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Abstract

Visual Odometry (VO) is the practice of motion estimation of a mobile robot from a series of im-
ages, which is an appropriate localization tool in a GPS-denied environment. Visual odometry
relies on the extraction and matching of distinct features within the recorded images to determ-
ine the robot pose. Consequently, when a view lacks the necessary information to estimate the
current pose of the robot, the localization process loses its tracking, which is generally required
to control the robot.

A potential solution to prevent the lack of necessary information is to implement a gaze control
algorithm that actively actuates the camera towards a more favourable gaze. In this project, the
tracking problem has been investigated by preliminary experiments and theoretical analysis,
to analyse the conditions which facilitate tracking loss. A control algorithm has been designed
in which the setpoints of the physical system are determined by a virtual mechanical model
driven by the feature distribution in camera frame and the state of the system. The influence
of the features on the system is continuously adapted to take into account the undesired con-
ditions found in the analysis step.

The resulting change in behaviour of the motion of the camera unit is investigated using a series
of simulation experiments, which test and demonstrate the potential benefit of the designed
gaze control algorithm and its individual aspects.

These simulations demonstrate that the different aspects of the designed gaze control al-
gorithm work as intended, to a limited extent.

The obtained simulation results increase the plausibility of the efficacy of the proposed solu-
tion. However, a definitive confirmation has not been obtained due to a lack of relevant phys-
ical data.
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Nomenclature

0a×b Zero matrix with a rows and b columns.

α Spring torque penalty that is a function of the feature distance d f .

βi ,i Diagonal matrix containing the spring torque penalties that use~η to prevent
the camera to exceed its physical limits.

∆~x Translation vector.

ηx̂c Compound angle consisting of the angular setpoint φ and the angular error
εx̂c .

γ Feature initialization penalty that linearly increases the spring stiffness of a
feature f until saturation is reached at t f ≥ tm .

x̂c The unit vector in the x-direction of the local coordinate frameΨc .

I Virtual inertia.

Pk 6-dimensional momentum expressed in frameΨk .

R Diagonal damping matrix.

ωmax No-load rotational velocity of the servomotor driving the timing belt system.

φ Calculated tilt angle, used as a setpoint for the physical system.

φp Physical tilt angle.

Ψ Coordinate frame.

ψ Roll angle of the camera around the z-axis. This angle is not actuated.

Ψb Coordinate frame of the base of the pan-tilt unit.

Ψc Coordinate frame of the camera.

Ψ f Feature coordinate frame associated with a certain feature f .

Ψk Body-fixed frame, preferably aligned with the principal axes of the body.

Ψw Inertial reference coordinate frame.

v f Visibility factor which specifies if a feature is within the FoV.

AdH Adjoint matrix of the homogeneous matrix H .

adT adjoint matrix of the twist T .

θ Calculated pan angle, used as a setpoint for the physical system.

θp Physical pan angle.

ω̃ Skew-symmetric matrix form of angular velocity vector ω.

T̃ Skew-symmetric matrix form of twist T .
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εx̂c Angular error between Ψc and Ψ f around the local unit vector in the x-
direction.

ξp Viewing angle: the angle between the normal at a point p on a plane and the
ray going from the camera to that point p.

ci Virtual joint damping associated with a certain joint i .

ccomp Compensation factor to counteract the reduced damping effect of the discret-
ization process.

d f Euclidean distance between the camera frame Ψc to a certain feature frame
Ψ f .

dp Diameter of the driving pulley of the timing belt system.

f Feature selector. f = 1, . . . ,n

h Height.

H j
i Homogeneous transformation matrix from frameΨi to frameΨ j .

i Joint selector. i = 1,2

j Link selector. j = 1,2,3

K Diagonal spring stiffness matrix.

K f Diagonal virtual spring stiffness matrix associated to a certain feature f .

k f Virtual spring stiffness associated with a certain feature f .

k f ,i Normalized spring constant for each feature.

l j Link length associated with a certain link j .

n The maximum number of features that can affect the camera.

OL ,OR Two different optical origins.

P c
f The position of the origin ofΨ f with respect toΨc in homogeneous coordin-

ates.

pc
f The position of the origin ofΨ f with respect toΨc

r Radius.

R j
i Rotation matrix from frameΨi toΨ j

S Performance metric, consisting of a cumulative feature score as a function of
v f and α f .

t Time.

T a,b
c Twist of frameΨc with respect toΨb , expressed in frameΨa .

t f Feature age that corresponds to the time a feature is within the FoV.

tm Feature maturation age.

vb Base velocity.
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vmax Maximum obtainable linear velocity by timing belt system.

W c
f Virtual torsional spring torque "exerted" by a feature f expressed in wrench

form.

W k Wrench expressed in frameΨk .

X Three-dimensional point in space.

xc
f Projection of P c

f on x̂c .

Y ′ Elemental rotation around the Euclidean axis y of a rotated frame.

MGR Modulated gyristor in a bond graph model.

MTF Modulated transformer in a bond graph model.

Baseline Performance metric response without the designed gaze control algorithm
applied.

Bond graphs A domain-independent graphical description of dynamic behaviour of phys-
ical systems.

Concealment The effect of not being able to extract features from a certain object as they are
being concealed from view by other objects.

Feature Piece of information in an image.

FoV Field-of-view

Gaze Direction of looking and the associated field-of-view around that direction.

IEKF Iterated Extended Kalman Filter

IMU Inertial Measurement Unit

Landmark Extracted feature.

Pose Position and orientation of a robot within a coordinate frame.

RANSAC Random Sample Consensus

ROS Robot Operating System

ROVIO Robust Visual-Inertial Odometry

SLAM Simultaneous Localization And Mapping

UT University of Twente

VI-sensor Visual-Inertial sensor

Virtual model A simulated model of a mass-spring-damper system that governs the angular
setpoints of the pan-tilt actuated camera unit.

VO Visual Odometry
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1 Introduction

Drones are becoming more prevalent in everyday life. Even though drones are increasingly
being applied for all kinds of activities and tasks, their capabilities are still limited. In most
cases, the drones are still controlled manually; otherwise, public safety cannot be guaranteed.
Automated control of a drone uses a collection of different sensors to estimate its current state,
like its pose. The pose of a robot consists of its position and orientation within a coordinate
frame. To determine the position of a drone in an outdoor environment, conventionally, GPS
is used. GPS is an absolute, direct position measurement system with a limited accuracy. The
potential applications of drones are countless. However, practically, its uses are limited by the
current state of technology. In order to expand the use cases of drones, active research is trying
to improve the current state of technology. One such research direction is visual odometry.

Visual Odometry (VO) is an incremental, online estimation process of a vehicle’s pose by
analyzing the image sequences captured by a camera.[1] Visual odometry algorithms can be
appearance-based or feature-based. Features are pieces of information in an image, such as
points, lines, edges or corners.[1] A persistent challenge in state-of-the-art feature-based visual
odometry algorithms is their dependency on feature-rich environments [14][1][25][28]. When
the number of features in the field-of-view of the camera diminishes, so does the reliability of
the pose estimation process. In an unknown environment, it is impossible to predict whether
an unvisited area has enough features to maintain reliability.

1.1 Related work

The current state-of-the-art solutions to the feature reliability problem can be divided into four
categories:

The first category is the manipulation of the camera angle to obtain a view with more inform-
ation. Peretroukhin et al.[22] studied the effect of varying the yaw angle of a stereo camera
on the visual odometry motion estimation error. Kelly and Sukhatme[16] studied the effect of
changing the pitch angle of a stereo camera on the visual odometry motion estimation error.
Their results showed that an oblique angle for both the yaw (w.r.t. the forward direction) and
the pitch (w.r.t. the horizontal line) resulted in an increased accuracy during pose estimation.
Correa and Soto[8] use a topological map of the environment and a particle-filter based optim-
ization function to direct the camera towards more information-rich parts of the environment.
Manderson et al.[17] use an offline-trained online classifier to iteratively determine a discret-
ized change in gaze of a pan-tilt camera towards feature-rich regions, to improve their SLAM
system. Their work demonstrated that increasing the effectiveness of SLAM can be achieved by
actively updating the camera gaze.

The second category can be seen as an extension of the pan-tilt concept: the application of an
omnidirectional camera, which covers the different possible views simultaneously. Omnidirec-
tional cameras have been applied to aid visual odometry frequently. For example, Bunschoten
and Kröse[6] successfully applied a form of visual odometry on a dataset created by an om-
nidirectional camera. Corke et al.[7] compared two approaches to visual odometry from an
omnidirectional image sequence, namely an optical flow method and a shape-from-motion
technique. Tardif et al.[29] applied a custom monocular SLAM system to an omnidirectional
camera. Their SLAM system decouples the estimation of camera rotation and translation. The
translation is estimated using the 3D points determined by the SLAM algorithm, while the rota-
tion is estimated using the epipolar constraint. Similarly, Scaramuzza and Siegwart[26] applied
a homography-based tracker that extracts features most likely belonging to the ground-plane
to estimate translation, while using an appearance-based algorithm to estimate the rotation.
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Zhang et al.[31] evaluate the effect of the camera’s field-of-view (FoV) on the accuracy and ro-
bustness of visual odometry. They conclude that the benefit of a larger field-of-view on visual
odometry is not straightforward, but depends on the situation. An increase in robustness from
a larger field-of-view comes at a cost of a decrease in accuracy. Additionally, their experimental
data indicate that cameras with a large field-of-view are beneficial for indoor situations, while
this benefit decreases as the scale of the scene grows, because the angular resolution is smaller
than that of a perspective camera. Additionally, the use of omnidirectional cameras comes at
a cost of increased computational complexity.[1] These issues limit the applicability of omni-
directional cameras.

The third category is the manipulation of the path planning of a robot that takes into account
the visual information of the environment, in order to minimize the propagation of pose uncer-
tainty. Costante et al.[9] use texture information of the environment to adapt the path-planning
process of a downwards-looking drone. Using this adaptive planning, the drone attempts to
avoid feature-poor areas. The implementation of Costante et al. has the camera fixed in a
downward looking orientation, which limits the potential improvement of VO reliability using
texture-aware path planning, because the camera and the drone cannot move separately.

The last category is the implementation of software strategies to minimize tracking loss. Straub
et al.[28] apply binary descriptors to features to enable quick nearest-neighbour search to at-
tempt to recover tracking. Alternatively, SLAM methods can be applied. For example, Mur-
Artal et al.[19] use a bag-of-words model and RANSAC to compare the current frame to re-
localization candidates in the created map. Software solutions can incorporate intelligent solu-
tions to specific situations. However, the effectiveness of these solutions are limited by physical
limitations. It can only change the usage of available information, but not change the amount
of information obtained.

1.2 Research topics

This report presents a novel approach in the first category to improve the reliability of pose es-
timation based on existing Visual Odometry (VO) algorithms, by implementing an active gaze
control algorithm. The gaze of a camera is defined in this context as the direction the camera
is looking towards and the field-of-view related to that direction. The gaze will be continu-
ously altered based on a dynamical model. By altering the gaze, areas that contain insufficient
information for sustained reliable VO can be avoided.

The proposed solution to the feature-dependent reliability issues of pose estimation, and the
issues present in the solutions of others, is the application of a pan-tilt actuated camera unit.
The camera unit consists of a stereo camera and an on-board Inertial Measurement Unit (IMU).
The actuators will be controlled using a virtual dynamical model that can be tuned to adapt the
behaviour of the gaze control system. This virtual model incorporates virtual springs, damping
and inertia that govern the motion of the camera unit.

Stephan Visschers BSc University of Twente



CHAPTER 1. INTRODUCTION 3

The proposed approach leads to the following research question:

How can the likelihood of losing reliable pose estimation in visual odometry be
reduced by adapting the gaze of the camera, particularly in problematic areas?

The research question is supplemented with the following research sub-questions:

1. What are the current state-of-the-art solutions to the feature reliability problem?

2. Which factors contribute to the loss of feature-dependent reliability of visual odometry?

3. What combination of virtual components should the virtual dynamical model consist of
in order to counteract the loss of feature-dependent reliability of visual odometry?

4. How does the algorithm perform in simulations?

5. How does the algorithm perform in physical experiments?

Research sub-question 1 is answered in section 1.1.

1.3 Key concepts

A number of key concepts are introduced or extended in this section to provide a basic level of
knowledge to the reader in these topics.

1.3.1 Visual Odometry

The general concept of visual odometry is based on epipolar geometry, which describes the
geometry of stereo vision.[25] See figure 1.1. The optical origins OL ,OR of two different views
form a triangle together with a three-dimensional point X in space. From this geometry and
the known distance between the two origins, the depth of X can be calculated. This concept
can be extended to visual odometry: if the depth of X in both frames is known, the distance
between the two origins can be calculated, which is the displacement of the camera between
these two frames. This displacement can then be accumulated across image frames to obtain
an iterative estimation of the changing camera position over time.

Left view

X

x
L

xR

OL OR

Right view

eL eR

X
1X

2X
3

Figure 1.1: Epipolar geometry.[21]

1.3.2 Visual Inertial sensor

The sensor that is available for this research is the Visual Inertial (VI) sensor[20] developed by
the Autonomous Systems Lab from the ETH Zürich, see figure 1.2. This sensor package consists
of a stereo camera set-up, consisting of two Aptina MT9V034 CMOS sensors with Lensagon
BM2820 lenses[12] providing visual data, complemented with an on-board ADIS16488 Inertial
Measurement Unit (IMU), which provides acceleration and rotational velocity measurements
along all three Euclidean axes. The signals from these sensors are time-synchronized.
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4 Perception-aware visual odometry

Figure 1.2: Visual Inertial sensor.[20]

1.3.3 ROVIO

The visual odometry software used for this study is ROVIO. ROVIO[3, 2] is short for "RObust
Visual Inertial Odometry" and the algorithm is developed by the Autonomous Systems Lab of
the ETH Zurich. ROVIO is selected as the VO algorithm that will be applied during this re-
search, because it is the feature-based method with the best trade-off between computational
complexity, robustness and accuracy.

ROVIO uses an Iterated Extended Kalman Filter (IEKF) to fuse inertial measurements with
visual data from one or more cameras. Section 1.3.3 explains the concept of the IEKF.

The following steps are executed by ROVIO (see also figure 1.3) to keep track of landmarks (ex-
tracted features) across frames:[2]

1. For each landmark (blue dot), a patch feature (large blue square) is extracted.

2. Then, for each landmark, the image coordinates (yellow dot) and the corresponding cov-
ariance (yellow ellipse) are estimated using the filter’s process model driven by the input
from the IMU.

3. A number of candidate points (yellow dots) for the new frame are selected based on the
magnitude of the uncertainty.

4. Each candidate is iteratively updated (black arrows). This update integrates patch in-
tensity errors with the estimated motion from step 2. The best, valid candidate points are
selected using outlier detection and quality checks (green vs. red squares).

Using the matching of features between frames, the IEKF can apply the epipolar constraint to
estimate the camera motion.

Figure 1.3: Each graphic corresponds to a step in the landmark tracking process of ROVIO.[2]

Stephan Visschers BSc University of Twente



CHAPTER 1. INTRODUCTION 5

Iterated Extended Kalman Filter

The Kalman Filter is a two-phase recursive process, see figure 1.4, that uses measurement data
observed over time, which can include noise, to create the best estimate of the system state.
This method assumes models are available of the system and the observation method. In gen-
eral, system and observation noise are modelled as Gaussian noise. The first phase consists of
a prediction of the state in the next time step based on the system model applied to the pre-
vious state estimation, and a prediction of the corresponding error covariance. Then, in the
correction phase, the predictions are corrected by using the latest measurement data, and the
observation model.[23]

Figure 1.4: Kalman Filter process[23]

The models of the system and the observation method in the Kalman Filter are designed as
linear models. However, in practice this is only true in rare, special cases. Therefore, the Ex-
tended Kalman Filter (EKF) also allows non-linear state-transition and measurement models,
and applies the first-order Taylor expansion around the latest predicted state and covariance
to locally approximate the non-linear model as a linear process.[13]

The Iterated Extended Kalman Filter (IEKF) expands on the concept of the Extended Kalman
Filter by recursively improving the linearisation of the EKF. This results in an improved state
estimation at the cost of an increased computational cost.
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6 Perception-aware visual odometry

2 Problem Description & Analysis

In order to answer research sub-question 2, this chapter will analyse potential pitfalls of visual
odometry algorithms related to their feature-dependent reliability, based on the theoretical
structure of the algorithm and data from preliminary experiments. Some of these pitfalls are
software specific and therefore any results are dependent on the specific software used.

The IEKF uses both the data from the stereo camera and the IMU to create a prediction of the
system state, which contains the camera pose. Therefore, if the quality of these data streams
degrade significantly, the uncertainty of the state prediction grows exponentially, due to its in-
cremental nature, and the estimated pose will drift away from the true value. This degradation
can occur in situations where feature quantity or quality are poor, or if the IMU-data contains
much noise. Vice versa, correspondence between the data streams can also falter if the major-
ity of the features in the image data are in motion themselves. However, non-static scenes are
outside the scope of this research.

Degradation of feature quality can occur when the distance increases significantly. Then the
distance estimation uncertainty grows and the effect of the camera motion on the position of
the feature in the image becomes less distinguishable. As a consequence, the calculation of the
camera translation becomes less reliable.

To test this, recordings were made with the VI-sensor of the Horst tower building while walking
sideways for a distance in the order of several meters (≈ 8) and returning to the starting point
(within an error margin of 0.5 m), from four different distances with respect to the Horst tower:
10, 20, 30 and 60 meters ground distance approximately. This experiment shows that features
at larger distances exhibit a larger final Euclidean error between the start and end position (see
table 2.1). The result of the motion at a distance of 30 meters is an outlier to this trend because
of a large rotational error, see figure 2.1. However, the lighting conditions for these recordings
were not consistent due to shadows, and the motion included unwanted vibrations. Both the
shadows and the vibrations form disturbances that influenced the result to an unknown degree.

Figure 2.1: Path estimated by ROVIO from the Achterhorst-30m dataset (grid size is 1 m)

distance to Horst (m) 10 20 30 60
final Euclidean error (m) 0.2 1.2 12.8 6.4

Table 2.1: Final errors - distance experiment

Stephan Visschers BSc University of Twente



CHAPTER 2. PROBLEM DESCRIPTION & ANALYSIS 7

Additionally, a scene with features at various distances was captured to test how the algorithm
reacts to this variation of distances in one scene. In the walkway between the Carré and Nano-
lab buildings on the UT campus, a forwards and backwards trajectory was traversed (by walk-
ing) with the VI-sensor facing forward. The algorithm exhibited a preference for features that
appeared at a closer distance (between 1 and 50 meters). It chose features that appeared on the
buildings on the sides instead of the bridge between the buildings or the top of the Horst tower
that is visible in the background (see figure 2.2). However, these results can have been affected
by the standard autofocus settings of the VI-sensor.

Figure 2.2: Feature preference of ROVIO exhibited in walkway

Another visible effect demonstrated by an indoor experiment in the hallway of the Carré build-
ing, was that when the camera moved backwards, the algorithm showed a preference for hold-
ing on to the already existing features in favour of the new features that are added around the
edges. This creates a clustering effect. This effect ended when a number of features were mov-
ing out of frame due to a rotational motion, see figure 2.3. This clustering effect can decrease
the accuracy of the pose estimation due to the decreasing relative angles between the features
w.r.t. the camera, but to what extent has not been tested.

Figure 2.3: Clustering effect obtained from indoor experiment. 3 frames are shown in chronological
order while the camera is moving backwards. The sequential frame number is shown in left corner.

Another potential pitfall that was tested is if there is a minimum distance beyond which motion
cannot be reconstructed by ROVIO. It appears that this minimum distance for which ROVIO is
able to recover camera motion is marginal. This was tested by moving the VI-sensor towards
a wall until contact was established between the VI casing and the wall, and after a brief idle
moment, moving backwards to return to the starting point. While the VI was in contact with
the wall, ROVIO was still able to extract features, because of the autofocus capability of the VI-
sensor. It is important to take into account that even though ROVIO is able to detect features at
such a close range, these features will move quickly out of the frame if the sensor moves side-
ways. The final Euclidean error of this closeby experiment is 0.4m. On a trajectory of approx-
imately 4m this is an error of 10%, which is significant. This decrease in accuracy is most likely
due to the shift of the focal point by the autofocus capability. During the wall approach it can
be seen that after this transition phase, the algorithm has to extract a whole new set of features.

Robotics and Mechatronics Stephan Visschers BSc



8 Perception-aware visual odometry

This results in a brief moment during this transition where there is a lack of correspondence of
features in subsequent frames.

Motion blur might form an obstacle for the feature matching step, as features are distorted.
However, a quick test involving rapid motions showed that ROVIO is able to handle fast mo-
tions, as it retains the ability to distinguish features, which is also visible in figure 2.6. The path
of these rapid motions, as calculated by ROVIO (expressed in world frame Ψw , where the ori-
gin of Ψw is defined as the initial pose) is displayed in figure 2.4. The linear velocities of the
VI-sensor (expressed in camera frame Ψc ) during this blur test are plotted in figure 2.5. These
figures show that even though the VI-sensor experiences velocities up to 3m s−1, there is no sig-
nificant drift from the lateral motion visible in the recovered path (the perpendicular motion
was to stop the recording). Figure 2.7 is a screenshot from the output of ROVIO. This image
shows that definite blurring occurs during these fast motions. But even for this blur, ROVIO is
able to extract the relative motion. Thus, motion blur appears to have no significant effect on
the visual odometry process.

-0.5 0 0.5

x (m)

-0.8

-0.6

-0.4

-0.2

0

0.2

y
 (

m
)

Figure 2.4: 2D position of VI-sensor during motion blur test. The sideways motion displays no extreme
drift. (The perpendicular motion is to stop the recording.)
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Figure 2.5: Linear velocity of VI-sensor vs. time during motion blur test.
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Figure 2.6: Number of features vs. time during motion blur test.

Figure 2.7: Screenshot output ROVIO with motion blur.
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10 Perception-aware visual odometry

Another significant effect is the loss of information from either the IMU or the camera. In the
case of the IMU, a loss of information can occur when there is a lot of noise, i.e. vibrations. The
effect of that was tested by moving the camera while shaking it. The result is visible in figure
2.8. It can be seen that due to the shaking, the estimated trajectory quickly diverges from the
actual trajectory (recorded with a motion-capture system). This divergence can be due to both
introduced noise in the IMU data and/or an induced motion blur in the video data.

Figure 2.8: Actual trajectory from motion-capture system (darkblue) vs. estimated trajectory (lightblue),
while vibrations were introduced.

In the case of the camera, a loss of information can occur when there are no features visible
in frame. This effect was evaluated by moving the VI-sensor along a hallway on a cart which
contains featureless areas. The VI-sensor was oriented perpendicular to the cart. Between
the start and the end of the trajectory, an approximate constant lateral velocity was manually
maintained from t ≈ 8s to 34s. In figure 2.9 the number of features taken into account by RO-
VIO and the estimated lateral velocity are displayed. It is visible that from the second featurless
patch, the estimated velocity completely diverges from the approximate constant velocity. It is
also visible that when the featureless patches end, the algorithm attempts to recover the track-
ing. However, the algorithm completely overcompensates, resulting in the final velocity being
an unrealistic value for a hand-driven cart. Moreover, the carts actual velocity was reduced to
zero in the end phase, which ROVIO was not able to comprehend. This discrepancy shows the
dependency of the visual odometry algorithm on the presence of features.

Figure 2.9: Number of used features and estimated linear velocities during hallway experiment. Note
that the −x direction w.r.t the camera frame is plotted since that was the forward direction for the cart.
The shaded areas are the areas where no features were extracted by ROVIO, i.e. white patches of wall.
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CHAPTER 2. PROBLEM DESCRIPTION & ANALYSIS 11

2.1 Conclusion

A number of potential pitfalls were tested using preliminary experiments to answer research
sub-question 2. These preliminary experiments showed that featureless areas, features with a
distance that is too far or too close and vibrations of the camera system significantly disturb
the pose estimation process. A clustering effect during the feature extraction process was also
observed. The impact of this clustering effect on the pose estimation process has not been
tested. Motion blur has been observed, but appeared to have a minimal influence on the pose
estimation process.
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12 Perception-aware visual odometry

3 Modelling & Control Design

Research sub-question 3 deals with the design of the virtual model incorporated in the gaze
control algorithm. To provide an answer to the sub-question, this chapter elaborates on the
design of this virtual model.

The information flow pipeline in the visual odometry process is as displayed in figure 3.1.

Figure 3.1: Information flow pipeline - visual odometry

The purpose of the the gaze control node is to improve the information content of the data that
is used as an input for the visual odometry algorithm. To do this, a closed loop is introduced,
see figure 3.2. In the physical domain, a pair of servomotors is included to enable pan-tilt ac-
tuation of the camera pose (see figure 3.3a). In the software domain of the Robot Operating
System (ROS[11]), ROVIO is adapted to add an extra output which relays the location of ex-
tracted features with respect to the camera frame Ψc . Then this new information is used in
the designed gaze control node to adjust the setpoints of the pan-tilt actuator towards a more
favourable pose.

servo
controller

servos

joint positions

joint positions
estimated

camera pose

base pose
reconstruction

ROS
Figure 3.2: Manipulated information flow pipeline - visual odometry

The setpoints of the pan-tilt actuator are manipulated by means of a virtual, dynamical model
which simulates inertias, springs and damping to achieve a desired motion (see figure 3.3b). In
this model, the virtual angles φ and θ form the setpoints for the physical servo angles φp and
θp . How the virtual model is constructed is explained in the rest of the chapter.

Figure 3.2 also shows that feedback from the servos combined with the estimated camera pose
from ROVIO is used to reconstruct the pose of the base (see section 3.5).
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(a) Physical system (b) Virtual model

Figure 3.3: Schematic representations

3.1 Virtual model

The basis of the virtual, dynamical model is the creation of virtual springs between the features
and the camera frame. These virtual springs create a resultant force vector that is inherently
directed towards a higher concentration of features. The force exerted by the virtual springs is
transformed into a continuous motion by applying this virtual force on a virtual inertia I , while
simultaneously ensuring that the acceleration is limited and finite. To ensure that this motion
converges, virtual friction (ci , i = 1,2) is included on the joints. A schematic representation of
this model is displayed in figure 3.3b, in which the features are represented by the green circles,
the virtual springs by the red springs that are attached to the center line of the VI-sensor and the
rays from the camera origin through the feature locations. Additionally, dampers representing
friction are modelled on the joints. The joint axes are oriented perpendicular to each other.

Although the physical links have to constitute a finite length (l j > 0, j = 1. . .3), these lengths
actually contribute little to this model, as the link lengths are generally orders of magnitude
smaller than the distance to the features (l j ¿ d f ). Therefore, these lengths are neglected (l j =
0), which simplifies the model of the robot arm to a single, actuated 2-DOF joint. However, the
link lengths have to be taken into account for the base pose reconstruction.

As the pan-tilt model only has two rotational degrees-of-freedom, the Euclidean distance of a
feature with respect to the camera does not provide a useful contribution to the spring force.
Therefore, the virtual springs are modelled as torsional springs, which depend on the angle
with respect to the center line of the camera, instead of their position from the camera origin.

3.2 Rigid body model

In this section a rigid body model is designed using screw theory concepts.1 The state of a rigid
body is the current configuration captured in the homogeneous matrix H w

k . The change in

state can be derived from the definition of the twist T k,w
k :

T̃ k,w
k = H k

w Ḣ w
k (3.1)

Rewriting yields
d

dt
H w

k (t ) = H w
k (t ) · T̃ k,w

k (t ) (3.2)

1See [27] for a review of this framework.
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14 Perception-aware visual odometry

Using this equation, the state can be continuously updated by integrating the twist T k,w
k . This

twist can be found by using Newton’s second law of motion. Newton’s second law of motion
applied to 6-dimensional rigid bodies can be described using screw theory[27, p. 32]:(

Ṗk
)> = Ik · Ṫ k,w

k = ad>
T k,w

k

(
Pk

)>+
(
W k

)>
(3.3)

with

adT k,w
k

=
(
ω̃k,w

k 03×3

ṽk,w
k ω̃k,w

k

)
where:

• Pk = 6-dimensional momentum expressed in frameΨk .

• Ik = inertia matrix expressed in frameΨk .

• T k,w
k = twist fromΨk relative toΨw , expressed inΨk .

• W k = wrench expressed in frameΨk .

• adT k,w
k

= the adjoint matrix of the twist T k,w
k .

• ω̃k,w
k = the skew-symmetric matrix of the rotational velocity vector from Ψk relative to

Ψw , expressed inΨk , which is contained in the twist T k,w
k .

• ṽk,w
k = the skew-symmetric matrix of the linear velocity vector from Ψk relative to Ψw ,

expressed inΨk , which is contained in the twist T k,w
k .

This equation describes the motion of a rigid body in three-dimensional space in a body-fixed
frameΨk . IfΨk is aligned with the principal axes of the body, Ik becomes a diagonal matrix.

To be able to use equation (3.3) as a component in a larger construction, it is convenient to
transform the twists and wrenches to a common inertial reference frame Ψw . In order to do
that, the Adjoint of the homogeneous transform matrix H w

k can be used:

T w,w
k = AdH w

k
T k,w

k

(
W k

)> = Ad>
H w

k

(
W w )> (3.4)

where the Adjoint has the form:

AdH w
k
=

(
Rw

k 03×3

p̃w
k Rw

k Rw
k

)
(3.5)

As the model in figure 3.3b can only rotate about two axes, four of the six degrees-of-freedom of
free space have to be constrained. These four degrees-of-freedom are the roll rotation (around
z-axis of camera frame), and the x, y and z-translations. The effect of a joint is to constrain
the relative motion between two frames in such a way that only motion in the direction of the
degrees-of-freedom can be sustained. The forces in the other directions have to be counterac-
ted to reduce them to zero as quick as possible. A straightforward approach to this is to model
a spring-damper system between the two frames for the constrained degrees of freedom. The
first step in modelling this interconnection is to calculate the relative twist between two frames:

T w,B
A = T w,w

A −T w,w
B (3.6)
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Using this relative twist, reaction forces can be calculated using the constitutive relations of a
spring and damper: (

W w
spring

)> = Kcstr ·∆~x = K ·
∫

T w,B
A dt (3.7)(

W w
damper

)> =Rcstr ·T w,B
A (3.8)

where Kcstr andRcstr are diagonal matrices containing a high spring constant and a high damp-
ing factor for the constrained degrees-of-freedom, creating a stiff response. These reaction
forces can be summed and applied back to the rigid body in the direction opposite to the twist,
counteracting the relative motion.

Similarly, the two degrees-of-freedom are subjected to viscous friction through an equation
similar to eq. 3.8, where Rfric ¿Rcstr:(

W w
friction

)> =Rfric ·T w,B
A (3.9)

3.3 Virtual springs

Motion of the robot arm is obtained by modelling virtual torsional springs between the local
feature framesΨ f and the camera frameΨc . The torque exerted by these springs on the camera
is easiest expressed in the local frame, Ψc , because the z-axis of that frame coincides with the
center of the obtained camera image.

These torsional springs will be subjected to three different penalties to compensate for un-
wanted effects. The following sections will explain how the spring torque of the virtual springs
is calculated and how the different penalties are constructed and subsequently applied to this
spring torque.

3.3.1 Torsional Spring Torque of a Single Feature

The angular error around ŷc , εŷc , and the angular error around x̂c , εx̂c , can both be determ-
ined using the arctangent function. A feature point with its respective projections on the three
Cartesian axes of Ψc form a set of triangles (see figure 3.4), which can be used to determine
the respective angular errors. However, because a positive rotation around x̂c results in a mo-
tion towards the negative ŷc -axis (in a right-handed coordinate system), yc

f should actually be
reflected in the xz-plane, to obtain the proper opposite side of the triangle for consistent con-
version.

Figure 3.4: Camera frame
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16 Perception-aware visual odometry

Then using the 4 quadrant arctangent function atan2, the angular errors for each feature can
be obtained:

εx̂c =atan2
(−yc

f

zc
f

)
εŷc =atan2

(
xc

f

zc
f

)
(3.10)

Then the virtual torsional spring torque in wrench form for each feature can be calculated:

W c
f = K f (·)

 εx̂c

εŷc

04×1

 (3.11)

where K f is a 6×6 diagonal matrix representing the spring stiffness for that feature.

Field-of-view

The camera will have a limited field-of-view. This field-of-view has to be taken into account
in simulation. This limitation can be simulated by requiring that a feature is within a certain
angular range; the effect of a feature is only calculated when this requirement is satisfied.

3.3.2 Penalties to the Spring Torque

Three penalties will be applied to the spring torque: a penaltyα to compensate for the distance
of a feature w.r.t. Ψc , a penalty β that takes into account the physical limits of the robot arm,
and a penalty γ that creates an initialization phase for each feature. The reasoning behind each
and their construction will be explained below. The torsional spring stiffness matrix K f for
feature f will then be calculated as:

K f (α,β,γ) =
 α ·β1,1 ·γ ·kx 0

02×40 α ·β2,2 ·γky

04×2 04×4

 (3.12)
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CHAPTER 3. MODELLING & CONTROL DESIGN 17

Distance penalty

Position estimation quality degrades as features move away, as the ratio between the stereo
base-line and the distance becomes insignificant. Also, if features move too close to the camera,
pose estimation quality degrades because features remain visible in the camera’s field-of-view
for a shorter amount of time. To take this into account in the virtual spring model, the spring
constant K is penalized with respect to the Euclidean distance d from the camera (in meters)
with the first penalty α (see also figure 3.5):

α(d{m}) =


d 0 ≤ d < 1

1 1 ≤ d < 20

1−0.045 · (d −20) 20 ≤ d ≥ 40

0.1 d > 40

(3.13)

This penalty is chosen such that it emphasizes features in an intermediate operating range (not
too close-by, not too far away), but does not entirely exclude the features outside of this range.
From the experiment in chapter 2, the effect of the distance was clearly visible from a distance
of 30 m, so from a distance of 20 m a steep decline in weight starts until a distance of 40 m, after
which a small weight remains for further distances in order to not completely disable their
influence, for the specific situation that only distant features remain.

The lower limit is a choice. The distance to a feature and the velocity of the camera determ-
ine how quick a feature will move out of view. By implementing a lower limit, close features,
which will relatively move out of view quickly, are not taken into account as much as features
that remain in view for a longer period of time. Additionally, this lower limit also prevents the
transition of the autofocus at close distances as seen in chapter 2. The lower limit is chosen to
be 1 meter.

5 10 15 20 25 30 35 40 45

0.2

0.4

0.6

0.8

1

d

α(d)

Figure 3.5: Distance penalty α
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18 Perception-aware visual odometry

Limits to the Robot Arm

In order to take into account the physical limits that are inherent in the design of the robot arm,
a second weighting factor β is introduced that inversely scales the spring force for each feature
as a function of its angular distance from the physical limits. β is a diagonal 2×2 matrix, where
the diagonal elements represent the weighting factor for each joint. To calculate the absolute
angle of a feature w.r.t. the base frameΨb a new set of compound angles~η has to be introduced:

~η=
(
ηx̂c

η ŷc

)
=

[
φ+εx̂c

θ+εŷc

]
(3.14)

To err on the side of caution, a virtual limit of 1
2π rad from the neutral position for each joint is

chosen. To penalize angles closer to the limits more than in the center, a polynomial shape for
βi ,i is taken. This makes βi ,i :

βi ,i
(
ηi

)=
1−

(
ηi
1
2π

)6 ∣∣ηi
∣∣< 1

2π

0 otherwise
(3.15)

with i = 1,2.

−3 −2 −1 1 2 3

0.2

0.4

0.6

0.8

1

ηi

βi ,i
(
ηi

)

Figure 3.6: Physical limit penalty for one joint βi ,i

Feature initialization

The field-of-view of the camera combined with the fact that the features are connected by vir-
tual torsional springs leads to an undesired side-effect: as soon as a feature enters the field-
of-view, the force exerted by the virtual spring starts at its maximum value. In other words,
each time the camera moves, a chain of step-responses is obtained. This can lead to unstable
behaviour. To limit this undesirable behaviour, an initialization phase for each spring is intro-
duced. This means that when a feature enters the field-of-view, it is assigned an age t f , and a
third spring torque penalty, dubbed γ, is linearly increased until a certain maturation age tm is
reached, where γ will reach and maintain a value of 1. Thus, this makes γ:

γ=
{

1
tm

t f t f < tm

1 t f ≥ tm
(3.16)
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CHAPTER 3. MODELLING & CONTROL DESIGN 19

3.4 Calculation of servo setpoint from camera pose

The camera pose is encoded in the H w
c matrix. The orientation of the camera is expressed in a

rotation matrix Rw
c included in H w

c :

Rw
c = H w

c [1 : 3,1 : 3] (3.17)

A rotation matrix can be constructed from Euler angles. The definition of Euler angles is to
describe any three-dimensional rotation by composing 3 elemental rotations. The order of
these rotations is important, because it determines the final orientation that is obtained. There
are multiple combinations of rotation orders possible. In this research, the X −Y ′−Z ′′2 order of
rotations is chosen, because of their intuitive representation with respect to the camera frame,
and the fact that the Z ′′ axis will not be actuated. Euler angles in this order are also called
intrinsic rotations of the Tait-Bryan angles or the Cardan angles.

The rotation matrix for this order of rotations is constructed with the following formula:

Rw
c = X (φ)Y (θ)Z (ψ) (3.18)

=
 cos(θ)cos(ψ) −cos(θ)sin(ψ) sin(θ)

cos(φ)sin(ψ)+cos(ψ)sin(φ)sin(θ) cos(φ)cos(ψ)− sin(φ)sin(θ)sin(ψ) −cos(θ)sin(φ)
sin(φ)sin(ψ)−cos(φ)cos(ψ)sin(θ) cos(ψ)sin(φ)+cos(φ)sin(θ)sin(ψ) cos(φ)cos(θ)


(3.19)

Using reverse engineering, the values of the angles can be reconstructed:

1. R13 = sin(θ), thus θ1 = sin−1(R13), but θ2 = π− θ1 = π− sin−1(R13) is also a valid solu-
tion. However, only θ1 is relevant, since θ2 is per definition outside of the reachable half-
sphere.

2. Note that −R23
R33

= tan(φ). This fact can be used to solve for φ: φ=atan2 (R23,R33). How-
ever, the sign of cos(θ) affects the sign of R23 and R33. This can be consistently taken into
account by including cos(θ) in the calculation of φ (as long as cos(θ) 6= 0):

φ=atan2
( −R23

cos(θ)
,

R33

cos(θ)

)
(3.20)

3. In the specific case of gimbal lock (θ = ±1
2π), cos(θ) = 0, which means R32 cannot be

used. In the case θ = +1
2π, consider R21 = cos(φ)sin(ψ) + cos(ψ)sin(φ). Through the

trigonometric angle sum identity: R21 = sin(φ+ψ). Similarly, R31 = −cos(φ+ψ), R22 =
cos(φ+ψ) = −R31 and R32 = sin(φ+ψ) = R21. These equations can then be used to find
the relation between φ and ψ:

(φ+ψ) =atan2 (R21,R22) (3.21)

φ=−ψ+atan2 (R21,R22) (3.22)

Since there is an infinite number of solutions in the case of gimbal lock, ψ can be chosen
to be zero, from which φ can be calculated.

4. In case θ =−1
2π, in a similar fashion, the relation between φ and ψ can be derived as:

(φ−ψ) =atan2 (−R21,−R22) (3.23)

φ=ψ+atan2 (−R21,−R22) (3.24)

And again, ψ can be chosen to be zero, from which φ can be derived.

2Y ′ indicates here the y-axis of the rotated frame.
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20 Perception-aware visual odometry

3.5 Base position calculation

The base pose H w
b at any moment is related to the camera pose H w

c at that moment by:

H w
b = H w

c H c
b (3.25)

The inverse of H c
b , H b

c , can be derived from the servo angles φ and θ, and is an application of
forward kinematics, for which Brockett’s exponential formula[27, p. 38] can be used:

H b
c

(
φ,θ

)= e
ˆ̃T 0,0

1 φe
ˆ̃T 0,1

2 θH b
c (0) (3.26)

where:

ω1 =
(
0 1 0

)>
r1 =

[
0 0 l1

]>
ˆ̃T 0,0

1 = [
0 1 0 l1 0 0

]>
ω2 =

(
1 0 0

)>
r2 =

[
0 0 l1 + l2

]>
ˆ̃T 0,1

2 = [
1 0 0 0 − (l1 + l2) 0

]>
H b

c (0) =


1 0 0 0
0 1 0 0
0 0 1 l1 + l2 + l3

0 0 0 1


3.6 Conclusion

This chapter described a virtual model that by simulating virtual components in a certain com-
bination takes into account most of the effects that have been described in chapter 2: the vir-
tual rotational springs exert a virtual torque on the camera, changing the gaze into a direction
with more valuable features. The virtual inertia and joint damping introduce a smooth mo-
tion, limiting vibrations. Penalties to the virtual spring torque were introduced as weighting
factors determining the influence of each feature. Using these penalties, adverse effects can be
decreased. The penalties are: α, which takes into account the distance effect of a feature, β,
which takes into account the limits of the physical system, and γ, which takes into account the
sudden torque increase as a feature enters the field-of-view of the camera. The effect of γ also
helps prevent vibrations. Research sub-question 3 asked what combination of virtual compon-
ents could be used to counteract feature-dependent loss of reliability. With the current model,
the answer is not fixed, as the combination of these components adapts to the situation.
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4 Simulations

Research sub-question 4 asks what the performance of the designed gaze control algorithm is
in simulations. To aid the design process of the virtual model and test the performance, this
chapter explains the construction of the simulation model and shows the resulting responses
to a number of simulated situations. For certain situations, it can be informative to be able
to quantify the performance of the algorithm. To this end, a visibility factor v f , a binary in-
dicator if a feature is within the (simulated) field-of-view, and a performance metric S1 are
created. This performance metric is evaluated for each iteration of the simulation by accu-
mulating the presence of each feature within the field-of-view, weighted by the corresponding
distance factor α f :

S(α) =
n∑

f =1
v f α f (4.1)

4.1 Simulation model

A simulation of the virtual model is made in 20-sim, using bond graphs[4, 5].

”Bond graphs are a domain-independent graphical description of dynamic beha-
viour of physical systems.”[5]

The complete model is shown in figure 4.1. This model consists of a rigid body submodel for the
camera, a joint model and themultispring submodel. The camera submodel is displayed in
figure 4.2, and shows a conversion (MTF) from the local camera frameΨc to the inertial frame
Ψw using the Adjoint matrix of H c

w . Equations 3.4 and 3.5 are contained in this block, as well as
equations 3.1 and 3.2. In the local frame, an inertia element Ic simulating the left-hand side of
equation 3.3 and a modulated gyristor MGR simulating the ficticious forces, i.e. the first term

from the right-hand side of equation 3.3. The last term
(
W k

)>
represents external forces, which

in this case are the torques applied by the virtual spring via p_spring.

The joint model is displayed in figure 4.3, which contains the constraint equations 3.7 and 3.8
applied in the local frameΨc . For simulation purposes, these constraint equations are split up
into scalar relations. That way, the constraints can be calculated in a different order, which pre-
vents differential causality for the camera inertia. The joint model connects the camera frame
to the base frame Ψb . The values for the constraint parameters are Kcstr = 1000N m−1,Rcstr =
10N s m−1.

The multispring submodel contains all calculations explained in 3.3. The H2Euler con-
tains the servo setpoint calculation explained in 3.4. The viewline submodel is for visualiz-
ation purposes.

The Features submodel contains the locations of each simulated feature in world frameΨw :
P w

f . For equation 3.10 are the feature coordinates expressed in the camera frame required: P c
f .

To obtain P c
f , the feature point coordinates need to be transformed from world frame to camera

frame, using the homogeneous matrix:

P c
f = H c

w ·P w
f (4.2)

1S is also referred to as the cumulative feature score, due to its construction.
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Figure 4.1: Complete bond graph model.

Figure 4.2: Rigid body bond graph model of the camera.

Figure 4.3: Joint bond graph model.
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CHAPTER 4. SIMULATIONS 23

4.2 Tuning

The basic model without the scaling factors and the field-of-view implemented is essentially
a mass-spring-damper system (figure 4.4 in the rotational domain. For the sake of simplicity,
the first iteration is tested with a single feature. That is analogous to the system in figure 4.4,
but with F = 0 (free vibration) and the initial displacement in a non-equilibrium position (ini-
tial condition is non-zero). This analogy can be used to determine the preferred tuning of the
system parameters.

Figure 4.4: Mass-Spring-Damper system[18]

The mass in the three-dimensional rotational system is the inertia matrixIk . This inertia matrix
is modelled similar to the physical VI-sensor by modelling it as a solid cuboid[30], combined
with the parallel-axis theorem to account for the physical length of the robot arm, with the
properties:

• width = 0.145m

• height = 0.065m

• depth = 0.06m

• mass = 0.253kg

• distance axis 1: l1 + l2 = 0.1165m

• distance axis 2: l1 = 0.052m

For a mass-spring-damper system with critical damping (c2 = 4km), the free response to a non-
zero initial condition x0 (i.e. a step) is[10]:

x(t ) = x0e−αt + (αx0) te−αt (4.3)

with: α= c

2m
(4.4)

ẋ(t ) =−αx0e−αt + (αx0)
(
e−αt −αte−αt ) (4.5)

=−α2x0te−αt (4.6)

ẍ(t ) =−α2x0e−αt +α3x0te−αt (4.7)

ẍ
(
tvmax

)= 0 → tvmax =
1

α
= 2m

c
(4.8)

ẋ
(
tvmax

)=−αx0e−1 =−cx0

2m
e−1 = vmax (4.9)

Assuming the maximum allowed initial position (i.e. x0 = 1
2π), the maximum rotational velo-

city to be 59 rpm = 6.18rad s−1, and the inertia of the camera, the damping coefficient can be
determined as:

ci = vmax
2Ik [i , i ]

x0e−1 (4.10)

with i = 1,2 for the corresponding degree-of-freedom.

Then, using that ci , the corresponding ki can be calculated through the critical damping rela-
tion:

ki = c2

4Ik [i , i ]
(4.11)
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To ensure that the response becomes underdamped due to an accumulation of ki for an in-
creasing number of features, a total spring constant is defined, which takes the value of ki . The
individual spring constants k f ,i are then a fraction of that total spring constant:

k f ,i =
ki

n
(4.12)

where n is the maximum number of features that can affect the camera. In the 20-sim simula-
tion this n is a predefined number. In physical experiments this is also a predefined number,
because ROVIO has an internal parameter that determines the maximum number of features
that will be taken into account at any moment. The effect of this normalization process is that
the response can be at most critically damped, but will be overdamped in most instances.

Using the parameters found in this section, the response to various situations is simulated.

4.2.1 Single point response

The first situation that is tested is the simplest non-trivial situation possible: a single non-zero
point in three-dimensional space. This feature is chosen to be:

pw
f =

4.02
2.58
3.5

 (4.13)

such that the location of this feature is just within the field-of-view of the camera. (Even though
the field-of-view functionality is not enabled in this specific scenario, taking this into account
improves the comparability with subsequent scenarios.)

The spring force is multiplied with a unit step that starts at a time t = 0.2s, to show the step
response clearly and allow an initialization period for the integration method.

The step responses are simulated using a 4th-order Runge Kutta integration method with a step
size of 0.001s. This simulation is considered a decent approximation of continuous-time, be-
cause of the small step size. The simulated step responses are visible in figures 4.5, 4.6 and
4.7. Figure 4.5 shows an overdamped step response with a settling time of approximately 0.5s.
Figure 4.6 shows that the designed damping and spring parameters satisfy the velocity limit of
the Dynamixel servo. Figure 4.7 shows a convergence of the camera angles towards the feature.
These angles are calculated using the theory of section 3.4. The final tilt angle equals the expec-
ted value of arctan

(2.59
3.5

) ≈ 0.637rad. However, the final pan angle is θ(∞) ≈ 0.747rad which is
lower than the expected value of arctan

(4.03
3.5

)≈ 0.856rad. This is most likely due to the fact that
moving both angles simultaneously requires less energy than moving each angle individually.

When this hypothesis is tested by placing the feature at: pw
f = (

4.03 0 3.5
)>

, the final pan
angle indeed becomes θ(∞) ≈ 0.856rad.
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Figure 4.5: Simulated torque response in continuous-time to a single feature.

Figure 4.6: Simulated velocity response in continuous-time to a single feature.

Figure 4.7: Simulated camera angles response in continuous-time to a single feature.

Robotics and Mechatronics Stephan Visschers BSc



26 Perception-aware visual odometry

Continuous-time simulation in the practical set-up is unrealistic, since the ROVIO algorithm
runs with a frequency of 20Hz in standard configuration. To increase the correspondence
between the 20-sim simulation and the practical set-up, a sample-and-hold mechanism is in-
troduced in all following models to discretize the calculation of the virtual spring torque. Ad-
ditionally, in this discrete-time domain, a unit delay is included to account for the processing
time ROVIO and the gaze control algorithms need to calculate a new iteration of spring torques.
The step responses from this new model are visible in figures 4.8, 4.9 and 4.10. Figure 4.8 shows
the torque (in N m) that is calculated by the rotational spring model and the torque that is sub-
sequently applied to the rigid body after the discretization process. Figure 4.9 shows the camera
velocities as a result of the applied torques. For each sample, a (sub-)step response is visible.
Figure 4.10 shows the changing Cardan angles of the camera frame. The figures indicate that
due to the discretization process, the system becomes underdamped.

Figure 4.8: Simulated torque response to a single feature, using the continuous-time damping value.
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Figure 4.9: Simulated velocity response to a single feature, using the continuous-time damping value.

Figure 4.10: Simulated camera angles in response to a single feature, using the continuous-time damp-
ing value.
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To compensate for the decreased damping effect of the discretization process, the damping
coefficients are increased by a compensation factor ccomp. The spring constant is left un-
changed to not effect the speed of the step response. The compensation factor is empirically
determined to be:

ccomp =
[

3
2.3

]
(4.14)

The effect of this compensation factor is visible in the responses in figures 4.11, 4.12 and 4.13.
These figures show that the step response appears critically damped again.

Figure 4.11: Simulated torque response to a single feature, using the compensated damping value.

The discretization process in combination with the damping compensation factor is used in all
subsequent simulations.
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Figure 4.12: Simulated velocity response to a single feature, using the compensated damping value.

Figure 4.13: Simulated camera angles in response to a single feature, using the compensated damping
value.
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4.2.2 Asymmetric feature distribution

To test the response between asymmetric distributed features, a situation is created with a

single feature at pw
f = (

0 0 3
)>

and a cluster of 10 features within a sphere of radius r = 0.5

around the point pw = (
3 0 3

)>
.

This is visible from figure 4.16, as the pan final angle is approximately equal to the pan angle
of the center of the cluster. The actual value is a little bit lower as the single feature still acts on
the camera. It is actually 10

11 of the pan angle of the cluster, which is as expected.

Figure 4.14: Simulated torque response to an asymmetric distribution of features.
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Figure 4.15: Simulated velocity response to an asymmetric distribution of features.

Figure 4.16: Simulated camera angles in response to an asymmetric distribution of features.
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4.3 Virtual Field-of-View

In the real world, the VI-sensor has a limited field-of-view (FoV) that limits the number of fea-
tures of which information is available. To study the effect of this, a virtual field-of-view is
implemented in the simulation. This implementation consists of applying a zero weight to the
features that are outside of a certain angle with respect to the camera frame. This angle is se-
lected to be equal to the physical field-of-view of the VI-sensor, namely 98° for the horizontal
field-of-view and 73° for the vertical field-of-view.[12]

In order to test this, the features of section 4.2.2 are copied and adapted by translating three

features by ∆~x = (
2 0 0

)>
, to increase their effect on the implemented FoV. The response to

this situation is visible in figures 4.17, 4.18 and 4.19. These figures show that now that there are
two clusters, the torque jumps up two times, but due to the inertia of the camera, this jump in
torque does not introduce a discontinuity in the angular response. Therefore, the field-of-view
does not disrupt the behaviour of the camera in an undesirable manner.

Figure 4.17: Simulated torque response after implementing a limited field-of-view.
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Figure 4.18: Simulated velocity response after implementing a limited field-of-view

Figure 4.19: Simulated camera angles after implementing a limited field-of-view
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4.3.1 Torus cloud

To test the response of the gaze controller to an (approximately) symmetric situation, a cloud
of features is randomly generated within a torus shape with a central radius r1 and a second-
ary maximum radius r2,max. The torus is generated around the origin with the central axis of
symmetry along the z-axis and translated with a vector of ∆~x. See figure 4.23. With the unres-
tricted model, the camera is expected to move to the center of the torus. Eccentricities of the
generated torus shape will skew this result.

The radii and offset are chosen such that the features are just outside of the field-of-view in

neutral configuration: for an offset of ∆~x = (
0 0 3.5

)>
, the following relation should hold:

r1 − r2,max >
p

4.022 +2.582. For a secondary radius of r2,max = 0.4m, the primary radius be-
comes r1 = 6.35m.

The responses are shown in figures 4.20, 4.21 and 4.22. The response shows that the hypo-
thesis is confirmed: the center of the torus is the z-axis, and thus the resulting angles should be
minimal.

Figure 4.20: Simulated torque response to a torus-shaped cloud of features.
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Figure 4.21: Simulated velocity response to a torus-shaped cloud of features.

Figure 4.22: Simulated camera angles in response to a torus-shaped cloud of features.

Figure 4.23: 3D simulation snapshot at t = 2.5s of the response to a torus-shaped cloud of features.
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Next, the field-of-view is applied to the torus situation. Then the expected response becomes
zero. This is indeed the case as showed in figure 4.24.

Figure 4.24: Simulated torque response to a torus-shaped cloud of features, while applying the limited
field-of-view.

Next, a small offset in the camera angle, 0.2rad about x and y is introduced, so that a number of
features is just visible in the corner of the FoV. The expectation is that the features in this corner
of the FoV will draw the camera towards that side of the torus and that the camera angle settles
in that direction. The response is visible in figures 4.25, 4.26 and 4.27. These figures show
that the camera angle does not directly settle on the initial direction, but changes direction
during its motion. The performance metric of equation 4.1 is applied to this situation, and
the resulting response is visible in figure 4.28. It shows clearly that without the gaze control
algorithm, the camera does not move, so it does not improve its initial score. But with the
algorithm applied, the score increases over time as the camera is drawn to a more favourable
gaze.

Figure 4.25: Simulated torque response to a torus-shaped cloud of features. The camera angle includes
an initial offset.
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Figure 4.26: Simulated velocity response to a torus-shaped cloud of features. The camera angle includes
an initial offset.

Figure 4.27: Simulated camera angles in response to a torus-shaped cloud of features. The camera angle
includes an initial offset.
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Figure 4.28: Cumulative feature score S as a response to a torus-shaped cloud of features. The camera
angle includes an initial offset.
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4.4 Spring Torque Penalties

In this section the penalties that are applied to the spring torque are subjected to testing in a
simulated scenario. Through these tests, the efficacy of these penalties are investigated.

4.4.1 Distance penalty

To test the distance penalty, a specific situation is created: a torus-shaped cloud that is just
outside the field-of-view at a close distance (i.e. in the unity region of α), and a spherical-
shaped cloud at a far distance (i.e. in small constant region of α). Note that the field-of-view
is included in this simulation. To ensure that the simulation is demonstrative, these distance
limits are scaled down, so that all features fit in the simulation window. The spherical cloud has

a radius of r = 2m and is generated around ∆~x = (
0 0 8

)>
. The torus cloud has a primary

radius of r1 = 3.0356m and a secondary maximum radius of r2,max = 0.3m and is generated

around ∆~x = (
0 0 2

)>
.

The scaled α becomes:

α(d{m}) =


d 0 ≤ d < 1

1 1 ≤ d < 4

1−0.9 · (d −4) 4 ≤ d ≥ 5

0.1 d > 5

(4.15)

The response without the effect of α is shown in figures 4.29, 4.30 and 4.31. This shows that
the camera stays focused on the central spherical cloud, even though that cloud has a greater
distance than the torus cloud. This effect is expected to be undesired as it is assumed that
features that are far away are less valuable for the visual odometry process than features that
are closer.

The same situation is tested with the effect of α included. The response of that experiment is
shown in figures 4.32, 4.33 and 4.34. These figures show that the effect of α is as expected: a
preference is shown for the features that are within the preferred range (i.e. the torus cloud).

The performance metric is again applied to this situation, without the gaze control algorithm,
and with the algorithm without and with α applied. The response is shown in figure 4.35. The
most transparent line is the result without the algorithm. As the camera will not move, it is a
straight, horizontal line with a score of S(α) = 5. The semi-transparent line above is the result
without α, and the opaque line is the result with α applied. It is visible that the influence of α
improves the performance metric.
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Figure 4.29: Simulated torque response to a torus-shaped cloud and a spherical shaped cloud of features
at different distances. The effect of α is not included.

Figure 4.30: Simulated velocity response to a torus-shaped cloud and a spherical shaped cloud of fea-
tures at different distances. The effect of α is not included.
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Figure 4.31: Simulated camera angles in response to a torus-shaped cloud and a spherical shaped cloud
of features at different distances. The effect of α is not included.

Figure 4.32: Simulated torque response to a torus-shaped cloud and a spherical shaped cloud of features
at different distances. The effect of α is included.
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Figure 4.33: Simulated velocity response to a torus-shaped cloud and a spherical shaped cloud of fea-
tures at different distances. The effect of α is included.

Figure 4.34: Simulated camera angles in response to a torus-shaped cloud and a spherical shaped cloud
of features at different distances. The effect of α is included.
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Figure 4.35: Cumulative feature score S as a response to a torus-shaped cloud and a spherical shaped
cloud of features at different distances. The transparent line is the result without the gaze control al-
gorithm. The semi-transparent line is the result with the gaze control algorithm, but without the influ-
ence of α. The opaque line is the result with the gaze control algorithm including the effect of α.
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4.4.2 Physical limit penalty

The effect of β is tested by creating three features with coordinates:

P w
f1
=

 4
0

3.5

 P w
f2
=

4
0
0

 P w
f3
=

 4
0
−2

 (4.16)

The hypothesis for the created situation is that without β the final angle is aimed towards the
average angle of all three features, which is θavg ≈ 1.49rad. However, with the effect of β the
lower two features would not count any more, which means that the final angle will be focused
on the top feature. Figures 4.36 and 4.37 show the response without β. Figures 4.38 and 4.39
show the response including β. Figures 4.37 and 4.39 confirm the hypothesis. Note that the
response including β is slower than the response without β. This is an undesired side effect of
the spring constant normalization discussed in section 4.2.
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Figure 4.36: Simulated camera angles in response to three aligned features, without the effect of β.

Figure 4.37: Final angle in response to three aligned features, without the effect of β.
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Figure 4.38: Simulated camera angles in response to three aligned features, including the effect of β.

Figure 4.39: Final angle in response to three aligned features, including the effect of β.
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4.4.3 Feature initialization penalty

To test the effect of the feature initialization penalty γ, a scenario is created with three features
along an arc, with an elevation angle of 1

4π, 1
2π and 0.5 rad respectively, see figure 4.40. The

goal of this experiment is to demonstrate that a functionality like the γ penalty is desirable to
counteract sudden increases in acceleration (jerky behaviour), because that is exactly what you
would expect when a new feature enters the field-of-view.

Figures 4.41, 4.42 and 4.43 show that this happens. Next, the effect of γ is applied with a mat-
uration time tm = 1s. The resulting response is shown in figures 4.44, 4.45 and 4.46. These
figures show that the response is smoothed. The downside of this effect is that the response
takes longer to converge. Another side-effect of γ is the creation of a sawtooth-wave like form
for the torque response. However, this effect does not form a problem, as the discretization
process and the inertia effect limit the consequences of this disturbance.

Figure 4.40: 3D simulation at t = 2.5s of the response to features with different elevation angles. The
effect of γ is included.
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Figure 4.41: Simulated torque response to features with different elevation angles. The effect of γ is not
included.

Figure 4.42: Simulated velocity response to features with different elevation angles. The effect of γ is not
included.

Figure 4.43: Simulated camera angles to features with different elevation angles. The effect of γ is not
included.
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Figure 4.44: Simulated torque response to features with different elevation angles. The effect of γ is
included. Note the larger settling time.

Figure 4.45: Simulated velocity response to features with different elevation angles. The effect of γ is
included. Note the larger settling time.

Figure 4.46: Simulated camera angles to features with different elevation angles. The effect of γ is in-
cluded. Note the larger settling time.
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4.5 Motion experiments

The intended goal of visual odometry is (relative) localization while the camera is in motion.
Therefore, three simulation experiments are investigated where the camera is in motion to test
the response of the gaze control algorithm to motion of the base. In all motion experiments the
motion of the base consists of a linear trajectory. The motion profile consists of a sinusoidal
step motion profile[15] from the start to the end position within a specified period of time, see
figure 4.51. All three penalties are applied as well. The effect of a varying (average) base velo-
city is examined and compared with respect to the baseline: the performance metric response
without the designed gaze control algorithm applied.

4.5.1 Spherical cloud

The first situation is a spherical cloud of features with a radius of r = 5m centered around∆~x =(
0 0 8

)>
. The initial position of the camera is pw

c (0) = (−17 0 0
)>

and the end position is

pw
c (∞) = (

17 0 0
)>

, thus the base velocity is directed in the positive x-direction.

The response for an average velocity of vb,avg = 0.5m s−1 is shown in figures 4.47, 4.48, 4.49 and
4.51. The figures show that initially the cloud is completely out of view. As soon as it enters
the view at t = 10.6s, the torque increases as more features will move into the field-of-view
as the camera rotates. As soon as the entire cloud is in view and the relative angle between
the camera center and the feature cloud center decreases, the torque decreases as well. As the
base trajectory progresses, the relative angle changes slowly, and the camera has no problem
tracking the cloud (see figure 4.50). At t = 35.25s the camera is directly under the cloud, and it is
visible that in this region, the angular velocity reaches a local extremum. Overall, the response
is exactly as expected.

Figure 4.51 compares the performance metric S of the response to the spherical feature cloud
with and without the gaze control algorithm. It is visible that with the gaze control algorithm,
valuable features remain in view for a longer period of time.

As the situation is dependent on the base velocity, a comparative study can be made for differ-
ent average base velocities. To this end, the simulation is executed with average base velocities
of 0.5 m s−1, 5 m s−1, 15 m s−1, 25 m s−1 and 35 m s−1. The resulting cumulative feature scores S
as a function of time are displayed in figure 4.52. The figure shows dips in the S scores for a
base velocity of vb = 15m s−1. These dips are because the inertia effect limits the allowed ac-
celeration of the camera, which imposes a limit for which the algorithm can keep track of the
feature cloud, in this situation between 25 m s−1 and 35 m s−1. This inertia-induced limit is not
necessarily an undesired effect, as this inertia was incorporated to counteract vibrations and a
limit on the acceleration also prevents other unwanted effects that can occur at high velocities,
like motion blur. Nonetheless, it is important to be aware of this limit.

To improve the comparison of the different base, the cumulative feature scores S are also plot-
ted in figure 4.53 as a function of stroke distance, as the total distance is constant across each
series of experiments. Additionally, the baseline is added to the comparison. This figure shows
the limit of the base velocity on the ability of the gaze control algorithm to track the feature
cloud while in motion as well. The figure also shows that while the gaze control algorithm does
not continually perform better than the baseline, the final score is improved for most base ve-
locities. Figure 4.53 only shows the variations in S while the base is moving. After the base
finished its motion, the remaining motion of the camera is lost in this plot. An example is vis-
ible in figure 4.53 where the line for vb = 25m s−1 is reduced to a vertical line at the right edge
of the figure.
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Figure 4.47: Simulated torques while moving past a spherical feature cloud.

Figure 4.48: Simulated velocities while moving past a spherical feature cloud.
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Figure 4.49: Simulated camera angles while moving past a spherical feature cloud.

Figure 4.50: 3D visualization of the camera angle and the feature cloud at t = 31.5s. The camera moves
past a spherical feature cloud.
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Figure 4.51: Base velocity and cumulative feature score while moving past a spherical feature cloud. The
semi-transparent line is the result for the system with the gaze control algorithm turned off.
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Figure 4.52: Comparison of cumulative feature scores as a function of time for different average base
velocities while moving past a spherical feature cloud.
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Figure 4.53: Comparison of cumulative feature scores as a function of stroke distance for different aver-
age base velocities while moving past a spherical feature cloud.
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4.5.2 Torus cloud

The second situation is a torus-shaped cloud. This cloud is generated about the z-axis with a
primary radius of r1 = 2.5m, a secondary radius of at maximum r2,max = 0.5m at an offset of

∆~x = (
0 0 5

)>
. The initial position of the camera is pw

c (0) = (
0 0 0

)>
and the end position

is pw
c (∞) = (

0 0 8
)>

, which means the base velocity is directed in the positive z-direction,
and thus moving along a line through the center of the torus. The hypothesis is that due to
eccentricities of the torus, the camera aim will be pulled towards one side of the torus and will
remain in that direction while moving upwards. However, due to the effect of β there will be a
limit where the angle cannot rotate any further.

The response in this situation is shown in figures 4.54, 4.55 and 4.56. Figures 4.57 and 4.58
show 3D visualizations of the situation at t = 8.8s and t = 15.7s respectively. These figures
show that indeed the camera aim is pulled towards one side of torus. Also, they show the limit
introduced by β. However, the camera aim does not settle in the initial direction and keeps
rotating continuously until the limit is reached.

One particular observation from figures 4.57 and 4.58 is that the camera is continuously gazing
just above the torus. This can be counter-intuitive, but can be explained by taking the FoV and
the effect of β into account. The effect of β decreases the spring torque as it moves closer to the
physical limit. This motion is in the same direction as the torus moves while the base motion
progresses. The effect of the FoV (see figure 4.57) is that features around the edges of the FoV lie
in the middle of the vertical image axis, which partially compensate for the pull of the features
in the middle of the visible part of the torus which is directed downwards. Figure 4.57 also
shows that the camera is tilted, which is also an effect of β, as it becomes increasingly difficult
to rotate in the negative tilt direction. To compensate, the camera still tries to move closer to
the features by panning to the left, which result in the tilted orientation of the camera.

Figure 4.59 compares the performance metric S of the response to the torus-shaped feature
cloud with and without the gaze control algorithm. It is visible that with the gaze control al-
gorithm, valuable features remain in view for a longer period of time.

Comparing the cumulative feature score S for different base velocities as a function of time
results in figure 4.60. From figure 4.60 two observations can be made: a lower base velocity
allows for more variation in S, likely due to the additional time available to the gaze control
algorithm to adjust to the evolving situation. And the result for 0.25m s−1 converges to a non-
zero value. This effect can be attributed to the fact that the additional available time allows the
gaze control algorithm to turn the camera enough to retain a small number of features in the
field-of-view at the final base position.

The cumulative feature scores S are also plotted as a function of stroke distance in figure 4.61.
This figure shows also that the slower base velocities allow the gaze control algorithm to retain
the features in view for a longer distance. The figure also shows that the gaze control algorithm
is an improvement over the baseline.
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Figure 4.54: Simulated torques while moving through a torus-shaped feature cloud.

Figure 4.55: Simulated velocities while moving through a torus-shaped feature cloud.

Figure 4.56: Simulated camera angles while moving through a torus-shaped feature cloud.
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Figure 4.57: 3D visualization of the camera angle while moving through the torus-shaped feature cloud
at t = 8.8s. The field-of-view is visualized with the grey lines.

Figure 4.58: 3D visualization of the camera angle while moving through the torus-shaped feature cloud
at t = 15.7s.
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Figure 4.59: Base velocity and cumulative feature score while moving through a torus-shaped feature
cloud. The semi-transparent line is the result for the system with the gaze control algorithm turned off.
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Figure 4.60: Comparison of cumulative feature scores as a function of time for different average base
velocities while moving through a torus-shaped feature cloud.
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Figure 4.61: Comparison of cumulative feature scores as a function of stroke distance for different aver-
age base velocities while moving through a torus-shaped feature cloud.
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4.5.3 Wall with patches

The third situation under investigation is a wall with patches: a two-dimensional surface with
three adjacent regions of 2×2 m. The outer two regions are feature rich, they contain 45 fea-
tures, and the middle region contains only 10 features. This patched wall is placed as a hori-

zontal ceiling at a height of h = 1m. The initial position of the camera is pw
c (0) = (−2 0 0

)>
and the end position is pw

c (∞) = (
2 0 0

)>
, which means the base velocity is directed in the

positive x-direction.

The response to this situation is visualized in figures 4.62, 4.63 and 4.64. This response shows
that initially, because the features on the wall are not symmetrically placed, the spring torque
is unbalanced and the camera starts rotating towards a slight pan and tilt angle. As soon as the
base starts moving the pan angle increases to a (negative) maximum value of θ(9.5) = −1.22rad
as the first patch of wall moves away from the camera. The tilt angle does not increase much
to a maximum value of φ(4.6) = 0.26rad. As the motion is stopped, the pan angle decreases
slightly to a final value of θ(15) = −1.1rad, as the second patch comes partially into the FoV. The
tilt angle settles on a value of φ(15) = 0.11rad. A snapshot of the end situation is visualized in
figure 4.65.

Figure 4.66 compares the performance metric S of the response to the patched wall with and
without the gaze control algorithm. It is visible that with the gaze control algorithm, valuable
features remain in view for a longer period of time.
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Figure 4.62: Simulated torques while moving under a wall with patches.

Figure 4.63: Simulated velocities while moving under a wall with patches.

Robotics and Mechatronics Stephan Visschers BSc



60 Perception-aware visual odometry

Figure 4.64: Simulated camera angles while moving under a wall with patches.

Figure 4.65: 3D visualization of the camera angle while moving under a wall with patches at t = 15s.
The grey lines indicate the field-of-view.

Figure 4.66: Base velocity and cumulative feature score while moving under a wall with patches. The
semi-transparent line is the result for the system with the gaze control algorithm turned off.
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Let us define the concept of a viewing angle ξp as the angle between the normal at a point p on
a plane and the ray going from the camera to that point p (see figure 4.67).

Figure 4.67: Viewing angle ξp , defined as the angle between the normal at a point p on a plane and the
ray going from the camera to that point p.

The planar cloud of features, extracted from the wall, inherently causes the camera to diverge
from the neutral position in the current simulations, as a larger viewing angle with respect to
the intersection between the optical axis of the camera and the wall ξo allows for more features
to be within the field-of-view. This is an unrealistic effect, because in physical experiments this
larger angle will partially conceal the features, and ROVIO will not be able to extract all of these
features. In this planar scenario the viewing angle with respect to each feature ξ f is a desired
effect, because the concealment reduces the effect of the unbalanced spring torque described
above. Due to concealment, the effect of features will reduce with an increasing viewing angle
ξ f . That will most likely result in a different behaviour, where the camera will prefer areas with
a smaller viewing angle ξ f , and as such are located closer.

In this specific simulation scenario, the shortest distance to the features is consistent along
the complete wall of features, which is the height h. Therefore, the viewing angle ξ f is in this
case directly related to the Euclidean distance d f between the camera and the features through
trigonometry. A maximum distance value d f ,max is then related to a maximum viewing angle
ξ f ,max. In order to simulate ξ f ,max, a fourth penalty to the spring torque is introduced, dubbed
δ. δ is a binary penalty of the following form:

δ(d f ) =
{

1 0 < d f ≤ d f ,max

0 elsewhere
(4.17)

The maximum distance is chosen to be d f ,max = 2m. This results in a maximum viewing angle
of ξ f ,max = arccos

(1
2

) = π
3 rad = 60°. The resulting response is visible in figures 4.68, 4.69 and

4.70. The intended effect of the viewing angle limit can be observed by comparing the angular
response of figures 4.64 and 4.70. The maximum pan angle is θ(8.3) = −0.78rad and the final
pan angle is θ(30) = 0.02rad. The maximum value for the tilt angle is φ(4.46) = 0.31rad and the
final tilt angle φ(30) = −0.28rad. These final angles are much closer to the center of the second
high-density region, which is a beneficial result, as the viewing angles ξ f are relatively small,
which facilitates feature extraction. A snapshot of the end situation is displayed in figure 4.71.
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Figure 4.72 compares the performance metric of the response to the patched wall including a
limited viewing angle with and without the gaze control algorithm. It is visible that with the
gaze control algorithm, valuable features remain in view for a longer period of time.

Comparing different base velocities for the patched wall situation including the limited viewing
angle as a function of time yields figure 4.73. This figure shows that all base velocities converge
to the same non-zero number of features. However, the figure also shows that there is a tip-
ping point in the average base velocities between 0.8 m s−1 and 2 m s−1 where the accumulated
feature score S is significantly affected. The largest base velocity exhibits a minimum to the
number of features within view of 10 features. That is equivalent to the response without the
gaze control algorithm applied.

The tipping point in the average base velocities is reinforced when examining the feature score
responses to the increasing base velocities as a function of stroke distance, which is displayed
in figure 4.74. The responses to the base velocities that exceed the tipping point significantly,
namely 4 and 8m s−1, actually perform a little worse than the baseline in the second half of the
motion.

Figure 4.68: Simulated torques while moving under a wall with patches with a limited viewing angle.
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Figure 4.69: Simulated velocities while moving under a wall with patches with a limited viewing angle.

Figure 4.70: Simulated camera angles while moving under a wall with patches with a limited viewing
angle.
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Figure 4.71: 3D visualization of the camera angle while moving under a wall with patches with a limited
viewing angle at t = 30s. The grey lines indicate the field-of-view.

Figure 4.72: Base velocity and cumulative feature score while moving under a wall with patches. The
semi-transparent line is the result for the system with the gaze control algorithm turned off.
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Figure 4.73: Comparison of cumulative feature scores for different average base velocities as a function
of time while moving under a wall with patches with a limited viewing angle.
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Figure 4.74: Comparison of cumulative feature scores for different average base velocities as a function
of stroke distance while moving under a wall with patches with a limited viewing angle.
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4.6 Conclusion

This chapter aimed to answer research sub-question 4. This sub-question asks what the per-
formance of the designed gaze control algorithm is in simulations. In order to provide an an-
swer, a 20-sim model is introduced that is used to simulate the behaviour of the actuated cam-
era unit controlled with the gaze control algorithm. Subsequently, the dynamics of this sim-
ulation model were tuned to be approximately critically damped in the case of a single point
feature. Through representative simulated simulations, it was shown that the different aspects
of the designed gaze control algorithm work as intended, to a certain extent. The simulations
also unveiled that certain side-effects can appear when the spring torque penalties are used.
Additionally, the effects of varying the velocity of the base of the camera unit were investigated.
These investigations showed that there exists a limit on the base velocity for which the gaze
control algorithm can track the features. The magnitude of this limit is situation-dependent.
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5 Proposed experiments

Research sub-question 5 asks what the performance of the designed gaze control algorithm is
in physical situations. For this purpose, a number of experiments are proposed to test the vari-
ous aspects incorporated in the gaze control algorithm. The final experiment set-up described
in section 5.2 was actually constructed. Unfortunately, due to a flawed implementation, the
data obtained from this experiment retained little informational value.

5.1 Aspects

The aspects that have to be investigated in this series of experiments are explained in this sec-
tion, and a suggestion is made for how to investigate these aspects.

The first aspect of the algorithm that has to be checked is the tuning of the virtual parameters
of the physical model, such as the neutral stiffness of the virtual springs, the virtual inertia and
the virtual friction. Tuning of these parameters is important to ensure the model remains stable
under operating conditions. Tuning of these parameters is best in a simplistic scene with only
a few distinct features.

The second aspect of the algorithm that is tested is how it handles the absence of features in
a confined area, in the form of a plain patch of wall. The neutral position of the VI-sensor is
oriented towards this wall. This orientation forces the algorithm to deviate from the neutral
position in order to maintain feature tracking.

Another aspect of the gaze control algorithm that has to be checked is the effect of the three
spring torque penalties on the behaviour of the robot arm. The first of these penalties is the
distance penalty α. In order to test α, a scene with a large variety of distances from the camera
to objects is used to see how the algorithm reacts to the difference in distance penalty associ-
ated to each feature.

The second spring torque penalty isβ: the physical limit penalty. The effect ofβ that is checked
is the influence of β and if this influence does not impede the operation of the gaze control
process. This can be checked by rotating the base of the camera system away from an isolated
cluster of features, while the rest of the environment is feature-less.

The last spring torque penalty is γ. The purpose of γ is to smooth the introduction of new fea-
tures in the field-of-view of the camera. The effect of γ can be tested by going from a featureless
region to a region filled with features, and comparing the response of the gaze controller with
and without γ applied.

If this all works as desired, a final experiment can be evaluated to see if the gaze control al-
gorithm has a beneficial effect on the visual odometry process. This beneficial effect can be
tested by repeating a trajectory (with and without the algorithm applied) and comparing the
accuracy of the Visual Odometry estimation. In order to do this, some form of ground truth has
to be available.

Robotics and Mechatronics Stephan Visschers BSc



68 Perception-aware visual odometry

5.2 Final experiment

In order to check the efficacy of the complete algorithm, a repeatable trajectory is needed.
Along this trajectory, scenes with differing feature quantity and/or quality should be visible.
For the sake of simplicity, a linear trajectory is chosen. This trajectory is established using a
cart mounted on a rail, which is actuated using a timing belt system (see figure 5.1). The robot
arm with the VI-sensor is mounted on top of the cart. The rail is mounted on two tripods to
enable easy placement at a certain elevation from the ground. The timing belt is driven by a
pulley, that is driven by a servomotor. The maximum obtainable linear velocity is:

vmax =ωmax ·πdp (5.1)

where ωmax is the no-load rotational velocity of the servomotor and dp is the diameter of the
driving pulley.

Figure 5.1: Schematic drawing of rail set-up

A constant linear velocity of the cart is desired. To include start-up acceleration and end decel-
eration, a trapezoidal reference profile for the angular velocity is created that is repeated in the
opposite direction to end up approximately back at the starting point (see figure 5.2).
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Figure 5.2: Trapezoidal velocity reference profile
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The data that can be recorded consists of:

• The pan servo angular position setpoint and status sampled at 20Hz, which contains[24]:

– Joint name

– Motor ID

– Motor temperature

– Goal position (in radians)

– Current joint position (in radians)

– Error between current and goal position (in radians)

– Current joint speed (in radians per second)

– Current load

– If the joint is currently moving (boolean)

• The tilt servo angular position setpoint and status sampled at 20Hz, with the same struc-
ture as the pan servo.

• The belt servo angular velocity setpoint and status sampled at 20Hz, with the same struc-
ture as the pan servo.

• The stereo camera image streams sampled at 20Hz.

• The IMU data stream sampled at 200Hz.

Using the recorded angular position of the driving servomotor, and the characteristics of the
timing belt system, an estimation of the (linear) position of the base of the camera unit can be
constructed, providing a ground-truth for the position of the base over time.

5.2.1 Realization of experiment

The rail set-up displayed in figure 5.1 has been built. The resulting structure is visible in figure
5.3. Unfortunately, the implementation of the experiments with this set-up were flawed, as a
consequence of two causes:

• The mounting of the camera on the actuators and the cart did not adhere to the chosen
rotation conventions.

• The tuning of the camera unit’s dynamics at the time of the experiment was the result
of a flawed trial-and-error process and did not reflect the theoretical-based process de-
scribed in section 4.2.

As a result, the data obtained from these experiments are not representative for the designed
algorithm and cannot be used to draw meaningful conclusions. Due to time constraints, no
additional data has been obtained.

5.3 Conclusion

This chapter aimed to answer research sub-question 5, which asked about the performance of
the designed gaze control method in physical experiments. To answer this question, a number
of proposals were made for specific test scenarios that were designed to test certain aspects of
the designed gaze control algorithm. Most of these proposals were never realized, with the ex-
ception of the final experiment described in section 5.2. Unfortunately, the implementation of
this experiment was flawed leading to unreliable data, from which no meaningful conclusions
can be drawn.
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Figure 5.3: Realized physical set-up for final experiment.
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6 Conclusions

This research aimed to answer the following research question:
How can the likelihood of losing reliable pose estimation in visual odometry be reduced by
adapting the gaze of the camera, particularly in problematic areas?

This report searched for one possible answer to this research question by investigating if the re-
liability of the visual odometry process could be improved by continuously adapting the cam-
era angle by means of a pan-tilt actuator controlled by a gaze control algorithm that attempts to
continuously aim the camera towards a sufficiently feature-rich region, if possible. ROVIO was
used as the VO algorithm for this investigation. The gaze control algorithm consists of a vir-
tual dynamical model. The output of this model provides the setpoint for the pan-tilt actuator,
directing the camera gaze.

The research question is supplemented with the following research sub-questions:

1. What are the current state-of-the-art solutions to the feature reliability problem?
2. Which factors contribute to the loss of feature-dependent reliability of visual odometry?
3. What combination of virtual components should the virtual dynamical model consist of

in order to counteract the loss of feature-dependent reliability of visual odometry?
4. How does the algorithm perform in simulations?
5. How does the algorithm perform in physical experiments?

Research sub-question 1 was answered by doing a literature study.

Research sub-question 2 was answered by means of a series of preliminary experiments.
Through these experiments potential pitfalls of ROVIO were analysed. ROVIO depends on both
visual and IMU data. It was shown that a significant disturbance to either of these data streams
resulted in a significant drift in the motion estimation. A dependency of ROVIO on feature-rich
environments in an intermediate distance range was demonstrated.

To answer research sub-question 3, a virtual model was created that consists of virtual inertia,
damping and springs. The virtual springs are torsional springs attached to the camera frame
and the feature positions. To reduce undesired effects, the spring constants of these virtual
springs are adjusted by three penalties. These penalties take into account the Euclidean dis-
tance of a feature with respect to the camera frame, the physical limits of the pan-tilt actuator
and the sudden introduction of new features within the field-of-view of the camera.

To answer research sub-question 4, the motion induced by the virtual model was demonstrated
through simulations. These simulations demonstrated that a smooth motion is obtained if
tuned correctly, that is able to track features while the camera is in motion. The effect of the
introduced spring torque penalties have been demonstrated to work as intended, to a limited
extent. These simulations also showed limitations of the designed algorithm.

To answer research sub-question 5, a physical experiment was proposed to demonstrate the
beneficial effect of the gaze control algorithm. However, meaningful data to support the hypo-
thesis that the designed gaze control algorithm has a beneficial effect on the VO process has
not been obtained due to a flawed implementation of the experiment.

The simulation results combined with the preliminary experiments make it plausible that the
designed gaze control algorithm can improve the reliability of the visual odometry process.
However, due to the lack of physical, experimental data, the intended improvement by the gaze
control algorithm has not been demonstrated. Further experimentation is required to determ-
ine the beneficial effect of the gaze control algorithm. Therefore, the research question can not
definitively be answered on the basis of this report alone.
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6.1 Discussions

A number of important assumptions and design choices were made that affect the results.
Their effects are discussed in this section.

6.1.1 Situation dependency

Most of the aspects of the gaze control algorithm are designed with a specific situation in mind,
which results in that these aspects work well for certain types of scenarios and less for other
scenarios, with each aspect working well for a different scenario. Through this, a certain situ-
ation dependency of the gaze control algorithm is created. Further evaluation is required to
test the boundaries of this dependency and to potentially redesign the algorithm to allow for
broader boundaries.

6.1.2 Camera model

In this research, the model of the camera is assumed to be a single camera. However, the VI-
sensor contains a stereo camera. The values for the field-of-view that were used, are specified
for each individual lens. Therefore, this has limited the field-of-view in simulation more than
is the case in the real situation. To what extent is unknown, because it depends on how ROVIO
uses these datastreams exactly, which requires more intimate knowledge of ROVIO.

6.1.3 β design

The current design of the β penalty limits the available range of the pan-tilt actuator. Because
β is calculated using the compound angle η, the actuator will not be able to reach an angle of
1
2π. This means that an improvement could be reached by designingβ differently by taking into
account that the compound angle is used.

6.1.4 Normalization of k

The normalization of k by defining a maximum which is divided over all possible features will
limit the speed of the response. However, if this process is not introduced, the possibility exists
that the response will become underdamped to such a degree that it becomes unstable. In
simulation this effect has more impact, since in this case n = 100 (i.e all simulated features).
In the case of a physical test, n = 25, which is the maximum number of features ROVIO can
take into account. Because of this, in some cases, the spring constant of the simulation will be
significantly lower.

6.1.5 Concealment

One of the physical effects that the current simulation does not take into account is conceal-
ment of features. This is an effect that will happen in a physical situation, but is not incorpor-
ated in the evaluated simulations. This skews the results to an unknown extent.

6.1.6 Feature distribution

Another discrepancy that exists between the simulations and physical experiments is the dis-
tribution of features. In the simulations, the features are placed using a pseudo-random gener-
ator within a certain area. Even though a pseudo-random generator generates with a uniform
chance distribution, it can create areas with varying feature-densities. In physical experiments
ROVIO takes only a limited amount of features into account. One of the devaluing criteria of
feature selection used by ROVIO is the proximity with respect to other features. In other words,
ROVIO tries to select features from possible candidates that are as spaced out as possible. This
effect has not been taken into account by the simulation.
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