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ABSTRACT
Activity recognition using WiFi signals can offer a good
way to identify the activities of a group of performers on
stage. Using device free activity recognition, the perfor-
mance does not need to be recorded nor do the participants
need to wear sensors to recognize the performed activities.
Research has been performed regarding the recognition of
single person activities using the channel state information
(CSI) of WiFi signals. In this research it is shown to what
extend one can identify what activity the biggest part of
a group of people is performing using CSI. To answer this
question, the performance of two different machine learn-
ing algorithms, decision tree and support vector machine,
are compared under different circumstances. The varying
conditions are the percentage of the group performing the
main activity, and the amount of nodes used to receive
the WiFi signal. The results show that it is possible to
track the activity of a group of participants using WiFi
signals. The highest accuracy and F1 score of 98% and
0.94, respectively, were achieved using three nodes and
the decision tree classifier, when 75% of the group was
performing the main activity.

1. INTRODUCTION
In general, artificial intelligence and machine learning are
of broad and current interest in the world of technology.
One of the applications of this data analysis technology
can be found in the recognition of activities. By combin-
ing machine learning and sensors, it is possible to identify
activities performed by a person. Examples of this tech-
nology can be found in mobile phones, smartwatches and
the Fitbit [16]. Another activity recognition method is the
use of video footage, as has been done by Htike et al. [9].
Artificial intelligence has been applied in many different
fields, including the field of performing arts. For example,
a computer model exists that wrote its own musical [2] and
a chatbot has been created that can participate in impro-
visational theatre [5]. However, what if there would not
only exist a computer model that can help writing the play,
but also a model that can understand what is happening
on stage? This would make it possible for blind people to
understand a play or dance performance by having a com-
puter at their side to tell them what is happening. One
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can argue that this could be achieved with use of cameras.
However, many plays are copyrighted, which makes it ille-
gal to make camera recordings. Furthermore, the privacy
of the performers on stage could be invaded with the use of
cameras. If instead of cameras radio waves could be used
to identify what is happening on stage, neither the play
nor the artists would need to appear on camera against
their will. To make this situation possible in the future,
the technology involved needs to be developed further.

As described before, current activity recognition approaches
often require occupants to wear devices, such as, mobile
phones in the research of Mobark et al. [14] and Jia et
al. [10] or smartwatches in the research of Kwon et al. [13].
Furthermore, current approaches usually require the de-
ployment of extra infrastructure. These devices and in-
frastructure can be expensive, intrusive and inconvenient.
Device-free activity tracking overcomes these issues, as
the occupants do not need to wear a device for the sys-
tem to work. Examples of device-free activity tracking
systems are the previously mentioned cameras and radio
waves. This research focuses on the use of radio waves
to track the activities of humans, as they are less privacy
invasive then cameras. In particular, this research uses
WiFi-signals, as they are already present in many loca-
tions, which makes the deployment of extra infrastructure
not necessary, which is an advantage over current activity
recognition approaches.

When a WiFi signal travels from the transmitter to the re-
ceiver, the signal is changed by reflection, diffraction and
scattering caused by objects or persons in a room. Human
actions change the phase and magnitude of the signal and
are therefore reflected in the received signal phase and
amplitude. Therefore, using the phase and amplitude of
WiFi signals one can detect what a person is doing. Chan-
nel state information (CSI) provides the phase and ampli-
tude of all subcarriers for every receiver and transmitter
antenna pair of a WiFi signal, which makes it usable for
activity recognition. CSI is one of the most popular mea-
surement units for this purpose of motion sensing, because
it provides more fine-grained channel information than, for
example, Received Signal Strength Indicator (RSSI) [19].

Previous research has gone into the tracking of human
behaviour using CSI. This includes research performed by
Wang et al. regarding the localization of up to two persons
in a room [20] and research regarding the activity recog-
nition of a single person, as in the research of Bagave, Du
et al. and Zou et al. [1, 4, 21].

1.1 Problem Statement
Nonetheless, most of the above research involve only one
participant in the experiment at a time. Feng et al. claim
to be the first to have created a system that can identify
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multiple activities performed by multiple people at the
same time with high accuracy [6].

Because of the little research involving multiple people at
the same time, the research described in this paper focuses
on group activity recognition using channel state informa-
tion. The research does not focus on the recognition of
individual activities of the people, as done by the previ-
ously mentioned research by Feng et al., but it focuses on
the recognition of the activity performed by the biggest
part of a group of people. Knowing what a group of peo-
ple is doing could not only be convenient for blind people
at performances, but additionally for elderly people in re-
tirement homes, children in kindergarten, or for visitors at
big events.

1.2 Research Questions
The main research question addressed in this research is:
To what extend can one recognize what activity the biggest
part of a group of people is performing using channel state
information? To answer this question we identify the fol-
lowing subquestions:

1. What is the correlation between the amount of re-
ceivers and the performance of the classifiers?

2. What is the effect of different percentages of the
group performing the same activity on the perfor-
mance of the classifiers?

3. To what extend can we measure the direction in
which a group of people is moving?

4. What classifier has the highest performance when
identifying the activity of the group?

2. RELATED WORK
As mentioned in Section 1, there has been done quite some
research regarding the activity tracking of people using the
channel state information of WiFi signals. A portion of
this research is described in this Section.

Some research mainly focuses on the localization of a per-
son in a room using CSI. For example, LiFS [20] is a system
created by Wang et al. that can localize persons in a room
with a median accuracy of 0.5m in line-of-sight and 1.1m
in non-line-of-sight scenarios. To achieve this, the system
makes use of CSI. During the research, Wang et al. find
that in rich multipath environments not all subcarriers are
equally affected by multipath. Therefore, LiFS only uses
the least affected subcarriers to localize people.

Besides localization of a person in a room, the tracking
of human activity is a popular subject for research. For
example, DeepSense is the product of such a research by
Zou et al. [21]. DeepSense is a scheme that can automati-
cally identify common human activities, such as entering a
room, sitting down and falling. The scheme makes use of
deep learning technology with commercial WiFi-enabled
Internet of Things devices. Zou et al. describe their de-
sign of a novel OpenWrt-based IoT platform to collect CSI
measurements. For the classification of the data, an au-
toencoder, a convolutional neural network module and a
long short-term memory module are combined. This sys-
tem can sanitize the noise, extract high-level features and
provide the dependencies among the data. As a result,
DeepSense achieves an accuracy of 97.6%.

Another example of activity recognition has been per-
formed by Bagave [1]. Her research goal is to determine
whether it is possible to recognize static postures using
the CSI of WiFi signals. In the research it is found that

the combination of data of several days negatively impacts
the accuracy. This is probably caused by instability of the
WiFi network over different days or movement of objects
in the room. She concludes that dynamic activity recogni-
tion is more reliable than static postures for activity recog-
nition. In the same research Bagave tries to find whether it
is possible to accurately recognize shapes drawn in the air
with a hand. Using a decision tree classifier she achieves
an accuracy of around 60-68%. Improper cropping of the
data windows is said to be the cause of the low accuracy.

A more fine-grained approach of activity recognition has
been created by Du et al. [4]. Their product, WiTalk, is
a context-free fine-grained motion detection system that
can classify the movements made by lips. The CSI is nor-
malized and the noise is reduced before it is classified.
They have created their own classifier that uses dynamic
time warping to measure similarity between two tempo-
ral sequences that could be varying in speed. As a result,
WiTalk can distinguish a set of 12 syllables with an accu-
racy of 92.3% and a short sentence up to 6 words with an
accuracy of 74.3%.

Klein Brinke focuses on the training of a neural network
in his research [11]. He compares current state-of-the-art
systems with convolutional neural networks, by analyz-
ing both static and dynamic activities. The goal of the
research is to find out what the influence of multiple peo-
ple and days is on CSI when classifying human activity
through deep learning. The convolutional neural network
achieves an accuracy of 98% for dynamic postures and an
accuracy of 60% for static postures. Like Bagave, he con-
cludes that the use of data of different days negatively in-
fluences the accuracy, furthermore the training and testing
of classifiers with data of different groups cannot achieve
a high accuracy either.

The activity recognition papers described above focus on
activity recognition of single persons. As stated in Sec-
tion 1, Feng et al. claim to be the first to achieve a high ac-
curacy on the recognition of multiple activities performed
by multiple people. With their scheme named Multiple
Activity Identification System (MAIS), they can achieve
an accuracy of 98.04% for anomaly detection, 97.21% for
predicting the number of people and 93.12% for predict-
ing the activities they perform. To achieve this accuracy
they made use of the k-nearest neighbors algorithm and a
group size of between one and three people [6].

3. BACKGROUND
In this section the background knowledge is given for the
research. Each subsection sheds a light on information
that is useful for the understanding of this research.

3.1 Channel State Information
Channel state information provides us with information
on the physical area between the transmitter and the re-
ceiver of a given WiFi signal. The IEEE 801.11n WiFi
standard that is used in this research, supports Multiple-
Input Multiple-Output (MIMO) to transmit signals be-
tween transmitters and receivers [1]. The WiFi standards
make use of orthogonal frequency division multiplexing
(OFDM) communication, which transmits multiple signals
in parallel over different frequencies within the bandwidth
to achieve this.

For a MIMO system, the narrowband flat-fading channel
model is given by the following formula [19]:

Y = H ×X +N
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Every transmitted signal vector X is convoluted with a
channel state matrix H. The noise signal vector N is
added to this to get the received signal vector Y [19].

CSI represents the estimation of the channel state matrix
H and describes the channel frequency response of each
subcarrier. The dimensions of the matrix are given by
T ×R×C which are the number of transmitting antennas,
receiving antennas and OFDM subcarriers, respectively.
The matrix is represented as follows [19]:

H =


H11 H12 . . . H1R

H21 H22 . . . H2R

...
...

. . .
...

HT1 HT2 . . . HTR


Each element Hij = (h1, h2, . . . , hC) of the matrix is a
vector containing the channel state hk for each k-th sub-
carrier for every transmitting (i) and receiving (j) antenna
pair [19]. The value hk provides information on the am-
plitude and phase of the corresponding subcarrier and can
be expressed with the following formula, where |hk| repre-
sents the amplitude and θ represents the phase [19]:

hk = |hk|ej sin θ

From the amplitude and phase of the received signal one
can find whether the signal was changed by human activity
between transmitting and receiving and extract what type
of activity the person was performing.

3.2 Classifiers
The classical machine learning methods used in this re-
search to classify the data are support vector machine
(SVM) and decision tree (DT). For each of the classifiers
it is described how they work, what their advantages are
and what should be taken into account.

3.2.1 Support Vector Machine
A support vector machine uses a hyperplane to separate
two classes of data. It has been proven that the up-
per bound of the generalization error of an SVM is low-
ered if the margin is maximized [12]. The margin is the
largest possible distance between the hyperplane and the
instances on either side of this plane. A simplified example
of an SVM can be found in Figure 1.

If the data would not be as perfectly spread as in Fig-
ure 1, extra dimensions are added to be able to draw a
hyperplane between the two possible classes. SVMs are
binary and can only distinguish between two classes, how-
ever, they can be used for multi-class problems. When an
SVM is used for multi-class problems, the problem has to
be reduced to a set of multiple binary classification prob-
lems.

An advantage of SVMs is that they can handle a large
number of features [12]. A few things to take into account
with this classifier is that if there is data that was clas-
sified wrongly or more noisy it could affect the accuracy
negatively, as the drawing of a correct hyperplane will be-
come more difficult, furthermore, the calculation/training
time of a SVM can be very high.

3.2.2 Decision Tree
The decision tree algorithm generates a decision tree that
classifies examples by sorting them based on their feature
values [12]. Every node of a decision tree represents one
of these features and every branch that comes from such

Figure 1. Simplified example of a support vector
machine.

a node represents a possible value for that feature. Clas-
sification of the examples starts at the top node of the
tree, the root. Based on its feature values the example is
then sorted to the leaves of the tree where it will be given
a label. The features that contain the most information
are placed near the root node. The efficiency of a decision
tree is usually near-optimal and never completely optimal,
because the production of the optimal decision tree is an
NP-complete problem. An example of a decision tree can
be seen in Figure 2.

Figure 2. Example of a decision tree

The advantages of the decision tree algorithm are that it is
easy to comprehend and therefore quite fast, furthermore,
decision trees work very well with discrete and categorical
features. Something to take into account with this classi-
fier is that if the features of the examples are numerical
it can take a while for it to find the right threshold that
decides when which branch of the tree is picked [12]. Fur-
thermore, the decision tree is not very efficient when the
number of examples is in the range of hundreds of thou-
sands.

4. DATA COLLECTION
This section describes the collection of the data for this
research.

4.1 Setup
The setup of the experiment consisted of a varying num-
ber of receiving nodes, one router and a CSI collection tool
that collected the CSI data. The collection of the CSI was
done using a third party CSI tool created by Haperin [8].
This software collected the CSI of thirty subcarriers for
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all receiver and transmitter antenna pairs. The CSI tool
worked with the 801.11n WiFi standard. A TP-LINK
AC1750 Router was used, which worked with this WiFi
standard. The receiver nodes that were used were created
by Klein Brinke in his research [11]. The nodes were Giga-
byte Brix IoTs, a type of mini PCs, of which the wireless
cards of were replaced with the Intel Ultimate N Wi-Fi
Link 5300, in order to make them work with the CSI tool.
Both the router and the nodes had three antennas that
could be used to transfer the CSI.

The layout of the setup of the experiment can be seen in
Figure 6. The pictures in Figures 3, 4 and 5 show the
position of the receiver nodes and the router in the room
by means of pictures.

Figure 3. Setup experiment of day one.

4.2 Experiments
The experiments were divided over nine sessions which
were divided over three days with three sessions each. For
each session the general idea of the experiment consisted
of a group of people performing the same activities at the
same time in one room. The group would stand between a
WiFi transmitter and one or more WiFi receivers. While
the participants were performing the activities a stable
WiFi signal between the router and the receivers would
make sure that the CSI was collected and stored for later
reference. For each session, there was a varying total group
size of between four and seven participants, of which a per-
centage of 50%, 75% or 100% of the group performed the
same activity at the same time. All the participant groups
consisted of different people, with some overlap between
the groups. The groups performed the following activi-
ties: falling, waving, sitting, clapping, jumping, walking
from left to right, walking from right to left, walking for-
ward and walking backwards. A more detailed description
of the activities can be found in Table 1. During each
session every activity was repeated fifty times, to gather
enough trials for the training of the classifiers in the data
analysis process.

The stable WiFi signal mentioned, was needed to be able
to see the change of the CSI over time. This stable signal
was obtained by letting all the receiving nodes ping the
router with an interval of 0.1 seconds during each trial.
The CSI data was collected based on the packets that
were sent back by the router to the receiver. For each
trial of an activity, fifty of these ping messages were sent
after each other by the receiver, making each trial last five
seconds. The interval of 0.1 seconds was based on the re-
search performed by Klein Brinke [11]. In his research he
used a ping interval of 0.05 seconds and every 100 packets
would equal one trial. Because the research described in

Figure 4. Setup experiment of day two.

this paper worked with multiple nodes, the interval had
to be increased. When running test experiments with two
nodes, one of the nodes was removed from the network
when both were sending ping messages at an interval of
0.05 seconds. When this interval was increased to 0.1 sec-
onds, this did not happen anymore.

Over the nine sessions, two aspects were varied to an-
swer the research questions. One of these aspects was the
amount of receiving nodes used. This was done to find the
correlation between the amount of receivers and the per-
formance of the classifiers (subquestion 1). The number
of receiving nodes was varied between one, two and three
over the three days. On day one, a single node was used,
on day two, two nodes were used and on day three, three
nodes were used. An overview of the layout of the nodes
can be found in Figure 6. To answer the subquestion, the
performance of the classifiers would be compared in rela-
tion to the number of nodes used to collect the data during
the classification process. On the pictures of the setup of
day two in Figure 4 it can be noticed that there were three
nodes setup that day. However, only two receiving nodes
were used during the experiments, as the node that was
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Figure 5. Setup experiment of day three.

Table 1. Activities used in experiments
Activity Description
Falling Falling on the knees from a

standing position.
Waving Waving the right hand from

left to right at the right side
of the body.

Sitting Sitting on the ground while
talking to the other partici-
pants.

Clapping Clapping with two hands in
front of the body.

Jumping Jumping one time in place.
Walking right to left Walking from the right side

of the room to the left side.
Walking left to right Walking from the left side of

the room to the right side.
Walking forward Walking from the transmit-

ter towards the receivers.
Walking backwards Walking away from the re-

ceivers towards the trans-
mitter.

positioned in the middle, stopped working.

Figure 6. Layouts of experiment setup.

The second aspect that was varied over the sessions was
the percentage of the group that was actually performing
the activity. This was done to find the effect of different
percentages of the group performing the same activity on
the performance of the classifiers (subquestion 2). The
percentage of the group of participants performing the ac-
tivities varied between 50%, 75% and 100%. In the case
that not 100% of the group was performing the same activ-
ity, the percentage of the group that was not performing
the activity was walking in circles around the group per-
forming the activities, to simulate disturbance of the WiFi
signal by people performing different activities in real life.
To illustrate, if the size of a participant group would be
six and the percentage of the group performing the activ-
ity would be fifty percent, then three participants would

perform the nine activities described above and the three
other participants would walk around these participants.
To answer the subquestion, the relation between the per-
formance of the classifiers and the percentage of the group
performing the same activity was analyzed in the classifi-
cation process.

To find out to what extend one could measure the direction
in which a group of people was moving (subquestion 3),
the activities walking left to right, walking right to left,
walking forward and walking backwards were included in
the research. By looking at the confusion matrices created
in the classification process, it was possible to answer the
question.

5. METHODOLOGY
For the analysis of the data the channel state matrices
needed to be extracted from the packets that arrived at
the receivers. This was done using the CSI tool released
by Halperin et al. in 2011 [8]. This tool has been used in
numerous research regarding activity classification using
CSI [1, 4, 6, 20] and turned out to be a working software
with extensive documentation.

The CSI was processed an classified using MATLAB [17].
MATLAB was used to train and test two classifiers: de-
cision tree and support vector machine. These classifiers
showed good results in previous research by Bagave [1] and
Wang et al. [19] where they were used for single person ac-
tivity recognition.

To find out what classifier had the highest performance
when identifying the activity of a group of people (sub-
question 4), the performances of the classifiers were com-
pared in MATLAB. The performances were calculated us-
ing the confusion matrices that resulted from the classifi-
cation process. In MATLAB the F1 score and accuracy of
each classifier were calculated for every experiment session.
By comparing the calculated performances the four sub-
questions and the main research questions were answered.

5.1 CSI extraction
It was not possible to immediately use the CSI values
stored in the .dat files that were created by the third party
CSI tool. The files first needed to be processed using meth-
ods described on the website of the CSI tool [7]. To be able
to get all the channel state matrices stored in a .dat file,
the following method was called in MATLAB [17]:

read_bf_file(’name_of_csi_trace_file.dat’).

The variable created using this method, csi_trace, equalled
a 1x302 cell array of which the first fifty entries were struc-
tured arrays. These structs contained the CSI data on the
received packages for all the fifty frames used per trial of
an activity. The remaining 252 cells that were created
by the CSI tool contained no useful information and were
therefore removed. One of the entries in the csi_trace

file was inspected using the following code:

csi_entry = csi_trace{1}.

The value stored in csi_entry equalled a structured array
with entries as can be seen in Figure 7.

In this entry the channel state matrix of the frame that
was being inspected was stored with the label ’csi’. How-
ever, the CSI values in the matrix were normalized to an
internal reference of Intel and needed to be converted to
absolute units. This was done using the following code:
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Figure 7. The data stored on a package received
by the receiver.

csi = abs(get_scaled_csi(csi_entry))

The csi variable obtained with this method was a 3x3x30
matrix that represented the MIMO channel state for this
frame with positive values. The values of these CSI ma-
trices were used to calculate the features.

5.2 Data preprocessing and cross validation
In the data preprocessing phase of the research, the chan-
nel state matrices were used to calculate the features and
compile tables that could serve as data sets for the classi-
fiers. The following time domain features were selected for
this research: the mean, the kurtosis, the standard devi-
ation, the maximum, the minimum, the variance and the
median. These features were calculated for every receiver
antenna, transmitter antenna and subcarrier combination
over the fifty frames that were collected for every trial.
So, for every trial there were 3 * 3 * 30 =270 entries of
which the features were calculated. To be able to reference
each of these 270 instances back to one trial, every trial
obtained a unique ID.

During the creation of these tables five-folds cross valida-
tion was applied by creating five separate tables with equal
amounts of data. For every activity, the trials were ran-
domly divided over the five tables. For every experiment
session, a separate set of tables was created containing the
data with the features that were used to train the classi-
fiers.

The result of the preprocessing were five tables per exper-
iment session, with variables as represented in Table 2. In
these tables all the unique combinations of Rx, Tx, Sub-
carriers and Nodes had their own row.

5.3 Data classification
For the classification of the data the MATLAB templates
were used for the support vector machine and the deci-
sion tree classifiers. The parameters were kept at default
values. The classification process was ran on a Lenovo
Thinkpad T460s with an Intel Core i5 - 6200U proces-
sor [18]. Because the high complexity of SVM and a large
data set, it took very long for the laptop to train the SVM
in a short time. Therefore, it was decided to train the clas-
sifiers with one of training and testing set combinations
for each experiment session. Furthermore, the classifiers
were trained with 10 trials of the total number of 50 tri-
als collected in the data collection process. When these
trials were divided over the five tables, two trials per ac-
tivity per table remained. After the training and testing

of the classifiers, confusion matrices were produced by the
MATLAB script. These confusion matrices can be found
in Section B.

5.4 Performance calculation
The performances of the classifiers was represented by the
F1 score and the accuracy of the confusion matrices that
resulted from the testing phase of the classifiers. The F1

score used the precision and recall of a confusion matrix
and provided a balanced average of the two with a value
between 0 and 1. To optimize the performance, the highest
possible F1 score should be achieved. The F1 score was
calculated using the following formula [15]:

F1 = 2× precision× recall
precision+ recall

The accuracy of the classifiers considers the true positives
and negatives and the false positives and negatives to ob-
tain a score between 0 and 1. The accuracy was repre-
sented by the following formula:

Accuracy =
tp+ tn

tp+ tn+ fp+ fn

To calculate the F1 scores and accuracies for the differ-
ent classifiers for each experiment session, firstly the true
positives, true negatives, false positives, false negatives,
accuracy, precision, recall and F1 score were calculated
for each of the individual activity classes. For the overall
F1 score and accuracy of an experiment session, the mean
of the F1 scores and accuracies of the individual classes
were calculated.

6. RESULTS AND DISCUSSION
The training and testing of both the SVM and DT clas-
sifiers with a data set consisting of 10 trials per activity
class resulted in the accuracies displayed in Table 3 and
the F1 scores displayed Table 4. The graphs displaying
the F1 score and accuracy per classifier, per day and per
percentage and the confusion matrices on which these per-
formances are based can be found in appendix A and B,
respectively. In the confusion matrices one could see that
the different directions of walking could be distinguished
from each other.

Overall the accuracy of an experiment session was above
80%, but almost all the F1 scores were below 0.70. Which
meant that the balance between the precision and recall
of the classifiers was not optimal. The low F1 scores could
be explained by extreme values in the precision and re-
call. These extreme values in precision and recall could
occur because there were 2 trials per activity in the testing
dataset. This made the impact of one wrongly classified
trial very big on the precision or recall.

It was expected that the accuracy of the classifiers would
increase if the percentage of the group performing the ac-
tivity would increase as well. This was partly visible in the
results. On day one the accuracy and F1 score of the clas-
sifiers increased with the percentage, like expected, how-
ever on day three, one could see that the accuracy of DT
as well as SVM were higher when 75% of the group per-
formed the same activity then when 100% of the group
performed the same activity. This could be explained by
the fact that every session of the experiment was executed
by a different group of participants. It could be the case
that the group with the percentage of 75% performed ev-
ery trial of the activities in almost exactly the same way,
where the group of 100% had a little variance in the way
they performed the distinct trials of an activity. We did
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Table 2. Table structure of the tables containing the training features
Label Trial Node Rx Tx Sub carrier Features...
Activity
Label

The trial ID Receiving
node

Receiver
antenna

Transmitter
antenna

Subcarrier
used

One column for each of the
features

Table 3. Accuracies of the classifiers for every combination of number of nodes and percentages
Percentage\Nodes 1 2 3

SVM DT SVM DT SVM DT
50 0.8272 0.9012 0.8519 0.8889 0.8519 0.9136
75 0.8889 0.9383 0.8272 0.8889 0.8642 0.9877

100 0.9383 0.9506 0.8889 0.9383 0.8765 0.9259

Table 4. F1 scores of the classifiers for every combination of number of nodes and percentages
Percentage\Nodes 1 2 3

SVM DT SVM DT SVM DT
50 0.1429 0.4778 0.179 0.4704 0.1983 0.6074
75 0.4196 0.6889 0.1166 0.4148 0.2531 0.9407

100 0.637 0.7333 0.4198 0.7 0.3333 0.6185

not run a test experiment to check whether the accuracy
achieved by one participant group could be compared to
another participant group. Another cause could be that
the number of trials that were useds for the training of
the classifiers was too little to see a clear influence in the
performances for the classifiers.

The influence of the number of nodes on the performance
of the classifiers was also expected to be higher, because
data from more different angles would give the classifiers
more information to work with and, thus, the possibility
for higher performances. This influence being very minor,
could have been caused by the amount of trials per class,
as more data could potentially get better results. Fur-
thermore, the different composition of all the participant
groups could also be a cause of this, like for the influence
of the percentage.

In general the decision tree had a higher accuracy and F1

score than the support vector machine and thus better
results. Furthermore, the support vector machine algo-
rithm had a very high complexity, which made it take
hours to train the classification model, where the decision
tree would take less than a minute. The support vec-
tor machine might have been outperformed by decision
tree, because SVMs require careful parameter selection as
stated by Caruana et al. [3], and in this research these
parameters were kept at their default values.

7. CONCLUSION AND FUTURE WORK
The main research question addressed in this research was:
To what extend can one recognize what activity the biggest
part of a group of people is performing using channel state
information? To answer the main question of this paper,
firstly the subquestions are answered.

The first subquestion was: What is the correlation be-
tween the amount of receivers and the performance of the
classifiers? By looking at Tables 3 and 4, one can deduce
that the amount of nodes used for the experiments, does
not explicitly influence the accuracy or the F1 score of the
classifiers. There appears to be no clear relation between
the amount of nodes and the performance of the classifiers,
however, no conclusions can be drawn for this subquestion
from the results of this research, as the amount of data
used in this research was not enough. More research is
necessary in order to get more evident results.

The second subquestion was: What is the effect of different
percentages of the group performing the same activity on
the performance of the classifiers? By analyzing Tables 3
and 4 it becomes clear that the F1 score and the accu-
racy of a session increases with the percentage of a group
performing the same activity. However, there are some
exceptions, for example, On day 3, the session where 75%
of the people performed the main activity, the accuracy
and F1 score were higher than the sessions where 50% and
100% of the people were performing the main activity.

The third subquestion was: To what extend can we mea-
sure the direction in which a group of people is moving?
This question can be answered by looking at the confu-
sion matrices in Section B. From these confusion matrices
one can deduce that it is indeed possible for the classifier
to identify in which direction the group of participants is
moving. However, the amount of data that was collected
in this research was not enough to get a very clear distinc-
tion, but it appears to be possible.

The fourth subquestion was: What classifier has the high-
est performance when identifying the activity of the group?
The classifier with the highest performance is clearly the
decision tree algorithm. It has a higher F1 score and accu-
racy than SVM in all of the test scenarios. Furthermore,
the calculation time of the decision tree classifier was small
in comparison to the one of support vector machine, which
makes it even more preferred.

To conclude, it is possible to recognize activities performed
by the biggest part of a group of people. The decision tree
classifier gives good results and short computation time
and can therefore be used for group activity recognition.
It is possible to recognize the activity performed by only
50% of a group of people and it is possible to recognize the
direction in which a group of people is moving. Regarding
the number of nodes, no clear conclusion can be drawn,
however, based on the current results there appears to be
no clear relation between the number of nodes and the
performance of the classifier.

For future research, researchers could repeat this research
with the use of cross validation and more data in the classi-
fication process to see whether the performances would in-
crease. Furthermore, the data could be used to train more
machine learning algorithms and deep learning algorithms
to compare their performances and to test which one works
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the best for group activity recognition. Additionally, re-
searchers could look deeper into the identification of the
direction of a group of people with more data and even
smaller percentages could be investigated regarding activ-
ity recognition to see the effects on the performance of the
classifiers.
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APPENDIX
A. PERFORMANCES
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Figure 8. Graph showing performance of the clas-
sifiers on Day 1 with 50% of the participants
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Figure 9. Graph showing performance of the clas-
sifiers on Day 1 with 75% of the participants
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Figure 10. Graph showing performance of the clas-
sifiers on Day 1 with 100% of the participants
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Figure 11. Graph showing performance of the clas-
sifiers on Day 2 with 50% of the participants
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Figure 12. Graph showing performance of the clas-
sifiers on Day 2 with 75% of the participants
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Figure 13. Graph showing performance of the clas-
sifiers on Day 2 with 100% of the participants
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Figure 14. Graph showing performance of the clas-
sifiers on Day 3 with 50% of the participants
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Figure 15. Graph showing performance of the clas-
sifiers on Day 3 with 75% of the participants
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Figure 16. Graph showing performance of the clas-
sifiers on Day 3 with 100% of the participants
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B. CONFUSION MATRICES

Table 5. Confusion Matrix SVM Day 1 50%
True\Predicted Falling Waving Sitting Clapping Jumping Walk R-L Walk L-R Walk B-F Walk F-B
Falling 0 1 1 0 0 0 0 0 0
Waving 0 0 0 1 0 1 0 0 0
Sitting 0 1 1 0 0 0 0 0 0
Clapping 0 1 0 1 0 0 0 0 0
Jumping 0 1 1 0 0 0 0 0 0
Walking RigH-Left 0 0 0 0 0 0 0 0 2
Walking Left-Right 0 0 1 0 0 0 0 0 1
Walking Back-Forw 0 0 1 0 0 0 0 0 1
Walking Forw-Back 0 0 0 0 0 0 0 0 2

Table 6. Confusion Matrix DT Day 1 50%
True\Predicted Falling Waving Sitting Clapping Jumping Walk R-L Walk L-R Walk B-F Walk F-B
Falling 1 0 1 0 0 0 0 0 0
Waving 1 0 0 1 0 0 0 0 0
Sitting 0 0 1 0 1 0 0 0 0
Clapping 0 0 0 2 0 0 0 0 0
Jumping 0 0 0 0 2 0 0 0 0
Walking Right-Left 0 0 0 0 1 0 1 0 0
Walking Left-Right 0 0 0 0 0 0 1 0 1
Walking Back-Forw 0 0 0 0 0 0 0 1 1
Walking Forw-Back 0 0 0 0 0 0 0 0 2

Table 7. Confusion Matrix SVM Day 1 75%
True\Predicted Falling Waving Sitting Clapping Jumping Walk R-L Walk L-R Walk B-F Walk F-B
Falling 0 0 0 1 1 0 0 0 0
Waving 0 1 0 1 0 0 0 0 0
Sitting 0 0 1 1 0 0 0 0 0
Clapping 0 0 0 2 0 0 0 0 0
Jumping 0 0 0 0 1 0 0 1 0
Walking Right-Left 0 0 0 0 0 0 1 1 0
Walking Left-Right 0 0 0 0 0 0 2 0 0
Walking Back-Forw 0 0 0 0 0 0 0 2 0
Walking Forw-Back 0 0 0 0 0 1 0 1 0

Table 8. Confusion Matrix DT Day 1 75%
True\Predicted Falling Waving Sitting Clapping Jumping Walk R-L Walk L-R Walk B-F Walk F-B
Falling 2 0 0 0 0 0 0 0 0
Waving 0 2 0 0 0 0 0 0 0
Sitting 0 0 2 0 0 0 0 0 0
Clapping 0 0 0 2 0 0 0 0 0
Jumping 0 0 0 0 1 0 0 1 0
Walking Right-Left 0 0 0 0 1 0 1 0 0
Walking Left-Right 0 0 0 0 0 0 2 0 0
Walking Back-Forw 0 0 0 0 0 0 0 1 1
Walking Forw-Back 0 0 0 0 1 0 0 0 1
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Table 9. Confusion Matrix SVM Day 1 100%
True\Predicted Falling Waving Sitting Clapping Jumping Walk R-L Walk L-R Walk B-F Walk F-B
Falling 0 0 0 0 2 0 0 0 0
Waving 0 2 0 0 0 0 0 0 0
Sitting 0 1 1 0 0 0 0 0 0
Clapping 0 0 0 2 0 0 0 0 0
Jumping 0 0 0 0 2 0 0 0 0
Walking Right-Left 0 0 0 0 0 2 0 0 0
Walking Left-Right 0 0 0 0 0 0 2 0 0
Walking Back-Forw 0 0 0 0 0 0 1 0 1
Walking Forw-Back 0 0 0 0 0 0 0 0 2

Table 10. Confusion Matrix DT Day 1 100%
True\Predicted Falling Waving Sitting Clapping Jumping Walk R-L Walk L-R Walk B-F Walk F-B
Falling 2 0 0 0 0 0 0 0 0
Waving 0 2 0 0 0 0 0 0 0
Sitting 0 0 2 0 0 0 0 0 0
Clapping 0 0 0 2 0 0 0 0 0
Jumping 0 0 0 0 2 0 0 0 0
Walking Right-Left 0 0 0 0 0 1 1 0 0
Walking Left-Right 0 0 0 0 0 0 2 0 0
Walking Back-Forw 0 0 0 0 0 1 0 0 1
Walking Forw-Back 1 0 0 0 0 0 0 0 1

Table 11. Confusion Matrix SVM Day 2 50%
True\Predicted Falling Waving Sitting Clapping Jumping Walk R-L Walk L-R Walk B-F Walk F-B
Falling 0 0 1 0 0 0 0 0 1
Waving 0 0 0 0 1 0 0 0 1
Sitting 0 0 2 0 0 0 0 0 0
Clapping 0 0 2 0 0 0 0 0 0
Jumping 0 0 0 0 2 0 0 0 0
Walking Right-Left 0 0 1 0 0 0 0 0 1
Walking Left-Right 0 0 0 0 1 0 0 0 1
Walking Back-Forw 0 0 0 1 0 0 0 0 1
Walking Forw-Back 0 0 0 0 0 0 0 0 2

Table 12. Confusion Matrix DT Day 2 50%
True\Predicted Falling Waving Sitting Clapping Jumping Walk R-L Walk L-R Walk B-F Walk F-B
Falling 1 0 0 0 0 0 0 1 0
Waving 0 1 0 1 0 0 0 0 0
Sitting 0 0 2 0 0 0 0 0 0
Clapping 0 0 0 2 0 0 0 0 0
Jumping 0 0 1 0 1 0 0 0 0
Walking Right-Left 0 0 0 0 0 0 2 0 0
Walking Left-Right 0 0 0 0 0 1 1 0 0
Walking Back-Forw 1 0 0 0 0 0 0 0 1
Walking Forw-Back 1 0 0 0 0 0 0 0 1

Table 13. Confusion Matrix SVM Day 2 75%
True\Predicted Falling Waving Sitting Clapping Jumping Walk R-L Walk L-R Walk B-F Walk F-B
Falling 0 0 0 0 1 0 0 0 1
Waving 0 1 0 1 0 0 0 0 0
Sitting 0 1 0 1 0 0 0 0 0
Clapping 0 1 0 1 0 0 0 0 0
Jumping 0 0 0 2 0 0 0 0 0
Walking Right-Left 0 0 0 0 0 0 0 0 2
Walking Left-Right 0 0 0 0 0 0 0 0 2
Walking Back-Forw 0 0 0 0 0 0 0 0 2
Walking Forw-Back 0 0 0 0 0 0 0 0 2
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Table 14. Confusin Matrix DT Day 2 75%
True\Predicted Falling Waving Sitting Clapping Jumping Walk R-L Walk L-R Walk B-F Walk F-B
Falling 0 0 0 1 0 0 1 0 0
Waving 0 2 0 0 0 0 0 0 0
Sitting 0 1 0 1 0 0 0 0 0
Clapping 0 1 0 1 0 0 0 0 0
Jumping 0 0 0 1 1 0 0 0 0
Walking Right-Left 0 0 0 0 0 2 0 0 0
Walking Left-Right 0 0 0 0 0 0 2 0 0
Walking Back-Forw 0 0 0 0 0 0 0 0 2
Walking Forw-Back 0 0 0 0 0 0 1 0 1

Table 15. Confusion Matrix SVM Day 2 100%
True\Predicted Falling Waving Sitting Clapping Jumping Walk R-L Walk L-R Walk B-F Walk F-B
Falling 2 0 0 0 0 0 0 0 0
Waving 0 0 0 0 2 0 0 0 0
Sitting 0 0 2 0 0 0 0 0 0
Clapping 0 0 1 1 0 0 0 0 0
Jumping 1 0 0 0 1 0 0 0 0
Walking Right-Left 0 0 0 0 0 0 0 2 0
Walking Left-Right 0 0 0 0 0 0 0 2 0
Walking Back-Forw 0 0 0 0 0 0 0 2 0
Walking Forw-Back 0 0 0 0 0 0 0 1 1

Table 16. Confusion Matrix DT Day 2 100%
True\Predicted Falling Waving Sitting Clapping Jumping Walk R-L Walk L-R Walk B-F Walk F-B
Falling 2 0 0 0 0 0 0 0 0
Waving 0 2 0 0 0 0 0 0 0
Sitting 0 0 2 0 0 0 0 0 0
Clapping 0 0 0 2 0 0 0 0 0
Jumping 0 0 0 0 2 0 0 0 0
Walking Right-Left 0 0 0 0 0 1 0 1 0
Walking Left-Right 0 0 0 0 0 1 0 0 1
Walking Back-Forw 0 0 0 0 0 0 0 1 1
Walking Forw-Back 0 0 0 0 0 0 0 1 1

Table 17. Confusion Matrix SVM Day 3 50%
True\Predicted Falling Waving Sitting Clapping Jumping Walk R-L Walk L-R Walk B-F Walk F-B
Falling 0 0 0 0 0 0 0 0 2
Waving 0 2 0 0 0 0 0 0 0
Sitting 0 1 0 0 0 0 0 0 1
Clapping 0 0 1 0 1 0 0 0 0
Jumping 0 0 0 0 2 0 0 0 0
Walking Right-Left 0 0 0 0 2 0 0 0 0
Walking Left-Right 0 0 0 0 0 0 0 1 1
Walking Back-Forw 0 0 0 0 1 0 0 0 1
Walking Forw-Back 0 0 0 0 0 0 0 0 2

Table 18. Confusion Matrix DT Day 3 50%
True\Predicted Falling Waving Sitting Clapping Jumping Walk R-L Walk L-R Walk B-F Walk F-B
Falling 0 0 0 0 0 0 0 0 2
Waving 0 2 0 0 0 0 0 0 0
Sitting 0 1 1 0 0 0 0 0 0
Clapping 0 0 0 2 0 0 0 0 0
Jumping 0 0 0 0 2 0 0 0 0
Walking Right-Left 1 0 0 0 0 1 0 0 0
Walking Left-Right 0 0 0 0 0 0 1 1 0
Walking Back-Forw 0 0 0 0 0 0 0 1 1
Walking Forw-Back 0 0 1 0 0 0 0 0 1
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Table 19. Confusion Matrix SVM Day 3 75%
True\Predicted Falling Waving Sitting Clapping Jumping Walk R-L Walk L-R Walk B-F Walk F-B
Falling 0 1 0 0 0 0 1 0 0
Waving 0 2 0 0 0 0 0 0 0
Sitting 0 1 0 1 0 0 0 0 0
Clapping 0 0 1 1 0 0 0 0 0
Jumping 0 0 0 0 0 0 2 0 0
Walking Right-Left 0 0 0 0 0 0 2 0 0
Walking Left-Right 0 0 0 0 0 0 2 0 0
Walking Back-Forw 0 0 0 0 0 0 0 0 2
Walking Forw-Back 0 0 0 0 0 0 0 0 2

Table 20. Confusion Matrix DT Day 3 75%
True\Predicted Falling Waving Sitting Clapping Jumping Walk R-L Walk L-R Walk B-F Walk F-B
Falling 2 0 0 0 0 0 0 0 0
Waving 0 2 0 0 0 0 0 0 0
Sitting 0 0 2 0 0 0 0 0 0
Clapping 0 0 0 2 0 0 0 0 0
Jumping 0 0 0 0 2 0 0 0 0
Walking Right-Left 0 0 0 0 0 1 1 0 0
Walking Left-Right 0 0 0 0 0 0 2 0 0
Walking Back-Forw 0 0 0 0 0 0 0 2 0
Walking Forw-Back 0 0 0 0 0 0 0 0 2

Table 21. Confusion Matrix SVM Day 3 100%
True\Predicted Falling Waving Sitting Clapping Jumping Walk R-L Walk L-R Walk B-F Walk F-B
Falling 0 0 0 0 0 0 2 0 0
Waving 0 0 2 0 0 0 0 0 0
Sitting 0 0 1 1 0 0 0 0 0
Clapping 0 0 1 1 0 0 0 0 0
Jumping 0 0 0 0 2 0 0 0 0
Walking Right-Left 0 0 0 0 0 0 2 0 0
Walking Left-Right 0 0 0 0 0 0 2 0 0
Walking Back-Forw 0 0 0 0 0 0 0 0 2
Walking Forw-Back 0 0 0 0 0 0 0 0 2

Table 22. Confusion Matrix DT Day 3 100%
True\Predicted Falling Waving Sitting Clapping Jumping Walk R-L Walk L-R Walk B-F Walk F-B
Falling 0 0 0 0 0 1 1 0 0
Waving 0 2 0 0 0 0 0 0 0
Sitting 0 0 2 0 0 0 0 0 0
Clapping 0 0 0 2 0 0 0 0 0
Jumping 0 0 0 0 2 0 0 0 0
Walking Right-Left 0 0 0 0 0 2 0 0 0
Walking Left-Right 0 0 0 0 0 1 1 0 0
Walking Back-Forw 0 0 0 0 0 0 0 0 2
Walking Forw-Back 0 0 0 0 0 0 0 1 1
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