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MANAGEMENT SUMMARY 
This research is an attempt to support KLM Engineering & Maintenance with the construction of 

a solid business case for a new data-driven maintenance application called ‘Prognos’. Prognos is 

developed to improve Maintenance, Repair and Overhaul operations by forecasting component 

failures. Predictions about upcoming failures can be employed to implement a Predictive 

Maintenance (PdM) strategy, that aims to reduce cost in various aspects of the organisation.  

This study investigates the impact of PdM on repair cost and spare part cost. It is the first time 
that a detailed analysis on these two cost factors combined is performed for components in a 𝑘-

out-of-𝑁 structure: not only for KLM E&M but also in literature. This addresses the following 

problem statement, that is of particular interest at KLM: 

 

‘There is a lack of insight in how a predictive component replacement policy should be designed at 

KLM Engineering & Maintenance such that spare part and repair cost are minimised.’ 

 

KLM’s current situation is analysed and a literature study is performed in order to identify saving 

opportunities in repair and spare part cost. Three predictive component replacement policies are 

designed that are aimed at minimising these cost factors, and their performance is tested within 

a simulation model. The corresponding research question is formulated as: 

 

‘How should a predictive component replacement policy be designed and implemented at KLM 

Engineering & Maintenance, in order to reduce repair and spare part cost?’ 

 

It was found that the predictive policy that initiates replacement on an aircraft when at least 2-

out-of-4 components are alerted and/or failed, is the most beneficial policy for a 3-out-of-4 

system. When replacement is initiated, the aircraft with the highest number of alerted 

components should be prioritized in order to maximise repair cost savings.  

When predictive policies also consider current on-hand stock levels in their replacement 

decision, the variability of components in repair can be reduced. The increased time frame 

realised by forecast information, enables to smoothen the inflow of repairs. This variability 

reduction has an effect on the minimum required stock level: it is shown in a case study that spare 

inventory for KLM’s 787 fleet can be reduced with 20% for one particular system. The 

corresponding average total cost reduction is expected to be approximately 30%.  

By using experimentation, the simulation study had the following findings:  

- When fleet size is increased, the reduction of inventory levels is increased to 30%; 

- Policy performance remains stable when the model is run with different failure 

distributions or added randomness in lead times;  

- Changes in repair turnaround times and repair costs have the largest impact on spare 

levels and costs respectively; 

- Low sensitivity rates and short prediction horizons also result in cost reductions. 

This research provided promising results for the benefits related to the implementation of PdM 

at KLM E&M. However, it must be kept in mind that results could only be generated with the help 

of simplifying assumptions that include uncertainty.  

We recommended KLM to implement predictive replacement policies for all components that 

have potential repair cost savings, provided that the ratio between the prediction horizon and the 

mean time to failure is small. In this way, repair cost can be saved while the decrease of the mean 
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time between removal, and therefore the increase in maintenance workload, is minor. It is also 

recommended to integrate current stock levels in replacement decisions, such that KLM is able to 

capitalize on benefits of spare part inventory reduction. This might lead to competitive advantage 

in the MRO market. Further research should be performed to investigate how decisions ‘in the 

front’ (i.e. the replacement decision) can be aligned with the situation ‘in the back’ (i.e. the current 

status of the supply chain), leading to optimised integral decision making.  
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1 INTRODUCTION 
Maintenance, Repair and Overhaul (MRO) activities are one of the major cost drivers in the 

competitive civil aviation market. The aim to be cost effective on these operations has drawn 

more and more attention over the past few years, due to technological developments, limited 

saving potential in other areas and the introduction of low-cost carriers (Doganis, 2010). A 

popular saying at the Royal Dutch Airlines (KLM) is that aircraft on ground only generate cost, 

and revenue while being in the air. Therefore, the organisation aims to minimise ground times 

and maximise aircraft availability. This results in tight schedules and high fleet utilisation rates 

compared to other airlines. This is realised due to an efficient organisation and close cooperation 

between the airline operator and MRO organisation.  

To maintain high aircraft availability, the Big Data, Analytics & Reliability (BAR) team was 

recently established at KLM. The goal of the team is to improve MRO operations with data 

analytics support or by making them completely data-driven. This research is an attempt to help 

the BAR team with the quantification of the benefit of a new data-driven maintenance application 

called ‘Prognos’. 

This chapter is an introduction to the research, including context description (1.1), research 

motivation (1.2), research objective (1.3), scope and limitations (1.4), and finally the research 

questions and approach (1.5).  

1.1 CONTEXT DESCRIPTION 

To understand the context of our research, this section provides an introduction on KLM (1.1.1), 
(aircraft) maintenance (1.1.2 and 1.1.3) and Prognos (1.1.4). It provides insight in the industry, 

the capabilities of Prognos and some key concepts in maintenance, required to understand the 

problem of this research.   

1.1.1 Company and fleet 

The MRO organisation Air France Industries (AFI) KLM Engineering & Maintenance (E&M) is, in 

terms of revenue, the second largest MRO service provider in the world. It provides services to 

more than 200 airlines worldwide (Shay, 2017). With a workforce of 14,000 employees they offer 

technical support and services, including engineering, line maintenance, components, airframe 

and cabin modifications, engines, on wing services and technical training. 

The 118-aircraft fleet of KLM is maintained by KLM E&M at their home base Schiphol-Oost. KLM 

E&M’s organisation consists of six departments: Component Services, Engine Services, Logistics, 

Engineering, Aircraft Maintenance, and Staff (AIR FRANCE KLM GROUP, 2018). Table 1 shows an 

overview of KLM’s fleet. The Boeing 787 aircraft (‘Dreamliner’), from now on 787, was introduced 

at KLM in 2015 and is the youngest aircraft in KLM’s fleet.  

Table 1: KLM fleet (Royal Dutch Airlines, 2017) 

Aircraft Multiplicity Max. passengers Range (km) Short / long haul 

Airbus A330 13 268 - 292 8,200 – 8,800  Long haul 

Boeing 747 (cargo) 13 (3) 268 - 408 11,500 Long haul 

Boeing 787 13 294 11,500 Long haul 

Boeing 777 29 320 - 408 11,800 – 12,000 Long haul 

Boeing 737 50 188 4,300 Short haul 

Embraer 190 42 100 - 88 3,300 – 3,180  Short haul 

Total 118 - - - 
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1.1.2 Maintenance in aviation 

Safety requirements influence maintenance operations in aviation to a large extent. Regulations 

concerning airworthiness 1  requirements, approval of maintenance organisations, staff 

certification and training are supervised by the European Aviation Safety Agency (EASA) 

(European Union, 2003).  

Maintenance actions to ensure airworthiness include required Routine Maintenance (RM) 

operations, which are executed during regular checks of the aircraft at predetermined time 

intervals, and Non Routine Maintenance (NRM). Repairs and other unplanned maintenance 

actions belong to NRM. The Mean Time Between (Unscheduled) Removal (MTB(U)R) is an 

indication of the duration of a component’s ‘time on wing’ between replacements. It is a valuable 

measure that can be used to estimate resource demand for maintenance planning. The Mean Time 

To Failure is also used to estimate demand.  

NRM is required when components fail before their next scheduled maintenance. From flight data 

that is logged by an aircraft, a Flight Deck Effect (FDE) can be generated. An FDE represents a 

fault that requires crew awareness or affects dispatchability (United States Patent No. 4943919, 

1990). The required procedure that has to be performed based on an FDE, is specified in the Fault 

Isolation Manual (FIM)2. Sometimes FDEs can be solved with a system reset or a minor repair, but 

it can also lead to the replacement of a Line Replaceable Unit (LRU). This study only considers 

‘repair by replacement’, which means that a failed system is always repaired by means of 

replacement. If an FDE requires an LRU replacement to be carried out, a technician can either 

replace directly, given a spare part is available, or defer the action. Common practice is that 

replacements are deferred, to keep local stock levels low. The Minimum Equipment List (MEL) 

specifies the Rectification Interval (RI), which is the time period in which the replacement has to 

be performed (no. of days within which the failure has to be solved), depending on the category.  
Table 2: MEL categories and corresponding deadlines 

MEL Category Rectification Interval (RI) 

A Part specific 

B 3 days 

C 10 days 

D 120 days 

 

The graph below shows the relation between the Time To Failure, Time Between Removal and 

Rectification Interval for a 3-out-of-4 system. A 3-out-of-4 system is a variant of a 𝑘-out-of-𝑁 

redundant system. Such systems have 𝑁 identical components and require 𝑘 of them to operate 

in order to have an operational system. In the 3-out-of-4 case, the system is down or/and MEL is 

violated if more than 1 component fails. 

                                                                 
1 Airworthiness represents the suitability of an aircraft for a safe flight.   
2 Fault isolation refers to the maintenance procedure of the isolation of faults as well as the determination of the 

significance of a fault for maintenance scheduling. 
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1.1.3 Maintenance policies 

A lot of general maintenance policies exist in order to effectively maintain systems in terms of 

quality, costs and time. Policies are distinguished between three main categories: reactive (act 

after failure), proactive (act before failure), aggressive (minimise failure occurrence) (Tinga, 

2013). Prognos is a PdM application, developed to predict future failure states of components. In 

aviation, component criticality is an important aspect for policy selection. Criticality of a 

component represents the impact of its functionality to the airworthiness of an aircraft. Critical 

components have short RI’s or their failure leads to an Airplane On Ground (AOG; not airworthy) 
status right away. Usually a preventive policy is applied to these type of components. Non-critical 

components are mostly maintained according to a corrective policy. It is common practice to use 

redundancy for critical components in order to increase aircraft reliability3. In that case, a single 

component failure does not directly cause an AOG, provided that MEL requirements are still met. 

Redundancy increases complexity in maintenance and is an important aspect in this study. 

 
Figure 2: Maintenance policies (Tinga, 2013) 

                                                                 
3 Reliability = 1 – Probablity of failure, so high reliability means little failure occurrences.  

Figure 1: Schematic timeline of a 3-out-of-4 aircraft system 
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1.1.4 Prognos 

The Big Data, Analytics & Reliability (BAR) team is part of the Engineering division of KLM E&M. 

One of their major projects is the development of Prognos: a Predictive Maintenance (PdM) 

application designed to optimise MRO operations. The BAR team uses continuous data streams 

and in-depth system knowledge to develop algorithms that can predict upcoming failures, 

thereby potentially saving high maintenance costs and preventing technical delays. This differs 

from other health monitoring systems that use snapshot sensor data instead of continuous data, 

and only provide diagnostic information without predictions about future component failures. 

Prognos’ models can be classified as ‘Dynamic Predictive’ in Figure 2. 

Prognos started with the development of algorithms for a selection of LRUs of the Boeing 747 

and, the majority, of the 787. LRUs were selected based on criteria such as data availability, repair 

costs and amount of operational disruptions due to failures. At the moment, algorithms for three 

selected LRUs are implemented in the Prognos software.  

The software can create two types of signals: an alert (prognostic) or a failure indication 

(diagnostic). The failure indication, in combination with historical data about system behaviour, 

can provide troubleshooting support: It helps to ‘do the right thing’. Predictive alerts provide 

additional support, namely also to perform maintenance ‘at the right time’. Prognos creates a 

predictive alert based on sensor data collected during flights and predictive algorithms installed 

in the application. The alert represents an expected upcoming failure occurrence. The timing of 

an alert could be varied within a certain range. The maximum of this range varies per component 

and depends on a number of factors. The time between a predictive alert and a failure occurrence 

is referred to as the Prediction Horizon (PH). The accuracy4 of alerts increases as the time to 

failure decreases: a predictive alert for a failure tomorrow might be 99,9% accurate whereas a 

prediction about a failure next month might be correct 50% of the time. Technicians are currently 

warned with a Prognos alert 10 days in advance of the expected component failure. This provides 

extra operational planning flexibility while not sacrificing too much Remaining Useful Life (RUL).  

Prognos monitors several condition indicators, and using these parameters, it calculates an 

aggregate measure that indicates the health of a component. When this aggregate measure of a 

component exceeds a certain critical limit, it is expected to fail soon, or, it is considered as failure. 

The classification of failures and predictive alerts and the corresponding thresholds for the 

aggregate measures are continuously monitored and optimised by the BAR team. So far, the 

accuracy of the alerts and failure indications in Prognos has been very good, also with alerts that 

were generated 10 days in advance.  

 

Focus on 787 – Prognos’ focus is on the 787, the first “more electric aircraft” from Boeing. This 

aircraft has far more expensive components than the other aircraft. More electric aircraft are 

designed to push forward the concept of ‘more electric’, and, ultimately, ‘all electric’. The aircraft 

contains a lot of new, innovative systems designed to reduce fuel consumption and environmental 

impact. The high costs related to maintenance of the 787 leads to the expectation of high saving 

potential with PdM. Since the 787 is an aircraft used for long haul flights with high passenger 

loads, the potential savings due to reduction of technical delays are also significant compared to 

short haul. Finally, the 787 enables the development of predictive analytics due to the huge 

amount of data that is collected during flights.  

                                                                 
4 The fraction of correct predictions (or alerts). 
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1.2 RESEARCH MOTIVATION 

PdM can minimise total maintenance costs by optimising the timing of component replacements. 

This concept is embraced by the BAR team and is a motivation for this research, as it arises the 

question: How can KLM E&M minimise total maintenance cost with PdM? In the next subsection 

the concept of minimising maintenance cost by optimising the timing of replacements is 

discussed. Section 1.2.2 discusses a few recent issues at KLM E&M that are relevant for this study 

since Prognos might be able to contribute to solving these issues. 

1.2.1 The concept of minimising cost with PdM  

Detailed information about the occurrence of component failures enables to perform a more 

accurate trade-off between repair cost and prevention cost. Figure 3 shows the relation between 

repair, prevention and total costs in maintenance. As can be seen in the figure, prevention costs 

are high and repair costs are low with a preventive maintenance strategy (left section in the 

graph). This policy prevents failure occurrences due to timely replacements. This results in little 

failures and a high frequency of preventive replacements.  

A reactive maintenance policy, which is shown on the right side in Figure 3, has a high number of 

failures, resulting in high repair costs. The number of preventive actions is low (or zero), resulting 

in low prevention costs. Predictive maintenance aims to set the maintenance policy such that total 

costs are minimised, by making the optimal trade-off between preventive – and corrective 

(repair) costs, by using predictive information, e.g. information about the health status of systems 

or components and predicted time of a future failure.  

Currently, Prognos is only used for corrective maintenance. Yet, it is not used for proactive 
maintenance and does not consider the basic trade-offs explained in Figure 3. Current practice of 

the LRU’s included in Prognos’ scope can therefore be indicated with the red X in the figure. Most 

components fail before their estimated MTTF and are correctively removed before the expected 

MTBR, resulting in high total repair and replacement costs. The maximum saving potential of 

Prognos equals the decrease in total costs if the X shifts from its current position on the right to 

the green optimum point in the middle (the result of the decrease in repair cost and the increase 

in prevention cost, indicated with 1; (2) – (3) = (1)). 

At this moment, the potential savings are calculated based on historical data about repair costs 

(indicated with 2) and technical delays, which presumably could have been prevented if Prognos’ 

information was available at the time. This is an estimation based on a number of assumptions 

and excludes factors such as the increase in cost due to more frequent preventive actions. The 

expected size of this cost increase related to (3) is important to estimate for the purpose of 

employee awareness. 
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Figure 3: Cost associated with traditional maintenance policies (Tchakoua, et al., 2014) 

The figure explains the trade-off between prevention cost and repair (or, corrective) cost in the 

traditional maintenance strategies. The study should focus on the cost related to repairing and 

replacing components on one hand, and on the other hand on the cost related to failure 

prevention. In the last category, spare part cost are identified as an important cost factor. Spare 

parts are expensive in aviation and an increased frequency of component replacements due to 

preventive actions, could result in high stock levels.  

1.2.2 Research motivation for KLM E&M 

At this moment, supply chain performance is poor for the supply of some components of the 787. 

One of the main reasons for the poor performance is the rather optimistic performance 
estimations that were made in advance of the 787 program kick-off, combined with the actual 

performance that turned out to be worse than the OEM MTTF/MTBR. This results in 787 

component scarcity worldwide and capacity problems at KLM: delays in Turn Around Time 

(TAT)5  for repairs, unavailability of components and high costs. Prognos can provide timely 

information about component failures, which can be used to improve the effectiveness of spare 

part decisions. It is unknown how and to which extent PdM can contribute to getting a grip on 

supply chain performance; this is a motivation for this study. In addition, timely information 

about component failure generates an opportunity for early component removal, resulting in 

minor repairs with low cost and short repair times instead of major repairs with high cost and 

long repair times. In order to show Prognos’ full potential, maintenance operations have to be 

analysed in a more accurate and integral fashion. Potential benefits of a predictive replacement 

policy are, among others: 

- Reduction of operational delays, by preventing technical delays due to improved 

scheduling; 

- Repair cost savings, by using information about component condition to avoid major 

repairs; 

- Repair time reduction, by reducing the work scope of repairs by avoiding major repairs; 

- Reduction of inventory stock-out cost, due to alignment of demand for spares; 

                                                                 
5 The Turn Around Time is specified as the lead time in the repair shop.  
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- Reduction of inventory levels, as a result of improved planning and control enabled by 

PdM; 

- Reducing the number of unjustified replacements, due to improved diagnostics.  

It is unknown how KLM E&M can exploit these benefits with the current capabilities of Prognos 

and how a predictive replacement policy should be implemented for the components within 

Prognos’ scope. Since the development of Prognos requires large investments, a detailed cost-

benefit analysis is set as a high priority within the company. This cost-benefit analysis is also 

necessary for awareness creation and cooperation among KLM E&M employees, which is another 

motivation for this research. This is needed for successful implementation of PdM. 

1.3 RESEARCH OBJECTIVE 

Prior to setting the research objective, we need a more thorough understanding of the problem(s) 

we are trying to solve. Therefore, this section is divided in problem description (1.3.1), problem 

statement (1.3.2)  and research objective (1.3.3).  

1.3.1 Problem description 

Figure 4 shows an overview of the problems related to unsuccessful PdM implementation at KLM. 

Prognos is already capable of indicating component failures, however this information is not used 

yet within the organisation to improve replacement decisions in an integral manner. At this point, 

Prognos predictive alerts are triggered 10 days before expected failure. However, 10 days is not 

the maximum PH with acceptable accuracy for some components and KLM should leverage the 

capabilities of Prognos to a larger extent to gain efficiency in planning and control, to match the 

‘right moment’ of replacement. This ‘right moment’ should be set as a result of a trade-off between 

the cost related to preventive and corrective replacements. At this moment, a larger time frame 

can be used to plan a replacement, but only when a couple of constraints are met such as the 

presence of a maintenance message in one of the existing health monitoring system (due to 

warranty restrictions). It is unknown what the effect would be of potential other predictive 

replacement strategies, with larger or smaller prediction horizons and different replacement 

decisions taken based on the predictive alerts.  

Some of the problems related to the lack of employment of predictive information are a 

motivation for this research, mentioned in the previous section. The problems are clustered in 

three categories: Maintenance & service planning aspects, Organisational aspects, and Data 

analysis and predictive modelling aspects. 

 

Problems related to Maintenance & Service planning – It is complex to quantify the benefits 

of Prognos, since it involves a lot of uncertainty and different aspects within the organisation. 

Currently, Prognos’ potential is not quantified to a full extent. This is due to the fact that it is 

unknown how PdM should be implemented to save cost in various areas of the organisation. Also, 

due to scarcity of spare parts, it is impossible to experiment with the implementation of PdM 

strategies. Implementation of PdM in the current organisation and process flows, will lead to a 

higher frequency of replacements due to early removals. This will (temporarily) increase work 

load in the supply chain, which is expected to result in a drop in service level. Therefore this 

(suboptimal) implementation is deferred until availability issues are solved. The lack of overview 

of all factors involved with predictive component replacement, also causes a lack of knowledge 

about the design and objectives of the future state. How can current practice be improved, with 

the help of Prognos’ alerts? How should a predictive component replacement policy look like? 

When should Prognos trigger alerts? What are the consequences of using forecast information in 
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various areas of the organisation? These questions remain unanswered in the current situation, 

which results in an unclear business objective. The answers to these questions are far from 

straightforward, due to the complexity involved with maintenance operations.  

 

Problems related to Organizational aspects – Ambiguity and uncertainty about the benefits 

(and drawbacks) of the implementation of PdM, and the risks related to it, contribute to the 

scepticism among various stakeholders at KLM E&M. Divisions have conflicting interests, as they 

all pursue their own objectives. Since the mutual business objective and the target situation is not 

defined in detail yet, benefits are not fully recognized and some stakeholders remain critical 

about PdM implementation and Prognos’ capabilities. One of the main counterarguments is that 

predictive replacements result in more frequent replacements, due to a decrease in the time 

between removals (a shorter time on wing). 

 

Problems related to Data Analysis & Predictive Modelling – Prognos is in its development 

stage. Although some components are successfully implemented in the application, some models 

are still being optimised and new models are developed. Due to the limited amount of failure 

cases available, it is hard to measure performance of predictions or to define the relation between 

system degradation over time and the effect on repair workload (time and cost). One could argue 

that the maturity of the application in its current state is insufficient for successful 

implementation of a PdM strategy. However, it is expected that performance develops rapidly due 

to high investments, team expansion and increased data availability enabled by partnerships. 

Therefore, a study on implementation is very relevant at this point. 

1.3.2 Problem statement  

This research focuses on the problems related to maintenance and service planning (indicated 

with blue in the left square of Figure 4). Within the target situation that KLM should aim for, 

benefits of predictive maintenance are exploited. That is, ideally, all aspects have been aligned 

and the situation of the green dot in Figure 3 is reached. This ‘target situation’ is unknown due to 

Figure 4: Problem cluster 
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the lack of insight in how all aspects influence the position of ‘the green dot’ (Figure 3) and 

depends on Prognos’ capabilities. This research will focus on the impact of a predictive 

component replacement policy on spare part and repair cost. We aim to find out how this policy 

should be designed in order to reduce cost and create some understanding on how the benefits 

of PdM depend on Prognos’ prediction performance. The related problem can be best described 

according to the following statement:  

 

‘There is a lack of insight in how a predictive component replacement policy should be 

designed at KLM Engineering & Maintenance such that spare part and repair cost are 

minimised.’ 

 

The concept of spare part and repair cost savings was briefly mentioned in the list with potential 

benefits in the Research motivation section on page 12. In the remainder of this research the 

impact of these aspects shall be investigated in more detail. The problem owners of the problem 

mentioned above are the manager of the BAR team and the product owner of Prognos. 

1.3.3 Objective 

The aim of the research is to evaluate the potential impact of PdM at KLM E&M and how to 

maximise the benefits by designing a predictive component replacement policy. A cost trade-off 

must be made, including repair – and spare part costs, and the policies should satisfy operational 

constraints. The research aims to provide insight in the factors that are affected by PdM, including 

their mutual relations. This insight helps to set the right priorities, for future development of 

Prognos and for the implementation of the application. This will contribute to the overall success 

of PdM at KLM E&M. The research should provide:  

- An estimation of the impact of a predictive replacement policy on current operations; 

- Insight in cost fluctuations in the maintenance supply chain, under various scenarios;  

- Prognos’ requirements in order to capitalize on benefits.  

1.4 SCOPE AND LIMITATIONS 

This study will focus on the 787 aircraft only, because most of the components within the scope 

of Prognos are 787 components.  

We focus on the problems that are indicated with a blue colour in the problem bundle of Figure 

4. RM activities will be out of scope; we will focus only on corrective maintenance activities that 

are indicated by the degradation of components and which have the potential of using predictive 

maintenance. Decisions regarding the implementation of PdM include spare part investments and 

the replacement policy. Decisions regarding repair shop capacity allocation and repair priority 

rules are out of scope. The benefits related to improved planning of airline operations, are also 

out of scope. That is, the savings realised due to the prevention of technical delays.  

1.5 RESEARCH QUESTIONS & APPROACH 

This research will be conducted by consecutively answering a number of sub research questions, 

resulting in a final conclusion to the main research question. This addresses the problem 

statement formulated in Section 1.3. The main research question of this study is: 

 

‘How should a predictive component replacement policy be designed and implemented at 

KLM Engineering & Maintenance, in order to reduce repair and spare part cost?’ 
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The research investigates how KLM can shift from corrective to predictive maintenance. This final 

section presents the research approach, which is based on the conceptual modelling framework 

of Robinson (2011), which will be described in more detail in later sections. In this chapter, the 

problem KLM E&M currently faces is introduced. To improve component replacements, we 

should analyse current processes and aspects related to this problem. Benefits increase when the 

performance of predictions is optimised. Therefore, we need to know the maturity of Prognos, 

providing us information about the capabilities of the application. This will be addressed in the 

second Chapter ‘System description’ with the following research questions:  

1. What is the current component replacement policy?  

a. Which stakeholders are involved with non-routine component replacements and 

what are their interests?  

b. Which process steps are involved with component replacement? 

c. What is the performance of the current component replacement policy?   

2. What is Prognos and what are the capabilities of the application? 

a. Which components are included in the application?  

b. What does the application look like? 

c. What cost reduction is expected? 

After we have described all relevant aspects of the system, we perform a literature study to search 

for studies related to PdM (implementation). Based on knowledge from literature, a solution can 

be designed for our research problem. Chapter 3 is a literature review and answers the third 

question: 

3. What can we learn from related studies, when we want to improve the component 

replacement policy with predictive maintenance? 

a. What are the risks and opportunities related to predictive maintenance?  

b. Which aspects should we focus on when designing a predictive replacement policy? 

c. Which method is suitable to compare policies in our research?  

In Chapter 4 predictive component replacement policies are designed that use Prognos 

information in order to reduce repair and spare part cost. The chapter proposes potential 

solutions and the fourth research question is addressed:  

4. How should predictive component replacement policies be designed for k-out-of-N systems, 

that capitalize on repair and spare part benefits?  

In Chapter 5, a model is constructed for a case study of one of the components within Prognos’ 

scope. The model should represent the system described in Chapter 2 and be able to analyse the 

performance of the designed policies from Chapter 4. For this purpose, all input factors have to 

be determined as well as the scope and level of detail of the model. The corresponding research 

questions is: 

5. How should we construct a model that is able to test the impact of predictive component 

replacement policies for k-out-of-N systems? 

a. How can we abstract a conceptual model from the system description? 

b. What does the model design look like?  

c. How can we use the model to find the best solution? 

The next step is to implement the model in software and analyse the results. Model validation is 

included in this chapter and various experiments are executed in order to evaluate the impact of 

certain factors on cost. This experimental study and its numerical results will be discussed in this 

Chapter ‘Results’ and has the corresponding research questions: 

6. What is the expected performance of the predictive replacement policies, when they are 

applied to a 787 component at KLM E&M? 

a. Which policy has the best performance?  
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b. What is the required performance of Prognos’ prediction models?  

7. What are the benefits and drawbacks of using a predictive replacement policy at KLM?  

Chapter 7 ‘Implementation’ is the last chapter that answers research questions, namely:  

8. How should KLM E&M implement predictive maintenance? 

Chapter 8 includes a discussion about the results and Chapter 9 answers the main research 

question, including final conclusions and recommendations. Figure 5 is a representation of the 

research approach in chapters 2-7 (blue blocks) and the corresponding research questions 

(yellow blocks). 

  

Figure 5: Research approach 
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2 SYSTEM DESCRIPTION 
The first two research questions will be addressed in this chapter: 

1. What is the current component replacement policy?  

a. Which stakeholders are involved with non-routine component replacements and 

what are their interests?  

b. Which process steps are involved with component replacement? 

c. What is the performance of the current component replacement policy?   
2. What is Prognos and what are the capabilities of the application? 

a. Which components are included in the application?  

b. What does the application look like? 

c. What cost reduction is expected? 

The aim of this chapter to analyse the context at KLM E&M and to identify all relevant aspects 

involved with corrective component replacement. The first section describes the current 

situation, including an introduction of the stakeholders, a description of the process flow and a 

description of Prognos.  

The second section describes current performance of the component replacement process and 

Prognos related performance measures. Section 2.3 is a conclusion of this chapter. 

2.1 CURRENT SITUATION 

This section describes the process for corrective component replacement. Therefore, this 

excludes all planned maintenance activities, resulting from preventive maintenance. These 

planned maintenance activities are performed during letter checks 6  at the base, at a 

predetermined time. This mid-term and long-term planning of maintenance within letter checks 

is not within the scope of this research.  

2.1.1 Direct stakeholders 

There are multiple stakeholders involved with corrective component replacement process. The 

most important ones are introduced. 

Line maintenance – At Schiphol and many other airports around the globe, AFI KLM E&M 

provides line maintenance services. Maintenance staff perform inspections, replacements, 

refuelling and troubleshooting between flights. A ground mechanic is responsible for executing 

all required actions  to ensure safety. If a complaint is deferred, the Maintenance Control Centre 

(MCC) plans the activity.  

Maintenance Control Centre (MCC) – The MCC is, together with line maintenance, responsible 

for planning and preparing corrective maintenance activities. Corrective maintenance can be 

planned within the available time window according to MEL. In addition, the MCC provides 

technical advice to line maintenance and pilots. Technical specialists from the MCC monitor 

aircraft’s technical status via health monitoring systems, such as Aircraft Health Monitoring 

(AHM). Their goal is to minimise technical delays during flight operations and optimise reliability. 

Thus, line maintenance primarily executes corrective maintenance while the MCC plans the 

activities and provides technical support.  

Repair shop – KLM E&M has two repair shop divisions with numerous repair shops, both part of 

Component Services (CS). The Plant Shop MRO repairs hydraulics, low/high frequency 

                                                                 
6 Letter checks are periodic inspections that are performed at the base of the MRO organisation. Light, more 
frequent checks are indicated with A and B, while C and D are considered to contain more heavier maintenance.   
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components, computers, indicators, air data systems and galleys. The Plant Shop Hub handles 

mechanical systems, such as panels, toilets, aircraft kitchens, flight controls, doors, plastic/carbon 

fibre parts, wheels, brakes, chairs and emergency equipment. If KLM does not have the capability 

to repair a certain part, the repair activity is outsourced to a vendor.  

2.1.2 Indirect stakeholders 

Big Data, Analytics & Reliability (BAR) team – Three engineers of the BAR team are working 

on the development of Prognos for 787 components. The product owner of Prognos is responsible 

for the development and performance of the application. The manager of the BAR team is 

responsible for defining the strategic purpose related to PdM (mission, vision and objectives 

related to becoming a data-driven organisation) and the coordination of the implementation of 

Prognos.  

Component Availability – Each type of aircraft has its own ‘availability team’, responsible for 

spare part availability and consisting of an operations team and a support team. The operations 

team is responsible for operational control, making sure repair TATs are met. This means they 

are responsible for contact with the airlines and the suppliers and solve operational disruptions. 

TAT’s are contracted in service contracts with customers and vendors. For most components, the 

TAT corresponds with 14 calendar days and it varies per supplier and component whether these 

agreements are met.  

Supply chain specialists from the support team are responsible for long-term decisions, such as 

determining spare part levels and new sales cases. Together, the component availability team is 

responsible for the coordination of component flows and their timely availability. This is for all 

airlines included in the pool (so not only the KLM fleet). Currently this consists of approximately 

160 aircraft (787) from 19 airlines around the globe. This number is growing rapidly. 

2.1.3 Stakeholder’s interests 

Stakeholders within the organisation can have conflicting interests regarding component 

replacement. These differences are easy to explain but difficult to manage. To create a better 

understanding of the various objectives, Table 3 provides an overview of stakeholder’s interests. 

Table 3: (conflicting) interests among stakeholders 

Stakeholder Objective (regarding component replacement) 

Line maintenance Minimise technical delays while minimizing line maintenance effort 

MCC Maximise aircraft availability and reliability, by responding effectively on 
health monitoring information and minimizing operational disruptions  

Repair shop Maximise reliability (by performing good quality repairs), deliver on time 

BAR team Minimise overall cost by providing support with data-driven optimisation 
tools 

Component Availability Minimise spare part cost and maximise service level 

 

All these aspects have to be taken into account when one wants to improve the replacement 

policy. 
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2.1.4 Corrective maintenance process flow at KLM 

This section describes the current process involved with 

corrective component replacement at KLM as shown in Figure 

6 (without PdM).  

 

Process flow exclusively for KLM corrective replacements 

(non-routine) – The process starts with a trigger from one of 

the aircraft health monitoring systems (such as AHM) or a 

technical complaint from the pilot. The MCC or ground 

technician receives and evaluates the trigger by consulting all 

information systems. In between flights, a technician tests the 

system. If the fault message does not appear again, the process 

ends and the alert is labelled as a false alarm.  

If the alert is still present after testing, the technician performs 

a system reset. If this doesn’t solve the problem, 

troubleshooting has to be performed to find the cause of the 

error. If replacement is not required right away, the action is 

usually postponed and placed on the ‘Deferred Defect’ (DD) 

list. The MCC creates maintenance orders for the parts on this 

list and plans the activities at a later time. If the replacement 

cannot be deferred, it can lead to an AOG. The MCC aims to 

solve MEL items as soon as possible, however, due to scarcity 

of some 787 components, current practice for these parts is 

that replacements are postponed to a moment close to the due 

date.  

In order to perform component replacement, the execution 

needs to be planned and a spare needs to be supplied. It 

depends on the component and the required equipment 

whether it is possible to remove a component at the line. Some 

components can only be removed at the base. CS is responsible 

for on time spare delivery. After replacing the component with 

a spare, the defective component will be sent to the repair shop 

and put back into the serviceable inventory once it is repaired.  

 

Impact of PdM on process – The system test, reset and 

troubleshooting (yellow boxes) will not be part of the process 

flow with (solely) Prognos alerts, since the test limits are not 

adjusted to Prognos sensitivity. That means, a component that 

was replaced based on a Prognos alert will pass a system test 

(in principle), since it is still within the bounds of the quality 

limits.  

 

Spare supply and repair procedure – The standard logistic 

process of component replacement is best described according 

to Figure 7. This process is the same for all (pool) customers of 

KLM E&M. The process starts with a customer order. If a spare 

is available at the Logistic Centre (LC) it is picked and shipped. 

If there is no spare available, KLM can decide to lease or 

Figure 6: Process for component replacement 
(without prognostics) 
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exchange a part. KLM has multiple partners worldwide that could deliver a lease spare, however 

these components are costly and not always available. If a part is leased, common practice is to 

exchange the part with another service part once there is one available. So, a random other spare 

can be returned for the outstanding lease part: it does not have to be the same component. The 

price of exchanging a component is 10% of the component price on average. Leasing of 

components is an exception rather than regularity.  

After shipping, the serviceable unit is installed into the aircraft. The unserviceable unit is shipped 

to the LC. A repair order is created and the part is sent to an internal or external repair shop. After 

repair the part is received in serviceable condition at the LC. New spares are ordered by supply 

chain specialists, based on expected demand and expected component performance.  

 
Figure 7: Logistic process related to component replacement 

2.1.5 Prognos 

Together with data engineers and data scientist, the BAR team develops algorithms to indicate 

component failures. It depends per component which parameters indicate failure modes. An 

example is the increase of temperature in a component used for cooling, or high power usage due 

to degradation in the filter. Another example is an anomaly in the oscillation pattern of a motor 

controller, indicating a certain failure mode. Most failure modes can be detected with Prognos. 

Table 4 shows the LRUs that are implemented in Prognos’ Graphical User Interface (GUI) in 2018. 

Users of the GUI navigate between all the tails (aircraft) of the fleet and per tail an overview is 

presented of current and historic performance of the LRU’s on that tail. 
Table 4: Systems implemented in Prognos in Q3 and Q4 2018 

Component (Q3) Repaired by QPA7 Criticality (MEL restrictions) 

747 Electrical Generator (EG) KLM E&M 4 Solve within 3 days if 1-out-of-4 are failed 

787 Cooling System Unit (CSU) OEM 4 Solve within 10 days if 2-out-of-4 are failed 

787 CSU Motor Controller (CSU MC) AFI/OEM 4 Solve within 10 days if 2-out-of-4 are failed 

787 Air Compressor Epcor8 4 Solve within 10 days if 1-out-of-4 are failed 

                                                                 
7 Quantity per aircraft 
8 Epcor is a component overhaul and repair company, part of the KLM Group.  

Figure 8: Process of prediction model construction 
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In a system’s configuration diagram in the GUI, failed 

components are indicated with a red colour and 

predictive alerts are indicated with orange. Figure 9 

shows a screenshot from the GUI of Prognos with a 

configuration diagram of a component with a 

predictive alert on the compressor. The time window 

for predictive alerts is aligned with the planning 

window for scheduling replacements: 10 days in 

advance of an expected failure an alert is triggered. 

This increases the planning flexibility of the MCC and 

thereby helps to reduce Unplanned Ground Time 

(UGT) and AOGs. Ten days after an alert the component 

will fail and move to the red zone. 

As an example, Figure 10 provides a (fictional) relation between the accuracy of the predictions 

and the prediction horizon. The maximum PH in the figure is 50 days. Currently, Prognos’ 

algorithms are set such that a predictive alert is triggered (at least) 10 days before expected 

failure, indicated with the yellow X on the right. So, at that point the icon in the GUI corresponding 

to the observed component turns orange, 

as Figure 9 illustrated as example. This 10-

day interval was chosen by the MCC, as it 

would give them more planning flexibility. 

A larger interval would be ineffective for 

them since their planning horizon for 

corrective replacements only considers 

short term. In that case, a larger PH will 

only have the negative effect of RUL 

reduction (if potential repair savings are 

not considered). If the graph in the figure 

were true, it would also be possible to 

trigger alerts sooner: for instance 30 days 

in advance with >85% accuracy. Prognos’ 

developers are not yet able to provide a curve such as Figure 10, however they can provide an 

estimation of the accuracy of their predictions at various time intervals. This estimation provided 

by the BAR team, based on extensive research, is assumed to be correct.  

Larger prediction horizons might provide additional benefits for KLM E&M that are not utilised 

at this moment. If one also considers repair savings and spare part decisions, this threshold might 

be more efficient when it is set at another level. This could enable the avoidance of expensive 

repairs and the extra flexibility in spare part planning could be used to gain efficiency and reduce 

inventory. This study aims to provide a recommendation about the timing of alerts, while 

considering these repair and spare savings, such that threshold values in Prognos can be adjusted 

to the right requirements.  

Besides a fleet overview and configuration diagrams, Prognos provides historical performance 

data per tail. The algorithms ‘behind’ the GUI generate graphs. Based on these graphs, an 

algorithm can generate an alert, as shown in Figure 9. Thresholds can be varied according to the 

preferred PH. The definitions of the thresholds vary per component and are defined by the BAR 

team and other stakeholders, such that an alert is triggered at the right time and with acceptable 
accuracy. Anomalies in the performance graphs (clearly detectable on the components with the 

Figure 9: Configuration diagram with a predictive 
alert 

Figure 10: Example of the relation between accuracy and PH (fictional) 
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red lines on the PH-BHC9 in Figure 11) can exceed threshold values which results in alerts or 

failure indications in the configuration diagrams and fleet overview.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In these graphs, data of a system with four components is plotted over time: each component 

represents a colour. Each dot in the graph represents a summary of a flight and the value on the 

y-axis represents the fraction of time within which the component had a temperature above a 

certain threshold. So if a red dot is plotted on [2018-07, 0.6], it means that component number 1 

had a temperature above the threshold value for 60% during a flight in July 2018. The data models 

account for all kinds of noise and interaction effects. These algorithms have proven to be very 

effective: so far there have been no false alerts10 at all.  

2.2 PERFORMANCE MEASUREMENT 

To create more insight in our system and its characteristics, we elaborate on the performance 

related to component replacements and Prognos. From Section 2.1.3 we know that there are 

multiple objectives related to component replacements, such as the minimization of maintenance 

effort, maximization of aircraft availability, maximise reliability, maximise service levels and 

minimise cost. Performance can be measured in terms of Key Performance Indicators (KPI’s). The 

                                                                 
9 These five letter codes are aircraft registrations. PH represents the Dutch registration prefix. The B is for Boeing 
and the H indicates that the aircraft is a 787 model. 
10 A false alert or false alarm is a wrong prediction: the prediction value is ‘failure’, but the actual value is 
‘no failure’.  

Figure 11: Component behaviour graphs per tail 
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most important KPI’s related to this study are costs and service level. Repair- and spare cost cover 

the largest fraction of total maintenance cost and the service level KPI is expressed as the fraction 

of on time deliveries. High service levels are required to ensure high fleet availability.  

In Figure 6 a flowchart of component replacements was presented. The performance and cost 

related to this process depends on a number of factors. In this section the most relevant are 

highlighted. The steps indicated with yellow in the figure are out of scope, as these are considered 

irrelevant to PdM implementation at this moment. 

Regarding the KPI’s, the ‘time on wing’, ‘time off wing’ and service level mainly determine the 

costs related to spare parts. These costs, together with repair costs, are considered to have the 

most impact on total cost. In the next subsections this is explained in further detail. 

2.2.1 Time on wing 

A component on wing degrades while being operational and fails eventually. A number of factors 

determine when this will happen, for instance its operating environment, component quality and 

number of flight cycles. The most important performance measure at KLM regarding this process 

is the Mean Time Between Removal, which basically measures the average operational life cycle 

of a component (see also Figure 1). This measure determines the expected number of 

replacements on the fleet to a large extent. The formula used at KLM to estimate the total number 

of replacements on a fleet, is given as follows:  

 

𝑛𝑜. 𝑜𝑓 𝑟𝑒𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡𝑠 =  
𝑓𝑙𝑒𝑒𝑡 𝑠𝑖𝑧𝑒 ∗ 𝑄𝑃𝐴 ∗ 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑓𝑙𝑖𝑔ℎ𝑡 ℎ𝑜𝑢𝑟𝑠 𝑝𝑒𝑟 𝑦𝑒𝑎𝑟

𝑀𝑇𝐵𝑅
 

 

For non-redundant systems with short rectification intervals, the MTBR ≈ MTTF. In that case a 

failure will result in replacement almost right away. For 𝑘-out-of-𝑁 systems, the MTTF and MTBR 
can vary: the MTTF is a characteristic of a component and the MTBR is the result of a policy. For 

instance, in a 2-out-of-4 system one is obliged to replace components with less than 2 operational 

components (so at least 3 failures). However, one could also decide to preventively replace 

components when the system has 1 or 2 defective components. Here, preventively refers to 

‘before MEL violation’. In the latter case, the MTBR will be shorter as when replacements are 

postponed until there are at least 3 failures (MEL violation)11. The MTTF is unchanged.  

One of the main counter arguments for the implementation of PdM is that it will reduce the MTBR, 

which results in a larger number of replacements. This is expected to result in higher spare levels, 

according to the defenders of this argument. 

The given example illustrates the impact of replacement policies on the MTBR. From the formula 

it can be concluded that the MTBR is the most determining factor in the number of replacements, 

as the fleet size, quantity per aircraft and average flight hours per year are given. The number of 

replacements impacts the demand for spare parts. So, the replacement policy influences the 

demand for spares through the MTBR in 𝑘-out-of-𝑁 systems. 

2.2.2 Time off wing 

Once component replacement is required, the component needs to be taken off the aircraft and 

sent to repair. This requires maintenance time, shipping time and repair time. In this research 

only repair time is considered. Replacement actions take up to half a day, which is negligible. 

Shipping times from and to customers can take up to weeks (when waiting times are included), 

however, for KLM’s fleet shipping is always performed within a day. Therefore, in this research 

the time off wing is set as the repair TAT. For repair shops, this TAT is contracted and set to 14 

                                                                 
11 In Figure 16 (Chapter 4) this is the case for policy 2. 
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days in most of the cases. This contracted time is not always met and can include high variability 

and uncertainty.   

The TAT is the most important measure in determining the ‘average number in repair’, or Work 

In Progess (WIP). This WIP determines, together with the number of replacements, the demand 

for spare parts since spares are required to fulfil demand during repair lead time. This relation is 

shown in the formula below, also known as Little’s Law. The formula is later used to estimate 

spare demand, which is explained further in the next subsection. 

 

𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑖𝑛 𝑟𝑒𝑝𝑎𝑖𝑟 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑒𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡𝑠 ∗
𝑅𝑒𝑝𝑎𝑖𝑟 𝑇𝐴𝑇 (+𝑠ℎ𝑖𝑝𝑝𝑖𝑛𝑔 𝑡𝑖𝑚𝑒𝑠)

365 𝑑𝑎𝑦𝑠
 

2.2.3 Service level 

To maintain high fleet availability, the service level of spare part delivery has to be high. At KLM, 

the target service level is set at 95% for most the components with MEL category C. This means 

that 95% of the components have to be delivered on time. There is no KPI related to the lead time. 

To estimate spare levels, the formula below is used:  

 

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑝𝑎𝑟𝑒𝑠 𝑛𝑒𝑒𝑑𝑒𝑑 =  𝐹𝑁𝑜𝑟𝑚𝑎𝑙(𝜇,𝜎2)
−1 (𝑠𝑒𝑟𝑣𝑖𝑐𝑒 𝑙𝑒𝑣𝑒𝑙) 

 

Where 𝜇 represents the average number of spares in repair and 𝜎2 is the variance of the number 

of spares in repair. It is assumed that this number can be approximated with a Normal 

distribution. Therefore, the inverse Normal distribution at the service level will provide an 

estimation of the required spares. At KLM, the formula for variance is given as:  

𝜎2 = √𝜇 

This formula is used based on historic research at KLM. It is unknown whether this Normal 

approximation and approximation for the variance provide reasonable estimates. 

New spares should be delivered within 7 days, however due to scarcity issues with 787 

components, lead times can run up to months. If on-hand inventory cannot meet spare demand, 

KLM has the option to lease components. A lease component costs 10% of the purchasing price 

on average, and can be exchanged with a random other spare part when one becomes available. 

Lease units can be sourced from all over the world; from other airlines but also at MRO 

competitors. The lead time of lease parts depend on the urgency of the shipment (1 – 10 days).  

2.2.4 Repair cost 

Repair cost can vary greatly. Many repairs have no cost as they are performed within the warranty 

period. When a component enters the repair shop, a test can result in No Failure Found, a minor 

repair or an overhaul (major repair). Cost of repairs are mainly determined by the cost of labour 

and piece parts. This research considers fixed cost related to minor and major repairs. Warranty 

periods are not taken into account. 

Current estimations of Prognos’ benefits greatly depend on repair savings.  Total expected savings 

on KLM 787 fleet in 2019-2020 due to Prognos are estimated to be more than 𝑥 million dollar12. 

This is based on the top 10 systems that are included in the (future) scope of Prognos. It is 

estimated that 1/3 of the delay costs (out of scope in this research) can be saved and that the 

repair costs are reduced with 1/6. It is unknown how accurate these estimations are. Historical 

data from 2016-2018 was used as input for the calculation. Although the benefit calculation 

provides a first estimate for potential savings, it is a rough estimate. Figure 12 illustrates the ratio 

                                                                 
12 This was calculated medio November 2018 by the product owner of Prognos for the value case of 2018-2020. 
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of potential savings between the two categories, when delay and repair cost are reduced with 

0.333% and 0.167% respectively. The figure emphasizes the impact of repair savings with PdM. 

 
 

2.3 CONCLUSION 

This chapter provided a system description: it discussed the process related to corrective 

component replacements and reviewed the factors that have great impact on cost and service 

level. From Section 2.2 we can conclude that the formulas used to estimate spare and repair cost, 

are simplified. To estimate the impact of PdM on spare demand, a more detailed analysis of the 

effects might be required. From this section we have learned that the impact of a policy on the 

MTBR plays an important role in spare part management. A reduced MTBR will result in more 

frequent replacements and increase inventory, however, PdM might also be able to reduce the 

variance of the average number of components in repair by improved planning. The latter will 

have a positive impact on inventory by reducing spare levels.  

In this chapter we also created more insight in the capabilities of Prognos. The performance can 

be evaluated in terms of the accuracy of predictions and the prediction horizon. Currently, KLM 

has chosen to trigger alerts 10 days before expected failure. However, for some components, this 

does not correspond with the maximum PH. In Appendix A, a table is given with all values for the 

KPI’s related to component replacement of the CSU, one of the components in Prognos’ scope. In 

this example the maximum PH is three times larger than the current PH of 10 days.  

At this point we have acquired, partially by assumption, all information about the system related 

to our problem introduced in Chapter 1. The remaining tasks are to design a predictive 

replacement policy that reduces spare part and repair cost, while satisfying constraints regarding 

service level and aircraft availability, and to find a method to test the impact of this predictive 

policy on various organisational aspects. In the next chapter a literature review is performed to 

search for studies that helps us with the design of this policy and method.  

  

78%

22%

DISTRIBUTION EXPECTED SAVINGS 2019-2020

Repair savings Delay savings

Figure 12: Distribution expected savings Prognos 2019-2020 (for the 787) 
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3 LITERATURE REVIEW 
In order to analyse, model and optimise maintenance processes related to PdM, we search for 

related studies in literature. This will address the third research question:  

3. What can we learn from related studies, when we want to improve the component 

replacement policy with predictive maintenance? 

a. What are the risks and opportunities related to predictive maintenance?  

b. Which aspects should we focus on when designing a predictive replacement policy? 

c. Which method is suitable to compare policies in our research?  

Section 3.1 discusses the risks and benefits related to the use of prognostics in maintenance. In 

Section 3.2 relevant factors are identified that determine the potential benefit of PdM. In section 

3.3 a model is selected for our research and 3.4 is a conclusion of the chapter.  

3.1 PROGNOSTICS IN MAINTENANCE: POTENTIAL RISKS AND BENEFITS 

Application of PdM or Prognostic Health Management (PHM) can either (significantly) reduce 

operational costs, or result in a less economic situation when the investment costs of the PHM 

technology are considered. In literature both situations are present (Wu, Jia, Lei, & Wang, 2013).  

Although there is an excessive amount of literature about health monitoring systems, prognostics, 

PdM, and combined optimisation of maintenance, repair or spares, relatively little has been 

published on the interaction between (predictive) maintenance, spares and repairs (de Smidt-

Destombes, van der Heijden, & van Harten, 2009). Most PdM applications in literature are based 

on over-idealistic experimental data that fails to represent real-world challenges (Vinck, 2018). 

Therefore, PdM is not very well understood in practice. This section discusses the risks and 

opportunities related to the use of prognostics in maintenance. We aim to identify important 

factors related to the design of a predictive replacement policy, so that we select the right 

variables and parameters to include in our analysis. 

3.1.1 Risks 

Complexity – The lack of suitable reference cases in this early stage of the PdM life cycle, makes 

it hard for companies to construct solid business cases (Price Waterhouse Coopers and 

Mainnovation, 2017). The integral optimisation of maintenance, spares and repairs is not 

straightforward, especially when the civil aviation market is concerned and one also has to deal 

with the interaction with flight scheduling and other complexity issues such as component 

redundancy (𝑘-out-of-𝑁 systems), legal matters, high variabilities and complex failure modes. 

Too many simplifying assumptions to deal with complexity can cause difficulties in the derivation 

of valuable conclusions or create misleading results. 

Uncertainty – An essential part for the use of a maintenance optimisation model, is the true 

representation of relevant deterioration and failure mechanisms. Effective and efficient 

maintenance actions can only be taken if this holds (Verma, Srividya, & Gaonkar, 2007). A critical 

element of any prognostic system is the assessment of the prediction uncertainties, which is 

required to allow the conversion of remaining life estimates into actionable decisions. Accuracy, 

the degree of closeness of a predictive estimate to its actual value, represents one of the most 

important factors in determining the usefulness of prediction (Roemer, Byington, Kacprzynski, 

Vachtsevanos, & Goebel, 2011). A study from Hölzel et al., found that many factors, such as 

operational constraints, current maintenance concepts and the influence of a part on safety and 

reliability of the aircraft (criticality), influence whether the implementation of PHM for a specific 

system may be beneficial in the end (Hölzel N. , Gollnick, Schilling, & Neuheuser, 2012).  
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3.1.2 Opportunities 

PHM and PdM have become more and more appealing in aviation business. Logistic optimisation, 

asset availability maximization and reduction of maintenance costs are among the benefits 

(Nicchiotti & Rüegg, 2018). A drawback of all proactive strategies is the waste of RUL due to early 

removal. With PdM, this waste can be minimised due to sophisticated information about the RUL. 

Prognostic information enables predictive logistics, which can improve the planning, scheduling, 

and control of activities in the supply chain (Kim, An, & Choi, 2016).  

 
Figure 13: Visualisation of impact of predictive maintenance in aircraft operations (Kahlert, 2017) 

The optimisation opportunities related to the aircraft operation are visualized in Figure 13. The 

benefit from a prognostic fault indication on flight operations can be derived from the figure. 

Regarding maintenance operations, resource planning and preparing activities can also be 

performed in advance.  

In literature all kinds of optimisation techniques are designed based on Advance Demand 

Information (ADI), such as revenue management (pricing, reservation policies) and capacity 

control (inventory management). Predictive signals about component failures can be considered 

as a demand signal (or ADI) for spare parts, as failures generate demand for spares. This can be 

used to optimise spare parts supply decisions (Topan, Tan, & van Houtum, 2018). Hariharan and 

Zipkin (1995) also employ early warnings for demand, to improve performance of basic inventory 

models. Demand lead times (time between a customer order and an order due date) are, in a 

precise sense, the opposite of supply lead times. That is, the effect of a demand lead time on 

overall system performance is precisely the same as corresponding reduction in the supply lead 

time (Hariharan & Zipkin, 1995). A predictive alert can be interpreted as an early warning for 

demand, where the prediction horizon corresponds with the demand lead time. Although the 

inventory policy at KLM E&M does not correspond with one of the basic inventory models 

mentioned in Hariharan & Zipkin’s paper, it motivates to explore the benefits of demand lead 

times in inventory management at KLM. 

3.2 IMPACT OF PREDICTIVE MAINTENANCE 

From the previous section we can identify relevant factors that determine the potential benefit of 

PdM. Regarding the risk of complexity related to maintenance operations, one should aim to make 

the right trade-off between complexity and variability. Variability can be reduced by planning, 

which itself introduces complexity.  
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Related to uncertainty, the prediction performance determines whether maintenance decisions 

are effective: false predictions lead to wrong decisions. The operational context in which PdM 

is applied, including constraints and current maintenance concepts, is also an important factor. 

The extent to which a component influences this operational environment (its impact on 

reliability) is expressed as component criticality (which is regularly reduced in aviation with 

redundant 𝑘-out-of-𝑁 systems). Failure prevention of critical components yield higher benefits 

then non-critical components, which makes it an essential factor to consider when optimising 

policies. These four factors marked with bold are considered to determine the impact of a 

predictive maintenance policy to a large extent and are discussed in more detail in the next 

sections. 

3.2.1 Planning 

Planning is to create and cleverly use flexibility to deal with variability in demand and supply 

(Schutten & Hans, 2017). The maintenance supply chain is a complex system involving 

uncertainty and variability. Mathematically speaking, this corresponds to a complex stochastic 

system so that a common deterministic approach for planning and managing the system can be 

expected to be inadequate (Shahani, 1981).  

Inventory management context – From Chapter 2 we know that KLM uses a rather basic 

approach with average lead times and average long-term demand to indicate spare levels. Stock 

levels are based on the average WIP level and a safety stock to account for variation. This long-

term approach might not account for short term (demand) variability. The uncertainty and 

variability of the timing and content of both the information flow and the component flow imply 

uncertain planning and, possibly, increased costs, stockouts and delays (Gudum, 2002). More 

general, it may hamper performance output of the supply chain (Patil, Shrotri, & Dandekar, 2012). 

Therefore, PdM can realise supply chain benefits by reducing uncertainty and variability. The 

additional information realised by PdM regarding upcoming demand (ADI), can support this 

reduction of uncertainty and variability.  

In addition to the reduction of variability and uncertainty, the repair TAT of component could 

also be reduced with PdM when major repairs are avoided. According to Little’s law (WIP = 

throughput * flow time), a reduction of the repair TAT (flow time) would reduce the repair 

inventory and therefore the (safety) stocks for spares (Little & Graves, 2008). This can be 

identified as a major benefit. The downside of early removal to avoid major repairs is an increase 

in throughput due to a decrease in operational time on the aircraft. 

3.2.2 Prediction performance  

The most common way to express prediction uncertainties is a confusion matrix. A confusion 

matrix may be defined as a table of conditional probabilities, showing the proportion of instances 

in which the prediction indicated 𝑥𝑝 while the actual value was 𝑋𝑎 (𝑥𝑝, 𝑋𝑎  = positive, negative) 

(Clarke, 1957). 

Table 5: Confusion matrix 

 
Predicted Class 

Actual 
Class 

 
Positive Negative Total 

Positive TP FN P 

Negative FP TN N 

Total P' N' P+N 

 

Based on the confusion matrix various performance indicators can be derived. In a spare part 

inventory context, Topan et al. identify precision and sensitivity as the most important measures 
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together with the time interval between the prediction signal and the component failure, which 

corresponds with the RUL estimation. Precision is expressed as the proportion of True Positive 

(TP) to sum of TP and False Positive (FP) and sensitivity is expressed as the proportion of TP to 

sum of TP and False Negative (FN) (Topan, Tan, & van Houtum, 2018):  

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
                             𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

3.2.3 Operational context 

If PHM is applied to systems with a preventive maintenance strategy, it will lead to a reduction of 

waste of RUL and overall maintenance efforts (Hölzel N. , Gollnick, Schilling, & Neuheuser, 2012). 

This can also affect spare part pooling. Within a corrective maintenance strategy, PdM can reduce 

the number delays and repair cost, provided that an organisation is able to respond on predictive 

alerts (orders) on time. The speed of the operation of transferring information is vital in order for 

PdM to be as effective as possible as any delay in this operation will lead to the failure developing 
further (Carmen Carnero, 2006). Other more general aspects of the operational context, such as 

all kinds of cost factors, can determine the impact of a predictive policy to a large extent. 

3.2.4 Criticality 

A component’s criticality (impact on reliability) determines the impact on operational benefits to 

a large extent, since downtime is one of the most important cost factors. Critical components are 

often redundant, such that a single component failure does not result in down time. In that case, 

the system is operational if 𝑘-out-of-𝑁 components are operational. In literature we find some 

models that optimise maintenance on 𝑘-out-of-𝑁 systems (de Smidt-Destombes, van der Heijden, 

& van Harten, 2006) (de Smidt-Destombes, van der Heijden, & van Harten, 2009). In fact, the 

model objective from paper of de Smidt-Destombes et al. from 2006 has quite a few similarities 

with our problem. They consider a model for the trade-off between spare part inventory, repair 

capacity and maintenance policy for a 𝑘-out-of-𝑁 system under a condition based maintenance 

(CBM) policy with detectable wear-out. However, they consider a single system (our study 

involves multiple aircraft), variable repair capacity (ours variable repair cost) and optimise 

availability (instead of cost minimization).  

The MEL category is related to the criticality of a component and is an important aspect in this 

research. Critical components have small MEL RI’s; less critical components have large RI’s. Small 

intervals result in little planning flexibility and therefore little opportunity to deal with variability.  

3.3 SYSTEM MODELLING 

We aim to create a model to (i) create more insight in system dynamics, and (ii) test possible 

replacement strategies. The model should be able to consider all four aspects mentioned in the 

previous section (planning, prediction performance, operational context and criticality) while 

evaluating the various policies.  

3.3.1 Model selection 

Based on system complexity and the amount of time available in the research, a suitable model 

can be selected for our study. Figure 14 categorizes methods to evaluate a system. In our case, a 

physical model is not applicable due to time constraints, costs, regulations and safety issues. 

Therefore, we search for a mathematical solution.  
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Figure 14: Methods to analyse a system (Law & Kelton, Simulation Modelling and Analysis, 1991) 

Maintenance systems are often evaluated with the help of simulation. Duffuaa et al. mention 

numerous studies that apply simulation in a maintenance environment and provide a generic 

conceptual simulation model for maintenance systems (Duffuaa, Ben-Daya, Al-Sultan, & Andijani, 

2001). In more recent studies, related to (the cost-benefit analysis of) PHM on aircraft, we find 

discrete-event simulation as a frequently used method to model maintenance activities (Feldman, 

Jazouli, & Sandborn, 2009) (Iyer, Goebel, & Bonissone, 2006) (Hölzel N. , Gollnick, Schilling, & 

Neuheuser, 2012) (Hölzel, Schilling, & Gollnick, 2014) (Hölzel & Gollnick, 2015).  

We find analytical models based on Markov chains that relate to the scheduling of maintenance 

intervals (Baars, 2018) (Crespo Márquez, 2009), but do not include spare part and repair 

planning improvement. There are spare part inventory models based on Markov chains that are 

somewhat relevant to this study, such as the multi-item, single site optimisation model with lost 

sales. This last model aims to minimise expected relevant cost per year, while attaining a certain 

target waiting time service level (van der Heijden, 2017). However, it does not incorporate early 

demand signals, 𝑘-out-of-𝑁 systems or exchange lease parts, which are all relevant aspects in this 

research.  

Regarding the optimisation of spare parts in a system with (uncertain) ADI, Topan et al. use a 

dynamic programming recursion in order to find optimal order- and return levels for a single-

item, single-location, period-review inventory system. De Smidt-Destombes et al. use both an 
analytical solution and a discrete-event simulation to find model solutions (de Smidt-Destombes, 

van der Heijden, & van Harten, 2006).  

Simulation can be used in order to understand system behaviour or to evaluate various strategies 

for the operation of the system (Shannon, 1975). In this study we aim to understand system 

behaviour and we want to test optimisation policies based on PdM information. We find 

simulation as the most appropriate method to apply in this research.  

3.3.2 Simulation model design 

There are multiple types of simulation, such as discrete-event simulation (DES) and continuous 

simulation. A. M. Law is an expert in simulation modelling, who distinguishes simulation models 

based on three criteria (Law, 2014):  

- Static versus dynamic. This refers to the time dimension. Static models represent a fixed 

point in time whereas dynamic models show system behaviour over a time horizon; 
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- Deterministic versus stochastic. Deterministic models do not include any randomness, 

stochastic models do; 

- Discrete versus continuous. In discrete models, the system state changes in discrete 

points in time and in continuous models this happens continuously.  

For the purpose of this research we select dynamic stochastic DES as the most appropriate 

method to evaluate the system. DES refers to a modelling technique where only changes in system 

states are represented. Essentially, it creates a queue of events that affect the system state and 

arranges them based on their timings (Alrabghi & Tiwari, 2016). 

A dynamic model is more suitable than a static model since we want to evaluate the impact of 

PdM over time. Failure occurrence, failure triggers and processing times have a stochastic nature, 

which makes a stochastic model the right choice. Finally, we select a discrete model over a 

continuous model, because our system’s state changes at a particular point in time and then 

remains in that state, until a new event occurs (e.g. a repair is completed or an alert is triggered). 

3.4 CONCLUSION 

In this chapter we searched for relevant studies regarding the improvement of component 

replacements with PdM, when considering repair and spare part cost as the most important cost 

saving factors. From Chapter 2 (Section 2.2.4) we learned that early removal can result in a 

significant reduction of repair cost. In literature we identify variability and uncertainty reduction, 

for instance by using ADI in spare part management, as another interesting potential benefit of 

PdM. To summarize, Figure 15 was constructed as a conceptual framework for this study, related 

to predictive component replacements compared to corrective component replacements. The 

predictive component replacement policies that will be designed in the next chapter should 

leverage on the characteristics explained in the figure, namely:  

- Use the bigger time frame to plan replacements (prediction horizon or demand lead time), 

to reduce variability in repair inflow. Thereby, spare part levels could reduce; 

- Avoid major repairs with long repair lead times and high cost;  

- Trade-off the benefits of early removal with more frequent repairs (lower MTBR); 

Benefits and risks related to PdM are also mentioned in the figure.  

 

Figure 15: Conceptual framework  
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We could not find a study in literature that addresses the optimisation of repair- and spare part 

cost of a multi-item 𝑘 -out-of-𝑁  system with wear-out which also includes the evaluation of 

prediction uncertainties on performance. The optimisation problem at hand requires the 

development of a (dynamic) model that is able to deal with a large number of real-world 

constraints. The application task is extremely complex and requires quite some research effort 

(Bäck & Manegold, 2016) – which does not match with the scope of this thesis. However, this 

research can provide an exploratory study about replacement policy optimisation with PdM at 

KLM. Based on the conceptual framework presented in Figure 15 we can design policies that 

capitalize on the identified benefits. 

With some model simplifications and the use of simulation, one can gain valuable knowledge 

about system dynamics and the impact of different policies on this system behaviour. In this 

section, planning, prediction performance, operational context and component criticality were 

identified as important aspects to consider while evaluating policies.  

Dynamic stochastic discrete event simulation was identified as the most appropriate method to 

create insight in the dynamics of system behaviour. The simulation should experiment with 

multiple factors, such as prediction model performance and the replacement policy. 

Experimenting with the model should help us find the best policy for KLM E&M.  

In Chapter 4 the predictive component replacement policies will be designed and in Chapter 5 a 

model will be constructed to analyse the performance of these policies.  
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4 SOLUTION DESIGN 
In this chapter we design predictive component replacement policies, that are aimed are 

minimizing repair and spare part cost. The corresponding research question is:  

4. How should predictive component replacement policies be designed for k-out-of-N systems, 

that capitalize on repair and spare part benefits?  

The first section describes a general notation. After that, three policies are designed in Section 

4.2. Section 4.3 is a conclusion of the chapter. 

4.1 NOTATION 

Prior to the design of the policies, this section introduces a general notation in Table 6 that helps 

us to report the policies. All values in the table are integers. If a constraint applies to a variable, it 

is also given in the table. The notation is used throughout the remainder of the report. 
Table 6: General notation 

𝒂𝒊𝒕 Number of predictive alerts on aircraft 𝒊 at time 𝒕, 𝒊 ∈ 𝟏,… ,𝑴, 𝒕 ≥ 𝟎 

𝒇𝒊𝒕 Number of failures on aircraft 𝑖 at time 𝑡, 𝑖 ∈ 1,… ,𝑀, 𝑡 ≥ 0 

𝑴 Fleet size 

𝑵 No. of identical components in an aircraft 

𝒌 No. of operational components required for an operational system 

𝒇
𝑴𝑬𝑳

 Threshold expressed in no. of failures that violate MEL restrictions, 

𝑓𝑀𝐸𝐿 = 𝑁 − 𝑘 + 1 

𝒔𝒕 No. of spares in inventory at time 𝑡, 𝑠𝑡 ∈ 1,… , 𝑆𝑗, 𝑡 ≥ 0, 𝑗 ∈ 1,2,3,4 

𝑺𝒋 Total spares in the system (maximum inventory level) with policy 𝑗, 𝑗 ∈ 1,2,3,4 

𝒍𝒕 Number of outstanding lease components at time 𝑡. 

𝑿𝒊𝒋𝒕(𝒂𝒊𝒕, 𝒇𝒊𝒕, 𝒔𝒕) 
No. of components replaced on tail 𝑖 at time 𝑡 with policy 𝑗 in system state (𝑎𝑖𝑡 , 𝑓𝑖𝑡, 𝑠𝑡). 𝑗 ∈ 1,2,3, 
𝑡 ≥ 0 

𝑿𝒊𝟒𝐭(𝑨𝒕, 𝑭𝒕, 𝒔𝒕) No. of components replaced on tail 𝑖 at time 𝑡 with policy 4 in system state (𝐴𝑡 , 𝐹𝑡 , 𝑠𝑡) where 

𝐴𝑡 = ∑ 𝑎𝑖𝑡
𝑀
𝑖=1  and 𝐹𝑡 = ∑ 𝑓𝑖𝑡

𝑀
𝑖=1  and 𝑡 ≥ 0 

 𝑋𝑖𝑗𝑡 ≤ 𝑎𝑖 + 𝑓𝑖, ∀𝑗 ∀𝑡  (do not replace parts that are not alerted or failed) 

𝑠𝑡 = 𝑠𝑡−1 − 𝑋𝑖𝑗𝑡  (the inventory level is reduced with the number of replaced parts) 

𝑙𝑡 = 𝑙𝑡−1 + 1 for 𝑋𝑖𝑗𝑡 = 1 𝑎𝑛𝑑 𝑠𝑡 = 0 (lease a part if replacement is needed, but there is no stock) 

𝑙𝑡 = 𝑙𝑡−1 − 1 for 𝑙𝑡−1 ≥ 1 𝑎𝑛𝑑 𝑠𝑡 ≥ 0 (send a spare back to emergency supplier for exchange) 

𝑫𝑰𝑳𝒋 The Demand Initiation Level of predictive policy 𝑗 (𝑗 = 2,3,4) 

𝒒 Variable for 𝐷𝐼𝐿4.                              2 ≤ 𝑞 ≤ 𝑓𝑀𝐸𝐿 ∗ 𝑀 

𝒁𝒋𝒕 The system state space. 𝑗 ∈ 1,2,3,4 and 𝑡 ≥ 0 

𝒄 The number of components replaced13.  𝑋𝑖𝑗𝑡(𝑎𝑖𝑡, 𝑓𝑖𝑡, 𝑠) = 𝑐, 0 ≤ 𝑐 ≤ 𝑁 

𝒓𝒕 The number of components in repair at time 𝑡. 𝑟𝑡 = 𝑆 − 𝑠𝑡 and 𝑡 ≥ 0 

𝒙𝒋𝒕 Total no. of replacement actions with policy 𝑗 at time 𝑡. 

𝑥𝑗𝑡 = {
𝑥𝑗,𝑡−1 + 1, 𝑋𝑖𝑗𝑡(𝑎𝑖𝑡 , 𝑓𝑖𝑡 , 𝑠𝑡) ≥ 1        

𝑥𝑗,𝑡−1,                 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                        
 

                                                                 
13 The constraint is also valid for policy 4: 𝑋𝑖4t(𝐴𝑡, 𝐹𝑡, 𝑠𝑡) = c. This also applies to the constraints of 𝑥𝑗𝑡  and 

𝑠𝑡 . 
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As can be seen in the table, the number of replaced components depend on the state of the system. 

Policies 𝑗 = 1,2,3  consider alerts and failures on tail level (single aircraft); meaning that a 

decision is made individually for each aircraft 𝑖. Policy 4 considers demand on fleet level; meaning 

that a decision is made based on the total number of alerts and failures in the entire fleet (multiple 

aircraft). The state space for 𝑗 = 1,2,3 at time 𝑡 is given as: 

 

𝑍𝑗𝑡 = [

𝑎1𝑡 ,
𝑎2𝑡 ,
⋮

𝑎𝑀𝑡 ,

,

𝑓1𝑡 ,
𝑓2𝑡 ,
⋮
𝑓𝑀𝑡 ,

, 𝑠𝑡]  

 

And as 𝑍𝑗𝑡 = (𝐴𝑡 , 𝐹𝑡 , 𝑠𝑡) for 𝑗 = 4. Every time the state space changes, a decision is made: Replace 

𝑐 components (0 ≤ 𝑐 ≤ 𝑁). The state space changes after a replacement, or when a new alert is 

triggered, a failure occurs or when a spare is put in inventory (from repair). The number of 

components in repair are not included in the state space. This is not used as input for replacement 

decisions, and, in the current setup, the number is directly dependent of 𝑠 and 𝑆. 

Recall that not all failures are predicted in advance, as a result of a fraction of ‘missed failures’, or, 

False Negatives (see Table 5: Confusion matrix). Prognos’ sensitivity14 ratio determines the size 

of the fraction of missed failures. Therefore, predictive policies should consider failures as well 

as alerts as input for their decision.  

Regardless of any policy, exchanging lease components will receive highest priority at all times. 

When a spare part is put in stock from repair and there is an outstanding lease component, this 

spare part is sent back to the emergency supplier as an exchange component.  

4.2 POLICY DESIGN 

The replacement strategies aim to minimise repair and spare part cost. Just as in the paper of de 

Smidt et al., we may use a maintenance policy based on the number of failed and degraded 

(predicted) components. For example, if the number of failed components is low but many 

components are alerted, it may be wise to initiate maintenance to avoid system failure during the 

lead-time (de Smidt-Destombes, van der Heijden, & van Harten, 2006). 

From the literature review, we have concluded that policies should benefit from the following 

aspects:  

- Use the bigger time frame to plan replacements (prediction horizon or demand lead time), 

to reduce variability in repair inflow. Thereby, spare part levels could reduce; 

- Avoid major repairs with long repair lead times and high cost;  

- Trade-off the benefits of early removal with more frequent repairs (lower MTBR). 

When a predictive policy includes predictive alerts as input, the bigger time frame is 

automatically utilised, as the timing of an alert is always before the timing of a failure notification. 

When a predictive policy replaces component with an alerted status, a major repair is potentially 

prevented. Whether a policy results in an unacceptable decrease in MTBR, will be evaluated with 

the model designed in Chapter 5. All policies are based on a 3-out-of-4 system, as this is a common 

structure in aircraft systems. In the following subsections the policies are described. 

                                                                 
14 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =

𝑇𝑃

𝑇𝑃+𝐹𝑁
, see Section 3.2.2. 
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4.2.1 Policy 1 

Policy 1 represents the benchmark policy of the current situation. Although the MCC is 

experimenting with acting on alerts, this research considers the old situation where alerts are not 

considered in the replacement decision. The benchmark policy is given below (for all 𝑖, 𝑡 and 𝑎𝑖):  

 

𝑋𝑖1𝑡(𝑎𝑖𝑡 , 𝑓𝑖𝑡 , 𝑠𝑡) = {

0, 𝑓𝑖𝑡 < 𝑓𝑀𝐸𝐿 , ∀𝑠                           

1, 𝑓𝑖𝑡 = 𝑓𝑀𝐸𝐿 𝑎𝑛𝑑 𝑠𝑡 ∈ {0,1}      
2, 𝑓𝑖𝑡 = 𝑓𝑀𝐸𝐿 𝑎𝑛𝑑 𝑠𝑡 ≥ 2            

 

When 𝑓𝑖𝑡 = 𝑓𝑀𝐸𝐿 and 𝑠𝑡 = 0, a spare part must be leased to perform replacement and solve the 

MEL violation. So, in that case the decision is to replace 1 component despite of the lack of on-

hand stock. 

The policy does not take the Rectification Interval into account. A MEL violation has to be solved 

at 𝑡. However, the technical model designed in Chapter 5 does account for the RI to some extent15. 

Due to this assumption, it is not possible to have more than 2 failures on the same tail at the same 

time. In theory this could occur when a third component fails during the RI. It is considered very 

unlikely and therefore the impact of this assumption is believed to be negligible.  

The other 3 policies are designed predictive policies that also consider alerts in their decision. 

The decisions presented above are mandatory due to MEL, so all policies will also include these 

decisions.  

4.2.2 Policy 2 

Policy 2 initiates replacement as soon as there is 1 alert or failure. In other words, the Demand 

Initiation Level of policy 2 equals 1, or: 𝐷𝐼𝐿2 = 1. This will maximise the repair cost savings, but 

might result in a large decrease in MTBR, which is expected to have an effect on inventory levels. 

The model designed in Chapter 5 should test whether this reduction in repair cost compensates 

for the consequences of the MTBR decrease. The policy is given below (for all 𝑖 and 𝑡). Figure 16 

is a representation of policies 1, 2 and 3, which help to understand the concept of policies.   

 

𝑋𝑖2𝑡(𝑎𝑖𝑡 , 𝑓𝑖𝑡 , 𝑠𝑡) =

{
 
 

 
 
0, 𝑎𝑖𝑡 + 𝑓𝑖𝑡 ≤ 𝐷𝐼𝐿2 − 1, ∀𝑠𝑡                                  

1, {
𝑎𝑖𝑡 + 𝑓𝑖𝑡 ≥ 𝐷𝐼𝐿2 𝑎𝑛𝑑 𝑠𝑡 = 1, 𝑜𝑟                    

𝑓𝑖𝑡 = 𝑓𝑀𝐸𝐿  𝑎𝑛𝑑 𝑠𝑡 ∈ {0,1}                        

2, {
𝑎𝑖𝑡 + 𝑓𝑖𝑡 ≥ 2 𝑎𝑛𝑑 𝑠𝑡 ≥ 2, 𝑜𝑟                            
𝑓𝑖𝑡 = 𝑓𝑀𝐸𝐿  𝑎𝑛𝑑 𝑠𝑡 ≥ 2                                     

 

 

For notational simplicity, the decisions related to MEL (independent of the policy) are left out: 

 

𝑋𝑖2𝑡(𝑎𝑖𝑡 , 𝑓𝑖𝑡 , 𝑠𝑡) = {

0, 𝑎𝑖𝑡 + 𝑓𝑖𝑡 ≤ 𝐷𝐼𝐿2 − 1, ∀𝑠𝑡                          
1, 𝑎𝑖𝑡 + 𝑓𝑖𝑡 ≥ 𝐷𝐼𝐿2 𝑎𝑛𝑑 𝑠𝑡 = 1                    
2, 𝑎𝑖𝑡 + 𝑓𝑖𝑡 ≥ 2 𝑎𝑛𝑑 𝑠𝑡 ≥ 2                          

 

In practice, 𝑎𝑖𝑡 + 𝑓𝑖𝑡 ≥ 2 should almost never occur, but an exception is that an aircraft has 3 

alerts or 2 alerts and 1 failure. Therefore, the symbol ≥ is used in notation. In that case, all 3 

                                                                 
15 This is discussed in the technical model description in the Appendix, in the description of the method 
‘GetRepairSpare’ (see section ‘II Shiphol Frame’, component inflow). 
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alerted/failed components will be replaced if on-hand stock is sufficient. As this is an exception, 

the decision to replace 3 (or even 4) components is left out of all policy notations.  

4.2.3 Policy 3 

Policy 3 is designed to reduce repair cost while keeping the MTBR reduction to a minimum. 

Therefore, it only replaces components when at least 2 component out of 4 are alerted or failed16. 

This means that 𝐷𝐼𝐿3 = 2. If we compare policy 3 to policy 2 in Figure 16, it can be concluded that 

this increase in 𝐷𝐼𝐿 has significant impact on the MTBR. 

The component that triggered the first alert, probably failed during the time that the policy was 

‘waiting’ on the second alert or failure, such that 𝐷𝐼𝐿3 is exceeded. This is the case in Figure 16: 

policy 3 does not act on the first alert in a timely manner, and therefore this alert has resulted in 

a failure. Thereby, this policy does not capitalize on the potential repair savings of the component 

corresponding with that first alert. In this case, only the second alert is utilised. This is a trade-off 

and the results will be evaluated in Chapter 6.  

In policy 3, the only difference compared to the benchmark policy is that it also considers alerts 

as demand. Its notation is given below. Again, the decisions related to MEL violations are excluded 

from notation. 

𝑋𝑖3𝑡(𝑎𝑖𝑡 , 𝑓𝑖𝑡 , 𝑠𝑡) = {
0, 𝑎𝑖𝑡 + 𝑓𝑖𝑡 ≤ 𝐷𝐼𝐿3 − 1, ∀𝑠𝑡              

  
2, 𝑎𝑖𝑡 + 𝑓𝑖𝑡 ≥ 𝐷𝐼𝐿3 𝑎𝑛𝑑 𝑠𝑡 ≥ 2        

 

4.2.4 Visualisation of policies 1, 2 and 3 

Figure 16 below is an example of the functioning of the policies. The top lane represents a 

timeline, where all 4 components in the aircraft fail one after another. Prognos was able to predict 

the first 3 failures, but the last component failed with the absence of a predictive alert. Thus, the 

observed sensitivity rate in this particular example is 75%. The lanes below the timeline 

represent the policies, where the dashed vertical lines represent a replacement action. The 

arrows corresponding with 𝑇𝐵𝑅𝑗(𝑥) represent the Time Between Replacements 𝑥𝑗𝑡 with policy 𝑗. 

Within replacement 𝑥𝑗𝑡 , 𝑐  components are replaced. From the figure it can be concluded that 

policy 1 results in the longest MTBR. Policy 2 has a higher frequency of replacements (a shorter 

MTBR) and replaces all alerted components before failure. Policy 3 has the same number of 

replacements in this example and a slight decrease in MTBR, because 𝑇𝐵𝑅3(1) < 𝑇𝐵𝑅1(1). The 

difference between 𝑇𝐵𝑅3(1) and 𝑇𝐵𝑅1(1) is the prediction horizon.  

                                                                 
16 This number, 2, results from: 𝑁 − 𝑘 + 1, which is 2 for a 3-out-of-4 system (4 − 3 + 1 = 2). 
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Recall that spare levels are not considered in this example. Therefore, exceedance of the 𝐷𝐼𝐿 will 

always result in replacement. If spare levels were included, a decision could be to Do Nothing 

(𝑋𝑖𝑗𝑡 = 0) while 𝐷𝐼𝐿 is exceeded (namely when 𝑠𝑡 < 𝐷𝐼𝐿). When a spare becomes available from 

repair, the state space 𝑍𝑗𝑡  changes and the decision 𝑋𝑖𝑗𝑡  is reconsidered.  

If the total number of spares in the system (𝑆) is 0, policies 2 and 3 will function the same as policy 

1. In that case, the value for on-hand stock, 𝑠𝑡 , is always 0. Then, 𝑋𝑖𝑗𝑡 = 1  only for 𝑍𝑗𝑡 =

(𝑎𝑖𝑡 , 𝑓𝑀𝐸𝐿, 0) (for all values of 𝑎𝑖𝑡) and 𝑋𝑖𝑗𝑡 = 0 otherwise (when 𝑓𝑖𝑡 < 𝑓𝑀𝐸𝐿). In words: due to the 

lack of inventory, replacements will never be performed, unless there is a MEL violation. In case 

of MEL violation, replacement will always be performed with a lease component and the number 

of lease parts will move to infinity for 𝑡 → ∞ . In Chapter 5 a model will be constructed that 

includes constraints regarding the total number of lease parts. This must remain within a certain 

bound that is acceptable for KLM E&M. 

4.2.5 Policy 4 

The fourth and final policy differs from the first 3 policies as it considers the state space as 𝑍4𝑡 =

(𝐴𝑡 , 𝐹𝑡 , 𝑠𝑡). All alerts (A) and failures (F) on the fleet are used as input. The DIL is a variable (𝑞) 
that should be set such that cost are minimised. The model designed in Chapter 5 should be able 

to vary this variable in order to find the value that results in lowest total cost. The policy notation 

is given below.  

𝑋𝑖4𝑡(𝐴𝑡 , 𝐹𝑡 , 𝑠𝑡) = {

0, 𝐴𝑡 + 𝐹𝑡 ≤ 𝑞 − 1, ∀𝑠𝑡                                  
1, 𝐴𝑡 + 𝐹𝑡 ≥ 𝑞 𝑎𝑛𝑑 𝑠𝑡 = 1                            
2, 𝐴𝑡 + 𝐹𝑡 ≥ 𝑞 𝑎𝑛𝑑 𝑠𝑡 ≥ 2 𝑎𝑛𝑑 𝑞 ≥ 2       

 

 

The idea of this policy is to minimise variability in spare part demand (and therefore minimise 

inventory) by considering all fleet demand in the replacement decision. In the next section it is 

discussed how to determine aircraft 𝑖 that needs replacement. 

4.2.6 Selecting aircraft 𝒊 for replacement 

In addition to determining the value for 𝑐 , we also need to determine the value for 𝑖 . This is 

straightforward when there is only one aircraft 𝑖 that satisfies the constraint 𝑎𝑖𝑡 + 𝑓𝑖𝑡 ≥ 𝐷𝐼𝐿𝑗 (for 

Figure 16: Example of a timeline with component replacement per policy 
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𝑗 = 2,3). However, it could be the case that multiple aircraft satisfy this constraint and, with policy 

4, this constraint is not aircraft-specific. Therefore we need to add an extra step to determine the 

final value for 𝑋𝑖𝑗𝑡 . 

This section discusses the priority rules for selecting aircraft 𝑖 for replacement with policy 4 and 

for policies 2 and 3 when multiple 𝑖’s satisfy the constraint. Obviously, an aircraft with a MEL 

violation receives highest priority with any policy. For all other possible situations, Table 7 

provides an overview of the priority rules. The logic behind these rules is:  

- The aircraft with the most alerted and failed components has the highest priority; 

- When 𝑎𝑖𝑡 + 𝑓𝑖𝑡 = 2 for multiple 𝑖, priority is given to the aircraft with 2 alerts (if there are 

any). The same holds for 𝑎𝑖𝑡 + 𝑓𝑖𝑡 = 1; 

- The time passed since the alert notification in Prognos is not considered in prioritizing. 

Therefore, if multiple 𝑖 have the same priority, the value for 𝑖 is randomly determined. 

The priority rules emphasize alerts because these components have repair cost saving potential 

(minor repair cost). Failed components have high probability on major repair cost. Therefore, 

these rules are expected to have greater benefit than priority rules that emphasize failures. The 
time passed since the alert notification is not included in prioritizing as this is considered too 

detailed and not feasible at this point for the MCC to take into account when scheduling 

replacements. 

Recall that the value for 𝑐  has already been determined, also based on the value of 𝑠  (if  

𝑎𝑖𝑡 + 𝑓𝑖𝑡 ≥ 3 for any 𝑖, 𝑐 can be 0, 1, 2 or 3 for 𝑠 ≤ 3). So, these rules are not used to determine 𝑐, 

but to determine 𝑖. The table presents the priorities of the policies per column. It can be seen that 

policy 1 has no varying priorities and policy 3 only prioritizes aircraft with 𝑎𝑖𝑡 + 𝑓𝑖𝑡 ≥ 2. 

Table 7: Priority rules for selecting aircraft 𝑖 (when c > 0) 

Priority of aircraft 𝒊 Policy 1 Policies 2, 4 Policy 3 

1 MEL MEL MEL 

2 N/A 𝑎𝑖𝑡 + 𝑓𝑖𝑡 ≥ 3 𝑎𝑖𝑡 + 𝑓𝑖𝑡 ≥ 3 

3 N/A 𝑎𝑖𝑡 = 2 𝑎𝑖𝑡 = 2 

4 N/A 𝑎𝑖𝑡 + 𝑓𝑖𝑡 = 2 𝑎𝑖𝑡 + 𝑓𝑖𝑡 = 2 

5 N/A 𝑎𝑖𝑡 = 1 N/A 

6 N/A 𝑓𝑖𝑡 = 1 N/A 

 

4.2.7 Clustering replacements 

All policies as designed in previous subsections cluster their replacements. When 𝑠𝑡 ≥ 2  and 

𝑎𝑖𝑡 + 𝑓𝑖𝑡 ≥ 2, 𝑋𝑖𝑗𝑡 = 2 for 𝑗 = 2,3,4 and for policy 1, 𝑋𝑖𝑗𝑡 = 2 when 𝑠𝑡 ≥ 2 and 𝑓𝑖𝑡 = 2. In words: 

when the number of components with an alerted or failed status on aircraft 𝑖 is 2 or larger at time 

𝑡 and the on-hand inventory is also 2 or larger, both alerted/failed components are replaced at 

the same time. The component replacements are clustered. 

As an experiment, the predictive policies are adjusted such that replacements are only clustered 

when there are multiple alerts on a tail. In this experiment, failed components are only replaced 

when MEL is violated. One might state that non-MEL replacements of failed components is serving 

no practical purpose (based on the same logic as in 4.2.6: failed components have no repair saving 

potential). The adjustment in notation is presented for policy 3:  

 

𝑋𝑖3𝑡(𝑎𝑖𝑡 , 𝑓𝑖𝑡 , 𝑠𝑡) = {
0, 𝑎𝑖𝑡 + 𝑓𝑖𝑡 ≤ 𝐷𝐼𝐿3 − 1, ∀𝑠𝑡        
𝑎𝑖𝑡 , 𝑎𝑖𝑡 + 𝑓𝑖𝑡 ≥ 𝐷𝐼𝐿3 𝑎𝑛𝑑 𝑠𝑡 ≥ 𝑎𝑖𝑡  
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Policy-independent MEL replacements change to:  

 

𝑋𝑖𝑗𝑡(𝑎𝑖𝑡 , 𝑓𝑖𝑡 , 𝑠𝑡) = {
0, 𝑓𝑖𝑡 < 𝑓𝑀𝐸𝐿 , ∀𝑠𝑡
1, 𝑓𝑖𝑡 = 𝑓𝑀𝐸𝐿 , ∀𝑠𝑡

 

 

The adjustment works similarly for the other policies and the same priority rules are applied for 

selecting 𝑖. The aim of these adjusted policies is to find out what the effect would be on repair cost 

and MTBR. In Chapter 6, the effect of these adjusted policies is discussed. In the remainder of this 

report, these adjusted policies are referred to as ‘extended policies’. A regular reference to policy 

𝑗 indicates the clustered policy, as described in Sections 4.2.1 to 4.2.5. 

4.3 CONCLUSION 

In this section, 3 predictive component replacement policies were designed for a 3-out-of-4 

system, that aim to reduce spare part and repair cost. All policies use predictive alerts from the 

application ‘Prognos’ as input for decisions. The decision to replace 𝑐 components depends on the 

state space. The state space is expressed in the number of alerts, failures and on-hand stock. The 

aircraft 𝑖 that will be selected for replacing 𝑐 components, is selected based on priority rules that 

aim to maximise repair savings. 

Predictive policies use a larger time frame for their decisions by acting on alerts instead of 

failures. Hereby, the inventory level could potentially reduce. Also, components with an alerted 

status might result in lower repair cost, but a trade-off with a decrease in MTBR has to be made. 

The policies were designed such that a balanced trade-off can be made. In the next chapter, a 

model is constructed that is able to evaluate the performance of the policies.  
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5 MODEL 
In this chapter we design a model that allows to evaluate the performance of the policies designed 

in Chapter 4 under various scenarios. The corresponding research questions is: 

5. How should we construct a model that is able to test the impact of predictive component 

replacement policies for k-out-of-N systems? 

a. How can we abstract a conceptual model from the system description? 

b. What does the model design look like?  

c. How can we use the model to find the best solution? 

 

In Chapter 3 we have identified discrete-event simulation as the most appropriate method for our 

research. In this section, this simulation model is abstracted from the real world problem. This 

process is known as conceptual modelling and will be performed based on the paper of Robinson 

(2011). Figure 17 presents the steps related to a simulation study. At this point, the problem 

domain, consisting of the Real world problem (Ch.1) and the System description (Ch.2), has been 

described.  

In Section 5.1 the conceptual model will be abstracted. Section 5.2 discusses the model design and 

experimental design, and Section 5.3 the computer model. Section 5.4 is a conclusion of the 

chapter. 

 
Figure 17: Conceptual modelling (Robinson, Conceptual Modeling for Simulation., 2011) 

5.1 CONCEPTUAL MODEL 

A conceptual model is defined as ‘a non-software specific description of the computer simulation 

model (that will be, is or has been developed), describing the objectives, inputs, outputs, content, 

assumptions and simplifications of the model’ (Robinson, 2008a). Each subsection of this section 

discusses one of the elements of the conceptual model.  

The policy design from Chapter 4 is, in fact, also part of the model domain (Figure 17). As the 

solution design is a great part of this study, it was discussed separately. It is the backbone of the 

model and we will refer continuously to these policies in the remainder of the modelling 

procedure.  
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5.1.1 Model objective 

The objective of the model is to assess the performance of predictive component replacement 

policies for a 3-out-of-4 system in terms of cost and to compare this with the current corrective 

replacement policy at KLM E&M, while also reflecting on the effect on maintenance capacity and 

service level.  

Solutions should satisfy a lease constraint regarding the average total number of leases, based on 

a fleet of 13 aircraft (= fleet size of KLM 787 aircraft). This average number may not increase 1 

lease per year. If larger fleet sizes are considered, this number is adjusted proportionally. Leasing 

components is seen an exception at KLM E&M; therefore this threshold is set very low. 

5.1.2 Inputs 

Inputs are experimental factors that are varied within a certain range in order to find the settings 

corresponding with the best solution of the model. Experimental factors are distinguished in 

decision variables, variable parameters and fixed parameters.  

The decision variables are the replacement policy 𝑗 , the total number of spares 𝑆  and 𝑞 , the 

Demand Initiation Level of policy 4. The model should find the values for 𝑗, 𝑆 and 𝑞 that minimise 

cost, while the lease constraint is satisfied. Therefore, values for 𝑗 are varied from 1 to 4 and 𝑆 is 

increased with 1 after each model run until the constraint is met, for 𝑗 ∈ 1,2,3. If 𝑗 = 4, 𝑞 is varied 

within its range of 2 ≤ 𝑞 ≤ 𝑓𝑀𝐸𝐿 ∗ 𝑀.  

The model should enable analysis of policy performance under various circumstances. Therefore, 

other experimental factors that are expected to have significant impact on the result are also 

varied. These factors, such as the Prediction Horizon, are called variable parameters and are 

derived from the conceptual framework (Figure 15) and the system description (Chapter 2). A 

composition of parameter values is called a scenario. Table 8 lists the parameters of the model. 

In Appendix A, the values of the parameters in the benchmark scenario (default scenario) are 

given and the failure distribution is derived from available replacement data at KLM E&M. The 

table in the appendix also includes values for ‘fixed parameters’: parameters that are not varied 

within this study, such as labour cost, fixed replacement cost and the price of a spare. The 

benchmark scenario aims to represent the case of the CSU component at KLM E&M. The model 

design addresses how experimental factors are varied to analyse policy performance under 

various circumstances, and is presented in Section 5.2.2. 

Table 8: Variable model parameters 

Parameter  Parameter 

Prediction Horizon  Lease restriction 

Sensitivity rate of 
predictive alerts 

 Failure distribution 

Minor repair cost  Extended policies 

Major repair cost  Stochastic PH, TAT 

TAT  Fleet size 

TAT of a minor repair   

 

5.1.3 Outputs 

The output of the model (reports) are the number of replacements; expressed as the number of 

repaired spares and the number of replacement actions (maintenance intervals), and total cost; 

consisting of repair cost, replacement cost, lease cost and spare part investment cost. If a 

replacement action clusters replacements, then 𝑐 = 2  (number of replaced components, or 

repaired spares) and 𝑥𝑗𝑡 = 1 (number of replacement actions, or maintenance intervals): so 2 
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components are replaced at the same time. In the remainder of the report this will be referred to 

as: number of repaired spares (total 𝑐) and number of maintenance intervals (total 𝑥𝑗𝑡 over all 𝑡). 

5.1.4 Content 

Scope – The objective is to perform a comparison between predictive component replacement 

policies on a high-level, therefore, the level of detail in the model is low. This results in 

simplifications and the exclusion of some aspects.  

First of all, the flight operation is not included in our model. This aspect determines when a 

replacement (or other non-routine maintenance action) can be fit into the operational schedule. 

It is assumed that all replacement actions are executed at the same time as the replacement 

decision is taken. There will be no cost involved with an alternative maintenance plan. The total 

number of replacements will be counted, in order to compare results regarding this matter.  

Details about the repair process are excluded from the model. Sufficient repair capacity and/or 

reliable vendors are assumed. The repair TATs are fixed within contracts, which makes this a 

reasonable assumption for our model. 

At KLM E&M, Component Services delivers spare parts to various customer airlines around the 

globe. Customer requests for spare parts are delivered from the spare parts pool. In the model, 

the entire fleet belongs to one customer only (KLM). Therefore, shipping times are neglected and 

there are no varying priority rules concerned with customer requests. Table 9 is an overview of 

the scope.  

Table 9: Scope overview 

In scope Out of scope 

Analysis of repair savings Component pool concept  

Spare part management  Flight operation 

Replacement policy evaluation Repair process  

 Scheduling of replacements 

 

Model content and level of detail – The list below provides an overview of the model content 

and its level of detail. It is derived from the system description in Chapter 2.  

1. The model consists of a fleet of 𝑀 (1 ≤ 𝑀 ≤ 13) aircraft (tails), the logistic centre (LC) 

where spare inventory 𝑠 is kept and a repair shop with infinite capacity.  
2. All aircraft have 𝑁 components installed that fail according to a failure distribution 𝐹(𝑡). 

A fraction of all component failures, corresponding with the sensitivity rate, are predicted 

by Prognos. The number of days between the predictive alert signal and the actual failure 

is specified by the prediction horizon. Consequently, the Time To Alert (TTA) equals the 

Time To Failure (TTF) minus the Prediction Horizon (PH). See Table 10. 

Table 10: Relation between MTBF, MTBA, PH and Sensitivity 

    

By default the PH is a deterministic value, however in an analysis this could be changed 

to a random variable. The time to alert and/or the time to failure for a component is 

derived from the failure distribution. 

3. The time to schedule a replacement is assumed to be 0, so when 𝑋𝑖𝑗𝑡 ≥ 1, replacement is 

performed at the same 𝑡. 

4. When MEL is violated and there is no spare available to perform replacement, a spare is 

leased. Lease cost are 10% of the component procurement price per lease. When a 

𝑀𝑇𝑇𝐹 − 𝑃𝐻 = 𝑀𝑇𝑇𝐴, or 
𝑡𝑓𝑎𝑖𝑙𝑢𝑟𝑒 = 𝑡𝑎𝑙𝑒𝑟𝑡 + 𝑡𝑃𝐻 

Sensitivity% with alert (1-sensitivity)% without alert  

𝑬[𝑭(𝒕)] = 𝑴𝑻𝑻𝑭 − 𝑷𝑯 𝐸[𝐹(𝑡)] = 𝑀𝑇𝑇𝐹 
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serviceable spare becomes available from repair, it is exchanged for the outstanding lease 

component to the emergency supplier. Component lease for non-MEL replacements is not 

allowed. Lease components have no supply lead time. 

5. A replacement decision is taken when the system state changes: when a new alert is 

generated, when a new failure occurs, or when a new spare becomes available from 

repair. According to the current policy a decision is made (𝑋𝑖𝑗𝑡 ): Replace 1 or more 

component(s) with spares from stock or a lease component, or, Do Nothing.  

6. Replacements are assumed to have fixed setup cost and variable labour cost. Combined 

replacements on an aircraft are economically more attractive, as the fixed cost are 

charged once. Fixed cost for corrective replacements (replacements that are performed 

in a MEL rectification interval) are higher compared to fixed cost for predictive 

replacements, since the latter have more planning flexibility. Short term capacity at line 

or base maintenance is unrestricted, which means that all replacements can be executed 

at the desired time. 

7. After removal from the aircraft, a component is repaired in the shop. The TAT specifies 

the number of days a component is in repair. When a component is replaced just after an 

alert was created, it results in a minor repair with low cost and, optionally, a shorter TAT. 

The longer replacement is deferred after an alert, the higher the risk of a major repair 

with high cost and regular TAT. Failed components always result in major repairs. TAT’s 

are predetermined and deterministic by default. After repair, a spare is put back in stock. 

Repairs are as good as new, however, after two consecutive minor repairs the next shop 

visit always results in a major repair (the component is overhauled). Inventory holding 

cost are neglected. Figure 18 represents the relation between the time since alert and 

repair cost. 

Figure 18: Relation between time and repair cost 

8. After a simulation run, the reports are derived. A solution is valid when it satisfies the 

constrain related to the number of lease components. The target values for this constraint 

can be varied. When a solution does not meet the constraint, the experimental factors are 

adjusted and the model is run again. This is explained in more detail in 5.2.1. 

 

Flowchart – Figure 19 represents a model flowchart. The green circles represent a change in 

system state and the numbers between brackets refer to the corresponding model content listed 

above. After a change in the system state, 𝑋𝑖𝑗𝑡  should be determined according to the formulas 

given in Chapter 4. The output of this step is either to Do Nothing (𝑐 = 0, stop) or to supply a 

spare from stock or lease a spare (corresponding with point 4 in the list above). The replacement 

action has two outputs: the alerted/failed component is removed and sent to repair 

(corresponding with point 7) and the supplied spare has to be installed on aircraft 𝑖. Prior to 

instalment, 𝑡𝑎𝑙𝑒𝑟𝑡  or 𝑡𝑓𝑎𝑖𝑙𝑢𝑟𝑒  must be set, according to point (2). In between the steps of the 

flowchart, cost and the number of leases have to be tracked.  

After 𝑡𝑇𝐴𝑇 , 𝑡𝑎𝑙𝑒𝑟𝑡  or 𝑡𝑓𝑎𝑖𝑙𝑢𝑟𝑒  the dashed lines will trigger a new change in system state and the 

flowchart is executed again.  
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Figure 19: Model flowchart 
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5.1.5 Assumptions and simplifications 

Most assumptions and simplifications have been mentioned in previous sections. Below, an 

overview of all assumptions is given. 

- Components in the 𝑘 -out-of- 𝑁  are identical and independent: an anomaly in the 

behaviour of one component does not affect the performance of the other components. 

- Components fail according to the same failure distribution; 

- All repairs are as good as new, but after two consecutive minor repairs the next repair on 

that component will always be major; 

- Repair and replacement capacity is unlimited; 

- Minor repairs have minor repair cost, major repairs have major repair cost;  

- The probability on a minor repair for an alerted component decreases over time, 

according to Figure 18;  

- Line/base maintenance capacity is unrestricted, replacements can always be performed. 

5.2 MODEL DESIGN  

In this section we elaborate on how the conceptual model from Section 5.1 should be designed 

such that when it is implemented in a computer model, it generates meaningful results. Recall 

that the objective is to find the best settings for the decision variables, so, the model must be able 

to minimise cost while attaining the lease constraint. For every experiment, the output of the 

model is represented by the values of the decision variables and the corresponding reports (see 

Section 5.1.3). The values of the decision variables are found with an iterative procedure, which 

is discussed in Section 5.2.1. The spare level corresponding with the best solution is indicated 

with 𝑆𝑗*. Policy performance should be analysed under varying circumstances. This is addressed 

in Section 5.2.2: the experimental design.  

5.2.1 Model execution  

The model is run according to the following order, for policies 1,2 3: 

0. Initialize. Set 𝑗 and 𝑆𝑗 = 0 

1. Update 𝑆𝑗 = 𝑆𝑗 + 1 

2. Run the model and determine average values for all reports, including the average 

number of lease components. 

3. Stop if the constraint is met (then, 𝑆𝑗 = 𝑆𝑗*), else go back to 1. 

And for policy 4: 

0. Initialize. Set 𝑗 = 4 and 𝑆4 = 0 

1. Update 𝑆4 = 𝑆4 + 1, 𝑞 = 1 

2. Update 𝑞 = 𝑞 + 1 

3. Run the model and determine average values for all reports, including the average 

number of lease components. 

4. If the constraint is met, store current spare level as 𝑆𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡  and set 𝑆𝑠𝑡𝑜𝑝  to 𝑆𝑠𝑡𝑜𝑝 =

𝑆𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 + 1. Stop when 𝑆4 = 𝑆𝑠𝑡𝑜𝑝, else: 

a. Go back to 1 if 𝑞 = 𝑓𝑀𝐸𝐿 ∗ 𝑀. 

b. Go back to 2 if 𝑞 < 𝑓𝑀𝐸𝐿 ∗ 𝑀. 

For 𝑗 = 1,2,3 it was found that 𝑆𝑗* = 𝑆𝑗 for the first value of 𝑆𝑗 that satisfies the lease constraint 

(= 𝑆𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡). For policy 4 it was found that better solutions can be found when 𝑆4 is increased 

one more time after the lease constraint was satisfied for the first time. Extra iterations with 𝑆4 >

𝑆𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 + 1 always result in worse solutions and are therefore not considered. 
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5.2.2 Experimental design 

Within an experiment, the model finds the values for the decision variables that results in lowest 

cost according to the model execution procedure explained in the previous section. This section 

presents the experiments that are executed in order to understand policy behaviour to a greater 

extent and the impact of parameters values. In Table 8 all input parameters were specified that 

can be varied within experiments.  

The benchmark scenario refers to a case study of the CSU component. The component has clearly 

detectable wear-out behaviour far in advance to failure, which results in stable performance of 

Prognos algorithms. The improvement of supply chain performance for the CSU is relevant, as it 

is in the top 3 of the ‘disruptors’17. Currently, the CSUs are being repaired at an external vendor, 

but KLM E&M is developing capabilities to repair this component at Schiphol. Therefore, it is 

interesting to explore the impact of repair TAT fluctuations in experiments, as KLM E&M might 

have more possibilities in the future to influence this TAT. 

A factorial design (Law, 2014) is used to create scenarios by varying parameters. A 2k-factorial 

design and the one-factor-at-the-time approach are selected as the most appropriate methods in 

this research. Both methods keep the number of experiments manageable and a 2k-factorial 

design also studies interaction effects. For the 6 parameters in the left column of Table 8 a 2k-

factorial design is used. In a 2k-factorial design the values of the experimental factors are varied 

between two levels: a low value and a high value, indicated with ‘–‘ and ‘+’.  Table 28 in the 

appendix shows the input values for the 2k-factorial design corresponding with a ‘–‘ or ‘+’. A low 

value can be interpreted as: A value that is disadvantageous for the final result. For instance for 

minor repair cost, the ‘–‘ value corresponds with the high cost value, as high cost are 

unfavourable. The input values corresponding with each ‘-‘ and ‘+’ are derived from the system 

description. 

Table 11 shows the layout of the 2k-factorial design. The responses (expressed in total cost) are 

evaluated per policy, as parameters might influence the individual policies in a different manner. 

Parameter 3 ‘TAT reduction’ is an experimental factor that represents the hypothesis of KLM E&M 

that minor repairs could result in shorter repair times. This factor is a boolean with a TRUE or 

FALSE value. If the boolean is TRUE (‘+’), the repair TAT is halved for minor repairs. The 2k-

factorial design for the 6 parameters result in 26 = 64 scenarios.  

Table 11: 2k-factorial design for 6 parameters 

Scenario 

Parameters Scenario responses 

PH TAT 

TAT 

reduction Sensitivity 
Minor 
cost 

Major 
cost In total cost, per policy 

1 2 3 4 5 6 𝑗 = 1 𝑗 = 2 𝑗 = 3 𝑗 = 4 

1 - - - - - - 𝑅1,1 𝑅1,2 𝑅1,3 𝑅1,4 

2 + - - - - - 𝑅2,1 𝑅2,2 𝑅2,3 𝑅2,4 

3 - + - - - - 𝑅3,1 𝑅3,2 𝑅3,3 𝑅3,4 

4 - - + - - - 𝑅4,1 𝑅4,2 𝑅4,3 𝑅4,4 

… … … … … … … … … … … 

64 + + + + + + 𝑅64,1 𝑅64,2 𝑅64,3 𝑅64,4 

                                                                 
17 A list of components with bad supply chain performance. Based on performance data of October 2018. 
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The parameters in the right column of Table 8 are varied one at the time. In these experiments, 

all other parameters values remain at their benchmark value (see Appendix A, II). Together, this 

results in a total of seven experiments, as shown in Table 12. 

Table 12: Design of experiments 

Experiment Scenario Analysis 

1 Benchmark Model validation and analysis of performance of all policies, 
in a case study for the CSU component. 

2 64 scenarios from the 
2k-factorial design 

Main effects and interaction effects of 6 selected variable 
parameters. 

3 Benchmark* Effect of a less tight lease constraint. 

4 Benchmark* Impact of a varying failure distribution. 

5 Benchmark* Performance of the extended policies (explained in section 
4.2.7) in the benchmark scenario 

6 Benchmark* The effect of stochasticity in PH and TAT, compared to 
deterministic values for these parameters. 

7 Benchmark* Effect of an increased fleet size. 

*All values for the parameters correspond with their benchmark values except for the one that is 

analysed in that specific experiment. 

 

With the execution of these experiments, we aim to provide insights for KLM. For each 

experiment, there is an underlying thought or hypothesis that we aim to address. The 

corresponding question(s) or tested hypotheses are listed below.   

1. Which policy results in the lowest cost and what is the impact on maintenance capacity?  

2. Which parameters have the largest impact on performance, and should therefore be 

focused on in the future when implementing Prognos?  

3. Currently, leasing components is seen as an exception because cost are high. Does the 

model confirm this finding? 

4. If we use a different failure distribution as input for our model, do we find similar policy 

performance as in experiment 1? If that is the case, the best policy might also be beneficial 

for other 3-out-of-4 components. 

5. What is the ‘price’ in terms of increase in maintenance capacity, if the extended policies 

are applied? Do these extended policies result in lower repair cost? 

6. What is the impact of the assumption that PH and repair TAT are deterministic?  

7. If Prognos adopts customers of KLM E&M in their application, the fleet size included in 

Prognos increases. What is the effect on policy performance? 

5.3 COMPUTER MODEL 

Guided by the design of the policies and the (conceptual) model, the model is implemented in 

computer software. For this purpose, Siemens Tecnomatix Plant Simulation 13 software is used. 

A technical description of the computer model is added in Appendix B.  

The results of the model have to be statistically significant in order to derive conclusions. To 

achieve this, we derive values for the warm-up length, number of replications and run length with 

the computer model in the next sections. Verification is also part of this section and the 

construction of confidence intervals is discussed.  
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5.3.1 Verification 

With the construction of the model, various simplifying assumptions were made in order to keep 

complexity to a manageable level. Verification implies that the computer model should 

correspond with the paper model. The paper model of this study is explained in Chapter 4 and 

Sections 5.1 and 5.2. The computer model was tested and debugged repeatedly to check 

correctness. Step-by-step model debugging was applied extensively and intermediate results 

were checked for reasonableness in multiple scenarios. In addition, model coding was checked 

with multiple stakeholders, including a simulation model expert.  

5.3.2 Warm-up length, run length and number of replications 

The system that is being evaluated is a non-terminating system, which means there is no natural 

event that specifies the end of a simulation run (such as a factory shutdown or the end of a flight). 

Therefore, system behaviour should be evaluated only when observations no longer depend on 

initial conditions and a steady-state is reached. A warm-up period should be set in which 

observations are deleted. Welch’s graphical method is used to determine the warm-up length and 

the number of replications of a simulation (Welch, 1983). In our case, the initial number of alerts 

and failures have the most impact on performance, as they determine the majority of the state 

space. Their initial value is zero, which results in no cost, as there are no replacements required 

in the state space 𝑍𝑗𝑡(0,0, 𝑠𝑡) for all 𝑗. The number of alerts and failures will be used to determine 

when a steady state is reached. When Welch’s graphical method creates a smooth plot, the warm-

up length and the number of replications is set at an appropriate value. Figure 20 presents the 

plots for the number of failures, with various values for the warm-up length 𝑤 (days). Graphs for 

the number of alerts have similar results. A ‘reasonably smooth’ graph means that the warm-up 

length and number of replications (n) are set correctly. The graphs below show the results for the 

number of failures with n=5, 10 and 15. The warm-up length is given in months. The graph at the 

bottom zooms in at the lines for w=25 with n=10 and n=20. It shows that the variation in the 

number of failure occurrences remains within the bounds of 1.5 and 175. The model will run 

experiments with n=20, except for experiment 2 (with 64 scenarios) in order to keep run time 

manageable.  
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Figure 20: Welch's graphical method for n=5, 10 and 20 
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In two consecutive years, the number of failure occurrences can vary quite a bit. Therefore, the 

simulation run length is set to 3 years, such that variability between experiments is reduced. The 

warm-up length is set to the same value. From Figure 20 we can expect that this should be 

sufficient and an analysis on relative error found that the relative error with 𝑛 = 20 is within 

acceptable bounds with 𝛼 = 0.10.  

5.3.3 Comparing results 

Policy performance can be compared with a paired-t approach. This is the most suitable method 

in our case as Plant Simulation allows to use common random numbers and to control the number 

of observations. In the model, random numbers are used for:  

- Generation of time to failure and time to alert  

- Determining the length of the time interval the MCC needs to schedule a replacement in 

the rectification interval when there is a stockout. If there is a repair finished within that 

interval, leasing a new component can be avoided (see footnote 15) 

- Determining the repair cost 

- Determining the TAT and PH in the experiment with stochastic TAT and PH. 

Each experiment consists of a number of runs (replications). Each replication has its own 

common random number stream. So, the first run of the first experiment uses the same random 

numbers as input as the first run of the second experiment, the first run of the third experiment, 

and so on. Therefore, differences in total cost are caused by the difference in policy performance 

and not the difference in random number generation.  

Average values for KPI’s can be calculated per experiment based on the computer model output. 

Each experiment will be replicated 20 times, so 𝑛 = 20. The experiment that will be compared to 

the first experiment, is also run 20 times; 𝑚 = 20. Now a confidence interval can be constructed 

for the difference between the average total cost per experiment (per policy).  

𝑋𝑖 = 𝑡𝑜𝑡𝑎𝑙 𝑐𝑜𝑠𝑡 𝑜𝑓 𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡 1 𝑖𝑛 𝑟𝑒𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑖, 𝑖 = 1,… , 𝑛 

𝑌𝑖 = 𝑡𝑜𝑡𝑎𝑙 𝑐𝑜𝑠𝑡 𝑜𝑓 𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡 2 𝑖𝑛 𝑟𝑒𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑖, 𝑖 = 1,… ,𝑚 (𝑚 = 𝑛) 

𝑊𝑖 = 𝑋𝑖 − 𝑌𝑖 , 𝑡ℎ𝑒 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑖𝑛 𝑡𝑜𝑡𝑎𝑙 𝑐𝑜𝑠𝑡 𝑜𝑓 𝑡ℎ𝑒 𝑡𝑤𝑜 𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑠 

Then, the confidence interval is given by (Law, 2014): 

𝑊̅ ± 𝑡𝑛−1,1−𝛼/2√𝑉𝑎𝑟[𝑊̅] 

Where 

𝑊̅ =
1

𝑛
∑𝑊𝑖

𝑛

𝑖=1

 

And 

𝑉𝑎𝑟[𝑊̅] =
1

𝑛
𝑉𝑎𝑟[𝑊] =

1

𝑛(𝑛 − 1)
∑[𝑊𝑗 − 𝑊̅]

2

𝑛

𝑖=1

 

A confidence interval of 95% for W represents that in 95% of the cases the difference between 

total cost of experiment X and Y will lie between the bounds of the interval. If 0 is not part of the 

interval, the two experiments are significantly different.  

Confidence intervals (CI) can also be constructed for the output of a single experiment, instead of 

a comparison between two experiments. A 95%-CI with lower bound LB and upper bound UB 

represents that it can be stated that in 95% of the cases the output of the experiment will be 

within the bounds of [LB, UB].  
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5.4 CONCLUSION 

In this chapter the model was presented that allows to test various predictive replacement 

policies. Factors that are expected to have significant impact on performance were distinguished 

and used to setup an experimental design. This experimental design allows to analyse policy 

performance under various circumstances, and to estimate the impact of the individual 

experimental factors on performance. Performance is measured based on total cost and the 

number of replacements.  

To make sure results are statistically significant, a warm-up length, the number of replications 

and the run length were derived in Section 5.3. It also discussed the paired-t approach and the 

use of confidence intervals to analyse results. In Chapter 6 the results of the experimental design 

are presented.  
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6 RESULTS 
In this chapter, research questions 6 and 7 are addressed: 

6. What is the expected performance of the predictive replacement policies, when they are 

applied to a 787 component at KLM E&M? 

a. Which policy has the best performance?  

b. What is the required performance of Prognos’ prediction models?  

7. What are the benefits and drawbacks of using a predictive replacement policy at KLM?  

 

The first section of this chapter discusses the performance of the policies in the benchmark 

scenario. Policies are compared based on average total cost and replacements. The consecutive 

sections discuss the experiments of the experimental design as introduced in Section 5.2.2. The 

design is displayed once more in Table 13 with the corresponding section allocation. 

Table 13: Design of experiments 

Exp. 
No. Scenario Analysis Section 

1 Benchmark Model validation and analysis of performance of all 
policies, in a case study for the CSU component. 

6.1 

2 64 scenarios from the 
2k-factorial design 

Main effects and interaction effects of 6 selected 
variable parameters. 

6.2 

3 Benchmark* Effect of a less tight lease constraint. 

6.3 

4 Benchmark* Impact of a varying failure distribution. 

5 Benchmark* Performance of the extended policies (explained in 
section 4.2.7) in the benchmark scenario 

6 Benchmark* The effect of stochasticity in PH and TAT, compared to 
deterministic values for these parameters. 

7 Benchmark* Effect of an increased fleet size. 

*All values for the parameters correspond with their benchmark values except for the one that is 

analysed in that specific experiment. 

6.1 BENCHMARK SCENARIO 

The first subsection discusses to what extent the model represents current practice at KLM E&M, 

by analysing the performance of policy 1 in the benchmark scenario (model validation). The 

second sub section discusses the performance of the predictive policies and compares them with 

the current corrective policy. 

6.1.1 Validation 

To validate our model, the model is run with an empirical failure distribution based on MTBR data 

of the CSU component. The derivation of this distribution is discussed in Appendix A III.  

In this case, MTBR data is used to derive a failure distribution. In Figure 1 we have seen that the 

MTBR can differ significantly from the MTTF, as it is the result of a replacement policy. However, 

it is the only data available regarding component failures/replacements. The model is tested with 

the assumption that 𝑀𝑇𝐵𝑅 ≈ 𝑀𝑇𝑇𝐹 . If the result approaches the actual historical values 

regarding replacements, we can use this distribution from now on to compare policies. In Chapter 
7 we discuss the impact of this assumption and in Section 6.3 we run the model with standard 

failure distributions and reflect on the impact of this change.  
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Various probability distributions were plotted to the replacement data, to check whether a 

standard distribution could be used to generate failures. No standard distribution was found to 

fit, although the Weibull distribution was a quite good approximation. Weibull, Poisson and 

Gamma were tried. An empirical distribution was implemented in the software, based on the 

histogram of Figure 28 (constructed in Excel). The histogram bins are copied to a table which is 

used as input for the derivation of the time to failure.  

For validation, the model is run with replacement policy 1 as active policy, as this policy aims to 

represent the current corrective policy. The KPI ‘number of replacements’ is used to validate the 

model, in combination with the number of spares and average number of leases. These numbers 

can be derived from KLM data of 2018. The spare level at KLM needs to fulfil demand for all pool 

customers, corresponding with 160 aircraft (787 type). To derive 𝑆𝑏𝑒𝑛𝑐ℎ𝑚𝑎𝑟𝑘  for the model 

validation, the following formula is used, where 𝑀𝑝𝑜𝑜𝑙 = 160 and 𝑀𝐾𝐿𝑀 = 13 (fleet size):  

𝑆𝑏𝑒𝑛𝑐ℎ𝑚𝑎𝑟𝑘 =
𝑆𝑝𝑜𝑜𝑙

𝑀𝑝𝑜𝑜𝑙
∗ 𝑀𝐾𝐿𝑀 

The value for 𝑆𝑝𝑜𝑜𝑙  and absolute results from the validation run can be found in Appendix A, 

Section V. The model is run with the rounded values for 𝑆𝑏𝑒𝑛𝑐ℎ𝑚𝑎𝑟𝑘: ⌈𝑆𝑏𝑒𝑛𝑐ℎ𝑚𝑎𝑟𝑘⌉  (rounded up) 

and ⌊𝑆𝑏𝑒𝑛𝑐ℎ𝑚𝑎𝑟𝑘⌋ (rounded down) as 𝑆 needs to be an integer in the model. If the computer model 

is run for a year with ⌈𝑆𝑏𝑒𝑛𝑐ℎ𝑚𝑎𝑟𝑘⌉ and  ⌊𝑆𝑏𝑒𝑛𝑐ℎ𝑚𝑎𝑟𝑘⌋, it results in the numbers given in Table 14. 

The results are close to the actual values for the number of replacements in 2018 (max percental 

change 3.5%) and the number of leases (max deviation: 3.2 leases).  

Table 14: Output validation runs 

 
 No. 

Replacements  
No. Leases  

Values 2018   0 

Model results 
⌈𝑆𝑏𝑒𝑛𝑐ℎ𝑚𝑎𝑟𝑘⌉ (up) -3.4% 0.3 

⌊𝑆𝑏𝑒𝑛𝑐ℎ𝑚𝑎𝑟𝑘⌋ (down) +1.2% 3.2 

 

In addition to this validation analysis, the replacement data of individual runs was analysed to 

check whether this could be a representation of actual replacement data. No counter arguments 

could be found based on this analysis.  

As the model results approximate actual values for the selected KPI’s, the empirical distribution 

from Appendix A is used in the benchmark as failure distribution.  

6.1.2 Policy comparison 

This section presents the results of all policies in the benchmark scenario (Table 27). The run 

length is 3 years. 

Recall that the model includes a service constraint regarding the number of leases, but not 

regarding maintenance capacity. A (very) high number of maintenance intervals results in high 

work load for line/base maintenance, and might be considered as unfeasible in the current 

organisation with tight flight schedules to sustain. However, this constraint is excluded in the 

model as policies approach the same general behaviour with strict constraint settings regarding 

the number of replacements (no clear distinction in 𝑋𝑖𝑗𝑡  for various values of 𝑗 ). We have 

illustrated this concept in Section 4.2.4 (below Figure 16) by means of an example with unlimited 

spare parts.  

Therefore, a comparison should always include the number of maintenance intervals as well as 

total cost. A policy with low average total cost but a very high number of maintenance intervals 

is not a good solution. The average total cost and number of maintenance intervals for all policies 
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are presented in the left and right graph of Figure 21 respectively. The relative error of the total 

cost is at most 3,2% (for all policies), with a probability of 90% (1 − 𝛼). In other words, if we 

construct 100 independent 90%-CI, we would expect that the total cost has a relative error of at 

most 3,2% in about 90 percent of the 100 cases, and in the other 10 cases the relative error would  

be greater than 3,2% (Law, 2014). 

 

 

From the results it can be concluded that all predictive policies result in lower total cost. Repair 

cost are the largest fraction of the average total cost. When maintenance intervals are also 

considered, policy 3 or 4 has the best performance. The next graphs provide more detailed insight 

in policy performance, when spare levels are varied. The lines represent policies 𝑗 and in between 

the brackets in the legend the values for 𝑆𝑗* are given. For these values the lease constraint is met 

and the best solution is found (in terms of cost and replacement intervals). 

 

 
Figure 22: Total cost for varying spare levels 

From Figure 21 it can be seen that repair cost are the greatest cost factor. The pattern of the repair 

cost stabilizes when 𝑆  increases. This can be explained with the fact that the timing of 
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Figure 21: Results benchmark scenario 
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replacements stabilize, as 𝑋𝑖𝑗𝑡  becomes independent of 𝑠𝑡  (always sufficient spares to perform 

replacement). Then, 𝑋𝑖𝑗𝑡  only depends on the number of (alerts and) failures, which are 

generated from the same constant failure distribution. The difference in total cost between 𝑆 = 5 

and 𝑆 = 6 is close to the price of a spare. This pattern is repeated for larger values of 𝑆.  

Regarding the number of maintenance intervals and the average value for 𝑐  (number of 

components replaced within the same interval) we find that policy 2 always performs single 

replacements and the other policies show increasing values for 𝑐 as 𝑆 increases. 

 
Figure 23: Value of c for varying spare levels 

 

 
Figure 24: Average number of maintenance intervals for varying spare levels 

In the overview of Table 15 the four policies are compared based on cost and maintenance 

intervals. In addition, the variation in 𝑆 is included. The effect on spare levels is of special interest 

at KLM and in this study, due to the hypothesis that PdM results in higher spare levels (due to a 

decrease in MTBR). In Chapter 2 we explained this is one of the main counter arguments at KLM 
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Below we find the results of the predictive policies (compared to policy 1, the current corrective 

policy).  

In the last column, the average percental change for the three mentioned KPI’s was given. Based 

on this evaluation with average %change, policy 3 is the best policy.  

 

Table 15: Policy comparison overview (run length = 3 years) 

Policy %change %change %change Average 
%change 

1 N/A N/A N/A N/A 

2 -25% -40% +110% +15% 

3 -27% -20% -4% -17% 

4 (q=9) -29% -20% +23% -9% 

 

The total cost of the predictive policies differ little from each other. However, spare levels and 

maintenance intervals have high variations. All policies replace approximately the same amount 

of components (total 𝑐), however, policy 2 always performs single replacements. This is identified 

as the cause for the lower spare level with policy 2. Combined replacements result in higher peaks 

in demand, and therefore stockouts and lease components. So, to satisfy the lease constraint, 

policies that combine replacements require higher spare levels. The main drawback of policy 2 is 

the major increase in number of maintenance intervals: +110%. This would have a major effect 

on maintenance capacity at KLM. 

Policies 3 and 4 result in lower total cost, due to reduction of repair and spare cost. The number 

of maintenance intervals also has a significant increase with policy 4 (> 20%). 

In Section 5.3.3 the formulas for confidence intervals were given. First, the 95%-CI of total cost 

was derived for all policies, given in Table 16. It can be concluded that average total cost are not 

significantly different for the predictive policies because the intervals overlap. The 95%-CI are 

narrow as the width is at most 𝑥% of the observed mean.  

Table 16: 95%-Confidence Intervals for average total cost 

Policy Lower Bound (LB) Upper Bound (UB) UB – LB (width) 

1    

2    

3    

4 (q=9)    

 

When a paired-t approach is applied for the number of maintenance intervals, it can be clearly 

identified that the policies have different behaviour. 𝑊 is defined as the difference in number of 

maintenance intervals of policies 𝑗. A 95%-CI for 𝑊 is constructed for 𝑗 = 2,3,4. Table 17 shows 

that there are no intervals that contain the value 0, so therefore the policies are significantly 

different in this KPI. 

Table 17: 95%-Confidence Intervals for number of maintenance intervals 

𝑾 LB UB 

𝑾 = 𝟐− 𝟑 50 54 

𝑾 = 𝟑− 𝟒 -15 -10 

𝑾 = 𝟐− 𝟒 37 42 
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6.2 2K-FACTORIAL DESIGN 

In Table 11 the layout of the 2k-factorial design was presented. The responses of all the scenarios 

are expressed in total cost. Here we define 𝜇𝑗  as the average total cost of policy 𝑗 in the benchmark 

scenario, see also column 2 of Table 15. The effects of the parameters are given as a fraction of 𝜇𝑗 .  

Table 18 shows the main effects of the parameters included in the 2k-factorial design. Recall that 

this can be interpreted as: ‘the average change in total cost when the parameter value shifts from 

‘−‘ to ‘+’’. The parameter values corresponding with ‘−‘ and ‘+’ can be found in Table 28 in the 

Appendix. From the results in Table 18 we can conclude a few things: 

- A change in major repair cost has the largest effect on total cost for all policies; 

- A shift from the ‘– value’ to the ‘+ value’ in Prognos’ sensitivity ratio has more impact on 

cost than a similar shift in the prediction horizon;  

- A reduction in repair TAT always saves cost, for all policies. 

When these numbers are interpreted, the reader should be aware that these results are generated 

with 10 replications instead of 20. Randomness can have a larger impact in these results. 

Therefore, only general conclusion are derived to identify focus points for improvement.  
Table 18: Main effects of the 2k-factorial design parameters, expressed as the relative impact on total cost 

Policy PH TAT TATreduction. Sensitivity MinorRC MajorRC 

1 N/A -4% N/A N/A N/A -21% 

2 -1% -8% -4% -5% -12% -20% 

3 -3% -12% -2% -10% -9% -20% 

4 -4% -9% -3% -12% -13% -18% 

 

Regarding interaction effects, we are cautious in deriving conclusions, because of the potential 

large variability. When the interaction effects are expressed as a fraction of total cost, effects 

remain between the bounds of −3% and +3%. Knowing that the influence of randomness might 

be large in this analysis, the differences are considered insignificant and we do not derive 

conclusions regarding this aspect. Further research should be performed to estimate the impact 

of potential interaction effects. Thereby it may be mentioned that results so far of the analysis on 

interaction effects did not show any unexpected results. Also, results seemed to indicate that:  

- An increase (form – to +) in PH has more effect when the repair TAT has its ‘+’ value. 

Because then: 

o In the ‘–‘ PH case: 𝑃𝐻 < 𝑇𝐴𝑇 

o In the ‘+’ PH case: 𝑃𝐻 > 𝑇𝐴𝑇 

This seems to indicate that this ratio is important for benefits, which corresponds with the theory 

of demand lead time mentioned in Section 3.1.2.  

From Table 16 and Table 17 in the previous section we know that a single analysis based on total 

cost can be misleading: Table 16 shows that the average total cost of the predictive policies are 

not significantly different (because the confidence intervals overlap), however, Table 17 shows 

that the behaviour of the policies is definitely different because the replacement pattern varies a 
lot per policy. The cost structure of the model leads to the same total cost, but the performance 

on terms of impact on maintenance capacity should not be neglected.  

To create more insight in effect of parameter shifts, the main effect on spare levels is also given 

in the table below. Here, the spare level corresponds with the minimum number of spares 

required to satisfy the lease constraint (also for policy 4).  
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Table 19: Main effects of the 2k-factorial design parameters, expressed as the relative impact on minimum S (𝑆𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡) 

Policy PH TAT TATreduction. Sensitivity MinorRC MajorRC 

1 N/A -20% N/A N/A N/A N/A 

2 -4% -38% -13% -13% N/A N/A 

3 -3% -47% -9% -16% N/A N/A 

4 -6% -26% -7% -7% N/A N/A 

 

From Table 19 we can conclude that the repair TAT has a major impact on spare levels, which 

corresponds with all knowledge from literature and also with the formulas used at KLM to 

estimate spare levels. In addition, these results also imply that a change in sensitivity ratio has 
more effect on total cost than a change in prediction horizon. This result can be explained with 

the fraction of repair cost in total cost, which is very large (see Figure 21). A decrease in sensitivity 

will directly result in more major repairs with high cost, while a decrease in PH will also result in 

higher cost but this depends on more factors and has a more complex relation. This makes it more 

difficult to quantify the benefits of a larger PH.   

6.3 OTHER EXPERIMENTS 

In Table 8 all variable parameters that are input for the experimental design were introduced. 

The previous section discussed the impact of the parameters included in the 2k-factorial design. 

This section provides an analysis for the other factors (given in the right column of Table 8): the 

threshold for the lease constraint, the failure distribution, extended policy performance, the 

impact of stochastic PH and TAT and policy performance in a large fleet. These experiments are 

run with 20 replications. 

6.3.1 Lease constraint analysis 

To analyse the impact of a varying threshold of the lease constraint, Figure 25 shows the average 

number of leases per year for different spare levels. For this purpose, the average number of 

leases from the model output with a run length of 3 years was divided by 3. It can be shown that 

policies 2 and 4 satisfy the lease constraint at 𝑆 = 3 when the lease constraint is set to 1 per year 

on average. The other policies require higher spare levels. This is explained with the fact that 

policies 2 and 4 act very early on demand, and therefore MEL situations are mostly avoided.  

From this figure it can easily be derived what the ‘price’ is for a different lease constraint 

threshold in terms of spare levels. For instance, if one would like to reduce spare levels in policy 

1, it will approximately result in an increase of 3 to 4 lease components on average per year. When 

the price of a lease part is considered, it might be more cost efficient (in terms of spare part cost) 

to increase the inventory level. This corresponds with current practice at KLM E&M: leasing parts 

is an exception.  
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Figure 25: Average number of leases per policy for varying spare levels 

6.3.2 Failure distribution 

To analyse the impact of a different failure distribution, a Weibull distribution was used as input. 

This distribution was the best fit for the empirical distribution derived in Appendix A. In addition, 

the Weibull distribution is one of the most widely used distributions in reliability and survival 

analysis (Asgharzadeh, Valiollahi, & Kundu, 2015). All other settings of the benchmark scenario 

are kept the same. The Weibull distribution is given as (Papoulis & Unnikrishna Pillai, 2002):  

 

𝑓(𝑥; 𝜆, 𝑘) = {
𝑘

𝜆
(
𝑥

𝜆
)𝑘−1𝑒

−(
𝑥
𝜆
)𝑘
   𝑥 ≥ 0,

0                            𝑥 < 0

 

 

Where 𝑘 is the shape parameter and 𝜆 the scale parameter. When the Weibull distribution was 

plotted to the replacement data from KLM, the values 𝑘 = 1.575 and 𝜆 = ⋯ (days) approximated 

the histogram best. When the model is run with Weibull distribution f(x; 𝜆, 1.575) and the values 

for the decision variables found in Section 6.1 (benchmark scenario), we find that the model 

results deviate little from the benchmark result. The percental difference is given in Table 20. It 

can be seen that the Weibull distribution results in slightly less frequent failures, as all policies 

replace 8%-10% less components during a model run (total 𝑐). 

 

Table 20: Percental differences between empirical F(t) and Weibull F(t) per policy per KPI 

Policy  1 (S=5) 2 (S=3) 3 (S=4) 4 (S=4, q=9) 

Total cost -6% -8% -8% -2% 

Maintenance intervals  -9% -8% -11% -14% 

Total 𝒄 -8% -8% -10% -9% 

Average 𝒄 per interval 1% 0% 1% 5% 

 

From this comparison we conclude that the effect of using a Weibull distribution is rather small, 

as all differences are smaller than 14%. Since the Weibull distribution seems a good 

approximation, the model is also run with 𝑘 = 1.575 and 𝜆 = 0.5𝜆 to evaluate the effect of more 
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frequent failure occurrences on policy performance. The results are given in the same layout as 

used in Table 15. 

 

Table 21: Policy comparison in the scenario with a Weibull failure distribution with high frequency of failure occurrences 

Policy %change %change %change Average 
%change 

1 N/A N/A N/A  

2 +8% -25% +133% +39% 

3 -16% -25% 5% -12% 

4 (q=12) -20% -25% 20% -8% 

 

From these results it can be concluded that the predictive policies perform less good compared 

to the current corrective policy, when a Weibull distribution is run with more frequent failure 

occurrences. Policy 3 still has the best performance but policy 2 is far worse and even results in 

higher total cost due to the major increase in number of repairs and the associated cost. When 

the same experiment is performed with 𝑘 = 1.575  and 𝜆 = 2𝜆 , we find opposite results: 

compared with policy 1, policies 2-4 perform better in this scenario. Policy 3 still has the best 

results overall. 

6.3.3 Extended policies performance 

In this experiment the extended policies (explained in Section 4.2.7) are tested. The extended 

predictive policies only replace alerted components, which results in an increase in maintenance 

intervals. When a failed component is left on wing, the next DIL exceedance will occur within a 

shorter time. Model output shows that it does not have an effect on spare levels. The effect on 

total cost and maintenance intervals is shown in Table 22. It is shown that the extended policies 

save total cost (by saving repair cost, up to 20%), but the effect on maintenance intervals is 

significant. Policy 2 has the same results (there is no difference between the extended version 

and default version of this policy) and is therefore left out of the results in Table 22. 

Table 22: Results extended policies 

Policy Total cost Maintenance 
intervals 

Average 

1 -5% +58% +26% 

3 -18% +69% +25% 

4 -20% +32% +6% 

 

6.3.4 Stochasticity for PH and TAT 

So far, the model assumed that the PH and TAT has deterministic values. To evaluate the impact 

of this assumption to some extent, the model is run with randomly generated values for the 

prediction horizon and repair TAT. For this purpose, the PH and TAT are modelled with the help 

of a normal distribution:  

𝑃𝐻 ~ 𝑁𝑜𝑟𝑚𝑎𝑙(𝑃𝐻𝑑𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑖𝑠𝑡𝑖𝑐 , 𝑥
2) 

𝑇𝐴𝑇 ~ 𝑁𝑜𝑟𝑚𝑎𝑙(𝑇𝐴𝑇𝑑𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑖𝑠𝑡𝑖𝑐 , 𝑦
2) 

Where the values 𝑥 and 𝑦 represent half the difference between the ‘+’ and ‘−‘ value from the 

factorial design. In Table 23 it can be seen that stochasticity increases cost and maintenance 

intervals, but the effect is small.  
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Table 23: Comparison deterministic and stochastic scenario 

Policy %change  

Total cost 

%change  

Maintenance intervals 

1 +1.1% +3% 

2 +1.7% +1% 

3 +2.0% +4% 

4 +0.2% +4% 

 

6.3.5 Large fleet size 

The final experiment evaluates the impact of an increased fleet size. In this experiment, the fleet 

size is increased to four time the size of the original fleet of KLM: from 13 aircraft to 52 aircraft. 

The results are reported the same way as in Section 6.1.  

 

 

  
 

Figure 27: KPI values per policy per spare level 
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Figure 26: Results experiment with large fleet 
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Table 24: Policy comparison overview (large fleet) 

Policy %change %change %change Average 
%change 

1 N/A N/A N/A N/A 

2 -25% -42% +134% +22% 

3 -32% -32% +4% -20% 

4 (q=29) -31% -26% +25% -11% 

 

All predictive policies perform better (when compared with policy 1) when a large fleet is 

considered. On average, policy 3 shows the best results with an average total cost reduction of 

32% and a reduced spare level from 19 to 13. 

6.4 CONCLUSION 

The case study performed in this chapter shows promising results for predictive maintenance on 

the CSU component at KLM E&M and for PdM in general. In the benchmark scenario, which aims 

to represent to current situation of the CSU as accurate as possible, average total cost are 

decreased with 25% to 29% with predictive policies. When the impact on maintenance capacity 

is also considered, policy 3 has the overall best performance in the benchmark scenario. This 
policy realises a total cost reduction of 27% while not increasing the impact on maintenance 

capacity. The cost reduction is realised due to a reduction in repair cost as well as a reduction in 

spare part cost. All predictive policies result in lower required inventory levels. The latter is 

accomplished with variability reduction of the average number of components in repair. The 

bigger time frame realised by alert notifications increases flexibility in the planning of 

replacements. This enables to avoid high peaks in spare part demand and therefore the lease 

constraint can be satisfied with smaller inventories. With this result, the main counter argument 

for PdM implementation (that it would increase spare levels) is rejected within this study. 

The average total cost are close with all predictive policies, and the confidence intervals have 

shown that these values are not significantly different. However, the individual cost factors, such 

as repair cost and replacement cost, are significantly different. Also the number of maintenance 

intervals are significantly different with all predictive policies. Therefore it can be concluded that 

although the policies have similar output for average total cost, their behaviour is clearly 

different. 

A major drawback of predictive policies that are aimed at minimizing repair cost, is the major 

increase in number of maintenance intervals. Although the number of repaired spares remains 

within certain bounds (total 𝑐), the frequency of single replacement actions can become very high. 

This will result in an increase in workload for line (or base) maintenance and could create 

scheduling issues. 

To benefit from inventory reductions, this study showed that Prognos’ sensitivity is the most 

important performance measure of predictions. An increase in sensitivity has a larger effect on 

spare levels than the Prediction Horizon when the 2k-factorial design of Table 28 is considered.  
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7 IMPLEMENTATION 
With the results from the case study and the knowledge gained from literature, this chapter 

provides suggestions for the implementation of Predictive Maintenance at KLM E&M, and thereby 

answers research question 8. It proposes a few guidelines on how KLM should benefit from new 

available information about component health.  

8. How should KLM E&M implement predictive maintenance? 

In the first section, the implementation of PdM for the CSU component from the case study is 

discussed. Section 7.2 provides suggestions for the other components in Prognos’ current and 

future scope, and section 7.3 provides recommendations for PdM at KLM E&M in general. Finally, 

Section 7.4 is a conclusion of the chapter.  

7.1 IMPLEMENTATION OF A PREDICTIVE POLICY FOR THE CSU COMPONENT 

In our case study we found that policy 3 was the most suitable policy in terms of number of 

maintenance intervals, average total cost and spare part inventory. This policy replaces 

components on a tail when at least 2-out-of-4 components have an alerted or failed status. It is 

recommended to adopt this policy for the CSU component. This policy is similar to the current 

corrective policy, however there are two important differences:  

1. The policy acts on predictive alerts; 

2. The policy uses current spare levels as input for a replacement decision to reduce 

variability in spare part demand. 

With (1), repair savings are realised and with (2) spare part levels can be reduced. To benefit 

from repair savings, the MCC has to schedule replacements on aircraft as soon as there 2 alerted 

components on a tail or a combination of 1 predictive alert and 1 failure. When KLM E&M also 

proactively wants to benefit from spare part optimisation, the decision in the MCC has to be 

coupled with current inventory levels. This requires additional implementation effort, however a 

rather simple solution might already suffice. For instance, Prognos could include inventory levels 

in the application and together with Component Services, a recommendation regarding 

predictive replacement can be provided to the MCC. When the inventory level exceeds a certain 

threshold (safety stock limit), predictive replacements can always be performed. When stocks 

drop below the threshold, inventory is dedicated to MEL replacements only. That way, repair 

savings can be realised while the risk on a stockout is kept low. Further research should 

determine how this threshold for safety stocks should be set, when demand for all other pool 

clients is also considered.  

The speed of the operation of transferring information is vital in order for PdM to be as effective 

as possible as any delay in this operation will lead to the failure developing further (Carmen 

Carnero, 2006). In the current organisation of KLM E&M it is not directly clear who would be 

responsible for coordinating replacement decisions that are coupled with supply chain capacity. 

This study included spare levels in replacement decisions, but the state space is obviously not 

limited to inventory levels as an indication of the maintenance supply chain status. Especially 

when repairs of the CSU component are performed in-house in the future, it might also be 

preferable to consider repair shop workload in replacement decisions. Experiments have shown 

that repair TAT has a large impact on cost and spare levels, so if an increased repair workload 

results in longer TATs, cost reductions might be small or even worse; it results in a cost increase. 

To facilitate the coordination of supply chain and replacement decisions, a ‘control tower’ might 

be a solution for non-routine replacements. Future research should address how to design this 
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coordination process and studies like the paper of de Smidt-Destombes et al. (2006) can be used 

as guidance for integrating replacement decisions with repair capacity. 

7.2 OTHER COMPONENTS IN PROGNOS’ (FUTURE) SCOPE 

The implementation suggestions mentioned in the previous section are applicable to the CSU 

component, however, some aspects also concern other components from Prognos’ current and 

future scope. In the experiments from Table 12 a few scenarios were tested, to analyse the impact 

of factors such as repair cost and failure distribution. In the next sub sections, we discuss the 

findings that are relevant for implementing PdM with other components as the CSU.  

7.2.1 Absence of variation in minor and major repair cost 

Figure 21 has shown that the major cost factor in the average total cost in our study is repair 

costs. The 2k-factorial design also showed that repair costs have the largest main effect on total 

cost. Therefore, it can be concluded that the impact of repair savings is significant in the expected 

benefits with PdM. Components with expected repair cost reduction are therefore preferred to 

include in Prognos scope.  

When the effect of minor and major repairs is absent, spare part cost can be reduced. Our study 

has shown that inventory levels can be reduced with at least 20% for components in 3-out-of-4 

systems. This percentage increases as failure occurrences or fleet size increases. So, if the effect 

of minor and major repairs is absent it is advised to prioritize components with high spare part 

cost. 

7.2.2 Worse prediction model performance 

The performance of Prognos prediction models on the CSU component is very high. Not a single 

false alert has been signalled and all failures could have been predicted far in advance. However, 

not all components have characteristics that allow Prognos to generate such stable alerts. For 

instance, failure behaviour of electrical components often has a much more random nature. The 

experiment with the 2k-factorial design varied the values of the parameters Sensitivity and 

Prediction Horizon to estimate the impact of poor prediction performance on cost. Table 18 and 

Table 19 shows the result of this experiment and it can be concluded that the cost reductions do 

not decrease proportionally with the decrease in performance (in the CSU case). Thus, relatively 

poor prediction performance on Sensitivity and PH can already lead to significant cost reductions 

and should therefore not be a reason to refrain from implementing PdM on a system. High false 

alarm rates however might lead to an increase in cost and should therefore also be considered 

when implementing PdM (Hölzel N. , Gollnick, Schilling, & Neuheuser, 2012). False alarms were 

not considered in this study.  

7.2.3 Components in a 𝟑-out-of-4 structure with a Weibull failure distribution 

In the default scenario where the case study of the CSU component was tested, an empirical 

distribution was used to simulate component failures. Other components can be simulated 

according to the same method, however, when a component's failure distribution approximates 

a Weibull distribution, the results from Experiment 4 (Section 6.3.2) can be used to estimate 

policy behaviour for that component (provided that the component has a 3-out-of-4 structure). 

When a component has more or less frequent failure occurrences (with a Weibull distribution), 

policy 3 is always advised. 
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7.2.4 Components in other 𝒌-out-of-𝑵 structures 

Component redundancy is very common in aircraft systems. MEL restrictions are violated when 

1 or 2 components (out of 𝑁) are failed. These restrictions need to be solved within a certain 

Rectification Interval. In this section we provide recommendations for the other components in 

Prognos’ scope based on their system structure and RI. The components are listed again below.  

Table 25: Sytems implemented in Prognos in Q3 and Q4 2018 

Component (Q3) Repaired by QPA Criticality (MEL restrictions) 

747 Electrical Generator (EG) KLM E&M 4 Solve within 3 days if 1-out-of-4 are failed 

787 Cooling System Unit (CSU) OEM 4 Solve within 10 days if 2-out-of-4 are failed 

787 CSU Motor Controller (CSU MC) AFI/OEM 4 Solve within 10 days if 2-out-of-4 are failed 

787 Air Compressor Epcor 4 Solve within 10 days if 1-out-of-4 are failed 

 

As the CSU Motor Controller has the same characteristics as the CSU component, policy 3 is also 

recommended. The 747 Electrical Generator is more critical to airworthiness as the CSU (MC) 

component and has no ‘slack’ component: 1 failure results in MEL violation right away. Therefore, 

the designed policies from this study are not suitable. However, based on the insights from the 

conceptual framework in Figure 15, it is advised to replace all degraded items preventively, if a 

spare is available. That way, repair cost might be saved and there will be no (significant) effect on 

spare levels. The same advice holds for the Air Compressor as long as the model performs well. 

7.3 DEVELOPMENT OF PREDICTIVE MAINTENANCE AT KLM E&M 

Chapter 1 presented a problem cluster with an overview of the problems related to unsuccessful 

implementation of PdM at KLM E&M. This study designed and tested various predictive 

replacement strategies in order to provide insight in how the ‘future state’ with PdM should be 

designed. It is recommended to adopt predictive replacement policies that replace components 

according to their current corrective ‘Demand Initiation Level’ but to also consider alerts as 

demand. Thus, instead of initiating replacement when 2-out-of-4 are failed, the MCC should now 

initiate replacement when 2-out-of-4 are alerted and/or failed. This strategy can be applied for 

other components with a 3-out-of-4 structure, provided that repair savings are expected. To 

benefit from inventory reductions, replacement decisions have to be integrated with current 
stock levels. It is recommended to also include repair workload in replacement decisions and 

maintenance planning. The latter was not included in this research.  

Regarding the organisational aspects in the problem cluster of Figure 4, this study provided some 

insight as well. The main counter argument for the implementation of PdM was a decrease in 

MTBR, with all its consequences, such as an increase in resource demand and operational 

disruptions. These consequences conflict with various stakeholders interest and objectives, as 

mentioned in Table 3. However, in this study it was shown that a predictive policy, that benefits 

from increased flexibility by reducing repair cost and spare part cost, can be implemented with a 

negligible decrease in MTBR. This can be used in communication about PdM implementation 

throughout the organisation. 

Finally, to succeed in implementing PdM, the process related to component replacements 

requires adjustments. For instance, warranty restrictions of components need to be considered 

and test limits of equipment used in troubleshooting need to be adjusted to predictive removals.  
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7.4 CONCLUSION 

To capitalize on potential benefits related to PdM, it needs to be implemented correctly. In this 

chapter a few suggestions were provided for this implementation:  

- Apply policy 3 for the CSU component;  

- Integrate replacement decisions with the current status of supply chain KPI’s, such as 

spare levels and repair workload; 

- Communicate the findings of the case study throughout the organisation. Include that the 

decrease in MTBR is negligible when policy 3 is applied and that spare part inventory can 

be reduced; 

- Look for similarities with this research in other case studies. This might enable to derive 

similar conclusions for these components, and increase potential benefits; 

- Use repair cost savings and high spare part procurement prices as criteria for adopting 

new components in Prognos’ scope; 

- Implement predictive policies for the other components within Prognos’ scope as 

discussed in 7.2.4. 
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8 DISCUSSION 
This Chapter provides a discussion on the chosen method, policy and model desgin, the results 

and the implementation of Predictive Maintenance at KLM E&M.  

8.1 METHOD 

This research aimed to estimate the potential benefits of implementing PdM at KLM E&M, by 

designing predictive component replacement policies that use Prognos information as input, and 

are aimed at minimising repair and spare part cost. Policies were designed with the purpose of:  

- Minimising repair cost (policy 2) 

- Minimising spare part levels (policy 4)  

- Reducing repair cost and spare levels while minimising the impact on MTBR (policy 3).  

When the policies were tested it turned out that repair cost as well as spare part levels can be 

minimised with policy 2, but this policy drastically increases the number of replacements. Policy 

4 did not distinguish itself based on the criteria.  

With the chosen approach, policies do not lead to optimality: it remains uncertain whether the 

policy with the best performance, policy 3, is an optimal policy. An estimation of benefits was set 

as the highest priority in this research such that this research helps to construct a solid business 

case for Prognos. Due to a gap in literature, policies were designed from scratch. If the objective 

of this research was to find an optimal policy, the scope of the research had to be narrowed down. 

Proving optimality is complex and time consuming, and would therefore have an effect on scope. 

8.2 POLICY AND MODEL DESIGN 

The simulation model also has limitations, due to simplifying assumptions. First of all, it neglects 

the operational flight schedule and shipping time. Once a replacement is required according to 

the active policy, it replaces the components immediately given that the required spares are 

available. In reality, the MCC needs to assign a time slot in the maintenance schedule and allocate 

all resources required for replacement. This can take multiple days in which the aircraft is 

operational and components degrade further, which results in higher repair cost. This will not 

have an impact on the preferred policy, but can reduce cost savings. On the other hand, there are 

also potential cost reductions when the flight schedule is considered, such as the reduction of AOG 

or UGT occurrences due to increased planning flexibility. 

The model assumes perfect demand information for all alerts. All alerts result in failures within 

exactly the Prediction Horizon. It would be a valuable addition to include uncertainty to this 

timing aspect as well and also include the effect of false alarms. False alarms can increase cost 

and when failures occur earlier than expected, this reduces expected benefits. On the contrary, 

when failures occur later than predicted it could increase repair savings. If predictions are 

structurally too early, the effect of a decrease in MTBR is expected to be minor, provided that the 

ratio of PH:MTTF is small (which is the case for the CSU) and there is a 3-out-of-4 structure.  

Another simplifying assumption that was made in the policy design and the simulation model, is 

the classification of alerts and failures. Although Prognos makes this classification based on its 

implemented algorithms, thresholds and inputs from sensor data, there might be more 

information to take into account. This study assumed that a failure or alert is True of False (as 

given in the GUI of Prognos), all failures result in major repair cost and alerts always result in 

failure after the PH. There might be more information in the sensor data to take into account that 
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make these assumptions unnecessary, about various failure modes, expected prediction horizon, 

associated repair TAT and cost. When more information becomes available (with acceptable 

accuracy), policies can be formulated more specific. In this exploratory study and with the current 

maturity of Prognos, the inclusion of these aspects was considered too detailed and too uncertain. 

However, the potential benefit of this extra information should not be underestimated. 

Finally, the usability of the computer simulation model is low as it is very specific and constructed 

in software that is not available at KLM E&M. However, the conceptual model and the policy 

design can be used in future research at KLM E&M. 

8.3 RESULTS 

Results are a consequence of the input factors and the model. Comments on the simulation model 

are discussed in the previous section. Regarding the input factors, cost factors are hard to 

estimate. Therefore, the policies were evaluated based on relative differences. Although this helps 

to compensate for the effect of input factors, it does not account for the fact that cost factors are 

not always deterministic. For instance, the cost incurred with replacement include variable 

labour cost and fixed setup cost. However, when a replacement requires 2 flights to be adjusted 

(for instance, an aircraft scheduled for a certain flight needs to be swapped with another aircraft), 

it requires more effort (and also cost) to schedule this replacement than when a replacement can 

be performed during base maintenance or during line maintenance in between flights. 

To simulate failure occurrences, the model uses a failure distribution to determine the timing of 

failures. However, the replacement data used to construct a histogram that serves as empirical 

failure distribution represents the time between removals (see also Figure 1). The time to 
removal is a consequence of a certain replacement policy and therefore the histogram does not 

provide an accurate representation of the failure behaviour of the CSU component. Validation of 

the model with the empirical distribution resulted in a good approximation of the historical 

values of 2018 for the number of replacements and leases; however these historical values are 

also just 1 observation. Fortunately, model results were similar when a standard Weibull 

distribution was used to generate failure occurrences. In the future, the BAR team could address 

this issue by using data from Prognos to construct actual failure distributions. That way, the MTTF 

can be used for future studies instead of the MTBR. 

8.4 CONCLUSION 

In this chapter the limitations of the research were discussed. Most limitations were caused by 

incomplete data and due to simplifying assumptions that had to be made to reduce complexity. 

The simplifications can both have negative and positive effects on the estimated benefits. 

The study provided insight in the size of supply chain benefits and the impact of predictive 

policies on system dynamics. The objective of the research was to perform an exploratory study 

on potential repair savings and spare part inventory reductions of predictive component 

replacement policies; the results should be interpreted with that objective in mind. Future 

research should tell whether a better policy can be designed, but this study has already shown 

that PdM can realise significant cost savings in repair and spare part cost.  

Although this research has contributed to a solution of the problems in the problem cluster 

(Figure 4), it did not solve them. The unknown ‘target situation’ is still not clear after this thesis. 

However, the study has shown that repair cost and spare part cost are reduced in the target 

situation with PdM. It provides motivation to further explore supply chain optimisations with 

PdM.  
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9 CONCLUSION AND RECOMMENDATIONS 
This research performed an exploratory study on the effect of predictive maintenance on repair 

and spare part cost. It aimed to provide insight in how a predictive component replacement policy 

should be designed such that spare part and repair cost are minimised, and how this could be 

implemented for components within KLM E&M’s Prognos’ scope. 

It can be concluded from literature that supply chain benefits are promising. In Chapter 4, 

predictive component replacement policies that capitalize on these benefits were designed for a 
3-out-of-4 system. The design of these policies and the insight in their performance is a 

contribution to literature, as it provides a case study that evaluates predictive replacement 

policies that are aimed to reduce spare part investment and repair cost for aircraft components 

in a 𝑘-out-of-𝑁 structure. This joint improvement in a predictive maintenance context was not 

found in literature.  

The case study results confirm what was found in literature: prognostic failure information can 

result in reduced spare part inventory. The most beneficial policy that was found in our study was 

a policy that initiates replacement on an aircraft when at least 2 out of 4 components are alerted 

and/or failed. This policy is expected to result in a cost reduction of approximately 27% compared 

to the current policy for the CSU component on KLM’s 787 fleet, while the number of 

replacements remain the same. When a large fleet of 52 aircraft is considered, this policy reduces 

the CSU spare part inventory levels with 32%. Cost reductions are realised by repair cost 

reduction and lower required spare levels. The predictive policies enable to lower stock levels by 

reducing the variability of components in repair. This variability is reduced as a result of the 

inclusion on-hand stock levels in replacement decisions. 

‘A structural redesign of the spare parts planning at the operational level is possible after the 

company extends their predictions to more parts. Therefore, developing this redesign of the spare 

parts planning is another step that needs to be taken and would require additional research by 

the company’ (Topan, Tan, & van Houtum, 2018). In the context of this research we can derive a 

similar conclusion as Topan et al. At KLM E&M spare part inventories could be reduced with the 

implementation of PdM, however it would require that replacement decisions have to be 

integrated with information about current on-hand stock levels (and, potentially, also repair 

capacity). In addition, KLM E&M has to change from traditional corrective decision making to 

proactively acting on prognostic information. These two aspects require an organisational 

redesign of spare parts planning and replacement decision making. 

This research has shown that without this redesign, predictive component replacement policies 

will already save cost with the reduction of repair cost. Therefore it is recommended to adopt 

predictive replacement policies for all components that have potential repair cost savings, 

provided that the ratio PH:MTTF is small. When KLM E&M is able to capitalize on spare part 

benefits as well, it might lead to a competitive advantage in the MRO market.  

The quantitative results of the study presented in Chapter 6, showed that a focus on repair cost 

reduction and repair TAT has the largest effect on average total cost and spare levels respectively. 

Therefore it is recommended to focus on the improvement of these factors in the future in 

combination with PdM.  

Components that have short repair TAT’s and/or long expected prediction horizons are expected 

to benefit most from spare part benefits. These two criteria, preferably combined, will result in 

high planning flexibility. This can be considered as a major benefit, especially for components that 

are scarce or difficult to obtain. 
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9.1 SUGGESTIONS FOR FURTHER RESEARCH 

A future step in implementing PdM at KLM E&M is the redesign of spare parts planning and 

replacement decision making. It is challenging to drive change in a rather fragmented 

maintenance organisation, therefore this process requires a clear definition of all the phases 

involved with this change. It should be investigated how decisions ‘in the front’ (i.e. the 

replacement decision) can be aligned with the situation ‘in the back’ (i.e. the current status of the 

supply chain), leading to optimised integral decision making. The introduction of a ‘control tower’ 
was mentioned as a potential solution for the coordination of these aspects. This coordination 

should include decisions regarding prioritising replacements and deliveries, grouping 

replacements and allocating resources. Further research should address how this coordination 

could be implemented and how KLM E&M can ensure that all data that is used for these decisions 

is accurate. 

This study focused on repair cost and spare part cost, however there are more cost factors to 

consider when a business case is constructed for Prognos. Prognos can reduce the number of ‘no 

failure found’ occurrences in the repair shop with improved diagnostics and optimise scheduling 

of replacements when a bigger time frame can be used. New studies should investigate how the 

latter can be exploited. 

This study can be improved with the development of an optimal policy or (and) with expansion 

of inputs used for decision making. For the latter, it is recommended to explore more factors, such 

as the impact of including current levels of repair capacity, lease components and the time passed 

since an alert notification, but also to improve the input variables that were used in the policies 
of this study. For instance, instead of defining a failure as a binary variable, different failure modes 

could be specified and their associated expected repair work scope. In addition, KLM E&M should 

explore how to include multiple inventory locations and shipping components to airlines 

worldwide in a spare part management model and how to manage the associated complexity. 

All these recommendations for further research are aimed at achieving a future target situation 

for aircraft maintenance. Up to this point, traditional preventive and corrective aircraft 

maintenance strategies have been widely applied in MRO organisations. The ‘new era’ of data-

driven decision making, driven by advanced sensor technologies and data science, is expected to 

have a major impact on future aircraft maintenance. Traditional maintenance concepts need to 

make place for condition-based maintenance enabled by real-time monitoring of continuous data 

streams without sacrificing safety constraints. These new concepts should enable to optimise 

maintenance activities by performing maintenance at the right time and at the lowest cost. A shift 

must be made, ‘from reactive monitoring to proactive monitoring’, which will bring challenges on 

all organisational aspects. KLM E&M should push forward to this shift by continuously improving 

monitoring, developing smart maintenance policies, investing in an agile organisation and 

discussions with OEMs on how to improve the monitoring of their aircraft systems for a data-

driven maintenance perspective. In this way, KLM E&M can enable development of a future proof 

maintenance organisation and keep its competitive advantage in the MRO market.   
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APPENDICES 

APPENDIX A: NUMBERS AND FIGURES 

I. KPI’s for CSU component 

Table 26: Performance indicators for the CSU component 

Performance Indicator Value  

II. Benchmark scenario parameters 

Table 27: Default values of fixed and variable parameter in benchmark scenario 

Parameter Value  Parameter Value 

 

III. 2k-factorial design input factors 

Table 28: 2k-factorial design 

Experimental factor − value + value 

 

IV. Derivation of the empirical failure distribution 

To derive a failure distribution, replacement data was exported from the 

information management systems at KLM. This data includes all 

replacement data of all pool customers and presents the number of flight 

hours between instalment and removal. After cleaning the data, a 

histogram was plotted as shown in Figure 28. The X-axis shows intervals 

representing the number of days a CSU component was operational on an 

aircraft. On the Y-axis the number of replacements within that interval are given (or, frequency). 

The number of operational days was derived by dividing the flight hours with the average flight 

hours (FH) of pool customers and the average FH of KLM.  

 

 
 

Figure 28: Histogram of replacement data 

𝑁𝑜. 𝑜𝑓 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑎𝑙 𝑑𝑎𝑦𝑠 = 

𝐹𝐻

𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝐹𝐻 𝑝𝑒𝑟 𝑑𝑎𝑦
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V. Model validation results  

From KLM data it is known that there were x CSU replacements on KLM fleet, x spare components 

in total and there were no leases. These x spare parts needed to fulfil demand for all pool 

customers, corresponding with 160 aircraft (787 type). This corresponds with x spares for the 13 

aircraft of KLM (see formula below). If we run the computer model for a year with x and x spares, 

it results in the numbers given in Table 29. The results are close to the actual values for the 

number of replacements and the number of leases.  

𝑆𝑏𝑒𝑛𝑐ℎ𝑚𝑎𝑟𝑘 =
𝑆𝑝𝑜𝑜𝑙
𝑀𝑝𝑜𝑜𝑙

∗ 𝑀𝐾𝐿𝑀 =
𝑥

160
∗ 13 

Table 29: Output validation runs 

 
No. Spares No. Replacements  No. Leases  

Values 2018    

Model results 
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APPENDIX B: TECHNICAL DESCRIPTION OF THE SIMULATION MODEL 

I. Control Panel frame 

 

Figure 29: Control panel frame 

The control panel is the main frame of the model from which the system is managed. In the upper 

left corner we find links to the other frames of the model: Schiphol, the Logistic Centre and the 

Repair shop. These are described later in the other sections. 

The blue headers indicate modules: Experimental Factors, Model Output, Event Control, 

Experimentation, Performance Measurement and Fixed Input Parameters. The content of these 

modules will be explained in the next subsections. 

The icons with a blue M are methods and include logic programming in order to customize the 

simulation behaviour.  

Experimental Factors, Fixed Input Parameters and Model Output 

These three modules contain all variables that determine input and output. Input is categorized 

in experimental factors and fixed input parameters. The fixed input parameters remain 

unchanged during model runs. The experimental factors are categorized in decision variables and 

parameters. Given a scenario, which is expressed in parameters, the model finds the values for 

the decision variables that result in the best solution.  

Event control 

This section is responsible for starting and stopping simulation runs. Every time a new run starts, 

this section ensures that all settings are put back to default. Also, it controls the execution of 

methods that need to be triggered on a given date.  

 

The EventController starts, pauses and ends the simulation clock. It also lists all 
the discrete events in the event list.  

 

Method that is called before a new simulation run starts. It resets all variables, 
counters and table files. Also, it removes the components from the previous run 
from the system. 

 

 

Method is executed right after the start of a new run. It initializes all parameters, 
variables and (experiment) settings:  

- It calls the method ‘SetSchipholSettings’ to install the right settings in 
that frame.  

- It initializes the table FleetStatus, which contains an overview of the 
fleet and the number of alerts and failures on each tail 

- It checks whether the selected input settings are valid, otherwise an 
error message is created  

 

This method is called only once, at the beginning of all simulation runs and 
experiments. It sets all variables related to experimentation to zero. It calls the 
method SetExpSettings, to set all the variables related to experimentation and 
the method UpdateScenario to set all parameter values. 

 

 

This generator makes sure the method ‘SetDay’ is called every day. 
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This method:  

- Sets the counter t_current every day 
- Measures the inventory level at the beginning of the day and stores the 

information in the table ‘Inventory’ 
- Calls the method ‘DeleteWarmUpResults’ on the day corresponding with 

the warm-up length 
- After the run length is over, it calls the method ‘CalculateRunResults’ to 

produce the results of that run and store it in the table ‘RunResults’ 
- If the total number of runs of an experiment is executed, it calls the 

methods ‘CalculateExpResults’ and ‘SetExpSettings’. If the total number 
of runs is not reached yet, it resets and starts the simulation 

- If the total number of experiments is reached, it stops the simulation 

 

Experimentation 

This section is responsible to manage the model execution. It sets all parameters corresponding 

to the scenarios and updates the decision variables until the best solution is found. When a 

solution is found the next scenario is run. Scenarios should be entered by the model user before 

the run is started. 

 

Method responsible for the calculation of relevant run results and storing 
them in the table ‘RunResults’. At the end of an experiment, the table has 
results for the TotalRuns number of runs. 

 

Method responsible for the calculation of experiment results and storing 
them in the table ‘ExpResults’. The method also evaluates whether an 
experiment satisfies service constraints. The result of an experiment is the 
average value of all runs (replications). So the total cost of an experiment is 
the average total cost of all runs. 

 

In the ControlPanel the user can specify the length (in days) of the warm-
up period. This method is called at the end of this period and deletes all 
intermediate results. 

 

The code in this method sets the decision variables to new values. 
Depending on the results of previous experiments, it increases or resets the 
number of spares or/and DIL. 

 

Once the best values for the decision variables are found, the simulation 
stops experimenting in that scenario. The method UpdateScenario is called 
to move on to the next scenario (next row in the table ‘Scenarios’) and 
update all the corresponding experimental parameters. 

 

Stores the results of each run. Values are used to determine average values 
for KPI’s of experiments. 

 

Stores the results of experiments in each scenario. Deleted in between 
scenario’s to keep programming structured. 

 

The user has to copy the scenarios (s)he wants to evaluate in this table. 

Large factorial designs can be generated easily in programs such as Minitab. 
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Table with total results of all experiments and scenarios for policy 𝑗. After 
running the model, this output can be exported to Excel for analysis. 

 

Performance measurement 

 

Table used to determine the inventory level at the beginning of each day. It 
is useful for the determination of average inventory levels and, if the model 
is run with a high number of spares, it can create insight in demand 
patterns if the levels are plotted in a graph. 

 

 

Tracks the repair cost of all repairs.  

 

Table used to track the delivery performance. It logs the date when demand 
arises on a component and logs the replacement date. The time in between 
is the lead time. It creates insight for analysis and validation. For the 
derivation of service constraints, a more general method is applied (which 
is not component specific).  

 

This table is a log of all lease components. It is used to count the total 
number of leases and the associated cost. It also tracks the time between 
the supply of a lease component and the exchange of another serviceable 
spare. 
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Figure 30: Structure of methods in the Control Panel frame 

II. Schiphol frame 

 

Figure 31: Schiphol frame 
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Input Settings 

 

Method responsible for setting the initial settings in the Schiphol frame, such as the 
prediction horizon (time components spend in the ‘AlertBuffer’ before proceeding 
to the ‘FailureBuffer’) and it writes the right values in the ‘CreateComponents’ table, 
which is used by the source to create components. 

 

When components are created in the source, this method is called. It assigns all the 
component specific values to MU’s (moving units), such as the aircraft registration 
and the component ID. When an user-defined attribute (uda) is unknown yet, it set 
to a default value. 

 

Table used by the source to find how many components it should generate. 

 

This method installs components to the right aircraft. It can be called in the 
beginning of the simulation, to facilitate initial instalment. It is also called later in 
the simulation when a component is replaced and a tail needs a new part to be 
installed. This method can also be seen as ‘the gate’ before instalment on an aircraft. 
Therefore, this method also tracks performance data, such as delivery performance. 
Prior to installation on the aircraft, this method calls ‘SetTimeOnWIng’ to determine 
the Predicition Horizon, Time To Alert, or Time To Failure on a specific tail.  

 

Assigns the user defined attribute ‘Time To Alert / Failure’, in the program named 
as .MTBR. This time is set as the ‘processing time’ (operational time) on an aircraft. 
The code is programmed such that it derives this operational time from a failure 
distribution (experimental factor). The prediction horizon can be deterministic or 
stochastic (also an experimental factor). The prediction horizon is the time a 
component stays in the AlertBuffer. 

If the failure distribution is empirical, a random number is generated by the 
software which determines from which histogram bin the operational time is 
derived. Another random number determines, together with the value for Prognos’ 
sensitivity, whether the failure will be detected by Prognos (resulting in a time to 
alert instead of a time to failure). 

 

This table represents the empirical distribution and should be determined prior to 
running the simulation. 

 

Component Inflow 

 

Responsible for creating components.  

 

This represents an ‘infinite’ supply of lease components. In the beginning of 
the simulation, a large number of lease components is created and stored in 
this EmergencyBuffer. If a stockout occurs, and replacement is required 
according to MEL restrictions, this buffer supplies extra components. When 
a spare part becomes available from repair, it is sent back to the 
EmergencyBuffer.  

 

Basic method that returns a lease component to the method that called this 
method. 
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Same as GetLeaseComponent, now for a spare from inventory. 

 

The model includes some extra coding to make the computer model more 
representative for current operations at KLM. When there is a stock out and 
MEL violation (model requires lease), it checks whether a repair is expected 
to be finished within the planning interval of the MCC. MCC normally needs 5 
to 10 days to plan a corrective replacement. In the method 
‘EmergencyReplacement’ a random number is generated between 5 and 10. 
This corresponds with the time the MCC needs to plan replacement. When a 
repair is expected to be finished within that interval, the model ‘pulls’ a repair 
from the repair shop instead of leasing a component. This specific method is 
responsible for returning a spare from repair and called by the method 
‘EmergencyReplacement’. 

 

When a component leaves the EmergencyBuffer, it tracks performance data 
regarding lease components and stores it in the table ‘LeaseComponents’ 

 

Same, but for returning  

exchange components.  

 

KLM Boeing 787 Fleet 

 

Represents a 787 aircraft. N 
components can be installed on 
the aircraft. The processing 
time on an aircraft is an uda: 
@.MTBR. After the processing 
time, the component is sent to 
the AlertBuffer or 
FailureBuffer. 

 

Table filled with the active 
status of the Fleet. It includes 
all tail registrations, the 
number of alerts, failures and 
the total of these two per 
aircraft. 

 

Component Outflow 

 

A buffer where components stay for -PredictionHorizon- days. After the 
prediction horizon, components are sent to the FailureBuffer with the method 
MoveToBuffer.  

 

The place for failed components that are still installed on an aircraft.  

 

This table is used as input to determine whether replacement is required on the 
fleet. It provides all alerted and failed components that are still installed on 
aircraft.  

 

 

 

Figure 32: Method structure for initial component instalment 
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Coordination 

 

When a component ‘leaves’ an aircraft after its time to failure or time to alert, it 
is sent to the AlertBuffer or FailureBuffer; this method is responsible for 
managing that process.  

 

This methods determines the value for 𝑋𝑖𝑗𝑡 . The method evaluates the decision 

every time the system state changes. When replacement is required (demand 
arises), it calls the method regular replacement or emergency replacement. it 
logs the demand date in the table DeliveryPerformance. The method is also 
responsible for sending spares back to the emergency buffer for exchange 
(when there are outstanding lease components). 

 

Method responsible for updating the current system state. 

 

  
 

 

Performs a replacement for a component that was on an aircraft with 2 failures 
(aircraft are airworthy when 3-out-of-4 components are operational) and 
replaces it with a lease or with a component that is expected on a short notice 
from repair (see also the explanation of the ‘GetRepairSpare’ method in the 
subsection ‘Component Inflow’) 

Figure 33: Method structure for replacement (1/2) 
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Responsible for performing replacements with spares from on-hand stock.  

 

Method that writes values to the table ‘FleetStatus’. This table is used to sort 
removals.  

  

 
Figure 34: Method structure for replacement (2/2) 

On the right side in Figure 34 a table overview shows which method is called in case of demand.  

III. Logistic Centre 

Component Flow 

 

 

A buffer where spares are kept.  
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IV. Repair Shop 

Repair Coordination 

 

 

Processing station for repairs, with unlimited 
capacity. When components enter and leave repair, 
it calls methods to manage the process. 

 

Method which determine the repair time and cost 
of a component. Components that are replaced 
preventively, can result in minor repairs, with 
associated probabilities:  

1 if replaced within ‘50% of PH’-days 

0.5 if replaced within ‘75% of PH’-days  

0.25 if replaced after ‘75% of PH’-days.  

After the PH a part is failed, which is always a major 
repair. 

Minor repairs have minor repair cost and, if 
TATreduction is activated, minor TAT. 

 

Moves components to inventory when repair is 
finished. 

 

 

 


