
1

Use of autoencoders for fingerprint
encoding and comparison

Wouter Pool

Abstract—Deep learning methods for fingerprint
comparison are starting to outperform classic,
minutiae-based fingerprint comparison methods.
This research explored the possibility of deep learn-
ing fingerprint comparison in two steps. First, an
autoencoder was used to create a latent vector rep-
resentation of a fingerprint segment. Three different
autoencoders were created, one with a loss function
which focuses more on fingerprint minutiae, one
which emphasizes frequency components that nor-
mally occur less often in autoencoder reconstruction
and one which is trained with normal mean square
error. Secondly, a fully connected neural network
was used to perform fingerprint comparison using
the latent vectors of the autoencoders. The finger-
print comparison results show that despite some
limitations in the training process and fingerprint
data, it is possible to compare fingerprints using
the latent space. It also shows that the classification
results will improve with the different loss func-
tions implemented in this paper. The most effective
method was increasing the loss of the autoencoder
at the minutiae locations.

keywords: Autoencoder, Deeplearning, neural net-
work, fingerprint comparison, fingerprint recognition

Introduction
Fingerprint recognition is currently one of the
most used biometric modalities[1]. It finds its ap-
plication in law enforcement, crime scene anal-
ysis and national security, but also in access to
personal devices[2]. Its popularity depends on
factors like the ease of acquisition, acceptance of
acquisition and the amount of biometric data per
individual.
To compare 2 fingerprints, most algorithms
make use of minutiae comparison. Minutiae are
easily distinguishable features of the fingerprint.
Three examples of minutiae relevant to this
paper can be found in Figure 1. The lines in
the fingerprint are referred to as ridges and the

Figure 1: An example of a few minutiae types

empty space between them as valleys.
For fingerprint comparison, the minutiae lo-
cations are extracted from fingerprints and a
minutiae comparison algorithm is applied to
determine the probability of a fingerprint match.
This can, for example, be done by using the 12
Locard rule [3], which states that if an image
is of high quality it needs 12 corresponding
minutiae to determine a fingerprint match. For
a lower number of minutiae, between 8 and
12, a fingerprint match depends on a number
of factors, for example the uniqueness of the
minutiae[3].
An alternative option for fingerprint compari-

son, which is explored in this paper, is to first use
an unsupervised learning algorithm to create a
latent representation of the fingerprint segment.
This latent representation is a compressed ver-
sion of the original image. This compression is
lossy, meaning that not all information at the
input of the autoencoder will be present at the
output. Which information is lost depends on
the compression method. The method proposed
in this paper uses an autoencoder[4] to create a
latent representation.
An autoencoder is a type of neural network that

can encode a large part of the data in a small
latent space representation[4]. It uses a target
which is equal to the input of the neural net-
work, meaning that it tries to recreate the input
image at the output. The autoencoder consists
of an encoder part, a latent representation and a
decoder part as can be seen in Figure 2.



2

Figure 2: The inner workings of an autoencoder.

The encoder creates a bottleneck halfway
through the network, which forces the autoen-
coder to create a compressed version of this
input image, which is called the latent represen-
tation or latent vector.
Minutiae locations and orientations are crucial
for classical fingerprint comparison methods[3],
so effort will be made to ensure that the minutiae
locations are present in the latent space of the
autoencoder. It is difficult to confirm if minu-
tiae locations are present in the latent space.
Therefore the assumption is made that if these
minutiae are reconstructed in the output of the
autoencoder they will also be present in the
latent space.
This leads to the first research question: To what
extent can identifying information of a fingerprint
be preserved and reconstructed by an autoencoder?
Hereby the focus lies on the minutiae, but other
identifying information like general shape and
ridge width might also be important for finger-
print classification.
Assuming a method is found which will prop-
erly translate the minutiae locations to the out-
put of the autoencoder the question remains
whether it is possible to extract these properties
from the latent space for fingerprint comparison.
This leads to the second research question. To
what extent can the information in the latent space of
the autoencoder be used for fingerprint comparison?
This paper will first cover research question one
under the header "Preservation of identifying
information". Secondly, it will discuss research
question two under the header "Classification in
the latent space". Afterwards a joined conclusion
will be drawn and some suggestions for future
work will be provided.

Materials
For this research a python 3.7.3 environment was
used with pytorch 1.7.0.
The dataset that was used for this research was
the MCYT dataset[5]. It contains fingerprints of
all 10 fingers of 330 individuals, resulting in a
total of 3300 unique fingerprints. Of each finger-
print 24 different images were taken, 12 with a
c-mos sensor and 12 with an optical sensor.

Preservation of
identifying infor-
mation
The following section will cover the research
question To what extent can identifying information
of a fingerprint be preserved and reconstructed by
an autoencoder? It will first describe relevant
literature. In the next section an explanation will
be provided of how the autoencoder will be
implemented and trained. Afterwards the three
different loss functions which will create three
different autoencoders will be discussed. Finally
the results of the different loss functions will be
shown and discussed.

Related work
Recently, several deep learning methods
have been developed to replace parts of the
fingerprint classification process. A common
part to replace is the minutiae extraction process
[6][7][8].
One of those works, which bears some
resemblance to this paper, is from A. Sankaran et
al.[9]. They trained two different autoencoders
on small segments of fingerprints, one only
on segments with minutiae and the other on
segments without minutiae. Afterwards they
trained two binary classifiers on the latent
spaces of these autoencoders to determine
if they contained minutiae or not. With this
method they achieved a rank 10 identification
accuracy comparable to manual identification
rate[9].
K.M. Sagayam et al. [10] researched the next step
in the classification process. They developed a



3

neural network to compare two sets of minutiae,
in which they achieved an accuracy of 99% on
a small testset, despite a very small trainset.
In recent years deep learning applications have
been developed which completely replace the
fingerprint comparison process.
B. Pandya et al. [11] made a fingerprint
comparison process for a small amount of
identities. They trained a neural network to
recognize thinned fingerprints and assign them
to their unique class with an accuracy of 98.21%
using only 800 fingerprint images (8 images per
fingerprint).
J. Ezeobiejesi and B. Bhanu[12] used a
Restricted Boltzmann Machine to compare
two fingerprint images and get a latent
representation of fingerprint segments to
train a fully convolutional neural network to
generate a comparison score. With this method
they achieved a rank-1 identification score of
81.35%. However, the fingerprint segments they
compared were only 32x32 pixels, since they
focused on latent fingerprints.
The method proposed in this paper will
distinguish itself in that it creates an
autoencoder with an input segment which
is significantly larger than the work mentioned
above. It will also focus on direct fingerprint
comparison using the latent space, which in
itself seems to be an unexplored field.

A lot of research has been published about
autoencoders. Autoencoders have been
developed for various tasks, for example
denoising autoencoders for audio [13] and
images [14][15][16], optical flow estimation
[17] and dimensionality reduction[18][19].
However, the application of autoencoders
on large fingerprint segments seems to be a
relatively unexplored field.N. Ichimura et al.[20]
implemented a Laplacian filter bank to increase
the performance of their autoencoder, which
will be one of the loss functions researched
in this paper for preservation of fingerprint
identifying information in the autoencoder.
J. Springenberg et al.[21] proved that in
convolutional networks it is more efficient to
use stride instead of pooling without efficiency
loss. This motivates the design decision to use
stride instead of pooling for the autoencoder
presented in this work.

Figure 3: Network architecture of the encoder
part of the autoencoder

Network architecture and training process

The autoencoder model proposed in this paper
is 16 layers deep, the encoder consists of the
first 8 layers and can be found in Figure 3. The
decoder consists of the last 8 layers and is a
mirrored version of the encoder. The first four
layers consist of convolutional layers with filter
size 7x7 using padding and a stride of 2. The
5th layer uses a filter of 3x3 with padding and a
stride of 2. The 6th layer uses a filter size of 3x3
without padding and a stride of 1. Afterwards
the data is flattened for the 7th layer, which is
a fully connected layer bringing the data from
1024 to 724 parameters. The 8th layer is a fully
connected layer which brings it from 724 to 512
parameters. The output of the 512 parameter
layer will be considered the latent space. All the
layers use a Relu[22] activation function.
The middle part of the autoencoder consists of

fully connected layers. Earlier experimentation
on smaller segments showed that this resulted
in a better reconstruction compared to a fully
convolutional neural network. It was not pos-
sible to use a fully connected network, since it
would contain too many parameters to fit inside
the memory of a GPU when scaling to 128x128
segments.
Furthermore, the first (and last) convolutional
layer contain many filters. The filters in these
layers formed ridge valley patterns. By having
more filters in these layers the fingerprint could
be reconstructed more accurately, since more
possible patterns could be created.
The network was trained on images of 128x128
pixels with values scaled between 0 and 1. It
contained a section of a fingerprint which was



4

Figure 4: The effect of switching between dif-
ferent optimizers during the training process.
The blue line indicates the moment which the
optimizer switches from SGD to Adam.

selected around the fingerprint core. This seg-
ment is approximately one fourth of an average
fingerprint size[23] with the exception of the
thumb, which is larger. Each trainbatch con-
tained 6 images from the dataset. To increase
the effective size of the trainset each image was
rotated with an interval of 15 degrees from -90
to 90 degrees and each images was mirrored
resulting in 26 training images per image in
the dataset. Each trainbatch contains 156 images,
one epoch of the trainset contains 547 iterations
of trainbatches.
The training process started with a stochastic
gradient descent optimizer with a learning rate
(LR) of 0,01. When the decrease in loss was less
than 4 percent over the last 150000 iterations, the
training switched to Adam optimizer[24] with a
LR of 0.01 for the remainder of the training. The
effect of the optimizer switch on the loss can be
seen in Figure 4. This switch was necessary to
guarantee results during the training process of
the autoencoder and proved superior in loss and
image quality to using exclusively Adam or only
SGD.

Loss functions
Autoencoders trained with mean square error
(MSE) loss have a tendency to miss high fre-
quency components in their reconstruction, as
can be seen in the middle image in Figure 10.
Fingerprint minutiae contain more high fre-
quency components, so minutiae locations might
disappear or become blurry.
Two methods are implemented to preserve the
minutiae locations at the output of the autoen-
coder. Next to these two methods a network is
trained with a MSE loss between the output and
the target. This network is used as a reference

Figure 5: Block diagram of the different train
processes which are implemented to perserve
minutiae locations

and will be referred to as the Normal trained
network. An overview of its train process can
be found in the first block diagram in Figure 5.
The first method to preserve minutiae loca-
tions is to emphasize frequencies normally less
present in the reconstructions. A Laplacian filter
bank (LFB)[20] has a band pass property which
is used to increase the focus on high frequency
components which are normally less present
in the reconstruction. The overall filter of the
Laplacian filter bank is given by:

h(x, y) = − 1
2πσ4 (1 −

x2 + y2

2σ2 )e−
x2+y2

2σ2 (1)

where x and y are the coordinates of the filter
and σ is a scale factor, used for scaling the length
of the filter and thus letting it focus on a different
frequency. For σ the values 0.6, 0.8, 1, and 1.2 are
used.
During the training process the LFB training
method combines multiple loses. First, the stan-
dard MSE loss is calculated in the same way as
in the Normal training method. Afterwards, the
output and target are filtered with the Laplacian
filter bank, which consists of the four filters
described earlier, each with a different scale.
Following this, the MSE is calculated between
the filtered outputs and their targets. This loss is
scaled with a factor 2, to make the proportional
loss of the LFB comparable to that of the normal
training method. Finally, the losses are added
and back propagation is applied to the total loss.
An overview can be found in the second block



5

Figure 6: An example of the minutiae map over-
laying an fingerprint segment

diagram in Figure 5.
The second method to preserve the minutiae
locations at the output of the autoencoder, is
to increase the loss of the autoencoder dur-
ing the train process at the minutiae locations.
This forces the autoencoder to better reconstruct
minutiae in order to decrease the overall loss.
To emphasize the minutiae locations, the out-
put of the autencoder and the target are first
multiplied by a minutiae map. This Minutiae
map has a value of 1 at minutiae locations, and
a declining value around the minutiae until it
has reached 0 on locations where there are no
minutiae.
The minutiae map is created by finding the
minutiae locations of the training set using a
minutiae extractor[25]. A map consisting of ze-
ros is created in which the locations of the
minutiae are set to 1. This map is dilated by
a morphological sphere with a diagonal of 21
pixels and filtered with a Gaussian blur filter
with a sigma of 9 in both the x and y directions.
An example of a minutiae map displayed over
a fingerprint image can be found in Figure 6.
The minutiae emphasis training combines two
losses similar to the LFB training method. First,
the standard MSE loss is calculated in the same
way as in the Normal training method. Secondly,
the output and target of the autoencoder are
multiplied by the minutiae map and the loss
is calculated between these filtered outputs and
targets. This loss is scaled with a value of 2
to make the minutiae locations more important
and added to the standard MSE loss calculated
before. An overview can be found in the third
block diagram in Figure 5.

Figure 7: An example fingerprint segment (left
upper corner) and 3 reconstructions of 3 differ-
ent images of the same fingerprint segment us-
ing an Minutiae emphasis trained autoencoder.
In the 3 reconstructions a minutiae is marked
which is reconstructed differently each time.

Results and discussion

Figure 7 shows the reconstruction of the three
different images of the same fingerprint using
the minutiae emphasis trained autoencoder. The
core segment of the fingerprint is reconstructed
differently in all of the three images. Figure 8
shows that the Laplacian filter bank provides
a more similar core reconstruction over the
different images. This is because the band
pass property of the LFB creates a preference
for certain frequencies, which results in a
more consistent reconstruction using these
frequencies. However, the core was incorrectly
reconstructed in all the instances in Figure 8.
Figure 9 shows that the reconstruction of the
core improves if the core contains less minutiae
and more straight lines.
A possible explanation for the incorrect core
reconstruction is that the core is only a small
part of the fingerprint segment, containing
many minutiae and curving and varying ridges.
Instead of using a lot of resources to properly



6

Figure 8: An example fingerprint segment (left
upper corner) and 3 reconstructions of 3 dif-
ferent images of the same fingerprint segment
using an LFB trained autoencoder

reconstruct a fingerprint core, the loss can more
easily be minimized by focusing on the other
parts of the fingerprint. If necessary, part of the
core can be generated, instead of reconstructed.
Another option is that the latent space is not
large enough to get an accurate representation
of the entire image, so by not properly encoding
the core the latent space can still encode the
rest of the segment.
Despite the faulty core reconstruction the
minutiae around the core are reconstructed
properly most of the time. However, the type
and exact location of minutiae may vary, which
can be seen when looking left of the core of the
reconstructions in Figure 8 or at the marked
minutiae in Figure 7. These changes in minutiae
types might not be a problem since the location
of the minutiae will still be encoded in the
latent space. This means that classification on
the latent space might not be hindered by these
changing minutiae types.

As can be seen in the fourrier transforms
in Figure 10 the autoencoder trained with
the Laplacian filter bank contains more high

Figure 9: An example fingerprint segment (left
upper corner) and 3 reconstructions of 3 dif-
ferent images of the same fingerprint segment
using an normal trained autoencoder

frequency information. The images generated
by the LFB are sharper than the normal training
method. This is most clearly visible in images
with a small ridge valley distance, as can be
seen in Figure 11 where two minutiae are
marked which are not reconstructed with the
normal training method.
Furthermore, Figure 11 shows that the
autoencoder has developed some interesting
reconstruction properties. The scar located in
the lower left part of the image is removed in
the reconstructions. The downside is that the
normal and minutiae training methods have
repaired this scar by filling the space with
minutiae. The LFB trained method has made a
different reconstruction and fixed the segment
without generating minutiae, likely due to its
preference for certain frequencies.

The difference between the autoencoders
regarding the minutiae outside of the core is
hard to determine, since the reconstructions
of the same autoencoder vary too much. All
autoencoders are able to reconstruct factors
such as the general shape of the fingerprint. The



7

Figure 10: The input, output of an trained au-
toencoder and output of a LFB trained autoen-
coder and their Fourier transforms

Figure 11: An example of the reconstruction
process for the different trained autoencoders.
The same location near a minutiae is marked
over the 3 different reconstructions.

various ridge widths proved to be no problem
for the reconstruction, is demonstrated when
comparing Figure 11 and Figure 9.

Classification in
the latent space
The following section will cover the research
question: To what extent can the information in the
latent space of the autoencoder be used for fingerprint
comparison? Firstly, it will shortly describe some
literature which is used in this section. Secondly,
it will explain how the different latent images
of the trained autoencoders were evaluated. It
will describe how the neural network classifier,
which is one of the evaluation methods, was
trained and implemented. Lastly, the results will
be discussed.

Related work
Some research has been performed to increase
understanding of the latent space of autoen-
coders. T. Spinner et al. [26] tried to compare
the latent spaces of autoencoders and variational
autoencoders using a t-distributed stochastic
neighbor (T-SNE) analysis. They concluded that
it is hard to change the latent space of a normal
autoencoder, since you need luck to find a value
in which the decoder knows a reconstruction.
Several published studies have made use of a
fully connected neural network for latent classi-
fication. For example, the aforementioned stud-
ies by A. Sankaran et al. [9] used it for their
minutiae detector and K.M. sagayam et al. [10]
used it for their minutiae comparison. In addi-
tion, when a convolutional network is applied
for fingerprint comparison they tend to make
use of some fully connected layers at the end of
their neural network to do the final classification
step[11][27]. However, since the classification re-
sults are very dependent on the latent vector
creation these results cannot be compared to this
work.
Furthermore, the work of S. Roweis and G.
Hinton[28] and L. van der Maaten[29] is applied
in this section to visualize the latent space using
their work regarding the t-distributed stochastic



8

neighbor embedding for visualizing the latent
space. For the classification process the T-SNE
analysis could be used when there are a limited
number of identities. However, with the number
of unique identities in the dataset this does not
seem like a viable option for the classification
problem presented in the paper.
Lastly, a t-test[30] will be performed to deter-
mine the statistical significance and confidence
interval (CI) of the difference between the sev-
eral fingerprint comparison runs.

Latent creation and comparison

To generate the latent spaces, the fingerprint
sections around the core were used as input
for the encoder part of the three autoencoders
that were trained as described in the previous
section. Each fingerprint segment resulted in a
512 parameter long vector which is considered
the latent space.
A T-SNE algorithm was applied to a eight identi-
ties to identify if the identities could be mapped
close to each other. A classifier was trained on
the identities to determine if it is viable to use
the latent space for classification.

Training method and network architecture

For classification of the latent space a neural
network was developed with an input of a 1024
factor containing the 2 latent spaces of the fin-
gerprints, which were both 512 parameters long.
The networks contains 1 hidden layer with 2048
neurons and a single output neuron which was
trained to be 1 in case of a fingerprint match
and 0 otherwise. The network was trained with
stochastic gradient descent. 15 identities were
used as testset and the other 315 as trainset.
The classifiers were trained multiple times with
a different initialization of the neural network,
to check if the difference between the runs was
statistically significant.

Results and discussion

The results of the T-SNE analysis in Figure 12, 13
and 14 provide an insight in the information in
the latent space. All three training methods show
indications of grouping of the latent space in the
T-SNE analysis. However, the identities are also
grouped based on fingerprint sensors used in the

Figure 12: The T-SNE results of some latent
space images generated by the normal trained
autoencoder

Figure 13: The T-SNE results of some latent space
images generated by the LFB trained autoen-
coder

dataset, for which it was not trained. In addition,
there are several outliers with different causes.
Some were caused by an error during fingerprint
capture, which resulted in partial white space
around the fingerprint core. Others were caused
by an error in the fingerprint core detection
software, which detected a core in the wrong
place.

The wrongly detected fingerprint core seg-
ments have a significant impact on the classifi-
cation process. When comparing two fingerprint
segments, the part of the fingerprint which is
similar between the two segments is smaller and
not located in the same part of the image. If



9

Figure 14: The T-SNE results of some latent
space images generated by the Minutiae trained
autoencoder

Figure 15: The classification scores of run 2 for
the normal trained autoencoder

the core is inaccurately detected even further
away. there might not be any overlap between
the fingerprint segments.
When looking at the classification scores of the
testset for the trained classifiers in Figure 15, 16
and 17, these misaligned fingerprint segments
can explain the peak in the true match scores
with a comparison value of 0.

Another factor which influences the classifica-
tion scores is the amount of unique information
in a fingerprint segment. Since this research used
only a segment of the fingerprint, the amount of
identifying information is limited. Since the core
reconstruction leaves room for improvement this
means that the classification mainly depends on

Figure 16: The classification scores of run 2 for
the LFB trained autoencoder

Figure 17: The classification scores of run 2 for
the Minutiae trained autoencoder

minutiae and other fingerprint identifying infor-
mation located outside of the core but inside the
segment. This is generally in between 5 and 10
minutiae. Comparing this to, for example, the
Locard 12 rule[3] it means that proper identi-
fication is not always possible with this small
amount of properly reconstructed minutiae.

When looking at the equal error rate (EER)
of the trained classifiers in Table I, it shows
that the minutiae training method performs bet-
ter than the normal training or LFB training
method. Table II shows that the differences
between the training methods are statistically
significant. This difference would suggest that
the minutiae locations are still important in the
classification process. Since the minutiae training



10

Table I: The equal error rate (EER) of the trained
classifier for differently trained autoencoders
over multiple runs

EER Run 1 Run 2 Run 3 Run 4
Normal training 0.230 0.232 0.236 0.230
LFB training 0.228 0.228 0.227 0.226
Minutiae training 0.212 0.212 0.208 0.209

Table II: The p values, the mean difference and
confidence interval (CI) when comparing the
different loss functions

p value mean (95% CI)
Normal vs LFB 0.0190 0.00475 (0.00110-0.00840)
LFB vs Minutiae <0.0001 0.01700 (0.01422-0.01978)
Normal vs Minutiae <0.0001 0.02175 (0.01747-0.02603)

method focuses more on the minutiae, they will
likely occur more often in the latent space, which
improves the classification. This difference can
also be observed in the ROC curves of the 3
classifiers in Figure 18.
Furthermore, Table I shows that the classifier us-
ing the LFB training method results in a slightly
better EER in comparison to the normal train-
ing method. This difference is less visible when
looking at the ROC curves in Figure 18, where
the LFB trained and Normal trained curves lie
very close to each other. The difference is small,
but statistically significant as demonstrated in
Table II. This would suggest that the autoen-
coder profits from training methods other than
the MSE loss training methods and from the
additional high frequency information forced in
the reconstruction.

Figure 18: The combined ROC curves of the
three trained classifiers

Conclusion
The first research question was: To what extent
can identifying information of a fingerprint be
preserved and reconstructed by an autoencoder?
The autoencoder that was developed could
reconstruct most of the fingerprint minutiae
located outside of the core of the fingerprint.
In addition, factors such as ridge width,
overall shape and illumination differences were
reconstructed in the output of the encoder.
A limitation of the autoencoder was that the
core segment of the fingerprint seemed too
complex to be properly reconstructed in various
instances.

The second research question was: To what
extent can the information in the latent space of
the autoencoder be used for fingerprint comparison?
Despite the limitations of the fingerprint
segment size, the imperfect core reconstruction
and the misaligned fingerprint segments, the
classifier achieved an EER of 0.208.
If the aforementioned problems would be
solved and the entire fingerprint would be
used, it is suspected that using the latent space
of an autoencoder could result in a fingerprint
matching system with competitive performance
compared to modern day fingerprint matching
algorithms.

Future work
For future work, the research regarding the first
question could be improved. Some uncertainties
remain regarding the preservation of identify-
ing information of a fingerprint and the recon-
struction by an autoencoder. More insight in
this question could be achieved by applying a
minutiae extractor to the input and output of the
autoencoder, so an understanding can be created
on how the minutiae locations are preserved
when training the autoencoder.
Furthermore, the reconstruction of the core
should be improved. This could possibly be
done by increasing the loss at the location of



11

the core or perhaps by increasing the size of
the latent space. If the LFB were to be used,
the core reconstruction could be improved by
finding out exactly which frequency components
are necessary for a proper reconstruction.
The classification process can likely be improved
by using a larger fingerprint segment, as this will
result in more fingerprint identifying informa-
tion being included in the image. This informa-
tion will also be transferred to the latent space.
In addition, it is recommended to improve the
reconstruction of the fingerprint core to further
increase results of the classification process.
Furthermore, the classification results could be
improved by allowing the encoder to continue
training during the training of the classifier.
This will allow the encoder to start focusing on
different parts of the fingerprint segment which
perhaps contain more important identifying in-
formation. Another area for further development
which arose during this research is the use of
different optimizers during the training phase
of the autoencoder. By switching between op-
timizers, the autoencoder achieved significantly
better results in comparison to only using Adam
optimizer or stochastic gradient descent. Further
research into this topic is recommended to gain
insight into why this works and how it could
be used to improve the performance of neural
networks in the future.

References
[1] D. THAKKAR, “What makes fingerprint the most pop-

ular biometric modality?,” 3 2019.

[2] NEC, “The top 9 common uses of biometrics in every-
day life,” 7 2020.

[3] P. Kingston, C.R.: Kirk, “La regle des 12 points dans
l’identification par les empreintes: historique et valeur,”
Revue internationale de police criminelle, vol. 20(186),
pp. 62–69, 1965.

[4] M. A. Kramer, “Nonlinear principal component anal-
ysis using autoassociative neural networks,” AIChE
Journal, vol. 37, no. 2, pp. 233–243, 1991.

[5] J. Ortega-Garcia, J. Fierrez, D. Simon, J. Gonzalez,
M. Faundez-Zanuy, V. Espinosa, A. Satue, I. Hernáez,
J. Igarza, C. Vivaracho-Pascual, D. Escudero, and
Q. Moro-Sancho, “Mcyt baseline corpus: a bimodal
biometric database. iee proc vis image signal process
spec issue biom internet,” IEE Proceedings - Vision Image
and Signal Processing, pp. 395 – 401, 12 2003.

[6] L. N. Darlow and B. Rosman, “Fingerprint minutiae
extraction using deep learning,” pp. 22–30, 2017.

[7] W. Leung, S. Leung, W. Lau, and A. Luk, “Fingerprint
recognition using neural network,” Neural Networks for
Signal Processing Proceedings of the 1991 IEEE Workshop,
pp. 226–235, 1991.

[8] “B. gour, t. bandopadhyaya, and s. sharma, “fingerprint
feature extraction using midpoint ridge contour method
and neural network,” international journal of computer
science and network security, vol. 8, no. 7, pp. 99–103,
2008,”

[9] A. Sankaran, P. Pandey, M. Vatsa, and R. Singh, “On
latent fingerprint minutiae extraction using stacked de-
noising sparse autoencoders,” pp. 1–7, 2014.

[10] K. M. Sagayam, D. N. Ponraj, J. Winston, J. Yaspy, D. E.
Jeba, and A. Clara, “Authentication of biometric system
using fingerprint recognition with euclidean distance
and neural network classifier,” Int. J. Innov. Technol.
Explor. Eng, vol. 8, no. 4, pp. 766–771, 2019.

[11] B. Pandya, G. Cosma, A. A. Alani, A. Taherkhani,
V. Bharadi, and T. McGinnity, “Fingerprint classification
using a deep convolutional neural network,” in 2018
4th International Conference on Information Management
(ICIM), pp. 86–91, 2018.

[12] J. Ezeobiejesi and B. Bhanu, “Patch based latent fin-
gerprint matching using deep learning,” pp. 2017–2021,
2018.

[13] X. Lu, Y. Tsao, S. Matsuda, and C. Hori, “Speech
enhancement based on deep denoising autoencoder.,”
in Interspeech, vol. 2013, pp. 436–440, 2013.

[14] I. L. Y. B. P.-A. M. Pascal Vincent, Hugo Larochelle,
“Stacked denoising autoencoders: Learning useful rep-
resentations in a deep network with a local denois-
ing criterion,” Journal of Machine Learning Research 11,
pp. 3371–3408.

[15] J. Xie, L. Xu, and E. Chen, “Image denoising and
inpainting with deep neural networks,” in Advances in
neural information processing systems, pp. 341–349, 2012.

[16] L. Gondara, “Medical image denoising using convolu-
tional denoising autoencoders,” in 2016 IEEE 16th Inter-
national Conference on Data Mining Workshops (ICDMW),
pp. 241–246, 2016.

[17] V. Patraucean, A. Handa, and R. Cipolla, “Spatio-
temporal video autoencoder with differentiable mem-
ory,” CoRR, vol. abs/1511.06309, 2015.

[18] R. Hinton, G. E.; Salakhutdinov, “Reducing the di-
mensionality of data with neural networks,” Science,
vol. 313, pp. 504–507.

[19] D. Del Testa and M. Rossi, “Lightweight lossy compres-
sion of biometric patterns via denoising autoencoders,”
IEEE Signal Processing Letters, vol. 22, no. 12, pp. 2304–
2308, 2015.

[20] N. Ichimura, “Spatial frequency loss for learning con-
volutional autoencoders,” 06 2018.

[21] J. T. Springenberg, A. Dosovitskiy, T. Brox, and M. Ried-
miller, “Striving for simplicity: The all convolutional
net,” 2015.



12

[22] V. Nair and G. E. Hinton, “Rectified linear units im-
prove restricted boltzmann machines,” pp. 807–814,
2010.

[23] J. C. Wu, “Statistical analysis of widths and heights of
fingerprint images in terms of ages from segmentation
data,” 10 2008.

[24] D. Kingma and J. Ba, “Adam: A method for stochastic
optimization,” International Conference on Learning Rep-
resentations, 12 2014.

[25] Utkarsh-Deshmukh, “Fingerprintfeatureextraction.”
https://github.com/Utkarsh-Deshmukh/
Fingerprint-Feature-Extraction, 2021.

[26] T. Spinner, J. Körner, J. Görtler, and O. Deussen,
“Towards an interpretable latent space : an intuitive
comparison of autoencoders with variational autoen-
coders,” in Proceedings of the Workshop on Visualization
for AI Explainability 2018 (VISxAI), 2018.

[27] L. Jiang, T. Zhao, C. Bai, A. Yong, and M. Wu, “A
direct fingerprint minutiae extraction approach based
on convolutional neural networks,” in 2016 International
Joint Conference on Neural Networks (IJCNN), pp. 571–
578, 2016.

[28] B. Ghojogh, A. Ghodsi, F. Karray, and M. Crowley,
“Stochastic neighbor embedding with gaussian and
student-t distributions: Tutorial and survey,” 2020.

[29] L. van der Maaten and G. Hinton, “Visualizing data
using t-sne,” Journal of Machine Learning Research, vol. 9,
no. 86, pp. 2579–2605, 2008.

[30] Student, “The probable error of a mean,” Biometrika,
pp. 1–25, 1908.

https://github.com/Utkarsh-Deshmukh/Fingerprint-Feature-Extraction
https://github.com/Utkarsh-Deshmukh/Fingerprint-Feature-Extraction

	Abstract
	Introduction
	Preservation of identifying information
	Classification in the latent space
	Conclusion
	Future work
	References

