
April 4, 2019

MASTER THESIS

PRIVACY PRESERVING
MATCHING USING BLOOM
FILTERS: AN ANALYSIS AND
AN ENCRYPTED VARIANT
David Stritzl

Faculty of Electrical Engineering, Mathematics and Computer Science (EEMCS)
Services and Cybersecurity Group (SCS)

Exam committee:
Dr. Andreas Peter
Dr. Maarten H. Everts

Privacy-Preserving Matching Using Bloom Filters:
An Analysis and an Encrypted Variant

David Stritzl
University of Twente, The Netherlands

d.l.stritzl@student.utwente.nl

Abstract. Record lookup schemes are utilised in distributed database systems to allow clients to efficiently
identify databases that contain relevant information. In untrusted environments, where a client should not be
able to learn about the database entries that are not explicitly queried, probabilistic record lookup schemes can
be used to provide a certain level of privacy. In this paper, we provide a framework for evaluating different
probabilistic record lookup schemes in terms of privacy, efficiency and utility. For privacy in such schemes, for
the first time, we present an analysis of the privacy implications of additions and removals of database records.
Using this framework, we furthermore analyse a Bloom filter-based record lookup scheme, for which we show that
it can be privacy-preserving depending on the use case and the configuration of the scheme. However, updates
of databases records in this scheme, can introduce a significant privacy impact. Finally, we provide an efficient
interactive record lookup protocol using homomorphic encryption that reduces the impact on privacy in the case
of database updates.

Keywords: record lookup schemes · Bloom filters · homomorphic encryption

Contents
1 Introduction 2

2 Background 2
2.1 Bloom Filters 2

3 Related Work 3

4 Contributions 4

5 System Model 5
5.1 Metrics 5

5.1.1 Privacy 5
5.1.2 Utility 7
5.1.3 Efficiency 7
5.1.4 Functionality 8

6 Bloom Filters 8
6.1 Privacy Analysis 8

6.1.1 Agnostic Outsider 8
6.1.2 Outsider 8
6.1.3 Insider 9
6.1.4 Same Parameter Setups 12

6.2 Utility Analysis 13
6.3 Efficiency Analysis 14

6.3.1 Computational Complexity . . . 14
6.3.2 Communication Complexity . . . 16

6.4 Functionality Analysis 16
6.5 Case Study Ma3tch 16

6.5.1 Method 17
6.5.2 Theoretical Analysis 17

6.5.3 Experimental Analysis 18
6.5.4 Discussion of Single-Filter Scenario 18

6.6 Discussion 18

7 Encrypted Bloom Filters 19
7.1 Related Work 19
7.2 Contributions 20
7.3 Primitives 20

7.3.1 ElGamal on Elliptic Curves . . . 20
7.3.2 Additive Bloom Filters 20

7.4 Protocol 21
7.4.1 Setup 21
7.4.2 Filter Encryption 21
7.4.3 Querying 21
7.4.4 Result Retrieval 23

7.5 Privacy Analysis 23
7.5.1 Corrupted Filter Consumer . . . 23
7.5.2 Corrupted Filter Provider 23

7.6 Utility Analysis 24
7.7 Efficiency Analysis 24

7.7.1 Computational Complexity . . . 24
7.7.2 Communication Complexity . . . 24
7.7.3 Empirical Computational Perfor-

mance 25
7.8 Functionality Analysis 26

8 Conclusions 26

9 Future Work 26
1

mailto:d.l.stritzl@student.utwente.nl

1 Introduction
While network database systems have been around for
the longest part of modern computing history, the in-
troduction of the internet has made it possible for par-
ties within a company or organization to access those
systems from virtually anywhere. However, when it
comes to inter-organisational collaborations, the pro-
cess of information sharing becomes more involved as
many databases contain company-internal or privacy-
sensitive data. Examples of this can be found in the
public sector in, among others, health-care and law en-
forcement institutions, where a substantial amount of
the handled information is privacy-sensitive. Various
solutions involving centralised databases, managed by
a (trusted) third-party, have been criticised due to se-
curity flaws [1, 2, 3]. Nonetheless, with medical care
becoming more advanced and crime investigation cases
growing more complex due to the increasing involve-
ment of digital and international aspects, manual in-
quiries of can take significant work, therefore inter-
organisational data exchange is becoming more impor-
tant for such institutions.

An alternative to building centralised databases is to
keep database systems decentralised and each organisa-
tion keeps their own (privacy-sensitive) data. In this
case, other parties (manually) have to send an inquiry
for certain data, which allows an organisation to handle
access authorization for that data internally. However,
this introduces the problem that party needs to know
where to inquiry. Simply publishing a complete list of
(unique) data record attributes, for instance social secu-
rity numbers, is not only inefficient, it also compromises
privacy if identifiable information is involved.

A commonly used approach for record lookup in dis-
tributed database systems [4] is built upon Bloom filters
[5], which is an efficient set data structure for member-
ship testing. As a side effect of the efficient representa-
tion, Bloom filters queries can result in false positives,
thereby potentially matching elements that were not
explicitly encoded into the filter. In the record lookup
scheme, the different database providers can encode a
selected of attributes of their data set and share this
with a client, who can then use it to inquiry if a database
contains some selected data record. Here, false positives
can introduce some overhead as some database will be
wrongly queried. However, depending on the configura-
tion of a Bloom filter, a trade-off can be made between
the false positive probability of a query and the time
and space efficiency. Furthermore, utilising the false
positive probability, a Bloom filter can provide a cer-
tain level of privacy, as more false positives will make
it more difficult to discern them from real elements.

In this paper, we consider a record lookup scheme sim-
ilar to that proposed by Little et al. [4], where all filters
are stored on the client-side. For this purpose, we define

a set of metrics to evaluate different aspects of proba-
bilistic record lookup schemes as, for instance, Bloom
filter-based schemes. Using these metrics, we analyse
the effect of different Bloom filter configurations on the
privacy, utility and efficiency of the scheme. Lastly, in
order to reduce potential leakage when querying, we in-
troduce an efficient interactive variant of this scheme
using homomorphic encryption.

2 Background

2.1 Bloom Filters
As mentioned above, a Bloom filter is a probabilistic
data structure for highly efficient set membership query-
ing [5]. The data structure is highly configurable, al-
lowing for a trade-off between accuracy and efficiency
of the querying. Common applications of Bloom filters
are found in networking for efficient data caching [6] and
packet routing [7]. Furthermore, several extensions of
Bloom filters exist, including counting filters [8], where
a count is stored instead of a bit for every filter position,
thus allowing for the removal of elements from the fil-
ter, and scalable filter setups [9] consisting of multiple
filters, where additional filters are used if a certain false
positive threshold has been reached.

Regular Bloom filters consist of a bit vector of length
m and a set of k independent hash functions mapping
data elements to bit positions in that vector.

For the insertion of an element of a data set into the
Bloom Filter, the element is hashed by all k indepen-
dent hash functions and the resulting bit positions are
set.

Similarly, for the querying of an element, the element
is hashed by all independent hash functions and then
checked if each resulting bit position is set. If at least
one of the bit positions is not set, then the element is
guaranteed to be non-existent in the data set. However,
in the case that all bit positions for a member check are
set, it is not certain that the checked element is part of
the set, as one or more bit positions could have been set
by other elements in set. Therefore, for a positive query
result, there is a certain probability that the match was
a false positive, i.e. there is a match although the ele-
ment is not in the data set. The false positive probabil-
ity of a filter depends on its size, the number of hash
functions used and the number of elements inserted into
the filter.

More formally, for a given universe U and a data set
S ⊆ U, a set of k independent hash functions hs =
{h1, h2, ..., hk}, where hi : U → Zm, we can define a
Bloom filter BF(m, hs, S) : (Z+, {U → Zm}k, {U}∗) →
{Zm}∗ of size m as follows:

BF(m, hs, S) := {h(elem) | h ∈ hs, elem ∈ S}

2

For querying elements, we can define the indicator
function 1BF : P(Zm)→ {0, 1} as follows:

1BF :=

{
1 if ∀hi ∈ hs : hi(elem) ∈ BF
0 otherwise

False Positive Rate
As previously mentioned, there is a certain probabil-
ity that member query results a false positive. Given
a Bloom filter of length m and k hash functions, the
probability that a bit position is still unset after the
insertion of n elements can be computed as follows [10]:

punset = (1− 1/m)
kn (1)

Using the probability of a bit position being unset, the
formula for computing the false positive rate of the
whole filter can be derived [10]:

p = (1− punset)
k
=

(
1− (1− 1/m)

kn
)k

(2)

However, eq. (2) is not completely correct in certain
edge cases [11]. For smaller filters with m < 1024 or
filters with a higher m/n ratio, eq. (2) can induce a
significant relative error. However, for the purpose of
record linkage, the filters that are used in this paper are
at least 2048 bits long and have a m/n ratio of at most
64, in which case the absolute error is ≪ 1 %. Further-
more, as the correct computation given by Christensen
et al. [11] is significantly more complex, we will there-
fore use the approximation in eq. (2) for this paper.

Next, the formula for the Bloom filter false positive
rate further be simplified [12] as follows:

p ≈
(
1− e−kn/m

)k

(3)

This approximation can then be used to find the op-
timal number of hash functions k, where the false pos-
itive rate is minimal. For this purpose, eq. (3) can be
derived over k [6], resulting in the following equality for
an optimal

k =
n

m
ln 2. (4)

By substituting k in eq. (3) with this equality, a func-
tion for the optimal filter size m, where m is minimal,
can be deduced [6],

m =
n ln p

(ln 2)
2 , (5)

where n is the targeted number of elements for the filter,
and p is the targeted false positive rate.

3 Related Work
Distributed Record Lookup
There are various reasons for distributing a database
across different systems. For one, it allows for more si-
multaneous connections by distributing load over differ-
ent systems. This redundancy also has as an effect that
downtime or failure of a single database will not make
all data unavailable. Also, with the growing use of data
aggregation solutions and other big data applications,
it can be simply infeasible for single systems to handle
such amounts of data. Furthermore, in the case of mul-
tiple different parties providing databases, each party
can manage access to their own data sets, thereby al-
lowing more controlable privacy. However, distributed
database systems introduce the problem that a client
has to know where to find certain information, as query-
ing each separate database is not efficient and might
therefore not be feasible.

A solution to this problem is the use database query
routers [4, 13, 14], where a client sends a query to some
centralized router that keeps track of all the items in the
various database systems. Such solutions often requires
a single trusted party that has access to sufficient infor-
mation to be able to create a routing table for the differ-
ent databases. However, in certain applications such as,
for instance, hospital systems storing medical records,
such a trusted party might not be available. Moreover,
for systems with a large amount of different databases
as, for instance, in peer-to-peer networks, it might be-
come infeasible for a single router to keep track of all
records available. For most table based record lookup
schemes it is, however, possible to store the lookup ta-
ble at the client, thereby removing the need for trusted
party and allowing each separate database server to pro-
vide a lookup table to specific clients only.

In [4], Little et al. provide an efficient record lookup
scheme based on Bloom filters, where each database
server provides a Bloom filter of some attribute of all
records. In order to perform a query, a client can then
check all local filters for a match, and then issue a query
at the corresponding database server. While querying a
Bloom filter can produce false positives, the probability
is tunable to reach some optimum between filter storage
size and average lookup time.

Private Record Linkage
A similar notion to record lookup is record linkage
where, for the purpose of combining data from differ-
ent databases, records in these separate databases have
to be linked using some kind of identifier. For databases
managed by a single entity, uniquely generated identi-
fiers are frequently used. However, for databases man-
aged by different entities this may not be an option.

One common type of identifier for personal records
is the name of a person, however sharing personal data

3

with other parties, such as names is often undesirable
due to privacy concerns. In [15], Quantin et al. pro-
vide a private record linking scheme for medical records
based on hashing the identifiers, therefore limiting the
personal data that is leaked during record linkage.

Furthermore, private record linkage schemes can also
be constructed using Bloom filters. In [16], Schnell et al.
introduces a method for fuzzy private record linking on
names using bi-grams of names stored in Bloom filters
is described. However, statistical attacks for leaking
names in bi-gram and n-gram based linkage schemes
using frequency analysis have been devised [17, 18, 19].

A more general attack on Bloom filters is devised
by Alaggan et al., where all elements in a application
domain are tried, thereby generating a set of all possible
matches including false positives [20].

Bloom Filter Privacy Metrics
In order to evaluate the privacy provided by different
Bloom filter-based schemes, a metric for privacy has to
be defined.

In [21], Bianchi et al. adapt the privacy notion of k-
anonimity [22] to Bloom filters. Here, a filter is defined
k-anonymous if at least k − 1 false positive elements
exist that map to each set bit position of the filter.

Furthermore, Bianchi et al. describe the notion of de-
niability: an element in a filter is deniable if the bit po-
sitions that are set for that element could be explained
by bit positions that could be set by elements not exist-
ing in the filter, i.e. false positive elements. A filter is
then called γ-deniable if every element from the source
data set can be denied with some probability γ.

Also, Bianchi et al. propose the anonymisation of
Bloom filters by settings specific bits, such that pos-
sible number of false positives explaining the sets bit
for some elements is increased, thereby increasing the
γ-deniability.

Lastly, in similar approach, Alaggan et al. adapt the
concept of ϵ-differential privacy to Bloom filters by in-
troducing a filter pertubation mechanism through flip-
ping bits in the filter [20]. When adding a single el-
ement to a Bloom filter, using this notion, it can be
guaranteed that the probability of generating a specific
perturbated bit vector due to the addition of that is at
least eϵ times lower than the probability of generating
the same bit vector when adding some other element.
The authors furthermore define a Bloom filter utility
metric based on the recall when querying a filter.

Multiple Bloom Filter Setup
As databases in distributed systems change over time,
Bloom filters user for record lookup have to be updated.
However, adding elements to an existing filter will in-
crease the false positive rate, potentially more than is
desirable for certain use cases. On the other hand, cre-
ating new versions of Bloom filters may not be desired,

either, due to efficiency or privacy concerns, as will be
discussed in section 6.

One method dealing with new elements without recre-
ating the complete filter is to create a separate filter
with only the new elements. Record lookup can then
be done by checking all filters for matches: when there
is at least one positive result, the element could be in
the data set. However, as more filters are combined in
such a setup, the false positive rate will increase signif-
icantly and the efficiency will be lowered.

In [9], Almeida et al. introduce another multiple
Bloom filter scheme, where the overall maximum false
positive rate can bounded by increasing the size and
hash count of each new filter. However, this means that
each newer filter has an increasingly lower false positive
rate, thereby raising potential privacy concerns for later
created filters.

There exist other schemes employing multiple Bloom
filters, which utilise different filters to increase the over-
all space efficiency of the setup. For instance, in [23],
Tabataba and Hashemi present a set querying scheme
using two Bloom filters. In this scheme, all elements
are stored in both Bloom filters, but with a indepen-
dent set of hash functions for each. When a member
check is performed, both filters are queried, thereby de-
creasing the overall false positive rate of querying when
compared to a similarly sized single-filter scheme.

Furthermore, in [24], Lim et al. provide a set query-
ing scheme using a main Bloom filter and two cross-
checking filters. Each cross-checking filter contains one
disjunct part of the elements encoded in the main filter.
During a member query, the main filter is queried first,
and only if the returned result is positive, the other two
cross-checking filters are tried. Here, Lim et al. show
that cross-checking filter schemes are significantly more
space-efficient than single or dual Bloom filter schemes
for large filter sizes.

However, as Bloom filters are most commonly used
for the purposes of caching or lookup in high perfor-
mance applications where privacy might not be the
main concern, the privacy implications of systems in-
corporating multiple Bloom filter as, for instance, with
record lookup schemes, have not been studied in depth
yet.

4 Contributions
While Bloom filters have been used in various appli-
cations such as caching in the last few decades, the
privacy implications of different Bloom filter configu-
rations have not been studied widely yet. In this paper,
we will consider a client-side Bloom filter-based record
lookup scheme similar to the scheme provided by Little
et al. [4].

For this purpose, we first provide a set of metrics for

4

the evaluation of different probabilistic (private) record
lookup schemes that allow for false positives. Since we
mainly focus on the privacy aspects of such schemes,
we will also provide metrics for the efficiency and util-
ity aspects of different schemes. For privacy, we devise
a new metric based on the false positive rate of a record
lookup scheme, since privacy notions like k-anonymity
and ϵ-differential privacy, as presented in [21, 20] for
Bloom filters, are not trivially adaptable to the multi-
ple systems scenario of record lookup schemes. For the
purpose of evaluating the utility, however, we opted
for a similar metric as the one proposed [20]. While
efficiency studies have been performed for most record
lookup schemes, we provide our own evaluation in order
to analyse potential trade-offs of different schemes and
configurations.

Furthermore, using these metrics we will investigate
the use of the afore-mentioned Bloom filter-based record
lookup scheme by Little et al. in privacy sensitive con-
texts. In contrast to existing work analysing privacy
aspects of Bloom filter, we also focus on the privacy im-
plications of systems incorporating multiple Bloom fil-
ters in comparison to systems using only a single filter,
as well as the impact of two different filter configuration
strategies in the multiple filter case.

Finally, we present a novel interactive record lookup
protocol using homomorphic encryption based on the
scheme by Little et al. with the aim of improving the pri-
vacy measures of the scheme. For this purpose, we build
upon on the Bloom filter-based private set intersection
protocol introduced Davidson and Cid [25], which is fur-
ther discussed in section 7.1. Here, we also provide a
comparison of our protocol to the initial approach using
the above-mentioned metrics.

5 System Model
In this section, we provide some notions regarding
Bloom filter-based record lookup schemes similar to
that presented in [4]. Furthermore, we will describe
our approach for analysing such schemes and extensions
thereof.

For the Bloom filter record lookup case, we can dis-
tinguish two different parties: the provider of a data
set, who wants to share data set and provides a Bloom
filter for lookup to other parties, and the consumer of
said data set, who uses a Bloom filter created by some
other party. Once a provider has created a Bloom fil-
ter from a selected data set, and has distributed it to
other parties. These other parties can then query the
filter to check if the provider has some data related to
the query. In case there is a match, the consumer can
invoke (manual) information exchange procedures. If
a match is a false positive, these procedures will then
reveal this fact and no data exchange will take place.

Depending on the configuration of the Bloom filter and
its intended use cases, more false positive are generated,
therefore requiring more (manual) involvement. On the
other hand, lowering the false positive rate will lower
the level of privacy provided.

In order to compare different setups of the Bloom
filter record lookup scheme, we will define metrics for
the evaluation of different aspects in the next section.

5.1 Metrics
In order to compare different approaches to privacy-
preserving record lookup schemes, we define metrics
for the different aspects of such schemes. For this pur-
pose, we have identified our main concerns with differ-
ent schemes to be the privacy, utility, efficiency and
functionality provided by such scenes.

5.1.1 Privacy

Furthermore, we define a metric for the privacy of a
given scheme. In order to measure the privacy pro-
vided by a statistical scheme such as Bloom filters, we
consider how much information can be gained by an
adversary in different scenarios.

For this purpose, we consider three attack scenarios
based with differing levels of adversary knowledge, in all
of which the adversary does not know the actual entries
of the data set being stored.

Agnostic Outsider
In this scenario, an adversary has absolutely no knowl-
edge about the algorithms, data structures, the format
of the data and the secrets used in the scheme.

This can be the case if, for instance, some data is acci-
dentally leaked by an insider then an outside adversary
captures the data without knowing what it is. In this
case, the data must not give give anything away about
its own structure.

However, as data almost always comes with some con-
text and metadata, e.g. the origin of the data or a file
name, an adversary can try to learn more about the
scheme using, for instance, public information or reverse
engineering, therefore the practicality of this scenario is
limited.

Outsider
The attacker knows the algorithms, data structures and
the format of the data used in the scheme, but does not
have any knowledge about any secrets being used.

This scenario comes closest to Kerckhoffs’ principle
[26], where Kerckhoffs states that a system must be
secure, even if an adversary knowns everything about
the system except for the secrets.

It is most likely in case of an external adversary
attacking system and networks that are part of the

5

scheme, for instance by exfiltrating data from an em-
ployee laptop. If the adversary has access to such sys-
tem, it is not unlikely that documentation, applications
or at least metadata related to the data structure and
algorithms can be found by the adversary as well.

Insider
Considering probabilistic schemes where privacy is not
fully compromised if all shared secrets are known to
the attacker, we define an additional scenario based on
the regular Outsider scenario, where the shared secrets
are known as well. In this case, the attacker knows
the algorithms, data structures, the format of the data
and the shared secrets used in the scheme, but not the
entries of the data set.

This scenario is most likely in the case of an internal
adversary, as for instance a curious or a disgruntled
employee, or powerful external adversary attack a wide
range of systems and networks.

Brute-Force Attack Precision
A possible attack type is a brute-force attack as has
been described in [17, 20], where elements are taken
from some data set or generated randomly, and then
matched using a given scheme. In the context of one of
the above scenarios, we measure the privacy using the
precision of a given attack on a scheme, i.e. the ratio of
the positive matches versus all matched elements:

Privacy =
|TP|

|TP|+ |FP|

As this metric only considers positive matches, at-
tacks on a given scheme can still be infeasible if the
probability of a false positive is infinitesimal. For this
purpose, we define the binary events A and B, repre-
senting the event that a query return a positive result
for some element z and the event that the queried z
exists in the original data set S, respectively.

Using the events, we can redefine the privacy metric
from above as follows:

Privacy = P (B | A) (6)

For non-stochastic schemes, it is given that P (B |
A) = 1, as there are no false positives. For stochastic
schemes, this probability can be rewritten, using Bayes’
theorem, as follows:

P (B | A) =
P (A | B)P (B)

P (A)
(7)

Here, the probabilities P (A) and P (A | B) are de-
pendent on the scheme and will therefore be covered in
later sections.

Furthermore, we can also define an absolute version
of the privacy metric eq. (6) that also takes negative

matches into account:

Privacyabs = P (B | A)P (A) (8)
= P (A,B) (9)

The absolute metric describes the probability of ran-
domly correctly brute forcing a single element. This can,
for instance, be used for estimating how many queries
will have to be run to produce a single, correct positive
match. The main difference from the first metric is that
we now consider negatives results as well, as P (A) is the
probability of positive query result.

However, for schemes that do not allow for false neg-
atives, i.e. P (A | B) = 1, as in the case of Bloom filters,
we can simply disregard any negative that are produced
while querying, as we can guarantee that all negatives
were not included in the original data set. Therefore a
lower P (A) only affects the runtime of an attack, and
not directly the privacy. Nonetheless, in case that the
probability of producing some positive result P (A) is
infinitesimal, a brute-force attack as described above
could become computationally infeasible for an adver-
sary.

However, as P (A) is not only highly dependent on
kind and size of data set, but also on the knowledge of
an adversary, as will be shown in later sections, we will
not consider this variant of the metric for the rest of
the paper.

Adversary Data Set
In order to reason about the attack precision, we need
to consider the probability P (B) depicting the proba-
bility that some queried element z is in the source data
set S. This probability depends on both the source
data set being used and the knowledge of the querying
party which is, in the case of a brute-force attack, the
adversary. For this purpose, we will assume that an ad-
versary has some data set used for a brute-force attack
denoted by the set Sadv, or some algorithm generating
said data set.

The size of this data set Sadv depends on the kind
of data in S, and the knowledge and assumptions of
an adversary. For instance, in the case of credit card
numbers, the total universe of credit cards is finite and
relatively small, so it is trivial for an adversary to cre-
ate a set Sadv for a brute-force attack of this data set.
While the total universe of names is limited in practice,
such data might not be readily available, and as the the-
oretical universe of possible names is infinite, it might
be infeasible for an adversary to create some data set
Sadv.

In the latter case, an adversary can try to limit the
universe of possibilities by using their knowledge and
assumptions. For instance, given some scheme using
a data set with dates, if the adversary does not know
that a given scheme uses dates, the size of Sadv is very

6

possibly infinite. However, in the case that an adversary
does have this information, the size of this data set can
severely reduced. While the set of all possible dates is
still infinite, an adversary can limit the options using
context specific assumptions and common sense, as, for
instance, many information systems will only consider
events from the last few decades.

Indeed, it is possible that knowledge and assump-
tions lead to elements not being brute-forceable in case
S ̸⊆ Sadv. In cases where no feasible data sets or gener-
ators of such exist, for example for schemes using names
of people, an adversary can only use information that is
available to them. Furthermore, in cases where a data
set Sadv is too large for a brute-force attack, thereby
generating a lot of false positives, an adversary might
choose to limit this data set by making certain assump-
tion. For instance, in the case of birth dates, it could be
beneficial for an adversary to limit such a data set to at
most 90 years old, as most the number of people older
than that is significantly lower than other age categories.
When considering knowledge, another option would be
the usage of demographical statistics and other avail-
able data sources, such as lists of actual people from,
for example, social media accounts.

In the case the sets S and Sadv are known, we can
write the probability that a random queried element z
exists in S as follows:

P (B) = P (z ∈ S) = |S ∩ Sadv|/|Sadv|

However, if Sadv is a superset of S, then S∩Sadv = S, so
P (B) = |S|/|Sadv|. In this case, we only need the sizes
of the sets to compute P (B), therefore, for simplicity,
we will assume that S is a subset of Sadv, i.e. S ⊆ Sadv,
for the rest of this paper.

As no adversary will have the same knowledge and
skill, it is impossible to make general assumptions about
the size of Sadv. However, when assessing the risk
of some setup for a specific use case, one could de-
fine multiple scenarios for different adversary types, e.g.
insider/outside attacker or low-/medium-/high-skilled.
For each scenario, one could enumerate likely skill lev-
els and sources of knowledge, e.g. email-addresses from
public data leaks. Using this, the size of a plausible ad-
versary data set S̃adv. can then be approximated. Based
on the risk-appetite of the data provider, a scheme
should be chosen in consideration of the assessed sce-
narios. For the evaluations in this paper, however, we
will make no assumptions about the adversary’s skill
and knowledge. Using the notion of binary information
entropy, we can denote the approximate size of a uni-
verse. In our analysis, we will then define the size of a
set as |Sadv| = 2H , where H is some binary entropy.

5.1.2 Utility

First, we define a utility metric representing the useful-
ness of a given scheme. While there are many possible
utility aspects to be considered, we will only use the cor-
rectness of the matches returned by a lookup scheme,
since this can be efficiently measured as opposed to,
for instance, the experience of the user of the system.
Therefore, this metric will mostly be relevant for prob-
abilistic schemes allowing for false positives, since most
other schemes should not result in any false positives or
false negatives. For record lookup schemes, false posi-
tives can result in unnecessary database queries or man-
ual work, therefore we will use the false positive rate of
a scheme in our utility metric as opposed to the util-
ity metric in [20], which uses query recall and therefore
does not consider false positives. For this purpose, we
define the utility metric as follows:

Utility =
|FP|

|FP|+ |TN| , (10)

which can be easily evaluated for a wide range of prob-
abilistic schemes.

5.1.3 Efficiency

Next, we determine metrics for the efficiency of a record
lookup scheme. The efficiency of such a scheme depends
on the storage, computation and communication costs
of the scheme. Also, we differentiate the efficiency for
each involved party, i.e. the provider and consumers of
the shared data. Lastly, we divide the efficiency of each
scheme into two life cycle phases: the efficiency of the
initial setup and the efficiency of as single membership
query.

For the case of private record lookup, we will consider
the computation and communication cost of a single
query, as this will most likely be a limiting factor on the
usage of a scheme. However, depending on the use case,
other efficiency factors should be taken in consideration
as well.

In order to determine the computational efficiency,
we will measure the time Tquery that is required for a
single query empirically using a benchmarking setup.
While the typical computational complexity classes may
be more universal, vastly different schemes cannot be
compared effectively using this method.

For the communication cost, however, we will con-
sider the network transfer size as the time spent on
network transfers will depend on the network latency
which can greatly differ per environment. For this pur-
pose, we will analyse the transaction size of the setup
phase Lsetup and the transaction size for a single query
Lquery.

7

5.1.4 Functionality

Lastly, we define a category for additional functionality
that can be provided by a potential scheme, for instance,
regarding the management of the provided data. Below
we will describe the functionalities we will consider in
this paper.

Secure element addition Does the scheme allow for
new elements to be added to a shared data set over
time without (negatively) affecting the privacy of
the scheme?

Guaranteed element deletion Does the scheme al-
low for the deletion of elements from the shared
data and can the deletion of an element be guaran-
teed? Naturally, this only applies to data elements
that have not been explicitly queried by the data
consumer yet.

6 Bloom Filters
As mentioned in section 5, Bloom filters are used in the
record lookup schemes similar to Little et al. [4].

Since Bloom filters can be setup in various configura-
tions using different data sets, we will analyse the effect
of different Bloom filter configurations on the metrics
as defined in section 5.1. For each filter configuration,
the optimal size and number of hash functions is used
such that the false positive rate is minimal.

Finally, the different Bloom filter configurations will
be evaluated in the context of the technology. For this
purpose, we created a tool in C++ to empirically evalu-
ate the efficiency and privacy metrics for different filter
configurations. We plan to release this tool as an open-
source project in the near future.

6.1 Privacy Analysis
In section 5.1.1, we defined the privacy metric as the
probability of brute-forcing an element of the original
data given some Bloom filter. For this purpose, we
define three different attack scenarios based on the ad-
versary’s situation and knowledge.

6.1.1 Agnostic Outsider

In the first scenario, an adversary has absolutely no
knowledge about the data structures, algorithms, any
secrets and data used in the filter. In this scenario,
while it might be theoretically possible for a knowl-
edgable adversary to deduce with some certainty that a
binary blob might be a Bloom filter, especially if given
multiple filters, the parameters of that filter are still un-
known. Considering the size of the combined parameter
space of the hash type, hash size and any secrets, it is

practically impossible to gather any information in this
situation.

However, as was mentioned, an adversary could try
to learn about the data structures and algorithm using
metadata, for instance file names, and public informa-
tion, as the source and context of a leak is often known.

6.1.2 Outsider

Next, in the second scenario, the attacker knows the
data structures and algorithms used, but has no infor-
mation about the shared secrets and data.

However, following the definition of this scenario, the
adversary should not know anything about the secrets
or data, therefore this scenario requires that this infor-
mation is not be present or at least not trivially acces-
sible to users of such systems.

In the case of an active adversary intercepting net-
work traffic, the adversary could, even without knowing
the contents of filter, perform bit-flips on the filter be-
fore forwarding it to the authorised consumer, in order
to increase the false positive rate or to prevent records
from being matched. However, this kind of attack can
simply be mitigated using by signing every filter before
distribution, therefore allowing the consumer to detect
changes to a filter.

Next, a passive adversary could try to learn from
a (leaked) Bloom filter using statistical brute-force at-
tacks, as mentioned in [17, 20]. However, in the case
an adversary does not know the format of the records
in the filter, no significant leakage is possible outside
of estimates about the number of elements in the filter.
Therefore, we can define a simple Bloom filter exten-
sion adding a secret to the records, thereby limiting the
privacy impact of such leaks, as long as the secret is
unknown. For this purpose, we define a new hash func-
tion h′(x, s), where a fixed length secret s is appended
to message m before hashing it:

h′(m, s) := h(m∥s)

Here, a simple brute force attack on the secret will
not be feasible as it is not possible for the attacker to
discern the correct secret and data from all incorrect
secrets and data.

While this property holds for one time secrets and
long time secrets, which are used for multiple filters, all
filters using the same secret will be at risk if the secret
is leaked or found using, for instance, the known-record
attack described in the next section.

Known-Record Attack
In the case that an adversary knows or guesses some ele-
ments stored in a filter, based on context, metadata and
publicly known information, the adversary can perform
a known-record attack on the secret. A known-record
attack, in this case, works similar to regular brute force

8

0 1 2 3 4 5
0

20

40

60

80

Number of Known Elements

R
ed

uc
tio

n
of

Se
cr

et
Sp

ac
e p = 1 %

p = 0.1 %
p = 0.01 %
p = 0.001 %

Figure 1: Secret space reduction for a brute force attack
on the secret of a Bloom filter for different false positive
rates.

attacks, however the attacker can discard all possible
secrets that do not result in positive matches for the
known elements.

For a known-record attack, we try to find secret
for which all known elements must result in positive
matches. In case of an incorrect secret, no query can
result in true positives in case a secure hash function is
used, therefore the matches of all known elements must
result in false positives. We can compute the false pos-
itive probability pknown for q known elements using the
false positive rate p as follows:

pknown = pq

Assuming that the secrets are distributed uniformly, we
can compute the entropy of the secret space S:

H(S) = log2(|S|)

Furthermore, we can compute the reduction of the se-
cret space ∆H(S) using known elements as follows:

∆H(S) = log2(p−q)

This will result in an effective secret space H ′(S):

H ′(S) = H(S)−∆H(S)

In fig. 1, the secret space reduction is shown for dif-
ferent false positive rates p. Here, it can be seen that a
few known elements can significantly reduce the secret
space for positive matches.

However, brute force attacks on larger keys have a
significant runtime as the entropy of the secret space
S does not change given some known elements. As a
reference, a single-threaded brute-force attack using our
tool on a 10 000 element filter using SHA3 hashes with a
0.01 % false positive rate and a 32-bit secret has a worst-
case runtime of over 8 hours using our benchmarking

setup mentioned in section 6.3. The same attack on
a 64-bit secret will have an approximated worst-case
runtime of over 4 million years.

Therefore, this kind of attack can be easily mitigated
by using a sufficiently large secret space such that it is
infeasible to perform a brute force attack considering
the average runtime of such an attack.

Other types of cryptographic hash functions, as for
instance SHA1 or MD5 could be used as well, since
they can be considerably faster and a, in most cases
inconsiderably, higher than average collision rate will
lead to more false positives, and therefore increased pri-
vacy, and lowered utility and efficiency. In this case,
attacks like the hash length extension attack on Merkle–
Damgård hash functions, such as MD5, SHA1 or SHA2,
where an adversary can extend a hash with additional
input without knowing the original input including the
secret, are not relevant for privacy. It is infeasible to
retrieve a complete hash from a Bloom filter given that
the secret and input are unknown, and an adversary
would, furthermore, not gain anything from extending
an element hash.

The use of non-cryptographic hash functions like
MurmurHash3 may lead to potential statistical attacks,
therefore having adverse effect on the privacy of a
Bloom filter. However, as these attacks would depend
on specific hash functions, such use cases are out of
scope of this paper and will, therefore, not be consid-
ered.

6.1.3 Insider

In the last scenario, the adversary knows all the data
structures, algorithms and shared secrets, but has no or
only limited knowledge about the data being stored.

For this case, we can define a brute force attack on
Bloom filters, where we query the filter with randomly
generated elements. This type of attack will be dis-
cussed in the next few sections.

Single Bloom Filter In a single Bloom filter setup,
only a single Bloom filter is created from a data set S.
This data set S or parts of it cannot be reused in any
other Bloom filter, as we would then deal with a dual
or multi filter setup, therefore the definitions in this
section are only valid for that case.

First, we redefine the following binary events from
section 5.1.1, given an element z:

A := z ∈ BF(m, hs, S)
B := z ∈ S

In order to measure the possible information leakage
for a single filter setup, we can define the precision of
a querying strategy, i.e. the probability that a positive
match is a actually true positive. Given eq. (6) and

9

10−610−510−410−310−210−1

0.2

0.4

0.6

0.8

1

False Positive Rate (p)

A
tt

ac
k

Pr
ec

isi
on

n = 103

n = 104

n = 105

n = 106

(a) Attack precision for different false positive rates given a
total adversary data set entropy of 30 bits.

15 20 25 30 35 40 45
0

0.2

0.4

0.6

0.8

1

Information Entropy

A
tt

ac
k

Pr
ec

isi
on

n = 103

n = 104

n = 105

n = 106

(b) Attack precision for different data entropies given a num-
ber of elements n with a false positive rate of 0.0001.

Figure 2: Single Bloom filter brute force attack precision for different filter and data set parameters.

eq. (7):

Precision = P (B | A)

=
P (A | B)P (B)

P (A)

where

P (A | B) = 1 (11)

as Bloom filter queries cannot produce false negatives.
Next, we can rewrite the probability that an element is
in the Bloom filter as follows, using Bayes’ theorem:

P (A) = P (A | B)P (B) + P (A | B)P (B)

Here, P (A | B) is the false positive rate p of the Bloom
filter as defined in eq. (2). The probability P (B) that an
element occurs not in a data set S is P (B) = 1−P (B).

In fig. 2a, the influence of different false positive rates
on the attack precision is shown for filters with a differ-
ent amount of elements. As more unique elements are
stored in a filter, the attack precision will increase since
the size of the (approximated) universe is fixed in this
case, therefore, the privacy of a filter will be lowered.
Furthermore, it is shown that lower false positive rates
will lead to less privacy as less false positives will be
produced.

Similarly, from fig. 2b, it can be seen that for filters in-
corporating higher entropy data sets attacks are less ef-
fective and, therefore, the level of privacy will be higher.

Dual Bloom Filters
As single Bloom filter setups are limited since they do
not allow for filter updates, we must extend this this
model to multiple filters. As a first step, we will define
a model for two filters.

Similar to the previous section, we can create a
two filter setup using data sets S1 and S2, where
BF i(mi, hsi, Si), for i ∈ {1, 2}. This new model is lim-
ited to exactly two filters, therefore the data sets S1, S2

or parts thereof, cannot be reused in any other filter as
this would make it a multiple filter setup.

First, we can redefine the events A and B for two or
more filters:

Ai := z ∈ BF(mi, hsi, Si)

Bi := z ∈ Si

Next, we can differentiate between an attack on the
intersecting source set of the Bloom filters and an attack
on the union set.
Attack on Intersection
First, we can perform an attack the on the intersection
of the two data sets. In this case, we only consider
elements that occur in both sets. The precision for an
attack on the intersection can be defined as as follows:

Inter. Prec. = P (B1, B2 | A1, A2)

=
P (A1, A2 | B1, B2)P (B1, B2)

P (A1, A2)
(12)

where P (A1, A2 | B1, B2) = 1, similar, to eq. (11). Fur-
thermore,

P (B1, B2) = P (B2 | B1)P (B1) (13)

and

P (A1, A2) = P (A1, A2 | B1, B2)P (B1, B2)

+ P (A1, A2 | B1, B2)P (B1, B2)

+ P (A1, A2 | B1, B2)P (B1, B2)

+ P (A1, A2 | B1, B2)P (B1, B2) (14)

10

Similar to eq. (13), P (B1, B2) can be computed as fol-
lows:

P (B1, B2) = P (B2 | B1)P (B1)

where the probability P (B2 | B1) depends on the
amount of overlap between S1 and S2. The probabilities
P (B1, B2) and P (B1, B2) can be calculated accordingly.
Moreover, in case the elements of S1 and S2 are chosen
independently, P (B1, B2) and others can be computed
as follows:

P (B1, B2) = P (B1)P (B2)

Given that all hash functions in hs1 and hs2 are
completely independent, i.e. ∀hi ∈ hs1, hj ∈ hs2 :
P (hi(xi) = yi, hj(xj) = yj) = |Y1||Y2|, where Y1 and
Y2 is the output space of the hash function in hs1 and
hs2 respectively, A1 and A2 are independent. Therefore,
the partial probabilities from eq. (14) can be defined as
follows:

P (A1, A2 | B1, B2) = P (A1 | B1)P (A2 | B2) (15)

Here, P (Ai | Bi) and P (Ai | Bi) can by computed
similar to the single filter approach in section 6.1.3. Ac-
cordingly, this step can be applied to the probabilities
P (A1, A2 | B1, B2) and P (A1, A2 | B1, B2) as well.

This attack will be evaluated in more detail in sec-
tion 6.1.3.
Attack on Union
Similarly, we can perform an attack on the union of two
Bloom filters. In this case, we again use both filters for
the attack, but now we consider all elements that oc-
cur at least in one of the two data sets a true positive.
Given that the elements of B1 and B2 are chosen in-
dependently, the precision for a union attack can be
defined as as follows:

Union Prec. = P (B1 ∪B2 | A1, A2)

= 1− P (B1, B2 | A1, A2)

= 1− P (A1, A2 | B1, B2)P (B1, B2)

P (A1, A2)

which can be evaluated similar to eq. (12). Here,
P (A1, A2 | B1, B2) is the combined false positive rate
for both filters, P (B1, B2) is the probability of elements
occurring in the different data sets, which can be com-
puted using eq. (13), and P (A1, A2) is the probability
of two elements resolving to true in the filter.

In fig. 3, the joint precision of the same attack against
the intersection on a two Bloom filter setup is shown.
However, in this case, we evaluate the brute forced ele-
ments on the union of all data, i.e. an element consid-
ered a true positive if it is exists at least in one of the
sets.

10−7 10−6 10−5 10−4 10−3 10−2 10−1 100
10−5

10−4

10−3

10−2

10−1

100

Overlap

A
tt

ac
k

Pr
ec

isi
on

p = 0.01 % (inter)
p = 0.01 %

p = 0.001 % (inter)
p = 0.001 %

Figure 3: Two Bloom filter brute force attack preci-
sion against the intersection of all filter data sets when
evaluating against union of elements for different false
positive rates given an adversary data set entropy of 30
bits, a filter size of 1000 elements.

Multiple Bloom Filters
From the dual filter setup, this model can be ex-
tended to multiple Bloom filters. For q Bloom filters,
BF i(mi, hsi, Si), where 1 ≥ i ≥ q. For this case, it is
required that none of the data of data sets Si, where
1 ≥ i ≥ q, should be reused outside of the given multi
filter setup.

First, as we now deal with multiple filters, we need
to define some notations for operations on sets of bi-
nary events. For some set of binary events Z and its
complement Z∁, we define the following notation for
complementary set of binary events:

X =
{
X : X ∈ X

}
Furthermore, we can define notations for binary opera-
tions on these sets of events in order to create combined
events:

X∩ =
⋂
X∈X

X X∁
∩ =

⋂
X∈X∁

X

and

X∪ =
⋃
X∈X

X X∁
∩ =

⋃
X∈X∁

X

Attack on Intersection Next, we can now define the
precision of an attack on the intersection for q Bloom
filters as follows:

Inter. Prec. = P (B∩ | A∩)

=
P (A∩ | B∩)P (B∩)

P (A∩)

where

A = {A1, A2, ..., Aq} B = {B1, A2, ..., Bq}

11

Similar to probability eq. (11) for a single filter, it is
given that:

P (A∩ | B∩) = 1

Furthermore, we can recursively define the probability
that elements exists in all data sets using Bayes’ theo-
rem:

P (B∩) = P (B | B′
∩)P (B′

∩) (16)

for B ∈ B, where

B′ = B \ {B}

Or, in case all the elements for the sets are chosen inde-
pendently, this is equivalent to:

P (B∩) =
∏
B∈B

P (B)

Lastly, similarly to eq. (14), we can define the probabil-
ity of an element existing in a Bloom filter:

P (A∩) =
∑

B′∈P(B)

P (A∩ | B′
∩,B′∁∩)P (B′

∩,B′∁∩) (17)

where P(B) is the power set of B.
In fig. 4a, the precision of a brute force attack against

the intersection of elements in a multiple Bloom filter
setup can be seen. While attacking more filters can
considerably reduce the size of the intersection of the
elements in those filters, the attack precision increases
significantly the more filters are used.

Attack on Union Similarly, extending from the dual
filter approach, we can define the precision of an attack
on the union for multiple filters.

Union Prec. = P (B∪ | A∩) = 1− P (B∩ | A∩)

= 1− P (A∩ | B∩)P (B∩)

P (A∩)

where

P (A∩ | B∩) = P (A1 | B1)...P (Aq | Bq)

since Ai and Aj are independent, where i ̸= j, due
the pre-image resistance of the hash functions. Fur-
thermore, we can recursively define P (B∩) similar to
eq. (16):

P (B∩) = P (B | B′∩)P (B′∩)

for B ∈ B, where

B′ = B \ {B}

Lastly, P (A∩) can be computed as defined in eq. (17).

In fig. 4b, we show the increase of the attack precision
when attacking the union of the data sets instead of
the intersection. For setups with more Bloom filters,
this increase can be significant, especially if the filters
have a low overlap. Furthermore, in setups with more
elements, the increase in attack precision can be even
more substantial. For instance, in a similar setup to
the one in fig. 4b with 100 000 elements, the absolute
difference almost reaches 20% at points.

6.1.4 Same Parameter Setups

Given that all filters in a setup share the same parame-
ters, namely the size m and the hash functions hs, the
privacy impact of dual and multiple filter setups can
be partially mitigated. In this case, all elements shared
between different filters will set the same bit positions
in the separate filters. Therefore, setups with largely
overlapping data sets will be more likely to generate
the same false positives as well. In the next section, we
provide the analysis for the dual filter case.

Dual Filter Setup
First, as the filter now use the same parameters, the
events A and B can be redefined as follows:

Ai := z ∈ BF(m, hs, Si)

Bi := z ∈ Si

The attack precision can then be defined in the same
way as for the independent dual filter case in eq. (12),
except for the computation of P (A1, A2) in eq. (14):

P (A1, A2) = P (A1, A2 | B1, B2)P (B1, B2)

+ P (A1, A2 | B1, B2)P (B1, B2)

+ P (A1, A2 | B1, B2)P (B1, B2)

+ P (A1, A2 | B1, B2)P (B1, B2)

Here, A1 and A2 are not independent, since the same
hash functions are used for both filters. Therefore, bit
positions can be set by overlapping elements in both
filters, thereby increasing the chance of the similar false
positives in both filters. In this case, we must consider
the probability of some bit position being set in both
filter. For this purpose, we split all element of S1 and
S2 into three separate independent sets:

S∩ = S1 ∩ S2

S′
1 = S1 \ S∩

S′
2 = S2 \ S∩

Furthermore, we define a function Ci for the event of a
bit bj being set in the set Si:

Ci := bj ∈ BF(Si)

12

10−610−510−410−310−210−1
0

0.2

0.4

0.6

0.8

1

False Positive Rate (p)

A
tt

ac
k

Pr
ec

isi
on

1 filter

2 filters

3 filters

4 filters

(a) Attack precision of attack against the intersection of filter
data sets.

10−310−210−1
0

0.1

0.2

0.3

0.4

False Positive Rate (p)

A
tt

ac
k

Pr
ec

isi
on

In
cr

ea
se

2 filters
3 filters
4 filters

(b) Absolute increase of attack precision of attack against
the union of filter data sets on top of fig. 4a.

Figure 4: Multiple Bloom filter brute force attack precision given a total data entropy of 30 bits, filters with each
10 000 elements and a filter overlap of 25 %.

Here, some bit bj can only be set in, both, S1 and S2,
if either the bit is set in S∩, or it is not set in S∩, but
it is set in, both, S′

1 and S′
2:

P (C1, C2) = P (C∩) + P (C ′
1, C

′
2, C∩) (16)

The probability of a bit being set due to overlapping
elements in the data set S∩ can be computed similar to
eq. (1) for regular Bloom filters:

P (C∩) = 1− (1− 1/m)
k|S∩|

Furthermore, as C ′
1, C ′

2 and C∩ are independent, since
no elements are shared between the sets, the probability
P (C ′

1, C
′
2, C∩) can be simply written as follows:

P (C ′
1, C

′
2, C∩) = P (C ′

1)P (C ′
2)P (C∩)

Using section 6.1.4, i.e. the probability of a bit being set
in both filters, the probability of a double false positive
can then be computed similar to eq. (2):

P (A1, A2 | B1, B2) = P (C1, C2)
k

In fig. 5, an illustrative example of the possible ef-
fect on attack precision in the case of two-filter same
parameter setups is given. Here, we can see that the
attack precision is significantly reduced for same pa-
rameter configurations as the overlap of the data set is
increased, thereby eventually converging into a single-
filter scenario. It should be noted, however, that data
sets are likely to diverge more over larger time peri-
ods due to database changes, therefore this effect on
privacy will also be reduced over time as the overlap
will decrease. Nonetheless, for the case of filter updates
where a database has little to no changes over time, this
can be a valuable brute-force attack mitigation strategy.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

% Overlap

A
tt

ac
k

Pr
ec

isi
on

Different Hash Functions
Same Hash Functions

Figure 5: Comparison of the two Bloom filter brute
force attack precision against the intersection of the fil-
ter data sets for differing parameter setups and same
parameter setups. Here, we show filters with 10 000 el-
ements, a false positive rate of 0.001 and 10 hash func-
tions. The adversary data set is a superset of the filter
data and has an information entropy of 26 bits.

However, it requires all filters to share the same secret,
therefore it is not suitable for cases where the different
database providers do not trust each other.

6.2 Utility Analysis
In section 5.1.2, we defined the utility metrics as the
true negative rate. In the case of Bloom filters, the
true negative rate is the inverse of false positive rate
eq. (2). From the approximations eq. (3) and eq. (5) it
is shown that the false positive rate mostly depends on

13

0.2 0.4 0.6 0.8 1

10−14

10−10

10−6

10−2

Targeted Element Ratio (nactual/ntarget)

Fa
lse

Po
sit

iv
e

R
at

e

p = 1 %
p = 0.1 %
p = 0.01 %
p = 0.001 %

(a) False positive rate for nactual/ntarget ∈ [0.2, 1].

1 1.1 1.2 1.3 1.4 1.5
0

2

4

·10−2

Targeted Element Ratio (nactual/ntarget)

Fa
lse

Po
sit

iv
e

R
at

e

p = 1 %
p = 0.1 %
p = 0.01 %
p = 0.001 %

(b) False positive rate for nactual/ntarget ∈ [1, 1.5].

Figure 6: Utility for Bloom filters with different targeted false positive rates at for different nactual/ntarget ratios,
where nactual is the actual number of elements in the filter and ntarget is targeted number of elements.

the ratio between the targeted amount of elements and
the actual amount of elements nactual/ntarget. In fig. 6,
the utility is shown for different targeted false positive
rates and targeted element ratios.

First, from fig. 6a it is shown that if less then the
targeted amount of elements ntarget are inserted into a
filter, the false positive rate can significantly lower and,
therefore, the utility score higher.

Similarly, we can see from fig. 6b that the utility sig-
nificantly decreases if more than the targeted amount
of element are inserted into the filter.

6.3 Efficiency Analysis
Next, we evaluate the efficiency as defined in sec-
tion 5.1.3, where we consider the computational and
transactional complexity for the setup and for a single
query. As transactions solely take place in the setup
phase in the case of Bloom filters where the filters are
deployed, we will only consider the computational cost
for queries.

6.3.1 Computational Complexity

For the computational complexity, we consider the costs
of the setup as well as the costs of a single query.

When creating a filter, each inserted element has to
be hashed using k hash functions, therefore the follow-
ing factors mostly define the filter setup performance:

• The number of elements n inserted into the filter.

• The type of the hash functions being used, e.g.
MD5 hashes will be faster than SHA3 hashes.

• The number of hash functions k, as each element
has to be hashed k times.

Furthermore, For filter querying, we can define best
case and worst-case scenarios. In the best case scenario,
the queried element is not a member of the data set and
the first bit-position check is negative in which case only
one hash has to be computed. In the worst case, the
queried element results in either true positive, i.e. the
element is part of the filter data set, or a false posi-
tive, i.e. the element is not part of the data set. In
both cases all hash functions have to be computed as
all bit-position checks will be positive. The average-
case efficiency is somewhere between, depending on the
number of elements currently in the filter, the number
of hash functions used and what percentage of the ele-
ments being queried is a member of the filter data set.
As the average case is dependent on the queries being
performed, we will only analyse the best- and worst-case
performance for the single query cost.

Similar to the setup phase, we can identify the follow-
ing factors impacting the querying performance:

• The number of hash functions k has an impact
on the average and worst-case performance, since
more hashes have to be computed in those cases,
depending on the configuration of the filter.

• The effective false positive rate and the actual num-
ber of elements in the filter have an influence on the
average case, as a higher effective false positive rate
will result in more negative bit-position checks.

• The type of the hash functions, similar to the setup
phase.

Hash Functions
As the size of the codomain of common hash functions
is fixed or at least limited, it will most probably not
be equal to size of the filter. Therefore, an alternative

14

hash function has to defined that maps directly to bit-
positions for the membership querying algorithm. A
straightforward implementation of such a hash function
h :M → Zm could be defined as follows, where M is
the message space:

h(z) := h′(z) mod m, (16)

where h′ is some cryptographic hash function like SHA3,
z is the element being queried and m is the size of the
filter. However, such an approach may introduce a bias
similar to the modulo bias experienced when mapping
randomly generated numbers from one domain to an-
other (non-power-of-two) domain, and will thereby in-
crease the false positive rate of the filter.

In order to prevent this kind of bias, we can define a
simple function where we ignore hashes that cannot be
directly mapped to a bit-position inside the filter with-
out introducing a bias. For this purpose, we define a
recursive hash function h :M→ Zm using some keyed-
hash function hk : K×M→ H, where K is the key space
and H ⊂ Z the output space of the hash function:

h(z) := h′(0, z)

h′(i, z) :=

{
hk(i, z) mod m, if hk(i, z) < hlimit

h′(i+ 1, z), otherwise

where

hlimit = |H| − (|H| mod m),

where hlimit is the maximum hash value that can be
mapped to a bit-position without introducing bias.
However, this hash function is now non-deterministic
and may require multiple hash computations depend-
ing on the size of the filter m, thus increasing the query
time in those cases. Given a worst-case Bloom filter
setup, where hlimit is minimal at m = ⌊|H|/2⌋+ 1, the
probability of generating a non-mappable output using
a (keyed-)hash function is p = hlimit/|H| ≈ 0.5. In
this case, we deal with a geometric distribution, there-
fore the average number of hash computations will then
be 1/p ≈ 1/0.5 = 2. However, for most filter configu-
rations hlimit will be close to |H|, therefore the average
number of hash computations will be significantly lower
than that.

An alternative to a keyed-hash function, in this case,
is double hashing, where the output of two crypto-
graphic hash functions, h1 and h2, is computed and
then used to derive different hashes:

h′(i, z) := (h1(z) + i · h2(z)) mod |H|,

given h2(z) ̸= 0. This function has a constant worst-
case and average-case complexities in terms of two hash
computations, making it less efficient than the first so-
lution using a keyed-hash function for the average-case.

216 218 220 222 224

102

103

104

Filter Size m

Se
tu

p
C

os
t

(m
s)

Figure 7: Computational efficiency of Bloom filter setup
Tsetup for different filter sizes m and 10 hash functions.

However, this method can be useful for cases where the
worst-case amount of computations should be constant.

In order to exclude any non-determinism due to bias,
we will only consider Bloom filter configurations where
the aforementioned simple hash function section 6.3.1
will introduce no bias, i.e. when |H| is divisible by m.
Nonetheless, for performance critical use cases, poten-
tial performance influences due to such biases should be
considered.

Benchmark
For the purpose of evaluating the runtime performance,
we use a benchmarking setup with the following speci-
fications: Intel i7-4790K @ 4.5 GHz, 16 GB, 1600 MHz
LPDDR3, Linux 4.20. Furthermore, we tested Bloom
filters of sizes m ∈ {215, 220, 225} using 10 independent
SHA3-based hash functions, with the optimal number
of elements n according to eq. (4).

In fig. 7, we show the results of the Bloom filter setup
benchmarks. Here, it can be seen that the runtime cost
of a query is linear in respect to the filter size m and,
therefore, also in respect to the number of elements m
as can be derived from eq. (4).

The results of the benchmarks for the computational
cost of querying member elements Tquery,mem and non-
member elements Tquery,nonmem are shown in fig. 8. The
actual average query cost Tquery of a query depends on
the queries of consumer and is bounded by Tquery,nonmem
and Tquery,mem.

As can be seen, the cost of member element queries
is mostly consistent regardless of the false positive rate.
Therefore, we can conclude that this cost is mostly de-
pendent on type and number of hash functions used. On
the contrary, the cost of non-member element queries
will decrease for lower false positive rates as the likeli-
ness of the same bit-position being set by multiple dif-
ferent elements in the filter is lowered as well. Lastly,
the general runtime differences between the different fil-
ter sizes are most likely caused by CPU cache misses,
which have an increasing impact for larger Bloom filter

15

10−610−510−410−310−2
18,500

18,600

18,700

18,800

18,900

False Positive Rate

Q
ue

ry
C

os
t

(n
s)

m = 215

m = 220

m = 225

(a) Cost of member queries Tquery,mem.

10−610−510−410−310−2

2,400

2,600

2,800

3,000

False Positive Rate

Q
ue

ry
C

os
t

(n
s)

m = 215

m = 220

m = 225

(b) Cost of non-member queries Tquery,nonmem.

Figure 8: Computational efficiency of Bloom filter queries at different false positive rates for filters of size m and
10 hash functions.

sizes.

6.3.2 Communication Complexity

For the communication costs, we will only consider the
setup phase as querying does not require any transac-
tions.

After a Bloom filter has been created, the only trans-
action that takes place is the distribution of that filter
to the consumer. Here, we can compute the filter trans-
action cost using eq. (5) as follows:

Lsetup = m =
n ln p

(ln 2)
2

The communication complexity for querying is, there-
fore, linear in respect to the number of records n.

6.4 Functionality Analysis
In this section, we will analyse the additional function-
alities metric as defined in section 5.1.4 for the case of
Bloom filters.

First of all, adding new elements to the data set of
the filter provider can be simply achieved by creating
and distributing a new version of the filter with the
additional elements. However, creating a new Bloom
filter with different parameters will result in a multi-
filter setting and will most likely leak information about
the overlapping data the filters as is described in sec-
tion 6.1.3. If the filter parameters are kept the same,
no additional information regarding the overlapping el-
ements will be leaked. Nonetheless, there will likely be
some leakage about the newly added elements as one
can now discern bit positions set in the new version of
the filter and positions set in previous version, thereby
giving clues about the set of added elements. We can,
therefore, not securely add an element to a Bloom filter
without leaking information at all, but it is possible to

so without any additional leakage of the former data
set.

Second, while one could remove elements from a data
set by distributing a new filter similar to the situation
above, another receiving party can just keep the original
filter that still includes these elements. As there is no
way to ensure that an older filter has been removed by
another party, the guaranteed deletion of elements is
not possible in this scheme.

6.5 Case Study Ma3tch
In this section, we will evaluate the application of
Bloom filters in the context of the Ma3tch technology
[27] that is part of FCInet project. FCInet is an initia-
tive by the OECD Forum of Heads of Tax Crime Investi-
gation focusing on improving the collaboration between
international financial crime investigation units. The
Dutch FIOD (Fiscale inlichtingen- en opsporingsdienst)
and the British HMRC (Her Majesty’s Revenue and
Customs) are leading this initiative. Furthermore, a pi-
lot of FCInet is ongoing as of 2017 with the FIOD, the
HMRC and the Belgian BBI (Bijzondere Belastingin-
spectie). One the of the goals of the FCInet project is
the assistance of the investigation process. For this pur-
pose, the project considers the processes for data anal-
ysis and information exchange regarding (past) cases,
criminals and suspects, as these processes are currently
mostly non-automatable due to the lack of tools and
legal devices.

Ma3tch is a technology used in FCInet, aiming to
make these processes more practical, while also provid-
ing a certain level of confidentiality regarding the ex-
changed data. Currently, Ma3tch is evaluated in a pi-
lot test evaluating the exchange of data about criminals
and suspects, where first names, last names and birth
dates of individuals are shared in an encoded form.

For this purpose, Ma3tch makes use of Bloom filters,

16

similar to the scheme by Little et al. [4], where the data
to be shared is encoded into a Bloom filter. This filter
can be shared with partners, who can then be queried
to check if the filter contains an individual. However, as
mentioned before in section 2.1, this process can induce
false positives, which can be used to provide a certain
level of privacy.

6.5.1 Method

In this section, we will solely discuss the privacy aspects
of Bloom filters in the Ma3tch context, as the provided
utility and efficiency are not impacted by the data that
is encoded into the Bloom filter. These aspects of a
Bloom filter only depend on the Bloom filter parameters
and the amount of elements in the filter, and, therefore,
have already been adequately discussed in the previous
sections.

For this case study, we worked together with the
FIOD as an investigative instance, therefore, for this
section, we consider the FIOD as the filter provider. In
this scenario, the filters encode first names, last names
and birth dates. The filters’ privacy will be evaluated
for false positive rates of 0.01 %, 0.001 % and 0.0001 %,
as such scenarios are assumed to be common in the con-
text of Ma3tch. Since we already analysed the privacy
impact of encoding non-optimal amounts of data en-
tries into a filter, we will assume a test set size of 30 000
records.

Furthermore, we will perform, both, a theoretical and
an experimental analysis of the privacy in this scenario.
In the theoretical analysis, we try to estimate the attack
precision based on simulated data for this case. For the
experimental analysis, we evaluate the attack on actual
data of which we only know that it contains first names,
last names and birth dates.

For the experiments, we will assume the Insider at-
tack scenario, where a filter including the correspond-
ing secret has somehow been leaked, as the privacy pro-
vided by a filter cannot be compromised under the as-
sumptions of the two weaker scenarios. Furthermore,
we assume an external adversary that knows that the
FIOD is the provider of the filter, and we assume that
the adversary has access to publicly available knowl-
edge, except for resources providing full person details
such as social media websites or publicly available data
leaks of other online services. All conclusions about
privacy in this section will, therefore, only hold under
these assumptions.

Since the adversary only knows that the filter was pro-
vided by the FIOD and cannot use any publicly avail-
able records of people, the adversary is bound to use
different resources for a brute-force attack, as simply
generating a set of all possible strings as names, for in-
stance, is generally not feasible.

Furthermore, as the FIOD is a Dutch authority, we

assume that most names that are encoded in a filter
will be Dutch. As a reference data set, we use the pub-
lic Dutch first and last name databases12. These data
sets encompass most names occurring in the Nether-
lands, which includes a fair amount of non-Dutch names.
Moreover, for each name, estimates of the amount of
occurrences are provided. Using these data sets, a
probabilistic generator can be created that can gener-
ate a data set with single first and last name combi-
nations. We do not consider secondary first names, as
these would result in a state-explosion making the at-
tack mostly infeasible.

For birth dates, we assume that all people in the data
set are born between the 1st of January, 1910 and the
1st of January, 2010. Just as for the names, we could
use statistical data for birth date distributions in the
Netherlands, as different seasons and years will have
different birth rates. However, this data is not as read-
ily available publicly, therefore we assume a uniform
distribution for the birth dates.

By combining the data sets for names and birth date,
i.e. through the computation of the cartesian product,
a brute-force attack can be simulated.

6.5.2 Theoretical Analysis

For a theoretical data set of the filter provider, we use
the same assumptions about the data as described in
the previous section. Testing with real data would be
more appropriate, however this information is generally
not available due to privacy concerns. Therefore, we can
only create test cases by generating a data set under a
set of assumptions.

Considering the adversary, we can approximate the
total size of the assumed adversary’s data set with all
first and last names occurring in the Netherlands using
the afore-mentioned name databases: the set of first
names has a size of around 217 entries and last names
around 219 entries. Both data sets encompass names of
almost 16 million people, which almost accounts for the
current population in the Netherlands.

As mentioned, for birth dates, we assume that the
date occurred somewhere in the last 100 years, which
corresponds to a set of around 215 possible dates.

Together, the combination of these sets accumulate
to a total approximated adversary set size of 252 possi-
ble data entries, which is hard to use in a brute-force
attack for a common adversary. However, as not all
names are equally common, we can perform a non-
exhaustive search for entries using the popularity of
different names.

1Nederlandse Voornamenbank - https://www.meertens.knaw.
nl/nvb/

2Nederlandse FamilienamenBank - https://www.meertens.
knaw.nl/nfb/

17

https://www.meertens.knaw.nl/nvb/
https://www.meertens.knaw.nl/nvb/
https://www.meertens.knaw.nl/nfb/
https://www.meertens.knaw.nl/nfb/

False Positive Rate Attack Precision
10−4 0.016
10−5 0.084
10−6 0.256

Figure 9: Result of theoretical analysis of privacy in the
Ma3tch scenario.

10−610−510−4
0

0.05

0.1

0.15

0.2

False Positive Rate (p)

A
tt

ac
k

Pr
ec

isi
on

Full first name
Single first name

Figure 10: Attack precision of experimental analysis
on unknown Ma3tch data with records including first
name(s), last name and birth date.

For a non-exhaustive search, we can compute a lower-
bound set size for an non-exhaustive search using Shan-
non’s information entropy [28]. For this case, we esti-
mate the lower-bound set size for first and last names
of approximately to be 27 and 210 data entries, respec-
tively. The set of birth dates, still has around 215 en-
tries, as we assumed a uniform distribution. The combi-
nation of all data setts results in a lower-bound data set
size of 232 entries. As this set size is a lower-bound and
does not include less frequent names, we will assume a
total test data set size of 234 entries.

For the evaluation, as was mentioned, we evaluate
filters with false positive rates of 0.01 %, 0.001 % and
0.0001 % with 30 000 elements. The results of this the-
oretical analysis are shown in fig. 9.

6.5.3 Experimental Analysis

For the experimental analysis, we evaluate two filters
created from an actual data set, which is unknown to
us. The first filter contains full names and birth dates,
and the second contains only primary first names, last
names and birth dates. We will then use the above-
mentioned adversary data set with names and birth
dates to perform a non-exhaustive search. The results
of this experiment are shown in fig. 10.

6.5.4 Discussion of Single-Filter Scenario

As can be seen from the evaluation, the experimental
analysis, a non-exhaustive search using real data is sig-
nificantly less effective than in the theoretical analysis.
There are multiple possible factors that can influence
this result.

First, in the first case with full names, it is not possi-
ble to find any entries that have secondary first names,
as our reference data set only includes single first names.
This effect can be seen from the second scenario, where
the attack precision is significantly higher as the Bloom
filter only entries where all secondary are removed.

Furthermore, the size of the overlap of the actual
names in the filter with the Dutch name databases is
unknown, therefore it is likely that names unknown to
the adversary also reduce the amount of entries that
can be found.

Next, as was already concluded from the data-
agnostic privacy evaluation of Bloom filters: the as-
sumed adversary data set may be too large for an attack
to be feasible, i.e. the combined data set of names and
birth dates may result in too many false positives to
obtain any significant result.

Lastly, the data set size in the theoretical analysis was
based on a best-case scenario (considering the adver-
sary) regarding the distribution of names, as the actual
distribution of names in a actual data set is unknown.

Therefore, as we do not know the exact contents of
the targeted database, it is not possible to identify the
impact of each of these factors on the measured results.
Furthermore, repeating this evaluation for another kind
of adversary with different knowledge and assumption
can yield vastly different results. In order to make more
precise theoretical and experimental evaluations, it is,
therefore, necessary to include an internal data-analyst,
who knows the exact contents of the filter(s), and the ex-
pected knowledge and assumptions of an attacker, also
considering data that is feasibly attainable by an adver-
sary. Furthermore, for such an evaluation, the privacy
implications of database updates due to ongoing investi-
gations or data-retention policies should be anticipated
with regard to the multiple Bloom filter setting.

6.6 Discussion
For the purpose of record lookup schemes in distributed
systems (and similarly private linkage schemes), Bloom
filters can provide a certain tunable level privacy de-
pending on the attack scenario.

In the case of outsider adversaries, leakage is not pos-
sible if the systems are sufficiently such that properly
generated shared secrets are only used between a single
server and client.

For insider adversaries or in the case that a secret
is leaked, Bloom filters provide a trade-off between pri-
vacy, and utility and efficiency depending on the risk-

18

appetite of the database providers. However, in case an
adversary gets hold of multiple filters with overlapping
data, for example due to updates of the data set, the
effectiveness of a brute-force attack is further increased
depending on the filters they have access to and their
data overlap. Available mitigations using configuration
strategies are only effective up to a limited number of
compromised filters in this case, as the privacy of a
filter cannot be increased indefinitely without the util-
ity dropping below usable levels. Furthermore, in the
case of filter updates, the deletion of older filter cannot
be guaranteed, therefore there is no effective approach
for removing records from a database without potential
leakage in the future.

When considering the privacy trade-off provided by
Bloom filters, a domain expert familiar with the data
and the system should be included in this adjustment,
as the provided level of privacy is highly dependent on
the specific data being stored. Furthermore, different
types of adversaries should be considered as brute-force
attack will be more effective based on the knowledge of
an adversary.

7 Encrypted Bloom Filters
As was shown in the last section, the privacy impact
mitigation of brute-force attacks on a Bloom filter in
the lookup scheme can significantly reduce the utility
of that filter. Furthermore, the current approach does
not allow secure deletion of elements, for instance, when
releasing updated filters. Ideally, the querying of the
Bloom filter should be interactive such that the filter
consumer cannot access the filter locally and cannot per-
form an unlimited amount of queries while not leaking
any information about the queries.

Our proposed interactive protocol defines two parties:
Alice as the providing party with a Bloom filter of a data
set SA and Bob as the consuming party with a separate
data set SB . In this case, Alice is willing to share with
Bob which data elements they have in common while
allowing for false positives, i.e. the intersection SA ∩̃SB ,
without learning anything themselves.

7.1 Related Work
With record lookup schemes, some information is
shared with other parties that allows them to identify
databases that might have the data that they are inter-
ested in. While the information that is shared can be
different, it becomes similar to the setting of PSI (Pri-
vate Set Intersection) when operating in the encrypted
domain. PSI schemes allow two or more parties com-
pute the intersection of their data sets without either
party learning anything more than that intersection.
As such, it possible to construct private record lookup

schemes based on PSI schemes, where only the querying
party learns the result.

One of the first PSI protocols is described in [29] by
Meadows. The proposed protocol is based on the Diffie-
Hellman key exchange and allows two parties to pri-
vately check if they share the same secret, while only
requiring a trusted third party for the setup phase of
the protocol. Since the protocol provides matching of
pairs of secrets, computing the intersection has a worst-
case complexity of O(nm) runs of the protocol given
two parties with data sets of sizes n and m.

In [30], Freedman et al. propose PSI protocols for the
semi-honest setting based on oblivious polynomial eval-
uation [31] using homomorphic encryption schemes such
as the Paillier cryptosystem [32]. Through reducing the
polynomial size by separating the elements into differ-
ent “buckets”, a worst-case computational complexity
O(n + m log logn) is achieved. Furthermore, a fuzzy
matching scheme is proposed, where each data element
consists of a vector of predefined attributes. Here, a
match will only have a positive result if at least t at-
tributes are shared between elements.

Hazay and Nissim present an extension to this ap-
proach in [33] for the malicious settings while using the
ElGamal cryptosystem [34] with homomorphic addition.
It offers a similar computational performance as the
semi-honest protocol in [30].

In [35], Kerschbaum introduces an Bloom filter public
key encryption scheme using the homomorphic proper-
ties of the Goldwasser-Micali cryptosystem [36]. Here,
the result of a query is provided as a vector of ZKPs
(Zero-Knowledge Proofs). However, this leaks the el-
ement that is queried to the party creating the ZKP.
Kerschbaum describes in [37] interactive PSI protocols
based on a similar approach for the semi-honest and
malicious scenarios with a linear complexity. Further-
more, a variant of the protocol is proposed where the
computation of the intersection can be outsourced to
an oblivious service provider.

Perl et al. present a confidential search scheme [38] for
bio-medical data that makes use of Bloom filters. For
each query, a filter is created and obfuscated to pre-
vent a server from learning the query. Separately, each
query is encrypted using the Smart-Vercauteren FHE
(Fully-Homomorphic Encryption) scheme [39] using the
private key of the client. By evaluating the obfuscated
Bloom filters on their database, the server can then
limit the possible query results, which are then evalu-
ated homomorphically in the encrypted domain using
the query ciphertexts and returned to the client. Here,
the client can choose higher false positive rates for the
Bloom filters encoding the queries in order to reduce
potential leakage. A higher false positive rate will then
produce a larger potential result set, in which case the
server has to perform more computations for the final
encrypted search.

19

Dong et al. propose a PSI scheme using garbled Bloom
filters in [40], where all filter position set by a single
element are represented by a set of secret shares. A
test will then only result in a positive match when
all queried filter positions contain corresponding se-
cret shares, thereby making the probability of a false
positive negligible. An interactive protocol using this
approach with OT (Oblivious Transfer) for the semi-
honest and malicious settings is provided as well.

In [41], Pinkas et al. provide an overview of various
existing PSI protocols, as well as optimisations to ex-
isting protocols such as that described in [40]. Further-
more, the authors also introduce an efficient PSI proto-
col using OT with quasi-linear complexity with further
improvements in [42].

In [43], Egert et al. proposes a multi-party private
set-cardinality computation protocol using Bloom fil-
ters. The authors present a separate protocol for the
two-client case using the additive properties of the El-
Gamal cryptosystem [34].

Davidson and Cid describe two-party interactive pro-
tocols for PSI and PSU (Private Set Union) in [25] using
encrypted Bloom filters. The protocols use the Paillier
cryptosystem [32] and have linear complexities similar
to other Bloom filter-based constructions. Here, the
querying party creates a filter of their data set. Be-
fore encryption, the bit positions of a Bloom filter are
inverted such that queries can be computed using the
additive properties of the cryptosystem. The encrypted
Bloom filter is then evaluated by the other party un-
der encryption. Finally, the querying party can then
decrypt the results of the queries. Both protocols are
secure in the semi-honest model and extensions to the
malicious model are provided.

7.2 Contributions
Our goal is to move the simple off-line Bloom filter-
based scheme described in the first part of this paper
to an interactive privacy-preserving protocol. The pro-
tocol should allow a client to efficiently perform set
membership queries on a Bloom filter of another remote
party with a certain false positive rate defined by the
latter party. Here, the filter provider should not be
able to learn anything about the queries aside from the
amount of queries being performed. Furthermore, the
protocol should be able mitigate brute-force attacks as
described in section 6.1 or allow the filter provider to
detect such illegitimate use.

For this purpose, we propose an interactive Bloom
filter querying protocol based on the PSI protocol pre-
sented by Davidson and Cid in [25]. In our protocol, the
party sharing the data creates the filter instead of the
querying party, therefore allowing the former to define
a false positive rate for the shared filter based on the
intended use case. Furthermore, our protocol is imple-

mented using the ElGamal cryptosystem, which can be
adapted for additive homomorphism and has a higher
computational and communication efficiency than the
Paillier cryptosystem. It does not, however, allow for
homomorphic multiplications with plaintext messages,
although we will show that this is not required for our
protocol. Lastly, we provide a prototype implementa-
tion of our protocol as well as an efficiency comparison
to PSI protocol in [25].

7.3 Primitives
7.3.1 ElGamal on Elliptic Curves

Given a curve E(Fp) over Fp, with parameters
(p, a, b, P, n), Alice generates a secret key sk = aA

R← Z∗
n.

The public key pk = PA ← [aA]P is then published to-
gether with the parameters of the curve.

For these parameters, the encryption function
Encrypt(pkA,M) is defined for some point M ∈ Fp as
follows:

JMKA ← ([k]G, [k]PA +M), where k R← Z∗
n (16)

Correspondingly, we define a decryption function
Decrypt(skA, JMKA) for some ciphertext JMKA =
(Q,R):

M ← R− [aA]Q (16)

Furthermore, we define a function Encode(m), which
encodes some message m ∈M onto a point in Fp, where
M is the message space:

M ← [m]P (16)

Analogously, we define a function Decode(M) that is
able to efficiently decode a point M = [m]P if m = 0,
i.e. M = P∞. Due to the discrete logarithm problem,
there is no known generally efficient method to compute
m given [m]P , however one can compare encoded points,
therefore we can identify expected values by encoding
them beforehand.

For clarity, we will denote homomorphic addition of
ciphertexts using the operator ⊕, such that:

JM1KA ⊕ JM2KA = JM1 +M2KA
7.3.2 Additive Bloom Filters

Given a Bloom filter BF(m, hs, S) for some data set
S and hash functions hs = (h1, ..., hk) that produces
the bit-vector bf = (b1, ..., bm), we can test the mem-
bership of some element elem by verifying that for all
hi ∈ hs : bhi(elem)

?
= 1. Alternatively, this can also be

written multiplicatively as
∏

hi∈hs bhi(elem)
?
= 1.

20

However, as we are dealing with an strictly additive
homomorphic encryption scheme, multiplication of ci-
phertexts is not possible, therefore filters must be en-
coded in a different manner to work additively. For this
purpose, we can create an “inverted Bloom filter” ibf
by inverting each bit of the filter, i.e. ibf←

(
b1, ..., bm

)
,

as proposed in [43, 25]. We can now additively test
the membership of some element elem by verifying that∑

hi∈hs bhi(elem)
?
= 0, which can now also be imple-

mented using a homomorphic encryption scheme as de-
scribed above.

In this case, the querying party will learn how many
of the k queried bit positions matched, which can give
an indication of the number of elements in the filter
(given that the false positive rate is known). Therefore,
we propose a variation on “inverted Bloom filters” that
randomises each unset bit position in Zn instead of set-
ting it to 1. Given some Bloom filter with a bit vector
bf = (b1, ..., bm), we define a function ObfuscateFilter(bf)
that produces an obfuscated vector obf using a mapping
{0, 1} → Zn:

obf← (v1, ..., vm) , where vi =

{
0, if bi = 1

r R← Zn, otherwise

Given that the querying party conforms to the proto-
col, i.e. the party queries actual elements using hash
functions gs, the party will not be able to distinguish∑

hi∈hs vhi(elem) in case of a negative from some r R← Zn.
This is different from the “obfuscated filters” mentioned
in [38], as the intention, here, is not the increasing of
the false positive rate.

In order to mitigate leakage to non-conforming par-
ties, one could encode the set bits for every encoded
element in bf using some secret sharing scheme as, for
instance, the one proposed by Dong et al. in [40], such
that the k bit positions of a valid element in the filter
must be queried in order to get a positive result. How-
ever, in this case, false positives cannot occur anymore
as the probability that the addition of k random po-
sitions will uncover the secret is negligible. Therefore,
we will use the above-mentioned obfuscated filter ap-
proach and assume that the querying party adheres to
the protocol.

7.4 Protocol
Our protocol consists of four phases:

Setup Setup of all cryptographic parameters such as
the public curve parameters pp and the public and
secret keys, pkA and skA.

Filter Obfuscation Obfuscation, encryption and dis-
tribution of some Bloom filter bf.

Querying Computation and blinding of the queries qs.

Result Retrieval Decryption and unblinding of the
queries by the relevant parties.

After sharing the initial cryptographic parameters in
the Setup phase, fig. 11 provides an overview of the
subsequent phases of our protocol. Furthermore, the
following sections will discuss the phases in more detail.

7.4.1 Setup

For setup, Alice generates an ElGamal key pair
(pkA, skA) on some curve E and shares the parameters
of E(Fp) and the public keys pkA with Bob. Further-
more, Alice creates Bloom filter bf from their data set
SA for some filter length m and a set of independent
hash functions hs = (h1, ..., hk), and then shares m and
a specification of hs with Bob.

7.4.2 Filter Encryption

Given some Bloom filter bf ← (b1, ..., bm) and corre-
sponding hash functions hs, Alice creates an obfuscated
version of the filter obf:

(v1, ..., vm)← ObfuscateFilter(bf)

Next, Alice encodes and encrypts each filter position vi
as follows:

Vi ← Encode(vi)JViKA ← Encrypt(skA, Vi)

The encrypted filter JobfKA = (JV1KA, ..., JVmKA) is then
sent to Bob.

7.4.3 Querying

Given a some data set SB = {yj ∈ M} and an en-
crypted filter JobfKA, Bob can create an encrypted queryJQjKA for each yj as follows:

JQjKA ← ⊕
hi∈hs

JVhi(yj))KA
In case of a match, the encrypted query will be JQjKA =JP∞K, i.e. an encryption of zero, otherwise Qj will be
some random point in E(Fp). Furthermore, Bob will
add a blinding factor to every encrypted query JQjKA
such that Alice will not learn of the query result:

zj
R← ZnJZjKA ← Encrypt(pkA,Encode(zj))JQ̃jKA ← JQjKA ⊕ JZjKA

This vector of encrypted blinded queries Jq̃sKA =
(JQ̃1KA, ...) is then sent back to Alice.

21

Alice Bob

bf← (b1, ..., bm) SB = {y1, ...}

obf← ObfuscateFilter(bf)JobfKA ← Encrypt(pkA,Encode(obf))

JobfKA
For every yj ∈ SB :JQjKA ← ⊕

hi∈hs
JVhi(yj)KA

zj
R← ZnJZjKA ← Encrypt(pkA,Encode(zj))JQ̃jKA ← JQjKA ⊕ JZjKA

Jq̃sKA = (JQ̃1KA, ...)
For every JQ̃jKA ∈ Jq̃sKA:
Q̃j ← Decrypt(skA, JQ̃jKA)

q̃s = (Q̃1, ...)

For every Q̃j ∈ q̃s:
Qj ← Q̃j − Zj

Verify Decode(Qj)
?
= 0

Figure 11: An overview of the transactions and computations in our Bloom filter-based record lookup protocol
for some filter provider Alice and a filter consumer Bob.

22

7.4.4 Result Retrieval

Alice can now decrypt each blinded query JQ̃jKA:

Q̃j ← Decrypt(skA, JQ̃jKA)
The resulting vector q̃s = (Q̃1, ...) is then sent back to
Bob, who can then remove the blinding factor for each
Q̃j :

Qj ← Q̃j − Zj

For each query Qj , Bob can then check for a positive
query result as follows:

Decode(Qj)
?
= 0

In case there is a positive filter match with element yj ∈
SB , decoding will result in a zero, otherwise Qj = kG
will be an random unknown value to Bob, thus Bob will
most likely not be able to decode the query and only
learns that the query result was negative.

7.5 Privacy Analysis
For the evaluation of the privacy of our protocol, we as-
sume the semi-honest scenario, where an adversary can
try to learn about the other party’s inputs and (interme-
diate) outputs, while adhering to the protocol. For this
purpose, we use simulation-based security proofs based
on the real-vs.-ideal paradigm [44]. Here, we assume an
ideal scenario, where all protocol computations are per-
formed by a trusted third party given only the inputs
of the other parties.

For simulation-based security proofs, a protocol Π
for the computation of some function f is said to be
computed privately, if we can create a simulation S of
the protocol in the ideal scenario using only the input
and output of either corrupted party, where the (inter-
mediate) results are computationally indistinguishable
(denoted by c≡) from the party’s view of the protocol
viewΠ in the real scenario:

{SA(x, fA(x, y))x,y∈{0,1}∗} c≡ {viewΠ
A(x, y)x,y∈{0,1}∗}

{SB(y, fB(x, y))x,y∈{0,1}∗} c≡ {viewΠ
B(x, y)x,y∈{0,1}∗}

where x and y are the protocol inputs of parties A and
B, and fa and fb the outputs of both parties.

In the next sections, we will provide simulations
proofs for the cases that either of the parties has been
corrupted.

7.5.1 Corrupted Filter Consumer

Assuming that the filter consumer, Bob, has been com-
promised, we can create a simulation of the protocol in
the ideal scenario using only Bob’s real input and out-
put. For this purpose, we create some Bloom filter bf

using the hash functions hs that conforms the bit posi-
tions that were set according to the query output that
Bob receives in the real scenario and the corresponding
elements from Bob’s input data set SB . We can then
obfuscate and encrypt the filter using Alice’s public key
pkA onto E(Fp), as we do not need to be able to decrypt
any data for the simulation. Furthermore, since nothing
can be learned from a valid set of hash functions hs on
itself, it is considered a public parameter of the system.
Now, the obfuscated filter JobfKA and the specification
of the hash functions hs are indistinguishable from the
filter transaction (as shown in section 7.4.2) in the real
scenario.

Next, in our simulation, we can create a set of queries
qs using Bob’s data set SB the obfuscated filter JobfKA
as in the real scenario. These queries can then be
blinded using some zj

R← Zn producing a set of blinded
queries Jq̃sK. Here, the queries Jq̃sK will be indistin-
guishable from the real query transaction (as shown in
section 7.4.3) due to the properties of the ElGamal cryp-
tosystem.

Thereafter, we can decrypt the encrypted blinded
queries resulting in a set blinded queries q̃s. Due to the
blinding factors, this set of queries is then indistinguish-
able from the result retrieval transaction (as shown in
section 7.4.4) in the real scenario.

Finally, in the simulation, we can simply reproduce
the protocol output Bob receives in the real scenario.
The protocol is therefore computed privately in the
semi-honest scenario in the case that the filter consumer,
Bob, is corrupted.

7.5.2 Corrupted Filter Provider

For the case where the filter provider, Alice, has been
compromised, we will create a simulation for the pro-
tocol using only Alice’s Bloom filter bf as input of the
protocol, as Alice receives no output.

First, for the simulation, we can select a vector of m
uniformly random elements in E(Fp) for the initial filter
transaction (as shown in section 7.4.2) in the real sce-
nario, making it indistinguishable from the simulation
due to the properties of the ElGamal cryptosystem.

Similarly, for the querying transaction (as shown in
section 7.4.3), we can do the same to simulate the
queries Jq̃sK as they are blinded, thereby resulting in
a uniformly distributed value in E(Fp) after decryp-
tion, therefore being undistinguishable from the real
transcript of the protocol.

In this case, the final result retrieval transaction does
not matter, as Alice does not receive any further trans-
actions based on it. Therefore, the protocol is also se-
cure in the semi-honest scenario when the filter provider,
Alice, is corrupted.

23

7.6 Utility Analysis
As our approach is based on Bloom filters in the en-
crypted domain, the utility will will be the same as for
the regular case discussed in section 5.1.2 depending on
the parameters for the creation of the filter. However,
since our interactive protocol does not require a higher
false positive rate as the sole privacy utensil and we can
mitigate the effect of brute-force attacks, the false pos-
itive rate can be chosen more freely according to the
utility required for the use case.

7.7 Efficiency Analysis
In this section, we will discuss the computational and
communication complexities of every step for the pro-
tocol, as well as an empirical analysis of computational
performance.

7.7.1 Computational Complexity

In order to evaluate the computation complexity of our
proposed protocol, we will focus on the time complex-
ity, as this will likely be a more limiting factor than
the space complexity or the communication complexity,
which will be discussed later. For this purpose, we will
use the cost of a curve point addition Tadd and the cost
of point doubling Tdouble as the base units, as these are
the primary operations in our protocol.

For scalar curve point multiplication, we assume that
a double-and-add algorithm is used. Furthermore, we
will assume that every operation has the worst-case per-
formance. Using these assumptions, we can define the
worst-case cost of a scalar multiplication in a finite field
Fp as follows:

Tmul = ⌊log2 p⌋Tdouble + ⌊log2 p⌋Tadd

Furthermore, we will define the cost of an Encrypt oper-
ation as Tencrypt := 2Tmul + Tadd, as is shown in sec-
tion 7.3.1, and the cost of a Decrypt as Tdecrypt :=
Tmul + Tadd, as is shown in section 7.3.1. Similarly, the
Encode operation uses a single multiplication as shown
in section 7.3.1, therefore we can define the cost as
Tencode := Tmul. For the Decode operation, however,
only one or more comparisons are required at runtime,
as the possible decodable value(s) can be precomputed.

Filter Creation
For the creation of an encrypted filter, Alice first needs
to create an obfuscated Bloom filter as shown in sec-
tion 7.3.2. However, since the computational complex-
ity of the CreateFilter operation is trivial compared to
the required curve point multiplications for encoding
and encryption, we will not consider this cost.

For every filter position, Alice needs to encode and
encrypt a single plaintext, as is shown in section 7.4.2.

As the number of filter positions depends on the size
of Alice’s data set SA, where n = |SA|, we define the
computational cost for the creation of a filter as follows:

Tfilter(SA) := m(Tencode + Tencrypt)

= |SA|
ln p

(ln 2)2
(3Tmul + Tadd)

Since the false positive rate p is considered a system
parameter, the creation of a filter is linear for both,
point addition and point doubling, regarding to the size
of Alice’s data set SA, i.e. Tfilter ∈ O(|SA|).

Querying & Result Retrieval
In order to perform a single query, Bob has to add up k
filter positions and a some blinding factor, as is shown
in section 7.4.3. The addition of the plaintext blind-
ing factor requires an encoding and an encryption step,
therefore, in order to query all elements of Bob’s data
set SB :

Tbatch,B(SB) := |SB |(Tencode + Tencrypt)

= |SB |(3Tmul + Tadd)

Next, Alice needs to decrypt every query they received
from Bob:

Tbatch,A(SB) := |SB |Tdecrypt

= |SB |(Tmul + Tadd)

For the last step in the querying protocol, Bob removes
the blinding factor and decodes the value of every result.
However, as was mentioned, decoding does not require
any point additions or doublings at runtime, therefore
this step does not induce any significant additional cost.

The computational complexity for both, Alice and
Bob, will therefore be linear in respect to Bob’s
data set size SB for point addition and doubling, i.e.
Tbatch,B(SB) ∈ O(|SB |) as well as Tbatch,A(SB) ∈
O(|SB |).

The total query time, excluding network overhead,
can then be written as follows:

Tbatch = Tbatch,B + Tbatch,A

= |SB |(4Tmul + 2Tadd)

Therefore, the total batch query time Tbatch is also
linear in |SB |.

7.7.2 Communication Complexity

In this section, we will discuss the communication com-
plexity of each phase of the protocol. For this purpose,
we define the complexity in terms of minimum amount
of bits transferred for each phase.

As all transferred messages are curve points, the size
of a message depend on the curve E(G) being used and

24

the corresponding order of the group G. Therefore, we
define the size of a (packed) curve point in bits as fol-
lows:

Lpoint := ⌈log2 (|G|)⌉+ 1

As ElGamal ciphertexts on E(G) consist of two curve
points, we can define the bit size of a ciphertext corre-
spondingly:

Lciphertext = 2Lpoint

In table 1, an overview of the size of a curve point in
bits for different curves is shown.

Curve (E(G)) Bits Per Point (Lpoint)
NIST224 224 + 1
NIST256 256 + 1
NIST384 384 + 1
NIST521 521 + 1

Table 1: Bits required for a point on different curves.

Filter Creation
After the creation of the filter by Alice, each encrypted
filter position needs to be transferred to Bob, therefore
the ciphertexts being transmitted during the filter cre-
ation phase is equal to the size of the Bloom filter m. As
the filter size is dependent on the number of elements n
and the false positive rate p, we can define the number
of transferred bits using eq. (5):

Lfilter(SA) := mLciphertext

= 2Lpoint
n ln(p)
(ln 2)2

= 2Lpoint
|SA| ln(p)
(ln 2)2

As the false positive rate p and the curve point size
Lpoint are considered to be system parameters, the num-
ber of ciphertexts transmitted by Alice for filter distri-
bution is therefore linear with respect to the amount of
elements |SA|, i.e. Lfilter(SA) ∈ O(|SA|). In comparison
to the record lookup scheme from section 6, each en-
crypted filter is 2Lpoint times larger the original filter.
For the case of a NIST256 curve, this results in a 514
times transaction size increase, as is shown in table 1.

Querying & Result Retrieval
For each separate queried element, Bob needs to send a
single ciphertext to Alice and then retrieves the result
as a single curve point. Given Bob’s set of elements
SB , we can define the communication complexity of as
single query as follows:

Lquery = Lciphertext + Lpoint = 3Lpoint

Using this, the total number of transmitted bits when
querying Bob’s entire set of elements SB is equal to:

Lbatch(SB) := Lquery|SB | = 3Lpoint|SB |

Therefore, the communication complexity for querying
is linear in respect to the size of Bob’s data set, i.e.
Lbatch(SB) ∈ |SB|.

7.7.3 Empirical Computational Performance

For the purpose of evaluating the computational per-
formance of our protocol, a Python prototype using
the Charm framework [45] was created. It should be
noted, however, that this implementation was not par-
ticularly optimised for speed and, therefore, only serves
for demonstrational purposes. The source code for the
prototype will be published as an open-source project
in the near future. Furthermore, since we already eval-
uated the theoretical communication complexity in the
previous section, we will exclude any network overhead
in this analysis.

In this section, we will evaluate the performance of
the filter setup for different filter sizes m, as well as the
performance of a single query for different amounts of
hash functions k, for which we will use the SHA3 hash
function. Furthermore, for this purpose, we will use the
same benchmarking setup as mentioned in section 6.3.

The evaluation for cost the filter setup phase Tsetup is
shown in fig. 12. Furthermore, the evaluation of the sin-
gle query performance Tquery is shown in fig. 13. Here,
the querying performance is lower than that for the
record lookup scheme in section 6, however it is suf-
ficiently fast to query larger batches of records. While
the setup cost is significantly larger due to all the en-
cryptions, it is most likely not an issue for record lookup
if databases are not updating this frequently.

101 102 103 104 105
100

102

104

Elements (n)

M
ed

ia
n

tim
e

(m
s)

Figure 12: Comparison of the median filter obfuscation
performance Tsetup for different amounts of elements
using the NIST256 curve. Furthermore, the number
of SHA3 hash functions k is set to 10 and the amount
of elements in the filter is chosen correspondingly.

25

90 100 110 120 130

Setup cost (µs)

p=0.01
p=0.001
p=0.0001
p=0.00001

Figure 13: Performance comparison of single (positive)
queries Tquery for different false positive rates using the
NIST256 curve. Furthermore, the element count n is
10 and the filter size is set correspondingly. In this
figure, the line represents the median, the box denotes
the range from the 25th up to the 75th percentile, and
the whiskers represents the 2nd and the 98th percentile.

7.8 Functionality Analysis
Lastly, we consider any additional functionality of our
protocol, as mentioned in section 5.1.4.

In our proposed protocol, when sharing a Bloom fil-
ter with additional elements, a filter provider can simply
generate an new key pair for the encryption of the filter
and use this key for all future transactions with con-
sumer. The consumer will now be enforced to use the
new filter and new public key, as using former versions
will product results indistinguishable from uniform ran-
domness. The probability that the result will then be
trivially decodable by the consumer is therefore negli-
gible, i.e. in this case the consumer will only retrieve
negative querying results.

Indeed, any information shared by queries on the pre-
vious filter is still available to the other party, and can
therefore leak data about changes to the data sets or
changing false positives. The first case, leakage about el-
ement changes is, however, inherent to our goal of infor-
mation sharing. Furthermore, using the same setup pa-
rameters for new filter versions if possible can limit leak-
age about false positives as described in section 6.1.4.
Here, the probability that the same false positives are in-
cluded in a new version of a filter are higher, the smaller
the differences between the filters.

Furthermore, the deletion of elements can be done
similarly, where the filter provider creates a new key
pair for a new Bloom filter and the corresponding trans-
actions. In this case, no data of this previous filter will
accessible to the filter consumer, except the information

that has already been queried. Furthermore, it is possi-
ble for the filter provider to limit the amount of queries
that are performed in order to prevent the creation of a
local database by the filter consumer, thereby limiting
this type of leakage.

8 Conclusions
We have provided a set of metrics for the evaluation
of the privacy, efficiency and utility aspects of different
record lookup schemes allowing for false positives.

Using these metrics, we have shown that Bloom filter-
based record lookup schemes, as the one introduced in
[4], can be privacy-preserving by using a shared secret
for encoding the data records for scenarios including an
outsider adversary. In the case of an insider adversary,
such schemes can also provide some level of privacy de-
pending on the configuration of the filter and the data
being stored. For the first time, we have furthermore
shown that, in the insider scenario, the distribution of
new filters, as will happen in the case of database up-
dates, can significantly reduce the privacy as the scheme
does not provide measures for guaranteeing the deletion
of data records.

Finally, building on this Bloom-filter based record
lookup scheme, we have presented a novel interactive
record lookup protocol using homomorphic encryption
that is practically applicable with regards to lookup per-
formance and network transaction sizes. Our lookup
protocol, furthermore, provides a means to limit the ef-
fect of brute-force attacks through rate-limiting in an
insider setting. Lastly, as it is an interactive protocol,
queries using older filters can be prevented, thereby al-
lowing for the addition and the secure deletion of ele-
ments without an impact on the privacy.

9 Future Work
In this paper, we have only considered the semi-honest
scenario for the privacy analysis of our encrypted Bloom
filter-based record lookup protocol, as this resembles
the situation of the unencrypted scheme in section 6.
A natural extension would, therefore, be an adaption
of the protocol to the malicious scenario [44]w here, an
adversary can choose to deviate from the protocol in
order to learn about any private inputs or outputs.

Moreover, while we have studied Bloom filter-based
schemes in this paper, other probabilistic data struc-
tures could be considered for record lookup schemes in
order to further improve privacy and efficiency. Here,
one possibility is the Cuckoo filter [46], which is a data
structure based on Cuckoo hashing [47] that has prop-
erties similar to Bloom filters, as it allows for false pos-
itives, however it is in many cases more storage effi-
cient than a Bloom filter. Furthermore, an efficient

26

Cuckoo hashing-based PSI protocol has been presented
in [48], which could possibly be adapted for use in pri-
vate record lookup schemes allowing for false positives.

Acknowledgements
This paper was supported by the Dutch Fiscal Informa-
tion and Investigation Service (FIOD). We thank Udo
Kroon and Gonnie de Graaff from the Dutch Ministry
of Justice and Security for their guidance. Additionally,
we thank Tim van de Kamp for his help and feedback.

References
[1] Ian P. Johnson. Report: Patients� data lay un-

secured after �NaProt� app glitch. (Accessed on
03/11/2019). Mar. 2018. url: https : / / p . dw .
com/p/2uRYe.

[2] Linda Carrol. Health data breaches on the
rise. (Accessed on 03/09/2019). Sept. 2018. url:
https://reut.rs/2xBMAlg.

[3] Kate O’Flaherty. Why Cyber-Criminals Are At-
tacking Healthcare. (Accessed on 03/09/2019).
Oct. 2018. url: https : / / www . forbes .
com / sites / kateoflahertyuk / 2018 / 10 / 05 /
why - cyber - criminals - are - attacking -
healthcare-and-how-to-stop-them/.

[4] M. Little, Santosh K. Shrivastava, and Neil Speirs.
“Using Bloom Filters to Speed-up Name Lookup
in Distributed Systems.” In: Comput. J. 45 (Jan.
2002), pp. 645–652. doi: 10.1093/comjnl/45.6.
645.

[5] Burton H. Bloom. “Space/Time Trade-offs in
Hash Coding with Allowable Errors”. In: Com-
mun. ACM 13.7 (July 1970), pp. 422–426. issn:
0001-0782. doi: 10.1145/362686.362692. url:
http://doi.acm.org/10.1145/362686.362692.

[6] Andrei Broder and Michael Mitzenmacher. “Net-
work Applications of Bloom Filters: A Survey”.
In: Internet Math. 1.4 (2003), pp. 485–509. url:
https : / / projecteuclid . org / euclid . im /
1109191032.

[7] Christian Esteve Rothenberg, Carlos Alberto
Braz Macapuna, and Alexander Wiesmaier. “In-
packet Bloom filters: Design and networking
applications”. In: CoRR abs/0908.3574 (2009).
arXiv: 0908 . 3574. url: http : / / arxiv . org /
abs/0908.3574.

[8] Li Fan, Pei Cao, J. Almeida, and A. Z. Broder.
“Summary cache: a scalable wide-area Web cache
sharing protocol”. In: IEEE/ACM Transactions
on Networking 8.3 (June 2000), pp. 281–293. issn:
1063-6692. doi: 10.1109/90.851975.

[9] Paulo Sérgio Almeida, Carlos Baquero, Nuno
Preguiça, and David Hutchison. “Scalable Bloom
Filters”. In: Information Processing Letters 101.6
(2007), pp. 255–261. issn: 0020-0190. doi: https:
//doi.org/10.1016/j.ipl.2006.10.007. url:
http : / / www . sciencedirect . com / science /
article/pii/S0020019006003127.

[10] James K. Mullin. “A Second Look at Bloom
Filters”. In: Commun. ACM 26.8 (Aug. 1983),
pp. 570–571. issn: 0001-0782. doi: 10 . 1145 /
358161.358167. url: http://doi.acm.org/
10.1145/358161.358167.

[11] Ken Christensen, Allen Roginsky, and Miguel Ji-
meno. “A New Analysis of the False Positive Rate
of a Bloom Filter”. In: Inf. Process. Lett. 110.21
(Oct. 2010), pp. 944–949. issn: 0020-0190. doi:
10.1016/j.ipl.2010.07.024. url: http://dx.
doi.org/10.1016/j.ipl.2010.07.024.

[12] Li Fan, Pei Cao, Jussara Almeida, and Andrei Z.
Broder. “Summary Cache: A Scalable Wide-area
Web Cache Sharing Protocol”. In: IEEE/ACM
Trans. Netw. 8.3 (June 2000), pp. 281–293. issn:
1063-6692. doi: 10.1109/90.851975. url: http:
//dx.doi.org/10.1109/90.851975.

[13] A. L. Tatarowicz, C. Curino, E. P. C. Jones, and
S. Madden. “Lookup Tables: Fine-Grained Parti-
tioning for Distributed Databases”. In: 2012 IEEE
28th International Conference on Data Engineer-
ing. Apr. 2012, pp. 102–113. doi: 10.1109/ICDE.
2012.26.

[14] Lena Wiese. “Clustering-based fragmentation and
data replication for flexible query answering in dis-
tributed databases”. In: Journal of Cloud Comput-
ing 3.1 (Oct. 2014), p. 18. issn: 2192-113X. doi:
10.1186/s13677-014-0018-0. url: https://
doi.org/10.1186/s13677-014-0018-0.

[15] C. Quantin, H. Bouzelat, and L. Dusserre. “A
computerized record hash coding and linkage pro-
cedure to warrant epidemiological follow-up data
security”. In: vol. 43. cited By 9. 1997, pp. 339–
342. doi: 10.3233/978- 1- 60750- 887- 8- 339.
url: https://www.scopus.com/inward/record.
uri?eid=2-s2.0-0031317926&doi=10.3233%
2f978- 1- 60750- 887- 8- 339&partnerID=40&
md5=3692dc6e670e489810d27afa3cc405f0.

[16] Rainer Schnell, Tobias Bachteler, and Jörg Reiher.
“Privacy-preserving record linkage using Bloom fil-
ters”. In: BMC Medical Informatics and Decision
Making 9.1 (Aug. 2009), p. 41. issn: 1472-6947.
doi: 10.1186/1472- 6947- 9- 41. url: https:
//doi.org/10.1186/1472-6947-9-41.

27

https://p.dw.com/p/2uRYe
https://p.dw.com/p/2uRYe
https://reut.rs/2xBMAlg
https://www.forbes.com/sites/kateoflahertyuk/2018/10/05/why-cyber-criminals-are-attacking-healthcare-and-how-to-stop-them/
https://www.forbes.com/sites/kateoflahertyuk/2018/10/05/why-cyber-criminals-are-attacking-healthcare-and-how-to-stop-them/
https://www.forbes.com/sites/kateoflahertyuk/2018/10/05/why-cyber-criminals-are-attacking-healthcare-and-how-to-stop-them/
https://www.forbes.com/sites/kateoflahertyuk/2018/10/05/why-cyber-criminals-are-attacking-healthcare-and-how-to-stop-them/
https://doi.org/10.1093/comjnl/45.6.645
https://doi.org/10.1093/comjnl/45.6.645
https://doi.org/10.1145/362686.362692
http://doi.acm.org/10.1145/362686.362692
https://projecteuclid.org/euclid.im/1109191032
https://projecteuclid.org/euclid.im/1109191032
https://arxiv.org/abs/0908.3574
http://arxiv.org/abs/0908.3574
http://arxiv.org/abs/0908.3574
https://doi.org/10.1109/90.851975
https://doi.org/https://doi.org/10.1016/j.ipl.2006.10.007
https://doi.org/https://doi.org/10.1016/j.ipl.2006.10.007
http://www.sciencedirect.com/science/article/pii/S0020019006003127
http://www.sciencedirect.com/science/article/pii/S0020019006003127
https://doi.org/10.1145/358161.358167
https://doi.org/10.1145/358161.358167
http://doi.acm.org/10.1145/358161.358167
http://doi.acm.org/10.1145/358161.358167
https://doi.org/10.1016/j.ipl.2010.07.024
http://dx.doi.org/10.1016/j.ipl.2010.07.024
http://dx.doi.org/10.1016/j.ipl.2010.07.024
https://doi.org/10.1109/90.851975
http://dx.doi.org/10.1109/90.851975
http://dx.doi.org/10.1109/90.851975
https://doi.org/10.1109/ICDE.2012.26
https://doi.org/10.1109/ICDE.2012.26
https://doi.org/10.1186/s13677-014-0018-0
https://doi.org/10.1186/s13677-014-0018-0
https://doi.org/10.1186/s13677-014-0018-0
https://doi.org/10.3233/978-1-60750-887-8-339
https://www.scopus.com/inward/record.uri?eid=2-s2.0-0031317926&doi=10.3233%2f978-1-60750-887-8-339&partnerID=40&md5=3692dc6e670e489810d27afa3cc405f0
https://www.scopus.com/inward/record.uri?eid=2-s2.0-0031317926&doi=10.3233%2f978-1-60750-887-8-339&partnerID=40&md5=3692dc6e670e489810d27afa3cc405f0
https://www.scopus.com/inward/record.uri?eid=2-s2.0-0031317926&doi=10.3233%2f978-1-60750-887-8-339&partnerID=40&md5=3692dc6e670e489810d27afa3cc405f0
https://www.scopus.com/inward/record.uri?eid=2-s2.0-0031317926&doi=10.3233%2f978-1-60750-887-8-339&partnerID=40&md5=3692dc6e670e489810d27afa3cc405f0
https://doi.org/10.1186/1472-6947-9-41
https://doi.org/10.1186/1472-6947-9-41
https://doi.org/10.1186/1472-6947-9-41

[17] Mehmet Kuzu, Murat Kantarcioglu, Elizabeth
Durham, and Bradley Malin. “A Constraint Sat-
isfaction Cryptanalysis of Bloom Filters in Pri-
vate Record Linkage”. In: Proceedings of the 11th
International Conference on Privacy Enhancing
Technologies. PETS’11. Waterloo, ON, Canada:
Springer-Verlag, 2011, pp. 226–245. isbn: 978-
3-642-22262-7. url: http : / / dl . acm . org /
citation.cfm?id=2032162.2032175.

[18] Frank Niedermeyer, Simone Steinmetzer, Martin
Kroll, and Rainer Schnell. “Cryptanalysis of Basic
Bloom Filters Used for Privacy Preserving Record
Linkage”. In: Journal of Privacy and Confidential-
ity 6 (Dec. 2014). doi: 10.29012/jpc.v6i2.640.

[19] Peter Christen, Rainer Schnell, Dinusha Vatsalan,
and Thilina Ranbaduge. “Efficient Cryptanalysis
of Bloom Filters for Privacy-Preserving Record
Linkage”. In: Apr. 2017, pp. 628–640. isbn: 978-
3-319-57453-0. doi: 10.1007/978-3-319-57454-
7_49.

[20] Mohammad Alaggan, Sébastien Gambs, and
Anne-Marie Kermarrec. “BLIP: Non-interactive
Differentially-Private Similarity Computation on
Bloom Filters”. In: 14th International Symposium
on Stabilization, Safety, and Security of Dis-
tributed Systems (SSS 2012). Toronto, Canada,
Oct. 2012. url: https://hal.inria.fr/hal-
00724829.

[21] Giuseppe Bianchi, Lorenzo Bracciale, and Pier-
paolo Loreti. “”Better Than Nothing” Privacy
with Bloom Filters: To What Extent?” In: Pro-
ceedings of the 2012 International Conference
on Privacy in Statistical Databases. PSD’12.
Palermo, Italy: Springer-Verlag, 2012, pp. 348–
363. isbn: 978-3-642-33626-3. doi: 10.1007/978-
3-642-33627-0_27. url: http://dx.doi.org/
10.1007/978-3-642-33627-0_27.

[22] Pierangela Samarati and Latanya Sweeney. Pro-
tecting Privacy when Disclosing Information: k-
Anonymity and Its Enforcement through General-
ization and Suppression. Tech. rep. 1998.

[23] F. S. Tabataba and M. R. Hashemi. “Improving
false positive in Bloom filter”. In: 2011 19th Ira-
nian Conference on Electrical Engineering. May
2011, pp. 1–1.

[24] Hyesook Lim, Nara Lee, Jungwon Lee, and
Changhoon Yim. “Reducing False Positives of a
Bloom Filter using Cross-Checking Bloom Fil-
ters”. In: 8 (July 2014), pp. 1865–1877.

[25] Alex Davidson and Carlos Cid. “Computing Pri-
vate Set Operations with Linear Complexities”.
In: IACR Cryptology ePrint Archive 2016 (2016),
p. 108. url: http://eprint.iacr.org/2016/
108.

[26] Auguste Kerckhoffs. “La cryptographie militaire”.
In: Journal des sciences militaires IX (Jan. 1883),
pp. 5–83.

[27] Udo Kroon. “Ma3tch: Privacy and knowledge:
‘Dynamic networked collective intelligence’”. In:
2013 IEEE International Conference on Big Data
(2013).

[28] C. E. Shannon. “A mathematical theory of com-
munication”. In: The Bell System Technical Jour-
nal 27.3 (July 1948), pp. 379–423. issn: 0005-8580.
doi: 10.1002/j.1538-7305.1948.tb01338.x.

[29] Catherine A. Meadows. “A More Efficient Cryp-
tographic Matchmaking Protocol for Use in the
Absence of a Continuously Available Third Party”.
In: Proceedings of the 1986 IEEE Symposium on
Security and Privacy, Oakland, California, USA,
April 7-9, 1986. 1986, pp. 134–137. doi: 10.1109/
SP.1986.10022. url: https://doi.org/10.
1109/SP.1986.10022.

[30] Michael J. Freedman, Kobbi Nissim, and Benny
Pinkas. “Efficient Private Matching and Set In-
tersection”. In: Advances in Cryptology - EURO-
CRYPT 2004, International Conference on the
Theory and Applications of Cryptographic Tech-
niques, Interlaken, Switzerland, May 2-6, 2004,
Proceedings. Vol. 3027. Lecture Notes in Com-
puter Science. Springer, 2004, pp. 1–19. doi: 10.
1007/978- 3- 540- 24676- 3_1. url: https://
iacr.org/archive/eurocrypt2004/30270001/
pm-eurocrypt04-lncs.pdf.

[31] Moni Naor and Benny Pinkas. “Oblivious Trans-
fer and Polynomial Evaluation”. In: Proceedings
of the Thirty-first Annual ACM Symposium on
Theory of Computing. STOC ’99. Atlanta, Geor-
gia, USA: ACM, 1999, pp. 245–254. isbn: 1-58113-
067-8. doi: 10.1145/301250.301312. url: http:
//doi.acm.org/10.1145/301250.301312.

[32] Pascal Paillier. “Public-key Cryptosystems Based
on Composite Degree Residuosity Classes”. In:
Proceedings of the 17th International Confer-
ence on Theory and Application of Cryptographic
Techniques. EUROCRYPT’99. Prague, Czech Re-
public: Springer-Verlag, 1999, pp. 223–238. isbn:
3-540-65889-0. url: http : / / dl . acm . org /
citation.cfm?id=1756123.1756146.

[33] Carmit Hazay and Kobbi Nissim. “Efficient Set
Operations in the Presence of Malicious Adver-
saries”. In: Proceedings of the 13th International
Conference on Practice and Theory in Public Key
Cryptography. PKC’10. Paris, France: Springer-
Verlag, 2010, pp. 312–331. isbn: 3-642-13012-7,
978-3-642-13012-0. doi: 10.1007/978- 3- 642-
13013 - 7 _ 19. url: http : / / dx . doi . org / 10 .
1007/978-3-642-13013-7_19.

28

http://dl.acm.org/citation.cfm?id=2032162.2032175
http://dl.acm.org/citation.cfm?id=2032162.2032175
https://doi.org/10.29012/jpc.v6i2.640
https://doi.org/10.1007/978-3-319-57454-7_49
https://doi.org/10.1007/978-3-319-57454-7_49
https://hal.inria.fr/hal-00724829
https://hal.inria.fr/hal-00724829
https://doi.org/10.1007/978-3-642-33627-0_27
https://doi.org/10.1007/978-3-642-33627-0_27
http://dx.doi.org/10.1007/978-3-642-33627-0_27
http://dx.doi.org/10.1007/978-3-642-33627-0_27
http://eprint.iacr.org/2016/108
http://eprint.iacr.org/2016/108
https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
https://doi.org/10.1109/SP.1986.10022
https://doi.org/10.1109/SP.1986.10022
https://doi.org/10.1109/SP.1986.10022
https://doi.org/10.1109/SP.1986.10022
https://doi.org/10.1007/978-3-540-24676-3_1
https://doi.org/10.1007/978-3-540-24676-3_1
https://iacr.org/archive/eurocrypt2004/30270001/pm-eurocrypt04-lncs.pdf
https://iacr.org/archive/eurocrypt2004/30270001/pm-eurocrypt04-lncs.pdf
https://iacr.org/archive/eurocrypt2004/30270001/pm-eurocrypt04-lncs.pdf
https://doi.org/10.1145/301250.301312
http://doi.acm.org/10.1145/301250.301312
http://doi.acm.org/10.1145/301250.301312
http://dl.acm.org/citation.cfm?id=1756123.1756146
http://dl.acm.org/citation.cfm?id=1756123.1756146
https://doi.org/10.1007/978-3-642-13013-7_19
https://doi.org/10.1007/978-3-642-13013-7_19
http://dx.doi.org/10.1007/978-3-642-13013-7_19
http://dx.doi.org/10.1007/978-3-642-13013-7_19

[34] Taher El Gamal. “A Public Key Cryptosystem
and a Signature Scheme Based on Discrete Log-
arithms”. In: Proceedings of CRYPTO 84 on
Advances in Cryptology. Santa Barbara, Califor-
nia, USA: Springer-Verlag New York, Inc., 1985,
pp. 10–18. isbn: 0-387-15658-5. url: http://dl.
acm.org/citation.cfm?id=19478.19480.

[35] Florian Kerschbaum. “Public-key Encrypted
Bloom Filters with Applications to Supply Chain
Integrity”. In: Proceedings of the 25th Annual
IFIP WG 11.3 Conference on Data and Appli-
cations Security and Privacy. DBSec’11. Rich-
mond, VA: Springer-Verlag, 2011, pp. 60–75. isbn:
978-3-642-22347-1. url: http://dl.acm.org/
citation.cfm?id=2029896.2029906.

[36] Shafi Goldwasser and Silvio Micali. “Probabilis-
tic Encryption &Amp; How to Play Mental Poker
Keeping Secret All Partial Information”. In: Pro-
ceedings of the Fourteenth Annual ACM Sympo-
sium on Theory of Computing. STOC ’82. San
Francisco, California, USA: ACM, 1982, pp. 365–
377. isbn: 0-89791-070-2. doi: 10.1145/800070.
802212. url: http://doi.acm.org/10.1145/
800070.802212.

[37] Florian Kerschbaum. “Outsourced Private Set In-
tersection Using Homomorphic Encryption”. In:
Proceedings of the 7th ACM Symposium on Infor-
mation, Computer and Communications Security.
ASIACCS ’12. Seoul, Korea: ACM, 2012, pp. 85–
86. isbn: 978-1-4503-1648-4. doi: 10 . 1145 /
2414456.2414506. url: http://doi.acm.org/
10.1145/2414456.2414506.

[38] H. Perl, Y. Mohammed, M. Brenner, and M.
Smith. “Fast confidential search for bio-medical
data using Bloom filters and Homomorphic Cryp-
tography”. In: 2012 IEEE 8th International Con-
ference on E-Science. Oct. 2012, pp. 1–8. doi:
10.1109/eScience.2012.6404484.

[39] N. P. Smart and F. Vercauteren. “Fully Homo-
morphic Encryption with Relatively Small Key
and Ciphertext Sizes”. In: Proceedings of the 13th
International Conference on Practice and The-
ory in Public Key Cryptography. PKC’10. Paris,
France: Springer-Verlag, 2010, pp. 420–443. isbn:
3-642-13012-7, 978-3-642-13012-0. doi: 10.1007/
978-3-642-13013-7_25. url: http://dx.doi.
org/10.1007/978-3-642-13013-7_25.

[40] Changyu Dong, Liqun Chen, and Zikai Wen.
“When private set intersection meets big data: an
efficient and scalable protocol”. In: Proceedings
of the 2013 ACM SIGSAC conference on Com-
puter communications security. CCS ’13. Berlin,
Germany: ACM, 2013, pp. 789–800. isbn: 978-1-
4503-2477-9. doi: 10 . 1145 / 2508859 . 2516701.

url: http://doi.acm.org/10.1145/2508859.
2516701.

[41] Benny Pinkas, Thomas Schneider, and Michael
Zohner. “Faster Private Set Intersection Based
on OT Extension”. In: Proceedings of the 23rd
USENIX Security Symposium, San Diego, CA,
USA, August 20-22, 2014. 2014, pp. 797–812.
url: https://www.usenix.org/conference/
usenixsecurity14 / technical - sessions /
presentation/pinkas.

[42] Benny Pinkas, Thomas Schneider, and Michael
Zohner. “Scalable Private Set Intersection Based
on OT Extension”. In: IACR Cryptology ePrint
Archive 2016 (2016), p. 930. url: http://eprint.
iacr.org/2016/930.

[43] Rolf Egert, Marc Fischlin, David Gens, Sven Ja-
cob, Matthias Senker, and Jörn Tillmanns. “Pri-
vately Computing Set-Union and Set-Intersection
Cardinality via Bloom Filters”. In: Information
Security and Privacy - 20th Australasian Con-
ference, ACISP 2015, Brisbane, QLD, Australia,
June 29 - July 1, 2015, Proceedings. 2015, pp. 413–
430. doi: 10.1007/978- 3- 319- 19962- 7_24.
url: https://doi.org/10.1007/978-3-319-
19962-7%5C_24.

[44] Oded Goldreich. Foundations of Cryptography:
Volume 2, Basic Applications. New York, NY,
USA: Cambridge University Press, 2004. isbn:
0521830842.

[45] Joseph A. Akinyele, Christina Garman, Ian
Miers, Matthew W. Pagano, Michael Rushanan,
Matthew Green, and Aviel D. Rubin. “Charm:
a framework for rapidly prototyping cryptosys-
tems”. In: Journal of Cryptographic Engineering
3.2 (2013), pp. 111–128. issn: 2190-8508. doi: 10.
1007/s13389- 013- 0057- 3. url: http://dx.
doi.org/10.1007/s13389-013-0057-3.

[46] Bin Fan, Dave G. Andersen, Michael Kaminsky,
and Michael D. Mitzenmacher. “Cuckoo Filter:
Practically Better Than Bloom”. In: Proceedings
of the 10th ACM International on Conference
on Emerging Networking Experiments and Tech-
nologies. CoNEXT ’14. Sydney, Australia: ACM,
2014, pp. 75–88. isbn: 978-1-4503-3279-8. doi: 10.
1145/2674005.2674994. url: http://doi.acm.
org/10.1145/2674005.2674994.

[47] Rasmus Pagh and Flemming Friche Rodler.
“Cuckoo Hashing”. In: Algorithms — ESA 2001.
Ed. by Friedhelm Meyer auf der Heide. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2001,
pp. 121–133. isbn: 978-3-540-44676-7.

29

http://dl.acm.org/citation.cfm?id=19478.19480
http://dl.acm.org/citation.cfm?id=19478.19480
http://dl.acm.org/citation.cfm?id=2029896.2029906
http://dl.acm.org/citation.cfm?id=2029896.2029906
https://doi.org/10.1145/800070.802212
https://doi.org/10.1145/800070.802212
http://doi.acm.org/10.1145/800070.802212
http://doi.acm.org/10.1145/800070.802212
https://doi.org/10.1145/2414456.2414506
https://doi.org/10.1145/2414456.2414506
http://doi.acm.org/10.1145/2414456.2414506
http://doi.acm.org/10.1145/2414456.2414506
https://doi.org/10.1109/eScience.2012.6404484
https://doi.org/10.1007/978-3-642-13013-7_25
https://doi.org/10.1007/978-3-642-13013-7_25
http://dx.doi.org/10.1007/978-3-642-13013-7_25
http://dx.doi.org/10.1007/978-3-642-13013-7_25
https://doi.org/10.1145/2508859.2516701
http://doi.acm.org/10.1145/2508859.2516701
http://doi.acm.org/10.1145/2508859.2516701
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/pinkas
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/pinkas
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/pinkas
http://eprint.iacr.org/2016/930
http://eprint.iacr.org/2016/930
https://doi.org/10.1007/978-3-319-19962-7_24
https://doi.org/10.1007/978-3-319-19962-7%5C_24
https://doi.org/10.1007/978-3-319-19962-7%5C_24
https://doi.org/10.1007/s13389-013-0057-3
https://doi.org/10.1007/s13389-013-0057-3
http://dx.doi.org/10.1007/s13389-013-0057-3
http://dx.doi.org/10.1007/s13389-013-0057-3
https://doi.org/10.1145/2674005.2674994
https://doi.org/10.1145/2674005.2674994
http://doi.acm.org/10.1145/2674005.2674994
http://doi.acm.org/10.1145/2674005.2674994

[48] Hao Chen, Kim Laine, and Peter Rindal. “Fast
Private Set Intersection from Homomorphic En-
cryption”. In: Proceedings of the 2017 ACM
SIGSAC Conference on Computer and Commu-
nications Security, CCS 2017, Dallas, TX, USA,
October 30 - November 03, 2017. 2017, pp. 1243–
1255. doi: 10 . 1145 / 3133956 . 3134061. url:
https://doi.org/10.1145/3133956.3134061.

30

https://doi.org/10.1145/3133956.3134061
https://doi.org/10.1145/3133956.3134061

	Introduction
	Background
	Bloom Filters

	Related Work
	Contributions
	System Model
	Metrics
	Privacy
	Utility
	Efficiency
	Functionality

	Bloom Filters
	Privacy Analysis
	Agnostic Outsider
	Outsider
	Insider
	Same Parameter Setups

	Utility Analysis
	Efficiency Analysis
	Computational Complexity
	Communication Complexity

	Functionality Analysis
	Case Study Ma3tch
	Method
	Theoretical Analysis
	Experimental Analysis
	Discussion of Single-Filter Scenario

	Discussion

	Encrypted Bloom Filters
	Related Work
	Contributions
	Primitives
	ElGamal on Elliptic Curves
	Additive Bloom Filters

	Protocol
	Setup
	Filter Encryption
	Querying
	Result Retrieval

	Privacy Analysis
	Corrupted Filter Consumer
	Corrupted Filter Provider

	Utility Analysis
	Efficiency Analysis
	Computational Complexity
	Communication Complexity
	Empirical Computational Performance

	Functionality Analysis

	Conclusions
	Future Work

