

MASTER THESIS

DESIGN OF AN IMPLEMENTATION

METHOD FOR CUSTOMIZABLE

SAAS SOLUTIONS

L.G. Sterrenburg

APRIL 2019

i

ii

MASTER THESIS

Design of an Implementation Method for Customizable SaaS

Solutions

April 2019

Author

Name: L.G. Sterrenburg (Thierry)

Programme: MSc Business Information Technology

Institute: University of Twente

 PO Box 217

 7500 AE Enschede

 The Netherlands

Faculty: Electrical Engineering, Mathematics and Computer

 Science (EEMCS)

E-mail: l.g.sterrenburg@alumnus.utwente.nl

Graduation Committee

prof. dr. Maria-Eugenia Iacob

Department: Industrial Engineering and Business Information Systems

E-mail: m.e.iacob@utwente.nl

dr. ir. Marten van Sinderen
Department: Computer Science

E-mail: m.j.vansinderen@utwente.nl

Leon de Vries
Company: Cofano Software Solutions B.V.

E-mail: leon.devries@cofano.nl

mailto:l.g.sterrenburg@alumnus.utwente.nl
mailto:m.e.iacob@utwente.nl
mailto:m.j.vansinderen@utwente.nl
mailto:leon.devries@cofano.nl

iii

iv

PREFACE

This research is my master thesis that completes my master study ‘Business Information Technology’

at the University of Twente. As master student I got in contact with diverse companies with

interesting business cases. I appreciate all the experiences I have gained in the study.

This research is done in cooperation with Cofano Software Solutions. During the research I also

worked on multiple implementation projects of customizable SaaS. Due to the projects, I gained

more in depth experience in these projects, which helped me in this research. Our mutual aim was to

define a standard and structured method for implementing customizable SaaS in the primary

business processes. The designed method should also be applicable for implementation projects of

Cofano’s software.

First, I would like to thank my supervisors Maria Iacob and Marten van Sinderen for their valuable

feedback and support. I appreciate the discussions that we had during the research. Your guidance

sharpened this research.

Secondly, I would like to thank Leon de Vries for supervising me on behalf of Cofano Software

Solutions. Thanks towards Marco Huijsman and Koos Leeuwenstein for providing a great work

environment for performing this research. Also your interest in this research is much appreciated.

Besides I would like to thank all my colleagues that have cooperated in the implementation projects

and in this research for their effort and for sharing their experiences.

Finally, I would like to thank my family and especially my girlfriend Marlies for supporting me during

my study and master thesis.

I hope that you will find in interesting and enjoyable to read this research.

v

vi

EXECUTIVE SUMMARY

Software as a Service is a relative new business model for software to a customer. Often there is a

periodic fee for using the software. Support and updates of the software are included in the

subscription. For customizable SaaS, the customers play an active role in improving the software. A

downside is that customers handle the SaaS solution as software on demand.

Implementing software in the primary businesses process of a business is critical project. The

essential value of a service or product is gained in the primary business processes. It is of major

importance that new software solutions support those primary business processes and that the

software solution is adapted well by the business.

Currently there is no implementation method for implementating customizable SaaS in the primary

business processes of enterprises. Hence, no suitable controls are available for these

implementations projects. This has resulted in longer implementation projects than estimated. In the

end this can lead to unsuccessful implementations, what can be prevented by having an

implementation method.

This research has a research goal:

Develop and validate a method for implementation of SaaS solutions in the primary business processes.

In this research a SLR is performed for finding literature that connects with the research goal. After

performing the SLR, it could be concluded that there is no implementation method for customizable

SaaS solutions. Therefore a method for implementing customizable SaaS in the primary business

processes has been developed and validated in this research.

The most important results of this research are:

 In the literature no implementation method for customizable SaaS in the primary business

process has been found.

 A method for implementing customizable SaaS in the primary business processes has been

developed in this research.

 The steps in the implementation method are based on concepts found in literature and field

experiences.

 The developed implementation method has been validated by experts and their opnion

towards the implementation method is very positive.

 The designed implementation method will be used in practice for Cofano’s implementation

projects.

vii

viii

Table of Contents
Acronyms .. x

1 Introduction ... 2

 Business Models for Software ... 2

 Barriers for SaaS Solutions .. 2

 Primary Business Processes ... 3

 Use Case Context ... 4

 Research Goal .. 4

 Research Questions ... 4

 Research Methodology ... 4

 Structure Report .. 5

2 Research Design .. 6

 Method .. 6

 Problem Statement ... 6

 Literature Research Questions .. 7

 Search Process ... 7

 Exclusion Criteria ... 7

 Quality Assessment ... 7

 Data Collection .. 8

 Results ... 10

3 Analysis .. 12

 Change Management .. 12

 Software Development Methodology ... 12

 Data Migration .. 13

 Multi-Tenant Software .. 13

 Service Level Agreements ... 14

 Service Agreements ... 14

 Business Rules ... 15

 Agile Project Management for SaaS .. 15

 Customizable SaaS ... 17

4 Analysis Overview .. 20

5 Implementation Method ... 22

 Model “as is” Process .. 23

 Fit Gap Analysis ... 25

 Define Product ... 27

 User-Centered Design ... 30

ix

 Planning ... 32

 Software Development ... 34

 Migration ... 36

 Go Live ... 38

6 Validation .. 40

 Validation Method ... 40

 Expert Experiences .. 41

 Validation of the Implementation Method ... 42

 Updates to the Implementation Method .. 43

7 Conclusions .. 46

 Research Questions ... 46

 Contribution .. 47

 Limitations ... 47

 Future Work .. 48

 Recommendations... 48

8 Bibliography ... 50

Appendix A. Expert Interview .. 54

Appendix B. List of Figures .. 55

Appendix C. List of Tables .. 56

x

Acronyms
ASP – Application Service Provider

BPMN – Business Process Model and Notation

BPR – Business Process Reengineering

CIB – Cloud Interoperability Broker

EROP - Events, Rights, Obligations and Prohibitions

IaaS – Infrastructure as a Service

LP – Local Business Policy

MVP – Minimum Viable Product

PaaS – Platform as a Service

ROI – Return on Investment

PM – Policy Manager

QoS – Quality of Service

SaaS – Software as a Service

SA – Service Agreement

SLA – Service Level Agreement

SLR – Structured Literature Review

SPL – Software Product Line

1

1. Introduction

2

1 Introduction
Software as a Service (SaaS) is a relative new way of providing software to a customer. The business

model behind SaaS solutions is that the customer does not have to buy the software, but instead pays

a periodic fee. The SaaS provider is responsible for the deployment and maintenance of the software

in the cloud. Therefore, customers do not have invest in IT-hardware for installing and running on

premise applications. SaaS applications have a low total cost of ownership in comparison with on

premise-installed applications. Where on premise-installed applications are often configured once,

SaaS applications have periodic updates, which can be optionally deployed. This strategy ensures that

the software stays up-to date and consequently does not age (fast). The down-side of these updates

is that the customer sees the software as an on demand service. Customers don’t have to make an

internal request for change, because no extra costs will be charged. They just send a request to the

ASP (Application Service Provider) and expect it to be implemented within a short timeframe. As a

result a growing number of customers results in a growing number of implementation requests.

 Business Models for Software
The business model for customizable SaaS applications differs from the traditional model for on

premise installed applications. Due to the difference in business model, the development of the

software and deployment of the software are organized in another way. This has also an impact on the

approach for implementing the software at customers.

On premise software is installed on the location or in a cloud environment. When the software is

installed on the customer location, the hardware is managed by the customer. The initial costs for on

premise software are high compared with the initial costs for SaaS. The software is often a basic off

the shell package whereon additional modules can be installed. Besides it is possible to realize all sorts

of customizations. The reason for the high initial costs are that customizations are realized and used

for one customer only. Reuse of code is not applied much since those customizations are very specific

requests and built for a particular version of the standard package. Updates of on premise software

are only applied when necessary, because these updates come with additional upgrade costs and also

result in a period of down-time.

The business model for SaaS applications is different. The initial costs are lower than for on premise

software. Usually a starting fee has to be paid and thereafter there will be a monthly fee. This periodic

fee includes the hosting of the software accompanying with periodic updates. All customers will use

an application with the same code base. Therefore features have to be built once and can be provided

to all customers. Customers are able to make requests for features, which are reviewed by the ASP

and may end up on the roadmap. Before accepting and implementing a feature it is important to

examine the impact on the application. The implementation or adaption of a feature will have an

impact for all customers, since they share the same code base. In order to accept and support different

views on the business operations, configuration options and settings can be used to make the

application fit for different customers.

 Barriers for SaaS Solutions
Where on premise installed software is completely in control of the customer, SaaS applications are

managed by the ASP. Besides the advantages that the customer does not have to manage and

maintain the IT infrastructure also raises barriers. Weaknesses of cloud solutions are reliability,

limited customization, limited customizability and no dedicated personnel. (Bibi, Katsaros, & Bozanis,

2012).

1. Introduction

3

The application is maintained and managed by the ASP on a remote location. This might raise

reliability issues and could cause data loss. In case of application restarts or network interruptions

the application is offline for a certain time. On premise software runs locally and will only be offline

when the local network or server does are not functioning correctly. Due to the business model of

SaaS applications there is limited customizability and limited configurability, because all customers

have software with the same codebase. However, when needed the ASP can implement

configuration functions in order to meet all customizations and configuration requirements. Other

mentioned downsides are:

 Data confidentially, integrity and availability

 Legal problems from cross-country distribution

 No clear downtime agreements or reimbursement policies.

 Primary Business Processes
Business processes are activities that add value to a business product. According to Porters’ value

chain there are primary activities and support activities. The idea is that a product gains value with

each activity. The sum of all gains from the activities is the margin that is gained at the end of the

value chain. The primary activities contain the core business, where the actual product or service is

delivered. The primary activities are explained below.

Figure 1: Porter’s Value Chain

Primary Activities

 Inbound Logistics: All incoming movements of materials from suppliers

 Operations: Activities needed to transform the input to an output.

 Outbound logistics: All outgoing movements of the final product to customers or retailers.

 Marketing & Sales: Activities needed for promoting and selling the service or product.

 Service: This activities concerns the service and aftersales.

1. Introduction

4

Businesses that are located in the tertiary sector only offer one or multiple services to their

customers. For these businesses, there are no inbound or outbound logistics, because they do not

manufacture products. Implementation of software in the primary activities of a business requires a

different approach than the implementation for supporting activities. The primary activities ensure

that a product or service is delivered in the end. When software for controlling these activities is not

implemented correctly, less or no value is added in the end.

 Use Case Context
Cofano Software Solutions B.V. is an ASP of diverse products for managing business processes and

logistics. All Cofano’s services are provided as Software as a Service. One of their logistic applications

is STACK. It is an application for inland terminals, forwarders and chain directors for managing

container transport. The application supports in manual and automatic order entry for container

transport. It contains modules for truck planning, barge planning and train planning to provide full

management for all usable modalities in the container transport. Also apps are built to enable hands

on registration of actions. An example of such an app, is the terminal app for reachstackers, which is

used for registration of actions on the terminal. The finance module ensures that bookings can be

invoiced. STACK supports in the whole flow from order to cash. The implementation strategy for STACK

is used as object of study in this research. The implementation strategy entails the complete process

starting presenting the application for the first time to an interested party. It also covers the fit gap

analysis, development of features for realizing the minimum viable product and migration to the SaaS

application. Currently there is no implementation method or strategy used. Implementation is done

using common sense and by making mutual agreements between the ASP and the customer. This has

resulted in longer implementation processes than estimated and pre-arranged. Due to the maturing

of the application, the number of interested parties rises. Along with the raising interest, there is also

a rise in customers using the product and businesses where the implementation proces has started.

 Research Goal
This research investigates the implementation of a SaaS application in the primary business processes

of enterprises. Several enterprises are currently using STACK. The implementation and migration phase

for these enterprises have been diverse. Besides there was also an implementation project that has

been stopped after exceeding the estimated implementation time. In order to mitigate the risks of

implementing a SaaS application, an implementation method that allows control over the

implementation process has to be developed. We intend that the designed method can also be used

for the implementation of other SaaS applications. The following research goal is defined:

Develop and validate a method for implementation of SaaS solutions in the primary business processes.

 Research Questions
The following research questions must be answered in order to achieve the research goal:

1. How are SaaS solutions implemented in the primary processes of enterprises?

2. Which steps can be identified in the process of migration to a SaaS solution?

3. How can the designed implementation method be validated?

 Research Methodology
The research methodology used in this report is Design Science Methodology (DSM) developed by

Wieringa (Wieringa, 2014). The methodology is used as guide for designing an implementation

method for customizable SaaS applications.

1. Introduction

5

 Structure Report
The report is structured as follows: Chapter 2 outlines the problem statement and describes the

literature selection process. Chapter 3 contains an analysis of the selected literature followed by an

overview of the analysis in chapter 4 . Chapter 5 shows the design of an implementation method that

can be used for implementing a SaaS application in the primary business processes. The

implementation method is validated in chapter 6. Chapter 7 concludes the findings in this report,

including recommendations for future research and for the use of the designed method.

2. Research Design

6

2 Research Design
In this research a systematic literature review (SLR) will be used. This SLR give insight on available

existing literature and knowledge gaps. The method for performing the SLR is described in section

2.1. Section 2.2 presents the problem statement for the SLR, followed by the research questions in

section 2.4. Based on the research questions a search process is established in section 2.5. For the

right data selection, exlusion criteria are defined, which can be found in section 2.6. The process for

data collection is shown in section section 2.7. An overview of the results in shown in section 2.8.

 Method
In order to perform a SLR a defined method is needed. Brereton and Budgen (Budgen & Brereton,

2006) defined characteristics for a systematic review. These characteristics are used for performing a

SLR in this research. The following characteristics are defined by Brereton and Budgen (Budgen &

Brereton, 2006):

 review protocol

 defined search strategy

 documented search strategy

 inclusion and exclusion specification

 evaluation of obtained information

Besides the characteristics presented above, Brereton and Budgen (Budgen & Brereton, 2006)

propose a process with three phases for reviews in Software Engineering:

 Planning

 Conducting

 Reporting

The proposed process is used in this research. The planning phase is performed in the search process,

where literature is searched that is connected with the topic. After defining the right search queries,

the set of results will be reviewed. The review of the results can be mapped on the conducting phase.

Reporting will is done in the section 'Discussion' where the relevancy and fit and gaps of the

literature will is discussed.

In “Systematic literature reviews in software engineering - A systematic literature review”

(Kitchenham et al., 2009), Kitchenham et al. perform a systematic literature review. The SLR by

Kitchemham et al. is an example for performing a SLR. The planning phase is represented by the

research questions, search process, exclusion criteria and quality assessment. Conducting the SLR is

done in the subsection 'Data Collection'. The last phase reporting is represented by the section

results, which is followed by a detailed analysis.

 Problem Statement
The business model of SaaS solutions is that there is main code base that can be sold as a service to

customers for a periodic fee. The impact for the use of the software depends on the complexity of

the software and the effected business processes. For there is one code base, all (potential) s have to

find a fit for their processes in the software or the software should be extended with new functions.

Besides processes can be made more efficient with new software, but in order to achieve this,

processes may have to change in order to become more efficient.

Problem Statement: How can SaaS-based enterprise solutions implemented successful in the

primary business processes?

2. Research Design

7

 Literature Research Questions
The literature research questions should help in finding existing literature about how implementation

of customizable SaaS is done. The keyword ‘enterprise’ and ‘business’ are exchangeable. However,

using ‘enterprise’ as keyword result in more literature.

 RQ1 How are SaaS solutions implemented in enterprises?

 RQ2 How do client and provider cooperate in building customizable SaaS?

 Search Process
The search process shows how the SLR is performed. The found literature should give an insight in

what literature exist regarding the implementation of customizable SaaS in the primary business

processes. In order to know how software and in particular a SaaS solution is implemented, the

starting point of the search process was a broad scope, which was narrowed down to keep only the

most relevant literature results. The main topic are split into four sections:

 implementation

 customizable

 SaaS

 primary business processes

For the part 'customizable' there are similar words, f.e. 'tailoring' or 'tailor-made' that are used in the

branch of software engineering. SaaS is an abbreviation for Software as a Service, which may be used

in literature instead of the abbreviation. The part of 'primary business processes' points where

change of system will have an impact in the enterprise. However, these keywords might be to

specific. Therefore enterprise software or enterprise applications might include relevant results, for

enterprises is the target group for implementation. The keywords 'primary business processes' might

be to specific for finding literature. Using 'enterprises' will be used as replacement for 'primary

business process' in order to search with a broader scope.

Scopus and Google Scholar are used in the search process. Scopus is used as main search engine and

the search queries are adjusted and improved for this search engine. Google Scholar is used as search

engine to find interesting literature and explore usable key words. The key words found with Google

Scholar are used for designing a search query in Scopus. The total number of results found in Google

Scholar was to high even after using inclusion and exclusions for use in this SLR.

 Exclusion Criteria
In order to get a good overview of the available literature the following criteria for exclusion are

used:

 Duplicate articles, because Scopus can deliver one article multiple times as result.

 Books and book chapters, for they are not always available and the overall coverage of the

books is not relevant in this SLR

 Unavailable articles, for Scopus also shows articles which are not accessable.

 Paid articles, for Scopus also shows results that are not freely accessable for the University of

Twente.

 Quality Assessment
The papers that are returned as result by Scopus are reviewed on the title and abstract. When an

article is graded as irrelevant for this SLR, attention is paid to the key words. When a key word is

considered irrelevant for this SLR, it will be added as an exclusion for the search query. In this way

2. Research Design

8

effective filters are added to the search query. No further requirements are determined for grading

an article on quality in order to keep the scope broad and to not miss any possible relevant

information. In the discussion the quality of articles or statements in articles will examined on quality

and validity.

 Data Collection
For collecting the data three search queries are defined that cover the relevant data in this SLR:

 SaaS enterprise implementation

 customizable SaaS

 agile project management SaaS

The data collection for all three search queries are described below.

2.7.1 SaaS Enterprise Implementation

The first step in the searching process is designing a search query with all relevant key words. Since

SaaS is the abbreviation for Software as a Service, this should be included in the search query. The

following search query covers all results connected with the implementation of SaaS solutions in

enterprises:

TITLE-ABS-KEY (("SaaS" OR "Software as a Service") AND ("enterprise software" OR "enterprise

application") AND implementation) {21 results}

A total of 21 results were returned.

The search query is relative broad scoped, which means that all kinds of SaaS solution

implementation for enterprises are returned. The results cover subjects such as "ERP as SaaS" and

"cloud-computing". These subjects are not the core goal of the research, concluding that the search

query should more focused on SaaS solutions as enterprise application or enterprise software.

Exclusion

All results with an undefined author were excluded from the search results. This brought the number

of results to 17. In the results there appeared one book chapter, which was unavailable. Therefore

book chapters where excluded as source type as well. Furthermore results were excluded due to

irrelevancy. Results with the keywords: 'costs' and 'metadata' were excluded. The results from:

'Confenis 2013 7th International Conference On Research And Practical Issues Of Enterprise

Information Systems' are held by another library and is for that reason excluded. After all exclusions

9 results were left over in total.

2. Research Design

9

Figure 2: Literature Selection Process for “SaaS Enterprise Implementation”

Figure 2

2.7.1 Customizable SaaS
Besides the implementation of SaaS solution, the customisability of the solution is an important

factor. Therefore a query is designed to retrieve results regarding the customisability of SaaS

solutions.

TITLE-ABS-KEY (("customizable SaaS" OR "customisable SaaS" OR "customizable Software as a
Service" OR "customizable Software as a Service")) {9 results}

Exclusion

With exclusion of the keyword 'XML' the irrelevant papers were filtered out. A total of 7 papers were

selected as result for this search query.

Figure 3: Literature Selection Process for “Customizable SaaS”

2. Research Design

10

2.7.2 Agile Project Management
Having the implementation and customization of SaaS covered. Other results about the

implementation of SaaS are found in the area of project managment. Therefore the following search

query is used.

TITLE-ABS-KEY (("agile project management") AND (SaaS OR "Software as a Service")) {14

results}

Exclusion

After excluding irrelevant articles based on title and abstract 4 results were left.

Figure 4: Literature Selection Process for “Agile Proejct Management”

 Results
The found literature in the section ‘Data Collection’ is shown in table 1. The results are categorized

on search query.

Search Query Results Total

SaaS enterprise
implementation

(Ali et al., 2016), (Aulbach et al., 2008), (Buford et al., 2015), (Grati et
al., 2015), (Koski et al., 2016), (Molina-Jimenez et al., 2011), (Moore &
Mahmoud, 2009), (Singhto & Phakdee, 2017), (Seethamraju, 2015)

9

customizable
SaaS

(Liu et al., 2010), (Moens et al., 2016), (Moens et al., 2012), (Moens &
De Turck, 2014), (Mohamed et al., 2015), (Ruehl & Andelfinger, 2011),
(Truyen et al., 2012)

7

agile project
management
SaaS

(Agarwal, 2011), (Bajighar & Shahzad, 2017), (Benefield, 2009),
(Femmer et al., 2014)

4

Table 1: Search Results

2. Research Design

11

3. Analysis

12

3 Analysis
The retrieved results from the search queries in Scopus are analysed in this section. The found papers

are categorized on subject. For each subject there is a separate section in this chapter. The analysis

provides a global overview of the found literature in order gain insight in the available knowledge.

The relevance and usability of the literature is examined in chapter 4.

Section Subject # Total Papers

3.1 Change Management 1 (Seethamraju, 2015)

3.2 Software Development
Methodology

1 (Singhto & Phakdee, 2017)

3.3 Data Migration 1 (Ali et al., 2016)

3.4 Multi-tenant Software 3 (Aulbach et al., 2008), (Liu et al.,
2010), (Ruehl & Andelfinger, 2011)

3.5 Service Level Agreements 2 (Grati et al., 2015), (Koski et al., 2016)

3.6 Service Agreements 1 (Molina-Jimenez et al., 2011)

3.7 Business Rules 2 (Moore & Mahmoud, 2009), (Truyen
et al., 2012)

3.8 Agile Project Management for SaaS 5 (Koski et al., 2016), (Benefield, 2009),
(Bajighar & Shahzad, 2017), (Agarwal,
2011), (Femmer et al., 2014)

3.9 Customizable SaaS 4 (Mohamed et al., 2015), (Moens et al.,
2012), (Moens & De Turck, 2014),
(Moens & De Turck, 2016)

Table 2: Categorization of the Papers per Subject

 Change Management
Change Management is an important part of the implementation of a SaaS solution. The software is

hosted by the software vendor and the client can often login via a web browser or app. Seethamraju

(Seethamraju, 2015) state that small and medium sized enterprises do not get a sense of ownership.

Users would possibly not accept or use a new feature. The identified challenges for the adoption of a

new SaaS solution are:

 Attidude towards the proposed change of the system

 Lack of process understanding

 Change in process steps

 New activities to be performed

 Replacement of resources

 Lose of control, access by updating the roles and permissions of people

In order to have a successful implementation the above mentioned challenges must be dealt with.

 Software Development Methodology
For software development diverse methodologies can be chosen, from waterfall to extreme

programming. Besides it is possible to use a hybrid development methodology, where only parts or a

part from one or more methodologies are used for the development of the software. The

characteristics of the (hybrid) methodology also determine the involvement of the product owner in

the development and the software releases in the process. Singtho and Phakdee (Singhto & Phakdee,

2017) performed a case study concerning the development of tailor-made SaaS products for small

and medium enterprises in Thai service and manufacturing. A hybrid solution is used as approach in

this case study.

3. Analysis

13

Figure 5: Blending Scrum and Waterfall Technique (Singhto & Phakdee, 2017)

 Data Migration
When moving from one application to another data migration is often an important part of the

transition. Data migration can be applied when the new application is similar of has partly similar

features as the current used application. Ali et al. (Ali et al., 2016) explored the areas cloud-

computing that would benefit interoperability by standardization. The focus in that research lies on

data migration from SaaS to SaaS applications. A cloud interoperability broker (CIB) is proposed as a

solution for data migration. The CIB should enable SaaS clients to move from one SaaS application to

another. A methodology (Ali et al., 2016) is designed to for migrating data covering the following

steps:

 Collection and Analysis of Metadata

 Develop the Mapping Model

 Solution Design

 Implementation

 Test the Solution

The collection of the metadata from both applications enables the CIB to develop a mapping model.

The mapping mapping model ensures the right location for data in both applications is allocated. For

each combination of applications a new mapping model has to be designed. The next step designing

a solution for migrating the data with the help of the mapping model. Once the design is finished, the

solution can be implemented and tested. If the tests failed, the mapping model should reviewed and

the process should be resumed from the development of the mapping model. This process is

repeated until the tests are successful.

 Multi-Tenant Software
The advantage of SaaS is that there is a lower cost of ownership for the service client. Besides the

service provider can offer the service on a shared system. An example of a shared system is a multi-

tenant database (Aulbach et al., 2008). The suitability for using a multi-tenant database depends on

the offered application as service. A simple e-mail application is able to offer a service to more

tenants than an ERP application. Besides there are diverse ways to setup a multi-tenant database

(Aulbach et al., 2008). It is possible to use private tables for each tenant, but tables can also be

shared by using meta-data columns. The meta-data columns used are in minimal way a tenant and

3. Analysis

14

row column. In this way tables for multiple tenants can be merged into one table. The downside is

that there is an overhead of data, caused by the meta-data columns.

In multi-tenant systems enterprises are often the tenant and each tenant has multiple users that

access the same data. Each tenant has their own processes and each process and be split up in

services. In order to optimize the performance load balancing can be applied. Messages should be

send to different priority queues (Liu et al., 2010).

Ruehl and Andelfinger (Ruehl & Andelfinger, 2011) designed an architectural model for

customization of SaaS applications on the tenant level. Because the processes for tenants may differ,

the application should be adapted for each tenant's process. With the use of software product lines,

the application can be tailored for all tenants.

 Service Level Agreements
The contracts of a SaaS solution often comes together with a service level agreement (SLA). Since the

SaaS provider often use a PaaS or IaaS solution there is service build on cloud layers offered to the

end user. Grati et al. (Grati et al., 2015) designed a model to manage entities in a layered cloud

construction for SLAs. In the model a service can be composed by other services with underlying

SLAs. These SLAs then have a direct effect on the SLA of the composed service, because of the

dependency. The management of these entities is important of SLA violation and possible penalties.

SLAs are always established between two parties. For SaaS providers there are two SLAs, one

between the SaaS provider and and the other SLA is established between the IaaS provider and SaaS

provider. Service Level Monitoring can be done to prove that the agreements in the SLA are met. A

service can have a certain minimum availability (for example 99.9%) excluding planned maintenance.

(Koski et al., 2016) The following calculation can be used for monitoring the availability:

uptime = 100 * (time-downtime)/time (Schwaber & Beedle, 2001)

 Service Agreements
Where the SLAs describe the agreed quality of service (QoS) between the client and provider, the

service agreement describes what services are provided to the client. The rules or limits for using a

service can differ per client, which appoints to a customisability for the SA. An example for

implementing a customizable Service Agreement (SA) is presented by Molina et al. (Molina-Jimenez

et al., 2011) In their proof of concept a policy manager (PM) is implemented between the gateway

and the service interface. The policy manager, which checks the input given by the client on

compliance with the SA. The result of this check on compliance can be either an acceptance or a

refusal. Customisability of the SA can be done with local (private) business policies (LP). In the proof

of concept both SA and LP are defined in the EROP (Events, Rights, Obligations and Prohibitions),

which is a rule based contract specification language. This enables service providers to customize the

SA for (a class of) clients.

3. Analysis

15

Figure 6: Proof of Concept Implementation (Molina-Jimenez et al., 2011)

 Business Rules
Business rules define which information is needed and which actions are triggered by the given

information. The process of defining business rules is needed to transform (sub)process into a service

component. The designed service should be able to automate (a part of) the process. Moore et al.

(Moore & Mahmoud, 2009) used a case study to show how business rules can be stated in words and

transformed to web service definitions in WSDL.

Business rules also apply in context-oriented programming. In the same branch enterprises may have

different business rules or processes, but are performing and delivering the same service. According

to Truyen et al. (Truyen et al., 2012) customizability can be achieved be designing multiple objects,

which can be used by tenants by dependency injection. As use case a system for online hotel

bookings is used. Where hotels can configure their own tariffs, for low season, high season and VIP

guests (Truyen et al., 2012). All tenants make use of the base layer can are able to add layers for

customization of the software.

 Agile Project Management for SaaS
One of the most important things for SaaS products is care. Since the application is not installed on-

premises, but is just a service there is low total cost of ownership. When customers are unsatisfied

with the service it is, economically seen, easily to switch between similar SaaS applications. Besides

users are intended to complain more easily about the user-friendliness of the application. (Koski et

al., 2016) The application might be used by several types of users. Some users will be professionals in

the application, others might use only a minimum set of features. The application should be have an

intuitive interface in order to gain a higher user satisfaction (Koski et al., 2016).

"Being wrong about what customers want can mean losing a when another service provider, with

possibly an inferior solution by many aspects,hits the expectation target exactly." (Koski et al., 2016)

Customers see SaaS as an on demand service. Not only for the up-time of the service, but also for

functionality development. Applying lean management on the deployment of the services might help

in meeting the demand. Benefield (Benefield, 2009) describes four lean management techniques

that can be applied on deployment strategies for SaaS:

 Poka Yoke

 Jidoka

 Kaizen

3. Analysis

16

 Just in Time

Poka Yoke aims at mistake proofing. The release of new components for the software, and in special

for long release cycles, may cause bugs. Variances of software environments should be kept to a

minimum in order to be able to reproduce environments. Furhtermore mistakes and errors can be

prevented by automated deployment and management tools. These tools can help in version control

and connecting the right packages with a certain environment. When also test automation is

realised, changes in the software can be tested, tracked and managed well. Jidoka follows the

principle of automatically building artifacts that meausre and reports errors. This method helps in

builiding more stable software, testing and troubleshooting. The Kaizen method can be used for

continuous improvement. Not alone for solving errors in the system, but also for understanding the

workflow of the customers. When tracking the activity of users it is possible to figure out which

functions are popular and which not. Eventual the software can be improved in such way that the

workflow of the can be improved by the software. The just in time method aims at the reduce of

waste. If only functionalities are build that are really required, the waste is left out. Software

architecture may add waste to the project, for a part of the flexibility is handed in and redesign may

be necessary in the future.

Autonomous software deployment should help software providers in achieving continuous

development of their software. According to Bajighar and Shahzad (Bajighar & Shahzad, 2017) this

can be achieved by by the adoption of some fundamental principles for software development

management. Since cycles for software releases becomes shorter it is important that developers are

perpetual in development mode, because new features are build continuously. Post-agility is

mentioned as possible next step in software development. Where post-agile is a combination of

Waterfall or planned development and agile techniques. The following princples are described for

self-driving software development:

 Every requirement is assigned a valuation

 Every requirement is assigned to a task-list

 Every task is assigned to a workflow

 Every team member is assigned to at least one role

 Every team member has a work queue

 Every requirements delivery status is available on-demand

The valuation of a requirement is done based on four factors, namely:work size, size of function,

effort and return on investment (ROI). All task for delivering the requirement are stated in a task-list.

For each task on the task-list there are workflows. All team members have at least one role assigned,

and more roles are possible. The task-list can be split up assigned a task with a certain workflow a

queue of a team member. In this way it is possible to monitor what the status of a requirement is.

For the application of the principles of self-driving software application Bajighar and Shahzad

(Bajighar & Shahzad, 2017) propose the following six gears:

 Rapid continuous design & requirements

 Rapid continuous development

 Rapid continuous feature assembly

 Rapid continuous testing & acceptance

 Rapid continuous marketing & training

 Rapid continuous product evolution

3. Analysis

17

These gears ensure that every team member is continuously working on the development and

evolution of the software.

Scrum as agile method can be used for short release cycles in software development. Especially

Scrum type C allows to develop and release user stories fast (Agarwal, 2011).The concept of Scrum C,

also known as continuous Scrum, is that each sprint has a release cycle of three weeks and each

week a new sprints starts. This means the there are three sprints active simultaneously. Because

there is every week a new release cycle and a new start of a sprint. User requests are picked up

faster than in other types of Scrum. An use case at InstantApps has shown that with the use of Scrum

C more work-items were finished in four release, than possible with other types of Scrum (Agarwal,

2011).

Due to the good connectivity and online collaboration tools, it becomes easier to set up distributed

teams. Besides s that co-create the software can be geographically widespread, which can be a

barrier for good transfer of requirement information. Femmer et al. (Femmer et al., 2014) designed

an refined artifact model, based on an original model from previous research for organizing and

managing software projects. The original model is used in a software project and during the project

refined. The main artifacts of the refined model were: Planning, Requirement & Specification,

Change Management and Testing. The original model was set up aiming at an agile way

development. After refining the model it could be concluded that more traditional project

management artifacts were added to the refined model. The artifacts from traditional project

management were added, because more and more business context is needed when working with

distributed teams.

 Customizable SaaS
Customizable SaaS allows the software provider to serve multiple clients with diverse Software

Product Lines (SPLs) within the same software package. A feature model can be designed for the

application, where there can be mandatory, optional and alternative features. (Mohamed et al.,

2015) The mandatory features belong to the core of the application and are required to let the

software function. The optional features are additions to the core features to support or automate a

part of the business process. Alternative features contain functionality for similar processes, but have

a slight other type of content. For example products can be bought in a webshop by credit card or

other online payment method. There is a fourth feature similar to the alternative features, but make

use of the 'or' principle. On a certain point of the process, you have to choose for either the

functionality of feature A or the functionality of feature B.

Since most SaaS applications have an continuous development cycle the updates should also be

managed. Moens et al. (Moens et al., 2012) designed a model for developing and managing

customizable software. Because multiple users are using the same system it is important that a

feature change does not affect the application negatively for (other) users. Therefore features are

defined as optional blocks that can be configured. A model where features and their interrelation are

defined can be translated in logical statements. The statements are used for designing a correct

configuration map and deployment in a runtime environment. This model aims to deliver a high

quality of service for customizable SaaS to all different clients. In a later research Moens et al. (

Moens et al., 2016) showed that multi-tenancy in SaaS applications can be organised with multiple

instances of the software. When there is a separate instance for a tenant client specific requirements

can be implemented, without affecting other instances. For managing the customizable SaaS a model

is developed where each application is connected with a configuration. The configuration determines

which features are included in a certain instance of the application. This model allows two strategies

for allocating cloud resources to the applications. Complete instances of a certain configuration can

3. Analysis

18

be deployed on a server (Application-Based Binary), but it is also possible to deploy feature instances

on a server (Feature-Based Binary). Besides a hybrid approach is possible where common used

application features are compiled in a single instance and additional features are included by using

the feature-based binary approach.

An idea for application can be originated as application for one tenant, but might be expanded as

multi-tenant application.

Figure 7: Application-Based Binary (Moens et al., 2016)

Figure 8: Feature-Based Bianry (Moens et al., 2016)

The customizability of the application be can realised by variations. There are two types of variations:

compile time variation and runtime variation. Compile time variation is the most flexible type of

variation, because a feature can be build by writing custom code. (Moens & De Turck, 2014) The

code can be added to one single instance for a certain tenant. Code changes have effect on the

whole instance, when a tenant has a specific variation in contrast with other tenants or the original

functionality of the application, a separate instance for the tenant can be set up. Runtime variations

can be realised by configuration in the application. This type of variation can be configured per

tenant or even on user level. For these variations no internal code changes are needed. However,

this type of variation is less flexible than compile time variations, for the functions for customizability

3. Analysis

19

have to integrated in the application. Due to the differences of implementation and the size of effect

on the application for both variation types, there are two different development strategies.

Figure 9: Development and Deployment Processes for Compile Time Variation (Hendrik Moens & De Turck, 2014)

4. Analysis Overview

20

4 Analysis Overview
Considering all the found literature there is no method for successful implementation of existing

software in the primary business processes of an enterprise. However the found literature covers

partially steps that are required during the implementation of customizable SaaS. Mainly the sections

‘Change Management’, ‘Software Development’, and ‘Data Migration’ are interesting and relevant as

components of a complete implementation method. Where data migration will be an obvisous step

in the implementation method, change management will be less visibile as step, but interwoven

throughout the complete process.

Furthermore the customizability of the application is discussed in little detail. Customization can be

established on different levels, namely the available services in the application, the SPLs that are

realised by the application and service agreements. The results did not cover the customizability by

continuous development of the software in combination with co-creation. Besides it might be

needed to develop new features in addition to the current state of the software in order to support

the business processes of a new client. The proposed methods for achieving customizability are

aiming on the design of customizable applications instead of informing about how to handle with

existing and connecting new customers on the same SaaS solution.

Literature regarding agile project management is moreover focused on delivering conitinously stable

software. Building stable software is important and the techniques that are proposed can be used

within agile software development methods, but it does not dwell on implementation methods.

It can be concluded that there is a knowledge gap for the implementation of existing SaaS

applications (applications that are already used in production) at the and continuously development

of the software. Since there is no complete implementation method for customizable SaaS

applications and the need from the business for such a method, brings me to the design of such a

method. Though parts of the implementation method can be derived from the found literature, since

they can be used within the implementation method.

The way of cooperation between ASP and is not clearly prescribed or highly recommend by the

literature. It seems that the cooperation between ASP and depends on a number of factors.

involved is partially defined by the chosen software development method, which directly has an

effect on the cooperation between ASP and . Besides cooperation is dependent on relation between

the parties and the made agreements, mutual commitments and attitude.

4. Analysis Overview

21

5. Implementation Method

22

5 Implementation Method
This chapter describes the phases of the implementation method. The method provides clear of all

steps in the process. It is developed with a hybrid approach of Waterfall and Scrum in mind. The

traditional approach is effective for projects with small to no requirement changes, where Scrum is

suitable for handling requirement changes (Mahalakshmi & Sundararajan, 2013). However, this

implementation method will differ from the standard approaches, for there is already a working

software product. The hybrid approach will be applied for adjusting the software where needed and

for having a clear implementation plan. The traditional waterfall approach will be used in the start of

the implementation method for gathering the required information and for defining the scope of the

project. Waterfall is a more predictive software development method than agile methods. Using

Waterfall in the first steps of the implementation method helps in having a better insight in impact

and planning the to be developed features. In order to be flexible during the implementation, Scrum

will be applied as agile software development method. One of the advantages of using Scrum for

developing software is that errors are fixed during the development of the software in contrary to

Waterfall, where errors are fixed after completing all requirements (Cocco et al., 2011). When it

appears that unforeseen requests must be added during the software development method, it is

clear that the scope changes, which has an effect on the duration of the implementation phase. Off

course unforeseen requests are as well as possible omitted by the “Fit Gap Analysis” and “Define

Product” steps in the implementation method. Using a hybrid approach should make the

implementation phase more predictable, omitting delays during the implementation for receiving

information of other parties and still have the flexibility to test, evaluate and change functionality

during the software development.

Figure 10: Implementation Method

Actors

In the implementation method two main actors are identified. Naturally in an implementation

project there will be more actors involved in the project. Still there are two main actors that form the

link between customer and ASP. The two main actors are:

5. Implementation Method

23

 Product owner

 Superuser

In the implementation method, the actor product owner is mentioned often, since there will be one

or two dedicated persons for managing the implementation. The product owner is an actor in service

of the ASP. The product owner is the link between the ASP and the customer. The customer also has

to assign one or more persons to manage the project on the customer side. These persons are often

the superusers and must have detailed process knowledge in order to support the implementation of

the new SaaS solution. When the customer is mentioned in the implementation method, the

required action is often being addressed to the superusers.

 Model “as is” Process
The choice for new software can be derived from the desire to optimize current business processes.

IT is seen as one of the great enablers of change in organizations. IT in itself is not able to make the

change, but it is supporting in optimizing processes (Davenport, 1993). Business Process

Reenginering (BPR) is a method that can be used for optimizing the process. The method has certain

phases, whereas the first stage is to model the “as is process”. Requirements for this phase are “a

clear understanding of the , market, industry and competitive directions” (Attaran, 2004).

Figure 11: Model “as is” Process

5.1.1 Information Gathering
Input

When modelling business processes it is important to gather information as first step. A clear

understanding about the processes and the corresponding inputs and outputs of the processes are

required for modeling the “as is” process. Information should be gained about the processes that will

be concerned during the reengineering. In case of software replacement by SaaS, this will be the

processes that are currently performed in the software package that is going to be replaced. Besides

all other processes that will covered in the new SaaS solution, but currently don’t have a supporting

software solution.

Method

Information will be gathered during a field research. The ASP has to assign a product owner for the

implementation project. The should provide availability of their customers. The product owner and

customers will examine the current processes. Besides the inputs and outputs of these processes will

be gathered.

5. Implementation Method

24

Output

After gathering the information the following outputs could be delivered:

 Transcripts of the interviews with the customers

 Process documentation of the current process

 Screenshots of the current used system as addition for extra information regarding the

transcripts

 Contact details of stakeholders, both internal as external

5.1.2 Model Process
Input

The gathered information is usable for modelling the processes of the . These models help in getting

a clear understanding of the current process and possible bottlenecks can be identified. (Ko, 2009)

(O’Neill & Sohal, 1999) Besides the product owner gets closely involved with the processes. The

communication will also be supported by an understanding of the existing processes (Davenport,

1993).In the end the current process models can be used to check if all processes are supported by

the new SaaS solution.

Method

The Business Process Model and Notation (BPMN) (Object Management Group, 2011) is a standard

for modelling business processes. It is readable and understandable for both technical and non-

technical people. This also improves the common understanding of the current existing processes.

Output

The result of this action are the business process models of the processes that will be supported by

the new SaaS solution. As an addition to the process descriptions specification of the inputs and

outputs related to process can be delivered.

5.1.3 Evaluate Process Model
Input

The designed process models are the input for this step in the process. A correct and clear design of

the process models is important. During the rest of the implementation project, these models can be

used as source.

Method

The product owner and the customers will evaluate the business process models. This evaluation has

three main goals.

 Check if there are misconceptions in the process models;

 check if all processes have been covered by the models;

 and if the models are correct, confirmation of the common understanding of the processes.

Evaluation of the processes can be done best in a physical session. When a process is unclear, it

should be tested in practice. After testing the process it graded as correct or incorrect.

5. Implementation Method

25

Output

After approving the designed process models, the models and information can be completed for the

next step of the implementation method. The models can be shared in team folders and shared with

the software development team.

 Fit Gap Analysis
The fit gap analysis is a technique to find the alignment between business processes and technology

(Pajk, 2013). The analysis indicates fits of the software for supporting the business processes, but

also the gaps. The found gaps have to be closed during the implementation process before the

software is usable for the customer.

Figure 12: Fit Gap Analysis

5.2.1 Perform Fit Gap Analysis
Input

The gained common understanding of the processes to be reengineered and executable processes in

the new SaaS solution are the basis of the fit gap analysis. The expertise and knowledge about the to

be implemented software is required for matching the chosen software with the designed “as is”

process models (Gulledge, 2006). The “as is” process models serve as reference models for the fit gap

analysis (Pajk, 2013)

Method

The method and the approach of the fit gap analysis differs from standard methods. Usually business

processes are reengineered to achieve certain optimization goals. After reengineering the business

process a fit gap analysis is applied to check and compare information systems on compliance with

designed processes. (Gulledge, 2006; Pajk, 2013) The difference in order steps originates from

business model of customizable SaaS. Before selecting a software provider, the often performs an

analysis for selecting a provider. This other approach fits in this implementation method, for it is

designed from the point of view of an ASP. Pajk (Pajk, 2013) presents two types of fit gap analyses,

the high level and detailed fit gap analysis. The high level fit gap analysis is mostly used for the

selection procedure of a software solution. The detailed fit gap analysis is used during the

implementation of a selected software solution. The detailed analysis will be used in this step of the

method. The fit gap analysis can be performed by testing the evaluated process models in the new

SaaS solution.

5. Implementation Method

26

Figure 13: Detailed Fit Gap Analysis Process (Pajk, 2013)

Output

The gaps found during the analysis should be documented. All the found gaps together form the fit

gap analysis. Since the SaaS solution will replace a current system and it has an effect on the primary

business processes, most of the gaps will be resolved by an adaption of the system.

5. Implementation Method

27

 Define Product
In the fit gap analysis are the found gaps between current business processes and the SaaS solution

described. In addition to solutions for closing the gaps, the might requests for additional features.

The requested features are often an extra stimulant for changing from software vendor. The found

gaps and requested features can be translated to user stories. The user stories end up on the

backlog. After defining the user stories, the minimum viable product (MVP) can be defined. The MVP

is a subset of the defined user stories, which must be completed before going live. The user stories

that are not in the subset of the MVP can be developed for this after going live. Both user stories and

MVP must be evaluated by the and the product owner, so that scope is clear before starting the

development of new software components. This approach fits in the hybrid Waterfall-Scrum strategy

which is used in this implementation method.

Figure 14: Define Product

5.3.1 Gather User Requirements
Input

In addition to the functionality offered by the new SaaS solution and then found gaps that must

closed, the customer can aslo request other features. Since there is already an established business

process and in most cases a working software product, the customer can identify where these

features can add value in the process. Detailed information about the requested functionality and

the business rules to which the feature has to apply are necessary as guidance in the software

development step of the method. Besides it is critical in omitting mismatches between the processes

and the requirements of the supporting software (Boehm & Turner, 2005).

Method

Lauesen (Lauesen, 2002) developed a method for classifying requirements into four different levels:

 Goal-level

 Domain-level

 Product-level

 Design-level

Classifying the requirements is helpful in defining user stories and in a further stage for creating the

functional designs, because the level of impact of the requirement is known. The goal-level

requirements describe which goal or KPI must be met when making use of the application. Domain-

level requirements describe which features must be included by describing the tasks to be

supported. The product-level requirements state the required functions of the applications. Finally,

the design-level requirements describe which design requirements there are.

5. Implementation Method

28

Output

At the end of this a task user requirements should be described and categorized in the four

requirement levels. These requirements should clarify and describe feature functionality that has to

be built. Goal-level requirements can be seen more as an overall goal rather than a hard

requirement. Most of the requirements that will be gathered will be within the domain-level,

product-level and design-level requirement areas.

5.3.2 Define User Stories
Input

The fit gap analysis and the user requirements will be the source for defining the user stories.

Insights gained from conversations should provide the product owner with most of all details. The

goal is to create an overview of the required functionality as complete as possible. A complete

overview of user stories can omit change requests that could be foreseen in advance, during the

implementation.

Method

The gathered user requirements and the found gaps from the fit gap analysis can be written down as

user stories. During the informative sessions with the customer, user requirements are defined.

These requirements are often described from a customer perspective. The requirements are possible

feature requests, which should be split up in users tasks. A feature or requirement can generate a set

of user stories, which clarifies the functionality of a feature or properties of a requirement in more

specific detail. The user stories can be planned on a Scrum board. User stories are manageable

programming tasks for the software developers (Karlesky & Voord, 2015). Each user story must

contain the following elements (Lucassen, Dalpiaz, Werf, & Brinkkemper, n.d.):

 For whom is the feature built

 What the user expect from the system

 Why the functionality is expected from the system (optional)

Lucassen et al(Lucassen et al., n.d.) defined the following criteria for defining high quality user

stories.

Figure 15: Quality User Story Framework

5. Implementation Method

29

Output

The deliverables of this tasks are all the user stories retrieved from the fit gap analysis and the user

requirements. The user stories can also be grouped by feature/functionality. The priority and

dependencies on other user stories can possible give more depth insight, which will usable in the

planning task.

5.3.3 Define Minimum Viable Product
Whereas a minimum viable product (MVP) is used much, in defining the requirements for a

prototype, in order to receive valuable feedback from the early adopters (Lenarduzzi & Taibi, 2016).

The minimum viable product will be used in this method to define the scope of the software

implementation project before the ‘go live’ moment.

Input

The input for defining the MVP can be retrieved from the user stories that were defined upon the fit

gap analysis and user requirements in the previous steps. Identified gaps and additional

requirements from the client are used as input for defining the MVP. The product owner and client

can discuss the mandatory features during the user requirements gathering. For each stated

requirement it is important to have clear, how essential the requirement is for making improvements

to the current process. Keeping in mind that BPR has as goal to improve current processes

(Davenport, 1993), which will be supported by the SaaS solution you have as ASP.

Method

In traditional software development cycles the scope of the project is equal to defining the

requirements. In agile approaches the scope is more project focused rather than product focused

(Boehm & Turner, 2005). This enables the software provider to assign a subset of the user stories to

the project scope. The user stories that are out of scope are automatically assigned to the backlog for

implementation after go live.

Output

The MVP shows an overview of the user stories that will be developed before the ‘go live’ moment.

In order to get a clear overview the user stories should be grouped per functionality and in addition a

short description of the complete functionality can be added. The MVP should also contain a section

describing which user stories are defined but are out of the scope for the MVP. This section informs

the customer about the cognizance of the requested functionality.

5.3.4 Evaluate Minimum Viable Product and User Stories
Input

The defined MVP is the subject of discussion in this task. In the lead to here there should have

spoken between the and ASP for the establishment of the MVP and the user stories that it contains.

A final check and agreement from the is sufficient to proceed to the impact phase.

Method

The product owner has to evaluate the MVP together with the customer. The MVP has to be

evaluated on the following points:

5. Implementation Method

30

 Completeness of the user stories

 Defined scope of the MVP

It is best practice to evaluate the MVP in a physical session with the . Any notes about the MVP can

directly processed in a revised version of the MVP, when the number of adjustments is low.

Output

An agreed MVP will be the deliverable. The MVP reflects the scope of the project and can also

contain commitments from the ASP to the for feature development after going live. The evaluated

MVP should be accepted by the directors or main responsible person of both the ASP and in order to

omit future discussion about the evaluated MVP.

 User-Centered Design
Based upon the defined user stories and the MVP designs for the to be implemented features can be

made. These designs will provide information to project team and is usable as reference. The scope

of the project and requested features and their appliances will be more clear to the team. Well

developed designs ensure that development of new features can continue even without extensive

contact between the and the project team. As this method is used for existing applications new

features should be integrated with the current system. Therefore the won’t be involved as much as

in complete agile methods. Besides all s share the same codebase and therefore design decisions

should be made by the project team or product owner and inspired by the customer.

Figure 16: User-Centered Design

5.4.1 Create User-Centered Designs
Input

Creating designs is a component of the traditional development strategies, where the designs are

created before the development phase. In Agile methods, the creation of designs is uncommon. Agile

methods like Scrum have in contrast with traditional software development methods more user

participation it the project (Chamberlain, Sharp, & Maiden, 2006). User-centered design (UCD) is a

technique where the user takes a central role in the design. The designs are described from a user

perspective, explaining the functionality from a user viewpoint. The context and user stories are

defined and will be used together with the MVP for developing the designs. Putting the user in the

center.

5. Implementation Method

31

Method

The UCD will be developed on top of a set of user stories that belong to one feature. The UCD has to

contain the following elements:

 Goal of the feature

 Feature description

 Usage description

 Prototype

 Corresponding user stories

The goal of the feature will provide an explanation why the feature is requested and can give extra

context information for the software developer. The basic principles are explained in the feature

description. When the user or product owner has an idea for the working of the feature, it can be

described in the usage description. A prototype or sketch of the features will be valuable for the

frontend designer to implement the features in the right visualization. At last the corresponding user

stories help to capture the overall scope of the feature and it can be used for keeping track of the

user stories on the backlog.

Output

The designs delivered contain information about the features that have to developed and the

corresponding user stories. These artifacts will be used as guidance by the software developers. It

should provide them an insight in the perspective, requirements and how the feature will used.

Costly revisions of the built software should be omitted as much as possible by using these designs as

guide, for they are user-centered developed. Besides the customer is able to verify the design before

all user stories are implemented. Design prototyping is faster than development prototyping

(Chamberlain et al., 2006) and can be used to omit unnecessary design revisions.

5.4.2 Evaluate User-Centererd Designs
Input

The created UCDs will server as input for the evaluation with the customer. Evaluating the designs

with the customer omits misunderstandings about the features that are going to be built. Besides as

ASP you also prevent a waste of resources by evaluating and validating the design before starting the

development. Evaluation also contributes to the acceptance of the feature that will be built based on

the design, since the design is approved by the customer.

Method

Evaluation of the deisgn should be done by the product owner as representative of the ASP and the

superusers of the customer. The superusers should validate the design against the requirements

from the business. After the validation of the design the superusers can approve or decline the

concept. When the concept iis declined, adaptions should be made to design or even a complete new

design can be created based on the gained insights.

Output

The evaluated UCDs are the output of this step. When the evaluated UCDs differ from the original

designs, it also impacts the defined product. Therefore it it could be that based on the evaluated

design it is needed to describe new users stories and add these to the MVP as described in the phase

‘Define Product’. The evaluated design will be the guide in the ‘Software Development’ phase for the

developers.

5. Implementation Method

32

 Planning
Planning is the process where the scope of the project is expressed in time and required resources.

An accurate planning is important for scheduling budget, resources, time and costs (Nasir & Study,

2006). In the business models for SaaS applications, mainly the required resources and time and

internal budget play a role, since the is being charged for the use of application instead of charging

the directly for the development. Having an inaccurate planning estimation may have internal and

external effects.

An inaccurate planning can request more internal budget, resources or time, which can affect the

planning for other projects. On the other hand, the will very likely have acted on the estimated

planning within in their organization. Personnel capacity may be reserved for implementation on

both the customer side as the ASP side. Besides IT contracts of other software suppliers may already

have been ended.

For making a planning, several steps are must be taken. It is required to make an estimation of the

scope of the project. After estimating the scope of the project, resources should be allocated to the

project.

Figure 17: Planning

5.5.1 Estimate Project
There are three methodologies for making an estimation (Nasir & Study, 2006):

 Analogy Method

 Top Down Method

 Bottom Up Method

The analogy method requires historical data of similar projects. By comparing the current project

with completed projects, it is possible to make an estimation for the planning. The top down method

is focused on the characteristics of the project and is more an abstract method for estimating the

project. The bottom up method performs an estimation per component (Nasir & Study, 2006). Since

the project has a backlog with user stories, the bottom up method can be applied for making an

estimation per user story.

Input

The project will be estimated by story points. The project backlog is the resource that contains all

items that have to be completed before the goes live with the software.

Method

5. Implementation Method

33

Estimation backlog items will be done by assigning story points. Assigning story points is done during

a team session while playing planning poker. The idea behind planning poker is that each team

member makes an estimation of the required effort by playing a card with a number of points. Each

team member has the same set of cards. All team members shown their card at the same moment,

in order to avoid team members influencing each other. The team members that have a higher or

lower estimate than the average team members are allowed to discuss their estimation until a

consensus has been reached in team. This process must be repeated for each item.

Output

When each backlog item is reviewed, it is known how much it will probably costs to complete the

project. The number of estimated story will also play a part in assigning resources to the project.

5.5.2 Assign Resources
The projects for customizable SaaS solutions differs from traditional project in the maintenance

phase. Were in traditional projects a request for change in the maintenance phase can be seen as a

new project with it’s own scope, customizable SaaS is often treated as software on demand as

maintenance is included in the standard fee. Therefore there should be two teams, one for

maintenance and one for new implementations, when the number of s is growing. Having a

dedicated team for new implementations ensures that a certain allocation of resources is only

working on implementation, which will result in a more reliable planning.

Input

For making the right distribution of resources, a number of items must be inventoried. The backlog

items that are included in the MVP must be completed before going live. An estimate for these items

has been made in the previous step. A first suggestion or goal for going live may already been given

by the and can be included the process of allocating resources. It is also possible that there are

multiple projects simultaneously for new implementations, which have to be taken into account.

Method

Each developer has to be evaluated on its velocity expressed in story points per sprint. Also the ratio

between the maintenance team and the implementation team has to be defined. Based on the ratio

and total velocity , a composition for the two teams can be established. It is possible to exchange

team members between the two teams during the implementation, as long as the ratio will be

retained. When the ratio changes, this will have an impact on the planning.

Output

The composition of implementation team and its velocity is defined and can be used creating a

planning.

5.5.3 Create Project Planning
Input

The backlog items that are included in the MVP and their story points and velocity of the assigned

team are required to make an effective planning. The planning for other new implementations and

their backlog items also have to be considered.

Method

5. Implementation Method

34

The total estimated effort needed for the project and the project team are known. The follow-up is

the creation of an accurate planning. First the order in which the items must be completed should be

determined so that dependent items are built in a logical order. Based on the total number of story

points and the team’s velocity, the total required sprints can be created. The backlog items must be

planned in logical order from the first sprint to the last. When features are independent from each

other, then the corresponding features can be built in parallel.

Output

Finally a planning on items to be completed on sprint level will be delivered. This detailed planning

can also be summarized in a brief planning, that can be used for communication with the .

5.5.4 Evaluate Planning
Input

The created planning is an estimation from the team based upon the open backlog items and

estimated effort for each effort. However, the might have remarks or disagrees with the planning.

Therefore it is important to have a meeting with the to discuss the planning.

Method

The final approval of the planning should be done in cooperation with the . The product owner and

customer have to evaluate the planning. The evaluation contributes to the involvement,

expectation and the common understanding. A close relation and common understanding keeps the

communicative barrier low. The evaluation might request for a revised version of the planning.

Output

The evaluaion will show whether the planning is agreed or not. Since the MVP was accepted in an

earlier stage, no other requests should be added by the . The might possibly disagree with the

project time or the order in which features are released. When concluding that the project time is

too long, it is needed to move back to the task ‘Assign Resources’. If the planning is improper, the

planning of items in the sprints have to be revised. In case the planning is agreed by the , the

planning could be endorsed by the managing directors or project supervisors of both the ASP and to

show their mutual commitment.

 Software Development
The implementation method uses a hybrid approach of traditional and agile software development.

The previous steps in the implementation method were predominantly using the traditional

approach. In order to have flexibility during the actual software development phase, an agile

approach has to be applied in this phase.

There is a variety of agile software development methods and frameworks. It is important to

consider how the previous steps in this implementation methodology will fit with the chosen

software development method. Since the backlog and planning already has been made up, the

software development should fit this approach. Besides the software development should also be

able to track delays and possible wrong assumptions in the planning in order to tackle problems as

soon as possible.

A software development method that fits with previous defined phases in this implementation

method is Scrum. The created backlog and effort estimation using planning poker are parts of Scrum.

5. Implementation Method

35

Figure 18: Software Development

5.6.1 Sprints
Input

The established planning will be used during the software development phase. The step ‘Sprints’ is a

repeating cycle until all sprints are finished. The standard input for a sprint is the established ‘Sprint

Backlog’. Since one of the aims is having an accurate planning, a first planning for all sprints was

made in the planning phase.

Method

Scrum is a method for organizing a project in an agile way. There is a wide variety of Scrum guides,

explantions and and reviews of use cases. Being agile means that flexibility is brought into the

process in comparison to the waterfall approach. Therefore no strict standard format has to be

applied for Scrum. However, there are basic principles that characteristic Scrum (Deemer, Benefield,

Larman, & Vodde, 2010). The main practices to keep control on your project are:

 Sprint Planning

 Daily Standup

 Sprint Review

In the Sprint planning a subset is taken from the product backlog that is considered a reasonable

amount of effort for the next Sprint. In this method, the Sprint backlogs are set-up in advance, since

an estimate effort is done before the start of the software development. However, when estimation

is not accurate, the scope of the planned sprints might change.

The daily standup brings the team together and raises possible problems in an early stage. Besides it

is a daily review on the progress and productivity of the team.

At the end of each sprint, a sprint review should be held. In the sprint review, the team discusses the

work done in the last sprint. The sprint burndown chart shows the work done in story points and let

the reflect on their productivity.

Output

At the end of each sprint iteration the output of the sprint review can be used for adjusting the

team’s velocity and adjust the planning the new established team velocity. Besides each sprint

5. Implementation Method

36

delivers new functions for the software, which can be tested by the . When all backlog items are

finished, the development phase can be ended.

5.6.2 Training
Input

The training of the customer’s superuser(s) is done parallel with the Sprints. Usually training is

performed after developing the product, but since there is already a working version of the software

that is used by other customers, the superuser can already master the functions and tools offered by

the current state of the software. Besides the requested features that were found in the fit gap

analysis and are included in the MVP, are implemented in the required sprint cycli, which means that

the software will provide new functionalities to the superuser after each sprint.

Method

During the software development phase the product owner regularly meets the superuser(s) for a

training session. In the training session the product owner demonstrates the new functions

developed in the last sprint(s). After the demonstration the superuser should test the functionality

under supervision of the product owner. Possoble feedback can directly evaluated by the product

owner.

Output

After training the superuser must be able to train other users withing the customer’s company. The

superuser will be the first service line for internal questions regarding the new SaaS application.

During the training session, feedback can be given about the developed functions. Possible requests

for changes might arise during these sessions. Changes in itself are not a problem, but it has an

impact on the planning. According to Karlesky and Voord (Karlesky & Voord, 2015), changes should

be managed instead of being avoided. Thus when a change is required, it can be accepted, but the

consequence is that the scope of the planned sprints will change and thus a later go live moment.

 Migration
Migration is the transfer of data from the the application that is going be replaced to the new SaaS

solution. In order to get a higher user acceptance, ensure continuity and prevent overhead, correct

migrations are necessary. Since the (crucial) gaps that possibly were found between the current

system and new SaaS solution, are closed, the new SaaS solution has function parity. There it should

be possible to migrate parts of the data collected in the current system.

“In summary, migration to SaaS requires to consider the specific migration strategy according to

legacy system and existing SaaS. If existing SaaS has the same business functionality of legacy system,

users can replace legacy system by SaaS.” (Zhao & Zhou, 2014)

5. Implementation Method

37

Figure 19: Migration

5.7.1 Define a Migration Plan
Input

A migration helps in the processes for tracking down what data should be migration and in

determining the right timepath development and testing the migrations. Knowledge about the

functionality of the current system and possibilities for data output or database design are necessary

for defining a migration plan. In case the current processes are covered by worksheets, an overview

of the available data will be used as starting point.

Method

For defining the migration plan it is recommended to have a close cooperation between the

customer and product owner. The product owner and customer have to do an assessment of the

possibilities regarding the masterdata of the new SaaS solution. Besides the possible exports or data

outputs of the legacy system have to be evaluated. Possibly a data engineer or system administrator

of the legacy system can also provide information about the available data in the legacy system. A

selection for required and valuable data transmission should be made. After selecting the data for

migration a plan can be set-up. Since both product owner and customer are involved in the task of

defining the plan for migration, both and ASP are aware of what will be migrated at go live.

Output

The data selection for migration and example dumps are part of the migration plan. These data

dumps will be used by the ASP for analyzing the properties of the data and for developing the data

migration artifacts. Based upon the selected data and the expert knowledge of the product owner,

an effort estimate can be made for the required migrations. The ASP should make

migrating/importing data from other systems standard functionality. Most customers are likely to

have similar migration requests, since they all fit in the same application.

5.7.2 Develop Artifacts for Migration
Input

The migration plan is the starting point for the development of artifacts. When the data dumps and

corresponding descriptions does not contain sufficient information for developing the migration

artifacts, they should be complemented by the product owner (or customer).

Method

5. Implementation Method

38

The developers should analyze the data dumps together with the product owner in order to clarify all

details. After clarification of the dumps, mapping models have to be developed as migration artifact.

The dumps may contain dependent models which rely certain information in the master data of the

legacy system. Therefore developing migration artifacts for the master data or independent data

should be used as starting point.

Output

The mapping models or data converted in a readable format are the deliverables for this step. It

should be possible to import the selected data into the accepation environment of the new SaaS

solution.

5.7.3 Test Migration
Input

The developed artificats have to be tested before the migration can be used in the go live step. The

expert knowledge of the product owner will be used for evaluating the artifacts. Besides the

customer also has to the evaluate the developed artifacts and has to approve or decline the artifacts.

Method

The migration artificats have to be used to import the data in the acceptation environment. The

product owner will inspect the imported data first. Possible modifications or corrections can be made

before letting the migrations reviewing by the customer. After acceptation of the developed artificats

by the product owner, the artifacts can be evaluated by the customer. Reviewing the artifacts by the

customer can be done best in a meeting or demonstration by the product owner.

Output

Testing the migrations can have three different outcomes. The customer has to accept or reject the

developed migration artifacts after testing. When the artifacts are rejected they miss either

migrations or the migrations contain errors. If there are missing migrations, they should be added in

the migration plan and proceed the process from the step ‘Define a migration plan’. In case the

migrations contain errors, the concerning artifcats should be corrected. When the migration test is

successful, everything is ready for ‘Go Live’.

 Go Live
The Go-live moment is the last phase in the implementation method. In this phase the starts using

the system in production. At go-live there is transmission of data between the system that is

replaced and the new SaaS solution. Also the implementation project is finalized and the open

backlog items will be transferred to the maintenance backlog, as this customer shifts from the

implementation process to the maintenance process.

5. Implementation Method

39

Figure 20: Go Live

5.8.1 Migrate
Input

In the migration phase, a plan for migration and the corresponding artificats for migrating were

developed. At the moment of go live a new data dump might be provided by the in order to have to

most recent data migrated. The developed artifacts should it made easy to import the data dump.

Besides the possible renewed data dump, a central kickoff meeting is helpful for creating team spirit

within the company.

Method

The developed migration artifcats will be used for migration. When needed a fresh data dump has to

be made from the legacy, whereafter no new entries or actions should be entered into the legacy

system. The new data dump can now be imported in the new SaaS solution with the help of the

migration artifacts. It is recommend to have backup accessable of the data from the legacy system.

This is especially a requirement when not all data is migrated from the legacy system to the new SaaS

solution. After importing the data, it has to be verified on correctness and completeness by the

customer. As the migration artifactions were approved, the migratrion itself should go well.

Output

The migration ensures that the new SaaS solution contains an up to date dataset of the master data

and orders from the legacy system,whereby the endusers should be able to use the system without

having to insert unnecessary master data manually. The new SaaS solution is now ready for use and

the customer shifts to the maintenance phase.

6. Validation

40

6 Validation
This chapter describes the validation of the designed implementation method in chapter 5. The

selected method for validation is shown in section 6.1. In order to introduce the context of the

experts, section 6.2 outlines the expert experiences towards implementation projects of

customizable SaaS solutions. The answers given to the questions in Appendix A are elaborated in

section 6.3. Finally updates to the designed implementation method are described in section 6.4.

 Validation Method
The implementation method is designed based upon field experiences and literature. In order to

determine the value of the designed method, validation is done by using expert opnions. The type of

validation is a qualitative validation since the method is validated by experts in the field of

customizable SaaS implementations. The validation is done by having semi-structured interviews

with the experts. This type of interview supports in answering the main questions for validating the

fulfillment of the research goal by the method. Besides the experts are able to add other insights to

the developed method. The questions for the expert interview can be found in Appendix A. During

the interviews, interviewees are allowed to share their insights on the method. These gained insights

might also be reviewed in later interviews. The interviews should measure the validity and usability

of the designed implementation method.

The questions formulated in Appendix A are based on the measurements in the Technology

Acceptance Model (TAM) (Davis, 1989). The perceived usefulness, perceived ease of use and user

acceptance should be measured by the interviews.

Figure 21: Technology Acceptance Model (Davis, 1989)

The model is originally designed to predict the actual system use of an information system. However,

the vairiables for predicting the actual system use can also be applied on the designed

implementation model. The external variables are determined by the type of product and projects

delivered by the experts. The interview questions should measure the perceived usefulness. The

perceived ease of use is hard to measure. What is measured about the perceived ease of use is the

applicability of the method. When the external variables match with type of implementation, but it is

hard to apply the method, the perceived ease of use has not met the right level, which increases the

difficulty for implementing the method. The “suitability and completeness of the method” in the

second main question of the interview (Appendix A) can be reflected against the perceived

usefulness and perceived ease of use. The attitude toward using and behavioral intention to use , are

derived from the answers and the extra space for relevant expert opinions during the interview.

6. Validation

41

For the validation of the method, seven experts in implementations of customizable SaaS were

interviewed. The results of the interviews are elaborated below in a textual summary in order to

retain the global overview concercing their experiences with implementations and their opnion of

the proposed implementation method.

 Expert Experiences
The implementations done by the experts were all in the field of customizable SaaS. The lead time of
the implementations had a variation between one month and two years. The implementation time
strongly depends on a number of factors:

 Business culture

 Type customer

 Current system

 Resistance from within the customer’s company

 Scope changes

 New activities

 Lack of commitment

The business culture defines the division of roles, policies and attitude of the business and it’s
employees. The difference between a layered and a flat organized business also reflects the
interaction between the management who often buys the software and the operation who has to
use the software. Also expectations of the new SaaS solution can differ between the management
and operation.

The type of customer also plays a role in the implementation time. When there is a new customer of
a certain type that will be implemented for the first time will probably take more time, since not all
practices and processes will be known to the ASP. Besides customers of the same type typically have
the same processes and therefore the functional gap in the software will be probably small to none,
when there are already multiple customers of that type using the system.

The business that has chosen the new SaaS solution, might be a brand new company, without any
established process, or a business using spreadsheets, or a business with a running system in place.
Businesses that have currently a system have usually a longer implementation lead time, due to the
request of feature parity. Mainly operational employees are comparing their current system with the
new SaaS solution during the implementation method. When their current system is built and
maintained in house this can also raise resistance from within the business. Scope changes during the
implementation have leaded to delay of the go live for all experts. The reason for scope changes have
diverse origins. In a number of cases the processes were not clear for the employees within the
business, during the implementation continuously new requests for changes were raised from the
diverse departments. Besides there were also business that started with new activitities that were
not mentioned at the start of the implementation. The scope changed in order to support the new
activities.

Finally a lack of commitment, customer resources or time also has resulted in delays, which
negatively effected the implementation lead time. Customer involvement is a requirement for
successfully implementing a SaaS solution in the primary business processes.

6.2.1 Current Practices for Implementations
None of the experts currently uses an implementation method for their SaaS solution. However,
some practices mentioned in the implementation are used when considered necessary. From the

6. Validation

42

steps of the designed implementation method, the fit gap analysis, software development, migration
and go live are performed by the experts. Not all practices are applied in a structured way for all
implementations. As a reason for not using an implementation method, underestimation is
mentioned.

 Validation of the Implementation Method
The questions (Appendix A) in the interview had to answer the main question: “Is the designed
implementation method suitable and complete for implementations of customizable SaaS?”. All
experts confirmed that the implementation method fits for implementations of customizable SaaS
solutions. On the other hand, the experts also suggested some minor adaptions or additions to the
proposed implementation method. These adaptions and additions are described in the section
“Recommendations”.

The expert opnions about the proposed implementation method were positive. They all stated that
the proposed implementation method will improve their implementations. Since no of the experts
currently used an implementation method, but solely some approaches when considered needed,
the projects lack on structure. The structure offered by the implementation method will be beneficial
for the ASP and the customer according to the experts. Both ASP and the customer have a clear
process to follow and the moments where the customer is involved in the project are defined and
clear at the start of the project. The moments of involvement will be the same in each project for
each customer. However, the quality of involvement of the customer before and during the agreed
moments of contact, heavily depends on the effort the customer takes.

The steps “Define Product”, “User-Centered Design” and “Planning” were mentioned as most helpful
steps in improving implementations. These steps will help the ASP in making a better estimation of
the project size. Having a dedicated team on new implementations improves the monitoring of the
project progress and enables to act early when there is a deviation in the planning. Due to the
defined product, scope changes are minimized and when there is a customer request, it can be
recognized as scope change. Hence, the scope change has impact on the planning. Involving the
customer during the whole implementation process, but most of all in the design phase, will have a
positive effect on the acceptance of the new SaaS solution.

Having an implementation method will not only help to manage the project, but will probably also
establish confidence in the ASP from customer perspective.

6.3.1 Expert Recommendations
After reviewing the designed implementation method the experts also recommended to expand or
adapt the implementation on certain points. The recommendations given by an expert were also
validated by experts that were not interviewed yet for validation.The recommendations mentioned
are described below:

 Risk analysis

 Stakeholder analysis

 Customer commitment

 User migration

 Parallel steps

6. Validation

43

Risk Analysis

The designed implementation method helps in having a clear and structured process for the
customer and ASP, but does not guarantee the success of an implementation, because the success of
an implementation depends on more than only a structured method. The risk analysis can be
performed on the steps that are defined in the method and on customer type. Certain can be
identified on process step level, these risks can be defined once per SaaS product. The risks that are
customer dependent should then be estimated at the start of the product. The risk analysis based on
customer type is correlated with the stakeholder analysis, for the commitment and presence of the
right stakeholders will probably the greatest risk. One of the experts also added that a risk analysis
has not always a positive effect on the implementations, since it can create needless fear for the
implementation from a customer perspective. When a lack of commitment is the greatest risk of the
implementation project, a commitment agreement instead of a risk analysis can be sufficient.

Stakeholder Analysis

A stakeholder analysis has been suggested by the experts to be done at start of the project. The
stakeholder analysis also can help in indentifying the role of the stakeholders in the operational
process and their role in the implementation process. The required commitment per stakeholder can
then be defined at start of the process, which clearifies the made agreements about the required
commitment from the stakeholder at the start of the implementation.

Customer Commitment

Customer commitment is crucial in implementation projects. However, customer commitment is
more an agreement between the customer and the ASP, then a step of a process. As mentioned in
the risk analysis, concretize the importance of the customer commitment should be done or
mentioned at the start of a new implementation.

User Migration

In the implementation method there is a phase dedicated to Migration. In the migration phase a
migration plan is made, the artifacts for migration are developed and tested. The focus in the
migration phase is on data migration. Besides data migration there is also user migration. User
migration is advised to be included in the implementation method. Not only key users have to be
trained, but all employees that will start using the new SaaS solution after go live. Therefore user
migration should run in parallel with data migration.

Parallel Steps

The high-level process is shown as a sequential process with two feedback loops. One of the experts
mentioned that it should be possible to do steps in parallel. The phases “Software Development” and
“Migration” can be done in parallel in the practice. The plan for migration and the development of
the artifacts can be done when they depend on functionality that is already made. The
implementation method should not limit on the flexibility of doing phases in parallel wen possible.
Though, showing the method as sequential process, shows the logical order of actions to the
customer.

 Updates to the Implementation Method
During the interviews recommendations were given for updating the implementation method. The

suggestions for updates do not affect the procedure of the implementation method, but visualize

implications that were already made in the textual explanation. Only in the the “User-Centered

6. Validation

44

Design” I added an extra step for evaluation with the customer on recommendation of multiple

experts. The following updates are implemented in the model:

 The step “Define Product” has an explicit output “Maintenance Backlog”. The “Maintenance

Backlog” contains all user stories that were not recorded in the MVP. The user stories in the

“Maintenance Backlog” are assigned to the development team responsible for maintenance.

 The ‘User-Centered Design’ phase is extend with an evaluation of the UCDs. According to the

experts the validation of the designs contributes to acceptance of the designed feature.

Besides misunderstandings or possible shortcomings of the design can be identified by the

customer before the actual implementation of the feature.

 A loop has been added in from “User-Centered Designed” to “Define Product”. Since the

experts suggested that it is better to validate the design with the customer and update the

MVP before starting the “Planning” step, it is obvious that feedback from the customer might

add new user stories to the MVP before the start of the “Planning” and “Software

Development” steps.

 A loop has been suggested from “Software Development” to “Planning”. During the software

development phase Scrum is applied as agile technique. At the end of each sprint there is a

sprint review in which the deliverables are reflected against the planning. Whereas it is

normal to update the planning each new sprint, it has been suggested by an expert to make

this process more visual and explicit by adding a loop for returning to the planning phase.

This also enables the user of this method to change the assigned resources during the

project.

6. Validation

45

7. Conclusions

46

7 Conclusions
This chapter describes the conclusions of this research. The answers given in this research about the

research are summarized. The findings and the deliverable of this research is also presented. The

deliverable to the stated research goal is also presented in the conclusion.

The research goal is:

Develop and validate a method for implementation of SaaS solutions in the primary business processes.

In order gather information for developing and validating the design method research questions

were defined. The research questions and the answers to these questions can be found in section

7.1. The contribution of this research is presented in section 7.2. Limitations of this research are

discussed in section 7.3 Future work related to this research is suggested in section 7.4. Finally the

recommendations for using the developed method are given in section 7.5

 Research Questions
In order to develop a method that suffies the research goal the following research questions are

answered in the research:

1. How are SaaS solutions implemented in the primary processes of enterprises?

2. Which steps can be identified in the process of migration to a SaaS solution?

3. How can the designed implementation method be validated?

For answering RQ 1 (Research Question) a SLR is performed. The research design for the SLR is defined

in chapter 2 followed by the results of the SLR in chapter 3. The results of the SLR are summarized in

the analysis overview. The main conclusion is that there was no complete method for implementing

SaaS solutions in the primary processes of enterprises. Also the customizable part of SaaS solutions is

focused on building a customizable structure for SaaS solutions. However, some literature results were

found relevant and are used as a part in the developed implementation method.

For answering RQ 2 a mix between field experiences and literature has been applied. As the SLR

returned some usable and relevant concepts as steps or processes within the implementation method,

these concepts have been evaluated for application within the model. Identifying the steps for the

implementation method is mostly done on expert and field experiences and supported by relevant

literature for more in depth support. The identified steps int the process of migration to a SaaS solution

are defined in the developed implementation method and can be found in figure 22. Chapter 5

elaborates the steps and the sub-steps of the implementation method.

RQ 3 aims on the validation of the designed implementation method. There are two relevant options

for validating the designed implemention method, namely:

 Expert opnion

 Field research

Due to the constraint of time for this research, there was only sufficient time for validation by expert

opinion. For validation of the implementation method, questions (Appendix A) were defined for

measuring the effectiveness of the implementation method, using the TAM (Davis, 1989). The expert

opnion is a valuable tool for validating the method, due to their field experiences. The experts were

able to reflect the implementation method on their projects and provided feedback based on their

experiences and vision. The validation of the implementation method is provided in chapter 6.

7. Conclusions

47

Figure 22: Implementation Method

 Contribution
For the implementation of customizable SaaS in the primary process of businesses are no methods

available. The structured literature review concluded that there was gap for the design of such an

implementation method. Besides none of the experts used a method for their implementation

projects. In the SLR some relevant principles are used as a step in the method. Also the experts

recognized some of the steps in the designed method. Those steps are already applied sometimes in

the projects of the experts. However, a complete method for implementation of customizable SaaS

was missing. Based on the found litereature and own experiences an implementation method has

been designed. The required steps for implementation are identified in the design of the method and

each step is explained by defining the input, method and output of each substep. The validity of the

designed implementation method is reviewed by experts in the field of implementation projects for

customizable SaaS.

The experts that were interviewed for the validation of the implementation method are positive

about the designed implementation method. They all indicated that the implementation method will

improve their implementation projects. Also the experts are going to use the method for their

implementations. The method provides more insight and clarity about the project for both the ASP

and the customer. The commitment of the experts for use of method inidicates their need for an

implementation as well as the suitability and completeness of the method. Cofano also stated that

they are going to use the method for upcoming projects.

 Limitations
The limitations regarding this research originate in the validation of the designed method. As there

was only limited time for perfoming this research, only an expert opnion has been applied for

7. Conclusions

48

validation of the method. Despite that the expert opnion is a valuable tool for validating the method,

field research could have provided a more constructive validation.

The developed implementation method is designed for a specific type of projects, namely for the

implementation of customizable SaaS in the primary business processes. Therefore application of the

designed method is limited to to these type of projects. However, the method could be used for

similar projects with small deviations. Where needed, the method could be adjusted, so that it suits

other type of projects.

 Future Work
Currently the the implementation method has only been validated by expert opnions. For future

research it is recommend to validate the method by practicial application. New projects should be

supported with the designed implementation method and the outcome of the projects should be

compared with projects were no implementation method has been used. When needed the method

could be updated after reviewing the method on several projects.

 Recommendations
As Cofano stated that they are going to use the implementation method for upcoming projects I have

the following recommendations.

First, inform and structure the organization. Since the implementation method has impact on both

consultants/product owners and the development team, all concerned actors should be involved.

Besides the development team will be split in two separate teams, one maintenance team and one

implementation team.

Secondly, I would recommend to introduce the implementation method to new customers in order

to inform them about the process they are going to start. All required actors required for fulfilling

this process should also be known at start of the project. Informing the customer also helps them to

get more insight in required steps of the project, which improves their monitoring on the project.

Finally, I would recommend to monitor the projects that make use of the developed implementation

method in this research. The effectiveness of the method should be evaluated for each step. Possible

variations or adjustments on the defined steps should be evaluated by all consultants that are

involved with implementation projects in order to have improvement cycle that directly is validated

by expert opnions. Customer opnions about this implementation method should also taken into

account as valuable information during an evaluation of the implementation method.

7. Conclusions

49

8. Bibliography

50

8 Bibliography

Agarwal, P. (2011). Continuous SCRUM: agile management of SAAS products. Proceedings of the 4th
India Software Engineering Conference, 51–60.
https://doi.org/http://doi.acm.org/10.1145/1953355.1953362

Ali, H., Moawad, R., & Hosni, A. A. F. (2016). A cloud interoperability broker (CIB) for data migration
in SaaS. Proceedings of 2016 IEEE International Conference on Cloud Computing and Big Data
Analysis, ICCCBDA 2016, 250–256. https://doi.org/10.1109/ICCCBDA.2016.7529566

Attaran, M. (2004). Exploring the relationship between information technology and business process
reengineering, 41, 585–596. https://doi.org/10.1016/S0378-7206(03)00098-3

Aulbach, S., Grust, T., Jacobs, D., Kemper, A., & Rittinger, J. (2008). Multi-tenant databases for
software as a service. Proceedings of the 2008 ACM SIGMOD International Conference on
Management of Data - SIGMOD ’08, 1195. https://doi.org/10.1145/1376616.1376736

Bajighar, M., & Shahzad, F. (2017). Autonomous software development: Sustain market share in
constantly changing software product industries. WMSCI 2017 - 21st World Multi-Conference on
Systemics, Cybernetics and Informatics, Proceedings, 1(Wmsci), 2–7.

Benefield, R. (2009). Agile deployment: Lean service management and deployment strategies for the
SaaS enterprise. Proceedings of the 42nd Annual Hawaii International Conference on System
Sciences, HICSS, 1–5. https://doi.org/10.1109/HICSS.2009.52

Bibi, S., Katsaros, D., & Bozanis, P. (2012). Business application acquisition: On-premise or SaaS-based
solutions? IEEE Software, 29(3), 86–93. https://doi.org/10.1109/MS.2011.119

Boehm, B., & Turner, R. (2005). Management Challenges to Implementing Agile Processes in
Traditional Development Organizations. IEEE Software, 22(5), 30–39.

Budgen, D., & Brereton, P. (2006). Performing systematic literature reviews in software engineering.
Int. Conf. Soft. Engin., 1051. https://doi.org/10.1145/1134285.1134500

Buford, J., Singh, K., & Krishnaswamy, V. (2015). ALICE: Avaya labs innovations cloud engagement. In
Proceedings of the Principles, Systems and Applications of IP Telecommunications, IPTComm
2015 (pp. 7–14). Association for Computing Machinery, Inc.
https://doi.org/10.1145/2843491.2843754

Chamberlain, S., Sharp, H., & Maiden, N. (2006). Towards a Framework for Integrating Agile
Development and User-Centred Design (pp. 143–153). https://doi.org/10.1007/11774129_15

Davenport, T. H. (1993). Reengineering Work through Information Technology. Harvard Business
School. Cambridge, MA: Harvard Business School.
https://doi.org/10.1177/1354066102008003004

Davis, F. D. (1989). Perceived Usefulness, Perceived Ease of Use, and User Acceptance of Information.
Information Technolog MIS Quarterly, 13(3), 319–340. https://doi.org/10.2307/249008

Deemer, P., Benefield, G., Larman, C., & Vodde, B. (2010). The scrum primer version 1.2.
Development, 1–22. Retrieved from
http://assets.scrumtraininginstitute.com/downloads/1/scrumprimer121.pdf

Femmer, H., Kuhrmann, M., Stimmer, J., & Junge, J. (2014). Experiences from the Design of an
Artifact Model for Distributed Agile Project Management. In 2014 IEEE 9th International
Conference on Global Software Engineering (pp. 1–5). IEEE.

8. Bibliography

51

https://doi.org/10.1109/ICGSE.2014.9

Grati, R., Boukadi, K., & Ben-Abdallah, H. (2015). SaaS Cloud Provider Management Framework.
Proceedings of the 12th International Conference on E-Business, 221–228.
https://doi.org/10.5220/0005550402210228

Gulledge, T. R. (2006). Erp Gap-Fit Analysis From a Business Process Orientation. International Journal
of Service and Standards, 2(4), 339–348. https://doi.org/10.1504/IJSS.2006.010468

Karlesky, M., & Voord, M. Vander. (2015). Agile Project Management (or, Burning Your Gantt Charts),
(October 2008).

Kitchenham, B., Pearl Brereton, O., Budgen, D., Turner, M., Bailey, J., & Linkman, S. (2009).
Systematic literature reviews in software engineering - A systematic literature review.
Information and Software Technology, 51(1), 7–15.
https://doi.org/10.1016/j.infsof.2008.09.009

Ko, R. K. L. (2009). A Computer Scientist’s Introductory Guide to Business Process Management
(BPM). Crossroads, , The ACM Magazine for Students, 15(4), 11–18.
https://doi.org/10.1145/1558897.1558901

Koski, A., Kuusinen, K., Suonsyrja, S., & Mikkonen, T. (2016). Implementing Continuous Customer
Care: First-Hand Experiences from an Industrial Setting. Proceedings - 42nd Euromicro
Conference on Software Engineering and Advanced Applications, SEAA 2016, 78–85.
https://doi.org/10.1109/SEAA.2016.31

Lauesen, S. (2002). Software Requirements: Styles and Techniques, 591.
https://doi.org/10.1016/j.nec.2009.04.003

Lenarduzzi, V., & Taibi, D. (2016). MVP Explained : A Systematic Mapping Study on the Definitions of
Minimal Viable Product, (August). https://doi.org/10.1109/SEAA.2016.56

Liu, W., Zhang, B., Liu, Y., Wang, D., & Zhang, Y. (2010). New model of SaaS: SaaS with tenancy
agency. Proceedings - 2nd IEEE International Conference on Advanced Computer Control, ICACC
2010, 2, 463–466. https://doi.org/10.1109/ICACC.2010.5486635

Lucassen, G., Dalpiaz, F., Werf, J. M. E. M. Van Der, & Brinkkemper, S. (n.d.). Forging High-Quality
User Stories : Towards a Discipline for Agile Requirements.

Luisanna Cocco, Katiuscia Mannaro, Giulio Concas, and M. M. (2011). Simulating Kanban and Scrum
vs Waterfall with System Dynamics. XP 2011: Agile Processes in Software Engineering and
Extreme Programming, pp 117-131.

Mahalakshmi, M., & Sundararajan, M. (2013). Traditional SDLC Vs Scrum Methodology – A
Comparative Study, 3(6), 2–6.

Moens, H., & De Turck, F. (2014). Feature-based application development and management of multi-
tenant applications in clouds. Proceedings of the 18th International Software Product Line
Conference on - SPLC ’14, 72–81. https://doi.org/10.1145/2648511.2648519

Moens, H., Dhoedt, B., & De Turck, F. (2016). Management of customizable Software-as-a-Service in
cloud and network environments. Proceedings of the NOMS 2016 - 2016 IEEE/IFIP Network
Operations and Management Symposium, (Noms), 955–960.
https://doi.org/10.1109/NOMS.2016.7502932

Moens, H., Truyen, E., Walraven, S., Joosen, W., Dhoedt, B., & De Turck, F. (2012). Developing and
managing customizable Software as a Service using feature model conversion. 2012 IEEE
Network Operations and Management Symposium, NOMS 2012, 1295–1302.

8. Bibliography

52

https://doi.org/10.1109/NOMS.2012.6212066

Moens, H., Truyen, E., Walraven, S., Joosen, W., Dhoedt, B., & De Turck, F. (2012). Feature placement
algorithms for high-variability applications in cloud environments. Proceedings of the 2012 IEEE
Network Operations and Management Symposium, NOMS 2012, 17–24.
https://doi.org/10.1109/NOMS.2012.6211878

Mohamed, F., Abu-Matar, M., Mizouni, R., Al-Qutayri, M., & Mahmoud, Z. Al. (2015). SaaS dynamic
evolution based on model-driven software product lines. Proceedings of the International
Conference on Cloud Computing Technology and Science, CloudCom, 2015–Febru(February),
292–299. https://doi.org/10.1109/CloudCom.2014.131

Molina-Jimenez, C., Shrivastava, S., & Wheater, S. (2011). An architecture for negotiation and
enforcement of resource usage policies. Proceedings - 2011 IEEE International Conference on
Service-Oriented Computing and Applications, SOCA 2011.
https://doi.org/10.1109/SOCA.2011.6166218

Moore, B., & Mahmoud, Q. H. (2009). A service broker and business model for SaaS applications.
2009 IEEE/ACS International Conference on Computer Systems and Applications, AICCSA 2009,
322–329. https://doi.org/10.1109/AICCSA.2009.5069343

Nasir, M., & Study, C. (2006). A Survey of Software Estimation Techniques and Project Planning
Practices, 2–7.

O’Neill, P., & Sohal, A. S. (1999). Business process reengineering a review of recent literature.
Technovation, 19(9), 571–581. https://doi.org/10.1016/S0166-4972(99)00059-0

Pajk, D. (2013). Fit Gap Analysis – The Role of Business Process Reference Models, 15(4), 319–338.

Ruehl, S. T., & Andelfinger, U. (2011). Applying software product lines to create customizable
software-as-a-service applications. Proceedings of the 15th International Software Product Line
Conference on - SPLC ’11, 1. https://doi.org/10.1145/2019136.2019154

Schwaber, K., & Beedle, M. (2001). Agile soft-ware development with scrum. NJ, 2003: Up-per Saddle
River.

Seethamraju, R. (2015). Adoption of Software as a Service (SaaS) Enterprise Resource Planning (ERP)
Systems in Small and Medium Sized Enterprises (SMEs). Information Systems Frontiers, 17(3),
475–492. https://doi.org/10.1007/s10796-014-9506-5

Singhto, W., & Phakdee, N. (2017). Adopting a combination of scrum & Waterfall methodologies in
developing tailor-made SaaS products for Thai service & manufacturing SMEs. 20th
International Computer Science and Engineering Conference: Smart Ubiquitos Computing and
Knowledge, ICSEC 2016. https://doi.org/10.1109/ICSEC.2016.7859882

Truyen, E., Cardozo, N., Walraven, S., Vallejos, J., Bainomugisha, E., Günther, S., … Joosen, W. (2012).
Context-oriented programming for customizable SaaS applications. Proceedings of the 27th
Annual ACM Symposium on Applied Computing - SAC ’12, 418.
https://doi.org/10.1145/2245276.2245358

Wieringa, R. (2014). Design Science Methodology for Information Systems and Software Engineering.
Springer Berlin Heidelberg. https://doi.org/10.1145/1810295.1810446

Zhao, J. F., & Zhou, J. T. (2014). Strategies and methods for cloud migration. International Journal of
Automation and Computing, 11(2), 143–152. https://doi.org/10.1007/s11633-014-0776-7

8. Bibliography

53

Appendix A. Expert Interview

54

Appendices
Appendix A. Expert Interview

1. What experiences do you have with the implementation of customizable SaaS solutions?

a. What is the average lead time for an implementation project?

b. Do you currently use an implementation method?

c. Have you done implementation projects that were done according to the planning? If

they didn’t, can you point the problems.

d. What role plays customizability in your implementations?

2. Is the designed implementation method suitable and complete for implementations of

customizable SaaS?

a. Does the proposed implementation method fit for your implementations?

i. What steps differ from your current method?

b. Enables the implementation method you to plan accurately and how?

c. Is the customer sufficient involved in during the implementation according to the

method?

i. Can the customer involvement vary per implementation?

ii. Can sufficient customer involvement be guaranteed by the method?

d. Are the customer requests for customization handled correctly in the

implementation method?

e. Can this method help you in improving your implementation projects?

i. Which steps or approaches will particularly help in comparison to current

used techniques.

f. Do you have recommendations for adaptions to this method?

i. With what steps do you agree/disagree and why?

Appendix B. List of Figures

55

Appendix B. List of Figures
Figure 1: Porter’s Value Chain ... 3

Figure 2: Literature Selection Process for “SaaS Enterprise Implementation” 9

Figure 3: Literature Selection Process for “Customizable SaaS” ... 9

Figure 4: Literature Selection Process for “Agile Proejct Management” .. 10

Figure 5: Blending Scrum and Waterfall Technique (Singhto & Phakdee, 2017) 13

Figure 6: Proof of Concept Implementation (Molina-Jimenez et al., 2011) ... 15

Figure 7: Application-Based Binary (Moens et al., 2016) .. 18

Figure 8: Feature-Based Bianry (Moens et al., 2016) .. 18

Figure 9: Development and Deployment Processes for Compile Time Variation (Hendrik Moens & De

Turck, 2014) ... 19

Figure 10: Implementation Method .. 22

Figure 11: Model “as is” Process ... 23

Figure 12: Fit Gap Analysis .. 25

Figure 13: Detailed Fit Gap Analysis Process (Pajk, 2013) .. 26

Figure 14: Define Product ... 27

Figure 15: Quality User Story Framework ... 28

Figure 16: User-Centered Design .. 30

Figure 17: Planning .. 32

Figure 18: Software Development .. 35

Figure 19: Migration .. 37

Figure 20: Go Live .. 39

Figure 21: Technology Acceptance Model (Davis, 1989) .. 40

Figure 22: Implementation Method .. 47

Appendix C. List of Tables

56

Appendix C. List of Tables
Table 1: Search Results ... 10

Table 2: Categorization of the Papers per Subject .. 12

