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Samenvatting

Introductie: Elektroencephalogram (EEG) patronen binnen 24 uur na een hartstilstand kunnen be-
trouwbaar worden gebruikt om de neurologische uitkomst te voorspellen. De registratie van het EEG
kan versimpeld worden door het gebruik van een minder uitgebreide elektrodeset. Vervolgens kan een
algoritme-ondersteunde cEEG beoordeling gebruikt worden om interessante regio’s uit de grote hoeveel-
heid data te identificeren en ondersteuning te bieden aan minder getrainde lezers. In onze duale studie
hebben we een sub-haarlijn EEG sticker (BrainStatus) vergeleken met een 9-kanaals full-head (FH)
elektrodeset. Ook is een 4-kanaals frontotemporale (FT) montage afgeleid van de FH-set. Vervolgens
werden deze FH/FT-montages gebruikt om het bestaande Cerebral Recovery Index (CRI) algoritme te
hertrainen.

Methode: De EEG’s werden tegelijkertijd geregistreerd met de FH-set en de BrainStatus, bij opeen-
volgende volwassen patiënten opgenomen na een hartstilstand. Hierin werden EEG-patronen visueel
gescoord in epochs van 5 minuten op 24 uur na hartstilstand, en de scoringsovereenkomst werd geëvalu-
eerd met behulp van confusion matrices en Cohen’s kappa.
Het CRI-algoritme werd opnieuw getraind op 79 EEG’s na een hartstilstand vanaf maart 2014 tot en met
augustus 2018. Neurologische uitkomst werd gedichotomiseerd als goed (Cerebral Performance Category
(CPC) 1-2) of slecht (CPC 3-5). Voor zowel de FH- als de FT-montage werd voor elk uur na hartstil-
stand een random forest classifier getraind, en werden nieuwe drempelwaarden vastgesteld. Sensitiviteit
en specificiteit van elke montage werden geëvalueerd.

Resultaten: Tussen juli 2018 en januari 2019 werden EEGs van 22 patiënten geregistreerd. Op 24 uur na
hartstilstand waren patronen van 21 patiënten beschikbaar. De overeenkomst voor achtergrondpatronen
tussen de BrainStatus en de FH set was redelijk (κ = 0.32). Tussen de FT- en FH-montage was de
overeenkomst voldoende tot goed (κ = 0.71).
In een testset van 79 patiënten voorspelde de hertrainde CRI met de FH-montage een slechte uitkomst
op 24 uur na hartstilstand met een sensitiviteit van 0.86 en een specificiteit van 0.20. Bij de FT-montage
was de sensitiviteit 0.92 en de specificiteit 0.35.

Conclusie: Visuele classificatie van EEG-patronen bij patiënten met postanoxische coma met een FH-
elektrodenset kan niet worden vervangen door de BrainStatus. Vier frontotemporale kanalen bieden
echter voldoende overeenstemming en kunnen op betrouwbare wijze worden gebruikt voor visuele sco-
ring van EEG-achtergrondpatronen.
De specificiteiten van de CRI-algoritmen, opnieuw getraind op de FH- en FT-montage, om een slecht
neurologisch resultaat te voorspellen op 24 uur na hartstilstand, zijn onaanvaardbaar lager dan de oor-
spronkelijke CRI.
Verdere optimalisatie van deze EEG monitoring met beperkte elektrodeset wordt aanbevolen.
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Abstract

Introduction: Electroencephalography (EEG) patterns within 24 hours after cardiac arrest (CA) have
shown to reliably predict neurological outcome. These recordings may be simplified by using a less
extensive electrode set. Subsequently, algorithm-aided EEG analysis may be used to identify regions
of interest in high volumes of data and support untrained readers. In this dual study, we compared a
sub-hairline EEG headband (BrainStatus) to a 9-channel full-head (FH) electrode set. Also, a 4-channel
frontotemporal (FT) montage was derived from the FH set. Next, these FH/FT montages were used to
re-train the existing cerebral recovery index (CRI) algorithm.

Methods: EEGs were simultaneously recorded with the FH set and the BrainStatus in consecutive adult
patients admitted after CA. EEG patterns were visually scored in 5-minute epochs at 24 hours after CA,
and scoring agreement was evaluated using confusion matrices and Cohen’s kappa.
The CRI algorithm was re-trained on 79 post-arrest EEGs from March 2014 through August 2018. Neur-
ological outcome was dichotomised as good (Cerebral Performance Category (CPC) 1-2) or poor (CPC
3-5). For both the FH and FT montage, a random forest classifier was trained for each hour after CA
and new thresholds were established. Sensitivity and specificity of each montage were evaluated.

Results: Between July 2018 and January 2019, EEGs from 22 patients were recorded. At 24 hours
after CA, patterns of 21 patients were available. The agreement for background patterns between the
BrainStatus and FH set was fair (κ = 0.32). Between the FT and FH montage, the agreement was
substantial (κ = 0.77).
In a test set of 79 patients, the re-trained CRI with the FH montage predicted poor outcome at 24 hours
after CA with sensitivity of 0.86 and specificity of 0.20. With the FT montage, sensitivity was 0.92 and
specificity was 0.35.

Conclusion: Visual classification of EEG patterns in patients with postanoxic coma with a FH elec-
trode set cannot be replaced with the BrainStatus. However, four frontotemporal channels provide
enough agreement, and can reliably be used for visual scoring of EEG background patterns.
The specificities of the CRI algorithms, re-trained on the FH and FT montage, to predict poor neurolo-
gical outcome at 24 hours after CA are unacceptably lower than the original CRI.
Further optimisation of this limited electrode EEG monitoring set-up is recommended.
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1 Introduction and rationale
Out-of-hospital cardiac arrest (OHCA) is a major health problem in both Europe and the United States. [1]

Due to increasing application of early defibrillation and out-of-hospital cardiopulmonary resuscitation
(CPR), more patients achieve return of spontaneous circulation (ROSC). These patients are commonly
treated in the Intensive Care Unit (ICU) with targeted temperature management (TTM) and cardi-
orespiratory support. [2] In Europe alone, an estimated number of 176 000 patients are admitted yearly.
Of these patients, 40-66% will never regain consciousness, as the result of severe postanoxic encephalo-
pathy. [3] If a patient does not awake after rewarming from TTM, the treating physicians are confronted
with the question whether the remaining neurological injury is still reversible or not. It creates a di-
lemma between avoiding premature declaration of futility, or giving rise to false hope for recovery and
inappropriately consuming of healthcare resources. [4,5] Early prognostication is of great importance, to
make crucial clinical decisions, which will impact both the patient and family directly as well as the
society at large in ethical and financial ways. [2–4,6,7]

Such early prognostication of neurological outcome remains a challenge. Electroencephalography (EEG)
may be a reliable tool to assess neurological damage, and continuous EEG (cEEG) monitoring in the
first 24 hours after cardiac arrest (CA) has proven to be a usable prognostic indicator of neurological
outcome. [2,3,8–11] For example, Tjepkema-Cloostermans et al. [9] have found that certain EEG patterns
within 24 hours after CA reliably predict neurological outcome. After these initial 24 hours, the pro-
gnostic performance of the EEG declines. [8,10] Thus, the EEG monitoring needs to be initiated as soon as
possible after ROSC. However, clinical implementation of cEEG is no widespread ICU practice yet. [12–14]

ICU physicians and nurses are currently not trained in recording and reviewing EEGs, and usually there
are no clinical neurophysiologists based in the ICU. [15,16] These challenges have to be overcome to make
the cEEG a common tool, and exploit its full prognostic potential in clinical practice. In this dual study,
we will explore the feasibility of an easy to apply frontotemporal electrode set and adapt an existing
quantitative cEEG algorithm for use with this reduced electrode set.

1.1 BrainStatus electrode set
Recording EEGs is no daily practice for ICU staff. Specially trained technicians are needed to apply
EEG electrodes to the patient. These technicians are not always available and the application of these
electrodes takes time, possibly leading to delayed start of monitoring. [17] This introduces the need for
EEG solutions that are fast and easy to set up, without extensive training. Electrodes should ideally be
applied by non-technicians in limited time, but still be placed accurately and provide sufficient recording
quality in a noisy clinical environment. Limiting the number of electrodes may shorten application time
and the use of templates could eliminate the need for precise localisation of 10-20 system positions [18]

by specialised technicians. [17,19,20] It has been found that reducing the number of electrodes from 21 to
10 does not affect EEG classification or prognostic accuracy in patients with postanoxic coma. [21]

Currently, a 9-channel EEG from only 11 electrodes is used in the Amsterdam University Medical Centers,
location AMC, Amsterdam, the Netherlands (AMC). However, their positions have to be calculated and
the electrodes have to be glued to the skin. Several more easy to use electrode sets are being developed.
One of the clinically available options is the BrainStatus (Bittium, Oulu, Finland). It was developed by
Lepola et al. [20,22], especially for use in emergency care. It consist of a flexible sub-hairline template,
with 15 adhesive hydrogel-based disposable electrodes. More details can be found in appendix II.
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1.2 CRI algorithm
To make EEG monitoring useful in post-arrest ICU care, clinically relevant conclusions have to be drawn
from the recorded data. ICU staff needs to be able to recognise and react on pathological conditions,
modifying their therapeutic approach. [23] Currently, standard practice in most Dutch hospitals is cEEG
recording only, without real-time analysis. [13] The complex nature of the EEG necessitates expert in-
terpretation, often not available in the ICU. In addition, cEEG signals are dynamical and may have
consequences towards patient care within hours, thus requiring frequent review. [24] However, monitoring
up to several days produces high volumes of data. Combined with the aforementioned limited availability
of skilled interpreters, this is a major obstacle to the continuous assessment of EEG. [23,25,26] Therefore,
conventional analysis of the EEG signal alone would considerably limit the application and any advant-
age of cEEG monitoring in the ICU. [27]

There are several options facilitating more continuous assessment of cEEG traces, like training of ICU
staff, tele-monitoring by neurophysiologists and the use of quantitative EEG (qEEG) analysis. [13,16,23,28,29]

Trained ICU physicians cannot fully substitute a neurophysiologist, but when focussing on clinical rel-
evant questions (i.e. presence of seizures) they can obtain sufficient knowledge to identify potentially
dangerous conditions and start timely treatment. [12,23] Algorithms may support the lesser trained intens-
ivists in their interpretation, and/or provide an automated assessment of the EEG signal. Furthermore,
qEEG analysis can be used as an initial screening of cEEG to identify regions of interest, reducing the
data volume for expert interpretation. [12,13,23,25,30] According to Moura et al. [24], quantitative analysis
guided review of cEEG can reduce review time to 25% of the time needed to perform a traditional review.
Yet, in a Dutch survey of Hilkman et al. [13], respondents reported that quantitative analysis is rarely
used and if so, practice varies significantly. This will probably change in the near future, since cEEG
monitoring is developing into a standard diagnostic modality in Dutch ICUs. [13]

Several methods of algorithm-aided cEEG analysis exist. [4,10,23,24,28,31–34] In 2017, Tjepkema-Cloostermans
et al. [10] presented an optimised version of their cerebral recovery index (CRI): an automated prognost-
icating index ranging from 0 (prediction of death) to 1 (prediction of full neurological recovery), based
on EEG data from 21 electrodes. It was evaluated in a validation set of 140 patients, and was able to
predict poor outcome at 12 hours after CA with a specificity of 100% and a sensitivity of 56%. Good
neurological outcome could be predicted at 12 hours with a sensitivity of 63% and specificity of 94%,
and at 24 hours with a sensitivity of 58% and specificity of 93%. According to the authors, their CRI
enables bedside interpretation of cEEG by inexperienced readers.

1.3 Aims of this study
The combination of an easy to apply electrode set and a quantifying algorithm could facilitate the
implementation of cEEG monitoring on the ICU. Therefore, this study has a dual aim. First, we
performed a pilot study in the ICU of the AMC, to test the agreement between the BrainStatus and the
currently used 9-channel electrode set. Second, the CRI algorithm was trained on 21 electrodes, while in
this study only 9 or 4 channels are available. It is unknown how the CRI algorithm will perform on these
altered electrode sets. Therefore, we evaluated its performance on EEG data recorded with a reduced
number of electrodes, taken from an existing dataset in the AMC.
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2 Research questions
2.1 Main question
Is quantitative cEEG monitoring, using a frontotemporal montage from the BrainStatus
electrode set and automated analysis by the CRI algorithm, a reliable tool in the prognost-
ication of neurological outcome for comatose cardiac arrest survivors in the ICU?

2.2 Subquestions BrainStatus
1. Does the visual assessment of EEG recordings made with the BrainStatus electrode set agree to a

9-channel full-head cEEG monitoring electrode set?

2. Does the visual assessment of EEG recordings made with a 4-electrode frontotemporal electrode set
agree to a full-head 9-channel cEEG monitoring electrode set?

3. Does the visual assessment of EEG recordings made with the BrainStatus electrode set agree to a
4-electrode frontotemporal monitoring electrode set?

2.3 Subquestions CRI
4. What are the sensitivity and specificity of the re-trained CRI algorithm on a 9-channel full head

and a 4-channel frontotemporal electrode configuration, to predict prognosis in comatose post-OHCA
patients at the ICU?

5. What is the relative contribution of the individual qEEG features from the CRI in the processing of
a 9-channel full head and a 4-channel frontotemporal electrode set?

3
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3 Methods
3.1 Study population
In a prospective cohort study, EEG patterns in post-resuscitation ICU patients as identified with 4
channels from the Brainstatus were compared with those as measured with conventional electrodes. For
evaluation of the CRI, an existing cEEG monitoring dataset from the AMC was used and extended. Since
March 2014, all adult patients with ROSC after a CA, admitted to the ICU for TTM, were monitored
with cEEG. As soon as possible after the start of TTM, during office hours, a 9-channel electrode set
was applied by specialised technicians from the Clinical Neurophysiology department. cEEG recordings
were continued up to three days, unless the patient regained consciousness or died. The Institutional
Review Board of the AMC waived the need for informed consent for EEG monitoring during ICU stay
and for the follow-up after 3 and 6 months by telephone.

3.1.1 Inclusion criteria
• ICU admission with postanoxic coma after CA
• Receiving TTM (at 36°C, for 24 hours)
• cEEG monitoring, started within 24 hours after CA.

3.1.2 Exclusion criteria
• Any neurological disease or any progressive brain illness, other than postanoxic encephalopathy
• Known history of another medical condition with life expectancy < 6 months
• Reason other than neurological condition to withdraw treatment
• Age < 18 years

3.1.3 Standard of care and monitoring
TTM at 36°C was started as soon as the patient was admitted to the ICU, and was maintained for 24
hours. During TTM, patients were sedated using propofol (maximal 5 mg/kg/hour) to a target Richmond
Agitation-Sedation Scale (RASS) [35] of -4: deep sedation with no response to voice, but (eye)movement
in respons to physical stimulation. Treating physicians were blinded to the cEEG. Withdrawal of life-
sustaining treatment (WLST) was considered only during normothermia and 72 hours after CA, following
national guidelines [36]. In this decision, cEEG of the first 24 hours was not taken into account.

3.2 Outcome assessment
At three time points, the 5-point Glasgow–Pittsburgh Cerebral Performance Category (CPC) [37,38] was
evaluated: at ICU discharge, by the attending researcher, and at three and six months after CA, via
telephone by a single investigator blinded for EEG patterns. Primary outcome was neurological perform-
ance at six months after CA, defined as the best of these three scores. This outcome was dichotomised
as good (CPC 1-2: no to moderate disability) or poor (CPC 3-5: severe disability, comatose, death).

3.3 cEEG recordings
In the existing dataset of 9-channel set recordings, data from eleven Ag/AgCl cup electrodes was avail-
able. These electrodes were placed according to the standardised 10-20 system [18], at positions Fp1, Fp2,
T3, T4, C3, C4, Cz, O1 and O2 (appendix I). The ground and reference electrodes were placed either
at F3/F4 or in mid-line around Fz. A Viasys Nicolet (Carefusion, WI, USA) or BrainQuick ICU (Mi-
cromed, Mogliano Veneto, Italy) was used, with sampling frequencies of 1000 respectively 256 Hz. EEG
recordings were resampled to 256 Hz if necessary, and saved pseudonymised for further offline processing.
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From July 2018 through January 2019 and if possible, we additionally placed a BrainStatus (Bittium,
Oulu, Finland; figure 3.1 and appendix II) on the forehead of each monitored patient. The EEG was
recorded from both the 9-channel electrode set and BrainStatus simultaneously. Overlapping electrode
positions from the 9-channel set (Fp1 and Fp2) were placed as close as possible to their intended location.
Before starting to work with patients, we trained this application procedure on four healthy subjects.

(a) Frontal view (b) Side view
Figure 3.1: Recording set-up with BrainStatus and cup electrodes of the 9-channel electrode set, jointly placed on
a healthy volunteer. The use of these photographs was approved by the volunteer.

3.4 EEG epoch selection and montages
Each hour after the estimated time of CA, epochs were automatically selected by a custom made computer
algorithm, using MATLAB (2018b, The MathWorks Inc., Natick, MA, USA). In short, 5-minute EEG
epochs with the least number of artefacts were selected from 20-minute windows around the specified
time points. More details can be found in appendix III. Subsequently, two EEG montages were made:
the 9-channel full-head (FH) montage (nine electrodes: Fp1-T3, T3-O1, Fp2-T4, T4-O2, Fp1-C3, C3-O1,
Fp2-C4, C4-O2, Fp1-Fp2, T3-C3, C3-Cz, Cz-C4, C4-T4 and O1-O2) and the 4-channel frontotemporal
(FT) montage with fewer electrodes (subset of four electrodes: Fp1-T3, Fp2-T4, Fp1-Fp2 and T3-T4).
If present, the BrainStatus montage was made, with four electrodes from the BrainStatus: Fp1-T9,
Fp2-T10, Fp1-Fp2 and T9-T10. All montages are presented schematically in fig. 3.2.

(a) 9-channel full-head (FH) (b) 4-channel frontotemporal (FT) (c) BrainStatus
Figure 3.2: Schematic overview of used EEG montages, with electrode positions in the 10-20 system [18], Ref =
reference and G = ground. Montages (a) and (b) are from the 11 Ag/AgCl electrode set, (c) from the Brainstatus.
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3.5 BrainStatus
3.5.1 Data selection and Preprocessing
From all patients with the BrainStatus electrode set, the 5-minute epochs at 12 and 24 hours after CA
were included. Additionally, 50 EEG epochs at both 12 and 24 hours after CA from the existing data set,
of randomly selected patients with all possible background patterns, were added to expand the number
of available EEGs for the FH and FT montages. The EEGs were filtered with an adjustable band-pass
filter and notch filter, for details see appendix IV.

3.5.2 Visual scoring
The patterns present in each EEG epoch were visually scored by three trained EEG readers, independ-
ently and in random order. The epochs were presented at random in each of the three montages (section
3.4), by a custom build scoring web application (more details are available in appendix IV). The observ-
ers were blinded to all clinical data, patient outcome, electrode sets and time after cardiac arrest. EEG
epochs were classified corresponding to the guidelines of the American Clinical Neurophysiology Society
(ACNS). [39] Background pattern was scored as suppressed (< 10 µV), burst-suppression with or without
identical bursts (50-99% suppression), discontinuous (10-49% suppression), continuous with low (< 20
µV) or normal voltage (> 20 µV). Independent from the background pattern, rhythmic patterns were
scored as none, rhythmic delta, periodic discharges or spikes waves, combined with their abundance. The
reviewer could also indicate when interpretation of an epoch was obscured due to artefacts. The final
classification was determined by majority vote. If inconclusive, the epoch was left out of the analysis.

3.5.3 Statistical Analysis
Inter-rater variability amongst the three raters was assessed using the intra-class correlation coefficient
(ICC) and its 95% confidence interval (CI), based on an average measures, absolute-agreement, 2-way
random-effects model. An ICC value less than 0.5 was defined as poor, values between 0.5 and 0.75 as
moderate, values between 0.75 and 0.9 as good and values above 0.9 as excellent reliability. [40] Confusion
matrices were made to compare the three montages. Three comparasions were made (table 3.1). First,
comparison was made between the 9-channel FH versus the 4-channel FT montage, including the 50
patients without the BrainStatus, to look into the effect of reducing the electrode set from nine to four
electrodes. With only the data from the patients with a BrainStatus, comparisons were made between
FT and the BrainStatus montage, and eventually between the 9-channel and the BrainStatus montage.
Last, the classifications were grouped into EEG background patterns associated with a good (continuous),
uncertain (discontinuous or burst suppression without identical bursts) and poor outcome (suppressed or
burst suppression with identical bursts). To evaluate the agreement in classification between the different
montages, Cohen’s Kappa was used. Values below zero were defined as poor, 0 to 0.20 as slight, 0.21 to
0.4 as fair, 0.41 to 0.60 as moderate, 0.61 to 0.8 as substantial, and above 0.81 as almost perfect. [41] A
reliable agreement was defined as the kappa being at least substantial, when compared to the 9-channel
FH montage. All statistical analysis was done using MATLAB.

Table 3.1: Overview of comparisons between electrode sets.

Compare montage to montage to evaluate
9-channel full-head 4-channel BrainStatus replacing conventional monitoring with BrainStatus
9-channel full-head 4-channel frontotemporal reducing conventional set to 4-channel frontotemporal
4-channel frontotemporal 4-channel BrainStatus BrainStatus recording quality (vs Ag/AgCl cup electrodes)
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3.6 CRI algorithm
3.6.1 Data selection and Preprocessing
Follow-up data from the patients whose EEGs were recorded using the BrainStatus was not yet available
when re-training the CRI. Alternatively, the comparable 4-channel FT montage was used. From the
existing dataset, all hourly 5-minute epochs from patients with a CA from March 2014 through August
2018 were included. Two of the EEG montages (section 3.4) were compared: the 9-channel FH and the
4-channel FT montage. All epochs were filtered by a zero-phase fourth order Butterworth bandpass filter
(1–25 Hz).

3.6.2 qEEG features
In the CRI, the following nine qEEG features were calculated from the raw cEEG data: alpha-to-delta
ratio (ADR), signal power, Shannon entropy, delta coherence, regularity, number of bursts/min, mean
burst correlation, maximal burst correlation, and fraction of burst correlation larger than 0.8. Windows
of 10 seconds with large differences between electrodes in ADR (standard deviation (SD) > 4) or signal
power (SD > 2.5) were marked as containing artefact, and epochs with 10 or more of the 30 windows
being artefacts were removed from further processing. [10] We derived a correction factor, to adapt these
thresholds to our reduced number of electrodes (appendix V). A moving average filter with a 2-hour
window was applied. Per hour of EEG data, the resulting values for each of the nine features were
written to an intermediate file. [10] Preprocessing and feature calculation was done in MATLAB.

3.6.3 Training random forest classifier
Half of the included patients were randomly selected, and allocated to the training set. This set was
used to train a random forest classifier for each hour after CA, based on 500 individual decision trees
and a maximum number of terminal nodes set to five. A separate classifier was trained for both the
9-channel FH and 4-channel FT montage. Random forest classification was performed using R (version
3.5.2 [2018-12-20]; R Foundation for Statistical Computing, Vienna, Austria). [42,43] Contribution of the
individual features to the random forest model was calculated in the training set by the method developed
by Palczewska et al. [44] and Palczewska and Robinson [45].

3.6.4 Validation and performance analysis
The remaining patients were used as the test set, to assess the performance of the newly trained CRI
models. Based on the receiver operating characteristic (ROC) curves obtained with the training set, new
prediction thresholds for poor and good outcome were chosen, comparable to Tjepkema-Cloostermans et
al. [10] To predict a good outcome, the threshold with the highest sensitivity and a specificity of at least
0.95 was chosen. When predicting a poor outcome, any false possible may result in an unjustified WLST.
So in this case, the threshold resulting in a specificity of 1 was chosen. Subsequently, these thresholds
were used to determine the specificity and sensitivity in the test set. The performance of the CRI on
each montage was compared, as well as the area under the curve (AUC) of the ROC curves.
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4 Results
4.1 BrainStatus
4.1.1 Patient inclusion
Out of 67 patients screened from July 2018 through February 2019, 22 were included (figure 4.1). Re-
cordings were available at 12 hours and 24 hours after CA for 5 respectively 21 patients. Patient
characteristics at 24 hours after CA are described in table 4.1. Characteristics of the added patients
were not significantly different from those of the patients with the BrainStatus.

Patients screened at
admission after CA

July 2018 - January 2019
(N = 67)

Excluded (N = 19):
- Progressive neurological disease (N = 1)
- Patient died or was moribund before cEEG started (N = 2)
- Transferred to another hospital before cEEG started (N = 3)
- Patient not in TTM protocol (N = 13)

Patients meeting
inclusion criteria

(N = 48)

Missed (N = 23):
- Missed due to weekend (N = 7)
- Missed due to no suitable EEG machine available (N = 4)
- Application of BrainStatus not possible† (N = 2)
- No BrainStatus available‡ (N = 7)
- Missed due to other causes (N = 3)

Recorded including
BrainStatus (N = 25)

Excluded from analysis (N = 3):
- Missing EEG data: neither at 12 nor at 24 hours after CA (N = 3)

Included in analysis (N = 22):
- only 12 hours after CA (N = 1)
- only 24 hours after CA (N = 17)
- both 12 and 24 hours after CA (N = 4)

Added from existing dataset to analysis:
- 12 hours after CA (N = 50)
- 24 hours after CA (N = 50)

Figure 4.1: Schematic overview of subject inclusion process with BrainStatus electrode set. CA = Cardiac Arrest,
(c)EEG = (continuous) electroencephalography. †: all due to other forehead-attached monitoring devices, ‡: due
to delayed delivery from our supplier

Table 4.1: Baseline Characteristics of Patients in BrainStatus analysis, at 24 hours after cardiac arrest. IQR =
interquartile range. ∗: Difference between both groups was tested using Fisher exact test or Mann-Whitney U
test, whichever was appropriate. P-values < 0.05 were considered statistically significant.

Characteristic Patients with BrainStatus Patients from existing set p-value∗

(n = 21) (n = 50)

Male n (%) 13 (62%) 36 (72%) 0.41
Age years, median (IQR) 67 (52.0-78.3) 65 (53-72) 0.51
Cardiac cause n (%) 8 (38%) 24 (48%) 1.00
Witnessed n (%) 17 (81%) 38 (76%) 0.74
Out of hospital n (%) 20 (95%) 44 (88%) 0.67
Shockable rhythm n (%) 11 (52%) 24 (48%) 0.80
Delay CA to CPR min, median (IQR) 4 (0.0-6.5) 2 (1-5) 1.00
Duration of CPR min, median (IQR) 14 (6-22) 15 (10-20) 0.46
Died at ICU n (%) 11 (52%) 30 (60%) 0.61
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4.1.2 EEG recordings and scoring
Several illustrative samples of raw EEG data from various patients can be found in appendix VI. At 24
hours after CA, the inter-rater reliability of 71 observations (21 with BrainStatus + 50 added EEGs) for
background pattern was excellent for both the 9-channel FH and 4-channel FT set, with an ICC of 0.95
(95%CI: 0.93-0.96) respectively 0.91 (0.89-0.94). Using the BrainStatus, reliability of 21 observations
was moderate with an ICC of 0.56 (0.42-0.67). The remaining ICCs, also for 12 hours after CA, can be
found in appendices VII and VIII.

4.1.3 Confusion matrices
Confusion matrices of the visually scored background patterns at 24 hours after CA are shown in figure
4.2 to figure 4.4. Results of the other features can be found in appendix VIII, and for 12 hours post-arrest
in appendix VII.
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Figure 4.2: EEG background patterns at 24 hours after cardiac arrest, comparing the 4-channel BrainStatus to the
9-channel full-head montage. N/A = not assessable. Blue background colour indicates conformity, red represent
disagreement. Colour saturation corresponds with relative number of observations. Total N = 21.
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Figure 4.3: EEG background patterns at 24 hours after cardiac arrest, comparing the 4-channel frontotemporal to
the 9-channel full-head montage. N/A = not assessable. Blue background colour indicates conformity, red colour
represent disagreement. Colour saturation corresponds with relative number of observations. Total N = 63.
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Figure 4.4: EEG background patterns at 24 hours after cardiac arrest, comparing the 4-channel BrainStatus to
the 4-channel frontotemporal montage. N/A = not assessable. Blue background colour indicates conformity, red
colour represent disagreement. Colour saturation corresponds with relative number of observations. Total N = 20.

4.1.4 Classification agreement
The classification agreement of only the two major features (background pattern, rhythmic pattern) and
artefact presence at 24 hour after CA are shown here, in table 4.2. Agreement of background pattern
scoring between both the FH and FT montage compared to the BrainStatus was fair. When comparing
the FH to the FT montage, this agreement was substantial. The kappa values of the remaining features
can be found in appendix VIII. Results at 12 hours can be found in appendix VII.

Table 4.2: Classification agreement at 24 hours after cardiac arrest. FH = 9-channel full-head, FT = 4-channel
frontotemporal, BS = BrainStatus, CI = confidence interval and κ = Cohen’s kappa.

Montage Background Pattern Rythmic pattern Artefact
κ 95% CI κ 95% CI κ 95% CI

FH - BS 0.32 0.01 - 0.62 0.15 -0.48 - 0.78 0.32 -0.10 - 0.73
FH - FT 0.77 0.65 - 0.90 0.73 0.47 - 0.99 0.70 0.47 - 0.93
FT - BS 0.39 0.07 - 0.72 0.15 -0.48 - 0.78 0.42 0.02 - 0.81

11



4.2 CRI algorithm
4.2.1 Patient inclusion
In the existing dataset, 213 patients were monitored between March 2014 and August 2018. For details
on the inclusion process, see figure 4.5. Patient characteristics are described in appendix IX.

Patients screened at
admission after CA

March 2014 - August 2018
(N = 457)

Excluded (N = 172):
- Neurological disease or progressive brain illness, other than
postanoxic encephalopathy (N = 18)
- Patient died or was moribund before cEEG started (N = 28)
- < 18 years old (N = 2)
- Transferred to another hospital before cEEG started (N = 8)
- Admission >24h after CA (N = 13)
- Patient not in TTM protocol (N = 84)
- Missed due to other causes (N = 19)

Patients meeting inclusion criteria
(N = 285)

Missed (N = 72):
- Missed due to weekend (N = 59)
- Missed due to no EEG machine available (N = 13)

Recorded cEEG (N = 213)

Excluded from analysis (N = 55)
- One or more channels not found (N = 2)
- Feature calculation failed (N = 1)
- Time of cardiac arrest unknown (N = 15)
- Lost to follow-up (N = 17)
- All epochs discarded by artefact detection (N = 13)
- Unknown error when selecting epochs (N = 5)
- Unknown (N = 2)

Included in analysis - training set (N = 79) Included in analysis - test set (N = 79)

Not available (N = 44)
Discarded by AD:
- 9-c. FH (N = 6)
- 4-c. FT (N = 3)

Not available (N = 7)
Discarded by AD:
- 9-c. FH (N = 20)
- 4-c. FT (N = 12)

Not available (N = 52)
Discarded by AD:
- 9-c. FH (N = 2)
- 4-c. FT (N = 3)

Not available (N = 11)
Discarded by AD:
- 9-c. FH (N = 17)
- 4-c. FT (N = 12)

Training set @ 12h
9-c. FH (N = 29 [11/18])
4-c. FT (N = 32 [12/20])

Training set @ 24h
9-c. FH (N = 52 [11/41])
4-c. FT (N = 60 [16/44])

Test set @ 12h
9-c. FH (N = 25 [12/13])
4-c. FT (N = 24 [11/13])

Test set @ 24h
9-c. FH (N = 51 [15/36])
4-c. FT (N = 56 [17/39])

Figure 4.5: Inclusion flowchart - Schematic overview of subject inclusion process into the different training and
test sets, with N = total [Poor outcome/Good outcome at 6 months after cardiac arrest]. CA = cardiac arrest, TTM =
targeted temperature management, (c)EEG = (continuous) electroencephalography, AD = artefact detection, 9-c. FH =
9-channel full-head montage, 4-c. FT = 4-channel frontotemporal montage.
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4.2.2 Algorithm performance
In figure 33, the ROC curves of both montages for the prediction of good neurological outcome at 12
hours after CA are shown. The ROC curves for the predication of poor outcome at 24 hours post-arrest
are shown in figure 34. The other ROC curves can be found in appendix IX. The chosen thresholds with
corresponding sensitivity and specificity can be found in table 4.3.

(a) Training set (b) Test set
Figure 4.6: ROC curves predicting good neurological outcome at 12 hours after cardiac arrest (CA), as measured
with the 9-channel FH compared to the 4-channel FT montage. Chosen threshold represented by black dot.

(a) Training set (b) Test set
Figure 4.7: ROC curves predicting poor neurological outcome at 24 hours after cardiac arrest (CA), as measured
with the 9-channel FH compared to the 4-channel FT montage Chosen threshold represented by black dot.

Table 4.3: Chosen CRI thresholds with corresponding sensitivity (sens) and specificity (spec).

Time after
cardiac arrest

Montage
Predicting good outcome Predicting poor outcome
Threshold Sens. Spec. Threshold Sens. Spec.

12 hours
9-channel FH 0.614 0.08 0.58 0.380 0.84 0.58
4-channel FT 0.766 0.00 0.82 0.418 0.85 0.64

24 hours
9-channel FH 0.436 0.14 0.80 0.436 0.86 0.20
4-channel FT 0.498 0.00 0.88 0.332 0.92 0.35
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4.2.3 Relative contribution of features

The relative contribution of each of the nine features is shown in figure 4.8 (12 hours post-arrest) and
figure 4.9 (24 hours post-arrest). Most contributing feature at 12 hours after CA was the delta coherence,
and at 24 hours post-arrest the power and Shannon entropy.
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(a) 9-channel frontotemporal montage
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(b) 4-channel frontotemporal montage

Figure 4.8: Relative contribution of features at 12 hours after cardiac arrest, to the prediction of neurological
outcome. SE = Shannon entropy, ADR = alpha-to-delta ratio, DeltaCh = delta coherence, REG = regularity,
BurstF = burst frequency (per minute), MeanC = mean burst correlation, MaxC = maximal burst correlation
and FracC = fraction of burst correlation larger than 0.8.
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(a) 9-channel frontotemporal montage
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(b) 4-channel frontotemporal montage

Figure 4.9: Relative contribution of features at 24 hours after cardiac arrest, to the prediction of neurological
outcome. SE = Shannon entropy, ADR = alpha-to-delta ratio, DeltaCh = delta coherence, REG = regularity,
BurstF = burst frequency (per minute), MeanC = mean burst correlation, MaxC = maximal burst correlation
and FracC = fraction of burst correlation larger than 0.8.
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5 Discussion
5.1 BrainStatus
5.1.1 Interpretation of our findings
In the first part of this study, we tested the agreement of the BrainStatus with a 9-channel FH electrode
set. At 12 hours after CA, there were relatively few EEG recordings available. Therefore, this time point
was left out of our final analysis. At 24 hours after CA, the kappa of 0.32 was below the threshold set
to 0.61. Because visual assessment of EEG recordings made with the BrainStatus electrode set do not
agree sufficiently to a 9-channel FH monitoring electrode set, the BrainStatus is not considered a reliable
tool in the prognostication of neurological outcome after CA.

We also compared both the 9-channel FH electrode set and the BrainStatus to a 4-channel FT elec-
trode set, to separate the effect of electrode placement from the influence of differences in recording
quality. When reducing the FH electrode set from 9 to 4 frontotemporal electrodes, the agreement
remained substantial with a kappa of 0.71. So, the locations of these four channels seem adequate for
outcome prediction. Comparing the BrainStatus with the either the 9-channel FH or the 4-channel FT
montage resulted in only a fair agreement. This suggests that the registration quality of the BrainStatus
is the likely cause of the disagreement.

5.1.2 Comparison with previous literature
EEG monitoring with a reduced number of electrodes was assessed in several other studies, like the pre-
viously mentioned article of Tjepkema-Cloostermans et al. [21] An even smaller electrode set was used by
Pati et al. [46], who compared a 21-channel EEG to a limited montage of 4 electrodes (Fp1-F7 and Fp2-F8).
They concluded that the sensitivity and specificity of the 21- and 4-channel montage were comparable:
in the limited montage, reviewers were able to accurately classify background continuity (88% correct),
background amplitude (81% correct), maximum background frequency (70% correct), periodic epilep-
tiform discharges, including a seizure (92% correct) and sporadic discharges (91% correct). Recently,
Kortelainen et al. [47] reported that four forehead channels (Fp1, Fp2, F7, and F8) were as capable as a
19-channel full EEG cap in capturing the effect of hypoxic ischemic encephalopathy on propofol-induced
slow wave activity. This supports the agreement we found between the 9-channel FH and 4-channel FT
electrode set. Because neither of these two studies tested against self-adhesive screen-printed electrode
sets, we cannot directly compare their findings with our BrainStatus results.

When comparing our study to other studies done with BrainStatus, the results are divergent. Lepola
et al. [20] developed the BrainStatus, and found the EEG signal recorded with the BrainStatus on un-
prepared skin to be almost identical to recordings made with Ag/AgCl cup electrodes. In addition, the
power spectral density (PSD) of EEG recorded with the BrainStatus and the cup electrodes correlated
strongly (97.3% and 98.5% for abraded skin and non-abraded skin, respectively). Myllymaa et al. [48] and
Miettinen et al. [49] reported that there were no considerable differences between Ag/AgCl cup electrodes
and BrainStatus in sleep studies. Muraja-Murro et al. [50] reported a 100% agreement of the BrainStatus
with a full-head EEG in detecting a status epilepticus (SE). To the best of our knowledge, there is no
study similar to ours, comparing the BrainStatus to an Ag/AgCl electrode set in post-anoxic patients,
currently available.
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In response to our dissimilar results concerning the BrainStatus, the manufacturer acknowledged that
problems with artefacts has been a known issue. They shared our hypothesis that the disagreement was
caused by the recording quality. The interference was probably originating from an unshielded cable,
connecting the BrainStatus to the EEG system. Preliminary results of recordings with a shielded cable
showed a noticeable reduction of the artefacts present in the EEG. We expect that this additional shield-
ing may resolve the problems with registration quality, but this has to be proven in additional recordings.

5.1.3 Clinical experience with the BrainStatus
Besides the EEG signal, we also obtained clinical experiences with the BrainStatus in our ICU. The
durability of the BrainStatus was sufficient to maintain recording for more than 24 hours. One patient
experienced excessive sweating, which soaked off all self-adhesive electrodes from the patient’s skin,
including the BrainStatus. In another patient, the BrainStatus was detached after one day, probably
due to turning of the patient during nursing care. In all 23 other patients, the BrainStatus remained
securely fixed for at least 24 hours. The connector of the cable linking the BrainStatus to the EEG
recording system was considered fragile, as the connector pins did bent easily. A more robust connector
may improve clinical handling and durability. Furthermore, some nurses felt that the BrainStatus was
very present on the patient’s head, covering the face. Last, the BrainStatus was not compatible with
other forehead attached monitoring devices, like cerebral near infrared spectroscopy (NIRS) monitoring.
A combined device, like Masimo’s Root™ with SedLine™ Brain Function Monitoring and O3™ Regional
Oximetry (Masimo, California, USA) may provide a solution.

5.1.4 Study limitations
Our BrainStatus study has several limitations. First, because of the limited availability of EEG tech-
nicians (only during office hours) and delay due to uncertainty around acute care decisions (e.g. inter-
hospital transfers), EEG data from only a relatively small number of patients was available. With just 5
and 21 patients included in the analysis at 12 respectively 24 hours, this is considered only a preliminary
study. A prospective study with a larger number of subjects is needed to draw more reliable conclusions.
Second, there might be a learning effect with regard to the application of the BrainStatus, despite the
prior training on healthy volunteers. When we recorded in patients for a longer period of time, we
learned that the BrainStatus had to be applied without too much tension on the separated parts, to
avoid loosening and worsening of contact. This may have influenced the amount of artefacts present
in the first recordings. Last, there was only one size of the BrainStatus electrodes available (size S).
However, this in the only size currently offered by the manufacturer, who indicates that it has a correct
fit for about 95% of the patients. [51] This is consistent with our own observations, as we could apply this
size of BrainStatus to each of our recorded patients.

5.2 CRI algorithm
5.2.1 Interpretation of our findings
In the second part, we assessed the performance of the CRI algorithm on an electrode set with a reduced
number of electrodes. We re-trained the CRI algorithm on the 4-channel frontotemporal electrode con-
figuration, and selected new thresholds based on our training set. When testing these thresholds in the
test set, the sensitivities of the prediction of poor outcome were promising. However, the specificities
were unacceptably low, taking in mind the may lead to incorrect WLST. Looking at the prediction of
good outcome, the opposite is observed. This may indicate the need for adjustment of the thresholds, to
find a more balanced compromise between false positives and false negatives.
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When looking at the ROC curves of the training set, several showed an AUC of 1.00. Also, the perform-
ance of the classifier on the test sets was disproportionately worse compared to the training set. This
may indicate overfitting of the random forest classifier on the specific cases in the training set. There are
several approaches to reduce overfitting, for example adjusting parameters like the maximal number of
terminal nodes. Expanding the dataset used for training could improve generalisability of the classifier.
This could be achieved with inclusion of more patients, but also with varying the ratio for dividing data
over the test and training set. Instead of only separating into a train and test set once, k-fold cross
validation may be used to make more use of the relatively small sized data set. Additionally, it may
help to obtain a more valid estimate of the performance of the trained classifier. Also, feature reduction
could help to reduce overfitting, by only keeping features that have a relatively large contribution to the
prediction of neurological outcome, like the delta coherence, the power and the Shannon entropy.

In this study, only the features present in the original CRI were tested. As explained by Asgiri et
al. [11], the brain is a non-linear time-variant system, producing quasi-periodic and non-stationary EEG
signals, thus a single feature alone provides too limited information about the status of such a complic-
ated system. So, other features may be added to create a more complete representation of the viability of
the brain. However, including too many features will result in overfitting and a non-generisable classifier.
Combining EEG features in the most optimal way will improve the accuracy of neurological prognost-
ication. An overview of quantitative EEG features for predication of outcome in cardiac arrest subject
can be found in the work of Asgari et al. [11]

5.2.2 Comparison with previous literature
Comparing to the original CRI of Tjepkema-Cloostermans et al. [8,10], our algorithm did perform worse.
This could be due to the fact that the original CRI was developed with 21 electrodes, in contrast to our
smaller numbers of 9 or 4 electrodes. Besides retraining the random forest classifier, other adaptations
may be needed to optimise the algorithm when working with a reduced electrode set. Recently, a new
version of the CRI was developed by Nagaraj et al. [52] They improved the performances of the CRI
algorithm, but still were using 21 electrodes. The only study known to the authors investigating the
CRI with a reduced number of electrodes, is unpublished work of Derksen et al. [53] She concluded that
the CRI as measured by only three electrodes appeared to be a good predictor for neurological outcome,
especially for poor prognosis. With her 3-channel central montage, poor outcome at 24 hours after CA
could be predicted with a sensitivity of 39%, and a sensitivity of 98%. Good neurological outcome was
predicted at 24 hours after CA with a sensitivity of 82%, but at the expense of a lower specificity of 58%.
This superior performance, compared to our results, is possibly caused by the three central electrodes
providing a more accurate representation of the brain than the four FT electrodes. Furthermore, the
central electrodes may contain less artefacts, compared to FT electrodes. However, using the thresholds
from the original study instead of choosing new values may have coincidentally resulted in a more ap-
propriate setting.

Besides the CRI, there are other qEEG algorithms existing in literature for the neurological prognostic-
ation after CA. Among others, amplitude-integrated EEG (aEEG) is used by for example Oh et al. [26]

and Rundgren et al. [34,54] This aEEG is based on one respectively two bipolar channels, and converts
the EEG into a more simplified and readable monitoring signal. They have shown that this aEEG con-
tains some relevant measure of outcome for cardiac arrest patients. Integrating the amplitude results
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in a representation of the EEG signal on a much coarser time scale, but unlike the CRI this method
does not combine different features. This time compression may also be a disadvantage, making it more
difficult distinguish burst suppression patterns with or without identical bursts, or to spot epileptiform
discharges. [21]

5.2.3 Artefact detection
Reducing the number of electrodes introduced unforeseen difficulties in the artefact detection incorpor-
ated in the CRI. We noticed that many EEG epochs were falsely being classified as artefact, and an
undesirable large number was removed from the analysis. This was mainly due to the shifting values of
signal power, caused by reduced number of EEG channels. This concern was discussed with the original
developers of the CRI. In their study, the thresholds were derived from the original CRI dataset and
set at arbitrary values, based on sufficient artefact rejection to the opinion of the authors. They could
not provide a solution to our problem. Also Derksen et al. [53] did not address this problem, so an own
empirical approach was started. Based on observed values in our dataset, we tried several thresholds
for the SD of the power (original 2.5, 50, 100, 200, and our adaptive approach). When comparing the
AUCs of the ROC curves, the sensitivity, and the specificity, the adaptive threshold seemed to performed
best. This correction method was not based on a thorough and well-founded mathematical reasoning,
but has to be considered more like a first attempt to address this problem. For example, the assumption
that power is equal for each channel does not hold with varying interelectrode distances, present in the
both montages. Artefact detection in EEG is another topic outside the scope of this study, and requires
further research. Automated EEG signal quality assessment, like developed by Mohamed et al. [55], may
provide a more advanced solution to this problem

5.2.4 Study limitations
Besides the complication with artefact detection, there are several other remarks with respect to our
CRI study. First, all features in the original CRI were calculated from a 21-channel source derivation
montage, whereas this was not possible with a 9- or 4-channel montage. This was necessary to adjust
to the different electrode sets. We also changed the moving average filter: instead of returning a value
when one of the neighbouring hours contained EEG data, all of the three timepoints had to be available
before calculating an average. This way, results were only generated for hours where EEG data was
available. Both alterations may limit the comparability to the original algorithm. Secondly, a more
general remark: the precise time of the CA was not always known. If available, data from the ambulance
services and/or defibrillators was used, but otherwise the time was estimated based on admission time.
This may have influenced the selection of the 12 and 24 hours windows, but was considered neglectable
because we expected these differences to be no longer than half an hour. Last, in this kind of studies
related to prognostication possibly followed by WLST, there is almost always the risk of a self-fulfilling
prophecy. [3] However, in the 24 hours after CA the cEEG was not taken into account when making
clinical decisions, so this risk was minimised.

5.3 Clinical utility of cEEG monitoring after CA
Recent studies have proven that EEG monitoring provides valuable prognostic information about neur-
ological outcome, especially when looking at EEG background patterns. [9,56] Clinicians can use this
information in making critical decisions, like the irreversible WLST. [3,29,34]
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Currently, the exact relevance of routinely applied ICU cEEG remains unclear, and information on
the implementation of cEEG, especially in Europe, is scarce. [13] There is an ongoing debate how EEG
monitoring in post-anoxic patients should be performed. [14,46] Arguments against cEEG monitoring in
comatose patients after CA are mainly based on continuous monitoring being expensive and requiring
a disproportionate amount of effort. However, when comparing cEEG to intermittent EEG record-
ing at fixed time points, cEEG is able to show trends and is more sensitive to non-convulse seizure
activity. [2,15,23,57,58] Fatuzzo et al. [59] stated that their data suggested that cEEG does not provide any
advantage over intermittent EEG recording regarding outcome in patients after CA, nor influence the
time to death. However, as with any other diagnostic modality, cEEG monitoring can only affect out-
come when it is followed by an effective therapy. [13,14] These treatment options are currently limited.
Only TTM has been shown to improve neurological outcome after cardiac arrest. [60,61] A SE is seen in 10
to 35% of the post-anoxic patients, and is strongly associated with poor outcome. [62] It is unclear whether
these EEG patterns represent a condition to be treated with anticonvulsants to improve outcome, or
are an expression of severe ischemic damage, in which treatment is futile. The TELSTAR trial [62] is
evaluating the efficacy of anti-epileptic medication administration to the post-arrest population, with
the idea to prevent additional brain damage from ongoing hyper-excitability. [2,29]
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6 Conclusion
The agreement of the visual assessment of EEG recordings made with the BrainStatus electrode set
compared to a 9-channel full-head monitoring electrode set was not sufficient. However, we found that
four frontotemporal channels provide enough agreement, and can reliably be used for visual scoring of
EEG background patterns.

The specificity to predict poor prognosis with the re-trained CRI algorithms on the 9- and 4-channel
electrode configuration are found to be lower than the original CRI and are deemed unacceptable

As for now, a frontotemporal electrode set processed by the CRI cannot be considered a reliable tool
in the neurological prognostication of comatose patients after CA. However, our results and discussion
suggest room for improvement and the driving clinical need for EEG monitoring in post-arrest patients
makes further optimisation of this limited electrode set cEEG monitoring set-up imperative.
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7 Future research and development
7.1 Future research on the BrainStatus and CRI
Concerning the BrainStatus electrode set, the next step should be an assessment of recordings made
with the aforementioned shielded cable. Depending on these results, a prospective cohort study could be
initiated or an alternative electrode set has to be found. When continuing to work with the BrainStatus,
it is desirable to create a more robust and easier to (dis)connect connector to the EEG system.

Continuing to work on the CRI, it should first of all be verified that the CRI algorithm does func-
tion similarly on a different EEG dataset, compared to the set it was developed on. The source code
should be robust, and return warnings when encountering something unexpected. Frequent intermediate
reporting of variables, like a list of patients included in the current processing step, may help to debug
and monitor the progress of the algorithm.

Furthermore, in the current analysis, only the 5-minute epochs at 12 and 24 hours after CA are re-
lated to the neurological outcome. Because of the continuous evolution of EEG patterns over the hours
following the CA, it may be interesting to expand our field of view: from two fixed time point to looking
at the whole cEEG registration and CRI trend, like also done in the original study. [10]

The CRI should be optimised for the processing of smaller electrode sets. Recording cEEG is no standard
clinical practice in Dutch ICUs yet, neither with 21 nor with another number of electrodes. Limiting the
number of electrodes may reduce set up time, and using only sub-hairline locations may facilitate the
use of templates like the BrainStatus. This way, quantitative cEEG monitoring can be made available
to more hospitals across the Netherlands.

7.2 Future development of cEEG monitoring in the ICU
Citerio [23] has identified four barriers for implementation of cEEG in the ICU: (1) the limited availability
of EEG technicians and neurophysiologists to record and review studies, (2) the lack of uniform termin-
ology and consensus on clinical significance of specific EEG patterns, (3) the need for an infrastructure
for cEEG in a busy modern ICU environment and (4) the huge amount of recorded EEG-data requiring
time for reviewing and interpretation. If working properly in clinical practice, the BrainStatus combined
with the adjusted CRI could help to solve both the recording and reviewing challenges, and provide
bedside measure of cerebral damage and recovery over time.

Future research should focus on lowering cEEG workload and uniforming cEEG practices, including
unambiguous EEG interpretation. This will facilitate collaborative research, aiming to provide improved
patient care and robust data on the impact of cEEG monitoring on patient outcome. [13] When using
machine learning methods, a reliable implementation requires a large and diverse dataset. In case of
post-arrest patients, this should be a large collection containing clearly documented physiological and
clinical data following CA. To obtain such dataset, an option could be multi-institution research collabor-
ations, where multimodality data is consistently and uniformly collected and shared among researchers,
to facilitate the development of even better algorithms to predict neurological outcome after CA. [11] A
CRI based on a dataset recorded in multiple hospitals may result in a more generalisable and reliable
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model for predicting neurological outcome. When a sufficient size of the dataset is reached, deep learning
may become an interesting option, bypassing the need for feature selection. Van Putten et al. [63] already
have developed a deep learning classifier, with similar prognostic accuracy as the CRI.

Looking beyond this thesis, the clinical implementation of cEEG will largely depend on the physicians
and nurses on the ICU: they are the end users who will have to work with the monitoring system. To
incorporated their needs and wishes, it is important to conduct a requirements survey and evaluate pro-
totypes with the end users. Examples of such requirements could be: Easy to use by ICU physicians and
nurses; Simple and quick to attach to the patient; Quick start of measurements; Real-time, automated
and reliable analysis; Understandable presentation of results and clear interpretation.

To smooth incorporation of cEEG into the ICU environment, quantitative analysis algorithms will be an
indispensable tool to process the vast amounts of EEG data. Convenient software should make cEEG
data actionable, so it becomes intelligible and implications to patient care will be clear. Simplification of
other preconditions, like the recording process, will further promote the introduction of cEEG to the ICU.
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Appendix I Conventional AMC cEEG monitoring electrode set
The conventional AMC cEEG monitoring electrode set contains the following 11 electrodes: Fp1, Fp2, T3, T4, C3,
C4, O1, O2, reference and ground.
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Figure 1: EEG standardized 10-20 system [18], with available electrodes shown in yellow/red. Possible positions of
reference electrode indicated in blue.
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Appendix II BrainStatus
The BrainStatus is a screen-printed electrode set, designed to be attached to the hairless areas of the patient’s head.
The electrodes consists of a screen-printed spiral of silver ink, with a hydrogel layer. The wires are screen-printed
traces of silver inkt, onto a flexible polyester film. Adhesion to the patient’s skin is facilitated by the hydrogel and
non-conductive adhesive foam. Detailled information and test results can be found in Lepola et al. [20]

Figure 2: a) A photograph of the original screen-printed electrode consisting of ten electroencephalography (EEG)
electrodes, two electro-oculography (EOG) electrodes, two common ground electrodes and two reference electrodes.
b) Close-up picture of an individual electrode. Adapted from Lepola et al. [20]

Figure 3: The sites of electrodes used in the EEG electrode set. a) A plane projection of the electrode sites. b)
Front, c) right and d) left view of the head with marked electrode sites. Adapted from Lepola et al. [20]
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Appendix III EEG epoch selection
To select an EEG epoch at a certain time after CA, the 5-minute epoch with the least number of artefacts was
selected from a 20-minute window around the specified time point. The amount of artefacts was determined by
calculating the number of high-voltage peaks (indicating movement artefacts), the power ratio between frequencies
inside the EEG range and higher frequencies (indicating muscle activity), and the number of channels that contains
zeros (indicating missing channels or loose electrodes). A overview of precise definitions and relevant thresholds is
reported below.

III.1 Amplitude check
Fraction of samples with an amplitude above 200 µV, reported as artefact when larger than 0.1.

III.2 Frequency check
If the standard deviation of the EEG was less than 10 µV, the epoch was marked as only containing low voltage
EMG and no artefacts. Otherwise, the power ratio between power in the EEG band (2-25Hz) and the power in
the EMG band (25-40Hz) was calculated. An epoch was marked as containing muscle artefacts if this ratio was
less than 20. Also, a peak in the EEG-band, defined as a power of more then 0.25 in only one division of the power
spectrum, will be marked as artefact (these artefacts may be caused by high impedance of the electrode).

III.3 Zero check
Fraction of total number of seconds containing zeros, defined as having a standard deviation of less than 0.1. Epoch
was marked as artefact if any zero parts were present (fraction greater than zero).
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Appendix IV EEG visual scoring application

Figure 4: Screenshot of scoring application, with example EEG.

The web app was built using MATLAB 2018b (The MathWorks Inc., Natick, MA, USA), and made available to
the EEG readers via the local network. The identity of the reader was verified using a private username. EEG
epochs were retrieved from a centralised storage and displayed in random order.

The EEG was filtered with an adjustable third order Butterworth band-pass filter (high-pass cut-off at 0.008,
0.300, 0.530, 1, 1.6, 5.3, 10 Hz, low pass at 2, 10, 15, 20, 30, 50, 60, 70 or 120 Hz) and a switchable notch filter
(second order infinite impulse response (IIR) bandstop filter, 49 - 51 Hz or off). Filter settings could be adjusted
by the reader, as well as the amplitude and time division. Readers could scroll through the epoch using a slider or
step-wise using buttons.

The visual score was was entered into the program in a systematic way, via drop-down lists and checkboxes.
Additionally, remarks could be added using a free text input box. The next EEG could only be loaded if the
scoring of the current epoch was complete. It was not possible to return to previusly scored EEGs.
The scores were saved for each reader individually, in the centralised storage. Only after all reader had finished
scoring, the data was transferred and merged to make it available for analysis.
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Appendix V CRI adaptive artefact threshold
The CRI algorithm contains two artefact detection thresholds when calculating the qEEG features:

• The standard deviation of the ADRs of each EEG channel being greater than 4
• The standard deviation of the powers of each EEG channel being greater than 2.5

In Matlab (Matlab™ 2018b, The MathWorks Inc., Natick, MA, USA), the standard deviation S is defined as

S =

√√√√ 1

N − 1

N∑
i=1

|Ai − µ|2 (1)

, with variable vector A made up of N scalar observations (here: EEG channels), and µ being the mean of A
(defined as µ = 1

N

∑N
i=1 Ai)

When chancing the number of EEG channels from N1 to N2, the S does not fully scale because of the ”N − 1”
term. To find a correction factor α, both conditions with either N1 or N2 are combined in the following equation:

SN1 = α SN2 (2)

And when putting the definition of S (equation 1) into equation 2, this results in:√√√√ 1

N1 − 1

N1∑
i=1

|AN1,i − µ|2 = α

√√√√ 1

N2 − 1

N2∑
i=1

|AN2,i − µ|2 (3)

When assuming that the values of A for each channel are more or less equal, for both N1 and N2, we assume that
|Ai − µ|2 can be generalised as |A− µ|2. Then, the sum in equation 1 can be rewritten:

N∑
i=1

|Ai − µ|2 = N · B (4)

, with B summarising |A− µ|2.

Now equation 3 may be simplified by substitution of equation 4:√
1

N1 − 1
N ·B = α

√
1

N2 − 1
N ·B (5)

Shared terms are grouped and removed (printed in gray):√
1

N1 − 1

√
N · B = α

√
1

N2 − 1

√
N · B (6)

The remaining terms can be reordered into an expression for α:
√

1
N1−1/

√
1

N2−1 = α (7)

Using successive the rules
√
A√
B

=
√

A
B and

A
B
C
D

= A
B

D
C , this can be rewritten to:

√√√√ 1
N1−1

1
N2−1

=

√
1

N1 − 1

N2 − 1

1
= α (8)

This may be simplified to the final definition of correction factor α:

α =

√
N2 − 1

N1 − 1
(9)

To obtain the threshold for alternative number of electrodes N2 (instead of N1), it has to be multiplied with α.
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Appendix VI BrainStatus raw EEG recordings
Illustrative samples of raw EEG data from various patients, representing (dis)agreement seen in visual scoring.
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(c) BrainStatus montage
Figure 5: Selection of EEG from patient AMC224 at 24 hours after cardiac arrest: all montages scored as suppressed
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(c) BrainStatus montage
Figure 6: Selection of EEG data from patient AMC205 at 24 hours after cardiac arrest: both the 9- and 4-channel
montages made with the cup electrodes have a background pattern scored as suppressed, whereas the 4-channel
montage from the BrainStatus shows a background pattern scored as continuous.
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(c) BrainStatus montage
Figure 7: Selection of EEG data from patient AMC234 at 24 hours after cardiac arrest: all montages scored as
continuous
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(c) BrainStatus montage
Figure 8: Selection of EEG data from patient AMC239 at 24 hours after cardiac arrest: all montages scored as
burst suppression
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Appendix VII BrainStatus results at 12 hours after cardiac arrest
VII.1 Patient inclusion
Characteristics of the added patients were not significantly different from those of the patients with the BrainStatus.

Table 1: Baseline Characteristics of Patients in BrainStatus analysis, at 12 hours after cardiac arrest. IQR =
interquartile range. ∗: Difference between both groups was tested using Fisher exact test or Mann-Whitney U
test, whichever was appropriate. P-values < 0.05 were considered statistically significant.

Characteristic Patients with BrainStatus Patients from existing set p-value∗

(n = 5) (n = 50)

Male n (%) 2 (40%) 39 (78%) 0.10
Age years, median (IQR) 66 (49.3-84) 63.5 (52-73) 0.58
Cardiac cause n (%) 1 (20%) 31 (62%) 0.20
Witnessed n (%) 5 (100%) 35 (70%) 0.31
Out of hospital n (%) 4 (80%) 41 (82%) 1.00
Shockable rhythm n (%) 1 (20%) 29 (58%) 0.17
Delay CA to CPR min, median (IQR) 6 (0.0-8.5) 2 (1-5) 0.49
Duration of CPR min, median (IQR) 30 (5.0-39.8) 15 (10-20) 0.68
Died at ICU n (%) 2 (40%) 21 (42%) 1.00

VII.2 EEG recordings and scoring
At 12 hours after CA, the inter-rater conformity of 55 observations for background pattern was excellent for both
the 9-channel FH as the 4-channel FT set, with an ICC of 0.93 ([0.90-0.96]) respectively 0.93 ([0.89-0.95]). In the
BrainStatus, the consistency of five observations was moderate with an ICC of 0.64 ([0.21-0.81]).

VII.3 Confusion matrices
The classification matrices of only the two major features (background pattern, rhythmic pattern) and artefact
presence at 12 hour after CA are included in this thesis. Additional results may be requested from the author.
For each figure: N/A = not assessable. Blue background colour indicates conformity, red represent disagreement.
Colour saturation corresponds with relative number of observations.

VII.3.1 Background pattern

Figure 9: EEG background patterns at 24 hours after cardiac arrest, comparing the 4-channel BrainStatus to the
9-channel full-head electrode set. Total N = 4.
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Figure 10: EEG background patterns at 12 hours after
cardiac arrest, comparing the 4-channel frontotemporal
to the 9-channel full-head electrode set. Total N = 51.

Figure 11: EEG background patterns at 12 hours after
cardiac arrest, comparing the 4-channel BrainStatus to
the 4-channel frontotemporal electrode set. Total N = 4.

VII.3.2 Rhythmic pattern

Figure 12: EEG rhythmic patterns at 12 hours after cardiac arrest, comparing the 4-channel BrainStatus to the
9-channel full-head electrode set. Total N = 5.

Figure 13: EEG rhythmic patterns at 12 hours after car-
diac arrest, comparing the 4-channel frontotemporal to
the 9-channel full-head electrode set. Total N = 52.

Figure 14: EEG rhythmic patterns at 12 hours after car-
diac arrest, comparing the 4-channel BrainStatus to the
4-channel frontotemporal electrode set. Total N = 4.
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VII.3.3 Artefacts

Figure 15: EEG artefacts presence at 12 hours after cardiac arrest, comparing the 4-channel BrainStatus to the
9-channel full-head electrode set. Total N = 5.

Figure 16: EEG artefacts presence at 12 hours after car-
diac arrest, comparing the 4-channel frontotemporal to
the 9-channel full-head electrode set. Total N = 55.

Figure 17: EEG artefacts presence at 12 hours after car-
diac arrest, comparing the 4-channel BrainStatus to the
4-channel frontotemporal electrode set. Total N = 5.

VII.4 Classification agreement

Table 2: Classification agreement at 12 hours after cardiac arrest. FH = 9-channel full-head, FT = 4-channel
frontotemporal, BS = BrainStatus, CI = confidence interval and κ = Cohen’s kappa. NaN = not a number, error
due to too few samples

Montage Background Pattern Rythmic pattern Artefact
κ 95% CI κ 95% CI κ 95% CI

FH - BS -0.14 -1.26 - 0.98 NaN NaN - NaN 0.29 -0.48 - 1.00
FH - FT 0.66 0.51 - 0.82 0.22 -0.37 - 0.81 0.50 0.08 - 0.92
FT - BS -0.14 -1.26 - 0.98 -0.25 -1.59 - 1.09 0.29 -0.48 - 1.00
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Appendix VIII Additional BrainStatus results at 24 hours after car-
diac arrest

For each figure: N/A = not assessable. Blue background colour indicates conformity, red represent disagreement.
Colour saturation corresponds with relative number of observations.

VIII.1 Background voltage

Figure 18: EEG background voltage at 24 hours after cardiac arrest, comparing the 4-channel BrainStatus to the
9-channel full-head electrode set. Total N = 20.

Figure 19: EEG background voltage at 24 hours after
cardiac arrest, comparing the 4-channel frontotemporal
to the 9-channel full-head electrode set. Total N = 71.

Figure 20: EEG background voltage at 24 hours after
cardiac arrest, comparing the 4-channel BrainStatus to
the 4-channel frontotemporal electrode set. Total N =
20.
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VIII.2 Background frequency

Figure 21: EEG background frequency at 24 hours after cardiac arrest, comparing the 4-channel BrainStatus to
the 9-channel full-head electrode set. Total N = 20.

Figure 22: EEG background frequency at 12 hours after
cardiac arrest, comparing the 4-channel frontotemporal
to the 9-channel full-head electrode set. Total N = 69.

Figure 23: EEG background frequency at 12 hours after
cardiac arrest, comparing the 4-channel BrainStatus to
the 4-channel frontotemporal electrode set. Total N =
19.

VIII.2.1 Rhythmic pattern

Figure 24: EEG rhythmic patterns at 24 hours after cardiac arrest, comparing the 4-channel BrainStatus to the
9-channel full-head electrode set. Total N = 18.
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Figure 25: EEG rhythmic patterns at 24 hours after car-
diac arrest, comparing the 4-channel frontotemporal to
the 9-channel full-head electrode set. Total N = 68.

Figure 26: EEG rhythmic patterns at 24 hours after car-
diac arrest, comparing the 4-channel BrainStatus to the
4-channel frontotemporal electrode set. Total N = 18.

VIII.3 Rhythmic abundancy

Figure 27: EEG rhythmic abundancy at 24 hours after cardiac arrest, comparing the 4-channel BrainStatus to the
9-channel full-head electrode set. Total N = 21.

Figure 28: EEG rhythmic abundancy at 24 hours after
cardiac arrest, comparing the 4-channel frontotemporal
to the 9-channel full-head electrode set. Total N = 71.

Figure 29: EEG rhythmic abundancy at 24 hours after
cardiac arrest, comparing the 4-channel BrainStatus to
the 4-channel frontotemporal electrode set. Total N =
21.
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VIII.4 Artefacts

Figure 30: EEG artefact presence at 24 hours after cardiac arrest, comparing the 4-channel BrainStatus to the
9-channel full-head electrode set. Total N = 21.

Figure 31: EEG artefact presence at 24 hours after car-
diac arrest, acomparing the 4-channel frontotemporal to
the 9-channel full-head electrode set. Total N = 71.

Figure 32: EEG artefact presence at 24 hours after car-
diac arrest, comparing the 4-channel BrainStatus to the
4-channel frontotemporal electrode set. Total N = 21.
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Appendix IX Additional results CRI algorithm
IX.1 Patient inclusion
Details on the patient inclusion process can be found in section 4.2.1. Patient characteristics are described in the
table below.

Table 3: Baseline Characteristics of included patients. IQR = interquartile range.

Characteristic Training set Test set
(n = 79) (n = 79)

Male n (%) 66 84% 57 72%
Age y, median (IQR) 64 (55.0-71.8) 61 (51-74)
Cardiac cause n (%) 57 72% 45 57%
Witnessed n (%) 47 59% 45 57%
OHCA n (%) 60 76% 44 56%
Shockable rhythm n (%) 73 92% 65 82%
Delay CA to CPR min, median (IQR) 2 (1-5) 2 (1-5)
Duration of CPR min, median (IQR) 15 (10-25) 15 (10-25)

Neurological outcome at 6 months*:
Good n (%) 41 52% 31 39%
Poor n (%) 38 48% 48 61%

*: At three time points, the 5-point Glasgow–Pittsburgh Cerebral Performance Category (CPC) [37,38]

was evaluated: at ICU discharge, by the attending researcher, and at three and six months after CA,
via telephone by a single investigator blinded for EEG patterns. Primary outcome was neurological
performance at six months after CA, defined as the best of these three scores. This outcome was
dichotomised as good (CPC 1-2: no to moderate disability) or poor (CPC 3-5: severe disability,
comatose, death).
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IX.2 Algorithm performance

The chosen thresholds with corresponding sensitivity and specificity can be found in table 4.3 in section 4.2.2.

(a) Training set (b) Test set
Figure 33: ROC curves predicting good neurological outcome, as measured with the 9-channel FH compared to
the 4-channel FT montage, at 24 hours after cardiac arrest (CA). Chosen threshold represented by black dot.

(a) Training set (b) Test set
Figure 34: ROC curves predicting poor neurological outcome, as measured with the 9-channel FH compared to
the 4-channel FT montage, at 12 hours after cardiac arrest (CA). Chosen threshold represented by black dot.

A18



Special thanks to all patients and healthy volunteers, who participated in this study.
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Introduction: Electroencephalography (EEG) patterns within 24 hours after 

cardiac arrest (CA) have shown to reliably predict neurological outcome. These 

recordings may be simplified by using a less extensive electrode set. 

Subsequently, algorithm-aided EEG analysis may be used to identify regions of 

interest in high volumes of data and support untrained readers. In this dual 

study, we compared a sub-hairline EEG headband (BrainStatus) to a 9-channel 

full-head (FH) electrode set. Also, a 4-channel frontotemporal (FT) montage 

was derived from the FH set. Next, these FH/FT montages were used to re-

train the existing cerebral recovery index (CRI) algorithm.

 

Methods: EEGs were simultaneously recorded with the FH set and the 

BrainStatus in consecutive adult patients admitted after CA. EEG patterns 

were visually scored in 5-minute epochs at 24 hours after CA, and scoring 

agreement was evaluated using confusion matrices and Cohen’s kappa.

The CRI algorithm was re-trained on 79 post-arrest EEGs from March 2014 

through August 2018. Neurological outcome was dichotomised as good 

(Cerebral Performance Category (CPC) 1-2) or poor (CPC 3-5). For both the 

FH and FT montage, a random forest classifier was trained for each hour after 

CAand new thresholds were established. Sensitivity and specificity of each 

montage were evaluated.

 

Results: Between July 2018 and January 2019, EEGs from 22 patients were 

recorded. At 24 hours after CA, patterns of 21 patients were available. The 

agreement for background patterns between the BrainStatus and FH set was 

fair (κ = 0.32). Between the FT and FH montage, the agreement was 

substantial (κ = 0.77).

In a test set of 79 patients, the re-trained CRI with the FH montage predicted 

poor outcome at 24 hours after CA with sensitivity of 0.86 and specificity of 

0.20. With the FT montage, sensitivity was 0.92 and specificity was 0.35.

 

Conclusion: Visual classification of EEG patterns in patients with postanoxic 

coma with a FH electrode set cannot be replaced with the BrainStatus. 

However, four frontotemporal channels provide enough agreement, and can 

reliably be used for visual scoring of EEG background patterns.

The specificities of the CRI algorithms, re-trained on the FH and FT montage, 

to predict poor neurological outcome at 24 hours after CA are unacceptably 

lower than the original CRI.

Further optimisation of this limited electrode EEG monitoring set-up is 

recommended.
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