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Summary

Marine icing is a severe hazard for ships and structures in arctic seas. In order to predict ice depositions
SINTEF is working on the SprayIce project in which the formation of sprays is modelled. In this work
the possibilities of FUNWAVE-TVD for modelling large-scale wave fields, which could serve as input to
the spray formation simulations, are explored.

FUNWAVE-TVD numerically solves Boussinesq-type equations for the propagation of water waves. The
vertical dimension is eliminated in Boussinesq-type equations by expanding the horizontal velocity around
a reference level and integrating over the depth. In FUNWAVE-TVD a moving reference is incorporated.
For the event of wave breaking and the dissipation of energy by wave breaking two schemes are included.
The equations are rewritten to conservative form to make them suitable for the numerical schemes. The
spatial scheme is a hybrid finite volume-finite difference scheme. The flux and first order derivatives are
treated with a high order MUSCL-TVD scheme of which fourth and second order accurate schemes are
available. Higher derivatives terms are treated with a central difference scheme. The time scheme is a
third order Strong-Stability Preserving Runge-Kutta scheme with adaptive time stepping.

The model is validated by simulating solitary wave collisions which are compared to experimental data
obtained from literature. A head-on and an overtaking collision are simulated in which waves move in
opposite direction and the same direction respectively. In both cases the results are very similar to the
experimental data, but minor errors do exist. In the head-on case the simulated collision occurs faster
than the experimental results and in the overtaking case the wave propagation is faster than expected.

The large scale simulations show that FUNWAVE is capable of modelling these large wavefields. The
nesting possibilities were also explored and demonstrate the capabilities of the code to transfer the results
from a coarse grid to a finer grid. In these simulations the code is run on a computing cluster where up
to 25 processors were used.

Some instability problems were observed in the large scale simulations on the transition from water to
land. This is attributed to the high gradients which can occur in this region and a numerical feature, the
minimum water depth.
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Chapter 1

Introduction

The SprayIce project is a SINTEF research project which focuses on marine icing. This is a process in
which waves hit vessels or platforms and create splashing droplets. When the (wind) conditions are right
they are getting supercooled and freeze to the surface. The ice depositions on the surface can result in
unsafe conditions. This ranges from slippery decks up to instabilities arising from the extra mass added
by the deposition.

In order to make predictions of the ice depositions under various weather conditions the full process is
modelled in the project. To do so the project is split up in various parts e.g. wave propagation, wave
impacts, droplet-wind interactions. These parts are coupled in one direction. This report focuses on the
first part: wave propagation. As the length scale of the droplets formation is much smaller than the scale
for the propagating waves it would be expensive to solve them on the same grid. The total area in which
it is desired to model the wave propagation can become quite large, in the order of kilometres.

As it is computationally expensive to simulate the waves it is desired to use a simplified model. To this
end the model is reduced from three to two dimensions, where the depth becomes a parameter of the
horizontal cells. This derivation and other model equations are discussed in chapter 2. The obtained
equations form the basis of the open source program FUNWAVE-TVD, which is used in this research to
simulate wave propagation. The numerical solvers used in this program are discussed in chapter 3.

Validation of the model is discussed in chapter 4. This will be followed by the end goal of this study:
performing large scale simulations, which includes model nesting. In the nested model a simulation on a
courser grid is coupled to a simulation on a finer grid.
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Chapter 2

Model equations

FUNWAVE numerically solves Boussinesq-type model equations. Boussinesq-type models are widely used
in the propagation of water waves in coastal areas. In Boussinesq-type models the vertical coordinate
is eliminated from the model equation. This is done by using a Taylor expansion around a reference
height and integrating the equations over the depth. Classical Boussinesq models are valid for weakly
nonlinear and weakly dispersive waves, which is characterised by δ << 1 and µ << 1 respectively. These
parameters represent ratios of wave height over still water height and wave height over wave length. The
validity of the models has been extended and other effects like wave-breaking, bottom friction etc. have
been included. This report will discuss the basics about the model used by FUNWAVE and the reader is
referred to other sources for the full derivations.

2.1 Derivation

The governing equations of FUNWAVE are based on the model equations derived by Chen [1] and are
extended to incorporate a moving reference level proposed by Kennedy et al. [2]. The basics of the
derivation are described in this section and the reader is referred to [1] for a full derivation. The model
is fully non-linear, which means no terms are truncated based on the non-linearity parameter δ. In the
derivations terms beyond O(µ2) are truncated. The equations here will be in a dimensional form.

2.1.1 Chen’s equations

A schematic overview of the flow of waves over a variable sea bottom can be seen in figure 2.1. It is
assumed that the flow over the sea bottom is incompressible and inviscid. The continuity equation and
incompressible Euler equations thus form the basis of the model.

∇3 · u = 0 (2.1)

∂u

∂t
+

1

2
∇3(u · u) + (∇3 × u)× u +

1

ρ
∇3p+ g∇3z = 0 (2.2)

where ∇3 is the three dimensional gradient operator, u is the three dimensional velocity vector (u, v, w),
t is the time, p is the pressure, ρ is the fluid density and g is the gravitational acceleration.
Next to this three boundary equations are formulated, a kinematic and a dynamic one at the free surface,
z = η, and a kinematic one at the bottom, z = −h,

w =
∂η

∂t
+ û · ∇η, z = η (2.3)

p = 0, z = η (2.4)

w + û · ∇h = 0, z = −h (2.5)

where ∇ is the two dimensional gradient operator and û is the two dimensional velocity vector (u, v). By
integrating the continuity equation over the depth and using the two kinematic boundary conditions a
depth-integrated volume conservation equation can be derived:

∂η

∂t
+∇ ·M = 0, M =

∫ η

−h
ûdz. (2.6)
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Figure 2.1: Schematic overview of water waves over a varying seabed height

At the reference level zα, defined in sector 2.2, the horizontal velocity is approximated by an expansion,
which is truncated after the O(µ2) terms. This gives

û = uα + u2(z) (2.7)

where uα is the horizontal velocity field at the reference level and u2 contains the depth dependent terms
remaining after the truncation. These are

u2(z) = (zα − z)∇A+
1

2
(z2α − z2)∇B (2.8)

with

A = ∇ · (huα),

B = ∇ · (uα).
(2.9)

Evaluating the integral in the volume conservation equation results in

M = H(uα + ū2) (2.10)

where H = h+ η and ū2 is the depth averaged u2, which is given by

ū2 =
1

H

∫ η

−h
u2(z)dz =

(
zα +

1

2
(h− η)

)
∇A+

(
z2α
2
− (h2 − hη + η2)

)
∇B. (2.11)

Similar procedures can be followed to obtain a depth averaged horizontal momentum equation

∂uα
∂t

+ (uα · ∇)uα + g∇η + V1 + V2 + V3 + R = 0 (2.12)

where g is the gravitational acceleration and R includes dissipative and diffusive terms like bottom friction.
In V1 and V2 dispersive Boussinesq terms are captured, given by

V1 =

{
zα∇A+

z2α
2
∇B

}
,t

−∇
[
ηA,t +

η2

2
B,t

]
, (2.13)

V2 = ∇
{

(zα − η)(uα · ∇)A+
1

2
(z2α − η2)(uα · ∇)B +

1

2
[A+ ηB]2

}
. (2.14)
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V3 includes the O(µ2) contribution of the vertical vorticity and is given by

V3 = ω0iz × ū2 + ω2iz × uα (2.15)

where

ω0 = (∇× uα) · iz =
∂vα
∂x
− ∂uα

∂y
, (2.16)

ω2 = (∇× u2) · iz =
∂zα
∂x

(
∂A

∂y
+ zα

∂B

∂y

)
− ∂zα

∂y

(
∂A

∂x
+ zα

∂B

∂x

)
. (2.17)

2.1.2 Conservative form

The numerical scheme requires the equations to be in a conservative form and equation 2.12 is thus
rewritten to conservative form, where M is used as a conserved variable. This results in

∂M

∂t
+∇ ·

(
MM

H

)
+ gH∇η = H(ū2,t + uα · ∇ū2 + u2 · ∇ūα −V1 −V2 −V3 −R). (2.18)

Next to this the surface gradient term is split as

gH∇η = ∇
[

1

2
g(η2 + 2hη)

]
− gη∇h (2.19)

and the time derivative terms in V1 are separated into

V1 = V′1,t + V′′1 (2.20)

=

{
z2α
2
∇B + zα∇A−∇

[
η2

2
B + ηA

]}
,t

+∇[η,t(A+ ηB)]. (2.21)

This is substituted into 2.18 to obtain

∂M

∂t
+∇ ·

(
MM

H

)
+∇

[
1

2
g(η2 + 2hη)

]
=

H(ū2,t + uα · ∇ū2 + u2 · ∇ūα −V′1,t −V′′1 −V2 −V3 −R) + gη∇h
(2.22)

The time derivative terms ū2,t and V′1,t on the right hand side result in difficulties when applying the
adaptive time stepping scheme. To resolve these issues equation 2.22 is rewritten into

∂V

∂t
+∇ ·

[
MM

H

]
+∇

[
1

2
g(η2 + hη)

]
=

∂η

∂t
(V′1 − ū2) +H(uα · ∇ū2 + ū2 · ∇uα −V′′1 −V2 −V3 −R) + gη∇h

(2.23)

where V is given by
V = H(uα + V′1) (2.24)

The time derivative of the surface elevation on the right hand side ∂η
∂t can be calculated explicitly by

making use of the depth integrated volume equation, which is stated here again for completeness.

∂η

∂t
+∇ ·M = 0 (2.25)

Equations 2.25 and 2.23 are the equations which will be solved numerically. The numerical schemes that
are used will be discussed in the next chapter.
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2.2 Moving reference level

The reference level zα is usually chosen such that it optimises the dispersion relation of the linearised
model relative to the full linear dispersion. zα is determined by the relation

α =
(zα
h

)2
+
zα
h

(2.26)

where the choice of α = −0.39 minimizes the maximum error in wave phase speed. This choice corresponds
to zα = −0.53h. Kennedy et al. [2] introduced a moving reference level which allows for more flexibility
in optimizing the non-linear behaviour. The ”datum invariant” form of Kennedy et al. is adopted here:

zα = ζh+ βη (2.27)

where ζ = −0.53 and β = 1 + ζ = 0.47. The reference level is thus placed at 53% of the total local water
depth.

2.3 Wave breaking

Two wave breaking schemes are included in FUNWAVE. The first one is using the capabilities of shock-
capturing of the total variation diminishing (TVD) scheme. It uses the approach of Tonelli and Petti
[3] who applied the TVD scheme to the non-linear shallow water equations (NSWE) to model hydraulic
jumps. These equations are similar to the model equations, but without any of the dispersion terms arising
from ū2. They are

∂η

∂t
+∇ · (Huα) = 0 (2.28)

∂Huα
∂t

+∇ · [Huαuα] +∇
[

1

2
g(η2 + 2hη)

]
= −HR + gη∇h (2.29)

In FUNWAVE this is incorporated by switching from the Boussinesq equations to the NSWE if the cell
Froude number exceeds a certain threshold. The ratio of the surface elevation to the water depth is used as
a criterion to switch. The other one, which was originally implemented in previous versions of FUNWAVE,
uses an artificial eddy-viscosity scheme in order to model the dissipating energy.
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Chapter 3

Numerical solver

The model equations introduced in the previous chapter will be numerically solved. This consists out
of two parts: a spatial and a time part. The spatial part is solved with a MUSCL-TVD scheme for
which a fourth and second order version can be chosen. The time integration is done with a third order
Runge-Kutta scheme.

3.1 Compact form of governing equations

In the previous chapter quite some variables were introduced. To prevent confusion the following notation
is adopted here:

uα = (u, v),

ū2 = (U4, V4),

M = (P,Q) = H[u+ U4, v + V4],

V′1 = (U ′1, V
′
1),

V′′1 = (U ′′1 , V
′′
1 ),

V2 = (U2, V2),

V3 = (U3, V3),

V = (U, V ) = H[u+ U ′1, v + V ′1 ].

The general conservative form can be written as

∂Ψ

∂t
+∇ ·Θ(Ψ) = S (3.1)

where Ψ and Θ(Ψ) are the vector of conserved variables and flux vector function, which are given by

Ψ =

ηU
V

 , Θ(Ψ) =

 P i +Qj

[P
2

H + 1
2g(η2 + 2ηh)]i + PQ

H j
PQ
H i + [Q

2

H + 1
2 (η2 + 2ηh)]j

 . (3.2)

The source function S on the right-hand side is

S =

 0
gηh,x + ψx −HRx
gηh,y + ψy −HRy

 (3.3)

where

ψx = η,t(U
′
1 − U4) +H(uU4,x + vU4,y + U4u,x + V4u,y − U1”− U2 − U3) (3.4)

ψy = η,t(V
′
1 − V4) +H(uV4,x + vV4,y + U4v,x + V4v,y − V1”− V2 − V3) (3.5)
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3.2 Spatial discretization

The spatial discretization is done with a hybrid finite volume-finite difference scheme. A high-order
MUSCL-TVD scheme is used for the flux and first-order derivative terms. A central difference scheme is
used at the cell centroid for the higher derivative terms.

Fourth order scheme

The fourth order construction at the cell interfaces is given by

φLi+1/2 = φi +
1

6
[χ(r)∆∗φi−1/2 + 2χ(1/r)∆∗φi+1/2], (3.6)

φRi−1/2 = φi −
1

6
[2χ(r)∆∗φi−1/2 + χ(1/r)∆∗φi+1/2] (3.7)

where φLi+1/2 is the constructed value at the left-hand side of the interface i+ 1
2 ’, φRi−1/2 is the constructed

value at the right-hand side of i− 1
2 and χ(r) is the limiter function which is defined later on. The values

of ∆∗φ are evaluated by

∆∗φi+1/2 = ∆φi+1/2 +
1

6
∆3φ̄i+1/2 (3.8)

∆φi+1/2 = φi+1 − φi, (3.9)

∆3φ̄i+1/2 = ∆φ̄i+3/2 − 2∆φ̄i+1/2 + ∆3φ̄i−1/2, (3.10)

∆φ̄i−1/2 = minmod(∆φi−1/2,∆φi+1/2,∆φi+3/2), (3.11)

∆φ̄i+1/2 = minmod(∆φi+1/2,∆φi+3/2,∆φi−1/2), (3.12)

∆φ̄i+3/2 = minmod(∆φi+3/2,∆φi−1/2,∆φi+1/2). (3.13)

Here minmod represent the Minmod limiter which is given by

minmod(a, b, c) = sign(a) max(0,min[|a|, 2 sign(a)b, 2 sign(a)c]). (3.14)

The limiter function χ in equations 3.6 and 3.7 is the Van-Leer limiter which is

χ(r) =
r + |r|
1 + r

(3.15)

where r is

r =
∆∗φi+1/2

∆∗φi−1/2
. (3.16)

Second order scheme

If the fourth order scheme does not converge there is the option to use a second order MUSCL-TVD
scheme with Van-Leer limiter. In this scheme the reconstruction at the interface is

φLi+1/2 = φi +
1

2
∆xσφi, φRi−1/2 = φi −

1

2
∆xσφi (3.17)

where

σφi = Υ

(
φi+1 − φi

∆x
,
φi − φi−1

∆x

)
. (3.18)

The Van-Leer limiter Υ(a, b) is here given by

Υ(a, b) =
a|b|+ |a|b
|a|+ |b|

. (3.19)
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Flux at interface

For the computation of the numerical fluxes at the interfaces a Harten-Lax-van Leer (HLL) approximate
Riemann solver is used.

Θ(Ψ
L
,ΨR) =


Θ(Ψ

L
) if sL ≥ 0

Θ∗(Ψ
L
,ΨR) if sL < 0 < sR

Θ(Ψ
R

) if sR ≤ 0

, (3.20)

where

Θ∗(Ψ
L
,ΨR) =

sRΘ(Ψ
L

)− sLΘ(Ψ
R

) + sLsR(ΨR −ΨL)

sR − sL
. (3.21)

The left and right wave speeds are

sL = min(VL · n−
√
g(h+ η)L, us −

√
ψs), (3.22)

sR = max(VR · n−
√
g(h+ η)R, us +

√
ψs) (3.23)

with n being the normalised outward pointing cell side vector.

3.3 Time discretization

The time integration scheme is a third-order Strong-Stability Preserving (SSP) Runge-Kutta scheme. The
scheme is given by

Ψ(1) = Ψn + ∆t (−∇ ·Θ(Ψ
n
) + Sn)

Ψ(2) =
3

4
Ψn +

1

4
[Ψ(1) + ∆t

(
−∇ ·Θ(Ψ

(1)
) + S(1)

)
]

Ψn+1 =
1

3
Ψn +

2

3
[Ψ(2) + ∆t

(
−∇ ·Θ(Ψ

(2)
) + S(2)

)
]

(3.24)

where Ψn+1 is the variable vector at the next time step and Ψ(1) and Ψ(2) are intermediate values. From
Ψ the velocity (u, v) can be solved by a system of tridiagonal matrix equations formed by equation 2.23.

An adaptive time step is used which is based on the Courant-Friedrichs-Lewy (CFL) criterion

∆t = C min

(
min(

∆x

|ui,j |+
√
g(hi,j + ηi,j

),min(
∆y

|vi,j |+
√
g(hi,j + ηi,j

)

)
(3.25)

where C is the Courant number.
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Chapter 4

Model tests

In order to validate the FUNWAVE model several tests are performed. In these tests results of numerical
simulations, performed with FUNWAVE, will be compared with experimental data.

4.1 1D solitary wave propagation

To start simple solitary wave inputs are generated and simulated. Solitary waves are a type of non-
linear shallow water waves, which were first observed by John Scott Russell who called it the wave of
translation. They are characterised by very long wave lengths and their ability to maintain their shape
over a very long distance. The first theoretical work on these types of waves was done by Joseph Boussinesq.
Later Korteweg and de Vries developed a simplified equation which is only capable of describing wave
propagation in one way. The main benefit is that is has exact solutions. These solutions are called cnoidal
wave solutions, which are formed by Jacobi elliptic functions and are valid for wavelengths larger than 10
times the water depth. In the solitary wave or infinitely wavelength limit the solution for the free surface
of such a wave reduces to

η(x, t) = A sech2

(
x− ct

∆

)
(4.1)

where A is the amplitude,

∆ = h

√
4h

3A
(4.2)

and
c =

√
g(h+A). (4.3)

To use this solution as an initial condition in FUNWAVE an initial velocity field is needed. This can be
described by

u(x, t) =
c

h
η (4.4)

In Lei [4] it was found this velocity initialisation produced tail waves, which were reduced by reducing the
initial velocity with a reduction factor. This will also be taken into account here as

ured = fred ·
c

h
η (4.5)

with fred an arbitrary number between 0 and 1. In the following cases fred = 0.85 is used. The last
initialisation option is a build-in initialisation in FUNWAVE.

Simulations are done for waves with still water depth h = 0.05m and wave amplitude A = 0.01. The
domain is 10 meters long and ∆x = 0.01m. The adaptive time step is based on C = 0.5. The results from
the different initialisations is shown in figure 4.1. It shows all velocity initialisations result in tail waves.
The reduced velocity initialisation shows the least amount of tail waves, while the wave amplitude is best
matched by the initialisation of FUNWAVE. Furthermore the velocity initialisation according to equation
4.4 results in a too large amplitude. This also results in the wave being ahead of the exact one, which is
calculated with equation 4.1, as the wave speed is a bit higher.
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Figure 4.1: Wave profile after five seconds for different initialisations with h = 0.05m and A = 0.01m

4.2 1D solitary wave collisions

Experiments on solitary wave interactions were conducted by Craig et al. [5]. This was done in an
aligned wave channel in the W.G. Prichard Fluid Mechanics Laboratory of Penn State University. The
wave channel has a length of 13.165m and a width of 25.4cm. The still water depth was 5.0cm with an
accuracy of 0.25mm. With a horizontal piston-like motion of a wave paddle highly repeatable solitary
waves were generated. With a bottom-mounted pressure transducer and four non-contacting wave gauges
on a carriage the water surface was measured. Two cases were considered: head-on and overtaking
collisions. These will be discussed in the next sections. The experimental data shown is a combination of
40 repeated experiments.

4.2.1 Head-on collision

The head-on collision is formed by two solitary waves with different amplitudes travelling in opposite
direction. The waves are initialised as the sum of two solitary waves with the free surface and velocity
according to equations 4.1 and 4.5 with the reduction factor fred = 0.85. The computational domain is
2.5m and the computational time is 1.5s. The grid resolution is ∆x = 0.01m and the time stepping is
based on C = 0.5. The results of the simulation are shown in figure 4.2. In the numerical simulation
bottom friction was included after seeing the huge impact on the overtaking collision, which is discussed
in the next section. No change of the results was observed in the head-on case, which can be explained by
the shorter simulation time and related travelled distance. The numerical results are different from the
experimental data. It appears the computed wave collision is ahead of the measured data. If we compare
it with the graphs in Craig et al. [5] the results look more like the summation of two Korteweg-de Vries
(KdV) solitons. The last frame shows that after the collapse the wave profiles are similar, thus the end
result of numerical and experimental data is the same. To research the behaviour of the collision the wave
height is extracted a bit earlier in time than the experimental time. This in time shifted wave height
is plotted in figure 4.3. The time shifts range from 0 up to 35ms, which is close to the time difference
between the subsequent experimental data. From the shifted pictures it can be concluded that the collision
behaviour is similar.
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(a) t = 0s (b) t = 0.5007s

(c) t = 0.7526s (d) t = 0.8018s

(e) t = 0.8510s (f) t = 0.8940s

(g) t = 1.0291s (h) t = 1.2012s

Figure 4.2: Head-on collision between two solitary waves with amplitudes A1 = 0.01217m and A2 =
0.01063m
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(a) t = 0s (b) t = 0.5007s

(c) t = 0.7526s (d) t = 0.8018s

(e) t = 0.8510s (f) t = 0.8940s

(g) t = 1.0291s (h) t = 1.2012s

Figure 4.3: Head-on collision between two solitary waves with amplitudes A1 = 0.01217m and A2 =
0.01063m with shifted numerical results
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4.2.2 Overtaking collision

For the overtaking collision two waves are generated shortly after each other. They will propagate in the
same direction, but the second one has a larger amplitude and thus a larger speed than the first one. This
will result in the second wave overtaking the first one. As the velocity difference is small, the collision is
going on over a relatively large distance. To capture the wave height the instrumental cart moved with
the waves in the experiments. In the numerical simulation the domain is 10m long and the numerical
results are translated with the average wave velocity multiplied by the time to make them coincide with
the experimental results. The domain has a spatial resolution of ∆x = 0.01m and a time step based on
C = 0.5. Initially the model was run without any friction, but it can be seen in figure 4.4 that this gives
incorrect results. In the real situation there is friction, so it should also be modelled. A quadratic friction
function with a fixed friction coefficient is implemented in the code according to:

Rbottom =
Cd
H

U|U| (4.6)

It was found a friction factor of Cd = 0.03 gives the best agreement with the experimental data. The
numerical results show a good agreement with the experimental data.

The translations calculated with the wave velocities according to equation 4.3 were found to be insufficient.
The numerical results needed to be translated with a small extra percentage (+2% at most) to make them
coincide. The movement of the cart in the experiments is not exactly known either, so the extra translation
is regarded to be within this error margin. The used translations are given in table 4.1.

Frame t[s] Translation[m]
2 2.5989 2.1150
3 3.5021 2.8500
4 4.1472 3.3750
5 4.6971 3.8225
6 5.5972 4.5550
7 6.6017 5.3462
8 8.3989 6.7680

Table 4.1: Translations overtaking collision

There was found some unwanted behaviour. Without friction the overtaking wave has a larger amplitude
after the collision than at the start. This could be a sign of an instability in the numerical model and
result in increasing energy during the simulation. As FUNWAVE estimates the energy and outputs it
in a log file it is possible to see if the energy increases during the simulation. The estimated energy is
calculated with

Eest =
∑
i,j

{
1

2
[gH2(i, j) + u2α(i, j) + v2α(i, j)]∆x∆y

}
(4.7)

which is the energy divided by density. The estimation is plotted in figure 4.5 against time, where it can
be seen that the energy does not increase during the simulation. There can be seen some negative spikes,
which could not be explained.

To look into possible instability issues in the code the CFL condition is changed to C = 0.1. It is done
for the cases with and without friction. The final frame for both CFL conditions is plotted in figures 4.6b
and 4.7b. There can be seen no differences between these, so it can be concluded the CFL condition of
C = 0.5 is suitable for both stability and accuracy.

Next to this the fourth and second order spatial schemes are compared as instabilities were found in the
past for the fourth order scheme. The same comparison is made as for the CFL condition. In figures
4.6a and 4.7a it can be seen there are only small differences between the two schemes. In total it can be
concluded the higher output amplitude is not caused by numerical issues, but comes from the governing
equations itself. The performance of the model when friction is modelled shows that it performs good.
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(a) t = 0s (b) t = 2.5989s

(c) t = 3.5021s (d) t = 4.1472s

(e) t = 4.6971s (f) t = 5.5972s

(g) t = 6.6017s (h) t = 8.3989s

Figure 4.4: Overtaking collision between two solitary waves with amplitudes A1 = 0.023m and A2 =
0.0073m
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Figure 4.5: Estimated energy vs time

(a) Second order and fourth order spatial scheme (b) CFL conditions C = 0.1 and C = 0.5

Figure 4.6: Last frame of overtaking collision with different numerical conditions and without friction
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(a) Second order and fourth order spatial scheme (b) CFL conditions C = 0.1 and C = 0.5

Figure 4.7: Last frame of overtaking collision with different numerical conditions and with bottom friction
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4.2.3 Accuracy

The overtaking collision is also performed on different grid sizes. The results are shown in figure 4.8 for
both the case with and without friction. The grid sizes used are ∆x = 0.005m,∆x = 0.01m,∆x = 0.02m
and ∆x = 0.04m. There only exist minor differences between the two smallest grid sizes, but the two
larger grid sizes show more deviations. Especially ∆x = 0.04m is too coarse as on this grid the numerical
results are not able to capture the right flow anymore. The smaller grid sizes and changing the spatial
scheme from second to fourth order converge towards the same solution, which is another indicator that
the numerical results are correct.

(a) With bottom friction (b) Without bottom friction

Figure 4.8: Last frame of overtaking collision on different grid sizes
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Chapter 5

Large scale simulations

The simulation of a large scale case is one of the end goals of this study. It is to demonstrate the possi-
bilities of using FUNWAVE for modelling a wavefield as part of the full SprayIce project. The large scale
simulation will be used with a variable bathymetry and model nesting is used to resolve waves on a finer
grid.

5.1 Bathymetry

In order to simulate a realistic case water depth data is needed. This data can be obtained from the Nor-
wegian Mapping Authority (Kartverket), which has depth data available all around the Norwegian coast.
The data is available at different resolutions (5m,25m and 50m), but only the 50m grid is openly available.
Within the 12 nautical mile coastal zone the higher resolutions are subject to military restrictions. If this
would be necessary in the future permission can be requested. For now the 50m resolution is used and in
case finer grids are needed the depth is interpolated.

The shoreline is of quite some importance for the reflections of waves. Steep shorelines will cause more
reflection than gentle slopes. To this end also land data is obtained and combined into one map. The
resulting map can be seen in figure 5.1.

Figure 5.1: Combined water depth and land height map
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5.2 Wave propagation in the Trondheimfjord

To demonstrate the capabilities of FUNWAVE a region around Trondheim is chosen where a demo flow
case is performed. The water depth of this region can be seen in figure 5.2a. The region consists of
1000x1250 grid points with the grid spacing of 50m mentioned earlier. The flow is calculated by making
use of 25 CPU’s on a computing cluster, for which the domain is divided into rectangles of 200x250 grid
points. The initialisation is done by setting part of the initial water height to 1m above the still water
level, which is shown in figure 5.2b.

(a) Height map

(b) Initial water height

Figure 5.2: Height map and initial water height of the simulation region

The total simulation time is 1000s and the adaptive time stepping is used with C = 0.5. Running the
simulation with the original bathymetry results in instabilities arising at the transition from water to
land, mainly due to high gradients at some places. To resolve this issue the bathymetry is adapted where
high gradients are present. This is done by a build-in iterative process in FUNWAVE. The resulting
bathymetry is only slightly different from the original one and the influence on the flow of the waves is
regarded as minor.

Next to adapting the bathymetry there is another parameter which causes instabilities. This is the min-
imum water depth, which is the minimum layer of water on the land. It is a numerical feature which is
also used to determine if a cell is wet or dry. If H is smaller than the minimum water depth a cell is dry
and if it is larger a cell is wet. It is preferably low as this resembles nature the best. However setting it
too low lead to unstable simulations in the cases that were reviewed. In combination with adapting the
bathymetry a value of 0.5m was used. Further information regarding the treatment of wet and dry cells
can be found in the FUNWAVE manual [6] and Shi [7].

The resulting wave propagation in the fjord is animated in figure 5.3, which can be started by a click.
In the animation the wave height is plotted every 5s. In the animation flow features like build-up and
withdrawal can be seen around the shoreline. Furthermore the amplitude is decreasing through the nar-
row entrance and diminishing when the flow enters the wider region. Besides the animation a sequence of
figures is made, where every 60s the wave height is plotted. These can be seen in figures 5.4 and 5.5. To
enlarge the contrast the colour scale varies from −0.5m to 0.5m

Although the numerical simulation is stable there are some waves which appear to come from an artificial
source. They start out of nowhere in a point on the shoreline and do not seem to be a natural result of
the flow shoreline interference. In figure 5.6 an example of these waves is shown at several time steps. It
can be seen they initiate on the shoreline and spread in a circular pattern like a point source.
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Figure 5.3: Wave propagation in the Trondheimfjord
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var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton0'){ocgs[i].state=false;}}





(a) t = 60s (b) t = 120s

(c) t = 180s (d) t = 240s

(e) t = 300s (f) t = 360s

(g) t = 420s (h) t = 480s

Figure 5.4: Flow propagation every 60s from 60s to 480s25



(a) t = 540s (b) t = 600s

(c) t = 660s (d) t = 720s

Figure 5.5: Flow propagation every 60s from 540s to 720s
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(a) t = 240s (b) t = 250s

(c) t = 265s (d) t = 285s

Figure 5.6: Artificial waves
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5.3 Model nesting

Around a vessel or structure wave behaviour is required in more detail. In FUNWAVE coarse grid output
data can be transferred to a finer grid simulation as imposed boundary conditions. To this end η, u and
v data in grid points on the new boundary are outputted every time step. After the first simulation the
data is interpolated and written to a file which will be read in the next simulation.

The part of the large domain which is used for the smaller case is shown in figure 5.7. The grid size
is halved (25m) and for this purpose the height map is linearly interpolated. On a part of the eastern
boundary the boundary conditions are imposed. The clock time is the same as the original simulation,
which means waves will flow into the domain after 300s.

Figure 5.7: Height map of nesting region

Again an animation is made of the results and these are shown in figure 5.8, which can be started by a
click. In this case the water elevation η is plotted every second. In the animation the build up of the wave
height can be seen when it is running into the region with lower depth. Especially when it reaches the
end the wave height builds up and the wave shortens. Next to this some run up onto the land is present.
A sequence of images is plotted in figures 5.9 and 5.10.
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Figure 5.8: Propagation in the nested domain
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var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton1'){ocgs[i].state=false;}}




(a) t = 480s (b) t = 540s

(c) t = 600s (d) t = 620s

(e) t = 640s (f) t = 660s

Figure 5.9: Flow propagation in nesting region
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(a) t = 680s (b) t = 700s

(c) t = 720s (d) t = 740s

(e) t = 760s (f) t = 780s

Figure 5.10: Flow propagation in nesting region
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5.4 3D velocity reconstruction

As the goal is that the output of the 2D FUNWAVE simulations will be used as input cases for 3D
simulations the horizontal output velocities have to be used to create a velocity profile over the depth.
Let’s recall the horizontal velocity from equation 2.7 in chapter 2.

û = uα + u2(z)

= uα + (zα − z)∇A+
1

2
(z2α − z2)∇B

= uα + (zα − z)∇[∇ · (huα)] +
1

2
(z2α − z2)∇[∇ · (uα)]

(5.1)

There is also need for a vertical velocity reconstruction as it is not part of the model. This can be done
by using

w = A+ zB

= ∇ · (huα) + z∇ · uα
(5.2)

which is the equation used in Chen [1] to replace the vertical velocity. The total velocity vector then
becomes

u =

uv
w

 =

uαvα
0

+

(zα − z) ∂
∂x

(zα − z) ∂∂y
1

A+

 1
2 (z2α − z2) ∂

∂x
1
2 (z2α − z2) ∂∂y

z

B
=

1 + (zα − z)∂
2h
∂x2 + 1

2 (z2α − z2) ∂2

∂x2 (zα − z) ∂2h
∂x∂y + 1

2 (z2α − z2) ∂2

∂x∂y

(zα − z) ∂2h
∂x∂y + 1

2 (z2α − z2) ∂2

∂x∂y 1 + (zα − z)∂
2h
∂y2 + 1

2 (z2α − z2) ∂
2

∂y2
∂
∂x + z ∂

∂x
∂
∂y + z ∂

∂y

(uαvα
) (5.3)
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Chapter 6

Conclusions and recommendations

The open-source code FUNWAVE has been used to model water waves. The model is verified by means of
modelling two solitary wave interactions. In this verification it has been observed that the models perform
correctly. There were found some interesting things regarding these interactions. In the head-on case the
collision seemed to be ahead of the experimental case, but the end result of the collision was the same.
And in the overtaking wave case the wave speed deviated from the wave speed calculated from theory.
The results needed to be translated with a few extra percents. Although these are deviations from the
experimental results they are regarded as small and it is concluded that the code performs well.

The large scale tests showed that the code is quite sensible for instabilities. Mainly on the transition
from land to water instabilities occur. These can be resolved by lowering the gradients in these regions,
which means the simulated bathymetry slightly deviates from the real bahtymetry, and by using a higher
minimum water depth, which influences if a cell is wet or dry. Although this results in a stable simulation
there are some waves present which appear to be unnatural and could be an instability which does not
develop.

Regarding these issues further work should be focused on investigating what causes the numerical issues
and if these also occur in a region with high gradients, but without the transition to land. The minimum
water depth and its effects should also be further researched, as it is a parameter which has a large influ-
ence on the stability.

Furthermore an extension of this work can be done in the direction of creating a realistic sea state as
input to these simulations. This could be of extra value to the SprayIce project as it could also include a
structure around which the waves are resolved on different scales by means of model nesting.
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