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Abstract 
The Dutch railway system is becoming more crowded, resulting in a need for more train units. This 

also means that more train units need to be treated at the service locations of the Nederlandse 

Spoorwegen (NS). To handle this increase, the NS wants to make better use of the available 

resources. 

This research investigates the influence of certain sources on the capacity of service locations. The 

sources investigated are the arrival process, allowing coupling and decoupling and the topology of a 

service location. Ultimately, the location layout turned out to have a lot of influence. Therefore the 

arrival process and allowing coupling and decoupling are also investigated when specified for the 

location topology. 

For these sources, survival functions are made based on model data from the NS. Those survival 

functions show the chance that no solution is found (chance of failure) for a work package per 

number of train units. Namely, in a work package a certain number of train units are planned. The 

chance of failure increases while increasing the number of train units in a work package, since it is 

harder to find solutions for work packages in which less train units need to be handled. These 

survival functions are made based on the Turnbull Algorithm and the Product Limit Method. 

Once the survival functions of different scenarios of the sources are composed, influence is 

determined by testing those survival functions on significant differences. This is done by executing 

the Kolmogorov Smirnov test. More information about the cause of impact is obtained by comparing 

the medians and the variances of the survival functions. The source of variation in median in this 

research was the arrival process, especially when specified per service location layout. The sources of 

variation in variance of this research were the topology of the locations, the arrival process at the a 

carousel layout and allowing coupling and decoupling at a shuffleboard layout. 
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Terminology 

In this research, terms will be used which need explanation. Below, some definitions are given to 

prevent confusion. 

Allowing coupling/decoupling Allowing coupling and decoupling is an option that can be set in the 
behandelcalculator. This will be investigated as a potential source of 
variation. 

Arrival period  A period in which the train units arrive. This period starts at 17.30 
and ends at 2:20 the next day. 

Capacity The number of train units that a percentage of the cases can be 
treated during a shift at a service location. 

Cutting loss The remaining railway that cannot be used because no train can fit 
there. 

Departure period A period in which the train units depart. This period starts at 2.20 and 
ends at 8:00. 

Instance A work package. This includes all information of what has to happen 
on a service location that particular shift. 

Sawing The action that a machinist needs to walk from one end of the train 
to the other end of the train because the train needs to drive in 
opposite direction. 

Service location A location where a train unit receives its planned maintenance. In 
this research service location the Binckhorst will be investigated. 

Shift A period in which a work package is planned. This period is from 
17:30 until 8:00 the next day. 

Source of variation A source of variation is a factor that has influence on the capacity of a 
NS service location (e.g. the arrival process could have influence on 
the capacity so this could be a source of variation). 

Topology   The layout of the railway at a service location. 
Train    Ride in revenue service for passenger transport. 
Train unit   Train set, fixed composition with driver cabins at both ends. 
Variation in capacity The number of train units that can be handled in a shift at a service 

location differs per observation, so the observations for the capacity 
vary per measure. This variation is caused by sources of variation. 

Work package A work package is a package which includes all the maintenance tasks 
and shunting movements of the train units that need to be treated in 
that particular shift. The model name of a work package is ‘instance’. 
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Chapter 1 

Introduction 
 

In this chapter an introduction to the assignment is given. First, the problem context will be 

discussed. Then, the role of the company is described, just like the problem aim. After that, the limits 

and boundaries and terminology are stated. Then the scientific relevance will be discussed as well as 

a description of the model that will be used in this research. Finally, the research framework and the 

report structure will be sketched. 

1.1. Problem context 

The Nederlandse Spoorwegen, the NS, has to deal with an increasing number of travellers. Therefore, 

the NS has to deploy more trains to the railway system, which results in an increasing number of 

trains and train units that need to be checked for safety and comfort, cleaned and washed. The 

checking and cleaning process is called the service process. This process occurs on certain service 

locations. However, since more train units need to be handled at service locations due to the 

increasing use of train units, the capacity of those service locations has become a bottleneck. In this 

case, the capacity of a service location is considered as the number of train units which in 95% of the 

times can be handled in a certain period. 

It happens frequently that not every train unit that was planned for that shift, can finish the process 

on time. However, the NS wants to deliver all trains perfect, but now choices have to be made. 

Delivering an unsafe train is not an option, but delivering a dirty train might be better than a 

cancelled train. However, the NS does not want to make those choices at all, so capacity 

improvement is a very important issue. 

The capacity is built up from different sources. But which sources may contribute to the capacity and 

what is their influence? The NS wishes to better understand the influence of different sources on the 

capacity of service locations. (NS en ProRail: het spoor is bijna vol, 2018) 

 

1.2. Company 
This assignment is commissioned by the NS. The NS is a company that regulates the biggest part of 

the public transport of trains. The department that provides this project is the department of 

Maintenance Development. This department works on the improvement of maintenance processes. 

The vision of the NS is to make the Netherlands assessible for everybody. The NS has a clear 

ambition: they want to deliver mobility of the highest level. Always close, always affordable and 

always sustainable. It is important to pay attention to this because the railway system will become 

even busier in the future. 

This research contributes to the vision of the NS, since this project will investigate which sources 

have influence on the capacity of service locations. Without good functioning service locations, the 

railway network cannot expand, since the train units need to be safe and clean for delivering the 

highest level of mobility. The capacity of service locations needs to improve so more train units can 

be treated in the future. Besides that, it is better to use the service locations optimally instead of 

constructing extra service locations, since that is less sustainable and more expensive. 

The NS wants to deliver a good product to their customers, the travellers. This includes clean, safe 

and comfortable trains that depart and arrive on time. (Boxtel, 2018) 
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1.3. Aim of the project   
Since the capacity of service locations seems to be the bottleneck in the possibility of expanding the 

railway system, it needs to be improved. The number of train units that can be handled in a shift at a 

service location differs per observation, so the observations for the capacity vary per measure. It is 

important to get insight in which sources cause this variation in capacity and to what extend their 

influence is.  

It is important to investigate which sources may have influence and require further research. By 

making hypotheses and testing them, the influence of different characteristics will mapped better. In 

the end, the aim of the project is to better understand how the sources of variation influence the 

capacity of service locations, so that the NS can work further with these results and more train units 

get treated each shift. 

This research will focus on one service location where a lot of research is being done in the 

department of Maintenance Development. This service location is the Binckhorst which is located at 

The Hague Central station. 

This research will use the model data obtained from a large model; the ’behandelcalculator’. This is a 

tool for executing this research. The ‘behandelcalculator’ is a simulation model of service location the 

Binckhorst. The model searches solutions for hypothetical work packages, which not necessarily have 

taken place. This data will be used in this research instead of empirical data. 

 

1.4. Limits and boundaries 
To execute this research, some limits and boundaries have to be set. In this research there are four 

limits or boundaries set, stated below. 

- The influence on the capacity of only a number of sources will be investigated.  

- Research on service location the Binckhorst will be taken into account only. 

- Only model data will be used for the main research. 

- The capacity can be expressed in different ways, but in this research is will always be 

expressed in number of train units so that different results can be compared with each other. 

 

1.5. The ‘behandelcalculator’ 
The behandelcalculator is a model that is made by employees of the department of Maintenance 

Development. This model is used to determine the capacity. It is important to understand the model 

before the research framework is made. Therefore, a flowchart is shown below. It is a complex 

model, so an explanation of the flowchart is also given. Besides that, this section will explain what 

the input and output look like and how to process the output into interesting information. 
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1.5.1. Flow chart of the behandelcalculator 

A global flow chart of the model can be seen in the figure below.  

 

 

1.5.1.1. Database 

In the database all the input is stored. The input consists of the characteristics of the service location, 

but also of all the chances and statistical distributions that maintenance has to take place or not. For 

example: train units need to be washed once every twelve days. The chance that a train unit needs to 

be washed is therefore 1 12⁄ . Another important thing that can be installed in the database is the 

characteristic that is going to be variable and thus in what terms the capacity will be expressed. In 

this research this variable will always be the number of train units. It is also possible to express the 

capacity in more variables, but this will not be done in this research. The output is also written in the 

database again. 

1.5.1.2. Instance generator and instance checker 

Every iteration a combination of variable settings is chosen and sent to the instance generator. In this 

research, the variable that is analysed is the number of train units. Therefore a number of train units 

value is sent to the instance generator. For these settings a work package will be generated by the 

instance generator using the corresponding characteristics. All miscellaneous settings are 

determined by chances of occurrence which are in the database. Such a work package is called an 

instance. This comes down to all information that has to be executed, such as whether a task needs 

to be executed or not and how long the tasks in those particular cases take. 

Once a work package is set, it is sent to the instance checker. This instance checker looks whether 

the work package is feasible. In case that in the work package more train length needs to be at a 

service area, than railway is present, a plan cannot be found at all. In this case, the plan algorithm 

does not need to run. So, this instance checker saves a lot of calculation time.  

1.5.1.3. Plan algorithm and plan checker 

The plan algorithm is a program that searches for a solution of the work package. Once a plan is 

found, the plan algorithm quits its job, because the only thing the behandelcalculator wants to know 

is whether a solution is found or not. The plan algorithm looks for a solution by using heuristics like 

the local search technique.  

Figure 1: Flowchart behandelcalculator 



9 
 

In the plan checker, the plan found by the plan algorithm is checked on feasibility. When a resource 

at one moment is exceeded, the plan is not feasible, so actually no real plan is found. 

1.5.1.4. Pareto-front analyser 

The pareto-front analyser is a tool to determine at which points in at the chance of failure is at most 

0,05. This means that in at least 95% of the cases a solution is found for a work package. The pareto-

front analyser searches for this front by generating a lot of setting values around that 95%-front. 

However, in this research will not be worked with a fixed percentage for the capacity. Instead the 

chance of failure between 0 and 1 will be investigated. Therefore, the pareto-front analyser will not 

be used. To get information about the chance of failure between 0 and 1, spread data is needed. In 

this research will be worked with 30 instances per number of train unit value. 

 

1.5.2. Output 
The output differs from the number of characteristics that are varied. In this research only one 

variable will be varied, namely the number of train units. Therefore only the one dimensional output 

will be discussed. 

The output in this research is a list of instances with the information whether a solution is found or 

not. Per instance it is also known of how much train units it existed. These data is shown in a lot 

different tables in the program SQL Server Management Studio. 

The data can be analysed in excel, but a more advanced tool is the program Power BI. This is a 

program that is used in the department and will be interesting to use for analysing the output 

results.  

 

1.6. Research framework 
To be able to execute  the research, a research framework is made. First the research questions are 

stated. Then, the methodology to answer each of these research questions is discussed. 

1.6.1. Research questions 
To be able to carry out the research the aim of the project is translated into one main research 

question. Thereafter, this question is split into some central questions. Those central questions are 

split into sub questions. The sub questions will answer the central questions and the central 

questions will answer the main question. In this way, the aim of the project will be achieved. 

Main question 

How do different sources influence the variation in capacity of the NS service location the 

Binckhorst? 

Sub questions 
[1] Which sources may have influence on the variation in the capacity? 

[A] Can the variation in capacity be quantified? 
[B] Where could be bottlenecks in the service process? 
[C] Can the already existing instances be used to decide which sources are interesting to 
investigate? 
[D] Which  sources are taken into account? 
[E] Do the sources cause variation in capacity? 
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[2] How do the sources influence the variation in capacity? 
 [A] What could be the reason of the influences hypothetically? 

[B] How can the hypotheses be tested? 
 [C] What influence do the different sources of variation have on the capacity? 
 [D] Are there any interactions between sources? 

 
 

1.6.2. Methodology 
To answer the research questions formulated above, both qualitative and quantitative research will 

be done. To reach the answer to the main question, different methods will be applied. In this project, 

data analysis will take place. Data review and statistical analysis should be a part of it too. Below, for 

the different questions is stated which method likely is to use for answering the question. 

 

[1] Which sources may have influence on the variation in the capacity? 
[A] Can the variation in capacity be quantified? 
In reality a lot of sources can have influence on the capacity. Using a lot of instances which are 
already available, a survival function can be made by using the Turnbull Algorithm and the Product 
Limit Method. which expresses the chance of failure for an instance that contains a particular 
number of train units. It is assumed that the instances used for compiling this graph give a good 
estimate for the capacity. From this survival function, the probability density function can be 
determined. Probably, this graph will not be a smooth function in the beginning. This is caused by 
sources of variation which influence the capacity. By identifying the sources and filtering them out, 
the graph gets rid of outliers and becomes homogeneous, theoretically. So by constructing a 
probability density function with the data available can be shown that there really is variation in 
capacity. 
 
[B] Where could be bottlenecks in the service process? 
Literature study will be done on the treatment process, so the process at service locations becomes 
more clear. By looking for potential problems in the service process, potential bottlenecks can be 
found. Improvement possibilities will can be mentioned here too. 
 
[C] Can the already existing instances be used to decide which sources are interesting to investigate? 
Initially, the already existing instances can be investigated. It is possible that for some instances with 
many train units no solution is found, and for some instances that consist of a low number of train 
units a solution is found. Maybe striking differences will come up. This can be used to identify 
possible sources of influence. 
 
The database with already existing instances consists of instances with a lot of different 
characteristics. From this database, the instances with specific characteristics can be filtered. This 
results in smaller datasets from which survival functions can be composed. The expected value and 
variance of the sets can be calculated and compared to the expected value and variance of the large 
database. 
 
[D] Which sources of variation are taken into account? 
By constructing the probability density function for the capacity based on the available instances, a 
non-homogeneous graph with a bunch of outliers arises. By filtering out influencing sources, the 
graph gets more and more homogeneous theoretically. However, lots of sources can have influence 
on the capacity of service locations. It is not reasonable to investigate all sources in this research. 
That is why a selection of sources will be made in this research question. In sub question 1B and 1C 
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possible sources that might have influence on the capacity of service locations are defined. From 
these sources a selection will be made which sources are going to be taken into account. The 
miscellaneous sources are seen as one group from which the influence is neglected. 
 
[E] Do the sources cause variation in capacity? 
To investigate whether there actually is variation in capacity caused by the sources selected in sub 
question 1D, this has to be tested. For every source the behandelcalculator needs to be executed 
with differences in only that particular source. When the expected value and the variation of the 
cumulative function (the chance of failure plotted against the number of train units in a work 
package) remain constant, this means that this source does not cause variation in capacity and the 
following research does not need to be executed. However, when significant differences occur, the 
source does have influence. 
 
 
 
[2] How do the sources influence the variation in capacity? 
[A] What could be the reason of the influences hypothetically? 
In question 1C different sources that might have influence on the variation in capacity have are 
selected. These sources are going to be invested. In this question hypotheses will be stated about the 
influence of those sources. This will be done based on the influence they are likely to have. 
 
[B] How can the hypotheses be tested? 
In question 1E hypotheses about the influence of different sources on the capacity are stated. In this 
part of the research, a plan will be made to test those hypotheses. By changing characteristics of the 
investigated source in the input of the behandelcalculator, the model will show differences in 
capacity. Statistical tests will prove whether the influence on capacity is significant or not and thus 
whether the hypothesis has to be rejected or not. The results of those tests will support or will not 
support those hypotheses. 
 
First the survival functions of scenarios, analysed with the behandelcalculator, must be made. In a 
survival function the chance on failure of an instance is plotted against the number of train units in 
an instance. To check whether significant differences exists between two scenarios Kolmogorov-
Smirnov test will be performed. Based on differences in the cumulative distribution function that 
occur while differencing a source, tests can be executed to test the hypotheses with. Statistical tests 
that can help investigating an hypothesis are for example the student-t-test, the F-test or the paired 
samples test. The test that seems to be likely to execute for a particular source, will be chosen in this 
research question. 
 
[C] What influence do the different sources of variation have on the capacity? 
To get to know what the influence of the different sources is on the capacity, the hypotheses will be 
actually tested. The results can be analysed in the program Power BI, which consists of a suite data 
analytics tools. The results will be obtained in this research question. 
 
[D] Are there any interactions between sources? 
It is possible that some sources correlate with other sources or that some sources interact with other 

sources. To determine possible interacting sources a causal loop diagram will be made in which the 

selected sources in sub question 1D are included. 

To analyse whether there exist interactions between the sources, scenarios will be set for possible 

interacting sources of variation. For these scenarios the behandelcalculator will execute analyses 

with corresponding settings, so the data that is generated corresponds with the scenarios. This can 
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also be done by filtering the already available data, however, not all data for the different scenarios 

is available. 

About the interactions hypotheses will be set and these will be tested in the same way as the single 

sources of variation in sub questions 2A, 2B and 2C. 

 

 

1.7. Scientific relevance 
The research that will be carried out in this project is relevant for the NS, but it is also relevant in 

other disciplines. In other disciplines research on capacity variation is done as well. In those papers 

methods are used which might be useful in this research as well.  Those are described here. In this 

heading the capacity expression that will be used in this research is described, but also papers about 

the capacity variation in other disciplines are discussed. 

 

1.7.1. Capacity expression 
One of the bottlenecks in the logistic planning process at Dutch railways is the capacity of the 

infrastructure at the larger railway stations. To provide passenger trains with the right composition of 

rolling stock, many shunting movements between platform tracks and shunting areas are necessary, 

especially just before and after the peak hours. (van den Broek, Hoogeveen, & van den Akker, 2012) 

The gross capacity of a service location can be measured as the number of meters of track available 

at the service location. However, several aspects need to be taken into account when determining 

the capacity, because the trains cannot just be parked directly behind each other because not at 

every parking all resources are available. (Lentink, 2006) 

At a service location like Zwolle, the capacity in terms of the total length of the shunt tracks is scarce. 

However, in Zwolle relatively many shunting processes take place. This implies that capacity 

expressed in other terms or more terms, may better reflect this. (Freling, Lentink, Kroon, & Huisman, 

2002) Therefore a pareto-front can be used to express the capacity. A pareto-front is the front at 

which you cannot increase one value without decreasing another value. In the example in Figure 2, 

the percentage of train units that need to be washed cannot increase without decreasing the number 

of train units. In this example the pareto-front is two dimensional, since it is expressed in two 

characteristics. 

 

 

 

 

 

 

 

Figure 2: Pareto-front (NS Techniek, 2018) 
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The capacity of a service location can be expressed as the pareto-front of distribution parameters 

where the composition of the daily work packages is characterised statistically, so that for at least 

95% of the shifts a feasible plan can be found. (NS Techniek, 2018) In this research, only one 

characteristic will be used to express the capacity, namely the number of train units that can be 

treated in a shift. Thereby, there will not be worked with the percentage of at least 95%. Instead, all 

success rates will be considered. 

 

1.7.2. Predictability of the capacity 
This research will help to declare differences in capacity, but it will not really contribute to prediction 

of the capacity. It can also make a prediction of the capacity based on the number of train units a 

work package exists of, but then only one characteristics is taken into account. For a better 

prediction of capacity, the capacity should be expressed in more characteristics. Based on what the 

characteristic in a work package are, a prediction of the capacity can be made with taking into 

account the values of the characteristics. The more characteristics the capacity is expressed in, the 

better a prediction will be. 

 

1.7.2.1. Capacity in other disciplines 

Capacity can be defined in different ways. This depends on the research goal. (Olba, Daamen, 

Vellinga, & Hoogendoorn, 2017) It can be defined as the maximum number of vehicles on a road or 

the maximum number of passengers at an airport or a train station for example. However, it would 

be better to express the capacity per unit time which can be accommodated under given conditions 

with a reasonable expectation of occurrence. This will be used in the research too since in the 

research will be looked at the number of trains that can be handled during a shift. 

Capacity says something about the physical amount of vehicles or passengers a road, train station or 

airport can afford. It depends on traffic conditions, geometric design of the road etc. Capacity is 

expressed in terms of units of characteristics, for example traffic composition and the environmental 

conditions too. Capacity is a probabilistic measure and it varies with respect to time and position. 

(Mathew & Krishna Rao, 2007) In the examples below is described what sources might cause capacity 

variation in their disciplines, but also how this is applicable on the research in this proposal. 

Capacity variation in traffic 

In the capacity of freeways in traffic also variation exists. One of those sources that cause variation is 

the quasi-random nature of the occurrence of road congestion. Congestion has a negative impact on 

the capacity of the road network. Such congestion occurs at the delay point sections of the road 

network on which the vehicle has to stop or slow down. Effective control of the capacity of delay 

points can be considered an important and urgent scientific problem. However, this is very complex 

especially since some congestion is unpredictable, like car accidents. Since the occurrence of 

congestion cannot be predicted yet, this causes variation in the capacity of the road network. 

(Kucherov, Rogozov, Lipko, & Elkin, 2018)  

Another factor that has influence on the variation of capacity in traffic is the type of the day. First, 

there was a suspect that there are differences in capacity on a workday relative to weekend-days and 

holiday-days. This is tested by making hypotheses and it turned out to be true. (Calvert, Taale, & 

Hoogendoorn, 2015) 
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In the paper ‘Quantification of motorway capacity variation: influence of day type specific variation 

and capacity drop’ a probability function of breakdown and discharge capacity is made. This is 

basically a function where the probability of failure is plotted against the traffic flow. At increasing 

traffic flow, the change on failure gets larger. This principle will be used in the research on capacity of 

NS service locations.  

Another principle that will be used in this research that is also used in this paper is the way the 

distribution of the probability of failure fit is determined. This is done using the Kolmogorov-Smirnov 

test, since the KS-test is best suited to test capacity distributions in such a way as it quantifies a 

distance between the empirical distribution of the sample and the cumulative distribution of a 

reference distribution. More importantly, the KS-test is distribution free and therefore makes no 

assumptions with respect to the underlying distribution. (Jia A, 2010) (Chakravarti IM, 2009) The KS-

test is also an exact test while some other commonly applied tests, such as the chi-squared-test, 

depend on an adequate sample size to validate approximations. (Ross SM, 2009). Since in the 

assignment in this proposal it is also about capacity, this method seems likely to use. However, 

model data is used instead of empirical data, but the model data can be approached as empirical 

data in this research. 

The paper of Calvert, Taale and Hoogendoorn makes use of scenarios. The data which they want to 

investigate is filtered based on the scenarios. This seems a good method, but in the research for NS 

not just three scenarios from one source which can be separated very easily are investigated. In this 

research sources like the arrival process will be investigated a distribution of the arrival process 

cannot be determined based on an instance. However, in this research will be made scenarios too. 

These scenarios will be used to show interactions between sources if possible. This will not be done 

by filtering the existing data but by executing new analyses based on the scenarios, and in this way 

generating data based on the scenarios. 

 

Capacity variation in cargo shipping 

Roll-off-roll-on (Ro-Ro) terminals, at which wheeled cargo is shipped, require a growth in terms of 

capacity since the Ro-Ro traffic increases worldwide. At Ro-Ro terminals the capacity variation 

occurs. This is caused by different variables, such as the number of vehicles arrived at a terminal, ship 

capacity, number and layout of terminal gates, terminal traffic, local traffic and security checks. Some 

of those characteristics are fixed for a certain location, but some are not. The number of vehicles 

arrived to a terminal for example. This can be compared to the arrival process of trains at a service 

location. Differences in this arrival process will affect the capacity and will thus cause variation in 

capacity of the terminal. Another source that is variable is the capacity of the ships which is 

comparable with the type of trains. The terminal traffic also influences the capacity of the terminal. 

On the terminal the cargo needs to make movements which can be compared with the shunting 

movements at service locations. In short: the process at terminals is in many respects commensurate 

with the process at NS service locations just like the capacity variation problem. (Özkan, Nas, & Nil, 

2016) 

In the paper ‘Capacity Analysis of Ro-Ro Terminals by Using Simulation Modelling Method’ analysis 

on the capacity is done by making a simulation model. The data from the simulation model is used to 

investigate interactions between sources by making scenarios and run the model, with the settings 

conform the scenarios, for outcomes. In the research on the capacity of NS service locations will be 

scenarios set to investigate interactions between sources. In this research also a simulation model is 

available which generates the data. The model can be installed in such a way that the scenarios are 
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varied and the rest of the settings are constant. In this way differences and interactions between 

factors can be found. 

Capacity variation in the aircraft business 

Maintenance on aircrafts needs to take place just like maintenance on train units. In the process of 

heavy maintenance the capacity varies a lot. This mainly has to do with the uncertainty of the 

maintenance. This maintenance exists of predictable and unpredictable maintenance. Predictable 

maintenance is the maintenance that protects the airplanes from failing and prevents worse 

problems. In this part of the maintenance are characteristics that can cause variation in capacity, 

such as a delay that occurs because a task needs more time. However, the main impact on the 

capacity is caused by the lots of unscheduled maintenance activities that have to take place. Because 

it is an unpredictable source which can have large impact, it also contributes to variation in the 

capacity of the maintenance process. (Rosales, 2015) The paper ‘Analysing delays and disruptions in 

Aircraft Heavy Maintenance’ focusses on building a model. This is not relevant in the analysis of the 

capacity of service locations. However, in the paper is made use of a causal loop diagram to get 

insight in interactions of variables. This could be a clever method to get insight in interaction of 

variables in the treatment process at NS service locations. 

 

1.8. Report structure 
In this research, first the variation in capacity will be evinced. This will be done in chapter 2. To do so, 

a survival function needs to be constructed. Therefore, the construction of the survival function will 

be described in this chapter as well. This method for constructing survival functions will be used in 

the rest of the research too every time a survival function needs to be constructed. 

In chapter 3, the sources that are going to be investigated are chosen. To do so, it is necessary to get 

a better insight in the treatment process at service locations. Therefore, an overview of the 

treatment process will be given. After that, the sources that are going to be investigated in chapter 4 

will be chosen. 

In chapter 4, the sources are investigated. The first source is the arrival process, the second source is 

allowing coupling and decoupling and the last source is the topology of the service location. For the 

topology, the Kleine and the Grote Binckhorst are used, since those two have totally different 

topologies. After that, the interaction of the sources with the location topology will be investigated. 

In the last chapter, chapter 5, the conclusion of the experiences of chapter 4 will be stated. Also the 

methods used in the research will be discussed. Finally, a couple of recommendations will be 

described in this chapter. 
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Chapter 2 

Variation in capacity 
 
In reality a lot of sources can have influence on the capacity. These sources cause variation in 
capacity. This research will look at sources that cause this variation in capacity. In this chapter will be 
shown that there is variation in capacity. Therefore a method is sought to show that variation in 
capacity exists and whether this can be quantified. 

 
 

2.1. Method description 
Using a database in which many different instances are already available, a cumulative graph can be 
made which expresses the chance of success for an instance that contains a particular number of 
train units. This graph is a survival function. A survival function can be composed by executing the 
Product Limit method. It is assumed that the instances used for compiling this graph give a good 
estimate for the capacity. From this cumulative graph the probability density function can be 
determined. In case variation in capacity does exist, this graph will not be a clear function in the 
beginning, since this is caused by sources of variation which influence the capacity. By identifying the 
sources and filtering them out, the graph gets rid of outliers and becomes homogeneous, 
theoretically. So by constructing a probability density function with the data available can be shown 
that there really is variation in capacity. 
 
 

2.2. Methods for constructing a survival function 
Data is generated with the ‘behandelcalculator’. This data consists of instances, which have 
characteristics. For those instances a solution is or is not found. With these data a graph can be made 
in which the chance of success is plotted against the number of train units in an instance. This is 
called a survival function.  
 

S(t) = 1 − Fc(t) = p(c ≤ t) where S(t) is the survival function,  
Fc(t) is the capacity distribution function, c is the capacity and t is the number of train units. 

 
How survival functions will be constructed in this research will be explained in this paragraph. 
 

2.2.1. Intuitive method 
A simple way is calculating the number of failures and the total number of instances generated with 
a particular number of train units. With this information the chance on failure can be calculated for 
every number of train units. However, these chances can fluctuate. In practice, the chance of failure 
cannot become lower than before since the chance that an instance with less train units will be 
solved is always higher than that an instance with more train units will be solved. A possible way to 
get rid of this problem and construct a cumulative function, is to assume that the chance of failure is 
at least the chance at number of train units minus 1. An uncertainty that this method brings with it, is 
when a calculated chance of failure is higher due to few measurements, the chance will not be lower 
anymore. 
 
In the next example this problem occurs. An analysis is done and it should give a capacity of 20 train 
units. However, there is been done one measurement consisting of just one single train unit and for 
this instance no solution could be found in the run period. In this case, the chance of failure for one 
train unit is 1, and since this chance cannot become lower than before, the chance of failure will 
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falsely be 1 for all number of train units. However, this is a very specific case and this will not happen 
soon since the pareto-front analyser is built in the ‘behandelcalculator’. 
 

2.2.2. Product Limit Method 
Another way to construct a survival function is by using the Product Limit Method based on lifetime 
data. In a survival function, the number of train units is plotted against the chance of success. This 
can be easily translated in a function in which the number of train units is plotted against the chance 
of failure, since chance of failure is 1 minus the chance of success. The Product Limit Method 
estimates the survival function based on data. The Product Limit Method has several estimators. 
Three well-known estimators are discussed here. The Kaplan-Meier estimator, the Nelson-Aalen 
estimator and Turnbull’s estimator. 
 

2.2.2.1. Censoring data 

Before explaining the three Product Limit estimators, censoring needs to be discussed. In survival 
analysis events on individuals are investigated during a time period. However, it is possible that the 
event already happened for an individual before the investigation period, but it is unknown when. 
The only thing known is that the event happened before the beginning of the investigation. This data 
is called ‘left-censored data’. It is also possible that the event has not yet happened at the end of the 
investigation. The only thing known in this case is the fact that the moment of the event is later than 
the end of the investigation. This is data is called ‘right censored’. These censored data consists of 
interesting information that you want to use, but it cannot be used directly. (Klein & Moeschberger, 
2003)  
 
In this research, there is not such a variable as time, but it is possible to look at the number of train 
units as the time. The number of train units in an instance increases, until the capacity drops. This 
happens when no solution can be found for the first time in that lifetime. In this case, a lifetime is an 
increasing number of instances, from zero train units in an instance till the number of train units in 
an instance where the capacity drops. 
 
This capacity drop is the event. However, the data available are individual instances consisting of a 
particular number of train units. There is not such a thing that every time a solution is found one 
train is added to the instance, and the behandelcalculator calculates whether this new instance can 
be solved. The data can be seen as a snapshot. At the moment that 15 train units are in the instance 
and no solution is found, this means that the capacity has dropped somewhere before the 15 train 
units, which is left censored data. At the moment that 15 train units are in the instance and a 
solution is found, this means that the capacity is not dropped yet, and therefore the capacity will 
drop when the instance consists of more than 15 train units, but it is unknown at how many train 
units this will be. These data is right censored. 
 
 

2.2.2.2. Estimators 

The Kaplan-Meier estimator is an estimator used a lot as estimator for the Product Limit Method. 
This estimator is used to estimate the traffic breakdown capacity for example. The traffic flow 
increases every time interval until congestion occurs. At every interval a measure is done, where 
occurrence of congestion is a success event. The failures are right censored because the success 
event did not take place yet and will take place in the future. (Brilon, Geistefeldt, & Regler, 2005) This 
is a typical example of the use of the Kaplan-Meier estimator since in this example only right 
censored data is present. The Kaplan-Meier estimator handles right censored data, but it does not 
handle left censored data. In problems that have left censored data, a solution is to apply left 
truncation. This principle is ignoring the left censored data, but this is combined by throwing useful 
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information away (Klein & Moeschberger, 2003). Another way to get along with left censored data by 
using the Kaplan-Meier estimator is making assumptions about the lifetime of left censored data. 
 
The Nelson-Aalen estimator is similar to the Kaplan-Meier estimator. The Nelson-Aalen estimator can 
be approached with the Kaplan-Meier estimator. (Wolfe, 2000) Since the Kaplan-Meier method is 
more common, the Nelson-Aalen estimator will not be preferred over the Kaplan-Meier estimator. 
 
Turnbull’s estimator differs from the Kaplan-Meier estimator and the Nelson-Aalen estimator since  
this estimator is an algorithm. Turnbull estimates the survival function by using an iterative process. 
In this process the survival function gets more and more stabilized until there is nearly no difference 
between the last two iterations. Turnbull’s estimator handles right censored data, but also left 
censored data. (Klein & Moeschberger, 2003) 
 
 

2.2.3. Application in this research 
This research focusses on the capacity of a service location. This capacity is expressed in a number of 
train units that can be handled. The number of train units, can be seen as the time in a lifetime 
analysis. An instance of 1 train unit for which a solution is found, will be extended with another train 
unit, until there is no solution found for the instance. At that number of train units, the instance fails 
and this was the maximum feasible ‘lifetime’ for this instance with these characteristic.  
 
However, the data available in this research consists only of an instance with a particular number of 
train units, but the instance is not extended. There is only one measurement of an instance lifetime 
at a certain ‘time’, which is in this case a number of train units. The measurement at this moment can 
be a failure or a success. A failure means that no solution could be found. This comes down to the 
fact that the success should have taken place with less train units in the instance, which is left 
censored data. A success on the other hand implies that perhaps there could be more train units 
handled in the instance, but it is unknown how many. This means that successes are exact data or 
right censored data. A success at a number of train units implies that the number of train units at the 
success minus 1 is right censored. 
 
Since the Product Limit Method is scientifically based and the intuitive method is not, the Product 
Limit Method will be used in this research. The estimator that will be used is Turnbull’s estimator 
since the data in this research is doubly censored and this estimator handles right censored data and 
left censored data. This will cause less uncertainty than making assumptions while using the Kaplan-
Meier estimator. 
 
 

2.2.4. Turnbull’s algorithm in Matlab 
Turnbull’s estimator makes use of an iterative process. To estimate the survival function in this 
research by using Turnbull’s estimator, a script is written in Matlab, which executes Turnbull’s 
algorithm and estimates the needed survival function. This can be used for constructing survival 
functions. A survival function can be used to show variation in capacity, which will be done in this 
chapter, but Turnbull’s algorithm will be used for constructing many other survival functions later in 
this research. 
 
The iterative process programmed in Matlab, starts with an initial estimate of the survival function S. 
Any legitimate estimate will work. Turnbull suggests to use the Kaplan-Meier estimator, but since in 
the data no exact measures are available, this will not work. Therefore, the intuitive method is used 
to construct an initial estimate of the survival function. 
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The first step of the iterative process, is calculating pij values using the current estimate of S. This can 

be done by using the following formula: 
 

pij =  
Sk(tj−1) − Sk(tj)

1 −  Sk(ti)
 for j ≤ i where  Sk is the current estimate of the survival function. 

 
This results in an upper triangular matrix with i columns and j rows. This pij matrix will be used for 

executing step two. In step two, an estimate of the number of events at a particular number of train 
units ti is made, which is ḋi. ḋi can be calculated by the following formula: 
 

ḋi =   di + ∑  ci pij

m

i=j

 where  ci is the number of left censored observations at  ti. 

 
Since ḋi is an estimate for the events at a number of train units ti that follow from the left censored 
data, only right censored data still has to be handled. This can be done by the Kaplan-Meier 
estimator, since left censored data is not an issue anymore. By executing the Kaplan-Meier 
estimator, a new estimate for the survival function arises. (Klein & Moeschberger, 2003) 
 
The Kaplan Meier estimator gives an estimate of the survival function by calculating the following 
formula at every t (Brilon, Geistefeldt, & Regler, 2005): 
 

S(t) =  ∏
nj − dj

nj
j: tj≤t

 where S(t) is the survival function,  

nj is the number of train units for which the capacity can be reached at that point and  

dj is the number of times that the capacity is reached at tj number of train units.  

 
The iterative procedure stops if the estimate  Sk+1(t) is close to  Sk(t). Then, not much differences 
will occur anymore. In the script it is assumed that the process stops when the sum of the differences 
is below 0,001. (Klein & Moeschberger, 2003) 
 
The script can be found in appendix A. 
 

2.3. Cumulative distribution function and the probability density function 
The probability density function will be constructed to show the variation in capacity based on a 
large set of data. This probability density function can be derived from the cumulative distribution 
function, which can be found from the survival function. 
 
A survival function is a decreasing function from 1 to 0, since the chance of success becomes lower 
over the time. A cumulative distribution function is an increasing function from 0 to 1. This function 
shows the chance that an event will happen at that time or has happened already. The chance of 
failure will increase while increasing the number of train units in a work package. The cumulative 
graph about the chance of failure can be found from the survival function, since the following holds: 

 
Cumulative graph P(fail) = 1 – P(success) = 1 – Survival function S. 

 
The probability density function can be derived from the cumulative distribution function. This 
includes the probability density function of failure. The probability density function is the derivative 
from the cumulative distribution function. Therefore, the probability density function of failure 
follows from the cumulative distribution function P(fail). 
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This results in Figure 3 are the cumulative distribution function (blue) and the probability density 
function (black), based on instances with a lot of different characteristics. 
 

 
Figure 3: CDF and PDF per Number of train units of the database 

 
In Figure 3 can be seen that the probability density function of the capacity is not a clear function, 
like a normal distribution. However, a lot of variation can be seen due to the different peeks. 
Therefore, variation in capacity exists. 
 
 

2.4. Quantification of variation 
By identifying factors that will have influence on the variation in capacity, the variation will decrease 

theoretically. This will be checked in the remainder of this research by giving a measure for the 

variation in capacity to a set of data. In this chapter is shown that variation in capacity exists, but to 

compare this variation with other sets of data which are based on specific characteristics, a measure 

for the degree of variation is needed. 

The variation can be expressed as the variance, since the variance is a measure for the scatter of a 

set of values. The variance is a characteristic of a sample. Therefore, a sample will be generated 

based on the survival function shown in Figure 3. A sample with a sample size of 100.000 measures 

will be generated by a random generator. A script for making a sample with measures based on the 

survival function is made Matlab and can be found in appendix B. This sample will be used to 

calculate the variance of the dataset, by using the following formula: 

s2 =
∑ (xi − xavg)

2n
i=1

n
 where xi is the value of observation i,  

xavg is the mean of all values si and n is the number of observations 
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Executing this formula, based on the probability density function in Figure 3, the variance becomes 

s2 = 40,543. 

A source can also cause variation in capacity mean. In this research will be worked with the median 

of the datasets instead of the mean. This will be done since the distributions of the survival functions 

are not known. To test the samples on significant differences in mean, the assumption has to be 

made that the survival functions are normally distributed. This is a dangerous assumption. Therefore 

it is chosen to work with a more robust test, which tests significant differences between medians. 

The median is the central value of a sample. The median of this sample is m = 43. 
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Chapter 3 

Selection of sources 
 

In this chapter, a selection of the sources will be made. Those sources are going to be investigated in 

the remainder of this research. The selection will be made by first investigating the treatment 

process. Based on this, a couple of sources that potentially have influence on the capacity variation 

will come up. From these a selection will be made, substantiated with available instances in the data. 

Some sources will interact with other sources. To track down those sources, a flow chart will be 

made of the sources that are going to be investigate and the potential interactions between them. 

The interaction between those sources will be explored by making scenario’s and run those 

scenario’s in the behandelcalculator. Therefore, scenario’s will be chosen based on the flowchart, 

substantiated with available instances in the data. 

 

3.1. Treatment process 
The treatment process is investigated to select sources which potentially can cause variation in 

capacity. This treatment process starts with the arrival of a train and ends with the departure of a 

train at a service location. Between those events many things can happen to the train. Shunting 

movements are necessary for every time a train needs to be replaced. Some maintenance tasks need 

to be executed, at which some of the tasks need specific tracks. Tasks that can be necessary to 

execute are cleaning of the internal or external of the train, A- and B-checks or small repairs. Trains 

also need to depart in the right composition, which can differ from the arrival composition. In that 

case, the matching problem comes up. 

 

3.1.1. Arrival process 
A source that probably influences the capacity, is the arrival process. The way the trains arrive at 

service locations is important since there is a difference between evenly distributed arriving trains 

and a bunch of trains which arrive simultaneously and have to be cleaned checked and matched in a 

short period. Many trains at once will end up in a lower capacity than evenly distributed arriving 

trains throughout the arrival period. 

 

3.1.2. Departure process 
The departure process of the trains could also have influence on the capacity, since the moment of 

departure determines the time a train is present at the service location. The longer a train is present 

at a service location, the more time is available to execute all the tasks.  

 

3.1.3. Shunting problem 
The Train Units Shunting Problem is concerned with the assignment of tracks to trains. In this 

problem, it is important find a feasible solution to plan the arriving trains in such a way that they are 

ready to depart in the right composition, with the right maintenance executed. Finding a solution 

becomes more complicated when more tasks need to be executed, especially since for some tasks 

particular tracks are required.  



23 
 

Besides this, there is a lot of uncertainty. This uncertainty is caused by the fact that a shunting plan 

cannot be made a long time before the execution. Sometimes a train ends up somewhere else 

because of  a problem at the rails for example, or maybe defect has occurred so a certain repair 

needs to take place. This uncertainty in terms of modelling means that the calculation time cannot be 

long, which results in less time to find a solution, so less solutions will be found. This comes down to 

a lower capacity. (van den Broek, Hoogeveen, & van den Akker, 2012) (Haahr, Lusby, & Wagenaar, 

2017) (Freling, Lenting, Kroon, & Huisman, 2005) 

 

3.1.4. Tasks 
Many tasks need to be executed at service locations and the goal is to make use of the resources at 
service locations optimally. The tasks are divided into three groups: daily maintenance, short-term 
maintenance and refurbishment & overhaul. This research will only look at the daily maintenance at 
one service location. Daily maintenance takes place at 35 service location throughout the country. 
This consists of thorough cleaning of the inside and outside of trains, safety checks and minor repairs 
if necessary. For some of the tasks particular tracks are required which are not available at all service 
locations. (Apallius de Vos & Van Dongen, 2015) The different tasks are described below. (Hoepel, 
2017) (Beerthuizen, 2017) (Huizingh, 2018) 

 

3.1.4.1. Cleaning 

The cleanness of rolling stock directly influences the perceived quality of the offered service to 

passengers. Providing clean rolling stock is one of the five main objectives of the NS. The train units 

need to be cleaned both inside and outside. 

Internal cleaning 

There are different types of internal cleaning. Cleaning at the end of a railway passenger line which 

consists of the fast cleaning of the interior of the train and emptying trash cans. Modular cleaning, 

which consists of all standard interior cleaning activities. Those are separated in different modules, 

which all have prescribed frequencies. Periodic thorough cleaning is typically scheduled once every 

few months at the same time as large maintenance activities. Modular cleaning is the most 

important internal cleaning type that is executed at service locations. 

The process of internal cleaning takes place along dedicated platforms. If it is impossible to clean a 

train unit internally at a track along such a platform, one can consider cleaning a train unit at some 

other track. (Lentink, 2006) 

External cleaning 

External cleaning involves washing the outside of the train. This is less urgent than internal cleaning 

because it is secondary priority for passengers, but it needs to happen too. The process of external 

cleaning needs a train-wash, which is available at 15 service locations in the Netherlands. Because it 

requires specialized equipment, cleaning the outside of the trains cannot be carried out at other 

tracks. Sometimes urgent external cleaning needs to be executed, for example when graffiti needs to 

be removed from the front window or after incidents. (Lentink, 2006) 

 

3.1.4.2. Checks 

Different checks need to be executed, to prevent trouble. A distinction can be made between the 

checks. The A-check and the B-check. The A-check is a larger inspection and takes about an hour to 

execute. This inspection needs to take place approximately once every 12 days. The B-check is a 
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shorter check and takes about 20 minutes to execute. This inspection needs to take place more 

often, namely once per two days. Inspection B consists of inspection preparation proceedings, brake 

testing proceedings and external checks on the streamers of the train unit. Inspection A consists of a 

B check but also of some extra safety checks like doors, entry steps and the train driver cabin. The 

contents of the A- and B-checks can vary per train type. (NedTrain, 2014) 

3.1.4.3. Repairs 

In the current production concept, two categories of train failures are known. Simple failures are 

handled nightly at the service locations. Complex failures are repaired at three large maintenance 

depots, but those repairs cost a lot of time and are very expensive. These repairs need to be 

prevented as much as possible, so it is important to carry out the minor repairs very seriously. 

(Busstra & van Dongen, 2015) The minor repairs can take place at the service locations. Examples of 

these minor repairs are door repairs or changing a light bulb. The main characteristic of minor repairs 

is that they can be executed at the service location. In some cases, special equipment is needed and 

that is available at special platforms, such as an aerial platform or a technical centre. 

3.1.4.4. Required time and frequency of tasks 

The time that the several tasks take has influence on the capacity, since the longer the tasks, the 

fewer tasks can be executed. However, this is not the only point. It can be that the duration of a task 

lies on a broad spectrum. This implies that the standard deviation of the duration of the tasks is 

large. The standard deviation of different tasks might have influence on the certainty of the 

occurrence of particular values for capacity. 

The frequency of different tasks may also have influence on the capacity. If a task needs to be 

executed every two days instead of every day, the capacity will probably improve. However, 

requirements are made about this topic. A safety check for example has to be executed daily, so not 

just a frequency of once per two days can be set here. 

 

3.1.5. Matching problem 
The matching problem is about deciding when and where to decouple and couple which train units, 

to create the train unit configurations that are required for the departing trains. 

As input for this matching problem, the planner receives a work package with planned arrivals and 

departures of all train services at the station under consideration. In addition, this timetable also 

prescribes the configuration of each train, which follows from the rolling stock circulation. More 

specifically, if the train configuration consists of different train types, the order of the different types 

of train units in the train is given by the timetable. In general, train units of the same type can be 

used interchangeably. However, the number of the train units are important, because it is important 

to know what maintenance has to take place for that particular train unit the next night at a service 

location. (Lentink, 2006) (Freling, Lentink, Kroon, & Huisman, 2002) 

 

3.1.6. Train types 
On the railway net different train types are deployed. These trains have to go through the 

maintenance system at service locations. Common train types are the SLT, the ICMm and the 

VIRM(m). It could be that at a service location the different train types also have influence on the 

capacity. (NS, 2018) 
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3.1.7. Layout of the service location 
The layout on service locations varies. Good accessible service tracks will cause a more efficient use 

of tracks, so this could influence the capacity. Two different layout types are common. The carousel 

layout and the shuffleboard layout. (Beerthuizen, 2017) (Huizingh, 2018) 

3.1.7.1. Carousel layout 

The carousel layout is a service location layout at which most tracks are free track, which means that 

a train unit can enter and depart the track at both sides. The train enters the track at one side and 

departs at the other side, so the first-in-first-out (FIFO) system is used. A carousel route is created in 

this way. The Kleine Binckhorst has a carousel layout. In the figure below, the carousel layout at the 

Kleine Binckhorst is shown.  

 

 

 

 

 

 

3.1.7.2. Shuffleboard layout 
The shuffleboard layout is a service location layout at 

which most tracks can be entered from only one side. 

The other side had a dead end. This means that the last-

in-first-out (LIFO) system is used at shuffleboard layouts. 

The Grote Binckhorst has a shuffleboard layout. In the 

figure on the right, the shuffleboard layout at the Grote 

Binckhorst is shown.  

 

 

 

  

Figure 4: Carousel layout Kleine Binckhorst (Emplacementstekeningen van NS, 2018) 

Figure 5: Shuffleboard layout Grote Binckhorst 
(Emplacementstekeningen van NS, 2018) 
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3.2. Choice of sources 
In the description of the treatment process, some sources that potentially influence the capacity 

have come up. Some of those sources will be investigated and some will not to demarcate the 

research assignment. Below, for every potentially influencing source is substantiated whether and 

why it will be investigated in this research or not. 

 

3.2.1. Arrival process and departure process 
To decide whether the arrival process is interesting to investigate, the dataset used in chapter 2 is 

filtered. This is done by making a program in Matlab, given in appendix C. The dataset is filtered 

based on two different kinds of arrival processes. One process is gradually spread over the arrival 

period, the other process is a bunch of trains in the last 25 percentage of the arrival period. The 

arrival period is from 17.30h until 2:20h. 

This results in differences in median and sigma compared to the total dataset. The results can be 

found in Table 1. Since the median and variance of the filtered samples differ from the median and 

variance of the total database, the arrival process is probably an interesting source. 

Table 1: Median and variance results of the filtered database based on arrival processes 

 

For the departure process could be done the same thing. However, it is chosen to leave the 

departure process out of the research scope since the arrival process and the departure process are 

closely linked. The total time that train units are present at service locations is dependent from both 

the arrival time and the departure time. This source will have more influence by presence of tasks 

theoretically, since the longer a train unit is present, the easier a plan can be made. On the other 

hand, sometimes it is preferred to get rid of a train unit, for example when a train unit is in the way 

for other train units. Since this has too many aspects, it is chosen to assume that in this research the 

arrival process and the departure process are of a similar nature. 

 

3.2.2. Shunting process 
The shunting process is an isolated problem. This cannot be investigated by the behandelcalculator 

since the behandelcalculator tries to find a solution for a problem. Shunting movements are 

necessary to execute a plan, so they are part of the solution. To improve the shunting process, the 

algorithm of the behandelcalculator needs to be improved. 

 

 

 Database Gradually arrival processes 
- Filtered 

Arrival processes in the last 25% 
of the time - Filtered 

Median (m) 42 46 38 

Variance (𝜎2) 40,54 113,88 108,97 
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3.2.3. Tasks 
To choose whether the tasks are 

investigated in the remainder of 

this research the dataset used in 

chapter 2 is used. This dataset is 

filtered. In a part of those 

instances tasks were assigned to 

the train units and in a part of 

those instances no tasks were 

assigned. The database of chapter 

2 is split up into two dataset, 

namely a dataset with the 

instances where tasks are assigned 

to the train units and a dataset in 

which no tasks were assigned. 

Those two different datasets 

resulted in the survival functions 

shown in Figure 6. 

Those survival functions show that there is a large difference between the dataset where tasks were 

assigned to the train units and where they were not. Variation in capacity median and variance will 

also be very large due to the large differences in values. This large difference shows a clear influence. 

However, it is better to investigate other sources while not assigning tasks in this research since the 

other sources do not fluctuate due to the presence of tasks. In this way, a better picture of the other 

sources can be outlined. 

 

3.2.4. Coupling and decoupling 
Matching becomes more complicated when train compositions of arriving trains differ from the 

compositions of departing trains. Because more shunting movements will take place when coupling 

and decoupling is accepted, it is harder to find a solution for the algorithm. However, in practice, it 

happens a lot that this configurations differ from each other. This probably means that the capacity is 

dependent of this. Not allowing coupling and decoupling will be easier, so this will cause differences 

capacity compared to allowing coupling and decoupling. Differences between the influence will 

especially be interesting for the different locations. Therefore, this source will be investigated. 

 

3.2.4. Train types 
The different ratios in train types that arrive at a service location can be interesting, especially when 

coupling and decoupling is allowed. However, not all sources can be investigated, due to the 

available time period for this research. Therefore it is chosen that investigating the train types will 

not be in the scope of this research. 

During this research only the standard ratio is train types will be used, since as little as possible 

factors at once will be set in the scenarios. Otherwise, the other factors can affect the capacity and 

differences can be caused by various sources. 

 

Figure 6: Survival functions with and without tasks (filtered data) 
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3.2.5. Location layout 
A little part of instances from the database used in chapter 2 are based on the topology of the Kleine 

Binckhorst and the other instances are based on the topology of the Grote Binckhorst. The Kleine 

Binckhorst has a carousel layout and the Grote Binckhorst has a shuffleboard layout. The dataset is 

split into two samples, one sample with the carousel topology and one sample with the shuffleboard 

topology. From these instances, survival functions are made. Since the Grote Binckhorst is roughly 

two times as large as the Kleine Binckhorst, capacity values, given in number of train units, of the 

Kleine Binckhorst are doubled. The survival functions are shown in Figure 7. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This figure shows that it is very likely that the location layout has a lot of influence on the capacity. In 

the table below, it also becomes clear that variation is probably caused by the location layout. 

 Table 2: Median and variance results of the filtered database based on topology 

 

Differences between the two types of topologies, shuffleboard and carousel, are expected especially 

in variance. The layout of a location can also interact with the arrival process or allowing coupling 

and decoupling. Therefore this source, and the interactions of this source with the other sources, will 

be investigated in this research. 

  

 Database Kleine Binckhorst (roughly 
normalised) - Filtered 

Grote Binckhorst - Filtered 

Median (m) 42 52 46 

Variance (𝜎2) 40,54 8,26 46,13 

Figure 7: Survival functions Kleine Binckhorst and Grote Binckhorst (filtered data) 
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Chapter 4 

Influence of sources 
 

In this chapter, the influence of the sources selected in the previous chapter will be investigated. 

Those sources are the arrival process, the tasks, the acceptance of coupling and decoupling and the 

location layout. These sources, except from the location layout itself, are going to be investigated at 

the Grote Binckhorst, which has a shuffleboard layout. 

 

4.1. Methodology 
To investigate the influence of the different sources, the settings of the behandelcalculator are 

modified for one variable while the remaining of the variables are kept constant. These settings 

generate data for corresponding scenarios. For the scenarios, survival functions are made, by making 

use of the same method as used in chapter 2. 

The survival functions differ from each other, but the question is whether they differ significantly. To 

test whether the differences are significantly, a Kolmogorov-Smirnov test will be executed. This 

method tests, based on the survival distributions whether the samples can come from the same 

‘population’ or not. 

In case significant differences don’t exists between survival functions, and thus the scenarios can be 

seen as the same, further investigation of those scenarios will not take place since the scenarios 

could have been the same due to the results. However, in case the survival functions differ 

significantly, capacity variation is caused by this source. 

A source can influence the certainty of the capacity, which can be quantified by the standard 𝜎 or the 

variance deviation 𝜎2, but it can also influence the expected value of the capacity. In this research 

will be worked with the median as an indication for the expected value. To check how the source 

influences the capacity, the median value and the variance of the scenarios will be calculated. The 

median and variance of the capacity can be calculated from the instances that satisfy the conditions 

of the specific scenario. This will be compared with the median and the variance of the database 

which is used in chapter 2, for which the values are already calculated in chapter 2. To investigate 

whether the median and the variance are changed significantly, statistical tests will be executed. The 

Wilcoxon signed rank test can be used to test significant differences in the median and the chi-

squared test can be used to test significant differences in variance and thus in standard deviation. 

In case the variances of the samples from the scenarios differ significantly, this means that research 

on the certainty about the capacity will be interesting. To visualise this, boxplots will be made. In this 

way, the certainty about the capacity value in the scenarios will become more clear. 
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4.2. Statistical tests 
Different statistical tests are chosen to execute to investigate the data on significant differences. The 

tests that are chosen are the Kolmogorov-Smirnov test to test whether survival functions are 

significantly different, the chi-squared test to test variance on significant differences and the 

Wilcoxon rank sum test to test sample medians on significant differences. The reason these tests are 

chosen to use in this research is that they are all non-parametric tests. For non-parametric tests, it is 

not necessary to approximate a sample with a known distribution.  

4.2.1. Kolmogorov-Smirnov test 
To test whether the two survival functions are significantly different, different statistical tests can be 

used to check whether two independent samples are drawn from the same population or not. A non-

parametric test with these abilities, is the Kolmogorov-Smirnov test. For this test, two cumulative 

distribution function are compared which can be calculated by 1 – Survival function. From these 

cumulative distributions, the largest difference Dn,n′ between the values needs to be calculated. The 

larger the difference between the cumulative percentages of both distributions, the larger the 

probability that both distributions are not the same. Therefore, the KS-test needs to be executed. 

The null hypotheses in the Kolmogorov-Smirnov test states that both distributions are drawn from 

the same population distribution, so they do not differ significantly from each other.  

H0: Sample A and sample B are drawn from the same distribution. 

To test whether the null hypothesis can be accepted or needs to be rejected, the KS-statistic Dn,n′,α 

can be calculated. 

Dn,n′,α = c(α)√
n + n′

nn′
    where     c(α) = √−

1

2
ln (

α

2
)  

In this formula, n represents the number of first sample and n’ represents the number of the second 

sample. The parameter 𝛼 is the level of significance. The outcome of Dn,n′,α is the probability that D 

is coincidental. 

The null hypothesis must be rejected at significance level α if the following formula holds.  

Dn,n′ > c(α)√
n + n′

nn′
  

Otherwise the null hypothesis can be accepted at significance level α. 

(Non-parametric tests and regression, 2018) 

Unfortunately, this method is not directly applicable in this research, since only the values of the 

survival function are known due to the censored data. There is not just a sample with measures 

available while this is needed. However, this sample can be generated by using a random generator. 

A script for making a sample with measures based on the survival function is made Matlab and can 

be found in appendix B. This will be used for the χ2-test and the Wilcoxon signed rank test as well. 

The sample size used in this research will be 100.000 measures. 

 

4.2.2. χ2-test 
A χ2-test is used to test whether the variances of two samples are equal. This will be the null 

hypothesis. 
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H0: The variances of sample A and B are equal. 

This test can be a two-tailed test, which tests against the alternative hypothesis that the variances 

are not equal. The test can also be lower or upper one-tailed. This will test against the alternative 

hypothesis that the variance is significantly lower or higher respectively. In this research, only two-

tailed tests will be performed. This means that the following will be the alternative hypothesis. 

H1: σ1
2  ≠  σ2

2 

To test whether the null hypothesis needs to be rejected or accepted, the test-statistic χ2
0 needs to 

be calculated by using the following formula. 

χ2
0 =

(n − 1)σ1
2

σ2
2

        where n is the number of degrees of freedom 

The null hypothesis needs to be rejected if the value χ2
0 is in the rejection region. The rejection 

region is described below. The critical values need to be read out the table given in appendix D. They 

are dependent from the number of degrees of freedom n and the level of significance 𝛼. 

χ2
0 ≥ χ2

n−1;α/2 or χ2
0 ≤ χ2

n−1;1−α/2 

(van Berkum & Di Bucchianico, 2007) 

 

4.2.3. Wilcoxon signed rank test 
The Wilcoxon signed rank test is a nonparametric alternative for the paired student’s t-test. The 

paired student’s t-test compares the means of two paired samples, however it assumes that the 

distribution of the samples are normally distributed. The Wilcoxon signed rank does not assume a 

distribution for the sample since it is a nonparametric test. This means that the Wilcoxon signed rank 

test is more robust than the paired student’s t-test. On the other hand, the Wilcoxon signed rank test 

does not compare the means, but instead the medians of the samples. However, this this will still 

give a good indication. 

The null hypothesis of the Wilcoxon signed rank test states that the medians of both samples are 

equal. 

H0: Sample A and sample B do have the same median. 

To test whether this statement is true or whether it has to be rejected, the test-statistic W needs to 

be calculated. To calculate the test-statistic W, the absolute differences between the samples have to 

be calculated first. There are N pairs of which the absolute differences are calculated. From this set, 

the ones where the absolute difference is zero are excluded . The remaining Nr pairs are ranked from 

low to high. These ranks Ri are used to calculate the test-statistic W, which is the sum of the signed 

ranks. The sign function  

W =  ∑[sgn(x2,i − x1,i) ∙ Ri]

Nr

i=1

 

In the case that Nr < 20 the absolute value of the test-statistic W can be compared to a critical value 

from a reference table. Since in this research Nr ≥ 20, the z-score can be used. This can be calculated 

by the following formula. 
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x =  
W

σW
        where        σW =  √

Nr(Nr + 1)(2Nr + 1)

6
 

Only two sided tests will be performed in this research. To perform a two-sided test the following 

holds. 

Reject H0 if |z| >  zcritical. 

(van Berkum & Di Bucchianico, 2007) 

 

4.3. Arrival process 
The first source that will be investigated, is the arrival process.  There will probably be differences 

between evenly distributed arriving trains and a bunch of trains which arrive simultaneously or 

shortly after each other. Many trains at once will probably end up in a lower capacity than evenly 

distributed arriving trains throughout the day.  

4.3.1. Scenario description 
To investigate differences capacity caused by the arrival process, four scenarios are set and 

investigated. In the behandelcalculator, the train units have to arrive between 17.30 and 2:20. The 

scenarios differ in the percentages of the arrival period in which the train units arrive. The scenarios 

are all based on two runs of the behandelcalculator, once for the Kleine Binckhorst and once for the 

Grote Binckhorst. An overview of the scenarios is given in Table 3. 

Table 3: Composition of the scenarios set to investigate the arrival process 

Scenario’s Runs Assumptions 

Train units arrive spread over 
the last 25% of the arrival 
period 

Topology of the Kleine 
Binckhorst is used. 

Coupling and decoupling is not 
allowed and no tasks need to 
be executed. 

Topology of the Grote 
Binckhorst is used. 

Coupling and decoupling is not 
allowed and no tasks need to 
be executed. 

Train units arrive spread over 
the last 50% of the arrival 
period 

Topology of the Kleine 
Binckhorst is used. 

Coupling and decoupling is not 
allowed and no tasks need to 
be executed. 

Topology of the Grote 
Binckhorst is used. 

Coupling and decoupling is not 
allowed and no tasks need to 
be executed. 

Train units arrive spread over 
the last 75% of the arrival 
period 

Topology of the Kleine 
Binckhorst 

Coupling and decoupling is not 
allowed and no tasks need to 
be executed. 

Topology of the Grote 
Binckhorst is used. 

Coupling and decoupling is not 
allowed and no tasks need to 
be executed. 

Train units arrive spread over 
100% of the arrival period 

Topology of the Kleine 
Binckhorst is used. 

Coupling and decoupling is not 
allowed and no tasks need to 
be executed. 

Topology of the Grote 
Binckhorst is used. 

Coupling and decoupling is not 
allowed and no tasks need to 
be executed. 
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4.3.2. Qualitative analysis 
From the data that is obtained by running the behandelcalculator for the settings described in Table 

3, four scenarios are made. The scenarios exists of two analyses of the behandelcalculator. To 

compose the survival function of two analyses together, the results are added together. This is done 

by making use of the Matlab script given in appendix E. The obtained survival functions are shown in 

Figure 8. 

 

Figure 8: Survival functions of the arrival processes 

 

At first, it is striking that all four survival functions have roughly the same shape. The first part of the 

survival functions are very steep, while the second part is much more divided. The number of train 

units are not extremely different for the four scenarios. Significant difference are not clearly 

determined. However, the survival functions achieve slightly higher values for capacity in its entirety 

by increasing the arrival period. This becomes clear when an estimate of the medians is made. The 

median is the central measure of a sample, which strokes with the capacity value where the chance 

of failure is 0,5. Estimations of the medians are shown in Table 4. By increasing the arrival period, the 

median becomes a little bit higher. 

The certainty of capacity does not seem to be different for the different scenarios. The number of 

train unit values of the first failure and the last success of al scenarios, which can be found in Table 4, 

are pretty close together. This would imply that the arrival process does not cause variation in 

capacity. 
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The first parts of the survival functions are very steep. By increasing with only a few train units, the 

chance of failure increases from zero to 0,5. This means that the certainty on capacity is very high for 

the instances for which in at least 50% of the cases a solution will be found. When the chance of 

failure becomes even larger, the certainty on capacity the capacity value becomes much smaller. This 

becomes very clear in the sizes of the intervals of the values with a failure chance between 0,1 and 

0,5 compared to the sizes of the intervals of the values with a failure chance between 0,5 and 0,9. 

Estimates of those intervals can be found in Table 4. 

 

Table 4: Estimates based on the survival functions with different arrival processes 

Scenario Median First 
failure 

No 
successes 

Interval of the values 
between 0,1 and 0,5 
chance of failure 

Interval of the values 
between 0,5 and 
0,9chance of failure 

Arrivals spread 
over the last 
25% of the 
arrival period 

24 train 
units 

22 train 
units 

52 train 
units 

[23, 25] train units [25, 48] train units 

Arrivals spread 
over the last 
50% of the 
arrival period 

27 train 
units 

24 train 
units 

51 train 
units 

[25, 28] train units [28, 49] train units 

Arrivals spread 
over the last 
75% of the 
arrival period 

29 train 
units 

24 train 
units 

52 train 
units 

[25, 29] train units [29, 51] train units 

Arrivals spread 
over 100% of the 
arrival period 

31 train 
units 

25 train 
units 

52 train 
units 

[26, 30] train units [30, 51] train units 

 

 

4.3.3. Quantitative analyses 
To execute the  quantitative analysis, the statistical tests will be executed between the scenarios. The 

certainty on the capacity will also be investigated by studying the boxplots.  

4.3.3.1. Executing the Kolmogorov-Smirnov test 

At first, it is important to test whether the significant differences exists between the four scenarios. 

Therefore, Kolmogorov-Smirnov tests will be executed between all scenarios. This test will be 

executed by using the Matlab scripts given in appendix A to get the values of the survival functions 

and appendix F to test whether two scenarios differ significantly in capacity. In the qualitative 

analysis in paragraph 4.3.2 is already mentioned that the four scenarios do not differ obviously. 

Therefore, this test will be interesting. The null hypothesis that will be tested with a significance level 

of 𝛼 = 0,01 is stated below. 

H0: The two scenarios, in which the train units arrive spread over different 

percentages of the arrival period, do have the same capacity. 
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Table 5: Results of the Kolmogorov-Smirnov test between the scenarios 

 Arrivals spread 
over the last 25% 
of the arrival 
period 

Arrivals spread 
over the last 50% 
of the arrival 
period 

Arrivals spread 
over the last 75% 
of the arrival 
period 

Arrivals spread 
over 100% of the 
arrival period 

Arrivals spread 
over the last 25% 
of the arrival 
period 

 
- 

 
Significant 

differences exist 

 
Significant 

differences exist 

 
Significant 

differences exist 

Arrivals spread 
over the last 50% 
of the arrival 
period 

  
- 

 
Significant 

differences exist 

 
Significant 

differences exist 

Arrivals spread 
over the last 75% 
of the arrival 
period 

   
- 

 
Significant 

differences exist 

 

 

By executing the test, it appeared that between all scenarios, null hypothesis needs to be rejected. 

That means that the alternative hypothesis, stated below, will be accepted. 

H1: The two scenarios, in which the train units arrive spread over different 

percentages of the arrival period, do have significantly different capacities. 

 

Since significantly differences exist between the two scenarios, investigation of the nature of these 

differences is interesting.  

 

4.3.3.2. Testing significant differences in median and variance 

The sources can influence the capacity by mean value, for which in this research the median m is 

used as an indication, but it can also influence the certainty of the capacity. The certainty of the 

capacity is higher if the standard deviation 𝜎 is low, and thus if the variance 𝜎2, is low. The right 

estimate of the capacity becomes less certain when the standard deviation 𝜎, and thus the variance 

𝜎2, are higher. 

In the table below, the values for the median and the variance of the two scenarios are given. Those 

values are calculated based on the sample generated by the random generator in appendix B. 

 

Table 6: Results of the median and variance for the different arrival processes 

 Median (m) Variance (𝜎2) 

Arrivals gradually spread over the last 25% of the arrival period 28 112,59 

Arrivals gradually spread over the last 50% of the arrival period 29 102,70 

Arrivals gradually spread over the last 75% of the arrival period 29 117,74 

Arrivals gradually spread over 100% of the arrival period 30 114,34 
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In this table can be seen that the median increases while the period in which the trains arrive 

increases. To check whether the differences in medians of the samples are significantly or not, 

Wilcoxon signed rank tests will be executed with a significance level of 𝛼 = 0,01. The null hypothesis 

is stated below. 

H0: mscenarioA =  mscenarioB 

The test is performed using the Matlab script in appendix F. It appeared that the null hypothesis does 

not have to be rejected for all scenarios. Only the scenario in which the trains arrive in the last 25% 

of the arrival period compared to the scenario in which the trains arrive gradually spread over 100% 

of the arrival period, a significant difference exists. This means that the alternative hypotheses will be 

accepted for only those scenarios. The alternative hypothesis that will be accepted is stated below. 

H1: m25% ≠  m100%  

It can be stated that the different arrival processes cause variation in capacity median only when 

there is a large difference in the percentage of the arrival period the train units arrive in. 

 

The values for the variances differ per scenario. With χ2-tests will be tested  whether the variances of 

the sample differ significantly. Those tests will be performed with a level of significance of 𝛼 = 0,01. 

The null hypothesis is stated below. 

H0: σscenarioA
2 = σscenarioB

2 

The tests are executed by making use of the Matlab script in appendix F. It appeared, as expected, 

that the null hypothesis has to be rejected. This means that the alternative hypothesis will be 

accepted. The alternative hypothesis is stated below. 

H1: σscenarioA
2 ≠ σscenarioB

2 

This means that the variances 𝜎2 of the all scenarios differ significantly. Based on the values in Table 

6, not a really interesting relation can be expected with the percentage of the arrival period in which 

the train units arrive.  

 

4.3.3.3. Certainty on capacity 

Since the variances differ significantly, it is interesting to investigate the degree of uncertainty in 

capacity. This can be visualised by making a boxplot from the samples of the scenarios. The boxplots 

of the four scenarios in which the arrival processes differ are shown in Figure 9. 
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Figure 9: Boxplots of the scenarios with different arrival process 

In this figure is visualised that the intervals in which values occur, become slightly smaller when the 

arrival period increases. However, these values are pretty close together. The intervals are equal for 

50%, 75% and 100% of the time, but it is larger for 25%.  

Besides that, it can be seen that the values increase, together with their intervals, by increasing the 

percentages of the arrival period in which the train units arrive. The largest differences are between 

25% and 100%. This strokes with the results from the Wilcoxon singed rank test executed in 

paragraph 4.3.3.2. 

 

4.3.4. Interim conclusion – arrival process 

The conclusion that can be drawn from the investigation of the arrival process, is that the median 

values do not differ significantly for different percentages in which the train units arrive, only for the 

two extreme scenarios. This means that this source causes only little bit variation in capacity median. 

Increasing the time period in which the train units arrive, the capacity median increases. 

The χ2-test has shown that significant differences exist between the variances. The differences in 

sample variances imply that increasing the time period in which the train units arrive causes variation 

in capacity variance.  

Compared to other sources, the variance causes a lot of variation in capacity variance. This becomes 

clear while comparing the variances 𝜎2 calculated in Table 6 with the variance of the database, 
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calculated in chapter 2. It is not clear why the large variances has occurred. The certainty about the 

capacity is very small, since the capacity values occur over an interval of 27 train unit values. It is 

desirable to be more certain of the capacity. 

 

4.4. Coupling and decoupling 
The first source that will be investigated, is the allowing coupling and decoupling of trains. In the 

behandelcalculator can be chosen whether coupling and decoupling is allowed. If coupling and 

decoupling is not allowed, the trains will depart in the same configuration as they arrived in. If 

coupling and decoupling is allowed, the trains can depart in different configurations as they arrived 

in. This can make it harder to find solutions for the work packages. 

 

4.4.1. Scenario description 
To investigate allowing coupling and decoupling, two scenarios are composed. The scenarios are 

both based on two runs of the behandelcalculator. The compositions of the scenario’s is clearly 

displayed in  

Table 7 below. 

 

Table 7: Composition of the scenarios set to investigate allowing coupling and decoupling 

Scenario’s Runs Assumptions 

Allowing coupling and 
decoupling 

Kleine Binckhorst at which 
coupling and decoupling is 
allowed. 

The arrival process of the 
trains is set as the standard 
‘normal capacity’ and no tasks 
need to be executed. 

Grote Binckhorst at which 
coupling and decoupling is 
allowed. 

The arrival process of the 
trains is set as the standard 
‘normal capacity’ and no tasks 
need to be executed. 

Not allowing coupling and 
decoupling 

Kleine Binckhorst at which 
coupling and decoupling is not 
allowed. 

The arrival process of the 
trains is set as the standard 
‘normal capacity’ and no tasks 
need to be executed. 

Grote Binckhorst at which 
coupling and decoupling is not 
allowed. 

The arrival process of the 
trains is set as the standard 
‘normal capacity’ and no tasks 
need to be executed. 
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4.4.2. Qualitative analysis 
From the data that is obtained 

by running the 

behandelcalculator as 

described in  

Table 7, two scenarios are 

made. To compose the survival 

functions of two analyses of the 

behandelcalculator together, 

the results are added together. 

This is done by making use of 

the Matlab script given in 

Appendix A. The obtained 

survival functions are shown in 

Figure 10. 

 

 

In this survival functions can be seen that they have roughly the same shape. In addition, the values 

for the capacity do not differ a lot. However, the survival function of the scenario where coupling and 

decoupling was not allowed, achieves slightly higher values for capacity in its entirety. This implies 

that the capacity when coupling and decoupling is not allowed, will be slightly higher. A higher 

capacity value was expected, since finding a solution becomes harder when the trains can depart in 

different configurations than they arrived in. Since there is not a large difference between the 

survival functions, the question is whether this will yield significant differences. 

However, in the figure can also be seen that in case coupling and decoupling is allowed, the first 

failures occur at instances of 18 train units. The first failures in case coupling and decoupling is not 

allowed only occur at instances with 24 train units. On the other hand, the chance of failure becomes 

1 at a train unit value of 52 in both scenarios. 

The median is the central measure of a sample, which strokes with the capacity value where the 

chance of failure is 0,5. This means that for the scenario where coupling and decoupling is allowed 

the value for the median is estimated at 30 train units and for the scenario in which coupling and 

decoupling is not allowed this value is also estimated at 30 train units. 

The certainty about the capacity is not clearly different in the two scenarios. When coupling and 

decoupling is allowed, the capacity values which have a chance of failure between 0,1 and 0,9 lie in 

the interval of 24 to 49 train units. When coupling and decoupling is not allowed, this interval is from 

25 to 51 train units. This does not differ a lot relative to each other. However, generally seen, more 

certainty on the capacity is desirable. The standard deviations of both survival functions are probably 

large. 

 

4.4.3. Quantitative analysis 
To execute the  quantitative analysis, the statistical tests will be executed. The certainty on the 

capacity will also be investigated by studying the boxplots.  

Figure 10: Survival functions allowing and not allowing coupling and decoupling 
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4.4.3.1. Executing the Kolmogorov-Smirnov test 

At first, it is important to test whether the two scenarios differ significantly from each other. This will 

be tested by using the Matlab scripts given in appendix A to get the values of the survival functions 

and appendix F to test whether the scenario in which coupling and decoupling is allowed and in 

which it is not allowed differ significantly in capacity. In the qualitative analysis in paragraph 4.4.2 is 

already mentioned that the two scenarios do not differ obviously. Therefore, this test will be 

interesting. The null hypothesis that will be tested with a significance level of 𝛼 = 0,01 is stated 

below. 

H0: The two scenarios, allowing the possibility of couping and decoupling 

and not allowing the possibility of coupling and decoupling, do have the same capacity. 

 

By executing the test, it appeared that the null hypothesis needs to be rejected. That means that the 

alternative hypothesis, stated below, will be accepted. 

H1: The two scenarios, allowing the possibility of coupling and decoupling and not allowing  

the possibility of coupling and decoupling, do have significantly different capacities. 

 

Since significantly differences exist between the two scenarios, investigation of the nature of these 

differences might be useful.  

4.4.3.2. Testing significant differences in median and variance 

The sources can influence the capacity by mean value, for which in this research the median m is 

used as an indication, but it can also influence the certainty of the capacity. The certainty of the 

capacity is higher if the standard deviation 𝜎 is low, and thus if the variance 𝜎2, is low. The right 

estimate of the capacity becomes less certain when the standard deviation 𝜎, and thus the variance 

𝜎2, are higher. 

In the table below, the values for the median and the variance of the two scenarios are given. Those 

values are calculated based on the sample generated by the random generator in appendix B. 

Table 8: Results of the median and variance when coupling an decoupling is or is not allowed 

 Coupling and decoupling not 
allowed 

Coupling and decoupling allowed 

Median (m) 30 29 

Variance (𝜎2) 117,28 98,08 

 

The results in Table 8 show that the medians of the samples are about the same, but the variance of 

the samples differ a lot. To check whether the difference in medians of the samples is significantly or 

not, a Wilcoxon signed rank test will be executed with a significance level of 𝛼 = 0,01. The null 

hypothesis is stated below. 

H0: mallowed =  mnot allowed 

The test is performed using the Matlab script in appendix F. It appeared that the null hypothesis 

cannot be rejected. This means that the difference in medians is not large enough to state that 

allowing or not allowing coupling and decoupling causes variation in capacity median. The medians of 

the two scenarios can be considered equal. 

 



41 
 

To test whether the variances of the sample differ significantly, a χ2-test will be performed with a 

level of significance of 𝛼 = 0,01. The null hypothesis is stated below. 

H0: σallowed
2 = σnot allowed

2 

The test is performed using the Matlab script in appendix F. It appeared, as expected, that the null 

hypothesis has to be rejected. This means that the alternative hypothesis will be accepted. The 

alternative hypothesis is stated below. 

H1: σallowed
2 ≠ σnot allowed

2 

This means the variances 𝜎2 of the two scenarios differ significantly. 

 

4.4.3.3. Certainty on capacity 

Since the variances differ significantly, it is interesting to investigate the degree of uncertainty in 

capacity. This can be visualised by making a boxplot from the samples of the scenarios. The boxplots 

of the two scenarios, one in which coupling and decoupling is not allowed and one in which coupling 

and decoupling is allowed, are shown in Figure 11. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11: Boxplots of the capacity values of samples where coupling and decoupling is allowed and where it is not 

 

In this figure is visualised that the interval in which values occur is larger when allowing coupling and 

decoupling in contrast to not allowing coupling and decoupling. However, the most values occur 

between 25 and 48 for when coupling an decoupling is not allowed, and between 25 and 45 when 

coupling is allowed. This is indicated by the blue area. 
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Based on this blue area, the interval of the scenario where coupling and decoupling is allowed, is 

smaller than the interval of the scenario where coupling and decoupling is not allowed. This means 

that while allowing coupling and decoupling most values will be found in a smaller area than while 

not allowing coupling and decoupling. This comes down to more certainty on capacity and strokes 

with the lower variance value, shown in Table 8. However, outliers are more extreme for allowing 

coupling and decoupling compared to the scenario in which coupling and decoupling was not 

allowed. 

 

4.4.4. Interim conclusion – Coupling and decoupling 
The conclusion that can be drawn from the investigation of allowing coupling and decoupling, based 

on the two scenarios described in paragraph 4.4.1, is that the median values do not differ for 

allowing or not allowing coupling and decoupling. It was expected that this should differ, since it 

becomes harder to find a solution when trains depart in different configurations than they arrived in. 

This was not the case. An explanation for this can be that calculation time, which was set as 120 

seconds per instance, is amply sufficient in both scenarios. 

The differences in sample variances imply that allowing coupling and decoupling is a source of 

variation in capacity variance and certainty on capacity. However, the certainty about the capacity is 

very low. It is desirable to decrease the interval in which values occur. The medians of the two 

scenarios are not significantly different, coupling and decoupling is not a source of variation in 

capacity median. 

 

4.5. Topology 
The topology is the last source that is going to be investigated in this research. The layout of a service 

location is important since different topologies can cause differences in capacity due to a better or 

worse logistic railway system. In this research, there are two different service locations with two 

different topologies are compared. The ‘Kleine Binckhorst’ and the ‘Grote Binckhorst’, which have a 

carousel layout and a shuffleboard layout respectively. However, these location differ also in size 

which makes that the two locations are to directly comparable. To compare the different locations a 

normalisation measure will be set. After that, the two locations will be compared by keeping all other 

settings constant. 

4.5.1. Normalisation measure 
To compare two locations with each other, the results for the capacity are not directly comparable 

since the sizes of the locations differ. If one location is larger than the other one, it is evident that 

that larger location end with a higher capacity. This is not necessarily caused by the location layout. 

To compare the topologies of the locations, two potential approaches come up. Comparison based 

on the maximum amount of trains that can be placed at a location, or comparison based on the 

length of railway available at the locations. 

Determining a normalisation measure based on the maximum amount of train units that can be 

placed at every location would be a good approach. In this way, the cutting loss will be taken into 

account. The cutting loss is the remaining railway that cannot be used because no train can fit there. 

However, this maximum amount of train units cannot easily be established. Different train types 

come at the service locations and those train types differ in length. This makes that the maximum 

amount of train units that can be placed at a location cannot just be determined by hand. 
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An indication could be given by making use of the behandelcalculator. By executing a so called ‘upper 

bound calculation’, the behandelcalculator only checks the constraints which includes the constraint 

that the railway length does not exposes the length of train available at ones. It is not possible that 

some train units depart before other train units arrive, since departure process starts when the 

arrival process ends. This causes that, if the instance passed the constraint checker, the number of 

train units in an instance strokes with number of train units present at a service location at once in 

that particular instance. By making instances of every number of train units from 1 till 100 for 

example, it can be seen for which instances a solution is found, an thus how many train units fit at 

that service location. However, the constraint checker checks the instance for other things also. This 

causes that if an instance does not pass the constraint checker, it is not necessarily because they do 

not fit. It is possible that the constraint checker fails due to other causes. This ensures that this 

method gives no certainty about the maximum amount of train units that can be placed at the 

location. Therefore it is chosen to use the railway length available at a location as the normalisation 

measure. 

The railway length available at a location gives a good indication of the size of a service location. The 

railway length at a location can be found in the behandelcalculator which contains a table with all 

track lengths. Since not every track can be used for positioning train unit, the tracks that do not allow 

this are excluded in this calculation. These are tracks which are meant for executing particular tasks 

or which are meant for sawing. 

By making this calculation for the Kleine Binckhorst and the Grote Binckhorst the following results 

have come up. 

Table 9: Useful track length per location 

 

 

This means that the Grote Binckhorst is 9088/4687 = 1,94 times as large as the Kleine Binckhorst. The 

normalisation measure for the Kleine Binckhorst will be factor 1,94. 

4.5.2. Scenario description 
In this part of the research, two scenarios are compared. In those scenarios no tasks are assigned to 

the train units in the instances and the normal capacity is used for the arrival process. All other 

settings are standard settings, except that another topology is used. In the first scenario the Kleine       

Binckhorst is used and in the second scenario the Grote Binckhorst is used. The Kleine Binckhorst is a 

carousel layout and the Grote Binckhorst is a shuffleboard layout. 

 

4.5.3. Qualitative analysis 
From the data that is obtained by running the behandelcalculator with the two scenarios as 

described in paragraph 4.5.2 the survival functions shown in Figure 12 are gained. 

Location Useful track length 

Kleine Binckhorst 4687m 

Grote Binckhorst 9088m 
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In the figure can be seen that the capacity at the Grote Binckhorst is about 15 train units smaller 

when the first instances start to fail. At the Grote Binckhorst the chance of failure is 0 for 30 train 

units and at the normalised value for the capacity at the Kleine Binckhorst is 45 train units. Those 

values come closer together while the chance of failure increases. When the chance that no solution 

will be found is 1, the Grote Binckhorst has a capacity value of 52 and the normalised Kleine 

Binckhorst has a capacity value of 58. The normalised Kleine Binckhorst scores overall a higher 

capacity value. This implies that the carousel layout works better than the shuffleboard layout which 

can be explained by the fact that in a carousel layout the train units can enter tracks from both sides, 

also mentioned in chapter 3. In a carousel topology there are many more shunting possibilities. It is 

not obligated to stick to the first-in-first-out rule anymore. 

The median is the central measure of a sample, which strokes with the capacity value where the 

chance of failure is 0,5. This means that the median value of the sample can be identified in this way. 

For the Grote Binckhorst this value is estimated at 46 train units and for the normalised Kleine 

Binckhorst this value is estimated at 45 train units. These values are actually pretty close together 

compared the general differences between those two survival functions. 

Another notable fact that strikes when looking at those survival functions is that the survival function 

of the Grote Binckhorst is less certain about the capacity. At the Grote Binckhorst the capacity values, 

which have a chance of failure between 0,1 and 0,9, is somewhere between the 33 and the 52. This is 

a much smaller interval for the Kleine Binckhorst, for which this is between the 49 and the 55. This 

Figure 12: Survival functions of the Kleine Binckhorst (normalised) and the Grote Binckhorst 
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means that the interval of potential values for the capacity is much larger for the Grote Binckhorst 

than for the Kleine Binckhorst. This implies that the standard deviation of the capacity at the Grote 

Binckhorst will be higher than the one at the Kleine Binckhorst. 

In addition, the survival function of the normalised Kleine Binckhorst is much cleaner than the 

survival function of the Grote Binckhorst. 

 

4.5.4. Quantitative analysis 
To execute the  quantitative analysis, the statistical tests will be executed. The certainty on the 

capacity will also be investigated by studying the boxplots. 

 

4.5.4.1. Executing the Kolmogorov-Smirnov test 

At first, it is important to test whether the two topology scenarios differ significantly from each 

other. This will be tested by using the Matlab scripts given in appendix A to get the values of the 

survival functions and appendix F to test whether the Kleine Binckhorst and the Grote Binckhorst 

differ significantly in capacity. The null hypothesis that will be tested with a significance level of 𝛼 = 

0,01 is stated below. 

H0: The two topologies, the Kleine Binckhorst and the  

Grote Binckhorst, have the same capacity. 

By executing the test, it appeared that the null hypothesis needs to be rejected. That means that the 

alternative hypothesis, stated below, will be accepted. 

H1: The two topologies, the Kleine Binckhorst and the Grote Binckhorst, 

do have significantly different capacities. 

Since significantly differences exist between the two scenarios, investigation of the nature of these 

differences might be useful.  

4.5.4.2. Testing significant differences in median and variance 

The sources can influence the capacity by mean value, for which in this research the median m is 

used as an indication, but it can also influence the certainty of the capacity. The certainty of the 

capacity is high if the standard deviation 𝜎 is low, and thus if the variance 𝜎2, is low. The right 

estimate of the capacity becomes less certain when the standard deviation 𝜎, and thus the variance 

𝜎2, are higher. 

In the table below, the values for the median and the variance of the two scenarios are given. Those 

values are calculated based on the sample generated by the random generator in appendix B. 

 

Table 10: Results of the median and variance at the Grote Binckhorst and the Kleine Binckhorst 

 Grote Binckhorst Kleine Binckhorst (normalised) 

Median (m) 48 48 

Variance (𝜎2) 50,29 6,90 

 

The results in Table 10 show that the medians of the samples are equal but the variance of the 

samples differ a lot. To check that the medians of the samples do not differ significantly a Wilcoxon 
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signed rank test will be executed with a significance level of 𝛼 = 0,01. The null hypothesis is stated 

below. 

H0: mKleine Binckhorst =  mGrote Binckhorst 

The test is performed using the Matlab script in appendix F. It appeared, as expected, that the null 

hypothesis cannot be rejected. This means that the medians can be considered equal. 

 

To test whether the variances of the sample differ significantly, a χ2-test will be performed with a 

level of significance of 𝛼 = 0,01. The null hypothesis is stated below. 

H0: σKleine Binckhorst
2 = σGrote Binckhorst

2 

The test is performed using the Matlab script in appendix F. It appeared, as expected, that the null 

hypothesis has to be rejected. This means that the alternative hypothesis has to be accepted. The 

alternative hypothesis is stated below. 

H1: σKleine Binckhorst
2 ≠ σGrote Binckhorst

2 

This means the variances 𝜎2 of the two scenarios differ significantly. 

 

4.5.4.3. Visualising the certainty on capacity 

Since the variances differ significantly, it is interesting to investigate the degree of uncertainty in 

capacity. This can be visualised by making a boxplot from the samples of the scenarios. The boxplots 

of the topology, will in contrast to the other sources not be fed back to the database described in 

chapter 2, which exists of a set of instances based on random characteristic settings. This will not be 

done for the topology since the values in the scenario of the Kleine Binckhorst are multiplied with the 

normalisation factor to make comparison with the Grote Binckhorst possible. Due to this, the sample 

of the Kleine Binckhorst consists of higher numbers of train units than the values in the database 

since the values for the Kleine Binckhorst are not normalised in the database. The boxplots of the 

Grote Binckhorst and the normalised Kleine Binckhorst are shown in Figure 13. 
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Figure 13: Boxplots of the capacity values of samples of the Kleine Binckhorst (normalised) and the Grote Binckhorst 

In this figure is visualised that the interval at which values occur is much larger for the Grote 

Binckhorst than for the Kleine Binckhorst. This means that a carousel layout causes more certainty 

about the capacity value. The medians, represented by the red dash, are equal for the samples. 

 

4.5.5. Interim conclusion – location layout 
The conclusion that can be drawn from the research on the layout, based on a scenario at which the 

normalised Kleine Binckhorst is used as a topology and a scenario at which the Grote Binckhorst is 

used as a scenario, is that the median value does not differ for a carousel layout or a shuffleboard 

layout. This is interesting, since it should be logically that the carousel layout ends a higher capacity 

value. 

In this problem, it could be that the median has not been a good indication for the mean, since the 

mean values do differ for both samples in contrast to the medians. In Table 11, the mean value for 

the sample of the normalised Kleine Binckhorst and the Grote Binckhorst are added to the values 

given in Table 10. 

Table 11: Results of the median and variance at the Grote Binckhorst and the Kleine Binckhorst (normalised) expanded with 
the mean value 

 Grote Binckhorst Kleine Binckhorst (normalised) 

Median (m) 48 48 

Variance (𝜎2) 50,29 6,90 

Mean (μ) 44,68 48,80 
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The differences in the means imply that the location layout is a source of variation in capacity mean. 

Besides this expectation has revealed that the topology of the service location is a source of variation 

in capacity variance and certainty on capacity. 

 

 

4.6. Influence of the topology on the capacity 
In paragraph 4.5 the topology is investigated based on two scenarios: the Kleine Binckhorst and the 

Grote Binckhorst, where coupling and decoupling was not allowed and the standard setting for the 

arrival process, the ‘normal capacity’ was used. In this paragraphs appeared that the location layouts 

cause differences in capacity with standard settings. 

In paragraph 4.3 the arrival process and in paragraph 4.4 allowing coupling and decoupling was 

investigated. In the research of those two sources, the results were based on scenarios in which 

instances were based on both the Kleine Binckhorst and the Grote Binckhorst. However, these results 

can differ, or at least be specified, per location layout. The specification of the sources per topology 

will be done in this paragraph. 

 

4.6.1. Layout vs arrival process 
The arrival process which is investigated in in paragraph 4.3 will be specified for the location 

topologies in this paragraph. 

4.6.1.1. Scenario description 

The scenarios which are used to investigate the arrival process will be used again in this specification. 

However, from now on the topologies also differ for the scenarios. This means that there are four 

scenarios per location layout. The total eight scenarios are showed in the table below. 

 

Table 12: Composition of the scenarios set to investigate the arrival process per location 

Scenario’s Assumptions 

K
le

in
e 

B
in

ck
h
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t 
(n

o
rm
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ed
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Train units arrive spread over the last 25% 
of the arrival period at the Kleine 
Binckhorst 

Coupling and decoupling is not allowed and 
no tasks need to be executed. 

Train units arrive spread over the last 50% 
of the arrival period at the Kleine 
Binckhorst 

Coupling and decoupling is not allowed and 
no tasks need to be executed. 

Train units arrive spread over the last 75% 
of the arrival period at the Kleine 
Binckhorst 

Coupling and decoupling is not allowed and 
no tasks need to be executed. 

Train units arrive spread over 100% of the 
arrival period at the Kleine Binckhorst 

Coupling and decoupling is not allowed and 
no tasks need to be executed. 

G
ro

te
 

B
in

ck
h

o
rs

t 

Train units arrive spread over the last 25% 
of the arrival period at the Grote 
Binckhorst 

Coupling and decoupling is not allowed and 
no tasks need to be executed. 

Train units arrive spread over the last 50% 
of the arrival period at the Grote 
Binckhorst 

Coupling and decoupling is not allowed and 
no tasks need to be executed. 
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Train units arrive spread over the last 75% 
of the arrival period at the Grote 
Binckhorst 

Coupling and decoupling is not allowed and 
no tasks need to be executed. 

Train units arrive spread over 100% of the 
arrival period at the Grote Binckhorst 

Coupling and decoupling is not allowed and 
no tasks need to be executed. 

 

4.6.1.2. Qualitative analyses 

From all scenarios survival functions are made. Those survival functions are displayed Figure 15 for 

the Kleine Binckhorst and Figure 14 for the Grote Binckhorst. 

 

 

In these figures can be seen that the survival functions of the Kleine Binckhorst are much more 

smooth than the survival functions of the Grote Binckhorst. This was already encountered in 

paragraph 4.5. 

In paragraph 4.3.2, the survival functions of the arrival processes were shown without specifying the 

location layout. Compared to those survival functions it can be concluded that the steep first parts of 

those survival functions is caused by values of the Kleine Binckhorst and the uncertainty of the 

second part of the survival functions is probably caused by the measures of the Grote Binckhorst. 

In both Figure 16 and Figure 17 can be seen that the survival functions are increasingly higher while 

increasing the percentage of the arrival period of the train units. This implies that the values of the 

capacity could be significantly higher. In this research, this will be tested with the median m. The 

median is the central measure and an estimation of the central measure is the value at a chance of 

failure of 0,5. For the Kleine Binckhorst the medians can be estimated from the figure for 25%, 50%, 

75% and 100% of the time. Those values for the medians are about 43, 46, 50 and 53 respectively. 

For the Grote Binckhorst, an estimate can also be made. For the survival functions in which the trains 

arrive in 25%, 50%, 75% and 100% of the arrival period, the median values can be estimated at 43, 

45, 48 and 50 respectively. The medians for the same arrival process at the other location however 

differ not clearly. This would stroke with the experiences in discussed in paragraph 4.5.4.2. 

Figure 14: Arrival processes at the Grote Binckhorst Figure 15: Arrival processes at the Kleine Binckhorst (normalised) 
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The survival functions of the Kleine Binckhorst are certain about the value of the capacity. The values 

for the capacity are in intervals of about 10 train units. On the other hand, the survival functions of 

the Grote Binckhorst are very uncertain about the capacity value. Those values are lying in intervals 

of about 20 train units. This is a large difference, which will imply that the variance of the Grote 

Binckhorst is much larger than the variance of the Kleine Binckhorst. 

4.6.1.3. Quantitative analyses 

To execute the quantitative analysis for the specification of the arrival process per topology, 

statistical tests will be performed. The certainty on the capacity will also be compared for the two 

locations. 

Executing the Kolmogorov-Smirnov test 

At first, it is important to test whether the survival functions of two different scenarios differ 

significantly from each other. In case no significantly differences between two samples exist, there is 

no use in doing further research. 

In this paragraph, differences between the locations will be investigated. Therefore two types of 

scenarios will be compared to each other. The first type is comparing the scenarios with the same 

arrival processes but with different locations with each other. The second type is investigating the 

survival functions with the same topologies between themselves. 

Therefore, Kolmogorov-Smirnov tests will be executed. This will be tested by using the Matlab scripts 

given in appendix A to get the values of the survival functions and appendix F to test whether the 

scenarios differ significantly in capacity. The null hypothesis that will be tested with a significance 

level of 𝛼 = 0,01 is stated below. 

H0: The two scenarios do have the same capacity.  

Table 13: Results KS-test arrival process per topology 

 25% 50% 75% 100% 

25% 1 KB: 1         GB: 1 KB: 1         GB: 1 KB: 1         GB: 1 

50%  1 KB: 1         GB: 1 KB: 1         GB: 1 

75%   1 KB: 1         GB: 1 

100%    1 

 

The result of the test for the scenarios are shown in Table 13. By executing the test, it appeared that 

the null hypothesis needs to be rejected in all cases. That means that the alternative hypothesis, 

stated below, will be accepted. 

H1: The two scenarios do have significantly different capacities. 

 

This means that all scenarios investigated differ significantly from each other. Since significantly 

differences exist between all scenarios, investigation of the nature of these differences might be 

useful.  

 

 The blue cells show the results of the tests of different arrival processes of the 
same topology. 

 The yellow cells show the results of tests of the same arrival processes with 
the different topologies. 
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Testing significant differences in median and variance 

The sources can influence the capacity by mean value, for which in this research the median m is 

used as an indication, but it can also influence the certainty of the capacity. The certainty of the 

capacity is higher if the standard deviation 𝜎 is low, and thus if the variance 𝜎2, is low. The right 

estimate of the capacity becomes less certain when the standard deviation 𝜎, and thus the variance 

𝜎2, are higher. 

In the table below, the values for the median and the variance of the eight scenarios are given. Those 

values are calculated based on the sample generated by the random generator in appendix B. 

 

Table 14: Results of the median and variance for the specified scenarios 

Scenario’s Median (m) Variance (𝜎2) 

K
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Train units arrive spread over the last 25% of the arrival 
period. 

45 4,19 
 

Train units arrive spread over the last 50% of the arrival 
period. 

48 5,59 

Train units arrive spread over the last 75% of the arrival 
period. 

51 7,70 

Train units arrive spread over 100% of the arrival period. 53 12,65 

G
ro
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Train units arrive spread over the last 25% of the arrival 
period. 

43 38,40 

Train units arrive spread over the last 50% of the arrival 
period. 

45 38,56 

Train units arrive spread over the last 75% of the arrival 
period. 

49 39,36 

Train units arrive spread over 100% of the arrival period. 49 38,50 

 

The results in Table 14 show that the medians of the samples are increasing when increasing the 

percentage of the arrival period in which the train units arrive. This holds for both topologies. In the 

analysis of the arrival process was executed, but it was not specified for the location layouts. In this 

analyses also appeared that the values were increasing while increasing the percentage of the arrival 

period in which the train units arrive. In these results, larger differences can be seen, but this might 

have to do with the fact that the normalisation measure of the Kleine Binckhorst was not yet applied 

to the data.  

In Table 14 can also be seen that the variance of increases when increasing the percentage of the 

arrival period in which the train units arrive at the Kleine Binckhorst. However, at the Grote 

Binckhorst the values for the variance are about the same. 

To check whether the difference in medians of the samples is significant or not, a Wilcoxon signed 

rank test will be executed with a significance level of 𝛼 = 0,01. To check whether the differences in 

variance of the samples are significant or not, χ2-tests are executed with a significance level of 𝛼 = 

0,01. The tests are performed using the Matlab scripts in appendix F.  

It appeared that the null hypothesis of the Wilcoxon rank test is rejected in almost all cases. Only 

differences in median between the scenario of 75% and 100% at the Kleine Binckhorst are not 

significant, which is obvious since the medians of those scenarios turned out to be equal. The results 
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are clearly shown in Table 15, together with the results of the χ2-test. The results of the χ2-test stroke 

with the expectation. Significantly differences exist at the Kleine Binckhorst and don’t exists at the 

Grote Binckhorst. 

Table 15: Results Wilcoxon signed rank test and χ2-test arrival process per topology  

 25% 50% 75% 100% 

25% m: 1           𝜎2 : 1 KB: m: 1       𝜎2 : 1 
GB: m: 1       𝜎2 : 0 

KB: m: 1       𝜎2 : 1 
GB: m: 1       𝜎2 : 0 

KB: m: 1       𝜎2 : 1 
GB: m: 1       𝜎2 : 0 

50%  m: 1           𝜎2 : 1 KB: m: 1       𝜎2 : 1 
GB: m: 1       𝜎2 : 0 

KB: m: 1       𝜎2 : 1 
GB: m: 1       𝜎2 : 0 

75%   m: 1           𝜎2 : 1 KB: m: 1       𝜎2 : 1 
GB: m: 0       𝜎2 : 0 

100%    m: 1           𝜎2 : 1 
 

 

All differences in median, except for one at the Grote Binckhorst, are significant. Therefore, it can be 

concluded that the values for the capacity increase by increasing the percentage of the arrival period 

in which the train units arrive. This means that the arrival process causes variation in median at both 

locations. 

It can also be concluded that the arrival process causes variation in variance at the Kleine Binckhorst, 

but it does not cause variation at the Grote Binckhorst, since the variances of the scenarios at the 

Grote Binckhorst do not show significant differences, but at the Kleine Binckhorst they do. 

 

4.6.2. Layout vs coupling and decoupling 
The possibility of allowing coupling and decoupling which is investigated in in paragraph 4.4 will be 

specified for the location topologies in this paragraph. 

 

4.6.2.1. Scenario description 

The scenarios which were used to investigate the allowing coupling and decoupling will be used again 

in this specification. However, from now on the topologies also differ for the scenarios. This means 

that there are two scenarios per location layout. The total four scenarios are showed in the table 

below. 

Table 16: Composition of the scenarios set to investigate allowing coupling and decoupling per location 

Scenario’s Assumptions 

K
le
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e 

B
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ck
h

o
rs

t Coupling and decoupling allowed at the 
Kleine Binckhorst 

Coupling and decoupling is not allowed and 
no tasks need to be executed. 

Coupling and decoupling not allowed at 
the Kleine Binckhorst 

Coupling and decoupling is not allowed and 
no tasks need to be executed. 

 The blue cells show the results of the tests of different arrival processes of the 
same topology. 

 The yellow cells show the results of tests of the same arrival processes with 
the different topologies. 
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G
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t Coupling and decoupling allowed at the 
Grote Binckhorst 

Coupling and decoupling is not allowed and 
no tasks need to be executed. 

Coupling and decoupling not allowed at 
the Grote Binckhorst 

Coupling and decoupling is not allowed and 
no tasks need to be executed. 

 

 

4.6.2.2. Qualitative analyses 

From all scenarios described in Table 16, survival functions are made. Those survival functions are 
displayed Figure 16 for the Kleine Binckhorst and Figure 17 for the Grote Binckhorst. 
 

 
In these figures can be seen that the survival functions of the Kleine Binckhorst are much more 
smooth than the survival functions of the Grote Binckhorst. This was already encountered in 
paragraph 4.5. 
 
In paragraph 4.4.2, the survival functions of allowing and not allowing coupling and decoupling were 
shown without specifying the location layout. Compared to those survival functions it can be 
concluded that the steep first parts of those survival functions is caused by values of the Kleine 
Binckhorst and the uncertainty of the second part of the survival functions is probably caused by the 
measures of the Grote Binckhorst. 
 
In Figure 16 can be seen that allowing coupling and decoupling at the Kleine Binckhorst does not 
have a lot influence overall. Only at the start of the survival function clear differences exist. The 
medians, which is the central measure, can be estimated at 50 for both allowing and not allowing 
coupling and decoupling at the Kleine Binckhorst. The variance could be different for the two 
scenarios at the Kleine Binckhorst since the first failure while not allowing coupling and decoupling is 
at 42 train units and this value is 32 while allowing coupling and decoupling. This difference 
disappears very soon, but it causes that the interval in which values appear is much smaller when not 
allowing coupling and decoupling. 
 
In Figure 17 more differences between the values can be seen. The whole survival function scores 
higher capacity while not allowing coupling and decoupling. This can be indicated by the median 
values of both survival functions. At the Grote Binckhorst, the survival function of allowing coupling 
and decoupling has a median value of about 42 train units, while not allowing coupling and 
decoupling had a median value of about 47 train units. The interval in which the values appear is also 

Figure 16: Coupling and decoupling at the Kleine Binckhorst Figure 17: Coupling and decoupling at the Grote Binckhorst 
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smaller while not allowing coupling and decoupling at the Grote Binckhorst. This means that there is 
more uncertainty when allowing coupling and decoupling. 
 
 

4.6.2.3. Quantitative analysis 

To execute the quantitative analysis for the specification of the arrival process per topology, 

statistical tests will be performed. The certainty on the capacity will also be compared for the two 

locations. 

Executing the Kolmogorov-Smirnov test 

At first, it is important to test whether the survival functions of two different scenarios differ 

significantly from each other. In case no significantly differences between two samples exist, there is 

no use in doing further research. 

In this paragraph, differences between the locations will be investigated. Therefore two types of 

scenarios will be compared to each other. The first type is comparing the scenarios with the same 

status for coupling and decoupling but with different locations with each other. The second type is 

investigating the survival functions with the same topologies between themselves. 

Therefore, Kolmogorov-Smirnov tests will be executed. This will be tested by using the Matlab scripts 

given in appendix A to get the values of the survival functions and appendix F to test whether the 

scenarios differ significantly in capacity. The null hypothesis that will be tested with a significance 

level of 𝛼 = 0,01 is stated below. 

H0: The two scenarios do have the same capacity.  

 

Table 17: Results KS-test allowing coupling and decoupling per topology 

 Coupling and decoupling 
allowed 

Coupling and decoupling not 
allowed 

Coupling and decoupling 
allowed 

1 GB: 1                    KB: 0 

Coupling and decoupling 
not allowed 

 1 

 

The result of the test for the scenarios are shown in Table 13. By executing the test, it appeared that 

the null hypothesis has to be accepted for the two scenarios at the Kleine Binckhorst. This means 

that the survival functions can be considered equal and that there allowing coupling and decoupling 

has no influence at the capacity at the Kleine Binckhorst. 

At the Grote Binckhorst, significantly differences do exist. This means that the influence that is 

encountered in paragraph 4.4 can be assigned to the Grote Binckhorst. In paragraph 4.4, the 

influence of coupling and decoupling is investigated without taking the topologies into account. In 

that analyses, only the Grote Binckhorst and the Kleine Binckhorst were part of the data. Since the 

 The blue cells show the results of the tests of different statuses for 
allowing coupling and decoupling of the same topology. 

 The yellow cells show the results of the tests of the same statuses 
for allowing coupling and decoupling at different topologies. 
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Kleine Binckhorst turned out to have no influence, the influence can be assigned to the Grote 

Binckhorst. 

This means that coupling and decoupling at the Grote Binckhorst, which has a shuffleboard layout, 

causes variation in variance and thus certainty. The medians did not differ, which means that 

coupling and decoupling is not a source of variation in median at the Grote Binckhorst. 

At the Kleine Binckhorst, no significant influence was caused by allowing or not allowing coupling and 

decoupling. This means that for the Kleine Binckhorst, which has a carousel layout, allowing or not 

allowing coupling and decoupling is not a source of variation. 
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Chapter 5 

Conclusion and discussion 
 

In this last chapter of the research the conclusion will be stated. Also a discussion of the results will 

be done. Finally, some recommendations will be made. 

 

5.1. Conclusion 
In this research the following research question is investigated: 

How do different sources influence the variation in capacity of the NS service location the 

Binckhorst? 

The sources that were investigated are the arrival process, allowing coupling and decoupling and the 

topology of the service location. Also the influence of the service location on the arrival process and 

allowing coupling and decoupling is researched.’ This is researched by making survival functions of 

different scenarios. These survival functions are tested on significant differences by executing 

Kolmogorov Smirnov tests. The cause of the impact is specified testing for significant differences in 

median and in variance. 

At first, the arrival process was investigated. The conclusion that could be drawn from the 

investigation of the arrival process, was that the median values do not differ significantly for different 

percentages in which the train units arrive, only for two extreme scenarios. This means that this 

source causes only a little bit variation in capacity median. Increasing the time period in which the 

train units arrive, the capacity median increases. The variance was also tested and it turned out that 

significant differences exist between the variances. The differences in sample variances imply that 

increasing the time period in which the train units arrive causes variation in capacity variance.  

The second source that was researched is allowing coupling and decoupling. The conclusion that 

could be drawn from the investigation of allowing coupling and decoupling, based on the scenarios 

that are investigated in this research, is that the median values do not differ for allowing or not 

allowing coupling and decoupling. It was expected that this should differ, since it becomes harder to 

find a solution when trains depart in different configurations than they arrived in. This was not the 

case. An explanation for this can be that calculation time, which was set as 120 seconds per instance, 

is amply sufficient in both scenarios. The differences in sample variances imply that allowing coupling 

and decoupling is a source of variation in capacity variance and certainty on capacity.  

However, since the variances are very high, the certainty about the capacity is very low for both the 

arrival process and allowing coupling and decoupling. It is desirable to decrease the interval in which 

values occur. An explanation for this low certainty on capacity is that the Kleine Binckhorst and the 

Grote Binckhorst differ in size. This will be investigated in the last source. 

The last source of investigation is the topology of the service location. This was investigated by 

comparing the Kleine Binckhorst, which has a carousel layout, and the Grote Binckhorst, which has a 

shuffleboard layout. Those two topologies differ in size. Therefore a normalisation measure is 

determined, which resulted in smaller differences between the two locations. The conclusion that 

could be drawn from the research on the layout, is that the median value does not differ for a 

carousel layout or a shuffleboard layout. This is interesting, since it should be logically that the 

carousel layout ends a higher capacity value. However, the variance of both locations differs a lot. 
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This means that the location layout is a source of variation in variance. The variance of the Kleine 

Binckhorst is much lower than the variance of the Grote Binckhorst. Therefore, the certainty on 

capacity is much higher for the Kleine Binckhorst compared to the Grote Binckhorst. This can be an 

explanation of the high values for the variance in the research on the arrival process and on allowing 

coupling and decoupling. Therefore those two sources are also investigated when specified for the 

Kleine Binckhorst and the Grote Binckhorst. 

Investigation of the arrival process specified per location layout gave the information that the 

medians of the scenarios of the Kleine Binckhorst differed significantly, as well as the medians of the 

scenarios of the Grote Binckhorst. This was not the case when the arrival process was not specified 

per location. The arrival process causes also variation in variance for the Kleine Binckhorst. For the 

Grote Binckhorst however there was no significant influence. 

Investigation of allowing coupling and decoupling per location layout gave the information that 

allowing or not allowing coupling and decoupling has no influence on the Kleine Binckhorst. On the 

other hand, at the Grote Binckhorst it does have influence. This means that the results of the 

investigation allowing coupling and decoupling without specifying the topologies are applicable to 

the Grote Binckhorst. The medians did not differ, which means that coupling and decoupling is not a 

source of variation in median at the Grote Binckhorst, but the variances did differ significantly. This 

means that coupling and decoupling turned out to be a source of variation in variance at a location 

with a shuffleboard layout. 

 

5.2. Discussion 
In this research some assumptions has to be made. These assumptions can cause uncertainty or 

errors. These uncertainties are discussed in this paragraph. 

An important assumption was that the survival functions which were based on the data generated 

gave a good indication of the capacity. The number of train units per work package was varied from 1 

to 50 for a scenario. The data used for one survival function of one scenario was 30 instances per 

number of train units. It is assumed that this was sufficient. 

Another assumption is that the model used to gain the data, the behandelcalculator, is completely in 

accordance with the reality. In the behandelcalculator the calculation time can be set. This is the time 

that the algorithm is searching for a solution for one instance. The longer this time, the higher the 

possibility that a solution will be found. It is assumed that the calculation time, which was set on 120 

seconds, was sufficient for getting a good insight in the capacity. 

To construct the survival functions, right and left censored data is taken into account. When no 

solution is found for an instance, this means that the work package had another limit which was for a 

smaller number of train units. This left censored data is taken into account by using the Turnbull 

algorithm. When a solution is found for an instance, this means that the work package had another 

limit which was for the same or a higher number of train units. This right censored data is taken into 

account by using the Product Limit method. These methods increase the certainty of the research 

since more information is obtained from the data. 

In this research is worked with the Wilcoxon signed rank test to test significant differences in the 

median. The median is used since the distribution of the survival functions were not known. The 

statistical test for the median is more robust than for the mean, because the statistical test for 

testing means assumes a normal distribution. However, it is possible that the data was normally 
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distributed. Especially the survival functions of the Kleine Binckhorst seemed to have the shape of a 

normal distribution. In that case, testing by means would have been more logical. 

By investigating the location topologies, the Kleine Binckhorst and the Grote Binckhorst needed to be 

compared. However, these two locations differ in size. These differences in sizes are not taken into 

account when the layout was not specified. This has caused larger differences than necessary which 

might have turned out in more uncertainty. By comparing the two locations with each other a 

normalisation measure is determined based on the length of railway at the locations. In this method, 

some railway length where no train unit fits anymore (cutting loss) is calculated as useful track 

length, while it is not. This causes less certainty about the normalisation measure. 

 

5.3. Recommendations 
Based on the results, the following future steps are recommended. 

In this research survival functions are constructed to get insight in the capacity. These survival 

functions are determined based on 30 measures per number of train units, which is varied from 1-50. 

This means that a survival function is based 1500 instances for which a solution is found or not. To 

increase the certainty, it is recommended to do more measures. 

To improve the normalisation measure, which is used to compare the Kleine Binckhorst and the 

Grote Binckhorst with each other, only the useful track length needs to be used. In the current 

method, cutting loss is calculated as useful track length, while it is not. A normalisation measure 

based on the maximum amount of train units that can be placed at a location would be a better 

approach. In this way, the cutting loss will be taken into account. 

In this research some choices had to be made about which sources were going to be investigated. 

This is done to limit the scope of the research. Therefore only three sources are investigated. 

However, it would be interesting to investigate more sources to get an even better picture. Sources 

that might be interesting are the influence of the departure process and the interaction of the arrival 

process with the departure process, the train types and the tasks that need to be carried out on the 

trains. The layout of the service locations can also be more specified. In this research only two types 

of layout are investigated, but the influence of adjusting one characteristic of the topology might also 

be interesting.  



59 
 

References 
Apallius de Vos, J. I., & Van Dongen, L. A. (2015). Performance Centered Maintenance as a core policy 

in strategic maintenance control . Elsevier. 

Beerthuizen, E. (2017). Optimization train parking and shunting at NS service yards. Delft. 

Boxtel, R. v. (2018, juli 17). Insite. Retrieved from Roffel: NS onthult nieuwe toekomstvisie: 

https://nsdigitaal.sharepoint.com/Actueel/Paginas/Roffel-NS-onthult-nieuwe-

toekomstvisie.aspx 

Brilon, W., Geistefeldt, J., & Regler, M. (2005). Reliability of freeway traffic flow: A stochastic concept 

of capacity. International Symposium of Transportation and Traffic Theory, 125-144. 

Busstra, M., & van Dongen, L. (2015). Creating value by integrating logistic trains services and 

maintenance activities. Elsevier. 

Calvert, S., Taale, H., & Hoogendoorn, S. (2015). Quantification of motorway capacity variation: 

influence of day type specific variatio and capacity drop. Department of Transport & 

Planning. 

Chakravarti IM, L. (2009). Handbook of methods of applied statistics. In J. W. Sons, Handbook of 

emthods of applied statistics. London. 

Freling, R., Lenting, R., Kroon, L., & Huisman, D. (2005). Shunting of passenger train units in a railway 

station. Transportation Science. 

Freling, R., Lentink, R., Kroon, L., & Huisman, D. (2002). Shunting of Passenger Train Units in a 

Railway Station. Rotterdam. 

Haahr, J., Lusby, R., & Wagenaar, J. (2017). Optimization methods for the Train Unit Shunting 

Problem. European Journal of Operational Research. 

Hoepel, F. (2017). Decision support on capacity problems NS. Eindhoven. 

Huizingh, E. (2018). Planning first-line services on NS service stations. Enschede. 

Jia A, W. (2010). Identification and Calibration of Site-Specific Stochastic Freeway Breakdown and 

Queue Discharge. Transportation Research Record: Journal of the Transportation Research 

Board, 148-155. 

Klein, J. P., & Moeschberger, M. L. (2003). Survival Analysis Techniques for Censored and Truncated 

Data. New York: Springer. 

Kucherov, S., Rogozov, Y., Lipko, J., & Elkin, D. (2018). The concept of the method for dynamic control 

of traffic flows on multi-lane roads based on configurable information systems. Advances in 

Intelligent system computing. Taganrog, Russian Federation. 

Lentink, R. (2006). Algorithmic Decision Support for Shunt Planning. Rotterdam. 

Mathew, T., & Krishna Rao, K. (2007). Capacity and Level of service. In T. V. Mathew, & K. V. Krishna 

Rao, Introduction to Transport Engineering (p. Chapter 35). 

NedTrain. (2014). Werkbeschrijving Servicebedrijven A- en B-controle. Utrecht. 



60 
 

Non-parametric tests and regression. (2018, maart 15). Empirical analysis for Transport and Planning. 

Delft. 

NS. (2018). Herkennen treintypes. Utrecht. 

NS en ProRail: het spoor is bijna vol. (2018, augustus 20). Retrieved from Treinreiziger: 

https://www.treinreiziger.nl/ns-en-prorail-spoor-is-bijna/ 

NS Techniek. (2018). Rekenmethode voor de opstel- en behandelcapaciteit van emplacementen of 

servicebedrijven. Urecht. 

Olba, X., Daamen, W., Vellinga, T., & Hoogendoorn, S. (2017). Network Capacity Estimation of Vessel 

Traffic: An Approach for Port Planning.  

Özkan, E., Nas, S., & Nil, G. (2016). Capacity Analysis of Ro-Ro Terminals by Using Simulation 

Modeling Method. The Asian Journal of Shipping and Logistics, 139-147. 

Rosales, L. (2015). Analysing uncertainty and delays in aircragt heavy maintenance. Manchester. 

Ross SM. (2009). Introduction to probability and statistics for engineers and scientists. Academic 

Press Elsevier, London. 

van Berkum, E., & Di Bucchianico, A. (2007). Statistical Compendium. Eindhoven. 

van den Broek, R., Hoogeveen, H., & van den Akker, M. (2012). How to Measure the Robustness of 

Shunting Plans. Utrecht. 

Wolfe. (2000). Biostat 675. In Wolfe, Censoring Mechanisms.  

 

-  
 
  



61 
 

Appendices 

A. Matlab script constructing a survival function 
 

clear all 

tic 

  

%% Load data 

[Data_previous] = xlsread('Analyse_B','AnalyseB'); %Column 1: Number_trainunits, 

Column 2: Number_instances, Column 3: Number_failures, Column 4: Number_successes, 

Column 5: S_estimate, Column 6: F_estimate 

  

  

  

%% Prepare data 

m_1 = 30; %number of instances per trainunitvalue 

m_2 = 54; %number of trainunitvalues 

  

Data = [1:m_2]'; 

Data(:,2) = m_1; 

  

for i = 1 : m_2; 

    k = 0; 

    for j = 1 : m_1; 

        if Data_previous(j,2) == 0 

            k = k + 1 

        end 

    end 

     

    Data(i,3) = k; 

    Data_previous(1:m_1,:) = []; 

     

end 

  

Data(:,4) = Data(:,2) - Data(:,3); 

Data(:,5) = Data(:,4)./Data(:,2); 

  

for i = 2:m_2; 

    if Data(i,5) > Data(i-1,5); 

        Data(i,5) = Data(i-1,5); 

    end 

end 

 

  

%% Start situation 

Sk = [Data(:,1),Data(:,5)]; % Column 1: Number_trainunits, Column 2: S, Column 3: 

Di 

Finished = 0; 

Marge = 0.001; 

count = 0; 

n = length(Data(:,1)); 

  

CDF = 1 %1 if CDF, 0 if PDF 

trainunits = Sk(:,1); 

startsurvival = 1 - Sk(:,2); 

Boxplotvalue = 100; 

  

%% While loop 

  

while Finished == 0; 

     

    %% Pij waarden berekenen 

    Pij = zeros(n-1); 

    for i = 2:n; 

         

        for j = 2:n; 
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            if Sk(i,2) == 1; 

                Pij(j-1,i-1) = 0; 

            elseif j <= i; 

                Pij(j-1,i-1) = (Sk(j-1,2) - Sk(j,2))/(1-(Sk(i,2))); 

            else 

                Pij(j-1,i-1) = 0; 

            end 

        end 

    end 

     

    %% Di waarden berekenen 

     

    for i = 2 : n; 

        Di = 0; 

        for j = 2 : n; 

            x = Pij(i-1,j-1) .* Data(j,3); 

            Di = Di + x; 

        end 

        Sk(i,3) = Di; 

    end 

     

     

    %% Kaplan-Meier tabel maken 

    KM = zeros(n,6); 

     

    %Number of trainunits 

    KM(:,1) = Data(:,1); 

     

    %Number of events 

    KM(:,2) = Sk(:,3); 

     

    %Number of censored data (=successes at ti-1) 

    for i = 2:n; 

        KM(i,3) = Data(i-1,4); 

    end 

     

    %Number of individuals 

    A_1 = [KM(:,2) + KM(:,3)]; 

    for i = 1:n; 

        A_2 = sum(A_1); 

        A_1(i) = 0; 

        KM(i,4) = A_2; 

    end 

     

    %Factor 

    for i = 1:n; 

        if KM(i,4) == 0; 

            KM(i,5) = 0; 

        else 

            KM(i,5) = 1-(KM(i,2)./KM(i,4)); 

        end 

    end 

     

     

    %% S(k plus 1) waarden berekenen 

     

     

    KM(:,6) = 1; 

    for i = 2:n; 

        KM(i,6) = KM(i-1,6) * KM(i,5); 

    end 

     

     

    Som = 0; 

    for i = 1:length(KM(:,6)); 

        x = abs(KM(i,6)-Sk(i,2)); 

        Som = Som + x; 

    end 
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    %% End 

    %Som = 0.001 

    if Som <= Marge 

        Finished = 1; 

    else 

        Sk(:,2) = KM(:,6); 

        Sk(:,3) = 0; 

        KM(:,5) = 1; 

        KM(:,6) = 1; 

    end 

     

    count = count + 1; 

     

     

end 

  

if CDF == 1; 

    figure(1), clear clf, hold on; 

    %plot(trainunits,startsurvival) 

    %plot(trainunits,1-KM(:,6)) %standaard 

    %plot((trainunits.*2),1-KM(:,6)) %kleine binckhorst genormaliseerd 

    xlabel('Number of train units') 

    ylabel('Chance of failure') 

    legend('Kleine Binckhorst (roughly normalised)', 'Grote Binckhorst') 

    hold off; 

elseif CDF == 0; 

    PDF = zeros(n,3); 

    PDF(:,1) = 1-KM(:,6); %failure function 

    for i = 1:n-1; 

        PDF(i+1,2) = PDF(i,1); 

    end 

    PDF(:,3) = PDF(:,1) - PDF(:,2); 

     

    figure(1), clear clf, hold on; 

    plot(trainunits,PDF(:,3)); 

    hold off 

     

    %% Boxplot 

    for i = 2:m_2; 

        PDF(1,4) = PDF(1,3); 

        PDF(i,4)= PDF(i-1,4) + PDF(i,3); 

        PDF(i,5) = PDF(i,4) .* Boxplotvalue; 

    end 

             

    Cum = 0; 

    for i = 1:Boxplotvalue; 

        z = 0; 

        for j = 1:m_2; 

            if z == 0; 

                if Cum < PDF(j,5); 

                    X(i) = j 

                    z = 1; 

                end 

            end 

        end 

        Cum = Cum + 1; 

    end 

     

    figure(2), clear clf, hold on 

    boxplot(X) 

    hold off 

     

end 

  

KM(:,7) = 1 - KM(:,6); 

toc 
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B. Matlab script random generator 
 

clear all, clc 

  

%add zero as a first value 

SF = 

[0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0.0322934724650821;0.216020475748690;0

.445951721874444;0.717822227947671;1;1;1;1;1]; 

S = 100000; 

v = 1; 

     

    V = zeros(1,S); 

    n = length(SF)-1; 

    N = zeros(n+1,2); 

    N(:,1) = [0:n]; 

    SF = 1-SF; 

    N(:,2) = SF; 

     

    for i = 1:S 

         

        R_1 = rand; %random value between 0 and 1 

         

        x = 0; 

        for j = 1:n+1 

            if x == 0 

                if R_1 > N(j,2) 

                    value = N(j,1)-1; 

                    x = 1; 

                end 

            end 

        end 

         

        V(v) = value; 

        v = v+1; 

         

         

    end 
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C. Matlab script filter   
 

clear all 

tic 

  

%% Load data 

[DataSec] = xlsread('Data_Filteren_SF_AP','AP_1'); %AP 

[DataInst] = xlsread('Data_Filteren_SF_AP_2','TU_1'); %TU 

  

%% Gegevens instellen 

n_start = 1; %lowest instance_id 

n_eind = 20; %highest instance_id 

x = 1; %1 = gradually, 2 = last 25% 

  

  

%% Loop 

  

z = 0; 

count = 1; 

C = []; 

  

  

for i = n_start:n_eind; 

    %for j = 1:60 %maximum number of train units in an instance 

    j = 1; 

    k = 2; 

    K = [0]; 

     

    %vector K 

    while DataSec(j,1) == i; %as long as instance_id is a certain number 

        if DataSec(j,2) > 0 

            if DataSec(j,3) == 1 

                K(k) = DataSec(j,2); 

                k = k + 1; 

            elseif DataSec(j,3) == 2 

                K(k) = DataSec(j,2); 

                K(k+1) = DataSec(j,2); 

                k = k + 2; 

            elseif DataSec(j,3) == 3 

                K(k) = DataSec(j,2); 

                K(k+1) = DataSec(j,2); 

                K(k+2) = DataSec(j,2); 

                k = k + 3; 

            end 

        end 

          

        j = j + 1; 

         

    end 

     

     

    % Reference survival distribution 

    if x == 1 %gradually 

        SFRef = [0:(1/(j-1)):1]; 

    elseif x == 2 %last 25% of the time 

        SFRef = [0,0.75:(0.25/(j-1)):1]; 

    end 

                 

             

            % Complete Survival function 

            K(k) = 1; 

            K = sort(K); 

             

             

            if i == DataSec(1,1); 

            z = z + 1; 
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            %Delete rows 

            DataSec(1:(DataInst(z,3)),:) = []; 

             

            %KS test 

            ks_value = kstest2(SFRef,K); 

            DataInst(z,4) = ks_value; 

            end 

             

            count = count + 1; 

            C(count) = count 

             

    end 

     

    %% Plots 

    figure(2), clear clf, hold on 

    plot(K) 

    hold off 

     

     

    %% End 

     

    toc 
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D. Critical values χ2-test 
 

 

Figure 18: Critical values χ2 test (van Berkum & Di Bucchianico, 2007) 
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E. Matlab script adding two analyses 
 

clear all 

tic 

  

%% Turnbulls algorithm 3 wordt gebruikt om 2 analyses bij elkaar op te tellen 

  

%% Load data 

[Data_previous1] = xlsread('Analyse_B','AnalyseB'); %Column 1: Number_trainunits, 

Column 2: Number_instances, Column 3: Number_failures, Column 4: Number_successes, 

Column 5: S_estimate, Column 6: F_estimate 

[Data_previous2] = xlsread('Analyse_K','AnalyseK'); 

  

  

%% Prepare data 

m_1 = 30; %number of instances per trainunitvalue 

m_2 = 54; %number of trainunitvalues Data_previous1 

m_3 = 30; %number of trainunitvalues Data_previous2 

  

Data1 = [1:m_2]'; 

Data1(:,2) = m_1; 

  

for i = 1 : m_2; 

    k = 0; 

    for j = 1 : m_1; 

        if Data_previous1(j,2) == 0 

            k = k + 1 

        end 

    end 

     

    Data1(i,3) = k; 

    Data_previous1(1:m_1,:) = []; 

     

end 

  

Data1(:,4) = Data1(:,2) - Data1(:,3); 

  

Data2 = [1:m_2]'; 

Data2(:,2) = m_1; 

  

for i = 1 : m_3; 

    k = 0; 

    for j = 1 : m_3; 

        if Data_previous2(j,2) == 0 

            k = k + 1 

        end 

    end 

     

    Data2(i,3) = k; 

    Data_previous2(1:m_1,:) = []; 

     

end 

  

Data2(:,4) = Data2(:,2) - Data2(:,3); 

  

  

if m_2 < m_3 

    for i = (m_2+1):m_3 

        Data1(i,1) = i; 

        Data1(i,2) = m_1; 

        Data1(i,3) = m_1; 

    end 

    m = m_3; 

     

elseif m_3 < m_2 

    for i = (m_3+1):m_2 

        Data2(i,1) = i; 
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        Data2(i,2) = m_1; 

        Data2(i,3) = m_1; 

    end 

    m = m_2; 

end 

  

Data = [1:m]'; 

Data(:,2) = Data1(:,2) + Data2(:,2); 

Data(:,3) = Data1(:,3) + Data2(:,3); 

Data(:,4) = Data(:,2) - Data(:,3); 

Data(:,5) = Data(:,4)./Data(:,2); 

  

for i = 2:m; 

    if Data(i,5) > Data(i-1,5); 

        Data(i,5) = Data(i-1,5); 

    end 

end 

  

  

%% Start situation 

Sk = [Data(:,1),Data(:,5)]; % Column 1: Number_trainunits, Column 2: S, Column 3: 

Di 

Finished = 0; 

Marge = 0.001; 

count = 0; 

n = length(Data(:,1)); 

  

CDF = 1 %1 if CDF, 0 if PDF 

trainunits = Sk(:,1); 

startsurvival = 1 - Sk(:,2); 

Boxplotvalue = 100; 

  

%% While loop 

  

while Finished == 0; 

     

    %% Pij waarden berekenen 

    Pij = zeros(n-1); 

    for i = 2:n; 

         

        for j = 2:n; 

            if Sk(i,2) == 1; 

                Pij(j-1,i-1) = 0; 

            elseif j <= i; 

                Pij(j-1,i-1) = (Sk(j-1,2) - Sk(j,2))/(1-(Sk(i,2))); 

            else 

                Pij(j-1,i-1) = 0; 

            end 

        end 

    end 

     

    %% Di waarden berekenen 

     

    for i = 2 : n; 

        Di = 0; 

        for j = 2 : n; 

            x = Pij(i-1,j-1) .* Data(j,3); 

            Di = Di + x; 

        end 

        Sk(i,3) = Di; 

    end 

     

     

    %% Kaplan-Meier tabel maken 

    KM = zeros(n,6); 

     

    %Number of trainunits 

    KM(:,1) = Data(:,1); 
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    %Number of events 

    KM(:,2) = Sk(:,3); 

     

     

    %Number of censored data (=successes at ti-1) 

    for i = 2:n; 

        KM(i,3) = Data(i-1,4); 

    end 

     

    %Number of individuals 

    A_1 = [KM(:,2) + KM(:,3)]; 

    for i = 1:n; 

        A_2 = sum(A_1); 

        A_1(i) = 0; 

        KM(i,4) = A_2; 

    end 

     

    %Factor 

    for i = 1:n; 

        if KM(i,4) == 0; 

            KM(i,5) = 0; 

        else 

            KM(i,5) = 1-(KM(i,2)./KM(i,4)); 

        end 

    end 

     

     

    %% S(k plus 1) waarden berekenen 

     

     

    KM(:,6) = 1; 

    for i = 2:n; 

        KM(i,6) = KM(i-1,6) * KM(i,5); 

    end 

     

     

    Som = 0; 

    for i = 1:length(KM(:,6)); 

        x = abs(KM(i,6)-Sk(i,2)); 

        Som = Som + x; 

    end 

     

     

    %% End 

    %Som = 0.001 

    if Som <= Marge 

        Finished = 1; 

    else 

        Sk(:,2) = KM(:,6); 

        Sk(:,3) = 0; 

        KM(:,5) = 1; 

        KM(:,6) = 1; 

    end 

     

    count = count + 1; 

     

     

     

end 

  

if CDF == 1; 

    figure(1), clear clf, hold on; 

    %plot(trainunits,startsurvival) 

    plot(trainunits,1-KM(:,6)) 

    hold off; 

elseif CDF == 0; 

    PDF = zeros(n,3); 
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    PDF(:,1) = 1-KM(:,6); %failure function 

    for i = 1:n-1; 

        PDF(i+1,2) = PDF(i,1); 

    end 

    PDF(:,3) = PDF(:,1) - PDF(:,2); 

     

    figure(1), clear clf, hold on; 

    plot(trainunits,PDF(:,3)); 

    hold off 

     

    %% Boxplot 

    for i = 2:m_2; 

        PDF(1,4) = PDF(1,3); 

        PDF(i,4)= PDF(i-1,4) + PDF(i,3); 

        PDF(i,5) = PDF(i,4) .* Boxplotvalue; 

    end 

             

    Cum = 0; 

    for i = 1:Boxplotvalue; 

        z = 0; 

        for j = 1:m_2; 

            if z == 0; 

                if Cum < PDF(j,5); 

                    X(i) = j 

                    z = 1; 

                end 

            end 

        end 

        Cum = Cum + 1; 

    end 

     

    figure(2), clear clf, hold on 

    boxplot(X) 

    hold off 

     

end 

  

KM(:,7) = 1 - KM(:,6); 

  

toc 
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F. Matlab script statistical tests 
 

clear all 

  

Topology_test = 0 %test between Kleine Binickhorst and Grote Binckhorst = 1, test 

between the same locations = 0. 

  

% Topology_test = 1 

KB = 

[0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0.0298020652821975;0.0542759760183325;0.05427597

60183325;0.0542759760183325;0.0542759760183325;0.0542759760183325;0.090881918165366

2;0.271230967155945;0.473019876970530;0.685506364806328;0.881981194107615;1;1]; 

% add zero at the beginning of the GB vector 

GB = 

[0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0.0298020652821975;0.0542759760183325;0.05427597

60183325;0.0542759760183325;0.0542759760183325;0.0542759760183325;0.090881918165366

2;0.271230967155945;0.473019876970530;0.685506364806328;0.881981194107615;1;1]; 

  

% Topology_test = 0 

% add zero at the beginning of the GB vector 

SF_1 = 

[0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0.0298020652821975;0.0542759760183325;0.054275

9760183325;0.0542759760183325;0.0542759760183325;0.0542759760183325;0.0908819181653

662;0.271230967155945;0.473019876970530;0.685506364806328;0.881981194107615;1;1]; 

% add zero at the beginning of the GB vector 

SF_2 

=[0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0.0328410087146179;0.063439634124

4782;0.441864459922199;0.743714901647711;0.832129141745544;0.967622968877717;1]; 

%% Initial values 

S = 100000; %Samplesize 

  

  

%% Continu maken normalisatie 

  

  

  

if Topology_test == 1 

     

    Factor = 1.94; 

     

    Interval_L = 0; 

    Interval_R = Factor; 

     

     

    KB = 1-KB; 

     

    n = floor(length(KB)*Factor); 

     

    T(:,1) = [0:length(KB)]'; 

    KB(length(KB)+1) = 0 

    T(:,2) = KB; 

    T(:,3) = T(:,1) .* Factor; 

     

    N = zeros(n+1,2); 

    N(:,1) = [0:n]'; 

     

    j = 0; 

    for i = 0:n 

        if i > Interval_R 

            Interval_L = Interval_L + Factor; 

            Interval_R = Interval_R + Factor; 

            j = j + 1; 

             

            N(i+1,2) = T(j+1,2) - (((i - Factor.*j)./Factor).* (T(j+1,2)-T(j+2,2))) 

             

        else 
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            N(i+1,2) = T(j+1,2) - (((i - Factor.*j)./Factor).* (T(j+1,2)-T(j+2,2))) 

             

        end 

    end 

     

     

    %% Random generator 

     

    %% Kleine Binckhorst 

       

    v = 1; 

    VKB = zeros(1,S); 

    for i = 1:S 

         

        R = rand; %random value between 0 and 1 

         

        x = 0; 

        for j = 1:n+1 

            if x == 0 

                if R > N(j,2) 

                    value = N(j,1)-1; 

                    x = 1; 

                end 

            end 

        end 

         

        VKB(v) = value; 

        v = v+1; 

         

    end 

     

     

    %% Grote Binckhorst 

    v = 1; 

     

    VGB = zeros(1,S); 

    m = length(GB); 

    M = zeros(m+1,2); 

    M(:,1) = [0:length(GB)]; 

    GB(length(GB)+1) = 1; 

    GB = 1-GB; 

    M(:,2) = GB; 

     

    for i = 1:S 

         

        K = rand; %random value between 0 and 1 

         

        x = 0; 

        for j = 1:n+1 

            if x == 0 

                if K > M(j,2) 

                    value = M(j,1)-1; 

                    x = 1; 

                end 

            end 

        end 

         

        VGB(v) = value; 

        v = v+1; 

         

    end 

     

    %% Tests 

    %Medians 

    Median_KB = median(VKB); 

    Median_GB = median(VGB); 

    [p,SignificantInfluenceM] = signrank(VKB,VGB,'alpha',0.01)  
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    Mean_KB = mean(VKB) 

    Mean_GB = mean(VGB) 

     

    %Variances 

    Variance_KB= var(VKB); 

    Variance_GB = var(VGB); 

    SignificantInfluenceVar_1 = vartest(VKB,Variance_GB,'alpha',0.01) 

    SignificantInfluenceVar_2 = vartest(VGB,Variance_KB,'alpha',0.01) 

     

    %KS 

    SignificantInfluence = kstest2(VKB,VGB,'alpha',0.01) 

     

    %% Boxplot figuurtje 

    figure(3), clear clf, hold on 

    boxplot([VKB',VGB'],'labels',{'Kleine Binckhorst (normalised)','Grote 

Binckhorst'}) 

    ylabel('Capacity (number of train units)') 

    hold off 

     

     

     

elseif Topology_test == 0 

     

     

    v = 1; 

     

    V_1 = zeros(1,S); 

    n = length(SF_1); 

    N = zeros(n+1,2); 

    N(:,1) = [0:length(SF_1)]; 

    SF_1(length(SF_1)+1) = 1; 

    SF_1 = 1-SF_1; 

    N(:,2) = SF_1; 

     

    for i = 1:S 

         

        R_1 = rand; %random value between 0 and 1 

         

        x = 0; 

        for j = 1:n+1 

            if x == 0 

                if R_1 > N(j,2) 

                    value = N(j,1)-1; 

                    x = 1; 

                end 

            end 

        end 

         

        V_1(v) = value; 

        v = v+1; 

     

    end 

     

  

     

    v = 1; 

    V_2 = zeros(1,S); 

    m = length(SF_2); 

    M = zeros(m+1,2); 

    M(:,1) = [0:length(SF_2)]; 

    SF_2(length(SF_2)+1) = 1; 

    SF_2 = 1-SF_2; 

    M(:,2) = SF_2; 

     

    for i = 1:S 

         

        R_2 = rand; %random value between 0 and 1 
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        x = 0; 

        for j = 1:n+1 

            if x == 0 

                if R_2 > M(j,2) 

                    value = M(j,1)-1; 

                    x = 1; 

                end 

            end 

        end 

         

        V_2(v) = value; 

        v = v+1; 

         

    end 

     

    %% Test 

    %Medians 

    Median_1 = median(V_1); 

    Median_2 = median(V_2); 

    [p,SignificantInfluenceM] = signrank(V_1,V_2,'alpha',0.01)  

    

    Mean_1 = mean(V_1); 

    Mean_2 = mean(V_2); 

     

    %Variances 

    Variance_1 = var(V_1); 

    Variance_2 = var(V_2); 

    SignificantInfluenceV_1 = vartest(V_1,var(V_2),'alpha',0.01); 

    SignificantInfluenceV_2 = vartest(V_2,var(V_1),'alpha',0.01); 

     

    %KS Test 

    SignificantInfluence = kstest2(V_1,V_2,'alpha',0.01) 

     

    % Boxplot figuurtje 

    figure(3), clear clf, hold on 

    boxplot([V_1',V_2'],'labels',{'Not allowed','Allowed'}) 

    ylabel('Capacity (number of train units)') 

    hold off 

end 

 

 


