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ABSTRACT
The goal of this research is to investigate how accurately
machine learning algorithms can classify different types
of road damage using accelerometer data from a smart-
watch. The accelerometer data is not collected with a real
smartwatch, but with a wearable sensor made for motion
capture. The types of road damage that were tested with
are potholes, cracks and crocodile cracks in asphalt roads
only.
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1. INTRODUCTION
The infrastructure is a big part of our society and a big
part of the every-day life of many people. Roads are used
a lot every day by people to get to work or to go home,
for freight traffic, by tourists, etc. Because the roads are
used so much the throughout the entirety of every day,
the safety of the roads is very important. Damaged roads
are a hazard for drivers because they can cause accidents,
and therefore it is very important that damaged roads are
repaired as soon as possible.

Detecting and reporting damaged parts of roads are one of
most important tasks of road maintenance, because roads
can only be repaired if it is known what type of road dam-
age has to be repaired at which part of a certain road. In
the Netherlands it is possible for a civilian to help bring
attention to the existence of road damage somewhere by
making a phone-call to the ”Directorate-General for Pub-
lic Works and Water Management” (in Dutch: Rijkswa-
terstaat). However having to make a phone-call to do this
may be discouraging to people, and it is not a safe thing
to do while driving. Therefore an alternate way of helping
the discovery of road damage could be beneficial for civil-
ians that want to help and for the general safety of the
roads.

Nowadays almost everyone has a smartphone, and smart-
watches are also becoming more and more popular. These
mobile devices can be used to collect accelerometer- and
GPS-data, and if machine learning can be used to reli-
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ably identify different types of road damage from the ac-
celerometer data, the process of damage detection could be
automated. This will speed up the rate of damage discov-
ery and repair, which is beneficial for both the government
and the drivers.

Currently research is already being done on technology
that can automatically detect road damage. At the Uni-
versity of Waterloo, researchers have developed an artifi-
cial intelligence system capable of locating potholes using
images collected with vehicle-mounted cameras[3]. An-
other research project, called ePave, researches the use of
self-powered wireless sensors that are to be placed under
the surface of the road to monitor the road quality[2]. The
main difference between the proposed solution and the pre-
viously mentioned solutions is that the proposed solution
does not require the installation of additional technology
which may be expensive and require maintenance.

2. RESEARCH QUESTIONS
The main research question of this research is:

How accurately can machine learning algorithms classify
different types of damage to asphalt roads by using ac-
celerometer data collected from a smartwatch while driv-
ing?

To explore the accuracy of the algorithms in more detail,
and to test the influence of different circumstances while
driving, the following sub-questions are addressed:

1. How does the position of the smartwatch affect the
accuracy of the algorithms?

2. Which machine learning classification algorithm has
the best overall accuracy?

3. RELATED WORK
Research has already been done several times on the use of
the accelerometer of a smartphone to detect road damage.

An example is the research that was published in 2011 by
Mednis et al.[7] in which they proposed and tested four
different algorithms that they used to classify large pot-
holes, small potholes, pothole clusters, gaps and drain pits.
They collected the data with the accelerometer of different
smartphones, and they ran their classification algorithms
on the smartphones in real time. The algorithms they
developed are based on a certain threshold value. When
certain thresholds are exceeded, the algorithm can make
predictions based on that. With one of their algorithms,
they were able to achieve an accuracy of over 90%.

In a more recent research (2016), Gawad et al. [4] re-
searched the use of machine learning on accelerometer
data from smartphones to detect road damage. In this
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research a neural network was used to dynamically calcu-
late a threshold based on the readings of the accelerometer.
This threshold is then used to decide if the car is driving
over an anomaly or not. In this research they do not clas-
sify the different types of damage, but it is only used to
detect that the road is damaged. The accuracy they were
ably to achieve was at least 70%.

Carbal et al. (2018) [1] did research on the use of four dif-
ferent classification algorithms (Support Vector Machine,
Hidden Markov Model, Residual Network and K-Nearest-
Neighbors with DTW) to classify between paved and un-
paved road, and in case of a paved road also the clas-
sification of damaged or undamaged road. As input for
the algorithms, accelerometer data from a smartphone was
used. A sliding window of two seconds was applied to the
accelerometer data, and 130 features were calculated for
each window. With both the Support Vector Machine and
the K-Nearest-Neighbors with DTW algorithms they were
able to classify damaged road from undamaged road with
an accuracy of up to 100%.

Apart from the use of the accelerometer, also the use of
the camera of smartphones has been researched. In 2018,
Maeda et al. [6] published their research on the use of the
camera of a smartphone in combination with deep neural
networks to classify different types of road damage. In
their research, they were able to classify 8 classes of road
damage with up to 77% accuracy. An advantage of using
images over vibrations to classify road damage is that by
using images, also damage to paint of traffic signs on the
road, such as cross walks, can be detected. A disadvantage
is that shadows can cause false calssifications, and if it is
raining, the phone will not have a clear vision of the road.

The research published in this paper is different from pre-
vious research because the use of a smartwatch is investi-
gated instead of a smartphone, and the goal of the machine
learning algorithms is to not only detect that the road is
damaged, but also to determine what type of damage is
present based on accelerometer data.

4. METHODOLOGY
4.1 Data collection
For this research, a new had to be data-set generated, since
a data-set that meets the requirements for this research
was not available.

4.1.1 Used equipment
Because of the limited amount of time in which the re-
search had to be performed, and in order to make the
collection of data less complex, two wearable ProMove-
mini [5] sensor devices were used instead of a real smart-
watch. To record the data, only the accelerometer of the
ProMove-mini was used. A sampling rate of 100 Hz was
chosen because this appeared to be the most common sam-
pling rate of the accelerometers used in smartwatches. Af-
ter collecting data with this device, the data was saved to
a CSV-file to be able to easily import and manipulate the
data later. These CSV-files contain a column for a times-
tamp, and a column for each axis of the accelerometer i.e.
x, y, and z axis.

4.1.2 Test drives
All of the data used in this research was collected on as-
phalt roads while driving at a speed between 50 and 70
km/h. During the collection of the data, a voice recorder
was used to be able to call out when the car drove over a
damaged piece of road, or over other important noticeable
things such as speed bumps or a piece of non-asphalt road.

The collection of the data was done in two times, but
the type of roads and the speed were kept as similar as
possible. During the first ride, one of the sensors was
firmly strapped to the left wrist, since this is where most
people wear their watch, and the other sensor was placed
in the pocket of the driver to try to simulate an arm that is
not holding the steering wheel, but is lying on the driver’s
lap. During the second ride, one sensor was again placed
on the left wrist, and the other sensor was attached to the
dashboard of the car with the idea that this would pick up
the exact vibrations coming from the car while driving.

4.1.3 Labeling the data
Labeling the data was done by using the recorded voice
during driving, and a simple tool developed in Python for
this specific research. In the tool, two CSV-files can be
opened and visualised at the same time so that the data
from both sensors can be seen at the same time. After
clicking on two points in the graph, a new label with the
selected name is added between the chosen points. After
the labeling is done, the labels can be exported to a CSV-
file. Figure 1 shows what the tool looks like. The label
types that were used are: ’normal road’, ’crack’, ’crocodile
crack’, ’speed bump’ and ’excluded’. The label ’excluded’
was used to label parts of the data where the car was not
driving over a normal asphalt road.

4.2 Processing the sensor-data
The processing of the sensor data and the implementation
of the machine learning were done in Python, since it offers
many public frameworks which can be used for this type
of research.

4.2.1 Importing the data into Python
To be able to manipulate and use the data from the sen-
sors, the data needed to be imported into Python. To do
this, the Python library pandas [8] was used, which can
load a CSV-file into a DataFrame object, which can be
seen as a table that can be accessed by row- and column
index, but it also allows for easy selection based on values.

4.2.2 Calculating the total acceleration
After the sensor-data was loaded, the three acceleration
axes where combined into one value representing the total
acceleration. This was done according to formula 1. In this
formula, ax, ay, and az stand for the acceleration measured
on the x, y, and z axis.

atotal =
√

a2
x + a2

y + a2
z (1)

After this, to compensate for possible differences in the
calibration of the two sensors, the data was normalized by
subtracting the mean of the entire measurement from each
individual data-point.

4.2.3 Rolling window and statistics
Since a single data-point does not characterise a certain
vibration or movement, a rolling window was used to be
able to train the machine learning algorithms on sets on
data-points. A pandas DataFrame offers a function that
can generate a rolling window using the values it contains,
given a certain window size. This window shifts 1 value af-
ter each window. The window size that was chosen was 50,
which corresponds to half a second of data, since the sam-
pling rate was set to 100 Hz. For each window of 50 val-
ues, by using the built-in functions of pandas, the follow-
ing statistics were calculated: mean, maximum, minimum,
median, standard deviation, 25% quantile, 75% quantile,
kurtosis, skewness, and root mean square. The value of
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Figure 1. Screenshot of the labeling tool.

each of these statistics was added as a new column at the
last data-point of each window. This means that the row
of the 50th data-point contained the statistics of the first
window, and that row 51 contained the statistics of the
second window and so forth.

4.2.4 Adding the labels to the data
Adding the labels to the data-points was done for each
label by adding the label as a new column to each data-
point between the timestamp of the begin of the label plus
0.49 second (the duration of 49 data-points) and the times-
tamp of the end of the label. The 0.49 second is added to
make sure that the label starts at the row that contains
the statistics of the first window that only contains data of
the type of the label. After all the labels were added, the
rows that had no label, and the rows that were labeled as
’excluded’ were removed. The rows without a label con-
tain statistics of windows that contain data-points from
two different label types, such as a crack and normal road.

4.3 Machine learning
The implementation of the machine learning was done us-
ing the open-source library Scikit-learn[9]. Scikit-learn
offers several types of classification algorithms, of which
the Linear SVC, KNeighbors and Naive Bayes algorithms
were tested. These algorithms were chosen based on a
flow-chart[10] from Scikit-learn in which different circum-
stances lead to different algorithm recommendations. The
circumstances of this research lead to the mentioned clas-
sifiers.

4.3.1 Splitting the data into train- and test sets
To split each DataFrame into a train- and a test set, the
DataFrame was first split into 100 parts, then each of those
parts were split into 70% train set and 30% test set. After
this, all the separate parts of each set were concatenated
to form one train- and one test set. The first split into 100
parts was done to make sure that data from many parts
of each measurement would be in both sets.

4.3.2 Training and testing the algorithms
To train each algorithm, only the label column and train
set and the the columns containing the statistics needed
to be passed to the algorithm. When the algorithms were
trained, the statistics columns of the test set were given to
the algorithm, which then made a prediction of the label
that belonged to each row of the test set.

4.3.3 Evaluating the performance of the machine
learning algorithms

The performance of the machine learning algorithms was
determined for each different label type by calculating the
F1 score, which ranges from 0 to 1, with 0 being the worst
and 1 the best. The F1 score is calculated using formula
2.

F1 = 2 · precision · recall
precision + recall

(2)

In this formula, precision is the number of correct posi-
tive results divided by the number of all positive results
returned by the classifier, and recall is is the number of
correct positive results divided by the number of all sam-
ples that should have been identified as positive.

5. RESULTS
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Figure 2. F1 scores of the wrist sensor.

Figure 3. F1 scores of the pocket sensor.

Figure 4. F1 scores of the dashboard sensor.
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After training and testing each of the classifiers on each
separate data-set, the results shown in figure 2, 3, and 4
were obtained.

By taking the average of all the F1 scores of each classifier
the following overall F1 scores were calculated:

KNeighbors: 0.299

Linear SVC: 0.279

Naive Bayes: 0.303

6. DISCUSSION
Based on the research of Carbal et al. in which they man-
aged to achieve an accuracy of up to 100% by using ac-
celerometer data from a smartphone and machine learn-
ing algorithms, the results of this research may seem a bit
disappointing. However, their research is focused on de-
tecting if the road is damaged or not, and not on what
type of damage, or obstacle it is. Also the classification
algorithms and pre-processing methods that were used are
different.

None of the algorithms were able to correctly classify cro-
codile cracks or potholes, for any of the positions of the
sensors. A possible explanation for this would be that
the vibration patterns of these types of damage are very
similar to the vibration patterns of the roads that were
used for testing. Figure 5 and 6 show the patterns of these
types of damage. The parts marked in green belong to the
damaged road, and the unmarked parts are undamaged
parts of the road. When looking at these graphs it seems
that there is little to no difference between the patterns of
the damage and the patterns of other parts of the road.

Figure 5. Vibration pattern of a crocodile crack.

This could also be the cause for the low F1 scores for the
cracks. Figure 7 shows that there is also only a very slight
difference in the pattern for a crack and normal road.

Speed bumps are probably classified more accurately be-
cause they cause a much clearer pattern, which can be
seen in figure 8.

Figure 6. Vibration pattern of a pothole.

Figure 7. Vibration pattern of a crack.

Figure 8. Vibration pattern of a speed bump.

Apart from the vibration patterns and the place of the
sensor, it is also expected that the speed of the car will
have an impact on the accuracy of the algorithms because
when the car is driving slowly, the patterns will be differ-
ent from when the car is driving faster. In this research,
the speed of the car was not recorded while collecting the
accelerometer data, and therefore the effect of speed was
not researched.

Of the three places where the sensor was placed, the wrist
seemed to be the worst position to be able to make cor-
rect classifications from. The most obvious reason for this
seems that when the sensor is attached to the wrist, it
will also pick up vibrations caused by the hand or arm of
the driver. Figure 9 shows the vibration pattern that was
caused by steering while the sensor was on the wrist.
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Figure 9. Vibration pattern of steering.

7. CONCLUSIONS
This research explored the feasibility of using a smart-
watch and machine learning to classify road damage while
driving. The results of the tests show that crocodile cracks
and potholes could not be correctly classified using the
methods discussed in this paper. The results of the tests
also show that the position of the sensor affects the ac-
curacy of the classifiers. When the sensor was placed on
the wrist, which is where a smartwatch is normally worn,
the accuracy of the classifiers was the worst. The reason
that this position caused the worst results is assumed to
be that when the sensor is on the wrist, it also picks up
the movements that the driver makes with their arm and
hand.

Of the used classifiers, the Naive Bayes classifier was slight-
ly more accurate than the other classifiers, with an overall
F1 score of 0.303.

8. FURTHER RESEARCH
Further research could be done on testing with a real
smartwatch, testing on different types of road pavement
such as stones, testing the effects of the speed of the car,
testing the effects of using different cars and on improving
the pre-processing of the sensor-data such that the vibra-
tion patterns of the damaged parts of the road become
clearer.
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