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Abstract— The classic control approach used for
industrial robot manipulators implicitly assumes a
known, controlled, and predictable environment.
However, these assumptions cannot be guaranteed for
robots operating in uncertain and dynamic environ-
ments. The development of service robots, for in-
stance, requires control implementations that allows
them to robustly execute tasks under these condi-
tions. In this paper, we introduce an approach for
designing a lazy control strategy that provides ro-
bustness towards specific changes and uncertainties
in dynamic environments which are not considered
in the classic control approach. The methodology is
applied for a 7-DOF anthropomorphic robotic arm
to perform the task of opening a drawer. It exploits
knowledge of the task context to design a lazy control
strategy and controller that does only as much as it
necessary to achieve the task.

I. INTRODUCTION

The success of robot manipulators in the industry and the
technological advances from recent years have increased the
interest for developing commercial robots. These type of
robots have the potential of increasing productivity in many
sectors never before considered. Service robots, for instance,
have the potential of assisting humans in performing repeti-
tive and mundane household tasks.

Unfortunately, taking robots from an industrial to a house-
hold environment still has many unresolved problems. The
unpredictable nature of a household environment makes it dif-
ficult to program robots for executing tasks. Moreover, acci-
dental or deliberate human interaction is expected to happen.
Safety must be guaranteed for people sharing the workspace.
As a result, methods that have been applied for years in the
industry cannot be used for programming robots in this con-
text. Manufacturing processes focus on meeting strict qual-
ity and efficiency requirements in highly controlled and en-
gineered workspaces to guarantee an ideal execution. These
spaces are then modelled for tuning controller parameters of-
fline with the goal of creating optimal and precise actions.
This methodology, naturally, is not well suited for dealing
with changes and uncertainties in the environment.

Robot manipulators are an example of industrial robots
controlled for precise and optimal motions. This is gener-
ally achieved by solving the classic Tracking and Disturbance
Rejection Problem. It consists on determining the control
inputs necessary to follow a desired trajectory, while simul-
taneously rejecting disturbances due to un-modelled dynamic
effects. To do so, a kinematic and dynamic model of the
robot are derived. PD and PID controllers are the preferred
and most common type of control algorithms used. A feed-
forward controller may also be included to improve track-
ing and disturbance rejection when these disturbances can be

modelled. These control techniques have been well studied in
the literature, e.g., [1] [2], and are very effective at tracking
and rejecting disturbances.

However, applying these methods for controlling service
robots in dynamic environments can result in unwanted and
even dangerous behaviour for the robot, and especially, any
humans in close contact with it. In this context, any un-
planned behaviour, including human interaction, is seen by
the controller as a disturbance that needs to be eliminated.
Pushing the robot away from its programmed path would
result in the robot pushing back. This is not the type of
response one would expect a service robots to have.

Nevertheless, recent studies have developed methods for
safe human-robot interaction by giving the robot a compliant
behaviour when reacting to external forces. In [3] and [4], an
impedance control approach that safely shapes the interact-
ing forces between the robot and its environment is proposed.
Furthermore, [5] uses this method combined with position
and force control to safely deal with unexpected collisions
with dynamic obstacles while moving in an unstructured en-
vironment. However, these techniques are applied considering
implicit assumptions, intrinsic to the classic control paradigm,
that do not always hold in dynamic and uncertain environ-
ments where service robots operate.

It can be argued that the controller’s ability to achieve a
task in these conditions is constrained by the following limita-
tions: i) the available information of the workspace, and ii)
sensor data quality. Addressing these limitations requires to
re-evaluate predefined conditions embedded in the classical
control paradigm. Creating robust implementations in sce-
narios where these assumptions do not hold is linked to the
trade-off with reducing performance in terms of its tracking
speed and precision [6].

In general terms, the context of household tasks has differ-
ent performance requirements than manufacturing tasks. It
can easily be noted that the former requires lower levels of pre-
cision: knowledge of the exact joining point is required when
assembling two parts together, but one does not need to spec-
ify an exact point for grasping a bottle. There is a range of
valid points that yield the same result. Similarly, meticulously
following a trajectory in time is a fundamental requirement
in welding applications but is not as relevant when opening
a drawer. Hence, it seems clear that control requirements for
household applications can be reduced, while maintaining an
acceptable system performance, specified by the given task.

However, a common household task, such as opening a
drawer, becomes a non-trivial problem in a dynamic and un-
certain environment. This task has been previously studied
in the literature considering such conditions. In [7], the au-
thor proposes a method for identifying the directions of un-
known constraints imposed by a drawer or door to properly
orient the mechanism and reduce the required pulling force.
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Furthermore, one of the most successful implementations is
found in [8] [9], where it estimates a trajectory for the pre-
dicted type of joint (prismatic for a drawer or revolute for a
door) and uses a form of impedance control to open them.
The author accurately proposes to consider the surface of the
drawer/door to first identify contact, facilitating grasping its
handle.

This paper presents a general lazy control approach for con-
trolling robotic systems in a dynamic and uncertain environ-
ment. We use this approach for controlling a 7-DOF anthro-
pomorphic robotic arm (referred in the rest of this document
as the arm) equipped with a passive “hook-like” end-effector
for opening a drawer. Furthermore, we explore the conse-
quences of making the controller lazy by:

• Expanding the notion of reference set-point to a region
of motion by introducing an error margin. The system’s
performance is considered as acceptable if its behaviour
is within this region.

• Exploiting knowledge of how the the arm’s behaviour is
constrained by its dynamics, kinematics, and the task’s
common workspace to selectively control only the joints
that are required to achieve a specific action, while keep-
ing the others in a passive and compliant mode.

The outline of this paper has been organized as follows: Sec-
tion II generally introduces the lazy control approach. Section
III follows by applying this approach for the task of open-
ing a drawer. Next, Section IV implements a lazy adaptive
controller for the arm. Section V shows the experiments per-
formed on the arm and the controller’s behaviour while open-
ing a drawer. Finally, Section VI concludes with the results
of this investigation and discusses future work.

II. LAZY CONTROL APPROACH

Addressing changes and uncertainties in the environment
requires to look at alternative approaches for controlling sys-
tems that operate under such conditions. The traditional
control approach is based on finding an optimal solution to
the control problem. It requires a high level of precision and
is, therefore, limited to implicit assumptions that generally
do not apply in these environments. The lazy control ap-
proach relaxes classic control aspects based on the task being
performed and the requirements for successfully achieving it.
These conditions are defined as the task context and are clas-
sified into three different groups:

• Robot capabilities: The robot capabilities are defined by
the tools and sensors that let the robot interact with the
environment in specific ways. The type of actuators, end-
effector, force and image sensors, etc. are all examples
of these elements. Knowledge of the robot’s dynamic
and kinematic behaviour is also considered here since it
determines how this interaction occurs.

• Common workspace: The objects and surfaces in the en-
vironment that are always present when performing the
task are referred to as the common workspace. These
are the elements with which the robot typically interacts
while executing a task.

• Task specifications: The task specifications contain the
plan of how a task can be achieved. Precision require-
ments for executing it are defined here.
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Figure 1: Structure of the task context.

The task context contains all the required information for
executing a task considering the robot capabilities and how it
is able to interact and be coupled together with the common
workspace to obtain the desired behaviour. The insight ob-
tained from this analysis allows us to design a lazy controller
by considering relaxing the following control aspects:

Set-point and trajectory tracking Introducing an error
margin when tracking a set-point or trajectory expands the
notion of a reference point (or path) into a region of motion
where the error is considered to be zero. Within this area,
the system’s performance is considered to be sufficient for
achieving the action.

The goal is for the controller to act as open-loop when the
error is within the error margin. When this condition is met,
the control action is not influenced by the feedback error sig-
nal because it is already sufficient to provide the desired sys-
tem output. However, when the error exceeds this margin the
feedback signal is “reconnected” to drive the system back into
the desired region of motion.

Controlled system state variables Exploiting knowledge
of how the system’s behaviour is constrained by its dynamics,
kinematics, and the task’s common workspace allows to
reduce the amount of controlled system state variables.

A controller that is lazy requires less precise information to
compute control actions because it does not attempt to find
an optimal solution, but rather a solution that is sufficient
for the desired performance requirements. Furthermore, it
not concerned about changes in system state variables that
are not relevant to the action being performed. Nonetheless,
that does not imply that the system will not act with
precision. An action can result precise by cleverly using the
constraints set on the system to guide its motion. Moreover,
its behaviour must maintain an acceptable performance,
according to the task context specifications, and behave in a
safe and predictable manner.

Robots working in a dynamic environment need a way to
plan and coordinate actions based on (predictable and un-
predictable) events that occur at run-time. A series of situa-
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tions that cannot be foreseen offline can occur at any moment.
The control system must be able to identify and react to the
system’s behaviour. An expanded control system diagram is
shown in Figure 2, including two additional entities: a Mo-
tion Monitor and a Planner. In this research, we limit our
analysis to actions performed in a nominal order. A brief
description of the basic role of these entities, as used in this
paper, is provided. However, in a general case, these enti-
ties have a broader role composing and coordinating skills for
unplanned non-nominal scenarios. An in-depth analysis of
the most common methodologies for coordinating, configur-
ing, and composing robotic behaviours is presented in [10].

Controller Plant

Motion 
MonitorPlanner 

u(t) y(t)r(t)

params

Figure 2: Diagram for the lazy control scheme. The signals r(t), u(t),
and y(t) are the reference, control action, and system output signals of

the classic control scheme, respectively. The Motion Monitor and
Planer influence the behaviour of the Controller by reconfiguring its
parameters given different situations. Communication between the

Planner requires Motion Monitor occurs in both directions.

The Motion Monitor is added to the control process for
monitoring the system’s behaviour. It determines if the
system is operating as expected or not, and it identifies
events that trigger actions based on the available sensor
information. The Planner contains information of the
execution plan and how it is achieved. Both entities are
able to reconfigure the controller’s parameters to adjust its
behaviour adequately for the current action.

III. OPENING A DRAWER

In this section we implement a control strategy based on
the lazy control approach . The system to be controlled is
a 7-DOF anthropomorphic robotic arm and the task it per-
forms is opening a drawer. We define the context of the task
by gathering information of the robot capabilities, common
workspace, and the task specifications. This knowledge is
used to design a lazy control strategy, followed by a controller
implementation, in Section IV, that will accomplish such
behaviour.

i) Robot capabilities The arm mechanism can be simpli-
fied, without loss of functionality for this specific task, into a
3-DOF model as shown in Figure 3. This mechanism has a
set of revolute joints with parallel axes at the Shoulder, El-
bow, and Wrist. The motors controlling the joints are back-
drivable and can be set in a high-impedance state that is
passive and compliant to external forces, such as gravity and
human interaction. When the joint is being actively controlled
it is said to be in a controlled mode, when it is set in a high-
impedance state it is referred to as in passive mode.

Shoulder joint 

Elbow joint 

Upper Arm

Wrist joint 

Forearm 

End-effector

Handle

Drawer surface

Figure 3: 3-DOF representation of the anthropomorphic robotic arm
and the common workspace for the task of opening a drawer. The

arm’s links and joints are named after their human counterparts. The
end-effector is a passive 3D printed hand in a “hook-like” shape.”

Furthermore, motors are equipped with position sensors
and encoders that compute the motor’s velocity in every actu-
ator. No vision capabilities are available. Hence, for the sake
of simplicity, it is assumed that an approximation of the han-
dle’s height is already available. Finally, the arm is equipped
with a passive end-effector: a 3D printed hand in an L-shaped
configuration.

ii) Common workspace The workspace elements that
are always present when opening a drawer are shown in
Figure 3. Naturally, these are the surface and handle of
the drawer. The type of handle is just as important as the
type of end-effector when determining how the task will be
achieved. Here, we consider a drawer with a typical cabinet
“pull handle”.

ii) Task specifications The task specifications describe
how the task is executed and how precise the system needs to
be in order to achieve it. One convenient form of describing
an execution plan is by using a skill-based approach. This is
a modular form of programming robot actions that divides a
task into a set of simpler actions, or skills. These skills can
then be interchanged and rearranged to achieve other tasks.
This results convenient, among other things, since we can
focus on a control strategy for each skill individually.

Pull GraspReach 

Figure 4: Simple nominal skill decomposition for the task of opening a
drawer.

Figure 4 shows a nominal skill decomposition for opening a
drawer. The plan is executed as follows: first, the Reach skill
requires the arm to drive the end-effector towards the handle.
The Grasp skill represents the action of properly attaching
the end-effector to the handle. Finally, the Pull skill requires
the arm to open the drawer by pulling the handle.

The grasping action can occur at any point along the
handle. It is not important to define a precise point of inter-
action. Precisely controlling the motion of the end-effector
is also not required for reaching and pulling the drawer, as
long as its behaviour is predictable and safe for humans. As
it has been stated before, many other household tasks have
these same performance requirements.
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The task context brings together the knowledge of the
robot’s capabilities, the common workspace, and how a task
can be executed to design a detailed control strategy for suc-
cessfully achieving it. When describing a task, it is useful
to acknowledge how we, as humans, approach these actions.
Sensing the environment, for instance, is an important re-
source for effectively achieving them. We do not know the
precise location of an object’s position when we reach for it.
Rather, we move our hand in the object’s direction, using our
sight to react to the motion as it occurs. Then, we use touch
to acknowledge we have reached the object before grasping it.
The following paragraphs presents a detailed control strategy
for each skill, keeping in mind these ideas. A few assumptions
need to be made before considering this strategy. We assume
that the drawer’s global position is known and that the robot
is placed at a valid distance in front of it. Note, however, that
the handle’s position in space and its geometry is not certain
since it is not easily measured, but an approximation of its
height is given.

• Reach skill : The action of reaching the drawer represents
a forward motion in space of the end-effector constrained
only by the dynamics and kinematics of the system. How-
ever, at a certain point, displacement is limited by the
drawer’s surface. Assuming the drawer is within reach,
the end-effector will eventually make contact if it keeps
moving forward. Making contact guarantees that the
end-effector is indeed at the drawer’s exact location with-
out the need of precisely defining it offline.

Notice that under the previous conditions, the only infor-
mation from the workspace that is required by the con-
troller to successfully execute the skill is to define where
contact should be made. For convenience, we are in-
terested in controlling the arm to place the end-effector
above the handle. However, precise positioning is not a
requirement: there is no motivation for defining a spe-
cific point in the surface where this should happen. In-
stead, we argue that there is a region above the handle
where making contact is equally valid, as seen on Figure
5. This region is limited vertically by the handle’s height
and the available surface above it; and, if considering a
3-dimensional analysis, by the handle’s width.

region of contact

Handle

Figure 5: Illustration of the Reach skill. The area shaded in blue
represents the region where the end-effector is expected to make

contact with the surface. Any point in the surface within this region is
equally valid for successfully executing the skill.

• Grasp skill : Attaching the end-effector to the handle can
be conveniently achieved by using it as a hook. Assuming

the previous skill has been executed successfully, the end-
effector can be hooked into the handle by simply sliding
it down along the surface. This is achieved by setting
the Elbow joint to passive mode and allowing gravity to
manipulate it. The Forearm and end-effector, coupled
between the Upper Arm and the drawer’s surface, will
slide down with a backwards motion of the arm (away
from the drawer) generated by the Shoulder joint.

• Pull skill : The transition between the Grasp and Pull
skill occurs seamlessly, since the same backwards motion
continues for this actions. The “pulling” behaviour hap-
pens when the end-effector makes contact with the han-
dle. This coupling translates the drawer’s constraints to
the arm and restrict its movement to only one possible
direction. Then, the Forearm can “rest” on the handle
and act as a passive coupling link between the Upper Arm
and drawer.

Skills are triggered by events that occur when the arm in-
teracts with the environment. The controller’s behaviour de-
pends on what skill is being executed. For this task, the
controller’s behaviours are reduced to two: a forward motion,
when executing the Reach skill, and a backwards motion, for
both the Grasp and Pull skills. Making contact with the
drawer’s surface triggers the change. This event can be iden-
tified by using the position sensors in the Wrist joint and
noticing its displacement as consequence of the interaction.
Therefore, the control scheme of Figure 2 results useful for
monitoring and managing these changes.

IV. CONTROLLER IMPLEMENTATION

We now explore how the arm can be lazily controlled to
achieve the task while providing the sufficient performance
considering its context.

The first point to acknowledge is that the arm’s motion
does not need to be described by a time-dependent trajec-
tory. Instead, it can be defined with a series of guarded mo-
tions that are triggered by specific events. Here, the Shoulder
joint is used as the “driver” of the motion, pushing the arm
forward or backwards. The Elbow joint, on the other hand,
continuously adjusts the end-effector’s height to the desired
region of motion as a result of the movement. Hence, the end-
effector’s trajectory is not a pre-planned input to the system,
but rather a result of how the joints respond to a given input
signal while being constrained by its dynamics, kinematics,
and the environment.

The next point to consider is that there is no need to
continuously control all joints during the complete execution
of the task. Precisely orienting the end-effector during exe-
cution, for instance, does not require active control. A com-
pliant behaviour of the Wrist joint allows the end-effector to
accommodate to the surface as it is pushed against it. This is
also convenient as it adds damping to the motion on impact.
In addition, when pulling the drawer, the Forearm rests its
weight in the handle and acts as a passive link adjusting itself
to the interaction. Its motion and the end-effector’s position
are of no concern and do not need to be controller, since the
constraints (set by the handle and drawer) will guide them as
necessary.
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The last point to consider is that the controller must be
able to adapt to workspace changes and uncertainties. One
example is friction. Its effects on the system while pulling
the drawer are unknown and may vary depending on the
drawer, or even as the drawer is being pulled. Therefore, the
forces that occur from this interaction are not known prior
to the action.

Based on the previous considerations, we propose an adap-
tive controller that computes the driving torque by monitor-
ing and reacting to the system’s behaviour. It does not require
knowledge from the system’s parameters or a pre-planned
trajectory to move the arm. The controller adapts its con-
trol action to compensate for un-modelled system dynamics,
including coupling effects among the links, and to the un-
modelled interaction with the workspace, i.e., forces resulting
from pulling the drawer.

The adaptive law is based on the Adaptive-Bias/Adaptive-
Gain algorithm proposed in [11]. It keeps track of the overall
sign of the error, defined here as the low-passed filtered er-
ror sign or ēk, to compute the control action. The algorithm
has been modified to consider a set-point tracking error mar-
gin, represented by σ. As stated in Section II, this results
in expanding the notion of set-point into a region of motion.
ēk stabilizes around the set-point, when |ēk| < ε, where ε
is a stabilizing threshold. Once stable, its value remains as
zero until the system exits the region of motion. Algorithm 1
shows the controller’s logic, including these modifications.

Here, hside(.) refers to the Heaviside function defined
as 0 for negative numbers, 1 for positive. The algorithm is
composed of two main steps. In the first step, the error is
evaluated. If ēk is stable and the system is within the error
margin, ēk = 0. Else, ēk is updated by applying a low pass
filter to the sign of the instantaneous error value. In case of
the latter, this value is compared to the stabilizing threshold
to determine if ēk has been stabilized. If that is the case, its
value drops to 0 and remains as such until the error is larger
than σ.

The second step updates the Adaptive Bias term bk and
Adaptive Gain term gk. Their values are increased or de-
creased at a specific rate, given by δb and δg respectively, and
depending on an adaptation threshold defined by ēb and ēg.
Finally, the control action scaling factor uk is computed as
follows:

uk = sat[−1,1](gk + bk) (1)

It is important to remark that when ēk = 0, bk remains con-
stant and gk becomes 0. The resulting value for uk scales the
maximum allowed torque τmax. This value is chosen consider-
ing the type of skill being performed and safety requirements
given by the task context. The resulting driving torque is
calculated by:

τ = τmaxuk (2)

Figure 6 shows the region of motion, shaded in blue, given
a desired set-point configuration qd and an error margin σ.
In this simple example, the controller attempts to rotate the
Elbow joint towards qd. Once ēk has been considered stable,
its value drops to 0 and remains as such while the system is

Algorithm 1 ABAG Algorithm

Input: yk ∈ IR % measured output
yd ∈ IR % desired output

Output: uk ∈ [−1, 1] % control action scaling factor
Parameters: σ ∈ IR % error margin

ε ∈ (0, 1) % stabilizing margin
α ∈ (0, 1) % error filtering factor
ēb ∈ (0, 1) % bias adaptation threshold
δb ∈ (0, 1) % bias adaptation step
ēg ∈ (0, 1) % gain adaptation threshold
δg ∈ (0, 1)% gain adaptation step

Variables: ēk ∈ [−1, 1] % low-passed filtered error sign
bk ∈ [−1, 1] % adaptive gain
gk ∈ [−1, 1] % adaptive bias

k = 0, u0 = ē0 = b0 = g0 = 0
isStable← false

while k + + do
% update error
if not isStable or |yk − yd| > σ then
ēk = sgn(yk − yd)(1− α) + αēk−1

if ēk < ε then
isStable← true

ēk = 0
else
isStable← false

end if
end if
% update controller variables
bk = sat[−1,1](bk−1 + δbhside(|ek| − ēb)sgn(ēk − ēb))
gk = sat[−1,1]((gk−1 + δg)hside(|ek| − ēg)sgn(|ek| − ēg)
uk = sat[−1,1](bk + gk)

end while

within the region of motion. Inside this area, the controller
acts as open-loop since feedback measurements are not con-
sidered for computing the control action. The feedback signal
is “reconnected” when the joint exits the region of motion.
As this occurs, the controller will update ēk and the control
variables, attempting to stabilize ēk again.

set-point
region of motion

Figure 6: (Left) The controller moves the Forearm towards the desired
configuration qd. (Right) Once the joint has stabilized, the error

margin σ is taken into account. It is marked by the area shaded in
blue. This region represents an area where the controller error will

remain at 0, once the stabilizing margin has been reached.

Properly tuning the controller’s parameters to obtain the
desired behaviour requires knowledge of the system’s general
dynamics. In this analysis, we refer to the system’s equation
of motion to understand how its behaviour is influenced by the
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adaptive bias and gain of the controller. The general equation
of motion for dynamic systems is:

M(q)q̈ + C(q, q̇)q̇ + F (q̇) +G(q) = τ (3)

Where q, q̇, q̈ ∈ IRn are the joint configuration, velocity,
and acceleration vectors; M(q) is the inertia matrix; C(q, q̇)
is the vector of Coriolis and centripetal torques; F (q̇) rep-
resents the friction torques in the joints; G(q) is the vector
of gravitational torques; and τ is the vector of driving torques.

Keeping the arm at the desired configuration qd implies that
if q − qd = ēk = 0, then we expect q̈ = q̇ = 0 because we do
not need to accelerate the system any further. Also, if ēk = 0,
then gk = 0 and the bk remains constant. A function h(q̈, q̇, q)
that groups the dynamic forces of the system is introduced to
rewrite Equation 3 as:

h(q, q̇, q̈) +G(q) = τ (4)

We can directly relate this pair of terms to the ones in
Equation 1. The Adaptive Bias term compensates for the
gravitational forces in G(q) when the system is no longer
in motion; the Adaptive Gain term compensates for the
dynamic forces h(q̈, q̇, q) of the system when a motion is
required to move the joint towards qd.

If instead we consider a desired velocity q̇d, the relation
with the bias and gain terms changes. In this case, if ēk = 0,
then we expect q̈ = 0 and q̇ = q̇d. Rewriting Equation 3, this
time by introducing a function f(q, q̇) that groups all terms
not dependent on q̈, we obtain:

M(q)q̈ + f(q, q̇) = τ (5)

The Adaptive Gain contribution is then related to M(q)q̈,
while the Adaptive Bias must compensate for the remaining
terms in f(q, q̇). This function is non-linear because, for this
system, (at least) G(q) is non-linear. Therefore, it is not
possible to fully adapt to these effects using only the bias
term. Consequently, the Adaptive Gain must be continuously
updated for correcting the resulting motion.

V. EXPERIMENTS

A series of tests have been performed to evaluate the control
strategy and behaviour of the lazy controller. The experi-
ments have been performed in a 7-DOF anthropomorphic
robotic arm and consist on controlling the arm to open a
drawer. The setup is described as follows. The arm has been
positioned in front of a cabinet. The exact distance towards
it is not relevant for the task, but must of course be within
the arm’s reach. It has been assumed that the region of
motion, the area where the end-effector must make contact
with the drawer, is obtained based on a given approximation
of the handle’s heigh. The end-effector is controlled by using
the Shoulder joint as the “driver” joint, pushing the arm
forward (or backwards), while the Elbow joint adjusts the
end-effector’s height to the desired set-point as a result of
the motion

Controlling the Elbow joint for positioning the end-effector
at a specific height can be achieved by monitoring its dis-
placement. This joint is only required to rotate the Forearm.
Therefore, the low presence of inertia and friction effects fa-
cilitate its control. Figure 7 (top left) shows the height of the
end-effector as it successfully tracks a set-point while it is dis-
turbed by external forces. The controller allows disturbances
so long as the error remains within σ. When the error margin
is exceeded, the controller is activated to steer the end-effector
back to the set-point hd. Three different disturbances are ap-
plied to the Forearm.
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Figure 7: In the first experiment, the Elbow joint is being controlled to
set the end-effector at a desired height hd (top left). The controller

(bottom left) is only active when the end-effector is outside the bounds
of the error margin. The next experiment is opening a drawer (right).
The end-effector’s height is affected by both the motion of the Elbow
and Shoulder (top right). When the end-effector makes contact with
the drawer, the controller switches to passive mode (bottom right).

The first disturbance is a force that displaces the end-
effector upward and is then quickly removed. As seen in
Figure 7, the end-effector’s height remains within the error
margin and is held constant even after the disturbance has
been removed. Therefore, there is no need to update the con-
trol action. As it turns out, the open-loop solution found by
the controller still holds in this new configuration.

The next disturbance is applied to the Upper Arm gener-
ating a forward rotation that displaces the end-effector in an
upwards direction again. This force is applied and held until
the end-effector is back in the desired region of motion. No-
tice that the controller is not necessarily required to set the
end-effector at the set-point. Here, it settles just below this
value.

The final disturbance is a force that brings the Upper Arm
back to its initial configuration. The resulting motion brings
the end-effector down. The controller is again activated to
lift its height into the region of motion. Notice that the
jittering effects of the position after it has settled is neglected
since ēk has stabilized and the error generated by this effect
does not exceed σ.

The role of bk in this experiment is to compensate
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for gravity, as described in Section IV. For this motion,
gravity effects are constrained to a torque in only one
direction and its magnitude increases as the angle increases
(0°≤ q ≤ 90°). The Adaptive Bias term compensates the
effects of gravity by generating a torque in the opposite
direction. Furthermore, it has bee identified empirically
that the maximum torque produced by gravity can be
compensated with a value of bk = −0.4. For this reason,
the Adaptive Bias is constrained by bk ∈ [−0.4, 0]. This
way, we guarantee that the contribution of this term is
always opposing the gravitational torque (or is 0) and we
limit the amount of torque available to compensate its effects.

Next, we analyse the behaviour of the controller while open-
ing a drawer. In this case, the end-effector must remain at
a certain height while the Shoulder joint pushes it forward.
A non-linear gravity compensation term has been added to
the control action of both joints improve the system’s perfor-
mance. The driving torque from Equation 2 becomes:

τ = τmaxuk + ĝ(q) (6)

Where, ĝ(qn) is a non-linear function that estimates
gravity effects based on an approximation of the arm’s mass
and current joint configurations. The resulting behaviour
is shown in Figure 7 (right). Notice that at t ≈ 10, the
Elbow joint is set to passive mode. This action is triggered
by making contact with the drawer. The pulling behaviour
starts simultaneously. Also note that as the drawer is
being pulled, the end-effector’s trajectory is not completely
horizontal as one would expect. Predicting this trajectory
is not trivial. However, its vertical displacement is of no
concern to the controller. The end-effector’s position in this
part of the task is guided by the drawer and its constraints,
transferred to the arm through the coupling between the
end-effector and handle. The controller’s parameters for this
experiments are shown in Table 1.

Table 1: Controller parameters for each joint. The Shoulder joint
parameters vary depending on its behaviour.

Shoulder joint
Parameters Elbow joint Forward Backwards

motion motion

τmax 10.325 Nm 12.320 Nm 20 Nm
σ 15 mm 0.268 rad/s 0.100 rad/s
ε 0.01 0.3 0.3
α 0.55 0.2 0.2
bk ∈ [−1, 1] ∈ [−1, 0] ∈ [0, 1]
ēb 0.5 0.3 0.3
δb 0.0005 0.0005 0.0005
gk ∈ [−1, 1] ∈ [−1, 1] ∈ [−1, 1]
ēg 0.99 0.8 0.8
δg 0.001 0.0003 0.001

Inertial and friction effects have a higher impact on the
dynamic behaviour of the Shoulder joint because its motion
is associated to the complete weight of the arm. Therefore,
controlling it by monitoring its position quickly saturates the
driving torque to its maximum value allowed. As a result,

the system accelerates beyond the expected values. To avoid
this, we choose to monitor the joint’s velocity instead.

Figure 8 and 9 show the Shoulder joint behaviour while
performing the task of opening a drawer. Such behaviour is
separated into two guarded motions: one for reaching, be-
tween 3 s and 10 s, and one for pulling, followed immediately
after. The controller parameters are adjusted accordingly for
each, as shown in Table 1.

Figure 8 shows the Shoulder joint velocity as it influences
the rest of the arm. The forward motion is activated when
either the Elbow joint has reached its rotation limit or when
the end-effector is close to reaching the desired height set-
point. The backwards motion is then triggered when contact
is made with the drawer. The motion stops when the Shoulder
joint reaches a specific angle.
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Figure 8: Velocity of the Shoulder joint while opening a drawer.

For this joint, a gravity compensation term has also been
added to the driving torque, as in Equation 6. The controller
is able to track the velocity set-point ωd with an acceptable
performance. However, it has problems attempting to stabi-
lize ēk and remain within the desired error margin σ.

Figure 9 (top) shows the controller variables corresponding
to the velocity plot in Figure 8. The peaks in gk at t ≈ 4
s and t ≈ 10 s correspond to the high torque value neces-
sary to overcome the striction torque. Once in motion, the
contribution of bk predominates over gk. The adaptive bias
attempts to find a constant value that will keep the velocity
at the desired value ωd. Concurrently, gk contributes to the
control action with quick adjustments.

Furthermore, Figure 9 (bottom) shows the low-passed
filtered error sign ēk. The red marks represent the time when
ēk stabilizes, i.e., when the controller enters an open-loop
behaviour. It can be seen that this state is continuously
interrupted by the controller’s inability to keep ēk stable.
Regardless, it is still able to successfully control the Shoulder
joint for executing the task in a safe and predictable motion.

A series of experiments have been performed to show the
range of values in which the arm successfully achieves to open
a drawer. A cabinet with drawers at different heights was
used. The arm was placed at various distances and orienta-
tions towards the drawer. The range of values of the param-
eters that resulted in a successful execution is summarized in
Table 2.
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Figure 9: Adaptive bias and gain (top) while controlling the Shoulder
joint for opening a drawer. The red circles represent the moment where

the low-passed filtered error sign is within the stabilizing threshold
(bottom).

Table 2: Range of values for test parameters that resulted in a
successful execution.

Parameters Range

Height of drawer hd = {-315, -275, -180} mm
Distance to drawer 450 mm ≤ d ≤ 600 mm
Orientation to drawer -25°≤ θ ≤ 25°

The limitations in the distance to the drawer are due to
the minimal space required to lift the end-effector above the
handle and the maximum length of the arm. The orientation
angle is constrained by the Wrist joint’s mobility. This has
consequences in the ability of attaching to the handle and
pulling the drawer. Furthermore, it is important to remark
that while not required to be precise, the end-effector’s ori-
entation at the moment of contact certainly has influence on
properly hooking itself to the handle.These factors differ de-
pending on the type of end-effector selected to perform the
task.

VI. CONCLUSIONS

In this paper we have introduced a general lazy control ap-
proach that focuses on providing robustness towards changes
and uncertainties in dynamic environments that are not con-
sidered in the classic control approach. Furthermore, we ex-
plored the behaviour of a lazy adaptive controller for a 7-DOF
anthropomorphic robotic arm to perform the task of opening
a drawer.

The controller does not require knowledge of the system pa-

rameters or a precise description of the workspace. It adapts
the driving torque by monitoring and reacting to the system’s
behaviour. It is lazy in the sense that it finds a sufficient solu-
tion to the controller’s performance requirements given by the
task context. This is achieved by considering an error mar-
gin for set-point tracking precision and using the common
workspace to guide the arm’s motion.

The controller is robust towards uncertainties and changes
in workspace parameters: uncertain measurements of the han-
dle’s position and changes in the distance and orientation to
the drawer; and towards unknown workspace and system pa-
rameters: friction in the drawer rails and unknown dynamic
behaviour of the arm, such as the coupling effect between
links. Furthermore, motion is defined as a series of guarded
motions. Therefore, it is able to adjust and pause its motion
when disturbed by applying an external force since there is
no dependency on a specific end-effector trajectory.

This approach results beneficial in situations where condi-
tions in the environment are dynamic or make it difficult for
obtaining accurate sensor measurements. Future work for im-
proving the open-loop performance of the lazy controller when
dealing with non-linear behaviour can still be done. This can
be achieved through: 1) adding feed-forward control to re-
ject predictable non-linear dynamic behaviour, i.e., gravity,
friction, and coupling effects between links; and 2) applying
a learning-based approach for improving adaptive parameter
estimation.
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