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Abstract—Finger veins are accepted as unique for each person,
and since finger veins are below the skin, they are more
resistant to forgery. In this paper, a patch-based approach using
a convolutional neural network is explored. The patch-based
approach increases the number of labeled data, and helps against
brightness variations, yet, at the same time, it introduces its own
issues such as determining the patch properties, combining the
patches, and registration of the image pairs. This research pro-
poses an optimisation to the patch based finger vein verification
approach by addressing these issues. The patch-based system has
achieved 0.3% of equal error rate and 0.999 area under the curve
on UTFVP and 6.6% of equal error rate and 0.969 area under
the curve on SDUMLA-HMT after proposed optimisations. Even
though the results are far from the state-of-the-art performance,
the improvement indicates the potential of the proposed system.

I. INTRODUCTION

Vascular patterns are unique for each person; therefore, they

could be used in human identification. Finger vein pattern

is one of the vascular patterns, and it has some advantages

over other biometrics. Since they are below the skin, it is

more difficult to forge them compared o face or finger prints.

Moreover, finger vein patterns are more resistant to external

factors such as aging or scars.

An identification system using vascular patterns could per-

form image verification by comparing a probe image with a

registered one. If a matching score computed in this com-

parison exceeds a threshold, the identity is verified, rejected

otherwise. Images belonging to the same subject are called as

genuine pairs. If they belong to different subjects, then the

pairs are said to be imposter.

Several approaches have been proposed to design a fin-

ger vein human identification system. Conventional meth-

ods mainly utilise manually extracted features and matching

distance. Line tracking [1], or cross-sectional areas [2], [3]

have been proposed to extract the vein pattern. Gabor filters

[4], Local Binary Patterns(LBP) [5] are also used as textural

features. Beside the whole vein pattern or textural information,

end or bifurcation points [28], [29] are also used. Personalised

Best Patch Map(PBPM) [33] and localised sub-regions [34] are

also proposed to finger vein verification to achieve a system

robust to partial-distortions. Conventional methods achieve

high recognition accuracy; however, since they are based on

manually extracted features, these approaches could be tailored

to the dataset or the problem itself.

There is a growing body of literature that recognises Ma-

chine learning based approaches in finger vein verification.

These approaches rely on machine learning methods, such as

neural networks, fuzzy logic, for the final decision. Wu and

Liu showed machine learning based approaches could achieve

high accuracy in finger vein pattern identification by using

Support Vector Machines(SVM) [26] and Adaptive Neuro

Fuzzy System(ANFIS) [25].

As a machine learning approach, Convolutional Neural Net-

works(CNNs) are proposed in finger vein human identification.

[8], [14], [15], and [16] have achieved promising recognition

rates indicating the potential of the CNN based approaches.

[17] proposed to use difference image rather than the whole

image in order to reduce the complexity of the CNN. Different

than the previous ones [35] used a CNN to extract the finger

vein structure by assigning labels for pixels as foreground and

background.

A patch-based approach using a CNN has been proposed by

[11] aiming to achieve a robust finger vein verification system

to brightness variations. Rather than scoring the whole image,

the network is fed by small square regions, called patches.

After scoring, the individual patch scores are combined to

an image score for the final decision. The proposed method

achieved promising results showing the feasibility of the patch

based approach with a CNN. A diagram of the system is shown

in Figure1.

However, the patch-based approach in [11] has some issues

which could prevent the approach from achieving its optimal.

First of all, the use of patch properties such as patch size,

shape, and overlapping were not investigated. It is likely that

an improper patch could degrade the performance by divid-

ing junctions unintentionally. Secondly, in [11], two fusion

methods were explored under uniformity assumption. As not

all the patches involve the same information, the uniformity

assumption may not reflect the expected results. Finally, the

effects of displacements on x-axis on the registration accu-

racy was not examined. The coarse registration used in [11]

uses finger edges for image registration, and it could fail

since these kind of displacements do not change the finger

edges much. This paper, proposes solutions to these issues



Fig. 1: Block diagram of the system

by investigating different patch sizes and shapes, also the

overlapping patches. Moreover, the fusion method considering

the differences among patches, and the registration approach

which could consider the displacement in the x-axis have been

implemented.

Considering the literature and the existing system this work

investigates the following cases.

Research Question 1: What is the proper patch size and

shape for the existing system?

Research Question 2: How could overlapping patches influ-

ence the verification?

Research Question 3: How could the contribution of each

patch be determined with a computationally less complex

fusion method?

Research Question 4: How could the displacements, which

are ignored by the existing registration method, be taken into

account?

This paper is organized as follows. Chapter II gives a

brief overview about what has been done about finger vein

biometrics until now. Chapter III explains the patch-based

finger verification system in a detailed way and the methods

used in this paper. Chapter IV presents the results achieved.

Chapter V discusses the findings. Finally, Chapter VI closes

this paper with a conclusion and future work.

II. RELATED WORK

Various studies have indicated the patch-based approaches

could benefit in solving several issues. For instance, [20]

applied a patch based approach aiming to reduce the com-

putational complexity of cancer image classification with a

CNN. Since the input image has very high resolution, e.g.

gigapixels, these patches help to reduce the resolution of

the input, therefore the complexity of the CNN. Moreover,

the patch based approach allowed to select only the relevant

patches. [35] applied the patch-based CNN approach to extract

finger vein patterns from raw images. The patches are centered

on pixels. Then, a CNN assigns a probability of being a

foreground pixel to the corresponding patch. The authors were

able to achieve significant improvements on two public dataset

in terms of finger vein verification accuracy. [11] utilised a

patch-based CNN to finger vein verification aiming to achieve

more robust verification system to brightness changes. The

results achieved indicates the feasibility of the patch-based

CNN approach to finger vein verification.

While they provide many opportunities, the patch properties

are crucial for the patch-based approaches. [36] proposed

a patch-based approach with Collaborative Representation

based Classification(CRC) to face recognition in aiming to

increase training samples, and different patch sizes have been

investigated in this research. The obtained results indicated that

the recognition performance is dependent on the selected patch

size. [37] argued that not only the patch size but also the shape

of the patch affect the performance. The authors proposed to

use superpixels instead of fixed shape patches. The results

achieved showed the importance of the selected patch shape.

Overlapping patches approach used in [36], [22], and [21]

achieved promising improvements indicating that overlapping

patches could provide improvements on the performance.

In patch-based systems, the patches are scored individually,

therefore, these scores must be fused to an image score.

Since each patch could carry different information, a fusion

operation should consider these differences. However, such a

fusion is computationally expensive. [10] showed such a fusion

is possible with less computational complexity. The authors

applied a patch-based approach to face recognition aiming

to achieve a robust system to brightness variations and facial

expressions. They proposed a fusion method which determines

a threshold for each patch by using only one parameter, called

False Acceptance Rate (FAR) value. The FAR value is set

at the beginning, and it is assumed that patches having poor

scores could not contribute much to the final score since the

FAR value will set a high threshold for those patches. The

promising results they achieved in face recognition indicate

the feasibility of the proposed approach.

In a patch-based approach, patch pairs are extracted accord-

ing to their relative locations. Therefore, image registration

has an influence on the overall performance. Registration is

generally done based on the physical properties, e.g. edges,

or reference points, e.g. landmarks. [30] and [13] showed

that a better registration accuracy is possible with a matching

score based approach. In [30], a performance metric computed

from face recognition similarity scores were attempted to

be maximized among a set of alignment candidate. One of

the alignment candidates reaching the maximum performance

metric has been selected as the aligned image. Similarly, [13]

used an iterative method for image registration utilising a

matching score based approach. The authors searched a set

of geometric translations. One of the geometric translations

minimising the matching score has been accepted as the

registration parameters.

III. THE EXISTING SYSTEM AND METHODOLOGY

A. Patch-based Finger Vein Verification

The finger vein verification system proposed by [11] con-

sists of 5 steps, namely image registration, patch extraction,



Fig. 2: 31-pixel patch samples from UTFVP

scoring, fusion, and decision. Figure 1 indicates the block

diagram of the existing system.

Image pairs are registered based on utilising Iterative Clos-

est Point (ICP) [12] algorithm. ICP uses the finger edges in

order to align two finger vein images. Later, the center line

of the finger images is used to correct the orientation of the

fingers. After registration, 31 pixels square patch pairs are

extracted only from the finger region. A CNN is fed by these

patch pairs, and outputs a matching score for each. These

patch pair scores are fused to an image score. [11] compared

two fusion methods namely decision and score level fusions.

Finally, the fused scores are compared against a threshold for

the final decision.

B. Methodology

The following section describes the proposed solutions to

the issues found in the existing systems and explains how to

apply them.

1) Patch Size: In [11], it is stated that the maximum width

of finger veins are approximately 20 pixels. Therefore, a vein

might occupy a large area in a 31 pixels patch such that the

network could not learn much from it. Visual inspection of the

patches revealed that veins are ambiguous or not visible in 31

x 31 patches (Figure 2). In this research, the larger patch sizes

than 31-pixel were investigated. The patch sizes were selected

as 49, 57, 63, 69, 75, 82, and 88 pixels.

The patches were extracted in the same way described in

[11]. Only the size used to extract patches was changed.

2) Patch Shape: Finger veins lay horizontally. Thus, square

patch shape might not be the optimal choice for the proposed

system. Rectangular patches could capture the horizontal vein

structure better than square ones. The height of the patch was

fixed to the best performing patch size. Table I presents the

patch widths used in experiments.

The patches were extracted in the same way described in

[11]. Only the width used to extract patches was changed.

Dataset Patch Width (px)

UTFVP 123 164 205 226

SDUMLA-HMT 104 139 174 209

TABLE I: Patch widths used in the experiments

3) Overlapping: Overlapping patches are another aspect

of patch-based systems. Overlapping patches could help to

catch some vein structures which cannot be seen with non-

overlapping patches. Moreover, the overlapping increases the

number of labelled data by providing more variations about

the veins, which helps the network to learn the vein structures

better.

The overlapping patches were extracted in the same way

described in [11], except a smaller stride than the patch size

has been used in both height and width. The smaller stride

leads more overlap, hence more similarity among adjacent

patches. The strides used are presented in Experiment 3.

4) Fixed-Far Voting Fusion: A non-uniform voting fusion

method is formulated in equations 1 and 2. LRi defines the

score of the system i, while Ti denotes the individual threshold

for the system i. Vi votes are collected by comparing the score

of each system against its threshold.

Vi =

{

0 , LRi < Ti

1 , LRi ≥ Ti

(1)

After collecting all Vi votes, a score S is computed as a sum

of these votes, as shown in 2. This S score is compared to a

threshold T to form a final decision. However, determining

the Ti values for each system individually is computationally

expensive.

D =

{

reject, S =
∑

i
Vi < T

accept, S =
∑

i
Vi ≥ T

(2)

Fixed-Far Voting Fusion(FFVF) proposed by Spreeuwers

et.al. [10] aimed to simplify the determination of the individual

threshold Ti. The authors proposed to set a False Acceptance

Rate(FAR) value for each system in order to determine the

individual thresholds. It was assumed that poor systems would

not be able to cast votes often since their FAR value determines

their threshold as high.

In this research, each patch was considered as an individual

system. By setting a FAR value, an individual threshold was

computed for each patch.

5) Fine Registration: A fine registration step has been

implemented based on the idea of minimising/maximising an

objective proposed by Spreeuwers et.al. [13]. The objective in

this research was determined as maximizing the output of the

network, aka. matching score. Different alignment candidates

have been generated by applying a shift operation within a

range of values on the object pair. Then, each pair has been

scored, and the candidate pair having the maximum matching

score has been selected as the registered pair. Figure 3 shows

the steps involved in fine registration.

Two implementations have been done by utilising the pro-

posed matching score based approach.

a) Local Fine Registration: The shift operation has been

applied on individual patch pairs. The object patch was shifted

up to 4 pixels in 8 directions, namely up, down, left, right, and

their combinations. Since the displacements were in the patch

level, the small range of shift values has been selected.

b) Global Fine Registration: The shift operation has

been applied on the object image. The whole image was

shifted in 8 directions, namely up,down, left, right, an their

combinations. In the global level, larger displacements were





31-pixel and 82-pixel patches. 82-pixel patches performed

significantly better than 31-pixels. The larger patch involves

more vein structure, therefore, the network could find better

matches. Figure 7 supports this claim. The larger patch led a

better score distribution compared to 31-pixel patches.

(a) Patch pair score (b) Image pair score

(c) Patch pair score (d) Image pair score

Fig. 7: Pair score distributions on UTFVP (a) and (b) 31-pixel, (c) and (d)
82-pixel patches compared

EER % FRR@FAR=0.1%

Patch Size Decision Score Decision Score

31-pixel 3.45 4.76 18.6 13.5

82-pixel 1.66 2.22 9.2 8.6

TABLE II: Comparison of 31-pixel and 82-pixel patch performances in terms
if EER and FRR@FAR=0.1%

On the other hand, Figure 6b does not show any sig-

nificant trend on SDUMLA-HMT compared to UTFVP. Ta-

ble III shows that even though 63-pixel patched had the

lowest EER, 69-pixel patches performed better in terms

of FRR@FAR=0.1%. Figure 8 indicates a better separation

between genuine and imposter scores with 69–pixel patch

size. Different from UTFVP, some low genuine scores were

persistent to change in the patch size while high score genuine

were moving to the right edge of the plot. The change in score

distribution also improved the verification performance, yet

this improvement was not as remarkable as seen in UTFVP.

These low score genuine pairs generally had an extreme

translation on the object pair. Therefore, the patch size did

not help on these pairs alone.

82-pixel and 69-pixel patches were selected as the optimal

patch sizes for UTFVP and SDUMLA-HMT, respectively.

Further experiments were conducted using these sizes.

EER % FRR@FAR=0.1%

Patch Size Decision Score Decison Score

31-pixel 12.1 11.6 35.3 29.5

63-pixel 11.5 12.1 30.9 26.8

69-pixel 12.2 12.3 26.9 25.4

TABLE III: Comparison of the performance of 31, 63, and 69-pixel patches
on SDUMLA-HMT in terms of EER and FRR@FAR=0.1%

(a) Patch pair score (b) Image pair score

(c) Patch pair score (d) Image pair score

Fig. 8: Pair score distributions on SDUMLA-HMT (a) and (b) 31-pixel, (c)
and (d) 69-pixel patches compared

C. Experiment 2 - Patch Shape

The purpose of Experiment 2 was to question the square

shape patches. Since the veins lay horizontally, rectangular

patch shape with different widths were investigated. The height

of the patch was determined in the first experiment. The patch

widths used in the experiments can be seen in Table I.

EER % FRR@FAR=0.1%

Patch Width Decision Score Decision Score

82-pixel 1.66 2.22 9.2 8.6

205-pixel 1.47 2.08 7.6 5.4

TABLE IV: Comparison of the performance of 82 and 205 pixels widths on
UTFVP in terms of EER and FRR@FAR-0.1%

Figure 9 shows a decrease in EER on both datasets with

a rectangular patch shape. The improvement was not as

remarkable as seen with the patch size on UTFVP. The UTFVP

can be stated as a higher quality dataset. Therefore, a large

enough square patch might involve as much information as

a rectangular patch. Figure 10 point outs that the rectangular

shape provided better separation than the square one. Table IV

indicates an increase in the performance with a rectangular

shape. Even though the improvement was not remarkable

compared to patch size, more horizontal information about

the veins helped to solve some ambiguity between genuine

and imposter pair.

EER % FRR@FAR=0.1%

Patch Width Decision Score Decision Score

69-pixel 12.2 12.3 26.9 25.4

174-pixel 11.3 11.3 23.9 24.3

TABLE V: Comparison of the performance of 69 and 174 pixels widths on
SDUMLA-HMT in terms of EER and FRR@FAR-0.1%

On the other hand, the improvement was more remarkable

on SDUMLA-HMT dataset. Figure 11 indicates that the low

genuine score density decreased significantly with the rect-

angular patch. This led an improvement on the performance

of the system, seen in Table V. Horizontal information helped







(a) Patch pair score (b) Image pair score

(c) Patch pair score (d) Image pair score

Fig. 16: Pair score distribution comparison between (a), (b) no shift and (c),
(d) 4-pixel local shift on UTFVP

EER % FRR@FAR=0.1%

Shift (max.) Decision Score Decision Score

no-shift 1.22 1.53 6.9 5.4

18-pixel 0.3 0.4 2.4 2.1

TABLE X: Comparison between coarse registration and 18-pixel global fine
registration performances in terms of EER and FRR@FAR=0.1%

Figure 18 compares the score distributions of the best

performing patch shape with and without the global fine

registration. Table X indicates that global fine registration led

to an increase in the performance. This could be interpreted as

the global fine registration led a better registration accuracy;

therefore the performance improved. Figure 18b and Figure

18d indicate a significant increase in imposter scores with

larger shifts; however, different form the local approach,

genuine scores increased more than imposters. All patch pairs

used in computation of the objective; therefore, even some

imposter patch pair scores increases too much, the rest was

able to keep the balance.

Figure 17b shows that SDUMLA needs larger shift values

for a better registration. This difference between UTFVP and

SDUMLA-HMT could be caused by the translations seen on

SDUMLA-HMT. Larger shifts would help finding a better

match for these pairs.

However, Figure 19e shows a significant distortion in image

(a) UTFVP (b) SDUMLA-HMT

Fig. 17: EER of Global fine registration applied on (a) UTFVP, (b) SDUMLA-
HMT, up to 40-pixel shift.

EER % FRR@FAR=0.1%

Shift (max.) Decision Score Decision Score

no-shift 10.3 12.1 29.3 28.9

35-pixel 5.09 5.36 37.46 35.74

25-pixel 6.6 7.15 14.39 14.58

TABLE XI: Comparison between coarse registration, 35-pixel and 25-pixel
global fine registration performances in terms of EER and FRR@FAR=0.1%

pair score distribution compared to Figure 19d. Low score

genuine image pair density decreased as expected, yet high

scored genuine image pair distribution moved to left. This

distortion in genuine pair scores, together with the signifi-

cant improvement in imposter scores, caused a performance

degradation, seen in Table XI.

On the other hand, Table XI also indicates a modest shift

around 25-pixel was able to keep the imposter and genuine

pair score distribution separated (Figure 19f) while providing

a performance improvement .

(a) Patch pair score (b) Image pair score

(c) Patch pair score (d) Image pair score

Fig. 18: Comparison of score distributions (a),(b) without and (c),(d)with
global fine registration on UTFVP. Global fine registration distributions plotted
where the EER is lowest(18-pixel shift)

(a) Patch pair score (b) Patch pair score (c) Patch pair score

(d) Image pair score (e) Image Pair Score (f) Image Pair Score

Fig. 19: Comparison of score distributions (a),(d) without and (b),(e)with
global fine registration on SDUMLA-HMT. Global fine registration distribu-
tions plotted where the EER is lowest(35-pixel shift). c and f shows patch
and image score distributions where shift is 25-pixel on SDUMLA-HMT.



V. DISCUSSION AND FUTURE WORK

The purpose of this research is to provide an optimisation

to the patch-based finger vein verification system. Patch prop-

erties, fusion method, and registration step have been tried to

be optimised.

Table XII presents some examples of the experiment results

in terms of EER in pecentage. Overall, the optimisation

achieved promising results with 0.3% of EER on UTFVP.

The patch-based finger vein verification system along with

the proposed optimisations outperformed some CNN based

methods such as [16] (0.42%) and [17] (0.4%). However,

the performance is still below conventional methods. For

comparison, conventional approaches in [1], [3] have achieved

0.145% and 0.25%, respectively. Yet, the small difference

between the obtained and state-of-the-art results indicates the

potential of the proposed patch-based system.

Patch size optimisation performed better on UTFVP, while

the patch shape was more successful on SDUMLA-HMT.

The datasets had some major differences. The image qual-

ities could be considered as high in UTFVP. However, in

SDUMLA-HMT, images without visible veins were more

common. Moreover, SDUMLA-HMT provided many finger

samples with extreme translations causing a deformation in

the vein structure. Rectangular patches might avoid these

deformations on the vertical axis, while involving the less

deformed information on the horizontal axis. As in UTFVP,

these translations are not common, a large enough square patch

could involve as much information as a rectangular patch.

Overlapping patches improved the performance on both

datasets. It has been found that overlapping applied on training

data led the network to learn the veins better by adding more

variation on training stage. Moreover, overlapping applied on

classifiers also improved the performance. As it increases the

number of votes for a finger, the more vote generally led a

better performance.

Proposed FFVF showed a different behavior than stated

in [10] on evaluation stage. Larger fixed FAR values were

needed to see a similar trend on FRR@FAR=0.1% graphs.The

difference might be caused by the different experimental

settings. The FFVF as used in [10] uses individual local

patch classifiers and for each of these an optimal threshold

is derived, resulting in the same FAR for all local classifiers.

For our patch based finger vein recognition, no individual

local classifiers were trained, but we did investigate the use of

individual local thresholds for the patch classifier, based on the

assumption that some areas of the finger vein patterns might

have different properties than others. However, this did not

result in improved performance as compared to using single

threshold for all locations (i.e. the same classifier is used for

all patch locations). This is likely due to the fact that local

patches between different fingers do not necessarily contain

similar features, unlike the facial patches in [10] that contain

e.g. the eye, nose or mouth regions.

Fine registration approach was successful in global level.

As stated in [13], it is likely to yield a better matching score

for imposter pairs. However, the increase in imposter pair

scores has been controlled by the mean score used in global

fine registration. Even some imposter patch pairs scored high

after shifting, the lower scored patches were able to keep this

increase in balance since the mean matching score was used in

the objective for the global level. On the other hand, because

only one patch pair score used as the objective, the increase

in imposter scores could not be controlled at local level.

Therefore, the increase in imposter pair scores extinguished

the improvement on genuine pairs.

In this research, only a few aspects of the patch-based

system have been selected for optimisation. In addition to the

existing ones, the research arose new research topics.

First of all, some patches could have a little influence

on the final score. [20] showed that filtering out the less

relevant patches could lead more accurate verification results.

Therefore, an algorithm selecting the relevant patches could

lead an improvement on the performance.

The implemented Fixed-FAR Voting Fusion revealed that

the importance of a patch pair over the others in a finger

pair could be ignored. However, some regions could still be

more important than the others. For example, joint regions

are generally dark and does not involve much visible vein.

The implemented fusion method could be adapted to work

with regions rather than individual patches. Moreover, such

a fusion system could be implemented by defining different

weight to different locations on the current decision and score

level fusion methods.

The network was out of the scope of this research; however,

changes in the CNN could also lead to an improvement. The

input size of the network did not change during the patch

size and shape experiments. Rather, the extracted larger patch

was re-scaled to the input size of the network. This re-scaling

operation might deform the vein structure. By changing the

input size and the network organisation, better results might

be achieved.

Moreover, rather than using the same network, a new

network structure could be investigated. Siamese network

structures contain two or more identical sub-networks. They

are popular among the tasks involving finding similarity or a

relationship between two comparable things. Since the weights

will be shared among the sub-networks, they tend to have less

complexity, therefore less data is needed. In this respect, a

Siamese structure might provide more improvement on the

patch-based approach.

VI. CONCLUSION

In this research, the feasibility of an optimisation on the

patch-based finger vein verification system has been inves-

tigated. The optimisation has been applied on the patch

properties, fusion strategy, and registration approach.

The proposed solutions achieved promising results with

0.3% of EER and 0.999 AUC on UTFVP, and 6.6% of EER

anf 0.969 AUC on SDUMLA-HMT.



UTFVP SDUMLA-HMT
Before After Before After

Decision Score Decision Score Decison Score Decison Score

Patch
Properties

Size 3.95% 4.76% 1.66% 2.22% 12.1 11.6% 12.2% 12.3%
Size+Shape 1.66 2.22% 1.53% 2.08% 12.2% 0.123% 0.113% 11.3%
Size+Shape+Overall 1.53% 2.08% 1.22% 1.53% 11.3% 11.3% 10.3% 12.1%

Fine
Registration

Local 3.95% 4.76% 3.33% 3.88% - - - -
Patch Properties+
Global

1.2% 1.53% 0.3% 0.4% 10.3% 12.1% 6.6% 7.15%

Overall 3.95% 4.76% 0.3% 0.4% 12.1% 11.6% 6.6% 7.15%

TABLE XII: Overall comparison of the experiments

Optimal patch properties are dependent on the dataset

characteristics. On an input data having extreme translations,

rectangle patches could lead better results than square ones.

Overlapping helped at both training and evaluation stages on

both datasets. When it is applied on the training data, over-

lapping leads better learning. Overlapping on the classifiers

improves the performance by increasing the number of votes

per image pair.

Contrary to the expected, differences between individual

patches could be ignored because the difference between

computed thresholds were negligible. Moreover, local patches

extracted from different finger pairs were not necessarily to

have similar features. Setting and fine tuning one threshold for

all patches have performed better than individual thresholds on

both datasets.

The matching score based fine registration approach led

to a better registration accuracy on global level. Local level

approach did not perform as expected due to the uncontrolled

increase in imposter pair scores.

Overall, the proposed optimisations achieved promising

results and reinforced the potential of the patch-based finger

vein verification approach. Even though the obtained results

are less satisfied than the state-of-the-art, any improvements

made on these approaches proposed in this research may

achieve more satisfied results.
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