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Abstract 
The days of AI have begun, Artificial Intelligence becomes a common term in our vocabulary, even 

though most of us know and understand so little about it. It seems like only the huge and elusive 

companies like IBM and Google understand its use and potential fully.  

In customer service, chatbots arise that answer customer questions based on most often manually 

crafted data structures called Question Answer-pairs, making companies look like one of the elite. 

However, what about those organizations that process so many questions that manual labeling is not an 

option? Should they remain old fashioned static servants that only react to their customer’s inquiries 

that do not see a way to cater them proactively? The large companies provide the solution but with a 

price tag of millions of dollars. There must be something in between right? TopDesk, capping 80% market 

share in the Dutch incident management branch (Datanyze, 2019) does not see how.  

 

In this study, we propose a low threshold QA-pair generation system using state-of-the-art 

technologies with the purpose of automatically identifying unique problems, and their solutions from a 

large and high variety incident ticket dataset of the nation-wide public IT Shared Service Center.  

In order to achieve this, we researched the in related works applied components and techniques, and 

determined the for SSC-ICT best combination using identified characteristics of the dataset and 

organizational context. Furthermore, a set of component-based evaluation measures is designed in order 

to evaluate the different techniques and determine the best solutions. Then, a recommendation is 

provided with a system architecture, its use cases, and potential further improvements.  

 

The result is a system consisting of 4 components: categorizational clustering, intent identification, 

action recommendation, and reinforcement learning. For categorizational clustering, we determine 

categorizational keywords using an existing Latent Semantic Indexing (LSI) algorithm to which we 

allocate the tickets using Levenshtein distance, which overcomes misspelling exclusions.  

For the intent identification component, we compared two very different but state-of-the-art 

techniques: POS Patterns and Topic Modeling (LDA). After applying the evaluation measure, Topic 

modeling came out as the winner with a slightly lower QA-pair quality score, but higher improvement 

potential and a much higher ticket coverage rate.  

The actions are cleaned, clustered and provided using a recommended application, a knowledge base 

application with reinforcement learning capabilities for use by the 40.000 customers of SSC-ICT. With 

enough feedback, the expected success rate of the system is about 50%. With further improvements, we 

believe this can lead up to 70-80%.  

Other uses of the system’s QA-pairs are Business Intelligence, FAQ extraction, and Anomaly 

Detection.  
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1 Introduction 
IT Shared Service Centers are the beating heart of large organizations. They take on everything that 

has to do with the facilitation of IT: Personal computers, mobile devices, workplaces, servers, 

applications, VPN’s. Now that more and more tasks and communication is done using computer devices, 

organizations are more dependent on them as well. IT Incident management, which manages the IT-

related incidents within an organization and is a large part of Shared Service Centers’ responsibility, is 

therefore crucial to the productivity of an organization.  

As of now, incident management is performed in almost all service centers using a ticketing system. 

A ticketing system is a system in which incident calls or requests for service by users are registered by a 

service desk into a form which is called a ticket. The ticket is then either sent to the person within an 

organization that can act on the ticket or the person that knows the most about the context of a ticket. 

These ticketing systems do well what they are primarily meant for, and are especially very useful in large 

organizations in which alternatives for incident management like direct communication or e-mail would 

be inefficient.  

However, what is often the case with these systems, is that the ticket data that they generate has 

excellent potential but often remains unused. The data often contains a description of the incident as 

well as the action that was performed upon this incident. This information could be used to create 

knowledge that could be used to automate service desk operator tasks or to be able to offer common 

solutions via a self-service portal or chatbot. In this research a system is designed by which the ticket 

data of a large Shared Service Center is used to create this knowledge in a manner that limits the amount 

of manual work as much as possible, using Natural Language Processing and Machine Learning.  

The organization where the research is performed at is SSC-ICT. SSC-ICT is the IT Shared Service 

Center of 8 Dutch ministries. It supports about 40.000 civil servants that almost all have a company-

laptop and phone as well as a virtual working environment. Furthermore, SSC-ICT provides service for 

over one thousand applications, and they have their own Data Center. All service-desks combined 

(phone(60%), e-mail (15%), physical(10%) and other (15%) generate around 30.000 tickets a month in 

ticket management system TopDesk.  

 

Currently, SSC-ICT wants to increase its user satisfaction level. It is at a 6.7; their goal is a 7.0 at 

least. Monthly questionnaires show that this user satisfaction depends for a very high part on the 

customer service department, as well as on repeating complaints that are not taken care of. Management 

has spoken out and started a series of projects regarding being able to act more pro-actively instead of 

reactively on customer requests in order to increase the service satisfaction. One of these projects is meant 

to analyze the available data within the company with the purpose of finding use cases for it. This thesis 

research is part of this project.  

When starting the project, in the first two weeks, we identified the data sources through interviews 

and calls. Very quickly, it was clear that the data of the service management system had the most 

potential to increase customer satisfaction and this data was yet unused. Literature research showed that 

application of Artificial Intelligence (AI) in the customer service management had great potential and 

was by far the number one researched subject in the field. However, this was more due to lack of research 

in the customer service field then due to the amount of research in AI, which is not that large. 

 

The potential of implementing AI in customer support is very promising. According to recent 

research among 1082 senior IT-professionals from 11 European countries (ServiceNow & Devoteam, 

2018), 72% of those that use AI in the customer service indicates to experience benefits from the 
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technologies. However, less than a third of the customer service companies in the EU uses AI and only 

22% of the Dutch customer service companies. Topdesk, the ticket management provider of SSC-ICT, has 

a whopping 88% market share but do not have any AI in their system, to show the differences.  

Under AI in the customer service is understood virtual assistants and chatbot, Natural language 

processing tools, Sentiment analysis and text mining (ServiceNow & Devoteam, 2018). not have any AI 

in their system, to show the differences.  

Furthermore, data analysis, as well as interviews with the managers of the service desk, has shown 

that 85% of all telephone calls to the service desk are first-line calls. They are thus answerable by the 

operator without him or her needing extra resources; this means that these tickets are rather easy to solve 

and therefore potentially automatically solvable or solvable by users themselves when provided with the 

right information. Thus, there are significant opportunities for automatization with AI at SSC-ICT.  

A virtual agent can do all of the above and more. It would make the service be able to be available 

24/7: also at night and the weekends. Furthermore, there would be no waiting times, and customers would 

receive consistent information, not having to rely on the operators’ experience. Not to speak about the 

benefits of a business perspective like reduction in service operator’s cost. 

 

However, complete AI systems like IBM Watson or Amelia of IPSoft are expensive. Estimates point 

towards investments of multiple millions of dollars for a company like SSC-ICT. Also, they require 

substantial changes in infrastructure, as they built on learning from feedback, namely reinforcement 

learning. Training such a system from scratch takes at least 12 months to catch up with the organization’s 

processes and be more efficient than without such a system. A leap this far, costly and with little 

transparency is something that not many organizations are willing to take.  

However, we think that this is not where it ends. There is an area between a fully automatic cognitive 

AI system and a static ticketing system. What is needed is a first step on the ladder towards AI, a low 

threshold system that shows quick benefits of applying AI in customer service and is transparent in its 

results. SSC-ICT has the perfect environment to build this, due to its scale, quick win potential and 

number of users. This research describes a low threshold bootstrapping system (Dhoolia, Chugh, Costa, 

Gantayat, et al., 2017) for AI in customer service that serves as a foundation for continuous improvement.  

 

 Problem statement 

How can AI make use of ticket data? The tickets of SSC-ICT consists among other fields on the 

description of the problem and the action that is performed on the problem by the service desk operator. 

What AI techniques can do is identifying unique problems from the tickets, compare them to similar 

problems, and provide suitable action, based on history, all the while without much manual effort. There 

are different components in this process needed due to the distinction between problem and solutions 

and the matching between those. A component that large cognitive systems like IBM Watson are very 

advanced in is reinforcement learning.  Reinforcement learning is learning from feedback mechanisms, 

and it requires much feedback. In this research, we focus on “bootstrapping” the cognitive system by 

identifying problems and matching solutions, i.e., generating Question-Answer pairs (QA-pairs). The 

reinforcement learning part is given a start with but is not developed in-depth due to the need for long-

term feedback and continuous improvement. In the next chapter, we formulate the research scope in a 

research question and sub-questions. 
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 Research questions 

What is a “State of the Art” QA-pair generation system for incident management of SSC-ICT? 

 

1. What components, techniques, and characteristics of QA pair generation systems are used in 

related works? 

A literature review will be performed to identify all available components and techniques in QA-

pair generation. We perform a literature review on a wide array of AI applications for ticket management 

systems and extract the general topics which we will describe in chapter 2. Next, from this same literature 

review, we extract a short-list of the most similar research cases to this research, and we will analyze 

them thoroughly. We provide summaries of these related works in chapter 2.5, and we accumulate 

requirements from them for our system in chapter 2.6.  

 

2. What potentially useful, other techniques are there? 

Apart from literature, online communities are, especially in Data Science, a great way of collecting 

inspiration. In chapter 2.7, we accumulate all the techniques that we use in this research, and we will 

explain how and why.  

  

3. What are the characteristics of the SSC-ICT dataset? 

Based on this research question we analyze the dataset of SSC-ICT, with the perspective of building 

the system. We analyze the data fields, their use, we describe the ticket input process, and how the final 

dataset is composed.  

 

4. How can QA pair quality best be measured? 

To evaluate the system and to be able to compare the results of different techniques, measures for 

the quality of the QA-pairs are needed. In the literature review among related works, the encountered 

evaluation techniques are evaluated. Furthermore, we apply literature research on evaluation techniques 

specific to the components of the system.  

 

5. What is the minimal quality level needed for the evaluation corpus to produce relevant 

performance measures? 

Setting a minimum quality level helps to see the system’s results in perspective. We base the quality 

level on achieved results of related works as well as on prognoses of field experts.  

 

6. How can QA pairs best be used at SSC-ICT? 

QA-pairs have multiple use cases. Based on the characteristics of SSC-ICT we recommend one or two 

use cases. Furthermore, we will provide a prototype version of such an application, based on the ticket 

data of SSC-ICT.  
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 Research approach 

For this research, we chose to use a custom research framework. Our framework is based on the 

Cross Industry Standard Process for Data Mining (Crisp-DM). This model is a widely used methodology 

for data mining projects and has use cases in projects within immature research fields. Furthermore, this 

model is very practically oriented rather than theoretical which suits this research project well.  

 

In figure 1 the dimensions of the Crisp-DM model are provided along with their generic tasks, this 

helps to understand the dimensions better. In figure 2 the adapted version of the Crisp-DM model is 

visualized. In this version, we combine data preparation and data modeling due to the synergy of these 

tasks in Natural Language Processing (NLP). Furthermore, we added another dimension, namely 

determining the high-level architecture. We did this because NLP systems other than most data mining 

projects, often consist of a pipeline of components, rather than one, that have different input and produce 

different results.  

In the next paragraph, each of the dimensions is described in more detail as well as where in the 

report the elaboration on it is described.  

  

 
Figure 1: Generic tasks of Crisp-DM Reference model (Chapman et al., 2000) 
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Figure 2: Adapted version of CRISP-DM research approach 

 

Domain understanding 

In this first phase, the research domain is explored and understood. A literature review is applied to 

find similar cases, to scope down the research domain as well as to find technologies and components 

that are potential candidates for this research project. We describe similar cases, components, and 

technologies in chapter 2: Background.  

 

Data understanding 

Data understanding is about understanding the potential and limitations of the data regarding its 

expected results. We describe this topic in chapter 2.6: The ticket data. 
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Determine high-level architecture 

This dimension is about determining what components are best for the system. Once this is 

determined, it remains as is and the modeling of processes and evaluation can advance. In short, it is the 

foundation of the system. This dimension is described in chapter 3: High-level architecture.  

 

Data Preparation & Modeling 

Modeling is for this research the process of choosing, designing, building and evaluating of models 

and algorithms with the goal of reaching the expected results. This process, as well as visualized 

architectures, are described in chapter 5: Modeling. 

 

Evaluation 

Evaluation criteria are defined componentwise. For each of the design iterations, we measure and 

evaluate the effectiveness of the solution using the criteria. In chapter 4 the criteria are defined, and in 

chapter 5 they are applied. 

 

Deployment 

In chapter 6, the final system is described and the performance is determined and compared to the 

minimal quality level, which is described in chapter 6 as well.  
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 Research taxonomy 

- Intent: an intent is an identified problem or the Question in Question & Answer pair. 

- Short description: a field of the ticket dataset containing a summary of the problem, used for 

identifying the intent 

- Categorical clustering: clustering on the highest level 

- SSC-ICT: Shared Service Centre – ICT 

- AI: Artificial Intelligence 

- NLP: Natural Language Processing, an AI subject for natural language 

- Deep Learning: Machine Learning using neural networks 

- QA-pair: A question-answer pair, a combination of a question and a suitable answer.  

- Customer/user: The Dutch civil servants 

- Operators: Service-desk employees 
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2 Background 
This chapter describes background information regarding this research. First, we describe the main 

domains of Artificial Intelligence in customer service. Then, we describe the evolution of AI systems 

based on a literature review among 50 articles regarding AI systems in the customer service. Followed up 

by common applications of QA-pairs which is based on the literature review. After that, common 

techniques in QA-pair systems are summed up. Next, we describe the ticket dataset of SSC-ICT. Then, 

we describe related systems to this research system. We summarize these articles and extract 

characteristics from them. These characteristics are then applied to SSC-ICT.  

 

 Artificial intelligence, Machine Learning, and Natural 

Language Processing 

Russell & Norvig (2013) define Artificial Intelligence in four different approaches: machines that act 

humanly, machines that think humanly, machines that act rationally and machines that think 

rationally. For this research we will use the definition of machines that act rationally, or “Computational 

Intelligence is the study of the design of intelligent agents”. This definition is most fitting because in this 

research an agent is designed that acts rationally; it offers rational solutions to problems.  

 

Natural language processing (NLP) is a big part of AI that is used in the customer service. NLP is 

defined as all techniques used for the processing of natural language text. Since all explicit knowledge is 

stored in either digits or natural language, natural language processing is a big subject within AI.  

Natural Language Processing consists of but is not limited to reading, extracting information, 

creating new information and generating natural language. NLP makes use of techniques that are part 

of Machine Learning, which is the other big subject within Artificial Intelligence. Machine Learning can 

be another topic, Deep learning, which can be seen as a subtopic within Machine Learning is also often 

used in combination with NLP. 

Summarized, figure 3 in which the subjects within AI, Natural Language Processing and Machine 

Learning and their overlap are visualized, explains the definition of these topics best for this research.  

 
Figure 3: AI, ML, DL and NLP 
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 QA-pairs 

The results of the system that we describe in this report are what are called Question Answer (QA) 

pairs. QA pairs are a combination of a question and an answer. In incident management the question is 

often referred to as “intent”, we use this term in the rest of this report as well. The intent is the user’s 

intent for creating the ticket. The answers are called actions, resolutions or just answers, in this report 

we will use the term “action”, because this term is also used in the TopDesk ticketdata. The combination 

of the intent and the action we call the QA pair. The idea behind the creation of QA pairs from ticket 

data is that the tickets with the same intents are clustered and the applied actions on the tickets are 

provided as potential answers.  

 

 
Figure 4: Intents and actions as QA-pairs from ticketdata 

 

 Applications of QA-pairs 

In this paragraph, the different applications of AI in the customer support service are discussed. This 

list is built based on a literature review that we performed among 50 articles regarding AI applications 

in Customer service. The list of materials can be found in Appendix A. The literature research 

methodology is found in Appendix B. The list is the following:  

 

 Chatbot/virtual agent 

 Knowledge base 

 Business Intelligence 

 Anomaly detection 

 

A chatbot or virtual agent is a system that can answer questions of users and drill down with a 

specific follow-up question in a chat environment. A knowledge base is an internally used system in 

which complex low-level information is stored that can be called intuitively. 

A Business Intelligence system is a decision-making system used by management or analysts to get 

a high-level perspective on a particular aspect of an organizations practice. 

Anomaly detection is a technology in which major incidents are automatically detected based on 

triggering of certain thresholds that are set based on AI generated features.  
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 Techniques in QA-pair generation systems 

In this chapter, we summarize and explain the techniques used in scientific research for AI systems 

in customer service. This chapter serves to provide a global view of the topic. We describe the techniques 

that are prevalent in pre-processing of text. Furthermore, we describe techniques that are common for 

clustering text.  

 

Why pre-processing, clustering and synonyms? Pre-processing is important for getting the data in 

the right form. Clustering is essential for classifying. Synonyms are important for normalization of text 

so that clustering can be applied more successfully. In this chapter, we describe these techniques that are 

used further in the report. It provides an overview of the subjects.  

 

2.4.1 Natural Language Pre-processing 
Natural Language pre-processing is the process of preparing and normalizing text for machine 

learning processes. The following are the most common pre-processing techniques: tokenization, 

capitalization, stop-word removal, stemming, lemmatization, spelling correction, noise removal, n-gram 

creation, word embeddings, and part-of-speech tagging. 

Tokenization is the process to split sentences into words, of which the collection is commonly called 

a “bag of words”. To be able to compare all of these words, they are turned into lowercase words. Next, 

stop words can be removed for topic extraction, as stopwords are not contributing to this end and are 

consequently considered as noise. Stemming is a process in which the last characters of words are cut off 

using a simple algorithm removing common prefixes. This process further increases the normalization of 

words. Next to stemming there is also a more advanced variant called lemmatization. This process is 

mostly based on deep learning and brings back words to their root form. For instance:  is  > be, and 

bought > buy. Spelling correction is mostly performed using an edit-distance or Levenshtein algorithm. 

This algorithm computes the number of operations to change one word into another. Then noise removal 

is typically the process of removal of specific system or text-type related characters like timestamp or 

mail-signatures. Noise removal can be performed using many different techniques ranging from regular 

expressions to deep learning. N-gram extraction is the process of finding common sequences of n-amount 

of words. It is used to find topics within sentences or to find common concatenations of words. It can 

range from frequency-based calculations to advanced deep learning models. Finally, word embedding is 

the most abstract technique in this list as it is the transformation of words into digits with the purpose 

of preparing text for Machine Learning. The most common word embedding technique is used in more 

than 80% of search-related systems is TF-IDF (Term Frequency-Inverse Document Frequency). TF-IDF  

is a vector for a word depicting how often the word appears in a document to how often it appears in a 

larger set of documents. Thus the less often the term occurs in other documents, the higher its TF-IDF 

score. 

Finally, Part of Speech (POS) tagging is a Natural Language Process of labeling words with their 

grammatical word-form. POS tagging is either done based on a library or on an algorithm that uses 

syntax and positioning and uses Deep Learning or a combination of both.  

There are numerous applications of POS tagging. The identification of word forms can help for 

instance with finding entities or operations as most entities are nouns and most operations are verbs. 

Entities and verbs can, in turn, be used to summarize sentences.  
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2.4.2 Clustering 
Clustering is a grouping name for all technologies that group data according to similar 

characteristics. In Natural Language Processing, the input is often word embeddings which are explained 

in the previous paragraph “Pre-processing”.  

The most established text clustering methodology that uses word embeddings is Latent semantic 

analysis (LSA). In LSA, a term-document matrix is constructed using the word vectors for all the terms 

and then using a methodology called Singular Value Decomposition patterns and relationships among 

these terms are identified, and concepts can be compared. 

One other common and recent use of TF-IDF for clustering documents is topic modeling, or Latent 

Dirichlet Allocation (LDA). LDA is an unsupervised algorithm that essentially determines a set of topics 

over a corpus and provides a weight of accordance of each document to each topic. This way it can 

identify dominant topics.  

Now these word embedding clustering methodologies are in essence all statistical. There are however 

also syntactical clustering methodologies. For these methodologies, no data is needed as they appoint a 

label to data based on only that data itself. The most common syntactical clustering methodology is that 

of POS patterns in which patterns of specific Part of Speech are recognized as containing important 

aspects of a sentence.  

 

2.4.3 Synonyms 
Synonyms are an important challenge in customer service AI systems.  

In synonym detection, there is a separation between domain-specific and general synonyms. General 

synonyms are synonyms of ordinary daily used words, domain-specific synonyms are only found In their 

respective domain, examples are names of applications or processes.   

General synonyms can be identified using large lexical databases which are almost always open-

source. Domain synonym detection is not possible using lexical databases, as the keywords are generally 

domain-unique and therefore not found in lexical databases. For this task, there are no tools available as 

of yet as well. However, many research has been done on this topic; different technologies are used with 

different results on different types of text. For one, word2vec is a technology created by Google in 2013. 

This technique makes use of word vectors and two-layer neural networks that compute similarity based 

on linguistic contexts of words. Its advantage is that it is rapid and that the technology is readily 

applicable. However for it to be accurate, large amounts of text (more than 10 million words) are needed, 

preferably with documents with multiple sentences.  

Another technique that applies to domain synonym detection is from S. Agarwal et al. (2017). They 

designed an entity similarity algorithm that computed similarity based on similar operations among 

entities, it would be especially useful for short text documents and needs a medium-sized corpus. Its’ 

downside is its speed and inaccuracy for documents with multiple sentences. It was designed because 

other techniques, like word2vec, created too much noise on their dataset.  

 

2.4.4 Reinforcement learning 
Reinforcement learning is the third dimension of machine learning next to supervised learning and 

unsupervised learning. It is a very general problem description for the goal-oriented interaction of an 

agent (system) with the environment (user) as is shown in figure 4. The agent provides the best form of 

action it knows to a situation in the environment, and the environment sends back a response which is 

interpreted by the agent as either positive or negative feedback from which it can adjust its future action 

regarding similar situations. We call it general because there are so many ways by which reinforcement 
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learning can be applied, the most common one being dynamic programming, and recent research is 

diving into using deep learning for reinforcement learning in NLP (Sharma & Kaushik, 2017).   

 
Figure 5: Reinforcement learning 

 Related works 

In this chapter we summarize and analyee the most related works to this research case from a 

literature review among 50 articles regarding AI systems in the customer service. All the systems that we 

descreibe are QA-pair systems from incident tickets. We have not found other relevant systems in the 

scientific literature.  

The articles are discussed below and are in order of relevance to this research. 

 

(1) In P. Dhoolia et al. (2017) a cognitive support system is designed for a specific client that has 450 

factories and operates in 190 countries. The system is aimed to answer level-1 and level-2 support 

questions associated with IT applications used by enterprise WW users. In order for that system to work 

effectively, they attempt to extract question and answer pairs from tickets with the goal of 

bootstrapping a cognitive system. For extracting the intents, they used a combination of n-gram and 

Lingo techniques (Osinski, Stefanowski, & Weiss, 2004), as well as field experts to manually identify 

intents. These intents were then used to match live tickets to.  

To identify intents from live tickets they applied the following processes: 1) group the repeating or 

similar tickets into problem clusters, 2) select the appropriate cluster, and 3) extract the representative 

question-answer pair from the cluster. They did this by parsing user questions to extract business entities 

and actions into a knowledge graph. During a conversation with the user, they explore the neighborhood 

of the sub-graph in order to find probable intents.  

Furthermore, continuous feedback learning was applied to continuously improve the system. When 

helped, the customer could leave feedback regarding the process which information was placed in a 

human expert verification queue and applied after approval by the human expert. They made use of the 

feedback in 6 different ways: identifying question variations, identifying probable new questions, 

identifying flaws in the intent disambiguation process, learning new intents, learning the new mapping 

between knowledge units and intents  

 

In the end, 130 support intents were identified in the domain. The system was able to answer 50% of 

the questions.  
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Figure 6:  System architecture (Dhoolia, Chugh, Costa, Gantayat, et al., 2017) 

 

(2) In S. Agarwal et al. (2017) a cognitive system was designed by researchers from IBM for the use 

in service providers’ service desks. The knowledge extraction processes applied is divided into three steps: 

problem diagnosis, root cause analysis, and resolution recommendation. For the problem diagnosis 

process, logical structures in ticket texts were identified to pre-classify tickets into either simple or 

complex groups. Next, a classification engine based on a support vector machine with a Radial Basis 

Function is built. To train this engine, 5000 problem tickets were manually labeled by experts into 15 

categories. 

For the Automated Root Diagnosis (RCA) process linkages between a problem and its probable cause 

were extracted. These linkages are based on using features such as time of occurrence and similarity of 

the IT entity on which they occurred, as well as common terms in the text descriptions of the problem 

and change (S Agarwal et al., 2017).  

For the resolution recommendation, three processes were used: identifying the action phrases from 

the resolution texts, deducing domain dictionary and semantic similarity and finally building the 

summary phrases. Identifying the action phrases is needed to focus on the right information in large 

texts. This was done by determining the most relevant POS patterns and finding phrases that match 

these patterns. For deducing a domain dictionary, a custom algorithm was built that identified similarity 

based on common operators on entities and the other way around. Action phrases were then built by 

combining entities and operations in a summary phrase.  

The system was able to find a solution to 67% of incoming tickets. The system was able to reduce 

the time needed to solve a ticket by half by being able to offer probable solutions from 70 minutes to 35 

minutes. Dataset was 1000 IT tickets. 
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Figure 7: System architecture (S Agarwal et al., 2017) 

 

(3) In Mani et al. (2014) an approach is proposed to automatically analyze problem tickets to discover 

groups of problems being reported in them and to provide meaningful labels to help interpret these 

groups. The method is based on incorporating multiple text clustering techniques and is evaluated 

qualitatively and quantitively. 

Their process can be divided into four steps: cleansing the tickets, preprocessing the ticket texts, 

clustering tickets using Lingo (Osinski et al., 2004) and then further grouping the tickets using their novel 

hierarchical n-gram based clustering technique and finally merging similar clusters.  

Mani et al. (2014) also applied the algorithm in two real case scenarios and evaluated the usefulness 

of the algorithm in practice. They observed that project teams used the identified clusters to find the 

most occurring problems in order to focus their attention on those problems. In another case, the software 

maintenance had been transferred over to a new service provider, and the knowledge of the repetitive 

problem patterns helped the new team to come up to speed quickly. Furthermore, they note that 

exploring clusters beyond cluster size, for instance, resolution time, SLA adherence could provide great 

business insights. 2 datasets: one of 1084 tickets and one of 80787 tickets.  

 

(4) Vlasov et al. (2017) designed an AI user support system for a large Russian company. Their 

system can be divided into three main processes: a request classifier, a causes generation database and 

an answer merging process. For each of the three processes, they make use of a database in which the 

respecting data is stored separately.  

Their problem classification algorithm is the most interesting for this research, so this will be focused 

on. For text pre-processing, they applied conversion to lowercase, deletion of whitespaces, number, and 

punctuation. Also, they deleted stopwords and reduced words to their word stems and base form 

(stemming). When this was done they used n-gram retrieval to find contiguous sequences. The text 

mining process was ended with the unification of synonymic constructions. For this process they 

identified three types of synonyms, namely: acronym expansions: “RFS” – “request for supply”, 

synonyms in the sense of the Russian language: “storekeeper” – “warehouse manager” and synonymous 

words in the context of SAP: “budget indicator red” – “insufficient budget”. The specification of the 

synonyms was done manually. For the clustering, TF-IDF was attempted but found not useful as specific 

words for small classes remained invaluable. Instead, they applied TF-SLF. This method is based on the 

fact that the term is important within a category if it occurs in most documents of this category. Finally, 
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clustering algorithms were applied and tested. SVM and MaxEntropy appeared most useful over Naïve 

Bayes and K-nearest neighbors’ algorithm. They use a test sample of 12554 tickets. 

 
Figure 8: System architecture (Vladimir, Victoria, Marat, & Sergey, 2017) 

(5) In Jan et al. (2014) a concept annotation system for tickets in IT service desk management is 

proposed. Their method consists of first generating n-gram phrases for which they use predefined POS 

patterns. To their mentioning, this methodology works very effectively for cleaning up n-gram phrases. 

Next, they determine the most suitable phrase using a formula consisting of different algorithmic 

likelihood scores of phrases. The resulting phrase is then used as a topic model and along with all other 

phrases clustered using Latent Dirichlet Allocation (LDA) as well as pLSA (Probabilistic Latent semantic 

analysis). According to (Jan et al., 2014), LDA is different from LSA in that “LSA assumes that the model 

parameters are fixed and unknown; while LDA places additional a priori constraint on the model 

parameters, i.e., thinking of them as random variables that follow Dirichlet distributions.”. Their results 

show that both LDA and pLSA perform better than Lingo does. Two sets of 20k tickets each. 

 
Figure 9: System architecture (Jan et al., 2014) 

 

(6) In Potharaju & Nita-rotaru (2013) a system is designed to automatically analyze natural language 

text in network trouble tickets. Their case is a large cloud provider of whom they analyze 10k tickets. 

The system focuses on inferring three key features: (1) Problem symptoms indicating what problem 

occurred, (2) Troubleshooting activities describing the diagnostic steps, and (3) Resolution actions 

denoting the fix applied to mitigate the problem. 

The problem tickets used in this research consist mostly of longer textual form. Therefore the 

methodology starts with hot sentence extraction. Next, a number of filters is applied in order to extract 

the important domain-specific patterns: Phrase length/frequency filter, Part of Speech filter and an 
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Entropy filter.  The phrase length/frequency filter builds on the idea that important phrases often appear 

often and are short in length. The POS filter builds on research of Justeson et al. in which was found that 

technical phrases can often be placed in one of seven patterns. Each sentence is then tagged with a fitting 

pos tagger, and if the pos patterns coincide with one of the seven patterns, the sentence is accepted. The 

third patterns used information theory algorithm to calculate the information richness of sentences using 

Mutual Information theory and Residual Inverse Document frequency. Next to finding information-rich 

sentences there was also built an ontology in order to infer the lexical meaning of words. 

 

 
Figure 10: NetSieve system architecture (Potharaju & Nita-rotaru, 2013) 

 

Something unique but useful that is part of their report is that they provide a chapter with 

challenges, indicating the challenges that they are confronted with.  

 

2.5.1 Summary of articles 
In this paragraph, the points of interests of the articles in chapter 2.4 to this research are 

summarized.  

One large insight is that the datasets are small relative to the dataset of SSC-ICT. The largest dataset 

used in the articles is 80.000 tickets, less than half of the number of tickets of this research, others are 

mostly 20.000 tickets or even less. However, the datasets from the articles also consist of fewer categories, 

and they identify relatively few problems, 130 at the most, this to an expected 500 problems from this 

research. So even though the dataset of SSC-ICT is larger, the variety is also higher. The implication of 

this is that per category the number of tickets does not differ that much. Therefore, similar techniques 

as those used in the articles may be useful for this research. This, however, does not count for manual 

techniques like labeling and categorizing; it becomes more demanding when variety and scale increases. 

Another insight is the clustering techniques that are used. In 4 out of 6 articles, POS patterns are 

extracted from sentences in order to identify problems. Furthermore, Jan et al. (2014) apply LDA topic 

modeling (see), and a couple of articles use Lingo’s LSA clustering methodology (see). 

Furthermore it can be concluded that synonyms are essential aspects of these systems. Agarwal et 

al. (2017) determine synonyms using their entity-operation similarity algorithm. This is a custom 

algorithm that calculates entity similarity based on familiar operators. Vlasov et al. (2017) differentiate 

three types of synonyms: acronym expansions, language-specific synonyms and domain-specific 

synonyms which they then manually identified.  

Then, the topic of reinforcement learning within this topic was implemented only once in all six 

articles. P. Dhoolia et al. (2017) used customer feedback for optimizing nearly all system components, of 

which a domain expert first checked the adaptations.  

Another recurrent component is detecting action/hot phrases; this is important when tickets consist 

of large pieces of text. 
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 The ticket data 

In this chapter, the ticket data that will be used is described. This is the data understanding 

dimension. At the end of this chapter, the dataset is compared to the datasets of comparable research 

and characteristics of the SSC-ICT dataset are identified as well as implications for designing the system.  

 

Currently, all tickets of SSC-ICT are divided into two TopDesk systems. One for the Ministry of 

External Affairs and one for the other ministries that SSC-ICT administers. This is the case since 

February 2018. Before, SSC-ICT had four systems. 

For this reason, the ticket data that will be used for this research will be the dataset from the start 

of February 2018 till the 31st of December 2018. This is a dataset of 340.000 tickets. See Appendix C for a 

practitioner’s perspective on the tickets in the TopDesk system. See table x for an impression of a ticket 

and its respective fields.  

 

TicketI

D 

Short 

description Category 

Sub- 

category Ticket type Entry type 

Practitioners 

group Action 

xxxxx 

Outlook 

ontvangt 

geen mail Applicaties Basis Incident Telefonisch 

S-GOS-

Servicedesk 

12-02-2018 

10:31 lastname, 

firstname:  

Via credential 

manager oude 

wachtwoorden 

weggehaald. 

Outlook werkt 

weer. 

Table 1: An example of an incident ticket of SSC-ICT 

2.6.1 Ticket fields 
The tickets have a large number of fields (40+). However, most are redundant or remain unused by 

the customer support operators and are therefore empty. The relevant fields are the following:  

 

Field  

Ticket id A unique id for each ticket, automatically generated 

Short description A summary of the ticket problem, written by the service desk 

operator 

Request The full description of the ticket, in case of an e-mail, the full 

e-mail is displayed here. In other cases, it is similar to a short 

description 

Action A summary of the action that follows upon the tickets, it is 

written by the operator.  

Type of ticket Type of customer request, either (in order of frequency): 

incident, request for service, internal management 

notification, request for information, security incident,  

SCOM (a monitoring system), complaint. The operator picks 

these. 
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Category The highest level of categorization: User-bound services, 

Applications, Premise-bound services, Housing & hosting, 

Security.  

Sub-category The second level of categorization. Each of the main 

categories has at least five subcategories.  In total there are 

42 sub-categories. 50% of the tickets are covered by three 

subcategories. See figure x.  

Practitioners group This is the division that solved the ticket, 85% of the ticket 

has the service desk as practitioners group, the other tickets 

amongst about 300 small groups.  

Entryp Means by which customer contacted the service desk upon 

creation of the ticket, either telephone, e-mail, physical 

service desk, portal, website, manually.  

Table 2: SSC-ICT relevant ticket fields 

Of these fields, we further determine which of them are relevant for this research project. After data 

analysis, we concluded that short description and the action field are the primary resources for the 

project. The request field appeared too inconsistent for use. Only in the case of tickets generated by e-

mails, there would occasionally be more information provided than in the short description, but it would 

be among much unuseful information (noise) as well. We, therefore, chose for the sake of simplicity to 

keep the request field out of the scope. We also decided to keep the category and subcategory fields out 

of this research scope. We decided this because the categorization is not problem-focused but rather 

organization-focused. The same problems can and do -after data analysis- occur in different sub-

categories. This is not useful for intent identification.  

Furthermore, data analysis showed that 30% of the tickets are categorized in the wrong sub-

category. We chose not to make this inaccuracy influence our system. The remaining fields we chose to 

use for optimizing the training set, this is described in the next paragraph. 

 
Figure 11: Ticket division by category and subcategory 
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2.6.2 Data selection 
In total the dataset from February to end December comprises of 340.000 tickets. After selection, 

210.000 tickets remain. First, we focused on all first line tickets; with this step, we remove 40.000 tickets. 

Then, we chose to include only the following types of tickets: incidents, requests for service and requests 

for information. The other ticket types had not much to do with customers and were generally generic.  

 

2.6.3 The input process 
In this paragraph, we describe the way that tickets are registered. This provides contextual 

information from which we conclude some things.  

Down below an overview of the division of the tickets for the different entry types: by phone 

(telefonisch), e-mail, physical service desk (balie), registered by user themselves (zelf geconstateerd), SSC-

ICT web portal (portal) and automatically registered on event (Event).  

 

 
Figure 12: Ticket division by entry-type 

Al tickets from all entry-types are stored in the same system in the same format and in the same 

database. In total, a ticket has about 40 fields that are generated (e.g., timestamp), filled in from a list of 

options, or typed manually. The fields that can be filled in from a list of options are the following: entry-

type, category, subcategory, state, practitioners’ group. The entry-type is mentioned in figure 12. The 

practitioner groups are the functional groups within SSC-ICT that can find a solution to a ticket. In all 

cases of ticket solving, as is explained by the two service desk managers that are interviewed, initially 

the operators try to answer the tickets themselves if they cannot find the solution, they will generate a 

second-line ticket that is passed on to the practitioner group that is most likely to solve the ticket, this 

happens in 15% of all tickets, the first line operators solve 85% of the tickets.   

 

Fields of potential interest that are generated automatically in TopDesk are timestamp and 

throughput-time. Other generated fields are either not used or complementary to mentioned fields.  

 

The manually filled-in fields are a short description, request, and action. In the short description, 

the ticket problem is described in one sentence. In the request field further context regarding the ticket 

can be provided, and in the action field, the action taken on solving the ticket is described.  
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 System characteristics 

From the related works we identify differences among the articles that impact the way the systems 

are built. In this paragraph, we describe these differences, how they are identified, how they are at SSC-

ICT and their implication of the system. In table 3 an overview of the characteristics is shown, after that 

they are described in more detail.  

 

Characteristic SSC-

ICT 

Implication 

Language Dutch - Limited availability of 

software/applications. 

Size of dataset Large - Limited efficiency of manual 

processes.  

Length of documents Short - Topic modeling is less useful. 

Variation in intents High - Not suitable for topic modeling. 

Variation in domains High - Advanced categorization  

The speed of structural 

change in topics 

High - Minimize the need for manual work 

Amount of future 

development 

Low - System results should be directly 

useful 

Amount of manual work 

availability 

Low - Minimize manual work 

Amount of potential users High - The potential for user feedback; 

reinforcement learning 

Privacy restrictions High - Remove names from text 

 

Table 3: QA-pair system characteristics 

Language 

We identify language as the language in which the tickets are written. From the related works, we 

see that most articles managed English systems. SSC-ICT’s tickets however are all written in the Dutch 

language; this impacts the research in some ways. The most impactful one is that specific algorithms like 

POS Taggers or synonym detection techniques are trained on English datasets. They are therefore not 

useful for this research. A challenge, therefore, is to find accurate Dutch software.   

 

Size of Datasets 

One significant insight is that the datasets are small relative to the dataset of SSC-ICT. The largest 

dataset used in the articles is 80.000 tickets, less than half of the number of this research's tickets, others 

are mostly 20.000 tickets or even less. However, the datasets from the articles also consist of fewer 

categories, and they identify relatively few problems: 130 at the most, to an expected 500 problems from 

this research. The implication of this is that per category the number of tickets does not differ that much. 

Therefore similar techniques as those used in the articles may be useful for this research. This, however, 

does not count for manual techniques like labeling and categorizing; they become more demanding when 

variety and scale increases. 
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Length of documents 

We see a difference in length of documents between the articles with an accompanied difference in 

of choice of techniques. Potharaju et al. (2015) manage documents with multiple sentences; they tackle 

this problem by first identifying the useful phrases. Furthermore, from online research, we found that 

topic modeling (LDA) is especially useful for documents with multiple phrases. For short phrases, POS 

pattern techniques are used by the related works.  

SSC-ICT’s short descriptions are short phrases of on average 4,5 words long, which is short. Their 

action fields, however, consist of one to multiple phrases and even multiple documents like a conversation 

from one operator to another regarding a ticket solution. The implication is that POS pattern techniques 

should probably be used for the short description. For the action fields, a process of hot phrase extraction 

could be useful; however, this is not very accurate and should only be chosen if longer documents can for 

some reason not be used for action recommendation.  

 

Number of intents 

The related works all identify a small number of intents from their datasets. The largest amount is 

130 intents. For SSC-ICT we expect to find over 1000 different problems, which is far beyond the number 

of related works. The implication for this is that manual work and correction should be minimized, at 

the cost of system accuracy; this impacts the choice of techniques for synonym detection as in most 

related works, these are identified manually.  

 

The speed of structural change in topics  

We did not identify this characteristic from the related work. However, we think it is an essential 

characteristic of this research because SSC-ICT has an environment that changes quickly, relative to 

other organizations. The implication for the system of this characteristic is that the system must be as 

scalable as possible, that it requires little effort to rerun the system and extract new intents.  

 

Future development 

Future development is regarding the degree to which the research’s results is an actual end-product 

or instead, a product in continuous development. From the articles, we identified multiple different 

stages. For instance, Dhoolia et al. (2017) built the system with the purpose for bootstrapping an 

advanced cognitive system, Potharaju & Nita-rotaru (2013), Vlasov et al. (2017) built an end-product, 

Mani et al. (2014) and Agarwal et al. (2017) built a first-version with the purpose of applying 

improvements in the future. For SSC-ICT, future development depends on the results of the system. This 

implicates that a research result like that of Mani et al. (2014) and Agarwal et al. (2017) is needed.  

 

Availability of maintenance 

What we see from the related works is that in multiple processes manual work is used to improve 

the accuracy of the system or to improve the evaluation measures. In other cases, like Jan et al. (2014), 

was mentioned that due to limited resources manual labeling could not be performed. We, therefore, 

conclude that the availability of maintenance of the system is a characteristic that impacts the way a 

system is designed. For SSC-ICT is the case that at least for this research results the maintenance 

requirements should be limited and that on research following up on this research there would potentially 

be made more resources available.  
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Amount of potential users 

The amount of users impacts the opportunities of gathering feedback which can, in turn, be used to 

improve the system using reinforcement learning. When there is too little potential for enough amount 

of feedback, implementing reinforcement learning would be a waste of resources, because for 

reinforcement learning counts: the more data, the better. On the other hand, when there is enough 

potential feedback, the system can benefit from this. From the related works, only Dhoolia et al. (2017) 

make use of user feedback to improve the system. They also happen to have the most extensive research 

case with a company with 450 factories and operating in 190 countries. For SSC-ICT also counts that the 

amount of potential of feedback is vast with over 40.000 customers. We, therefore, choose to start with 

reinforcement learning. However, for the first stages of the system, we should focus on the operators of 

the central service desk as being the users.  

 

Privacy restrictions 

Privacy restrictions is not a characteristic that we implied from the related works; however, we think 

it is an essential aspect for building a closed-domain system, which QA-pair system mostly are (Vlasov 

et al., 2017). Especially in the case of SSC-ICT, that is, a public organization, privacy is very relevant. The 

implications for this characteristic is that techniques by which names are filtered out of the system’s 

results should be implemented. Moreover, that thresholds for chances of the occurring of privacy-related 

items in system’s results need to be set.  

 

 Summary 

The SSC-ICT dataset contains 340.000 tickets. The short description field and the action field contain 

all the information necessary for the AI components. Furthermore, we conclude that the categorization 

of SSC-ICT is not useful for this research. For one, it is organization centered instead of problem-focused, 

which we believe is not useful for intent identification. Secondly, the accuracy of the manual registration 

is very low with 33%; we do not want this inaccuracy to influence the performance of our system’s results. 

However, we also see that compared to the systems of the related works, we are handling a dataset in 

this research with a very high variety of topics. We believe we do need initial high-level clustering, in 

order to go deep into the intent identification. For this reason, we choose to add a component called 

categorical clustering.  

Regarding Root Cause Analysis, this component requires structural background information that is 

not available in the data. Examples of this are certain operations that led to the cause of the problem.  

.  
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3 High-level architecture 
In this chapter the high-level architecture required for the system, based on the requirements, the 

data characteristics and literature research, is proposed. It is decided to build a system that can be divided 

into three subsystems: intent identification, resolution recommendation, and reinforcement learning (see 

figure 13).  

The system will be trained on a large dataset and applicable to new datasets or smaller subsets of 

data. The process for building and training the system is described in this chapter.  

 

 
Figure 13: high-level system architecture 

 Categorical clustering 

First, the tickets need to be ordered on categories. We decided this because detecting intents right 

away led to very inconsistent and noisy clusters. For detecting main clusters, there are some possibilities 

to be applied: keyword based-clusters (supervised), word-embedding based clustering, topic-based 

clustering. We see that overall, topics are very easily identifiable from the tickets based on recurring 

keywords like Blackberry, Outlook, and Printer. 

For this reason, it is best to apply either keyword or word-embedding based categorization, as these 

profit most from these recurring (single) keywords. The downside to keyword-based categorization is 

that unimportant words like operations or adjectives may also be identified as clusters as these words are 

common even though they do not have a highly added value. Categorization using word-embeddings, or 

LSA, is the best and chosen method for this process, as it can really benefit from the single keyword 

categories and it excludes low-informative words automatically. 

 

 Intent Identification 

Intent identification or problem identification is the process in which specific problems are identified 

from tickets. This can be done in a supervised methodology in which intents are identified beforehand, 

and new tickets are classified based on one of these intents or in an unsupervised way in which topics are 

created using either POS patterns in tickets or from topical word embeddings.  

 

3.2.1 Supervised 
Supervised intent identification is best applied for a closed environment. It makes use of ontologies. 

IT is rule-based and best applied for datasets with little variation and a constant environment, as in that 

the content of tickets does not change rapidly over time. This is because ontologies need to be created 

largely manually and will need to be manually adapted to new environments. A downside is that the 

input needs no be updated continuously, which is a very tough task in the case of SSC-ICT due to its 

scale. 
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3.2.2 Unsupervised 
Unsupervised methodologies for intent identification are mostly either word embeddings (LDA/LSA) 

or patterns in word or POS forms.  

Word embedding technologies are best used for longer pieces of text and very large text corpora 

(1.000.000+ documents), this methodology is also very fast. POS patterns work best on short pieces of 

text and take relatively long to process, for why they are better suited for smaller but still relatively 

sizeable text corpora (100 – 100.000 documents). However, for this research’s system, it does not matter 

that much whether the processing either takes hours or minutes, as for its research goal, there is no need 

for processing continuously.  

 

LDA  

Jan, Chen, and Ide (2014) describe the high accuracy of topic modeling for intent identification, 

compared to LSI techniques. Furthermore, from conversations with data science companies was 

concluded that they are also working with topic modeling in numerous text clustering cases. The 

processed documents are however always larger than the short descriptions of the SSC-ICT dataset, and 

LDA performs best on larger documents.  

 

POS Patterns 

POS-Patterns are applied in four out of six of the reviewed related articles. POS patterns are in all 

cases a combination of a form of a verb (past, present etcetera) to that of either a noun, proper noun or 

adjective. The patterns are the order in which they occur and the number of nouns or adjectives. 

 

 Resolution recommendation 

Resolution recommendation, action recommendation, regarding the A in Q&A, is the process of 

identifying actions from resolutions texts. This process is different from intent identification for some 

reasons. For one, resolution texts are often much longer than problem descriptions, they contain multiple 

sentences instead of just one. Furthermore, resolutions often consist of multiple steps instead of 

containing just one problem.   

 

 Reinforcement learning 

Reinforcement learning or feedback learning, regarding the & in Q&A, it is the process of increasing 

the accuracy of the system based on user feedback. Intents can contain multiple probable actions. 

Reinforcement feedback helps in finding the correct action for a specific intent. User feedback will act as 

being the assessor on the accuracy of the action recommendation of the system. This assessment can then 

be used to classify the action as relevant or irrelevant to the intent based on which new intents can be 

solved better.  

  

What needs to be decided is what feedback mechanisms are used to gather feedback. This depends 

on the type of application in which the Q&A system is applied. Examples of feedback mechanisms are 

amount of clicks on a specific action, a like/dislike option or search history as well as others. Combinations 

are also possible.  
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What also needs to be decided is what parameters are changed based on the feedback. Examples are 

looking for certain words that consistently occur in an intent with a specific action. Neural networks 

work very well for this process, as they find the parameters themselves. Only needs to be decided what 

input should be delivered to them. However neural networks work like a backbox so in many cases their 

inner workings cannot be evaluated. The only way to control them is to have accurate measures for their 

output which will have to be decided on as well.  

 

 Expected results 

The in this chapter explained system outputs QA-pairs. However, because the system is composed 

of multiple different processes, it is reasoned that it also produces multiple results that combined produce 

QA-pairs. We believe that in order for the performance of the system to be measured accurately, not 

only the end-result should be evaluated, but the processes as well. Another argument for splitting the 

system’s results up in its processes is due to its practical use. Categorical clusters, for instance, are a 

valuable resource for SSC-ICT’s analytics division. Synonyms can potentially be used to create an SSC-

ICT ontology which could be helpful for numerous reasons and intents could be used for more advanced 

business analytics. Optimizing these processes apart from each other and not only their aggregate 

function will benefit SSC-ICT’s future potential use of these individual processes.  

 

The system’s results are split up in the following sections: 

- Categorical clusters 

- Sub-level clusters (intents) 

- Set of actions per intent 

- Front-end application 
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4 Performance measurement 
In order to provide evidence of the effectiveness of chosen solutions and components, the system’s 

performance will be measured and evaluated. For this research a component evaluation methodology is 

chosen in contrast to end-to-end evaluation, combined with both formative and summative evaluation 

methods as well as both automatic and manual (Resnik & Lin, 2010). A component evaluation 

methodology is a way of evaluating not only the end-result of the system but also its components 

individually. Component-based evaluation is decided for because the components are very different and 

the system is build in phases which are based on its components. Formative evaluation is an evaluation 

method that tends to be lightweight (so as to support rapid evaluation) and iterative (so that feedback 

can be subsequently incorporated to improve the system). 

In contrast, summative evaluations are typically conducted once a system is complete (or has 

reached a major milestone in its development). They are intended to assess whether the intended goals 

of the system have been achieved (Resnik & Lin, 2010). For this research, formative evaluation is applied 

in all cases in which it is possible as it greatly increases development speed. In other cases, summative 

evaluation is applied. 

 

Furthermore, there is a spectrum between automatic and manual evaluation. With automatic 

evaluation, performance can be found using custom scripts rather than manual evaluation. The same as 

for formative/summative evaluation counts for this, when automatic evaluation is possible and deemed 

faster, it is chosen.  

 

For each of the components, unique measurements will be presented. Due to the complexity of NLP  

systems’ output, measurements are almost always unique to their case (Paroubek et al., 2010; Resnik & 

Lin, 2010). In this research for each of the measurements will be explained why they are chosen.  

 

Due to that evaluation methods are not described in the literature for QA-pair generation, the 

metrics are made up for this system.  

 

 Evaluation metrics 

The system has two dimensions of characteristics. First the accuracy of the clustering: do tickets 

belong in this (sub)cluster, and two: does the cluster describe an accurate subject? Whether it is either a 

category or an intent; are these right and useful?  
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4.1.1 Categorical clusters 
The high-level clusters are partially assessed manually with the help of a field expert. We chose this 

method due to the complexity of evaluating the accuracy of labels, and due to that there is only a 

relatively small number of high-level clusters and that categorization only needs to be repeated ever so 

often, for why it costs little time. The field expert has to decide whether the cluster labels that the system 

identifies are unique, value adding and not hierarchically dependent on another cluster. We implement 

the results into the system and re-evaluate the new resulting clusters. This re-evaluation is done using 

the minimal cluster size threshold, the number of clusters and the percentage of tickets clustered. These 

three measures are correlated. The smaller the minimal cluster size; the higher the number of clusters 

and the larger the percentage of tickets clustered. At some point in this process, the system will start 

recommending low-informative labels for categories. At this point, the limit for minimal cluster-size 

needs to be set.  

 

4.1.2 Intent identification 
The intents identification process is the most decisive and time-consuming part of the system 

regarding the accuracy of the system’s results. It is also the hardest component to evaluate due to the 

subjectiveness of the intents. Intents are not either good or bad; there is a whole spectrum between that. 

Clusters may consist of some items that should not be part of them; a cluster may, in fact, better be split 

into two separate clusters; a cluster may be synonymous to another cluster. Due to this high complexity, 

determining accurate measurements is crucial.  

Jan et al. (2014) use the Dunn Index and Davies-Bouldin Index, which are intrinsic evaluation 

methods. They calculated the inter-cluster similarity. However, this is a very minimal approach for 

natural language cluster evaluation due to that there are very few automatic features for similarity (their 

features are actually the same as the algorithm that they are testing it on, which is very dubious). Their 

results are also very inconsistent with findings from this research, regarding LDA. They also mention 

that they do not have the resources for manual evaluation or labeling, which indicates they would have 

used these methods otherwise. 

 

Internal and External cluster evaluation 

Cluster evaluation is divided into two groups: internal evaluation and external evaluation. They 

differ in whether or not external information is used to validate the goodness of the partitions (Liu, Li, 

Xiong, Gao, & Wu, 2010). For internal cluster evaluation thus only internal features of clusters are used. 

 

Categorical cluster evaluation metrics 

Labels: 

Unique 

Value adding 

Hierarchically independent 

 

Results: 

Number of categories 

Percentage of tickets clustered 

Minimal category size 

 
Figure 14: Categorical cluster evaluation metrics 
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We believe this is not a very accurate method to determine whether intents are actually unique and 

specific, as for these measures external information is needed.  

External evaluation, however, generally relies on a predefined structure. For these structures, 

accurate labels are needed. Moreover, labels we do not have and do not want to have since it limits the 

dynamism of the system. Manually labeling clusters is much work when we expect to identify up to a 

1000 different intents. For this reason, we came up with a new cluster evaluation methodology.  

 

Custom evaluation methodology 

We create a golden evaluation set that is manually created by some field experts and evaluated 

multiple times. Then, we compare the items that are found in the cluster of the system and that of the 

golden set to each other. We calculate for each ticket which tickets are in the system’s parent cluster 

compared to which tickets are in the cluster of the golden set, divided by the sum of the number of tickets 

in the cluster of the golden set and the system’s set divided by two. We then sum up the scores of each of 

the tickets and divide it by the total amount of tickets.  

Due to that, we divide the mutual ticket count by the average of the two cluster sizes we avoid the 

problems that occur when creating a cluster set of a unique cluster for each ticket or one large cluster 

with all of them. The tickets that are in a large cluster in a golden set would get a very low score due to 

that. On the other hand, the clustering problem of clustering all tickets in one big cluster also gets a low 

score due to that the score is divided by the number of tickets in the system’s cluster. The resulting score 

is then the average percentage of mutual tickets in a cluster for each ticket on a range of 0 to 1. A score 

of 0.5 for the system means that  

 

We determine the minimal quality score to be the scores for both the case of generating all unique 

clusters or that of all tickets in the same cluster. Random assigning of tickets to clusters leads to scores 

that are almost always lower than those.  

 

Manual creation golden test set 

Regarding manual evaluation cluster evaluation; we identify three options: manually evaluating all 

ticket and clusters, manually evaluating a sample of tickets, or using a golden evaluation set.  

Manually evaluating all tickets and clusters is an option in case the amount of tickets is low, the 

amount of clusters is high, and the amount of evaluation iterations is low as well. Manually evaluating 

a sample set of the results is useful in the case that the amount of tickets is high, the variation is low, and 

the amount of design iterations is relatively low. When using a golden evaluation set, a sample of the 

tickets is clustered most optimally, manually. This set is then compared to extracts of a system’s cluster 

results using a multitude of different algorithms. Using a golden evaluation set is chosen due to its use 

for large amounts of tickets, high variation and a large number of evaluation iterations. It is applied by 

making three field experts of SSC-ICT cluster 333 tickets from 3 cluster categories, totaling to 1000 

tickets, manually. It is chosen to select samples from categories and not from the whole dataset because 

in the second case there would be too many clusters that would consist of 1 ticket, which is useless to 

evaluate since only the clusters that contain multiple tickets are relevant. 

Furthermore, it is decided to use multiple categories instead of one due to the differences between 

the categories. Some are larger; some contain a relatively high amount of intents; some consist of very 

concise short descriptions. We chose three categories; a large one, a medium sized one and a small one 

with around 333 tickets so that the evaluation covers it fully. The topics are also variative, one major 

subject, one application, and one small service.   
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Coverage of the system means the number of tickets that are successfully combined in subclusters 

to the total amount of tickets. A threshold is used to minimize the number of small clusters for that the 

really small clusters are of little use to the system. The threshold parameter will have a very high 

influence on the coverage rate, as potentially every ticket can be clustered in an intent of its own which 

results in a 100% coverage rate with a threshold of 1, so the chosen threshold has to be provided with the 

coverage rate. This measure is objective, it can be directly inducted from the system’s results, so there is 

no need for a domain expert.  

 

Processing speed is the speed of the system. Practically, this can be either the speed of processing 

one ticket to recommend action or the time it takes to process the whole dataset, in order to train the 

system. The last one is chosen as the metric as this gives the most accurate results.  In general, this 

evaluation metric is not critical in case it stays under about 10 hours, as the system does not need to be 

updated daily. 

 

 

4.1.3 Set of actions per intent 
As is concluded in the chapter Data Understanding, only a small portion of the actions contain 

valuable information for the system.  

The challenge in the actions is to filter out irrelevant actions, of which there are many, and to keep 

thus only the actions that are relevant to the intent. The measure will, therefore, be the number of useful 

actions to the total amount of actions proposed by the system; this can be calculated by manually testing 

on a sample.  

 

 

4.1.4 System end-result 
We determine the end-result of the system by combining the scores for all independent components. 

Only for the intent identification, we will use a new measurement due to that the measurement that we 

used for that is useful for comparing two techniques automatically, but not for determing the accuracy 

of the end-system. We will do this by manually evaluating the intents on their specificity. Specificity is 

the degree to which the tickets in a cluster describe in fact the same problem. We will use a 75% threshold 

for this. If at least 75% of the tickets belonging to in intent are about the same problem it passes. If the 

specificity score is lower than 75%, the cluster is deemed incorrect.  

 

 

 

 

% of useful actions 

 

 

Coverage 

Custom evaluation score 

Processing speed 
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 Tool selection 

In this paragraph, we describe the tools that we chose for the different processes, as well as the 

arguments for the choice of these tools. 

 

Building the system 

We use Python as the primary programming language for building the system and most of the 

components and features. We made this choice because of the number of available libraries regarding 

Data Science of Python. Also, Python is very well suited for building systems from scratch. A 

disadvantage of Python to for instance R is its processing speed. However, this is not a significant 

problem due to the relatively small amount of data compared to other data science projects. We use the 

Spyder IDE from Anaconda Open Source Distribution as Integrated Development Environment for 

Python. 

 

High-level clustering 

Lingo3g 

Initially, we chose Lingo3G for performing the high-level clustering process. This application was 

found from multiple scientific articles (Mani et al. (2014); Jan et al. (2014); P. Dhoolia et al. (2017)). The 

application uses latent semantic indexing to generate clusters of topics from a set of documents. The 

strength of this application is the ease with which parameters are tested and adjusted. A testing process 

that would otherwise take weeks now takes a couple of days. After some initial testing the results showed 

potential, and after adjusting the parameters of the system, the results were quickly useful. Adjusting 

weights for individual labels, as well as adding custom stopwords perfected the system.  

 

Carrot2 

Carrot2 is the free version of Lingo3g. In contrast to Lingo3g, carrot2 is memory based and has a 

limit of clustering up to 10.000 documents.  

 

POS tagging  

The big problem with finding a good POS tagger is that these applications are language-specific. The 

availability of Dutch POS taggers is very sparse. After a thorough search in which we compared multiple 

systems, we found the following two taggers which both have their advantages and disadvantages.  

 

Frog POS Tagger 

The Frog POS tagger was by far the most accurate POS Tagger, this was identified by testing the 

tagger on a subset of the SSC-ICT dataset and comparing the results to manually determined results. A 

downside of this POS Tagger is its speed and its difficulty to use. In order to use it a separate LINUX 

virtual machine (VM) needs to be created on which multiple large packages need to be installed and on 

which the Frog application can be run. This machine then needs to communicate with the Python server 

to send data and retrieve results. Its speed is very low relative to other POS taggers with the processing 

of 900 words per second. Processing all short descriptions of all SSC-ICT tickets takes therefore about 5 

hours.  

 

NLTK-Spacy tagger 
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The NLTK-Spacy POS tagger is much faster than the FROG tagger. About 20 times as fast. The 

accuracy is however much less. It is a python library and therefore easy to call. We used this POS tagger 

while building parts of the system in which the accuracy of the results did not matter as much.  

 

LDA 

Gensim 

For the topic modelling process in the intent identification component we use the Gensim library for 

Python. This library is the most used Library next to the SciKit library, and we find it has the most 

documentation.  

 

Lemmatization 

- Frog Lemmatizer 

Just like with the POS tagging, the lemmatizer of the frog system was much more accurate than 

other algorithms. Again, the application was much slower than other applications. We used this 

lemmatizer for when we evaluated results on quality. Frog does not include a stemmer.  

 

Stemming 

- NLTK-Snowball stemmer 

This system was much faster than the other one and was used when the accuracy of the results did 

not matter as much. Stemming did not lead to better clusters than lemmatizing did.  

 

Deep Learning scripts 

Python has several options regarding solutions that use deep learning. However, the solutions from 

the Gensim library had by far the most use cases and document support and were up-to-date.  

- Gemsin Library 

o Word2vec synonyms 

o Bi-gram model 

 

Synonym database 

The OpenDutchWordNet (ODWN) database was by far the largest open-source Dutch lexical 

database and acknowledged by multiple large parties, among which the NLTK library. For this reason, 

this database is chosen for finding ordinary Dutch synonyms. 

 

FastText 

FastText is a technique developed by Facebook in 2016. It is a very accurate classification method 

for small documents using neural networks. The documents require labels. They have a python API.  

 

Custom scripts 

Due to the large community (and therefore feedback and use-cases) behind Python and its ease of 

use in creating scripts from scratch, it was decided to use this programming language for building the 

custom scripts.  
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5 Modeling and results 
This chapter first describes the chosen tools for this research and then the choice of techniques for 

the processes intent identification, resolution recommendation and reinforcement learning for the 

system. 

 

5.1.1 Categorizational clustering 
In this section we describe  

The column with the short description of all tickets, along with their ticket ids, is exported from the 

excel dataset and converted to XML-format, this is a file of 450.000 lines. We then process this file in 

Lingo3G with the following custom parameters on top of the standard parameters (see table 2) 

 

Table 1: Parameters Lingo3G 

For the categorizational clustering, three techniques are attempted based on domain research: LDA, 

POS Patterns and Lingo3G clustering. LDA did not show good results. The resulting clusters are 

overlapping.  

POS patterns were also not effective. The POS patterns were too specific and did not capture the 

global category.  

Lingo3g however, worked very well on the dataset. After having tweaked with the attribute settings, 

amongst other things promoting short (one-word) labels and increasing the expected number of clusters, 

a decent process-based ticket cluster overview came forward (see figure 6).   

 

 

- Minimum cluster size: 0,0010% 

- Cluster count base: 20 

- Maximum hierarchy depth: 1 

- Phrase-DF cut-off scaling: 0,20 

- Word-DF cut-off scaling: 0,00 

- Maximum top-level clustering passes: 8 

- Default clustering language: Dutch 

- Language aggregation strategy: Cluster 

all documents assuming the language of 

majority 
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Figure 15: 20/150 clusters from Lingo3G 

 

5.1.2 Iteration 1: Lingo3G 
Lingo3G applies LSA (Latent Semantic Analysis) using TF-IDF word embeddings on a text corpus 

and then applies SVD for dimensionality reduction. Its algorithm consists of multiple steps: pre-

processing, frequent phrase extraction, cluster label induction and cluster content discovery. The pre-

processing step removes stop words from an external list that is created by a field expert. 

Furthermore, this expert also identifies synonyms and label name. Because the input consists of only 

one sentence, we skip the frequent phrase extraction process. The pre-processing step is supervised, as in 

label preference, synonyms and stop-words can be predefined. The other processes are unsupervised. As 

such the resulting labels are made up by the system. SSC-ICT currently has no accurate problem-based 

categorization of their tickets, and we believe the categorization of Lingo3G (after removal of stop words 

and non-relevant labels) is an accurate, specific, and data-driven representation of the problem topics 

within SSC-ICT.  

 

Results 

Lingo3G generates 117 clusters from the ticket data. With the largest being 10% of the whole ticket 

corpus and the smallest 0,05%. The ten largest clusters accumulate to 65% of the ticket corpus. 20% is 

not categorizable, 15% is part of the other 107 clusters. A visualization of the weighted clusters is provided 

in figure 7.  

 

 

 

# of tickets: 210.000 

# of clusters: 117 (can be determined 

manually) 

% of tickets clustered: 80% 

Speed: Couple of seconds 
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Figure 16: High-level cluster results from Lingo3G 

 

5.1.3 Iteration 2: Carrot2 + Levenshtein distance 
Since Lingo3g is not open source and after having contact with the company that owns the software 

it would be known that a business license is costly. For this reason, we sought a solution that could do 

the same but then for free. We deemed this possible due to the limited usage of lingo3G’s capabilities, as 

the system mostly only used single word labels for categories, whereas Lingo3G is, in contrast, especially 

good at detecting clusters for sensemaking multi-word labels. The problem is however that no such 

solution exists. Therefore, we looked at the free version of Lingo, which is carrot2. The downside to this 

version was that it is a memory-based algorithm whereas Lingo3G works with indexes. 

For this reason, only 10.000 tickets can be clustered at the same time. A solution to this was found 

in that we generated a random sample of 10.000 tickets from the complete dataset. We then fed this 

sample through the carrot2 system and extracted the clusters. Next, using a custom script, tickets were 

classified based on the labels of carrot2’s clusters. This was done by first tokenizing the short descriptions 

and then searching for the cluster labels from the cluster list from top to bottom, based on the cluster 

size of the extracted clusters from the 10k sample. Additively, we decided that we could add the 

Levenshtein distance to the custom script for word labels of at least five characters (in order to prevent 

misclassification of the algorithm finding smaller labels like "i.e.” (internet explorer) in for instance “is” 

or “be”). This way typos or concatenations of word labels are also clustered, something that the Lingo3G 

algorithm did not always do automatically; this increased the coverage by another 10% whereas before 

the coverage was about the same as Lingo3G’s clustering method. The custom script, however, does take 

some time to classify the tickets to the clusters of the carrot2 algorithm: about 30 minutes for 210.000 

tickets. See Appendix X for the resulting clusters and their document count.  

 

 

 

 

 

  

# of tickets: 210.000 

# of clusters: 150 (can be determined 

manually) 

Coverage: 88% 

Speed: ~30 minutes 
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 Intent-level clustering 

This paragraph describes both successful and unsuccessful iterations of building the intent 

identification component. First, we apply POS patterns which we continue to use for intent identification. 

The iterations after the POS pattern iteration build on the POS pattern process, so these results are 

compared to the results of the POS patterns. Next, we describe the application of Topic Modelling (LDA) 

on the dataset and evaluate the results. 

 

5.2.1 Iteration 1: POS patterns 
For the identification of unique problems, we applied POS Patterns to the “Korte omschrijving” text. 

From the related works, it was clear that this was the go-to method to extract intents for short text and 

high variety corpus. We use the combination of operation-entity POS patterns, that is described in P 

Dhoolia et al. (2017). The operations are verbs; the entities are nouns and adjectives.  

For preprocessing, first stopwords are removed using an online freely available stopword-list. Labels 

of the categories in which the tickets are classified are removed as well, to avoid redundant intent labels. 

Next, we tag the remaining words on Part of Speech. If a verb is detected, the system combines the nearest 

nouns or adjectives with them in order to form a two-word phrase. If no verb is detected the system uses 

the remaining words as intent. In most cases that no verb exists in sentences, the sentence is short, so 

that the phrase remains short. In the exception of longer phrases with no verbs, the whole sentence is 

ignored.  

 

Results 

We show the results in table x. The total amount of tickets that the system converts to intents is 

about 110.000; this is slightly more than 50% the categorized tickets. After looking at the unclustered 

tickets, we conclude that ignoring the sentences that have no verb and contain more than two of the 

nouns and adjectives is the cause of this.  

 

  

 

Total tickets covered: 109908 

 

Threshold: 10 

Coverage: 75955 

# of intents: 1490 

 

Quality Scores:  

Large: 0.3747 

Medium: 0.4954 

Small: 0.2520 

Average: 0.3740 
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5.2.2 Iteration 2: POS patterns: bigrams added 

Bigrams 

Identifying and combining bigrams makes sure important concatenations of words that are 

separated with spaces are not separated when POS patterns are applied. For instance, the virtual 

environment application “DWR Next” becomes DWR_Next. The software that we use for this is Gensim. 

We chose this module because it makes use of neural networks and thus can be easily and effectively 

trained on a training corpus. The advantage of this over database-based modules is that domain-unique 

words like “DWR Next” can now be identified.  

 

In order to avoid that the bigram model combines verbs with entities as bi-grams which appeared 

to happen during a test run, we trained the model on a ticket dataset in which we removed all verbs. The 

resulting model is then stored and can be applied at any moment on any sentence to identify SSC-ICT 

unique bi-grams. Examples are DWR_Next, PST_bestand, ontgrendel_code, UEM_client and 

activation_password.  

 

Results: 

The results were not as big as expected. The coverage only went up slightly, overall, and also slightly 

for the intents. The quality scores went below the scores they would have without applying them. We 

conclude that bi-grams may look nice in the labels, which they do, but for the actual performance of the 

system, they provide little benefit.  

 

5.2.3 Iteration 3: POS patterns: adding synonyms 
The adding of synonyms is an advanced and challenging step. It is difficult because the boundary 

between whether words are synonyms or not is somewhat inconsistent and a grey area. Furthermore, 

words can have multiple meanings. However, we hypothesize that the advantages of implementing 

synonyms overrule the disadvantages.  An advantage is increased merging of clusters, which decreases 

the number of redundant clusters and increases the number of useful actions per cluster.  

 

 

Total tickets covered: 111938 

 

Threshold: 10 

Coverage: 77414 

# of intents: 1504 

 

Quality Scores:  

Large: 0.3739 

Medium: 0.4729 

Small: 0.2492 

Average: 0.3653 
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As we described in chapter “Background”, there are two types of synonyms: general language 

synonyms and domain synonyms. We hypothesize that implementing domain synonyms is less risky but 

less rewarding as well.  

 

Initially, the idea was to use the dutch synonyms list of lexical database OpenDutchWordnet to 

identify the general synonyms for the SSC-ICT corpus. However, after identifying the synonym sets for 

the SSC-ICT corpus using a custom script that put all the words of the SSC-ICT vocabulary against the 

ODWN synset, we found the resulting synsets unuseful. Most synonym sets contained words that were 

indeed similar but did not mean the same in the context of SSC-ICT. We, therefore, chose to use a custom 

Word2Vec deep learning model to devise suitable synonym sets.  

 

First, we trained a model on the complete corpus. Before this, we lemmatized the corpus to increase 

normalization; this showed a positive effect in higher similarity scores for similar words when compared 

to unlemmatized versions of the model. Next, we split up the vocabulary in verbs and 

nouns/spec/adjectives, and we wrote a script that calculated the similarity score of all combinations of 

the words for each of the vocabularies. Then, we computed lists of words that were similar with a 

similarity score of at least 0.70 (on a range of 0 to 1). We sorted the lists on the frequency of the words in 

the vocabulary with the purpose of that the most frequent word would come first in the list. This word 

would be the “alfa” word by which all other similar words are replaced. The resulting synonym sets were 

exported to a list and manually checked. About 50% of the synonyms were accepted. In total, we 

identified about 100 synonym sets for entities and 30 for verbs, with on average 3-4 words per synonyms 

set. See Appendix E for the list of synonyms.  

In order to implement the synonyms in the system we wrote a script that simply replaced the 

respective synonyms by their alpha synonym in the dataset that is input for the POS Tagging process.  

 

Results 

The coverage went up by 5000 (7,5%). The quality scores remained about the same. We conclude 

that the synonyms have a positive effect on the system, but not drastically. Increasing the number of 

synonyms would possibly improve the system more. In order to do this, the similarity threshold would 

need to be lowered, and more manual work would be needed to check them. However, the process of 

checking the synonyms is very fast since it is very intuitive. Checking 100 synonym sets takes about 10 

minutes.  

 

Total tickets covered: 114512 

 

Threshold 10: 

Coverage: 81052 

# of intents: 1500 

 

Quality Scores:  

Large: 0.4106 

Medium: 0.4844 

Small: 0.2403 

Average: 0.3784 
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5.2.4 Iteration 4: POS Patterns: multi-threaded processing 
Training a new iteration of the model took about 4,5 hours. We identified the bottleneck to be the 

Frog POS tagger which runs on an Ubuntu Virtual Machine (VM). The developers of Frog warn on their 

website for the slowness of the software. However, we found a way to increase the speed of the software 

by more than 250% by using multiple ubuntu instances. We split up the processing script using the 

ThreadPool Library of Python: we wrote a script that divided the categorical clusters over the Ubuntu 

instances.  

 

5.2.5 Iteration 5: Topic modeling (LDA)  
Due to the high expectations of LDA in text clustering (in research but also in online communities 

and data science companies that we had contact with) and also the high scores of the technique in the 

article of Jan et al. (2014) (even though they used internal evaluation scores) we decided we had to 

attempt this technique. Before using the intent evaluation datasets, we first attempted to apply LDA on 

one complete large cluster, because LDA requires a large number of documents as input and we could 

immediately see the results from this and conclude whether we should continue testing the technique.  

 For this experiment, we used the complete dataset of the outlook cluster, which comprises about 

15.000 tickets. For pre-processing, we lemmatized the dataset, and we used a dutch stopword list. Then 

we extract the complete vocabulary (unique word list) and convert the documents to a TF-IDF matrix 

using the Gensim library. We use these files as input for training the LDA model. For determining the 

number of topics, we tried using a widely known methodology which makes use of the perplexity score 

of the clustering results. However, this methodology recommends to use a maximum of 30 topics, which 

we find very small and the results also show very general topics. We then choose to go for 100 topics, 

which is a rough estimate. 

 
Figure 17: Visualization of LDA topic distribution of the "Outlook" category 
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Results 

In figure 18 we show a plot of the topic distribution; this is a two-dimensional grid in which the 

distances between the word embedding vectors of the topically related words are visualized. When 

looking at the terms that each topic describes we see LDA does cluster topics indeed relatively neatly. For 

instance, the largest cluster, number 1, which contains about 6% of all tickets from the category describes 

the words “PST”, “bestand” and “koppelen”, or “pst bestand koppelen” which is indeed an intent in the 

outlook cluster and also the largest one. Some of the smaller topics are not correct due to certain terms 

that provide little informative quality.  

The scores are slightly lower than that of the POS tagging but still pretty good considering little 

preprocessing is done, and no synonyms are applied. Especially the smallest cluster scores better than on 

POS Tagging; we do not know why this is.  

 

 Resolution recommendation 

In this section is described how the resolution recommendation process should work.  

For the resolution recommendation process, we combine the tickets in the clusters with their 

respective actions.  

Using a custom algorithm that makes use of the ratio of verbs as well as numbers in a sentence 

successfully removes all e-mail related noise like signature and salutation as well as TopDesk related 

noise consisting of the name of the operator and timestamp.  

Next, we remove empty actions fields and combine double actions; this increases the weight rate 

that we match to these actions.  

 

A domain expert has labeled 2.000 actions in order to identify what actions contain valuable 

information regarding the actual solution to the problem. 30% of the actions appear to be useful. This 

rate can be used to evaluate the system's recommendation to a bottom limit. Another conclusion of this 

analysis is that shorter actions more often contain valuable information rather than longer action texts. 

For this reason, only the shorter action texts, those that contain less than 300 characters (on average 

three sentences), are analyzed.  

 

 

Total tickets covered: 100% 

 

Quality Scores: 

Large(100): 0.4063 

Medium(50): 0.4200 

Small(25): 0.3062 

Average: 0.3775 
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 Front-end application 

In order to acquire feedback on the system, an application needs to be decided for and built. In 

chapter 2 an overview of applications of QA-pairs is provided. In this chapter is explained what 

application is chosen and for what reasons. Furthermore, we discuss the details of the application.  

 

Application description 

It is decided to build a customer knowledge base system primarily for use by the customers of SSC-

ICT. This system provides the option for a user to type in a short description of any incident, and the 

system will recommend intents and actions belonging to these intents. Furthermore, it will provide the 

possibility for the user to provide feedback on the results. This feedback is used for evaluation as well as 

for use by the reinforcement learning algorithm.  

 

Argumentation for the choice of the system 

We chose this system because of the substantial benefits it can provide. It would save a significant 

amount of the service desk operators’ work as the most straightforward tickets can be answered by the 

customers autonomously.  

Furthermore, providing the application to the 40.000 customers of SSC-ICT comes with a large 

amount of feedback. This feedback can be used using reinforcement learning to improve the system 

further.  

 

Application’s process:  

The application processes the input text live. We apply the same pre-processing to the text that we 

use for training the system. After that, we determine the corresponding category in the same way that 

the tickets are appointed to categories while training the system. Then, the input text is classified using 

the trained LDA model for that category. The outcome of this is a list of topics along with their 

contribution percentage. The topic with the highest percentage is chosen as the being the intent for the 

input. 

 

Feedback mechanisms 

The system provides two ways to gather feedback from users: 

- Possibility to classify an intent as right or wrong (mark) 

- Possibility to select actions as useful (like) 

 

A system expert manually reviews the feedback, and if accepted it is incremented in the 

reinforcement learning algorithm.  

 

 Chapter conclusion 

In this section, we look back at the modeling that we describe in this chapter and built conclusions 

for the system’s design based on the results.  

For the categorization component, we decide to use the Carrot2 LSI clustering implementation along 

with assignation of tickets to the cluster using the Levenshtein distance. The score of more than 88% 

coverage is an excellent score for categorization.  
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In the intent identification process, we focussed on the POS patterns that arose from the related 

works and LDA Topic Modeling which is a much-valued technique in the research community. Despite 

that all odds, in our eyes, were against LDA, we believe that LDA outperforms the POS Pattern process. 

The evaluation scores based on our own evaluation measure may be slightly lower than that of POS 

Patterns, but the coverage is much higher, as well as its processing speed, and the expected future 

potential improvements of LDA are much higher as well. We will describe these improvements in the 

next chapter.  

For the action recommendation process, we propose a preprocessing methodology as well as a low-

effort clustering methodology. The front-end application  

We attempted multiple categorization techniques, multiple intent identification techniques, we 

cleaned and clustered the action field, proposed a method for searching through the clustered intents and 

proposed a methodology for implementing reinforcement learning. 
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6 The system 
In this chapter, we provide an overview of the whole system. Furthermore, we describe the 

evaluation of the end result of the system, and we compare this to the minimal expected quality level 

that we set in this chapter as well. We provide an overview of the complete system in figure 19.  

 

Figure 18: A process view of the system 

 The figure in figure 19 shows the complete process of training the system and recommending 

actions to customer input. For training the system the categorical clustering and intent identification are 

used. First, the categories are determined using LSI indexing. Then, the tickets are appointed to one of 

around 100 categories (for the SSC-ICT dataset). After that, the intents are identified.  

For each of the categories, we apply the following process. The system preprocesses the short descriptions 

of the tickets and the complete corpus of short descriptions for a category transformed into a TF-IDF 

corpus, in which the preprocessed short descriptions are the documents. Parallel to the creation of the 

TF-IDF corpus, the system creates a vocabulary for the category. Then, the expected amount of topics 

is determined and used as input along with the TF-IDF corpus and the vocabulary as input to train the 

LDA model. Once the system has trained the model, the tickets are appointed a dominant topic which is 

the intent. 

 The system than grabs the action fields for each of the tickets of each intent and excludes doubles 

and actions that are very similar using the Levenshtein distance. The result is a list of actions for each 

intent.  

 When a customer types in a problem in the front-end application, the system recommends a 

intent and the customer can choose an intent which he or she thinks fits best. The system then 

recommends a list of action on the intent. The list is sorted based on feedback of customers as well as on 
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a score that is provided by a deep learning classifier which can distinguish completely useless actions to 

probable actions.  

 Minimal quality level 

Now that the context of the system is determined we can set a minimal quality level. There is no 

way to base this on other research because the cases are just too different. What we can do is describe 

from what moment SSC-ICT would benefit from using the system.  

Because effectively, the system replaces service desk operators, success on a purely business-

perspective would be reached very quickly, even at a success rate of about 10%. However, the main goal 

of the system is to increase customer satisfaction. Being able to have the option to solve an IT incident 

without the need for a service desk operator, 24//7, would be of a positive influence on customer 

satisfaction. However, taking into account that the system is not flawless, there is a point where users 

might find it hindering to use. One could say to that however, that the user may simply choose to not use 

it, leaving it only to those that are interested or for everyone but outside of the service desks working 

hours. Still, the image of SSC-ICT depends on the application as it will be one of the very few things of 

SSC-ICT that the 40.000 customers are confronted with. However, the system might be given some slack 

due to it being a pilot for Artificial Intelligence. On top of that, the system will improve when feedback 

is applied in the right manner.  

In short, setting a minimal quality is a process of pure estimation. We think a success score of at 

least 30% is a good starting point, and increasing it to 50% over time by improving the system and using 

reinforcement learning should be wanted.  

 Results 

In chapter 5 we evaluated the components of the system independently in order to decide what 

technologies we recommend for these components. In this chapter, we evaluate the results of the 

complete system. We do this by manually determining the specificness of the resulting intents and the 

number of actions that we require at a minimum for useful action recommendation. The specificness is 

vital because when a cluster is specific, i.e., it describes only one intent, we can safely say the tickets that 

that intent covers are successfully clustered, and thus provide a percentual success rate of the intent-

identification process.  

During the process of determining the uniques we also identified clusters of tickets of which the short 

decriptions is too general for intent identification. The short descriptions of these tickets were generally 

one of the following: “problem with outlook”, “question about outlook”, “help with outlook”. We use 

“Outlook” as an example category but they appear for every category.  

We remove these general tickets from the calculation of the success rate, this does not impact the 

credibility of the success rate of the intent identification because they would have been clustered if they 

would have been described more accurately. However, we do find them an interesting result of this 

research because it provides insight for SSC-ICT into what percentage of tickets are processed incorrectly, 

we, therefore, provide these results as well. 
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From the results can be seen that the success rate of the intent identification process is on average 

around 55%. This score means that, on average, the system can identify a right intent for a ticket 55% of 

the time. Furthermore, we conclude that between 10 and 20% of the tickets that are part of a category 

are described too vague to extract any meaning out of them. On top of the 12% of the categorizational 

clustering component (88% success rate), we say that between 20 and 30% of all tickets are described too 

vaguely by the operators.  

 

In order for the system to solve 55% of the tickets, the recommended actions should be useful. In 

chapter 5 we describe that of all tickets, about 30% contains a useful action. Looking at the intents, which 

are almost always larger than 10 tickets and often larger than 100 tickets, the chance that an intent has 

at least one useful action is large. Furthermore, if this does not appear to be the case the action could 

always be added manually by an operator. So once enough feedback is received from users, the right 

actions are filtered from the less informative actions and the system will able to recommend a useful 

action to an intent most of the time.  

 

 

 

 

 

 

 

  

  

“Outlook” category: 

Total amount of tickets: 

13341 

Tickets clustered in specific 

clusters: 

8034 

Number of too general 

tickets: 

1323 

 

Succes rate: 55,8% 

 

“Excel” category: 

Total amount of tickets: 

721 

Tickets clustered in specific 

clusters:  

436 

Number of too general 

tickets:  

167 

 

Succes rate: 48,6% 

 

“P-Direkt” category: 

Total amount of tickets: 

286 

Tickets clustered in 

specific clusters: 

220 

Number of too general 

tickets: 

89 

 

Succes rate: 66,5% 
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7 Deployment 
In this chapter, we describe how SSC-ICT should make use of the QA-pair generation system. We 

describe the first uses of the system, and what potential improvements SSC-ICT should apply in what 

order, in order to improve the system. 

 Potential usage of the current system 

The system that we propose in this research is not a finished product; it is instead a foundation for 

SSC-ICT and other organizations that make use of ticket management systems to extract useful 

information from their ticket data. Not all components are therefore optimized. However, the system in 

its current stage already has multiple uses. We now describe these usages of the different components. 

 

Categorization 

We built a categorization methodology using LSI to identify categories in the ticket data and cluster 

them accordingly. Our results show that over 210.000 tickets, it manages to cluster 88% of them in one 

of 117 clusters ( see Appendix F for an overview of the clusters and number of tickets clustered 

accordingly). The categorization is problem-focused rather than organization focused which is the 

current categorization of the TopDesk system; it is therefore of added value to the system. This 

categorization can be used for simple data analysis request which we encountered during our research 

period like: “how many tickets are about Blackberry in 2018” or “How many status inquiries (status 

navraag) have there been inquired in the last month?”. These are Busines Intelligence requests. 

Furthermore, the categories are easily matched to the timestamps which are part of the ticket data 

in order to provide high-level anomaly detection, due to that in our system the ticket-ids always remain 

connected to the processed text. Thresholds for the number of incoming tickets over a specific period for 

specific categories could be set, and on trespassing, a pop-up or message could be triggered. If this, for 

instance, is matched to the Printer category, an outfall of the Xerox printing process is quickly identified.  

 

Intent identification 

Aside from the use of this component for the system the results of this process have more uses. 

Namely, FAQ extraction, Business Intelligence, and Anomaly Detection. During the research process, the 

results from POS Patterns were used for a project in which a nationwide Frequently Askes Question-list 

(FAQ) for the SSC-ICT website was created. The project members did not have any knowledge of the 

most occurring problems; their guess was that password reset is an accurate one, for which they were 

right. The results of the intent identification component, may it not be optimized yet, provided them 

with insights on a data perspective on the most occurring problems. We provided them with 450 intents 

occurring more than 20 times in the last year.  

 

The Front-end application 

The front-end application is meant to be used by the customers of SSC-ICT. However, we 

recommend first testing and improving the system further in a test-environment. This service desk call-

center is a good environment for this, and the application would be useful for them as well. Especially 

for new operators that do not know the main problems and solutions about the domain, we think this 

system is very useful. We believe that when they know that the system learns from the feedback that 

they provide, they will be motivated to do so as well.  
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 System improvements 

In this section, we describe future improvements that would improve the system. These are: Label 

generation, GuidedLDA for reinforcement learning, Golden set creation for topic count determination, 

Root Cause Analysis, and reinforcement learning.  

We believe that by applying these improvements by a team of one or two programmers the system’s 

performance can be improved by up to 50% within half a year of programming.  

 

Synonyms 

A method to improve LDA-clustering is by applying synonyms. These can be applied in the way we 

did with the POS Patterns, by replacing the input terms with their alpha synonyms. LDA is known to 

identify synonymous structures itself, but in the case of some categories, this is not possible due to their 

small size.  

 

Stop words 

For stopwords, we used a general Dutch language stopword list. However, we think the system’s 

results can be easily improved by adding domain synonyms as well. Examples that we saw in the 

clustering process are Dutch versions of the words colleague, madam/sir that would get their cluster. 

These are easily identifiable stop words that will always be relevant.  

 

Label generation 

A disadvantage of Topic Modelling to POS tagging is that the labels of LDA are very unclear; they 

are merely a summation of keywords that are used to from the topic. However, there are label generation 

techniques available that create a summarizing label for a collection of documents. In this case, these 

documents are then the tickets that are part of the intent’s cluster. 

 

GuidedLDA for reinforcement learning 

GuidedLDA is an adaptation of LDA that is discovered in 2012 by Jagadeesh Jagarlamudi et al. 

(2012) and made public in a Python library in 2017. The concept is that where LDA is entirely 

unsupervised, there is no way to influence the topics apart from the topic count, GuidedLDA is. Using 

“seeds” certain words can be given priority for specific topics with a weight for the height of the priority. 

We have attempted it for the categorization components, and even though it did not work very well for 

that, we are pretty sure it does work for intent identification, for the same reason as for why LDA works 

for intent identification and not for categorization.  

In combination with reinforcement learning, individual clusters can be prioritized or fixed by 

creating a seed for them. By for instance making users able to classify intents as correct or incorrect, 

reversed keyword identification can identify the seeds which are then added to the GuidedLDA script’s 

resources. From a programmer’s point of view, GuidedLDA only extra requires a list of seeds to provide, 

which makes it very intuitive.  

 

Golden set creation for topic count determination 

In this research, we applied the often-used coherence value for finding the optimal topic count. 

However, due to that this is an internal clustering evaluation methodology, this has its limits which we 

also encountered. Another way of determining the optimal topic count that we suggest is that of 

optimizing our proposed evaluation score for each of the categories. For this, a small set of tickets of the 
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category needs to be clustered the way we clustered the evaluation sets, this does take some time, but 

even from manually clustering about 100 tickets we think it is useful, as the model is trained on the 

complete corpus. There is a risk of overfitting, so the more tickets clustered, the better, but on the other 

hand, we believe using even small sets is more accurate and trustworthy than using no method, 

determining the topic count manually.  

 

Root cause analysis 

In this research, we chose not to apply root cause analysis as it was not a priority and we believed at 

the time that we had too little information for this. However, at this moment we believe it does have use 

and may be incorporated in the future.  Root Cause Analysis in QA-pair generation is the process of 

looking at the cause of an intent in order to better classify it. Like mentioned in S. Agarwal et al. (2017)the 

cause can also be deducted from the action that is applied on the ticket, written in the action field in SSC-

ICT’s ticket set. The intuition behind this is that similar problems also have similar actions. Thus, by 

analyzing the action fields of an intent cluster, and compare it to that of other clusters, one can 

potentially merge two clusters that were initially identified by the system as separate but in reality, are 

not. A step further is to identify synonyms from this process.  

 

Reinforcement learning 

A simple, intuitive way to improve the system using reinforcement learning is by pointing feedback 

back to terms. For instance, when a feedback mechanism points to an action cluster being not accurate, 

one could combine all these clusters and build a classifier that can classify actions as useful or not. 

FastText, a technology created by Facebook in 2016, can classify short texts using neural networks very 

accurately. 

 

Applications 

These improvements improve the accuracy of the intent identification process. Label generation 

makes way for more intuitive results that can be provided to the customer. A potential application would 

then be a knowledge base for public use. The current knowledge base version contains many faults thus 

is not yet operable for public use.  
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8 Discussion 
In this research, we design a QA-pair generation system and a prototype service-desk knowledge-

base application as front-end. Part of this research are some unique experiments, designs, and findings. 

We applied categorization methodology before applying the intent identification process; we showed 

that in combination with this categorization, LDA works best for intent identification which has not been 

shown before in this research field in a practical setting. In order to evaluate the results of both the POS 

Patterns and that of LDA, we used a unique combination of evaluation measures of which one we 

designed ourselves. We designed an external evaluation methodology which does not require a clustering 

structure on beforehand and is unique in the research field and arguably better than all other options 

due to its logic. 

Furthermore, we showed how Word2vec could be used for synonym detection and showed the 

improvement of the results of these synonyms compared to before applying them. Furthermore, the 

system that we designed is very easily applicable to new datasets; it requires little manual labeling. We 

now describe each of these topics in more detail. 

 

Categorization 

Because of the very high variety of the SSC-ICT dataset we were bound to find a method to reduce 

the variation of the ticket dataset. Our solution is splitting up the corpus automatically using a single-

term LSI-based methodology, after which multiple, low variety corpora, categories, can be clustered 

independently. We posit that this decision is what made it possible for LDA to be applied successfully. 

This solution has not been used in any of the research that we reviewed, and this might very well be the 

reason why they skipped LDA since we also got useless results when attempting LDA on the corpus 

without categorizational clustering.  

  

LDA vs. POS Patterns 

Jan, Chen, and Ide (2014)  is the only article of our related works to mention LDA for intent 

identification in incident tickets. Our research confirms this. A downside of POS patterns to LDA is the 

case when no verbs are found in the ticket description. In our dataset, this was a big problem, with a 

coverage of less than 40% for the POS patterns. LDA does not look at the syntactical meaning of terms 

but rather at relational meaning. In a high variety corpus this is very difficult, but due to our high-

level categorization, this was not an issue. Regarding the potential of LDA to POS patterns, we believe 

LDA surpasses the latter by miles. With more and more feedback, more advanced topics can be 

identified, and in combination with GuidedLDA, stored as well.  

 

Custom Evaluation score 

The benefit but at the same time also the problem of working with POS patterns or LDA is that the 

results have no predefined structure, or labels, on which they can be evaluated. This probably explains 

why none of the related works provide a robust evaluation methodology for these techniques, at least 

not one that is not external, because internal evaluation is not suitable for intent identification due to 

the high complexity in the meaning of the intents. Plus, the fact that internal evaluation methodologies 

use the same features that the clustering methodologies do, which is why they are very prone to 

overfitting. Our evaluation methodology computes the proportion of mutual tickets for each ticket in 

its parent cluster, compared to a golden test set. The logic is complete. We showed minimal quality 

levels using the two extreme situations that are known to cause for high evaluation scores: all items in 

unique clusters and all items in the same cluster. Moreover, we proved that both the POS patterns and 
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LDA scored better on these than they did. A point of interest is that the scores for the evaluations are 

relatively low. This is an accurate point, but there are many reasons why they could be so low. One that 

we are sure of happens is when a very large golden set cluster is in the system’s version split into two 

still relatively large clusters, which halves the evaluation scores of these tickets which is of significant 

influence on the overall evaluation score. Improvements of the intent identification process, especially 

cluster merging using Root Cause Analysis or Reinforcement Learning could easily avoid this problem 

and thus have a significant impact of improving the system on the evaluation score and in actual 

practice as well.  

 

Word2vec 

We showed the potential of Word2vec in the field of synonym detection. Even though the increase in 

evaluation score was minimal, the technique did work in identifying over 300 synonyms. We think 

Word2vec is especially useful in a system that is applied to many different datasets due to the speed 

with which it generates synonyms (once the scripts are built, because figuring that out may take some 

time). The resulting synonym sets do however require manual correction because in some cases 

Word2vec may find words that are similar, but rather than synonymously similar, similar in for 

instance a hierarchically dependent way. However, checking synonym sets is a very intuitive process 

and takes very little time. We checked 100 synonym sets in less than 10 minutes, which is much and 

much faster than identifying synonyms manually.  

 

Dynamic/scalable system 

Based on the system characteristics that we identified in chapter 2, we tried to minimize the manual 

required effort in every way possible. The result is a system that we can apply to any new, structurally 

similar dataset (short descriptions + action fields) and provide a working system in less than a day. 

This is not only useful for SSC-ICT, who are adding a new large ministry in their TopDesk system soon: 

the Ministry for External Affairs, but also for the company TopDesk itself. Topdesk has hundreds of 

large companies as customers but does not have anything related to this topic. After consultation with 

the public-sector business director and one of the 5 data scientists of TopDesk, it is confirmed that they 

do not have the resources for starting such a design project, even though they did find it very 

interesting. Potential future research to come?  
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9 Conclusion 
In this chapter, we answer the research question and the main research question that we posed in 

chapter  

 

What components, techniques, and characteristics of QA pair generation systems from related 

works? 

From a literature review, we identified the components Intent Identification, Root Cause Analysis, 

Action Recommendation, and Reinforcement Learning. We added to this the component of 

Categorization due to the large dataset and high variety of tickets of SSC-ICT. We also identified 

techniques from the literature review. We grouped them in the groups Pre-processing, Clustering, 

Synonyms, and Reinforcement Learning. For categorization, we identified LSI, LDA and POS patterns. 

We identified the characteristics by looking at the differences between the related works and our research 

case. The characteristics are Language, Size of the dataset, Length of documents, Variation in intents, 

Variation in domains, The speed of structural change in topics, Amount of future development, Amount 

of manual work availability, Number of potential users, Privacy restrictions.  

 

What potentially useful, other techniques are there? 

In order to answer this question, we had contact with multiple data science companies and shifted 

through online fora and other documentation. Topic Modelling was a big topic that we encountered in 

many different areas. Even though it was most often used to find general topics in large documents, we 

found we had to give it a try, especially with the evaluation results of Jan, Chen, and Ide (2014). 

Word2vec is a well known and high-quality method for doing all sorts of things with word relationships 

and showed good promise for synonym detection. 

In (Vlasov et al., 2017) Bi-grams were manually applied in order to replace specific multi-noun keywords. 

When we encountered the deep learning bi-gram detection possibilities of the Gensim library, we knew 

we had to give it a try.  

 

What are the characteristics of the SSC-ICT dataset? 

, In chapter 3 we described the ticket data in much detail. We explained the eight most relevant fields of 

the ticket data and how we used those fields to choose a suitable dataset. Furthermore, we decided that 

for the intent identification and result recommendation we would focus on respectively the short 

description and the action field. The request field was too noisy, too long and too inconsistent to put 

effort into. For the categorization fields, we had analyzed the contents of the tickets and found that 33% 

of the tickets were manually categorized wrongly. Furthermore, we did not find the subcategories very 

specific, and their coverage was too inconsistent as well: 50% of the tickets was categorized among three 

subcategories.  

 

How can QA pair quality best be measured? 

For answering this research question we consulted some literature reviews, the general consensus 

scientific research was that there are some types of evaluation for NLP systems and some guidelines, but 

that overall it often is unique for the dataset and the context.  

 Due to that, the system consists of multiple components that all have their own input, we decided 

that we needed component-based evaluation methods rather than only end-result evaluation. For the 

categorization component, we chose for a score for the number of tickets that were categorized as well 

as the number of categories that would result from the component. Furthermore, we set some boundary 
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conditions to which the categories needed to comply: Unique, Value adding and Hierarchically 

independent.  

Regarding the intent identification, we learned from the literature review that there are two types 

of evaluation: internal and external. We decided that we required external evaluation for our research, 

though generally, these methods required a predefined structure or accurate labels, things we both did 

not have. Therefore we devised our own evaluation technique to measure the quality of the structures. 

One that does not require labels or structure and uses a golden ticket set to score results. In order to avoid 

the risk of overfitting, we created three golden cluster sets of three different sized and also different type 

of categories. Furthermore, we determined that the number of tickets covered, along with a threshold 

for intent-size was relevant for evaluation, as well as processing speed.   

For the action recommendation component, we decided that the percentage of unique and useful 

actions proposed is a good measure. However, this is meant for future use of the system, thus not 

evaluated in this research, in contrary to the other two components. The reinforcement learning 

component also requires feedback to be able to be evaluated. Furthermore, its results can be seen in 

increased results for the other three components rather than having its own measure.  

 

What is the minimal quality level needed to produce relevant performance measures? 

 We determined the minimal quality level from a customer satisfaction point of view. The system 

should perform at a level in which it improves the customer satisfaction. The system should therefore 

lead to a successful answer often enough to be used by a good amount of people.  

 

How can QA pairs best be used at SSC-ICT? 

 In chapter 7 we describe the way the system of this research can be used at SSC-ICT. Furthermore, 

we describe the improvements that can be made to the system in order to increase the QA-pair quality. 

The results of the proposed system without improvement can be used for business intelligence, FAQ 

creation, and interactive knowledge base. Especially the high-level categories are a trustworthy result 

from the system that can be directly used for business insights that are not possible as of yet. The QA-

pairs are as of yet less trustworthy but are useful for internal use by for instance new operators with no 

knowledge of the domain, and for FAQ creation with manual correction. The knowledge base function  

provides feedback for the reinforcement learning system that is used to improve the system, so we highly 

recommend implementing this feature as well.  
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10 Future research 
In this chapter, we describe the potential future research that this research implies.  

The main subjects that this research puts forward which are not extensively researched are that of the 

use of Topic Modelling (LDA) and reinforcement learning for improving the intent identification 

component. 

LDA is generally used for identifying general topics from large documents and is the single most used 

algorithm for this subject. However, Jan et al.(2014) and this research show that LDA can also be used 

for identifying unique intents in low variety datasets. The downside of Topic modeling has always been 

that it is completely unsupervised and that apart from determining the amount of topics there is no way 

to influence this process. However, as of 2017, GuidedLDA has been discovered, a method to seed 

keywords in LDA topics, steering the algorithm in a preferred direction to identify topics around. 

GuidedLDA has however barely been researched yet. We are curious to see how far this steering can go. 

Its potential seems unlimited, reaching towards topic databases in which topics instead of lexical 

keywords are stored, with hundreds of weighted terms per topic.  

Reinforcement learning is due to its feedback requirements also very little described in literature. 

However, the same for this subject counts that it provides great potential for companies like SSC-ICT 

that cover large amounts of users. Companies like Google are highly invested in this subject but keep 

their techniques a secret. It would be interesting to see more information come available to what and 

how human feedback is applied in order to improve text clustering.  
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12 Appendix 

 Appendix A: literature review articles 

A
uthor 

Year 

O
ntology 

creation 

Pre-
processing 

Keyw
ord 

classificatoin 

Clustering 

Ticket 
routing 

Type of 
system

 

(Abraham, 
Spangler, & May, 
1991) 1991 x        Expert system 

(Acorn, 1992) 1992          CBR system 
(Chang, Raman, 
Carlisle, & Cross, 
1996) 1996          CBR system 
(El Sawy & Bowles, 
1997) 1997         CBR system 
(Ho Kang, Yoshida, 
& Compton, 1997) 1997         CBR system 
(Thurman, Tracy, 
& Mitchell, 1997) 1997          CBR system 
(Davenport & 
Klahr, 1998) 1998          Systems overview 
(Göker & Roth-
Berghofer, 1999) 1999          CBR system 
(Chan, Chen, & 
Geng, 2000) 2000          CBR system 
(Takano, Yurugi, & 
Kanaegami, 2000) 2000     x    CBR system 
(Foo, S.C, Leong, & 
Liu, 2000) 2000 x        Expert system 
(Kiyota, Kurohashi, 
& Kido, 2003) 2002 x x   x  QA system 
(Cheung, Lee, 
Wang, Chu, & To, 
2003) 2003 x     x  Knowledge based system 
(Roth-berghofer & 
Roth-berghofer, 
2004) 2004          CBR system 
(Kozakov et al., 
2004) 2004 x        Knowledge base system 
(González, 
Giachetti, & 
Ramirez, 2005) 2005          Expert system 
(García-Pardo et 
al., 2006) 2006       x  CBR system 
(Gupta, Prasad, & 
Mohania, 2008) 2008 x x x    Knowledge base system 

(Kim & Seo, 2008) 2008   x x    QA system 
(Vehviläinen, 
Hyvönen, & Alm, 
2006) 2008 x x x x  QA system/CBR 
(Shao, Chen, Tao, 
Yan, & Anerousis, 
2008) 2008       x x Ticket recommender  
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(Heras et al., 
2009) 2009          CBR system 
(Kongthon, 
Sangkeettrakarn, 
Kongyoung, & 
Haruechaiyasak, 
2009) 2009 x x x    QA system 

(Sneiders, 2009) 2009   x  x  QA system 
(Marcu et al., 
2009) 2009     x x x Ticket recommender  
(Kang & Zaslavsky, 
2010) 2010 x x x x  CBR system 
(Iwai, Iida, 
Akiyoshi, & 
Komoda, 2010) 2010 x x x x  QA system: help desk 
(Palshikar, Vin, 
Mudassar, & Natu, 
2010) 2010     x   x Ticket recommender  
(Sun, Tao, Yan, 
Anerousis, & 
Chen, 2010) 2010   x x x x Ticket recommender  

(Miao et al., 2010) 2010   x x x x Ticket recommender  
(Jordán, Heras, & 
Julián, 2011) 2011          CBR system 
(Motahari-Nezhad 
& Bartolini, 2011) 2011   x x   x Ticket recommender  
(Motahari Nezhad, 
Bartolini, & Joshi, 
2011) 2011   x x   x Ticket recommender  
(Bozdogan & 
Zincir-Heywood, 
2012) 2012 x x x x  Knowledge base system 
(Shivali Agarwal, 
Sindhgatta, & 
Sengupta, 2012) 2012   x x x x Ticket recommender  

(Li & Zhan, 2012) 2012 x x x x  Ticket recommender  
(Choe, Lehto, Shin, 
& Choi, 2013) 2013 x X x x  Knowledge base system 
(Potharaju & Nita-
rotaru, 2013) 2013 x X x   Knowledge bases system 
(Samejima & 
Akiyoshi, 2013) 2013 x   x x  QA system 
(Rahman, Alarifi, 
Eden, & Sedera, 
2014) 2014          Systems overview 

(Jan et al., 2014) 2014 x X x    Ticket recommender  
(Shanavas & 
Asokan, 2015) 2015 x        Knowledge base system 

(Potharaju et al., 
2015) 2015 x X x    

Knowledge base with 
automated issue detection 
system 

(Blaz & Becker, 
2016) 2016     x x  Knowledge base system 
(Talamo, 
Povilionis, Arcieri, 
& Schunck, 2016) 2016          Ticket recommender  
(S Agarwal et al., 
2017) 2017 x X x x  Knowledge base system 
(Dhoolia, Chugh, 
Costa, & Gantayat, 
2017) 2017 x X x x  QA system 
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(Vlasov et al., 
2017) 2017 x  x x  QA system 

 

 

 Appendix B: Literature review methodology 

To answer the research question a structured literature review was performed. Scopus and Google 

Scholar were used for scientific libraries in order to search for scientific papers. First, an initial search 

query was designed in order to find a first selection of relevant articles. This query was: (knowledge OR 

information OR system) AND (“customer support” OR “user support” OR “technical support” OR “help 

desk”). A total of 205 articles was found. The articles were scanned on article title and abstract for 

relevance to the subject. Citation count and year of publishing was taken into account: articles with a 

low citation count needed to be published relatively recently in order to make it through the selection. 

This resulted in a set of 62 articles. 

 Next, these articles were read fully in order to be more selective about the relevance, the result of 

this was 27 articles. During this step a new keyword “ticket” was identified and a couple of relevant 

articles were added. Forward and backward snowballing technique was applied on the resulting set in 

order to find more articles. This process was repeated at least three times until no new articles were found. 

This resulted in a set of 49 articles.  

These articles were then coded and sorted in categories for each of the knowledge processes, system 

type, and other information relevant to be able to quickly look up an overview of the articles. A partial 

overview is shown in table 1.  
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Figure 19: Literature review process visualized 
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 Appendix C: Ticket overview in TopDesk System 
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 Appendix D: List of synonyms 

12.4.1 Entity synonyms 
website site url 

hprm digidoc  

inet i-net  

pincode pin 

monitoring agent 

acceptatieomgeving testomgeving 

postvak inbox 

benaderbaar toegankelijk 

oplader oplaadkabel lader voeding adapter usb-c 

access acces 

adobe acrobat 

samenwerkingsruimte samenwerkruimte swr 

traag langzaam 

token softtoken hardtoken softoken 

work works 

raac zorro notis 

synchroniseert sync synct synchroniseerd 

blackberry bb good bbwork goodwork blackberrywork 

uemclient 

simkaart umts sim sim-kaart umts-kaart  

wifi wi-fi govroam internetverbinding 

pst-map gegevensbestand 

aanmeldserver aanmeldingsserver 

kamer vergaderzaal  zaal 

etage verdieping 

cloudbook macbook 

installatie activatie herinstallatie  

ontgrendelcode activatiecode toegangscode pukcode 

puk ontgrendelingscode activeringscode unlockcode 

ontgrendelingssleutel installatiecode  

toner afvalcontainer container tonerafvalcontainer 

cassette afdrukmodule 

res one  

workspace ivanti 

mail mails email e-mail 

dwr citrix dwr64 dwr-64 

win7 w7 

win10 w10  

vgw vgw-rvb 

servicedesk helpdesk 

adminsitratie adminstratie 

firefox ff 

wifi govroam wi-fi  

defect kapot 

beeldscherm scherm monitor beeld 

netwerkverbinding internetverbinding dataverbinding 

laptop  chromebook 

pc computer 

schijf g-schijf h-schijf netwerkschijf o-schijf 

raar vreemd 

usb stick sticks 

vergroten uitbreiden 

gebruiker klant gebr aanmelder 

dekking buitenlanddekking werelddekking 

onjuist ongeldig 

autoriseren machtigen 

postbus mailbox dienstpostbus 

uem eum 

update upgrade overgang  

migratie verhuizing 

uitgeleend leen uitleen 

afhalen afboeken 

proxy proxyserver proxy-server 

synergy globe 

ongeluk abuis 

verbinding connectie 

telefoon iphone ipad toestel mobiel samsung 

smartphone 

gebruikersnaam inlognaam 

afdeling directie 

factuur inkooporder io 

mfp xerox 

mailadres e-mailadres emailadres 

proxymelding proxy-melding 

balie servicebalie 

diverse meerdere allerlei 

machtigingen machtiging 

followme followme1 

installatie activatie herinstallatie activatiemail 

heractivatie 

bestand document 

crasht crashed 

gemigreerd overgezet 

pagina webpagina 

kabel netwerkkabel  

replicator portreplicator dockingstation 

mappen map submap 

wachtwoord ww password 

beveiligingsmelding popup pop-up 

invoegtoepassing plugin 

opdracht printopdracht 

geheugen schijfruimte 

aub svp 

laptops pc's 

enorm extreem ontzettend 

installeren configureren 

mozilla frontmotion 

ip mac 

weergave layout 

virusscanner mcafee 

kopieren verslepen 

probleem euvel 

netwerkschijven schijven 

code sleutel 

simwissel wissel 

database databases 
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bes12 bes 

 

batterij accu 

 

 

 

 

12.4.2 Verb synonyms 
vergrendelen locken deactiveren 

deblokkeren unlocken heractiveren 

synchroniseren synct synchroniseeren 

failed hossen alert dwrt certificate 

omruilen omwisselen inleveren 

benaderen bereiken 

verplaatsen slepen verslepen  

terugzetten terugplaatsen 

weergeven tonen 

afvoeren verhuizen 

uitgeven uitleveren meegeven 

inleveren omruilen omwisselen 

aankomen binnenkomen 

herstarten rebooten  

registreren registeren 

printen afdrukken uitprinten 

knipperen flikkeren 

controleren nakijken 

bewaren terugkomen 

ontkoppelen afboeken 

openzetten openstellen 

verzenden versturen sturen 

gerard inlogproblemen david 

helpen assisteren 

overzetten omzetten 

vergroten uitbreiden 

verstaan vermelden 

inloggen aanmelden aanloggen 

oplossen verhelpen 

wijzigen aanpassen veranderen 

invoeren invullen 

  

 Appendix E: Categorization of tickets 

Categorylabel: 'work', number of tickets: 15959 

Categorylabel: 'laptop', number of tickets: 15939 

Categorylabel: 'wachtwoord', number of tickets: 

13890 

Categorylabel: 'outlook', number of tickets: 13341 

Categorylabel: 'status navraag', number of 

tickets: 12424 

Categorylabel: 'dwr', number of tickets: 11818 

Categorylabel: 'printer', number of tickets: 5698 

Categorylabel: 'account', number of tickets: 4745 

Categorylabel: 'mail', number of tickets: 4358 

Categorylabel: 'blackberry', number of tickets: 

3936 

Categorylabel: 'token', number of tickets: 3641 

Categorylabel: 'citrix', number of tickets: 3146 

Categorylabel: 'code', number of tickets: 2722 

Categorylabel: 'uem client', number of tickets: 

2351 

Categorylabel: 'pc', number of tickets: 2350 

Categorylabel: 'beeldscherm', number of tickets: 

2227 

Categorylabel: 'netwerk', number of tickets: 2190 

Categorylabel: 'taakbalk', number of tickets: 310 

Categorylabel: 'sap', number of tickets: 304 

Categorylabel: 'printing', number of tickets: 296 

Categorylabel: 'vpn', number of tickets: 295 

Categorylabel: 'p-direkt', number of tickets: 286 

Categorylabel: 'service', number of tickets: 276 

Categorylabel: 'usb', number of tickets: 275 

Categorylabel: 'topdesk', number of tickets: 275 

Categorylabel: 'afgehandeld', number of tickets: 

267 

Categorylabel: 'bureaublad', number of tickets: 

252 

Categorylabel: 'office', number of tickets: 249 

Categorylabel: 'tablet', number of tickets: 246 

Categorylabel: 'govroam', number of tickets: 245 

Categorylabel: 'kabel', number of tickets: 241 

Categorylabel: 'geluid', number of tickets: 227 

Categorylabel: 'mfc', number of tickets: 225 

Categorylabel: 'vip', number of tickets: 215 

Categorylabel: 'direct', number of tickets: 214 

Categorylabel: 'firefox', number of tickets: 205 

Categorylabel: 'ibabs', number of tickets: 193 
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Categorylabel: 'telefoon', number of tickets: 2157 

Categorylabel: 'good', number of tickets: 2016 

Categorylabel: 'wifi', number of tickets: 1825 

Categorylabel: 'internet', number of tickets: 1694 

Categorylabel: 'scherm', number of tickets: 1632 

Categorylabel: 'postbus', number of tickets: 1578 

Categorylabel: 'ie', number of tickets: 1576 

Categorylabel: 'document', number of tickets: 

1540 

Categorylabel: 'proxy', number of tickets: 1447 

Categorylabel: 'ww', number of tickets: 1308 

Categorylabel: 'schijf', number of tickets: 1305 

Categorylabel: 'toetsenbord', number of tickets: 

1296 

Categorylabel: 'iphone', number of tickets: 1231 

Categorylabel: 'pst', number of tickets: 1176 

Categorylabel: 'sd', number of tickets: 1139 

Categorylabel: 'ontgrendelcode', number of 

tickets: 1118 

Categorylabel: 'muis', number of tickets: 1090 

Categorylabel: 'ipad', number of tickets: 1064 

Categorylabel: 'foutmelding', number of tickets: 

984 

Categorylabel: 'agenda', number of tickets: 912 

Categorylabel: 'update', number of tickets: 898 

Categorylabel: 'gehoor', number of tickets: 893 

Categorylabel: 'flex2rijk', number of tickets: 848 

Categorylabel: 'toner', number of tickets: 840 

Categorylabel: 'computer', number of tickets: 791 

Categorylabel: 'monitor', number of tickets: 785 

Categorylabel: 'digidoc', number of tickets: 747 

Categorylabel: 'applicatie', number of tickets: 742 

Categorylabel: 'excel', number of tickets: 724 

Categorylabel: 'server', number of tickets: 720 

Categorylabel: 'port', number of tickets: 670 

Categorylabel: 'statusnavraag', number of 

tickets: 661 

Categorylabel: 'persoonlijke', number of tickets: 

658 

Categorylabel: 'apps', number of tickets: 641 

Categorylabel: 'pdf', number of tickets: 640 

Categorylabel: 'hprm', number of tickets: 604 

Categorylabel: 'storing', number of tickets: 572 

Categorylabel: 'mobiel', number of tickets: 561 

Categorylabel: 'chromebook', number of tickets: 

524 

Categorylabel: 'postvak', number of tickets: 186 

Categorylabel: 'samsung', number of tickets: 182 

Categorylabel: 'ssc-ict', number of tickets: 180 

Categorylabel: 'papier', number of tickets: 172 

Categorylabel: 'afdrukken', number of tickets: 

170 

Categorylabel: 'vasco', number of tickets: 165 

Categorylabel: 'sim', number of tickets: 162 

Categorylabel: 'desktop', number of tickets: 160 

Categorylabel: 'exchange', number of tickets: 158 

Categorylabel: 'website', number of tickets: 149 

Categorylabel: 'ind', number of tickets: 132 

Categorylabel: 'powerpoint', number of tickets: 

126 

Categorylabel: 'res', number of tickets: 124 

Categorylabel: 'abonnement', number of tickets: 

122 

Categorylabel: 'szw', number of tickets: 118 

Categorylabel: 'hardware', number of tickets: 117 

Categorylabel: 'kiosk', number of tickets: 113 

Categorylabel: 'oracle', number of tickets: 108 

Categorylabel: 'smartphone', number of tickets: 

102 

Categorylabel: 'u166', number of tickets: 100 

Categorylabel: 'domein', number of tickets: 90 

Categorylabel: 'spoed', number of tickets: 76 

Categorylabel: 'hp', number of tickets: 67 

Categorylabel: 'bes12', number of tickets: 58 

Categorylabel: 'ios', number of tickets: 51 

Categorylabel: 'explorer', number of tickets: 50 

Categorylabel: 'printen', number of tickets: 49 

Categorylabel: 'contacten', number of tickets: 48 

Categorylabel: 'pro', number of tickets: 41 

Categorylabel: 'stick', number of tickets: 25 

Categorylabel: 'leenlaptop', number of tickets: 21 

Total number of tickets categorized: 179113 
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Categorylabel: 'werkplek', number of tickets: 513 

Categorylabel: 'rijksportaal', number of tickets: 

495 

Categorylabel: 'defect', number of tickets: 493 

Categorylabel: 'simkaart', number of tickets: 479 

Categorylabel: 'bes', number of tickets: 466 

Categorylabel: 'data', number of tickets: 465 

Categorylabel: 'spam', number of tickets: 455 

Categorylabel: 'software', number of tickets: 446 

Categorylabel: 'adobe', number of tickets: 436 

Categorylabel: 'beeld', number of tickets: 426 

Categorylabel: 'umts', number of tickets: 406 

Categorylabel: 'toestel', number of tickets: 402 

Categorylabel: 'password', number of tickets: 398 

Categorylabel: 'dwr-next', number of tickets: 377 

Categorylabel: 'mappen', number of tickets: 359 

Categorylabel: 'huis', number of tickets: 341 

Categorylabel: 'follow', number of tickets: 339 

Categorylabel: 'windows', number of tickets: 326 

Categorylabel: 'vodafone', number of tickets: 317 

Categorylabel: 'profiel', number of tickets: 314 

 


