Fingerprint-Based Automated Rule Generation for
DDoS Mitigation using the Berkeley Packet Filter

Dirk Koelewijn
University of Twente
P.O. Box 217, 7500AE Enschede
The Netherlands

d.koelewijn@student.utwente.nl

ABSTRACT

Distributed Denial of Service (DDoS) attacks have become
more and more present in our everyday society, both in-
creasing significantly in numbers and intensity. Although
more advanced methods for DDoS mitigation are emerg-
ing, there exists nearly no research on kernel level DDoS
mitigation. Therefore, we designed a method to automat-
ically generate extended Berkeley Packet Filter programs
for DDoS mitigation, based on DDoS attack fingerprints
from DDoSDB.org. We show that existing work only fo-
cuses on the performance of eBPF and that no research ex-
ist on DDoS mitigation using eBPF or similar techniques.
Furthermore, we present a method to convert fingerprints
to eBPF rules, as well as a method to reduce the size of
fingerprints while maintaining as much precision as pos-
sible. Finally, we show that our method has an overall
accuracy of over 95%, a true positive rate of at least 93%
and a true negative rate for over 98% on more than 90%
of the simulated attacks.

Keywords

Fingerprint-based DDoS mitigation, automated rule gen-
eration, extended Berkeley Packet Filter

1. INTRODUCTION

Distributed Denial of Service (DDoS) attacks have become
more and more present in our everyday society. These
attacks, in which targets are flooded by large amounts
of internet traffic, have increased in numbers by 16% be-
tween the summer of 2017 and the summer of 2018 alone
[2]. Besides that, the intensity in terms of maximum
bandwidth has also increased: the largest observed at-
tack had a strength of over 1.3 Tbps and attacks over 300
Gbps occur more frequently [2]. Content Delivery Net-
work provider Akamai’s latest report shows a maximum
bandwidth growth of 9% per quarter, making the growth
remarkably stable: the maximal bandwidth of DDoS at-
tacks is now expected to double every two years [1].

To aid in the ongoing efforts to mitigate DDoS attacks,
dr. Jair Santanna from the University of Twente launched
DDoSDB [18]. This platform stores so-called fingerprints
containing an analysis of many aspects of DDoS attacks.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy oth-
erwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

30™ Twente Student Conference on IT Febr. 1°¢, 2019, Enschede, The
Netherlands.

Copyright 2019, University of Twente, Faculty of Electrical Engineer-
ing, Mathematics and Computer Science.

Furthermore, the platform allows users to download attack
traffic that can be used to replay attacks. Using these
fingerprints it is possible to automatically generate rules
for DDoS mitigation systems.

A review from Osanaiye, Choo and Dlodlo shows that a lot
of research on DDoS mitigation methods exists, all target-
ing different detection techniques, deployment locations
and attack types [17]. In the past years, technologies like
Border Gateway Protocol (BGP) Flowspec [8], several In-
trusion Detection Systems [3, 15, 6] and Web Application
Filters [20, 19] have emerged. However, these technologies
only target routers or are functioning on top of operating
systems, leaving low-level functionality of operating sys-
tems unused for DDoS mitigation.

To fill this gap, this research focuses on the use of the
extended version of the Berkeley Packet Filter (eBPF), a
technology that allows for filtering packets in the lowest
layer of operating systems: the kernel [16]. Considering
that filtering packets in the kernel could have significant
performance advantages [5], the use of eBPF in addition
to the current technologies could be highly valuable in the
ongoing battle against DDoS attacks.

The goal of this paper is therefore to design a method for
automated eBPF generation for DDoS mitigation based
on attack fingerprints from DDoSDB and evaluate its ac-
curacy. To achieve this goal, we defined the following re-
search questions:

RQ1 What methods currently exist that use eBPF or sim-
ilar techniques for DDoS mitigation or for packet fil-
tering in general?

RQ2 What methods can be used to automatically gener-
ate eBPF rules for DDoS mitigation based on DDoSDB
attack fingerprints?

RQ3 What is the accuracy of the designed generator of
eBPF rules for DDoS mitigation based on DDoSDB
attack fingerprints?

To answer the first question, we investigate current ap-
plications of eBPF for packet filtering, as well as existing
research on similar DDoS mitigation techniques. Next,
several possible methods are combined with the require-
ments and restrictions of eBPF, in order to design an auto-
mated eBPF generation method based on DDoSDB attack
fingerprints. Finally, our design is be validated and eval-
uated by simulating corresponding attacks to answer the
last question.

This paper starts with an elaboration on the existing meth-
ods for DDoS mitigation and discusses the added value of
using eBPF in section 2. Next, we discuss the require-
ments for our designed method in section 3, combining

the requirements for DDoS mitigation systems and the re-
quirements for e BPF. After this, we present the designed
method in section 4, which is evaluated and validated in
section 5. Finally, this is followed by the conclusions, fu-
ture work and acknowledgements in sections 6 and 7.

2. EXISTING WORK

In order to answer the first research question, What meth-
ods currently exist that use eBPF or similar techniques for
DDoS mitigation or for packet filtering in gemeral?, this
section will elaborate on existing work regarding eBPF
and DDoS mitigation systems or packet filtering in gen-
eral. First we will elaborate on the current usage of eBPF
for packet filtering, after which we will elaborate on similar
DDoS mitigation systems.

2.1 Packet filtering using eBPF

Although there exist many methods for fingerprint or sig-
nature based DDoS mitigation systems [14, 7, 13], there is
little to no publicly available research on methods specially
designed for DDoS mitigation using eBPF, nor on the ac-
curacy of such methods. In this subsection we therefore
discuss existing research on packet filtering using eBPF in
general.

Bertin has written a paper [4] on behalf of Content De-
livery Network provider Cloudflare on their solution for
DDoS mitigation using eBPF. In the paper, Bertin men-
tions that using eBPF has performance advantages. How-
ever, the paper does not mention any numbers about the
performance of eBPF, nor how rules are generated or the
accuracy of their rules.

The paper of Hpiland-Jgrgensen et al [9] elaborates more
on the performance of eBPF and especially its socket fil-
tering function, eXpress Data Path (XDP). According to
this paper, XDP is significantly more efficient in terms
of CPU usage than popular packet processing tool Data
Plane Development Kit (DPDK). The main reason for this
is that XDP does not need a pulling mechanism to access
the packets, as eBPF programs and with it XDP programs
are invoked for each incoming packet. In the research, it
is shown that XDP can reach the maximal capacity of the
PCI bus at 115 Gbps. The same research also elaborates
on DDoS performance: XDP could easily filter 10 Gbps of
traffic on a single core, making XDP feasible for usage in
DDoS mitigation [9].

Furthermore, Tumolo has showed in his paper that eBPF
can be over 10 times faster at filtering packets for larger
rule sets than the built-in firewall of Linux, iptables [22].
Furthermore, the latency of eBPF is always smaller than
that of iptables and is nearly not increasing as the rule set
grows.

All together, it can be concluded that research on the per-
formance of eBPF has very promising results, while no
research exists on methods specially designed for eBPF.
Given the high performance, research into methods for
DDoS mitigation using eBPF can be of great value in the
fight against DDoS attacks.

2.2 Similar DDoS mitigation systems

The earlier mentioned review of Osanaiye, Choo and Dlodlo
[17] shows that a lot of research has been done into DDoS
mitigation systems, with many deployment locations and
classification method types. The most popular deploy-
ment location is the access point, due to the ease of de-
ployment [17]. Deploying at the access point has as draw-
back that the bandwidth may already be saturated, but
does allow for application layer filtering of which research

of Karnwal [12] is an example. Likewise, deploying at the
source end or in the intermediate network allows to save
bandwidth early on [17], but access to the application layer
is impossible if the connection is encrypted.

In addition to the deployment type, two classification types
exist. The first is signature or fingerprint based detection,
which uses a known description of the attack to block it.
The advantages of this type of classification is the accuracy
in detecting known attacks, where disadvantages are main-
taining the database of known attacks and the inability to
detect unknown attacks [17]. The other classification type
is anomaly based detection, that uses machine learning
to detect any abnormal traffic. These methods are better
in detecting known attacks, but are difficult to configure
properly for accurate classification in general and do not
perform as well as signature based attacks [17].

Of all the investigated articles in the review of Osanaiye,
Choo and Dlodlo, there are none that do DDoS mitigation
in the kernel or a similar location in operating systems.
Instead, most access point mitigation systems are deployed
in the virtual machine [6, 15, 3, 8, 7, 14] that contains the
server. Except for the research mentioned before, no other
research into kernel level DDoS mitigation could be found
outside of the review as well.

All together, it can be concluded that all these researches
solely focus on the performance of eBPF, which is very
promising, and do not mention the accuracy of their meth-
ods. In addition, it can be concluded that, except for the
method of Tumolo [22], little to no details are given on
the used method itself. At last, it can be concluded that
no similar techniques to eBPF are currently being used
for DDoS mitigation or packet filtering in general. All
together, it can therefore be concluded research into the
accuracy of eBPF would be of added value.

3. REQUIREMENTS

DDoS mitigation systems aim to minimize the results of a
DDoS attack. The main requirement of a mitigation sys-
tem is therefore to maximize the amount of normal traffic
and minimize the amount of attack traffic that reaches
the destination. To achieve this, the design should not
only accurately separate attack traffic from normal traf-
fic, but also do this fast enough to prevent it from getting
congested itself. Additionally, as our designed mitigation
solution is meant to be used next to other solutions and
not as a replacement, not filtering normal traffic could be
considered extra important.

For DDoS mitigation based on DDoSDB fingerprints, we
therefore define the following requirements for the design:

e The generated eBPF rules should be capable of fil-
tering traffic on a normal computer in real-time for
speeds up to 900 Mbps, the maximum capacity of
our network setup;

e The method should only use DDoSDB fingerprints
as resources for generating the eBPF rules.

Next to the requirements for DDoS mitigation systems in
general, the usage of eBPF imposes additional require-
ments. For security reasons, eBPF rules have a maximum
length after being compiled from C to assembly of 4096 in-
structions [23]. This imposes an extra challenge, limiting
the maximum size for generated rules.

For eBPF, we therefore add the following requirement:

e The generated eBPF rules are together less than
4096 assembly instructions when compiled.

4. METHOD DESIGN

To answer the second research question, What methods can
be used to automatically generate eBPFE rules for DDoS
mitigation based on DDoSDB attack fingerprints?, this
section elaborates on the different possibilities and final
design choices for a method to automatically generate eBPF
rules out of DDoSDB attack fingerprints for DDoS miti-
gation. The method design can be split into three main
parts:

Subsection 4.1 discusses the methods to convert finger-
prints to rules. How fingerprints can be reduced to pro-
duce smaller rule sets in order to fit into eBPF rules will
be discussed in subsection 4.2, after which the conversion
of rules into eBPF rules will be discussed in subsection 4.3.

4.1 General rule generation

For every DDoS attack in DDoSDB, a JSON fingerprint
stores general properties of an attack, including the proto-
col, source Internet Protocol (IP) addresses, source ports
and destination ports. In addition to that, fingerprints can
also store protocol specific information, like the Transmis-
sion Control Protocol (TCP) flags or the value of a Domain
Name System (DNS) query. Listing 1 shows an example
of a small User Datagram Protocol (UDP) fingerprint.

Listing 1. Example UDP attack fingerprint

"start_timestamp”: 1429087320.977101,
"protocol”: "UDP”,
"file_type?”: "pcap”,
Pstart_time”: 72015—04—15 08:42:00”,
"dst_ports”: |

46608.0,

50515.0,

2579.0,

37808.0,

3587.0,

L

?duration_sec”:

"srce_ips”: |
714.134.128.1047,
714.134.172.145”

],

"src_ports”: |
32769.0

J

31.86268186569214,

}

For each property, a fingerprint includes one or more val-
ues that where common for attack packets to have. For
example, if we would use the fingerprint of listing 1, a UDP
packet from IP 14.134.128.104 with port 32769 would be
highly suspicious as both the source IP and port are in the
list, whereas a packet from 1.2.3.4 with port 5467 would
not be suspicious at all.

As can be seen from the listing, DDoSDB fingerprints do
not include any probability weights or ratios. The only
rate of suspicion that can be calculated is the number of
properties in the packet that match with values in the fin-
gerprint. Although this does not allow for a statistical
approach, this does ease the decision making for rule gen-
eration: the only decision to make is the numeric value of
this threshold, which can only be a small natural number

due to the limited amount of properties that can occur in
a fingerprint.

Listing 2 shows the relationship between a fingerprint and
the rules in a Python example. For each property that the
packet and the fingerprint share, it increases a counter if
the value in the packet is in the list of values of the fin-
gerprint. In the end, the threshold determines how many
matching properties a packet needs to be dropped.

Listing 2. Fingerprint to rule conversion
matched = 0

prop = property (keyword)
for prop in fingerprint:
if prop in packet:

if packet[prop] in fingerprint [prop]:

matched += 1

if matched >= threshold:
Drop packet

else:
Pass packet

This threshold can influence the accuracy in two ways.
Decreasing the threshold increases the chance of a random
packet matching the rule, because less properties have to
be matched. This results in an at least the same and pos-
sibly higher drop rate for both attack and normal packets.
Likewise, increasing the threshold decreases the chance
that a random packet is matched and will therefore re-
sult in an at most the same and possibly lower drop rate
for both attack and normal packets.

Please note that setting the threshold is not included in
the method. Multiple thresholds will be tested in the ver-
ification in section 5.

4.2 Fingerprint reduction

The fingerprint to rule generation method described in the
previous section works for some fingerprints, but not for
all: due to the limited size of eBPF rules, as mentioned
in section 3, not all fingerprints produce eBPF rules small
enough to be loaded. As a result of this, the size of a sig-
nificant amount of fingerprints has to be reduced in order
to fit into the maximum of 4096 instructions for eBPF.

This reducing can only be done by removing or replac-
ing values of properties, or even entire properties, until
the amount of values is below a maximum amount, Pp.qz-
This maximum amount, Pqez, is the maximum size that
a fingerprint can have in order to be loaded into eBPF
and is dependent on the efficiency of the implementation.
In practice, only the amount of values for the IP address,
source port and destination port have to be reduced, be-
cause these are the only properties that can have large
amounts of values.

In order to meet our requirements defined in section 3,
a reduction method is needed that minimally impacts the
accuracy of a fingerprint. Considering that the fingerprints
do not contain the likelihood for a value to be present in
an attack, the statistically best reduction can be simplified
to satisfying the following two requirements:

e The chance that a random packet matches the re-
duced fingerprint should be as small as possible;

e The chance that a DDoS-related packet that origi-
nally matched the fingerprint matches the reduced
fingerprint should as high as possible;

However, fingerprints sizes vary from less than 10 values
to over 500,000 values for only the IP address. The choice
for the statistically best reduction is therefore challenging:
With 2'6 ports, 232 TP (version 4) addresses and many
more aggregated groups to choose from and up to Phax
choices to make, the number of possible reductions is huge.
This can make it very hard to calculate or guess the best
possible reduction in short period of time. Therefore, a
reduction method should have an amount of possible con-
figurations small enough to find the best possible configu-
ration in a reasonable amount of time.

In section 4.2.1, we will elaborate on a suitable reduction
method. After that, we will elaborate on how the statisti-
cally best configuration can be found in section 4.2.2.

4.2.1 Reduction method

Considering that there is no likelihood given for a value of
a property, there would be no statistical basis to determine
which values can be deleted best: all values should there-
fore be treated as equally likely to occur. Furthermore,
deleting values in a fingerprint with many times as values
as allowed for P,,.. can drastically decrease the amount
of attack traffic being dropped in various cases, although
this depends on the value for the threshold discussed in
section 4.1.

The only other way to reduce the amount of values is to ag-
gregate values into groups. This guarantees that all pack-
ets that would have matched the fingerprint originally still
match. The disadvantage of aggregation is that it can also
increase the amount of normal packets being matched, but
unlike with deleting values, it is possible to determine a
configuration that is statistically best. This will be dis-
cussed in section 4.2.2. Therefore, the reduction method
will be based on aggregation.

Aggregating can be done in two main ways: by distance
and by bit shift. In the first case, all values that are less
than the specified distance apart will be aggregated in
the a (min, mazx) group, which will match all values for
which value € [min, maz]. Table 1 shows an example dis-
tance aggregation. In practice, this means that a group
still needs two values, namely the minimum and maxi-
mum value, making it only reduce the amount of values
for groups larger than two.

Distance Values

0 {3,4,6, 9}
1 {(3, 4), 6, 9}
2 {(3 ,6), 9}

3 {3, 9}

Table 1. Example distance aggregation

Next to distance, aggregation can also be done by bit shift.
In this case, the last n bits are chopped from the value,
after which values are aggregated. Groups that only dif-
fer by the last bit can recursively be merged as well by
chopping the last bit off. An advantage of this method is
that a group of values now only needs one value, namely
the remaining bits, meaning that less aggregation can be
required. In addition, bit shifting has only a small possible
amount of configurations, because a property only has a
limited amount of bits. The disadvantage is that this re-
duction can include relatively more value in groups. Table
2 shows an example aggregation by bit shift.

Considering that bit shifting requires less values and has
less possible configurations allowing for an easier choice,
the method we use is bit shifting. Each property p in the

Shift (Bits, shift)

Normal _ {(1000, 0), (1010, 0), (1011, 0), (1100, 0)}
(1000, 0), (101, 1), (1100, 0)}

(10, 2), (110, 1)}

(1, 3)}

Table 2. Example bit shift aggregation

—
A e A |

set of properties P now has to be aggregated in a way that
for the value count v, and the maximum amount of values
Praez holds that:

P
> vp < Pras (1)
p

Given that both the source and destination port have 16
bits and the IP address has 32 bits and are the only proper-
ties that will be reduced, this gives an amount 16x16%32 =
8192 possible configurations. In section 4.2.2, we will dis-
cuss how we can efficiently choose the most optimal con-
figuration.

4.2.2 Configuration

Considering that aggregation guarantees that all originally
matched packets still match, we can define our precision
as the chance that a random packet not matches the fin-
gerprint.

If P is the set of properties, n, is the number of values
that match property p and NN, is the total number of pos-
sibilities for p:

P
Np.
N,
P p

precision = 1 —

(2)

The best reduction can now be defined as the reduction
that leaves the highest precision. Or, when expressed in
the amount of distinct packets M that could match the
fingerprint:

M:an

P

P
. 1
precision =1 — (H N, * M)
P
As N, is constant for each fingerprint instance as long as
no properties are deleted, using the reduction with the
lowest M will also have the highest precision. As the IP
address ip, source port src and destination port dst are
the only properties that can contain multiple values, M
can be rewritten as:

M = Nip * Nsrc * Ndst (4)

In order to find the optimal reduction, a bit shift should
be found for each property so that equation (1) holds and
that the value of M and with it the precision are max-
imal. First, we calculate the minimal bit shift for each
property so that the amount of values for that property
are below P,q, with a binary search like algorithm. After
that, all larger shifts will be tried for each individual prop-
erty, calculating both the amount of values as the amount
of values that would possibly match.

Finally, the method will search for the combination with
the highest precision for which equation (1) also holds.
This combination can easily be found using brute force
considering that equation (1) and (4) have to be calcu-
lated at most 8192 times, a calculation of only millisec-
onds. More efficient ways of finding this combination may
be possible, but this is sufficient to answer the second re-
search question.

4.3 Converting rules to eBPF

To convert a set of rules into eBPF, two things are needed:
A method to generate a C program out of rules and a
method to convert the C program to eBPF. For the last
part we used IOVisor’s Berkeley Compiler Collection (BCC)
[11], that allows to compile and load eBPF rules into the
kernel from Python.

Generating a C program is slightly more complicated, be-
cause packets have to be decomposed manually. In ad-
dition, the generated program should use as few code as
possible and conform to eBPF’s strict security checks for
actions that could crash the kernel. In order to achieve
this, a tool was implemented in Python that inserts code
modules for decomposition based on the protocols it de-
pends on and converts the rules itself to C code. In the
current implementation, the value of Py, is around one
thousand.

Considering that efficiency is only a minor concern in this
research, this tool will not be further elaborated on in this
paper. The tool will be freely available after the publica-
tion of this paper on github.com/DirkKoelewijn/research-
project. Due to the limited time scope of this research
and the fact that packages have to be decomposed manu-
ally, the support for attack protocols is currently limited
to UDP and TCP.

To answer our second research question, What methods can
be used to automatically generate eBPF rules for DDoS

mitigation based on DDoSDB attack fingerprints?, we showed

that DDoS attack fingerprints contain no information on
value likelihood, making the amount of matching proper-
ties the only, simple indicator of whether a packet belongs
to the attack that can be easily compared to a threshold
with a limited amount of options. Furthermore, we showed
that fingerprints may have to be reduced and that aggre-
gation by bit shifting is favorable due to the big reduction
of values and relatively low amount of possible configura-
tions. In addition, we showed that for this reduction, the
most optimal configuration can be found using basic prob-
ability theory and in a reasonable period of time. Last, we
discussed to conversion of rules into eBPF. We discussed
various design options and conclude that the presented
design is expected to have the best results.

5. VERIFICATION

To verify whether the requirements defined in section 3
are met and to answer the last research question, What
is the accuracy of the design for automatically generated
eBPF for DDoS mitigation based on DDoSDB attack fin-
gerprints?, this section elaborates on both the verification
method and the results.

5.1 Verification method

The most obvious method for verification is to simulate
attacks to a computer that runs the correspondingly gen-
erated eBPF rules. In addition to just manually reading
attack files, simulations allow to check test real-time filter-
ing and to check whether generated rules can be compiled
to the limited amount of instructions. Therefore, simula-

tions will be used to verify the designed method.

The next subsections elaborate on the setup for the simu-
lations, which attacks will be simulated and what will be
used as normal traffic. In addition, the method to label
traffic packets and how attacks will be replayed will be dis-
cussed. Finally, the verification metrics will be discussed.

5.1.1 Setup

The simulations will be performed on a closed network in
which only two computers, an attacker and a defender,
are connected via a router. Both computers are normal
consumer computers that are connected to the router via
Ethernet cables. All components in the network have a
theoretical maximum capacity of at least 1 Gbps, but in
practice the maximum speed that could be reached when
replaying the attacks was often between 900 and 950 Mbps.

5.1.2 Attacks

Simulations are done for 129 UDP attacks and 156 TCP
attacks, 285 attacks in total. As mentioned before in sec-
tion 4.3, UDP and TCP are the only attack protocols that
are currently supported. The value count of the finger-
prints corresponding to these attacks ranges from less than
ten to nearly 500,000 values, of which about half requires
reduction. It should be noted that this are not all UDP
and TCP attacks from DDoSDB: slightly more than 50
TCP attack fingerprints where removed after it was con-
cluded that the specified TCP flags were a clear mismatch
with the corresponding attack, probably due to a bug in
the fingerprint generation.

5.1.3 Normal traffic

To test the influence of the method on normal internet
traffic, normal traffic has to be sent with the attack. The
normal traffic comes from TCPReplay’s bigFlows.pcap
[21], containing a total of nearly 800,000 packets (368 MB)
from 132 applications. This traffic was captured on "a
busy private network’s access point to the Internet” [21]
and is expected to be a good representation of how normal
internet traffic looks like.

5.1.4 Labeling

To be able to determine later on whether a packet was
attack or normal traffic, all sent packets have to be labeled.
Considering that the traffic is sent over a local network
that only requires the Ethernet protocol to send packets,
we chose to modify an IP version 4 property that is not
present in a fingerprint: the Time To Live (TTL). This
property is normally used to stop packets from circling
around the internet, but is not modified or used in our
local network. The TTL is therefore very useful to label
packets.

Attack traffic is in our case labeled with a TTL of 10,
where normal traffic is marked with a TTL of 20. These
low values for the TTL, that is recommended to start at 64
by the Internet Assigned Numbers Authority (IANA) [10],
are not expected to be reached for other packets inside our
network of only two computers and a router.

5.1.5 Configuration of simulations

To be able to test the real-time packet filtering require-
ment defined in section 3, the combined bandwidth of at-
tack and normal traffic should be at least 900 Mbps. To
allow both the attack as the normal traffic to send all their
packets multiple times, the bandwidth is equally split be-
tween the two: both are allocated 450 Mbps using tcpre-
play’s -M option. A higher total bandwidth may congest
the setup, as mentioned in subsection 5.1.1 and is therefore

not used.

The simulation process is fully automated for all attacks,
in which the attacker and defender communicate via a
direct TCP stream. An attack simulation consists of the
following steps for each attack:

1. The defending computer asks the attacking computer
to check if the attack traffic is present at the attacker.
If not, the attack should be downloaded: this does
however require to connect the network to the in-
ternet. All attack traffic was therefore downloaded
before the final tests were done;

2. The attacker sends that it is ready to attack;

3. If the defender is done with optionally reducing the
fingerprint, it requests to start the attack;

4. The attacker sends a confirmation of the attack, af-
ter which the defender immediately loads the eBPF
rules for 30 seconds. Three seconds after the confir-
mation was sent, the attack is started for 25 seconds;

5. The defender keeps track of packets are dropped or
passed correctly and saves the result.

This method allows to test large amounts of attacks with-
out any human intervention. Furthermore, 25 seconds
of sending both normal and attack traffic is sufficient to
send all packets multiple times. All attacks will be simu-
lated with three thresholds for the amount of rules to be
matched: match all, match all but one and match all but
two.

5.1.6 Metrics

Filtering packets is a form of binary classification: packets
have to be classified as attack or not. Therefore, the fol-
lowing common binary classification metrics will be used:

e Accuracy. The fraction of packets that have been
classified correctly into attack or normal traffic;

e True Positive Rate (TPR). The fraction of attack
packets that has been dropped and therefore has
been classified correctly;

e True Negatve Rate (TNR). The fraction of normal
packets that has not been dropped and therefore has
been classified correctly.

Considering that the accuracy is very dependent on the
chosen bandwidth division, the TPR and TNR will be
considered the most important.

5.2 Verification results

The results of the simulations described in the previous
section are divided into five subsections. Int the first three
subsections, we will discuss the results for the three thresh-
old values as mentioned in section 5.1.5. For each thresh-
old, the accuracy metrics as mentioned in section 5.1.6 will
be discussed. The next subsection discusses the effect of
the reduction and the results for the other, more general
requirements will be discussed in the last subsection.

5.2.1 Strict: match all

The most strict threshold, that requires all fingerprint
properties to be matched before it drops a packet, is ex-
pected to drop both the least attack as the least normal
packets as mentioned in section 4.1. Figure 1 shows the

Accuracy by Measurements

1.0

0.9 ‘
0.8 1 i
0.7 1 }

0.6 1 ‘ —

Accuracy

0.5 {
0.4 1 {
0.3

0.2 1 1”**'7—7,77,7

014 — upP
—— TCP

0.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Fraction of measurements

True Positive Rate by Measurements

1.0

0.9 ‘
0.8 ‘
0.7 1
0.6

0.5 1 —

True Positive Rate

‘x
0.4 l\
0.3 {

0.2 1

014 — uop —
—— TCP

0.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Fraction of measurements

True Negative Rate by Measurements

1.0 A

0.9

0.8

0.7 1

0.6

0.5 1

True Negative Rate

0.4 1
0.3 A

0.2 1

014 — uor
—— TCP

0.0 T T T T T T T T T
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Fraction of measurements

Figure 1. Accuracy metrics by fraction of mea-
surements for strict threshold

accuracy metrics by the fraction of measurements for the
most strict threshold.

Both for UDP and TCP, using the most strict thresh-
old results in a near perfect TNR: in all simulations for
both protocols, over 99% of the normal packets were not
dropped. For TCP, most attack packets were however also
not dropped, with 84% of the measurements having a TPR,
of approximately 50% or lower. This clearly indicates that
the most strict threshold is too strict for the packets of
TCP attacks.

The UDP attacks have a better TPR and with it bet-
ter accuracy, considering that approximately 86% of the
simulated attacks drop over 90% of the attack packets, in-
dicating that much UDP fingerprints contain all values for
most packets. Starting from 80% of the measurements for
UDP, the TPR drops to a 0% accuracy. For the last 15%
of the measurements, the threshold is too strict.

5.2.2 Less strict: Match all but one

For the slightly strict threshold, match all but one it can
be expected that more packets will be dropped, possibly
increasing the TPR but possibly decreasing the TNR. Fig-
ure 2 shows the accuracy metrics by the fraction of mea-
surements for threshold that matches all but one.

The graphs show that both the accuracy as the TPR have
increased for both protocols, but most significantly for
TCP: Where over 80% had an accuracy under 60% for
the most strict threshold, now approximately 93% of the
TCP attacks can be mitigated with an accuracy of at least
98%. This indicates that most TCP attack packets have
all but one of the IP address, ports or TCP flag and are
therefore hard to match with the strict threshold. At the
end of the graph, a steep drop in TPR however exists.
Unlike the impact on the TPR, the impact on the TNR is
very small for TCP: in less than 1% of the measurements,
more than 10% of the normal traffic was blocked.

Although the chance for a normal packet to match the
eBPF rules is higher for a less strict threshold, the UDP
results do barely reflect any impact on the TNR: all mea-
surements have a TNR of over 99%. The TPR drop in the
end has been pushed to the right of the graph, reaching a
TPR of above 90% for approximately 92% of the measure-
ments. The drop in TPR is remarkably similar to that of
TCP.

All together, lowering the threshold to all but one has a
significant positive effect on the TPR, especially for TCP,
while having only a very minor impact on the TNR. There-
fore, the accuracy for this less strict threshold has signifi-
cantly increased.

5.2.3 Least strict: Match all but two
For the least strict threshold that was tested, match all
but two, the TPR is expected to further increase whereas
the TNR is expected to finally decrease significantly with
respect to the other thresholds. Figure 3 shows the accu-
racy metrics for the least strict threshold.

For the UDP measurements, the TPR has further increased
as now approximately 95% has a TPR of over 90% and all
measurements have a TPR of over 77%. For TCP, the
TPR has also increased even further: approximately 99%
of the measurements match over 99% of the attack traffic.
It even turned out that the attack causing the drop has an
incorrect fingerprint, but this was not noticed before like
with the incorrect fingerprints mentioned in section 5.1.2.
This indicates that for all tested TCP attacks, 99% of the
attack traffic matches at least two out of the IP address,

Accuracy by Measurements

1.0 —

0.9

0.8 1

0.7 1

0.6

0.5

Accuracy

0.4 1

IR

0.3 A

0.2 1

014 — uDP
—— TCP

0.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Fraction of measurements

True Positive Rate by Measurements

1.0 1

\
0.8

0.7 1

0.6

0.5 1

0.4 1

True Positive Rate

0.3 A

0.2 \

014 — uor
—— TCP

0.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Fraction of measurements

True Negative Rate by Measurements

1.0 4 —

0.9 1 !
0.8
0.7
0.6

0.5 1

True Negative Rate

0.4 1
0.3 A

0.2 1

014 — uor
—— TCP

0.0 T T T T T T T T T
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Fraction of measurements

Figure 2. Accuracy metrics by fraction of mea-
surements for less strict threshold

Accuracy by Measurements

1.0

091 - \
0.8 1
0.7 4
0.6 1

0.5 -

Accuracy

0.4
0.3

0.2

014 — uppP
—— TCP

0.0 T T T T T T T T T
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Fraction of measurements

True Positive Rate by Measurements

1.01 .
0.9
0.8

0.7

0.6 1

0.5 1

0.4

True Positive Rate

0.3 A

0.2

01— uop
— TCP

0.0 T T T T T T T T T
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Fraction of measurements

True Negative Rate by Measurements
1.0 L
0.9 A

0.8

0.7 : S
0.6

0.5 1

True Negative Rate

0.4
0.3 A

0.2

014 — UDP
TCP

0.0 T T T T T T T T T
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Fraction of measurements

Figure 3. Accuracy metrics by fraction of mea-
surements for least strict threshold

ports and TCP flag.

For UDP, the decreased threshold does not have a large
impact on the TNR of most measurements: approximately
95% of the attacks has a TNR of over 99%. For all attacks
the minimal TNR is just 90%, making UDP fingerprints
still classifying normal packets with a higher accuracy than
it classifies attack packets. This can partially be explained
because of the normal traffic: it only consists for 19.4% out
of UDP packets, while 80.4% are TCP packets. Neverthe-
less, the TNR for UDP is remarkably high.

The results largely match the expectations all together,
further increasing the TPR and decreasing the TNR. All
together, accuracy has gone up for UDP as the accuracy
for normal traffic did not decrease much, whereas the ac-
curacy has lowered the accuracy for TCP as a result of
significant decrease in accuracy for normal traffic.

5.2.4 Impact of reduction

Another factor than the threshold that could significantly
affect accuracy is the reduction of certain fingerprints. The
main impact of reduction is expected to be classifying more
traffic as attack traffic, as more packets potentially match
the fingerprint. To investigate this, this section will elab-
orate on the accuracy related to the original amount of
values in the fingerprint.

Reduction has two possible side effects: it can increase the
amount of normal traffic being classified as attack traffic,
but it can also do this for the attack traffic itself. The
reduction can therefore both decrease the TNR as increase
the TPR. First, we will discuss the consequences for the
TNR.

The TNR does not decrease for the most strict threshold,
as figure 1 has shown. Therefore, we will only investigate
the relation between TNR and reduction for the two less
strict thresholds. Figure 4 shows the spread of the TNR
by the amount of values in the original fingerprint.

Given that only fingerprints larger than a 1000 values were
reduced, it is clearly visible that reduction significantly
impacts the TNR for the least strict threshold. In this
case, the combination of both reduction as using a loose
threshold causes too much normal traffic to be classified
as attack traffic.

For the more strict threshold however, match all but one,
reduction shows to have little to no impact. The accuracy
is still near 99% for nearly all fingerprints that are reduced.
The fingerprint with the only TNR below 80% appeared
to be incorrect, as mentioned in the previous subsection.

For the TPR, reduction also shows to have little to no
impact. The graph shown in figure 5 shows this most
clearly, as the most and least strict respectively drop a
very low and very high percentage of the attack traffic
anyway.

Although the lowest TPR’s are corresponding to finger-
prints that had to be reduced, the main part of reduced
fingerprints performs good and the well performing finger-
prints are bigger in size. Given that the larger fingerprints
have more added loss of precision with reduction, it is con-
sidered unlikely that reduction structurally improves the
TPR. This may only be the case for the two largest UDP
fingerprints, but the amount of large UDP fingerprints is
so small that it is hard to find a clear cause.

All together, the results show that reduction has little to
no provable impact on both the TPR as the TNR. A sys-
tematic analysis of the attack and normal traffic files would
however result in a decisive answer on this question. Due

True Negative Rate by Original Fingerprint Values

1.0 1-300¢8K 1y senmessemnnmm—y 'se a 93

0.9

0.8

0.7

0.6

0.5 A

0.4

True Negative Rate

0.3 A

0.2

014 x uDP
TCP

0.0 - T T T T
10t 102 103 10* 10°
Original Fingerprint Values

True Negative Rate by Original Fingerprint Values

1.0 36K SESRannm—— a3

0.8

0.7

0.6

0.5 A

True Negative Rate

0.4
0.3 A

0.2

014 X UDP
TCp

0.0 - T T T T
10t 102 103 10% 10°
Original Fingerprint Values

Figure 4. True Negative Rate (TNR) by amount
of values in original fingerprint. Top: match all
but one, bottom: match all but two.

True Positive Rate by Original Fingerprint Values

D

0.9 1

0.8

0.7 1

0.6 -

0.5 A

0.4 1

True Positive Rate

0.3 A

0.21 %

014 x UDP
TCp

0.0 - T T T T
10t 102 103 10* 10°
Original Fingerprint Values

Figure 5. True Positive Rate (TNR) by amount of
values in original fingerprint for threshold match
all but one

to the limited time scope of this research, this has not been
investigated.

5.2.5 General requirements

Next to the accuracy related requirements, section 3 de-
fined three other requirements: real-time filtering for at
least 900 Mbps, exclusive use of DDoSDB to generate
eBPF rules and the generated eBPF rules should fit into
the limited amount of assembly instructions.

All 285 x 3 = 855 simulations were tested in less than 9
hours, making an average simulation cost less than 38 sec-
onds. This includes, next to the 25 seconds of attack time,
five seconds of waiting, the time to reduce and compile the
fingerprint and the time to determine which fingerprints
had the right protocol. In addition, manual checking of a
set of randomly chosen attacks showed that all sent pack-
ets had been classified in real-time. Together, this shows
that the DDoS mitigation method can be deployed and
ran in short notice.

In addition, the entire method only uses the knowledge in
the fingerprint itself and basic probability theory to gen-
erate eBPF rules. Although some exceptions exist, practi-
cally all reduced fingerprints have been successfully com-
piled into eBPF. For the exceptions, it was often unclear
what caused the compiler to fail.

All together, we can now make our conclusions on the last
research question, What is the accuracy of the design for
automatically generated eBPF for DDoS mitigation based
on DDoSDB attack fingerprints?

We have shown that the accuracy of the design is sig-
nificantly impacted by the chosen threshold by evaluat-
ing three possible thresholds for both supported protocols.
Next, we have shown that the maximal threshold signifi-
cantly decreases the true positive rate, whereas the least
strict threshold significantly decreases the true negative
rate. It can therefore be concluded that the method only
satisfies the requirements with the threshold set to all but
one. We have shown that this threshold has a true pos-
itive rate of over 99 and 94% for more than 90% of the
measurements of respectively TCP and UDP, while hav-
ing a true negative rate of over 98% for over 96% of the
measurements.

Furthermore, we have shown that our reduction method
has little to no provable positive or negative impact on
the accuracy. Additionally, the additional requirements
for real-time packet filtering, basing eBPF rules only on
DDoSDB fingerprints and compiled size have been satis-
fied.

All together, it can be concluded that our method success-
fully satisfies the requirements with an overall accuracy of
over 95% , a true positive rate of at least 93% and a true
negative rate for over 98% for more than 90% of the mea-
surements.

6. CONCLUSIONS

In this research, we designed and evaluated a method to
automatically generate eBPF programs for DDoS mitiga-
tion based on attack fingerprints of DDoSDB. We have
identified the most important requirements, discussed re-
lated existing work and presented a design for such a DDoS
mitigation system. Additionally, we have analyzed and
verified the designed method for multiple configurations
and design choices.

First, we conclude that related existing work only focuses
on the performance of eBPF in packet filtering instead of

on the accuracy. We also showed that the performance of
eBPF is very promising for DDoS mitigation and showed
that little to no research exists on DDoS mitigation meth-
ods that use techniques similar to eBPF.

Next, we concluded that DDoSDB attack fingerprints con-
tain no information on value probability and showed that
this simplifies the conversion of fingerprints to rules to only
one configurable threshold. Additionally, we discussed
various design choices, we showed that some fingerprints
have to be reduced and that we can find a most optimal
configuration for this reduction with simple probability
theory.

Finally, we have shown the method configuration signif-
icantly impacts the accuracy of the method. We have
shown that for the optimal configuration, our method has
an overall accuracy of over 95% , a true positive rate of
at least 93% and a true negative rate for over 98% for
over 90% of the measurements. All together, we therefore
conclude that our method for automated eBPF genera-
tion based on DDoSDB fingerprints successfully satisfies
all specified requirements.

However, future work could further elaborate on the possi-
bilities of eBPF for DDoS mitigation. The usage of eBPF
for more attack protocols has to be investigated, as well as
more advanced fingerprint reduction methods that could
further improve the accuracy. Additionally, extending the
fingerprints with value probabilities could potentially re-
sult in improved accuracy. Finally, the actual performance
of the method has to be investigated as well.

7. ACKNOWLEDGEMENTS

At the end of this research, I would like to take a moment
to thank my supervisor, dr. Jair Santanna, for his advice,
support and unstoppable enthusiasm. Without his efforts,
this research would not have been possible. Furthermore,
I would like to thank my other reviewers for the useful
feedback and anyone who is or was involved in the de-
velopment of the tools used in this research that greatly
benefited this research.

8. REFERENCES

[1] Akamai Technologies. State of the Internet: A Year
in Review, December 2018.
Akamai Technologies. State of the Internet: Summer
2018, June 2018.
A. Bakshi and B. Yogesh. Securing cloud from
DDOS attacks using intrusion detection system in
virtual machine. 2nd International Conference on
Communication Software and Networks, ICCSN
2010, pages 260-264, 2010.
G. Bertin. XDP in practice: integrating XDP into
our DDoS mitigation pipeline. 2017.
Cloudflare. Advanced DDoS Protection and
Mitigation. https://www.cloudflare.com/ddos/,
2018. Accessed: 2018-11-24.
I. Gul and M. Hussain. Distributed cloud intrusion
detection model. International Journal of Advanced
Science and Engineering Technology, 34:71-82, 2011.
S. Gupta and P. Kumar. VM Profile Based
Optimized Network Attack Pattern Detection
Scheme for DDOS Attacks in Cloud.
Communications in Computer and Information
Science, 377 CCIS:255-261, 2013.
N. Hinze, M. Nawrocki, M. Jonker, A. Dainotti,
T. C. Schmidt, and M. Wahlisch. On the Potential

2]

3]

10

[13]

of BGP Flowspec for DDoS Mitigation at Two
Sources: ISP and IXP. In ACM SIGCOMM 2018
Conference Posters and Demos, August 20-25, 2018,
Budapest, Hungary, pages 57-59, 2018.

T. Hgiland-Jgrgensen, J. D. Brouer, D. Borkmann,
J. Fastabend, T. Herbert, D. Ahern, and D. Miller.
The eXpress data path. In Proceedings of the 14th
International Conference on emerging Networking
EXperiments and Technologies - CoNEXT ’18, 2018.
Internet Assigned Numbers Authority. Internet
Protocol Version 4 (IPv4) Parameters.
http://www.iana.org/assignments/ip-parameters/ip-
parameters.xml,

2018.

IOVisor. BCC - Tools for BPF-based Linux 10
analysis, networking, monitoring, and more.
https://github.com/iovisor /bee, 2019.

T. Karnwal, T. Sivakumar, and G. Aghila. A comber
approach to protect cloud computing against xml
ddos and http ddos attack. In 2012 IEEE Students’
Conference on FElectrical, Electronics and Computer
Science, pages 1-5, March 2012.

T. Karnwal, S. Thandapanii, and A. Gnanasekaran.
A filter tree approach to protect cloud computing
against XML DDoS and HTTP DDoS attack.
Advances in Intelligent Systems and Computing, 182
AISC:459-469, 2013.

C. C. Lo, C. C. Huang, and J. Ku. A cooperative
intrusion detection system framework for cloud
computing networks. Proceedings of the
International Conference on Parallel Processing
Workshops, pages 280-284, 2010.

A. M. Lonea, D. E. Popescu, and H. Tianfield.
Detecting DDoS attacks in cloud computing
environment. International Journal of Computers,
Communications and Control, 8(1):70-78, 2013.

S. Mccanne and V. Jacobson. The BSD Packet
Filter: A New Architecture for User-level Packet
Capture. Technical report, 1992.

O. Osanaiye, K. K. R. Choo, and M. Dlodlo.
Distributed denial of service (DDoS) resilience in
cloud: Review and conceptual cloud DDoS
mitigation framework. Journal of Network and
Computer Applications, 67:147-165, 2016.

J. Santanna. DDoS DB. https://ddosdb.org/, 2018.
S. Sivabalan and P. J. Radcliffe. A novel framework
to detect and block DDoS attack at the application
layer. IEEE 2013 Tencon - Spring, TENCONSpring
2018 - Conference Proceedings, pages 578-582, 2013.
D. Stevanovic and N. Vlajic. Application-layer
DDoS in dynamic Web-domains: Building defenses
against next-generation attack behavior. 2014 IEFE
Conference on Communications and Network
Security, CNS 201/, pages 490-491, 2014.
TCPReplay. Sample captures.
http://tcpreplay.appneta.com/wiki/captures.html,
2019.

M. Tumolo. Towards a faster Iptables in eBPF. 2018.
E. Zannoni. New (and Exciting!) Developments in
Linux Tracing, 2015.

