Modeling which is a much-valued technique in the research community. Despite

that all odds, in our eyes, were against LDA, we believe that LDA outperforms the POS Pattern process.

The evaluation scores based on our own evaluation measure may be slightly lower than that of POS

Patterns, but the coverage is much higher, as well as its processing speed, and the expected future

potential improvements of LDA are much higher as well. We will describe these improvements in the

next chapter.

For the action recommendation process, we propose a preprocessing methodology as well as a low-

effort clustering methodology. The front-end application

We attempted multiple categorization techniques, multiple intent identification techniques, we

cleaned and clustered the action field, proposed a method for searching through the clustered intents and

proposed a methodology for implementing reinforcement learning.

44

6 The system
In this chapter, we provide an overview of the whole system. Furthermore, we describe the

evaluation of the end result of the system, and we compare this to the minimal expected quality level

that we set in this chapter as well. We provide an overview of the complete system in figure 19.

Figure 18: A process view of the system

 The figure in figure 19 shows the complete process of training the system and recommending

actions to customer input. For training the system the categorical clustering and intent identification are

used. First, the categories are determined using LSI indexing. Then, the tickets are appointed to one of

around 100 categories (for the SSC-ICT dataset). After that, the intents are identified.

For each of the categories, we apply the following process. The system preprocesses the short descriptions

of the tickets and the complete corpus of short descriptions for a category transformed into a TF-IDF

corpus, in which the preprocessed short descriptions are the documents. Parallel to the creation of the

TF-IDF corpus, the system creates a vocabulary for the category. Then, the expected amount of topics

is determined and used as input along with the TF-IDF corpus and the vocabulary as input to train the

LDA model. Once the system has trained the model, the tickets are appointed a dominant topic which is

the intent.

 The system than grabs the action fields for each of the tickets of each intent and excludes doubles

and actions that are very similar using the Levenshtein distance. The result is a list of actions for each

intent.

 When a customer types in a problem in the front-end application, the system recommends a

intent and the customer can choose an intent which he or she thinks fits best. The system then

recommends a list of action on the intent. The list is sorted based on feedback of customers as well as on

45

a score that is provided by a deep learning classifier which can distinguish completely useless actions to

probable actions.

 Minimal quality level

Now that the context of the system is determined we can set a minimal quality level. There is no

way to base this on other research because the cases are just too different. What we can do is describe

from what moment SSC-ICT would benefit from using the system.

Because effectively, the system replaces service desk operators, success on a purely business-

perspective would be reached very quickly, even at a success rate of about 10%. However, the main goal

of the system is to increase customer satisfaction. Being able to have the option to solve an IT incident

without the need for a service desk operator, 24//7, would be of a positive influence on customer

satisfaction. However, taking into account that the system is not flawless, there is a point where users

might find it hindering to use. One could say to that however, that the user may simply choose to not use

it, leaving it only to those that are interested or for everyone but outside of the service desks working

hours. Still, the image of SSC-ICT depends on the application as it will be one of the very few things of

SSC-ICT that the 40.000 customers are confronted with. However, the system might be given some slack

due to it being a pilot for Artificial Intelligence. On top of that, the system will improve when feedback

is applied in the right manner.

In short, setting a minimal quality is a process of pure estimation. We think a success score of at

least 30% is a good starting point, and increasing it to 50% over time by improving the system and using

reinforcement learning should be wanted.

 Results

In chapter 5 we evaluated the components of the system independently in order to decide what

technologies we recommend for these components. In this chapter, we evaluate the results of the

complete system. We do this by manually determining the specificness of the resulting intents and the

number of actions that we require at a minimum for useful action recommendation. The specificness is

vital because when a cluster is specific, i.e., it describes only one intent, we can safely say the tickets that

that intent covers are successfully clustered, and thus provide a percentual success rate of the intent-

identification process.

During the process of determining the uniques we also identified clusters of tickets of which the short

decriptions is too general for intent identification. The short descriptions of these tickets were generally

one of the following: “problem with outlook”, “question about outlook”, “help with outlook”. We use

“Outlook” as an example category but they appear for every category.

We remove these general tickets from the calculation of the success rate, this does not impact the

credibility of the success rate of the intent identification because they would have been clustered if they

would have been described more accurately. However, we do find them an interesting result of this

research because it provides insight for SSC-ICT into what percentage of tickets are processed incorrectly,

we, therefore, provide these results as well.

46

From the results can be seen that the success rate of the intent identification process is on average

around 55%. This score means that, on average, the system can identify a right intent for a ticket 55% of

the time. Furthermore, we conclude that between 10 and 20% of the tickets that are part of a category

are described too vague to extract any meaning out of them. On top of the 12% of the categorizational

clustering component (88% success rate), we say that between 20 and 30% of all tickets are described too

vaguely by the operators.

In order for the system to solve 55% of the tickets, the recommended actions should be useful. In

chapter 5 we describe that of all tickets, about 30% contains a useful action. Looking at the intents, which

are almost always larger than 10 tickets and often larger than 100 tickets, the chance that an intent has

at least one useful action is large. Furthermore, if this does not appear to be the case the action could

always be added manually by an operator. So once enough feedback is received from users, the right

actions are filtered from the less informative actions and the system will able to recommend a useful

action to an intent most of the time.

“Outlook” category:

Total amount of tickets:

13341

Tickets clustered in specific

clusters:

8034

Number of too general

tickets:

1323

Succes rate: 55,8%

“Excel” category:

Total amount of tickets:

721

Tickets clustered in specific

clusters:

436

Number of too general

tickets:

167

Succes rate: 48,6%

“P-Direkt” category:

Total amount of tickets:

286

Tickets clustered in

specific clusters:

220

Number of too general

tickets:

89

Succes rate: 66,5%

47

7 Deployment
In this chapter, we describe how SSC-ICT should make use of the QA-pair generation system. We

describe the first uses of the system, and what potential improvements SSC-ICT should apply in what

order, in order to improve the system.

 Potential usage of the current system

The system that we propose in this research is not a finished product; it is instead a foundation for

SSC-ICT and other organizations that make use of ticket management systems to extract useful

information from their ticket data. Not all components are therefore optimized. However, the system in

its current stage already has multiple uses. We now describe these usages of the different components.

Categorization

We built a categorization methodology using LSI to identify categories in the ticket data and cluster

them accordingly. Our results show that over 210.000 tickets, it manages to cluster 88% of them in one

of 117 clusters (see Appendix F for an overview of the clusters and number of tickets clustered

accordingly). The categorization is problem-focused rather than organization focused which is the

current categorization of the TopDesk system; it is therefore of added value to the system. This

categorization can be used for simple data analysis request which we encountered during our research

period like: “how many tickets are about Blackberry in 2018” or “How many status inquiries (status

navraag) have there been inquired in the last month?”. These are Busines Intelligence requests.

Furthermore, the categories are easily matched to the timestamps which are part of the ticket data

in order to provide high-level anomaly detection, due to that in our system the ticket-ids always remain

connected to the processed text. Thresholds for the number of incoming tickets over a specific period for

specific categories could be set, and on trespassing, a pop-up or message could be triggered. If this, for

instance, is matched to the Printer category, an outfall of the Xerox printing process is quickly identified.

Intent identification

Aside from the use of this component for the system the results of this process have more uses.

Namely, FAQ extraction, Business Intelligence, and Anomaly Detection. During the research process, the

results from POS Patterns were used for a project in which a nationwide Frequently Askes Question-list

(FAQ) for the SSC-ICT website was created. The project members did not have any knowledge of the

most occurring problems; their guess was that password reset is an accurate one, for which they were

right. The results of the intent identification component, may it not be optimized yet, provided them

with insights on a data perspective on the most occurring problems. We provided them with 450 intents

occurring more than 20 times in the last year.

The Front-end application

The front-end application is meant to be used by the customers of SSC-ICT. However, we

recommend first testing and improving the system further in a test-environment. This service desk call-

center is a good environment for this, and the application would be useful for them as well. Especially

for new operators that do not know the main problems and solutions about the domain, we think this

system is very useful. We believe that when they know that the system learns from the feedback that

they provide, they will be motivated to do so as well.

48

 System improvements

In this section, we describe future improvements that would improve the system. These are: Label

generation, GuidedLDA for reinforcement learning, Golden set creation for topic count determination,

Root Cause Analysis, and reinforcement learning.

We believe that by applying these improvements by a team of one or two programmers the system’s

performance can be improved by up to 50% within half a year of programming.

Synonyms

A method to improve LDA-clustering is by applying synonyms. These can be applied in the way we

did with the POS Patterns, by replacing the input terms with their alpha synonyms. LDA is known to

identify synonymous structures itself, but in the case of some categories, this is not possible due to their

small size.

Stop words

For stopwords, we used a general Dutch language stopword list. However, we think the system’s

results can be easily improved by adding domain synonyms as well. Examples that we saw in the

clustering process are Dutch versions of the words colleague, madam/sir that would get their cluster.

These are easily identifiable stop words that will always be relevant.

Label generation

A disadvantage of Topic Modelling to POS tagging is that the labels of LDA are very unclear; they

are merely a summation of keywords that are used to from the topic. However, there are label generation

techniques available that create a summarizing label for a collection of documents. In this case, these

documents are then the tickets that are part of the intent’s cluster.

GuidedLDA for reinforcement learning

GuidedLDA is an adaptation of LDA that is discovered in 2012 by Jagadeesh Jagarlamudi et al.

(2012) and made public in a Python library in 2017. The concept is that where LDA is entirely

unsupervised, there is no way to influence the topics apart from the topic count, GuidedLDA is. Using

“seeds” certain words can be given priority for specific topics with a weight for the height of the priority.

We have attempted it for the categorization components, and even though it did not work very well for

that, we are pretty sure it does work for intent identification, for the same reason as for why LDA works

for intent identification and not for categorization.

In combination with reinforcement learning, individual clusters can be prioritized or fixed by

creating a seed for them. By for instance making users able to classify intents as correct or incorrect,

reversed keyword identification can identify the seeds which are then added to the GuidedLDA script’s

resources. From a programmer’s point of view, GuidedLDA only extra requires a list of seeds to provide,

which makes it very intuitive.

Golden set creation for topic count determination

In this research, we applied the often-used coherence value for finding the optimal topic count.

However, due to that this is an internal clustering evaluation methodology, this has its limits which we

also encountered. Another way of determining the optimal topic count that we suggest is that of

optimizing our proposed evaluation score for each of the categories. For this, a small set of tickets of the

49

category needs to be clustered the way we clustered the evaluation sets, this does take some time, but

even from manually clustering about 100 tickets we think it is useful, as the model is trained on the

complete corpus. There is a risk of overfitting, so the more tickets clustered, the better, but on the other

hand, we believe using even small sets is more accurate and trustworthy than using no method,

determining the topic count manually.

Root cause analysis

In this research, we chose not to apply root cause analysis as it was not a priority and we believed at

the time that we had too little information for this. However, at this moment we believe it does have use

and may be incorporated in the future. Root Cause Analysis in QA-pair generation is the process of

looking at the cause of an intent in order to better classify it. Like mentioned in S. Agarwal et al. (2017)the

cause can also be deducted from the action that is applied on the ticket, written in the action field in SSC-

ICT’s ticket set. The intuition behind this is that similar problems also have similar actions. Thus, by

analyzing the action fields of an intent cluster, and compare it to that of other clusters, one can

potentially merge two clusters that were initially identified by the system as separate but in reality, are

not. A step further is to identify synonyms from this process.

Reinforcement learning

A simple, intuitive way to improve the system using reinforcement learning is by pointing feedback

back to terms. For instance, when a feedback mechanism points to an action cluster being not accurate,

one could combine all these clusters and build a classifier that can classify actions as useful or not.

FastText, a technology created by Facebook in 2016, can classify short texts using neural networks very

accurately.

Applications

These improvements improve the accuracy of the intent identification process. Label generation

makes way for more intuitive results that can be provided to the customer. A potential application would

then be a knowledge base for public use. The current knowledge base version contains many faults thus

is not yet operable for public use.

50

8 Discussion
In this research, we design a QA-pair generation system and a prototype service-desk knowledge-

base application as front-end. Part of this research are some unique experiments, designs, and findings.

We applied categorization methodology before applying the intent identification process; we showed

that in combination with this categorization, LDA works best for intent identification which has not been

shown before in this research field in a practical setting. In order to evaluate the results of both the POS

Patterns and that of LDA, we used a unique combination of evaluation measures of which one we

designed ourselves. We designed an external evaluation methodology which does not require a clustering

structure on beforehand and is unique in the research field and arguably better than all other options

due to its logic.

Furthermore, we showed how Word2vec could be used for synonym detection and showed the

improvement of the results of these synonyms compared to before applying them. Furthermore, the

system that we designed is very easily applicable to new datasets; it requires little manual labeling. We

now describe each of these topics in more detail.

Categorization

Because of the very high variety of the SSC-ICT dataset we were bound to find a method to reduce

the variation of the ticket dataset. Our solution is splitting up the corpus automatically using a single-

term LSI-based methodology, after which multiple, low variety corpora, categories, can be clustered

independently. We posit that this decision is what made it possible for LDA to be applied successfully.

This solution has not been used in any of the research that we reviewed, and this might very well be the

reason why they skipped LDA since we also got useless results when attempting LDA on the corpus

without categorizational clustering.

LDA vs. POS Patterns

Jan, Chen, and Ide (2014) is the only article of our related works to mention LDA for intent

identification in incident tickets. Our research confirms this. A downside of POS patterns to LDA is the

case when no verbs are found in the ticket description. In our dataset, this was a big problem, with a

coverage of less than 40% for the POS patterns. LDA does not look at the syntactical meaning of terms

but rather at relational meaning. In a high variety corpus this is very difficult, but due to our high-

level categorization, this was not an issue. Regarding the potential of LDA to POS patterns, we believe

LDA surpasses the latter by miles. With more and more feedback, more advanced topics can be

identified, and in combination with GuidedLDA, stored as well.

Custom Evaluation score

The benefit but at the same time also the problem of working with POS patterns or LDA is that the

results have no predefined structure, or labels, on which they can be evaluated. This probably explains

why none of the related works provide a robust evaluation methodology for these techniques, at least

not one that is not external, because internal evaluation is not suitable for intent identification due to

the high complexity in the meaning of the intents. Plus, the fact that internal evaluation methodologies

use the same features that the clustering methodologies do, which is why they are very prone to

overfitting. Our evaluation methodology computes the proportion of mutual tickets for each ticket in

its parent cluster, compared to a golden test set. The logic is complete. We showed minimal quality

levels using the two extreme situations that are known to cause for high evaluation scores: all items in

unique clusters and all items in the same cluster. Moreover, we proved that both the POS patterns and

51

LDA scored better on these than they did. A point of interest is that the scores for the evaluations are

relatively low. This is an accurate point, but there are many reasons why they could be so low. One that

we are sure of happens is when a very large golden set cluster is in the system’s version split into two

still relatively large clusters, which halves the evaluation scores of these tickets which is of significant

influence on the overall evaluation score. Improvements of the intent identification process, especially

cluster merging using Root Cause Analysis or Reinforcement Learning could easily avoid this problem

and thus have a significant impact of improving the system on the evaluation score and in actual

practice as well.

Word2vec

We showed the potential of Word2vec in the field of synonym detection. Even though the increase in

evaluation score was minimal, the technique did work in identifying over 300 synonyms. We think

Word2vec is especially useful in a system that is applied to many different datasets due to the speed

with which it generates synonyms (once the scripts are built, because figuring that out may take some

time). The resulting synonym sets do however require manual correction because in some cases

Word2vec may find words that are similar, but rather than synonymously similar, similar in for

instance a hierarchically dependent way. However, checking synonym sets is a very intuitive process

and takes very little time. We checked 100 synonym sets in less than 10 minutes, which is much and

much faster than identifying synonyms manually.

Dynamic/scalable system

Based on the system characteristics that we identified in chapter 2, we tried to minimize the manual

required effort in every way possible. The result is a system that we can apply to any new, structurally

similar dataset (short descriptions + action fields) and provide a working system in less than a day.

This is not only useful for SSC-ICT, who are adding a new large ministry in their TopDesk system soon:

the Ministry for External Affairs, but also for the company TopDesk itself. Topdesk has hundreds of

large companies as customers but does not have anything related to this topic. After consultation with

the public-sector business director and one of the 5 data scientists of TopDesk, it is confirmed that they

do not have the resources for starting such a design project, even though they did find it very

interesting. Potential future research to come?

52

9 Conclusion
In this chapter, we answer the research question and the main research question that we posed in

chapter

What components, techniques, and characteristics of QA pair generation systems from related

works?

From a literature review, we identified the components Intent Identification, Root Cause Analysis,

Action Recommendation, and Reinforcement Learning. We added to this the component of

Categorization due to the large dataset and high variety of tickets of SSC-ICT. We also identified

techniques from the literature review. We grouped them in the groups Pre-processing, Clustering,

Synonyms, and Reinforcement Learning. For categorization, we identified LSI, LDA and POS patterns.

We identified the characteristics by looking at the differences between the related works and our research

case. The characteristics are Language, Size of the dataset, Length of documents, Variation in intents,

Variation in domains, The speed of structural change in topics, Amount of future development, Amount

of manual work availability, Number of potential users, Privacy restrictions.

What potentially useful, other techniques are there?

In order to answer this question, we had contact with multiple data science companies and shifted

through online fora and other documentation. Topic Modelling was a big topic that we encountered in

many different areas. Even though it was most often used to find general topics in large documents, we

found we had to give it a try, especially with the evaluation results of Jan, Chen, and Ide (2014).

Word2vec is a well known and high-quality method for doing all sorts of things with word relationships

and showed good promise for synonym detection.

In (Vlasov et al., 2017) Bi-grams were manually applied in order to replace specific multi-noun keywords.

When we encountered the deep learning bi-gram detection possibilities of the Gensim library, we knew

we had to give it a try.

What are the characteristics of the SSC-ICT dataset?

, In chapter 3 we described the ticket data in much detail. We explained the eight most relevant fields of

the ticket data and how we used those fields to choose a suitable dataset. Furthermore, we decided that

for the intent identification and result recommendation we would focus on respectively the short

description and the action field. The request field was too noisy, too long and too inconsistent to put

effort into. For the categorization fields, we had analyzed the contents of the tickets and found that 33%

of the tickets were manually categorized wrongly. Furthermore, we did not find the subcategories very

specific, and their coverage was too inconsistent as well: 50% of the tickets was categorized among three

subcategories.

How can QA pair quality best be measured?

For answering this research question we consulted some literature reviews, the general consensus

scientific research was that there are some types of evaluation for NLP systems and some guidelines, but

that overall it often is unique for the dataset and the context.

 Due to that, the system consists of multiple components that all have their own input, we decided

that we needed component-based evaluation methods rather than only end-result evaluation. For the

categorization component, we chose for a score for the number of tickets that were categorized as well

as the number of categories that would result from the component. Furthermore, we set some boundary

53

conditions to which the categories needed to comply: Unique, Value adding and Hierarchically

independent.

Regarding the intent identification, we learned from the literature review that there are two types

of evaluation: internal and external. We decided that we required external evaluation for our research,

though generally, these methods required a predefined structure or accurate labels, things we both did

not have. Therefore we devised our own evaluation technique to measure the quality of the structures.

One that does not require labels or structure and uses a golden ticket set to score results. In order to avoid

the risk of overfitting, we created three golden cluster sets of three different sized and also different type

of categories. Furthermore, we determined that the number of tickets covered, along with a threshold

for intent-size was relevant for evaluation, as well as processing speed.

For the action recommendation component, we decided that the percentage of unique and useful

actions proposed is a good measure. However, this is meant for future use of the system, thus not

evaluated in this research, in contrary to the other two components. The reinforcement learning

component also requires feedback to be able to be evaluated. Furthermore, its results can be seen in

increased results for the other three components rather than having its own measure.

What is the minimal quality level needed to produce relevant performance measures?

 We determined the minimal quality level from a customer satisfaction point of view. The system

should perform at a level in which it improves the customer satisfaction. The system should therefore

lead to a successful answer often enough to be used by a good amount of people.

How can QA pairs best be used at SSC-ICT?

 In chapter 7 we describe the way the system of this research can be used at SSC-ICT. Furthermore,

we describe the improvements that can be made to the system in order to increase the QA-pair quality.

The results of the proposed system without improvement can be used for business intelligence, FAQ

creation, and interactive knowledge base. Especially the high-level categories are a trustworthy result

from the system that can be directly used for business insights that are not possible as of yet. The QA-

pairs are as of yet less trustworthy but are useful for internal use by for instance new operators with no

knowledge of the domain, and for FAQ creation with manual correction. The knowledge base function

provides feedback for the reinforcement learning system that is used to improve the system, so we highly

recommend implementing this feature as well.

54

10 Future research
In this chapter, we describe the potential future research that this research implies.

The main subjects that this research puts forward which are not extensively researched are that of the

use of Topic Modelling (LDA) and reinforcement learning for improving the intent identification

component.

LDA is generally used for identifying general topics from large documents and is the single most used

algorithm for this subject. However, Jan et al.(2014) and this research show that LDA can also be used

for identifying unique intents in low variety datasets. The downside of Topic modeling has always been

that it is completely unsupervised and that apart from determining the amount of topics there is no way

to influence this process. However, as of 2017, GuidedLDA has been discovered, a method to seed

keywords in LDA topics, steering the algorithm in a preferred direction to identify topics around.

GuidedLDA has however barely been researched yet. We are curious to see how far this steering can go.

Its potential seems unlimited, reaching towards topic databases in which topics instead of lexical

keywords are stored, with hundreds of weighted terms per topic.

Reinforcement learning is due to its feedback requirements also very little described in literature.

However, the same for this subject counts that it provides great potential for companies like SSC-ICT

that cover large amounts of users. Companies like Google are highly invested in this subject but keep

their techniques a secret. It would be interesting to see more information come available to what and

how human feedback is applied in order to improve text clustering.

55

11 References

Abraham, D. M., Spangler, W. E., & May, J. H. (1991). Expertech: Issues in the design and development

of an intelligent help desk system. Expert Systems With Applications, 2(4), 305–319.

http://doi.org/10.1016/0957-4174(91)90037-F

Acorn, T. L. (1992). SMART: Support Management Automated Reasoning Technology for Compaq

Customer Service. IAAI-92 Proceedings.

Agarwal, S., Aggarwal, V., Akula, A. R., Dasgupta, G. B., & Sridhara, G. (2017). Automatic problem

extraction and analysis from unstructured text in IT tickets. IBM Journal of Research and

Development. http://doi.org/10.1147/JRD.2016.2629318

Agarwal, S., Sindhgatta, R., & Sengupta, B. (2012). SmartDispatch: enabling efficient ticket dispatch in

an IT service environment. Proceedings of the 18th ACM …, 1393–1401.

http://doi.org/10.1145/2339530.2339744

Blaz, C. C. A., & Becker, K. (2016). Sentiment analysis in tickets for IT support. In Proceedings of the 13th

International Workshop on Mining Software Repositories - MSR ’16 (pp. 235–246).

http://doi.org/10.1145/2901739.2901781

Bozdogan, C., & Zincir-Heywood, N. (2012). Data mining for supporting IT management. In Proceedings

of the 2012 IEEE Network Operations and Management Symposium, NOMS 2012 (pp. 1378–1385).

http://doi.org/10.1109/NOMS.2012.6212079

Chan, C. W., Chen, L. L., & Geng, L. (2000). Knowledge engineering for an intelligent case-based system

for help desk operations. Expert Systems with Applications, 18(2), 125–132.

http://doi.org/10.1016/S0957-4174(99)00058-5

Chang, K. H., Raman, P., Carlisle, W. H., & Cross, J. H. (1996). A self-improving helpdesk service system

using case-based reasoning techniques. Computers in Industry, 30(2), 113–125.

http://doi.org/10.1016/0166-3615(96)00033-4

Chapman, P., Clinton, J., Kerber, R., Khabaza, T., Reinartz, T., Shearer, C., & Wirth, R. (2000). Crisp-Dm

1.0. CRISP-DM Consortium, 76. http://doi.org/10.1109/ICETET.2008.239

Cheung, C. F., Lee, W. B., Wang, W. M., Chu, K. F., & To, S. (2003). A multi-perspective knowledge-based

system for customer service management. Expert Systems with Applications.

http://doi.org/10.1016/S0957-4174(02)00193-8

Choe, P., Lehto, M. R., Shin, G. C., & Choi, K. Y. (2013). Semiautomated identification and classification

of customer complaints. Human Factors and Ergonomics In Manufacturing, 23(2), 149–162.

http://doi.org/10.1002/hfm.20325

Datanyze. (2019). TOPdesk Market Share in Netherlands and Competitor Report | Compare to

ServiceNow, Freshservice, Jira Service Desk | Datanyze. Retrieved March 19, 2019, from

https://www.datanyze.com/market-share/itsm/Netherlands/topdesk-market-share

56

Davenport, T. H., & Klahr, P. (1998). Managing Customer Support Knowledge. California Mangement

Review, Vol. 40, No. 3

Dhoolia, P., Chugh, P., Costa, P., & Gantayat, N. (2017). A cognitive system for business and technical

support : A case study, 61(1), 74–85. http://doi.org/10.1147/JRD.2016.2631398

Dhoolia, P., Chugh, P., Costa, P., Gantayat, N., Gupta, M., Kambhatla, N., … Saxena, M. (2017). A

cognitive system for business and technical support: A case study.

http://doi.org/10.1147/JRD.2016.2631398

El Sawy, O. A., & Bowles, G. (1997). Redesigning the Customer Support Process for the Electronic

Economy: Insights from Storage Dimensions. MISQ, 21(4), 457. http://doi.org/10.2307/249723

Foo, S., S.C, H., Leong, P. C., & Liu, S. (2000). An Iintegrated Help Desk Support for Customer Services

over the World Wide Web - A Case Study. Computers in Industry, 41(2), 129–145.

García-Pardo, J. Á., Barberá, S. H., Ramos-Garijo, R., Palomares, A., Julián, V., Rebollo, M., & Botti, V.

(2006). CBR-TM: A new case-based reasoning system for help-desk environments. Frontiers in

Artificial Intelligence and Applications, 141(January 2006), 833–834. Retrieved from

http://www.scopus.com/inward/record.url?eid=2-s2.0-84885995660&partnerID=tZOtx3y1

Göker, M., & Roth-Berghofer, T. (1999). Development and utilization of a case-based help-desk support

system in a corporate environment. In Lecture Notes in Computer Science (including subseries

Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) (Vol. 1650, pp. 132–

146). http://doi.org/10.1007/3-540-48508-2_10

González, L. M., Giachetti, R. E., & Ramirez, G. (2005). Knowledge management-centric help desk:

Specification and performance evaluation. Decision Support Systems, 40(2), 389–405.

http://doi.org/10.1016/j.dss.2004.04.013

Gupta, R., Prasad, K. H., & Mohania, M. (2008). Automating ITSM incident management process. In 5th

International Conference on Autonomic Computing, ICAC 2008 (Vol. 1, pp. 141–150).

http://doi.org/10.1109/ICAC.2008.22

Heras, S., García-pardo, J. Á., Ramos-garijo, R., Palomares, A., Botti, V., Rebollo, M., & Julián, V. (2009).

Multi-domain case-based module for customer support. Expert Systems With Applications, 36(3),

6866–6873. http://doi.org/10.1016/j.eswa.2008.08.003

Ho Kang, B., Yoshida, K., & Compton, P. (1997). Help desk system with intelligent interface. Applied

Artificial Intelligence, 11, 611–631.

Iwai, K., Iida, K., Akiyoshi, M., & Komoda, N. (2010). A help desk support system with filtering and

reusing e-mails. In IEEE International Conference on Industrial Informatics (INDIN) (pp. 321–325).

http://doi.org/10.1109/INDIN.2010.5549401

Jan, E., Chen, K., & Ide, T. (2014). A Probabilistic Concept Annotation for IT Service Desk Tickets. In

Proceedings of the 7th International Workshop on Exploiting Semantic Annotations in Information

Retrieval - ESAIR ’14 (pp. 21–23). http://doi.org/10.1145/2663712.2666193

57

Jordán, J., Heras, S., & Julián, V. (2011). A customer support application using argumentation in Multi-

Agent Systems. In Fusion 2011 - 14th International Conference on Information Fusion (pp. 772–

778).

Kang, Y., & Zaslavsky, A. (2010). A knowledge-rich similarity measure for improving IT incident

resolution process. Proceedings of the 2010 …, 1781–1788. http://doi.org/10.1145/1774088.1774466

Kim, H., & Seo, J. (2008). Cluster-based FAQ retrieval using latent term weights. IEEE Intelligent

Systems, 23(2), 58–65. http://doi.org/10.1109/MIS.2008.23

Kiyota, Y., Kurohashi, S., & Kido, F. (2003). Dialog Navigator: A Question Answering System based on

Large Text Knowledge Base. Journal of Natural Language Processing, 10(4), 145–175.

http://doi.org/10.5715/jnlp.10.4_145

Kongthon, A., Sangkeettrakarn, C., Kongyoung, S., & Haruechaiyasak, C. (2009). Implementing an online

help desk system based on conversational agent. In Proceedings of the International Conference on

Management of Emergent Digital EcoSystems - MEDES ’09 (p. 450).

http://doi.org/10.1145/1643823.1643908

Kozakov, L., Park, Y., Fin, T., Drissi, Y., Doganata, Y., & Cofino, T. (2004). Glossary extraction and

utilization in the information search and delivery system for IBM Technical Support. IBM Systems

Journal, 43(3), 546–563. http://doi.org/10.1007/3-540-32394-5_20

Li, H., & Zhan, Z. (2012). Machine learning methodology for enhancing automated process in IT incident

management. In Proceedings - IEEE 11th International Symposium on Network Computing and

Applications, NCA 2012 (pp. 191–194). http://doi.org/10.1109/NCA.2012.28

Liu, Y., Li, Z., Xiong, H., Gao, X., & Wu, J. (2010). Understanding of Internal Clustering Validation

Measures. IEEE International Conference on Data Mining Understanding

http://doi.org/10.1109/ICDM.2010.35

Mani, S., Sankaranarayanan, K., Sinha, V. S., & Devanbu, P. (2014). Panning requirement nuggets in

stream of software maintenance tickets. In Proceedings of the 22nd ACM SIGSOFT International

Symposium on Foundations of Software Engineering - FSE 2014 (pp. 678–688).

http://doi.org/10.1145/2635868.2635897

Marcu, P., Grabarnik, G., Luan, L., Rosu, D., Shwartz, L., & Ward, C. (2009). Towards an optimized model

of incident ticket correlation. In 2009 IFIP/IEEE International Symposium on Integrated Network

Management, IM 2009 (pp. 569–576). http://doi.org/10.1109/INM.2009.5188863

Miao, G., Moser, L. E., Yan, X., Tao, S., Chen, Y., & Anerousis, N. (2010). Generative models for ticket

resolution in expert networks. In Proceedings of the 16th ACM SIGKDD international conference

on Knowledge discovery and data mining - KDD ’10 (p. 733). http://doi.org/10.1145/1835804.1835897

Motahari-Nezhad, H. R., & Bartolini, C. (2011). Next Best Step and Expert Recommendation for

Collaborative Processes in IT Service Management (Vol. 6896). http://doi.org/10.1007/978-3-642-

23059-2

Motahari Nezhad, H. R., Bartolini, C., & Joshi, P. (2011). Analytics for similarity matching of IT cases

58

with collaboratively-defined activity flows. In Proceedings - International Conference on Data

Engineering (pp. 273–278). http://doi.org/10.1109/ICDEW.2011.5767639

Osinski, S., Stefanowski, J., & Weiss, D. (2004). Lingo : Search Results Clustering Algorithm Based on

Singular Value Decomposition. Advances in Soft Computing, Intelligent Information Processing

and Web Mining, Proceedings of the International IIS: IIPWM ’04 Conference, 359–368.

http://doi.org/10.1007/978-3-540-39985-8_37

Palshikar, G. K., Vin, H. M., Mudassar, M., & Natu, M. (2010). Domain-driven data mining for IT

infrastructure support. In Proceedings - IEEE International Conference on Data Mining, ICDM (pp.

959–966). http://doi.org/10.1109/ICDMW.2010.132

Paroubek, P., Chaudiron, S., Hirschman, L., Paroubek, P., Chaudiron, S., & Hirschman, L. (2010).

Principles of Evaluation in Natural Language Processing To cite this version : HAL Id : hal-00502700

Principles of Evaluation in Natural Language Processing, 48(1), 7–31.

Potharaju, R., Chan, J., Hu, L., Nita-rotaru, C., Wang, M., Zhang, L., & Jain, N. (2015). ConfSeer :

Leveraging Customer Support Knowledge Bases for Automated Misconfiguration Detection.

Proceedings of the 41st International Conference on Very Large Data Bases, 1828–1839.

http://doi.org/10.14778/2824032.2824079

Potharaju, R., & Nita-rotaru, C. (2013). Juggling the Jigsaw : Towards Automated Problem Inference

from Network Trouble Tickets. Nsdi, 127–141.

Rahman, I., Alarifi, A., Eden, R., & Sedera, D. (2014). Archival analysis of service desk research: New

perspectives on design and delivery. 25th Australasian Conference on Information Systems, 8–10.

http://doi.org/10.1177/0741713604268894

Resnik, P., & Lin, J. (2010). Evaluation of NLP Systems. The Handbook of Computational Linguistics and

Natural Language Processing, 271–295. http://doi.org/10.1002/9781444324044.ch11

Roth-berghofer, T., & Roth-berghofer, T. R. (2004). Learning from HOMER , a case- based help desk

support system Learning from HOMER , (June 2014). http://doi.org/10.1007/978-3-540-25983-1

Russell, S., & Norvig, P. (2013). Artificial Intelligence A Modern Approach. Zhurnal Eksperimental’noi i

Teoreticheskoi Fiziki. http://doi.org/10.1017/S0269888900007724

Samejima, M., & Akiyoshi, M. (2013). A Help Desk Support System Based on Relationship between

Inquiries and Responses (Vol. 484). http://doi.org/10.1007/978-3-642-37932-1

ServiceNow, & Devoteam. (2018). The AI Revolution. Retrieved from

https://www.servicenow.com/lpayr/ai-revolution.html

Shanavas, N., & Asokan, S. (2015). Ontology-Based Document Mining System for IT Support Service.

Procedia - Procedia Computer Science, 46(Icict 2014), 329–336.

http://doi.org/10.1016/j.procs.2015.02.028

Shao, Q., Chen, Y., Tao, S., Yan, X., & Anerousis, N. (2008). Efficient ticket routing by resolution sequence

mining. In Proceeding of the 14th ACM SIGKDD international conference on Knowledge discovery

59

and data mining - KDD 08 (p. 605). http://doi.org/10.1145/1401890.1401964

Sharma, A. R., & Kaushik, P. (2017). Literature survey of statistical, deep and reinforcement learning in

natural language processing. Proceeding - IEEE International Conference on Computing,

Communication and Automation, ICCCA 2017, 2017–Janua, 350–354.

http://doi.org/10.1109/CCAA.2017.8229841

Sneiders, E. (2009). Automated FAQ Answering with Question-Specific Knowledge Representation for

Web Self-Service. Proceedings of the 2nd International Conference on Human System Interaction

(HSI’09), 298–305.

Sun, P., Tao, S., Yan, X., Anerousis, N., & Chen, Y. (2010). Content-Aware Resolution Sequence Mining

for Ticket Routing. IBM T. J. Watson Research Center

Takano, A., Yurugi, Y., & Kanaegami, A. (2000). Procedure based help desk system. Proceedings of the

5th International Conference on Intelligent User Interfaces - IUI ’00.

http://doi.org/10.1145/325737.325868

Talamo, M., Povilionis, A., Arcieri, F., & Schunck, C. H. (2016). Providing Online Operational Support for

Distributed , Security Sensitive Electronic Business Processes, 49–54.

Thurman, D. a., Tracy, J. S., & Mitchell, C. M. (1997). Design of an intelligent Web-based help desk

system. 1997 IEEE International Conference on Systems, Man, and Cybernetics. Computational

Cybernetics and Simulation, 3. http://doi.org/10.1109/ICSMC.1997.635192

Vehviläinen, A., Hyvönen, E., & Alm, O. (2006). A semi-automatic semantic annotation and authoring

tool for a library help desk service. In CEUR Workshop Proceedings (Vol. 209).

http://doi.org/10.4018/978-1-59904-877-2.ch007

Vlasov, V., Chebotareva, V., Rakhimov, M., & Kruglikov, S. (2017). AI User Support System for SAP ERP.

Journal of Physics: Conference Series 913

60

12 Appendix

 Appendix A: literature review articles

A
uthor

Year

O
ntology

creation

Pre-
processing

Keyw
ord

classificatoin

Clustering

Ticket
routing

Type of
system

(Abraham,
Spangler, & May,
1991) 1991 x Expert system

(Acorn, 1992) 1992 CBR system
(Chang, Raman,
Carlisle, & Cross,
1996) 1996 CBR system
(El Sawy & Bowles,
1997) 1997 CBR system
(Ho Kang, Yoshida,
& Compton, 1997) 1997 CBR system
(Thurman, Tracy,
& Mitchell, 1997) 1997 CBR system
(Davenport &
Klahr, 1998) 1998 Systems overview
(Göker & Roth-
Berghofer, 1999) 1999 CBR system
(Chan, Chen, &
Geng, 2000) 2000 CBR system
(Takano, Yurugi, &
Kanaegami, 2000) 2000 x CBR system
(Foo, S.C, Leong, &
Liu, 2000) 2000 x Expert system
(Kiyota, Kurohashi,
& Kido, 2003) 2002 x x x QA system
(Cheung, Lee,
Wang, Chu, & To,
2003) 2003 x x Knowledge based system
(Roth-berghofer &
Roth-berghofer,
2004) 2004 CBR system
(Kozakov et al.,
2004) 2004 x Knowledge base system
(González,
Giachetti, &
Ramirez, 2005) 2005 Expert system
(García-Pardo et
al., 2006) 2006 x CBR system
(Gupta, Prasad, &
Mohania, 2008) 2008 x x x Knowledge base system

(Kim & Seo, 2008) 2008 x x QA system
(Vehviläinen,
Hyvönen, & Alm,
2006) 2008 x x x x QA system/CBR
(Shao, Chen, Tao,
Yan, & Anerousis,
2008) 2008 x x Ticket recommender

61

(Heras et al.,
2009) 2009 CBR system
(Kongthon,
Sangkeettrakarn,
Kongyoung, &
Haruechaiyasak,
2009) 2009 x x x QA system

(Sneiders, 2009) 2009 x x QA system
(Marcu et al.,
2009) 2009 x x x Ticket recommender
(Kang & Zaslavsky,
2010) 2010 x x x x CBR system
(Iwai, Iida,
Akiyoshi, &
Komoda, 2010) 2010 x x x x QA system: help desk
(Palshikar, Vin,
Mudassar, & Natu,
2010) 2010 x x Ticket recommender
(Sun, Tao, Yan,
Anerousis, &
Chen, 2010) 2010 x x x x Ticket recommender

(Miao et al., 2010) 2010 x x x x Ticket recommender
(Jordán, Heras, &
Julián, 2011) 2011 CBR system
(Motahari-Nezhad
& Bartolini, 2011) 2011 x x x Ticket recommender
(Motahari Nezhad,
Bartolini, & Joshi,
2011) 2011 x x x Ticket recommender
(Bozdogan &
Zincir-Heywood,
2012) 2012 x x x x Knowledge base system
(Shivali Agarwal,
Sindhgatta, &
Sengupta, 2012) 2012 x x x x Ticket recommender

(Li & Zhan, 2012) 2012 x x x x Ticket recommender
(Choe, Lehto, Shin,
& Choi, 2013) 2013 x X x x Knowledge base system
(Potharaju & Nita-
rotaru, 2013) 2013 x X x Knowledge bases system
(Samejima &
Akiyoshi, 2013) 2013 x x x QA system
(Rahman, Alarifi,
Eden, & Sedera,
2014) 2014 Systems overview

(Jan et al., 2014) 2014 x X x Ticket recommender
(Shanavas &
Asokan, 2015) 2015 x Knowledge base system

(Potharaju et al.,
2015) 2015 x X x

Knowledge base with
automated issue detection
system

(Blaz & Becker,
2016) 2016 x x Knowledge base system
(Talamo,
Povilionis, Arcieri,
& Schunck, 2016) 2016 Ticket recommender
(S Agarwal et al.,
2017) 2017 x X x x Knowledge base system
(Dhoolia, Chugh,
Costa, & Gantayat,
2017) 2017 x X x x QA system

62

(Vlasov et al.,
2017) 2017 x x x QA system

 Appendix B: Literature review methodology

To answer the research question a structured literature review was performed. Scopus and Google

Scholar were used for scientific libraries in order to search for scientific papers. First, an initial search

query was designed in order to find a first selection of relevant articles. This query was: (knowledge OR

information OR system) AND (“customer support” OR “user support” OR “technical support” OR “help

desk”). A total of 205 articles was found. The articles were scanned on article title and abstract for

relevance to the subject. Citation count and year of publishing was taken into account: articles with a

low citation count needed to be published relatively recently in order to make it through the selection.

This resulted in a set of 62 articles.

 Next, these articles were read fully in order to be more selective about the relevance, the result of

this was 27 articles. During this step a new keyword “ticket” was identified and a couple of relevant

articles were added. Forward and backward snowballing technique was applied on the resulting set in

order to find more articles. This process was repeated at least three times until no new articles were found.

This resulted in a set of 49 articles.

These articles were then coded and sorted in categories for each of the knowledge processes, system

type, and other information relevant to be able to quickly look up an overview of the articles. A partial

overview is shown in table 1.

63

Figure 19: Literature review process visualized

64

 Appendix C: Ticket overview in TopDesk System

65

 Appendix D: List of synonyms

12.4.1 Entity synonyms
website site url

hprm digidoc

inet i-net

pincode pin

monitoring agent

acceptatieomgeving testomgeving

postvak inbox

benaderbaar toegankelijk

oplader oplaadkabel lader voeding adapter usb-c

access acces

adobe acrobat

samenwerkingsruimte samenwerkruimte swr

traag langzaam

token softtoken hardtoken softoken

work works

raac zorro notis

synchroniseert sync synct synchroniseerd

blackberry bb good bbwork goodwork blackberrywork

uemclient

simkaart umts sim sim-kaart umts-kaart

wifi wi-fi govroam internetverbinding

pst-map gegevensbestand

aanmeldserver aanmeldingsserver

kamer vergaderzaal zaal

etage verdieping

cloudbook macbook

installatie activatie herinstallatie

ontgrendelcode activatiecode toegangscode pukcode

puk ontgrendelingscode activeringscode unlockcode

ontgrendelingssleutel installatiecode

toner afvalcontainer container tonerafvalcontainer

cassette afdrukmodule

res one

workspace ivanti

mail mails email e-mail

dwr citrix dwr64 dwr-64

win7 w7

win10 w10

vgw vgw-rvb

servicedesk helpdesk

adminsitratie adminstratie

firefox ff

wifi govroam wi-fi

defect kapot

beeldscherm scherm monitor beeld

netwerkverbinding internetverbinding dataverbinding

laptop chromebook

pc computer

schijf g-schijf h-schijf netwerkschijf o-schijf

raar vreemd

usb stick sticks

vergroten uitbreiden

gebruiker klant gebr aanmelder

dekking buitenlanddekking werelddekking

onjuist ongeldig

autoriseren machtigen

postbus mailbox dienstpostbus

uem eum

update upgrade overgang

migratie verhuizing

uitgeleend leen uitleen

afhalen afboeken

proxy proxyserver proxy-server

synergy globe

ongeluk abuis

verbinding connectie

telefoon iphone ipad toestel mobiel samsung

smartphone

gebruikersnaam inlognaam

afdeling directie

factuur inkooporder io

mfp xerox

mailadres e-mailadres emailadres

proxymelding proxy-melding

balie servicebalie

diverse meerdere allerlei

machtigingen machtiging

followme followme1

installatie activatie herinstallatie activatiemail

heractivatie

bestand document

crasht crashed

gemigreerd overgezet

pagina webpagina

kabel netwerkkabel

replicator portreplicator dockingstation

mappen map submap

wachtwoord ww password

beveiligingsmelding popup pop-up

invoegtoepassing plugin

opdracht printopdracht

geheugen schijfruimte

aub svp

laptops pc's

enorm extreem ontzettend

installeren configureren

mozilla frontmotion

ip mac

weergave layout

virusscanner mcafee

kopieren verslepen

probleem euvel

netwerkschijven schijven

code sleutel

simwissel wissel

database databases

66

bes12 bes

batterij accu

12.4.2 Verb synonyms
vergrendelen locken deactiveren

deblokkeren unlocken heractiveren

synchroniseren synct synchroniseeren

failed hossen alert dwrt certificate

omruilen omwisselen inleveren

benaderen bereiken

verplaatsen slepen verslepen

terugzetten terugplaatsen

weergeven tonen

afvoeren verhuizen

uitgeven uitleveren meegeven

inleveren omruilen omwisselen

aankomen binnenkomen

herstarten rebooten

registreren registeren

printen afdrukken uitprinten

knipperen flikkeren

controleren nakijken

bewaren terugkomen

ontkoppelen afboeken

openzetten openstellen

verzenden versturen sturen

gerard inlogproblemen david

helpen assisteren

overzetten omzetten

vergroten uitbreiden

verstaan vermelden

inloggen aanmelden aanloggen

oplossen verhelpen

wijzigen aanpassen veranderen

invoeren invullen

 Appendix E: Categorization of tickets

Categorylabel: 'work', number of tickets: 15959

Categorylabel: 'laptop', number of tickets: 15939

Categorylabel: 'wachtwoord', number of tickets:

13890

Categorylabel: 'outlook', number of tickets: 13341

Categorylabel: 'status navraag', number of

tickets: 12424

Categorylabel: 'dwr', number of tickets: 11818

Categorylabel: 'printer', number of tickets: 5698

Categorylabel: 'account', number of tickets: 4745

Categorylabel: 'mail', number of tickets: 4358

Categorylabel: 'blackberry', number of tickets:

3936

Categorylabel: 'token', number of tickets: 3641

Categorylabel: 'citrix', number of tickets: 3146

Categorylabel: 'code', number of tickets: 2722

Categorylabel: 'uem client', number of tickets:

2351

Categorylabel: 'pc', number of tickets: 2350

Categorylabel: 'beeldscherm', number of tickets:

2227

Categorylabel: 'netwerk', number of tickets: 2190

Categorylabel: 'taakbalk', number of tickets: 310

Categorylabel: 'sap', number of tickets: 304

Categorylabel: 'printing', number of tickets: 296

Categorylabel: 'vpn', number of tickets: 295

Categorylabel: 'p-direkt', number of tickets: 286

Categorylabel: 'service', number of tickets: 276

Categorylabel: 'usb', number of tickets: 275

Categorylabel: 'topdesk', number of tickets: 275

Categorylabel: 'afgehandeld', number of tickets:

267

Categorylabel: 'bureaublad', number of tickets:

252

Categorylabel: 'office', number of tickets: 249

Categorylabel: 'tablet', number of tickets: 246

Categorylabel: 'govroam', number of tickets: 245

Categorylabel: 'kabel', number of tickets: 241

Categorylabel: 'geluid', number of tickets: 227

Categorylabel: 'mfc', number of tickets: 225

Categorylabel: 'vip', number of tickets: 215

Categorylabel: 'direct', number of tickets: 214

Categorylabel: 'firefox', number of tickets: 205

Categorylabel: 'ibabs', number of tickets: 193

67

Categorylabel: 'telefoon', number of tickets: 2157

Categorylabel: 'good', number of tickets: 2016

Categorylabel: 'wifi', number of tickets: 1825

Categorylabel: 'internet', number of tickets: 1694

Categorylabel: 'scherm', number of tickets: 1632

Categorylabel: 'postbus', number of tickets: 1578

Categorylabel: 'ie', number of tickets: 1576

Categorylabel: 'document', number of tickets:

1540

Categorylabel: 'proxy', number of tickets: 1447

Categorylabel: 'ww', number of tickets: 1308

Categorylabel: 'schijf', number of tickets: 1305

Categorylabel: 'toetsenbord', number of tickets:

1296

Categorylabel: 'iphone', number of tickets: 1231

Categorylabel: 'pst', number of tickets: 1176

Categorylabel: 'sd', number of tickets: 1139

Categorylabel: 'ontgrendelcode', number of

tickets: 1118

Categorylabel: 'muis', number of tickets: 1090

Categorylabel: 'ipad', number of tickets: 1064

Categorylabel: 'foutmelding', number of tickets:

984

Categorylabel: 'agenda', number of tickets: 912

Categorylabel: 'update', number of tickets: 898

Categorylabel: 'gehoor', number of tickets: 893

Categorylabel: 'flex2rijk', number of tickets: 848

Categorylabel: 'toner', number of tickets: 840

Categorylabel: 'computer', number of tickets: 791

Categorylabel: 'monitor', number of tickets: 785

Categorylabel: 'digidoc', number of tickets: 747

Categorylabel: 'applicatie', number of tickets: 742

Categorylabel: 'excel', number of tickets: 724

Categorylabel: 'server', number of tickets: 720

Categorylabel: 'port', number of tickets: 670

Categorylabel: 'statusnavraag', number of

tickets: 661

Categorylabel: 'persoonlijke', number of tickets:

658

Categorylabel: 'apps', number of tickets: 641

Categorylabel: 'pdf', number of tickets: 640

Categorylabel: 'hprm', number of tickets: 604

Categorylabel: 'storing', number of tickets: 572

Categorylabel: 'mobiel', number of tickets: 561

Categorylabel: 'chromebook', number of tickets:

524

Categorylabel: 'postvak', number of tickets: 186

Categorylabel: 'samsung', number of tickets: 182

Categorylabel: 'ssc-ict', number of tickets: 180

Categorylabel: 'papier', number of tickets: 172

Categorylabel: 'afdrukken', number of tickets:

170

Categorylabel: 'vasco', number of tickets: 165

Categorylabel: 'sim', number of tickets: 162

Categorylabel: 'desktop', number of tickets: 160

Categorylabel: 'exchange', number of tickets: 158

Categorylabel: 'website', number of tickets: 149

Categorylabel: 'ind', number of tickets: 132

Categorylabel: 'powerpoint', number of tickets:

126

Categorylabel: 'res', number of tickets: 124

Categorylabel: 'abonnement', number of tickets:

122

Categorylabel: 'szw', number of tickets: 118

Categorylabel: 'hardware', number of tickets: 117

Categorylabel: 'kiosk', number of tickets: 113

Categorylabel: 'oracle', number of tickets: 108

Categorylabel: 'smartphone', number of tickets:

102

Categorylabel: 'u166', number of tickets: 100

Categorylabel: 'domein', number of tickets: 90

Categorylabel: 'spoed', number of tickets: 76

Categorylabel: 'hp', number of tickets: 67

Categorylabel: 'bes12', number of tickets: 58

Categorylabel: 'ios', number of tickets: 51

Categorylabel: 'explorer', number of tickets: 50

Categorylabel: 'printen', number of tickets: 49

Categorylabel: 'contacten', number of tickets: 48

Categorylabel: 'pro', number of tickets: 41

Categorylabel: 'stick', number of tickets: 25

Categorylabel: 'leenlaptop', number of tickets: 21

Total number of tickets categorized: 179113

68

Categorylabel: 'werkplek', number of tickets: 513

Categorylabel: 'rijksportaal', number of tickets:

495

Categorylabel: 'defect', number of tickets: 493

Categorylabel: 'simkaart', number of tickets: 479

Categorylabel: 'bes', number of tickets: 466

Categorylabel: 'data', number of tickets: 465

Categorylabel: 'spam', number of tickets: 455

Categorylabel: 'software', number of tickets: 446

Categorylabel: 'adobe', number of tickets: 436

Categorylabel: 'beeld', number of tickets: 426

Categorylabel: 'umts', number of tickets: 406

Categorylabel: 'toestel', number of tickets: 402

Categorylabel: 'password', number of tickets: 398

Categorylabel: 'dwr-next', number of tickets: 377

Categorylabel: 'mappen', number of tickets: 359

Categorylabel: 'huis', number of tickets: 341

Categorylabel: 'follow', number of tickets: 339

Categorylabel: 'windows', number of tickets: 326

Categorylabel: 'vodafone', number of tickets: 317

Categorylabel: 'profiel', number of tickets: 314

