
May 17, 2019

MASTER THESIS

ADAPTING A HIERARCHICAL
GAUSSIAN PROCESS MODEL TO
PREDICT THE LOSS RESERVE OF
A NON-LIFE INSURER

P.L. Ruitenberg
Industrial Engineering and Management (IEM)
Specialisation Financial Engineering and Management (FEM)

Faculty of Behavioural, Management and Social Sciences (BMS)
Department Industrial Engineering and Business Information Systems (IEBIS)

Exam committee:
dr. B. Roorda (University of Twente)
dr. P.K. Mandal (University of Twente)
M.K. Lam, PhD. (KPMG)



Page ii



| Preface

Dear reader,

This thesis concludes approximately 8 months of research that I have conducted at the Fi-
nancial Risk Management department of KPMG Advisory N.V., in order to conclude the master
Financial Engineering and Management.

First of all, I want to thank my supervisor and colleagues of KPMG. I have had numerous
meetings with Miekee during my internship, all of which were insightful and productive. No
matter how big or small an issue was, Miekee was always willing to assist me, guide me in the
right direction and supply me with feedback. Furthermore, I want to thank everyone who has
helped me in the process of this research, including (but not limited to) Rinze, Helen, Peter and
Luuk.

Furthermore, I want to thank my supervisors Berend and Pranab from the University of Twente.
Both Berend and Pranab have been lecturers during my Master’s study. Berend’s lectures have
sparked my interest in the field of Risk Management, while Pranab’s expertise in statistics and
Risk Theory has been inspirational. The meetings with Berend and Pranab during this research
have been productive, and their input has ensured the academic level of this thesis.

Delivering this thesis also concludes my student life. During these eight years, I have met
many people and made a lot of friends, be it by working together, being in a committee (or
board!) together, living in the same home or just by being in “Beneden Peil” at the same time.
I want to thank everyone who has been a part of this for making it as unforgettable as it has been.

Last, but definitely not least, I want to thank my family, but my parents in particular, for
their unconditional support.

I hope you enjoy reading this thesis.

Patrick Ruitenberg
Amstelveen, May 8th, 2019.

Page iii



Page iv



| Executive Summary

In this thesis, we have researched potential improvements of a hierarchical Gaussian process
model on the actuarial challenge of predicting the Loss Reserve of a non-life insurer. The Hi-
erarchical Gaussian process model is described in a paper by Lally and Hartman (2018) and is
able to give adequate Best Estimate predictions, but the uncertainty of the prediction results in
a wider confidence interval than other methods currently applied in actuarial practice.

The research performed consists of multiple parts: The model performance and design is
validated, by assessing the model performance on a more extensive data set. The data set contains
historical losses of 1988-2006 of multiple insurers of multiple Lines of Business. Furthermore, we
will validate design choices by varying the prior distributions on hyperparameters in the model
to other weakly informative priors used in literature on Gaussian processes.

Furthermore, we have researched if the model can be extended with external information,
outside of the run-off triangle. We research various methods, including Bornheutter-Ferguson,
to incorporate premium information in the model, and assess if performance is improved.

We compare the GP model by Lally and Hartman (2018) with the Chain Ladder method
- which is commonly used in actuarial practice. Furthermore, we use the model results of the
model by Lally and Hartman (2018) as a benchmark for our variations in design choices and
model extension. As the data set used contains all observed losses, we can compare perfor-
mance of the Best Estimate of the Loss Reserve, and the Root Mean Square Error of prediction
of the estimated losses. Furthermore, we analyse the density of the prediction of the Loss Reserve.

Our results indicate that the performance on volatile run-off triangles by the model of Lally
and Hartman (2018) still has room for improvement. However, in some cases the Gaussian
process model outperforms the Chain Ladder. The design choices of the prior distributions of
the hyperparameters made by Lally and Hartman (2018) are adequate. Most notably, chang-
ing the prior distribution of the Bandwidth parameter applied to a Cauchy(0, 2.5) distribution
has varying results, and should not be used in combination with a Squared Exponential covari-
ance function. For the model in general, we conclude that most weakly informative priors give
adequate results.

With regards to supplying the model with premium information, the results show that a
transformation to Loss Ratio’s have a positive effect on the prediction of the Best Estimate of
the Loss Reserve. Adding a Bornheutter-Ferguson estimation to the model, and allowing the
Gaussian Process model to add noise to these estimations, give good results regarding to the
uncertainty of the prediction. However, this implementation is very reliant on the quality of
these estimations, as the Best Estimate of the Loss Reserve is reliant on them.

We conclude that the Gaussian process model is well designed and generally applicable on a
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multitude of data sets. However, we recommend testing the model performance on incremental
data, or run-off triangles of incurred claims. We also recommend tuning the kernel function of the
model to triangle specific characteristics. As for implementing external data in the model, other
data such as the number of claims could be researched. Moreover, validating a faster Gaussian
process approximation as described by Flaxman et al. (2016) is recommended.
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1 | Introduction

Contents
1.1 Organisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Loss Reserve of an non-life insurer . . . . . . . . . . . . . . . . . . . 1

1.3 Gaussian Process regression . . . . . . . . . . . . . . . . . . . . . . . 3

1.4 Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4.1 Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

This chapter will give a brief introduction to this thesis, discussing the basics of the loss
reserve that we wish to estimate, an introduction on a Gaussian process and applying it for
regression, and the organisation at which this research has been performed. This section will
conclude with our research question and methodology.

1.1 | Organisation

This research has been performed from the 1st of October 2018 to the 17th of May 2019 at KPMG
Advisory N.V. in Amstelveen, at the department of Financial Risk Management (FRM). This
department advises financial institutions on various risk-related topics. Clients of this department
include, for instance, large banks, insurers and pension funds. Topics that FRM advises on can
range from regulatory questions (i.e. Basel IV, Solvency II), advising on Mergers & Acquisitions
and assisting the colleagues of KPMG Accountants N.V.. As such, the FRM department is
interested in gaining knowledge in more sophisticated methods to adequately model risks.

1.2 | Loss Reserve of an non-life insurer

Insurers are inherently, due to the nature of their business, exposed to various sources of risk.
Insurance companies take on a specific risk that an individual (or business) wants to hedge, at
the cost of a fixed premium (Kaas, Goovaerts, Dhaene, & Denuit, 2008). Besides the risks that
are inherent to this business model (Insurance Risk), insurers have exposure to the financial
market (Market Risk), there are several Business Risks, such as unforeseen large expenses, and
they also have an Operational Risk, for instance when safeguards or internal models fail.

In insurance, there is a distinction in Life and Non-Life insurance companies. A life insurer
writes life policies (e.g.: in case of death of the policyholder, pay out a specified amount to the
beneficiaries), and a non-life (also known as Property & Casualty) insurance company writes all
kind other insurance policies except life insurance, such as automobile and healthcare insurance.
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Chapter 1: Introduction

This separation is made for both legal reasons and due to the difference between the two products:
contract terms and claim types are different. As such, life and non-life insurance is usually
modelled differently. (Wüthrich & Merz, 2006)

A non-life insurer usually has two main actuarial reserves: a premium reserve and a loss
reserve. The premium reserve of a non-life insurer consists of premiums that are expected to
still be received. In this thesis, the loss reserve of an non-life insurance company will be the
main focus. A loss reserve contains provisions for payment obligations from losses that have
occurred, but have not yet been settled (Radtke, Schmidt, & Schnaus, 2016). As this reserve
should cover losses/payments that will occur in the future, there is a considerable amount of
uncertainty while attempting to adequately assess the size of this reserve. This poses a risk to
the insurance company: when the loss reserve is too low, it can run into problems when making
payments on claims. On the other hand, when too much money is pooled in the loss reserve,
this might be detrimental to business - as that money cannot be used for other purposes.

Distinctions can be made in determining this loss reserve, usually along several Lines of
Business (LoB’s) that a non-life insurer has, such as commercial or personal automobile. Every
branch can have a unique pattern in claims development, and claims usually have a delay in
settlement unique to the type of claim. For instance, liability products can have a substantial
delay due to litigation/lawsuits (Kaas et al., 2008). As such, a distinction can be made in short-
tail LoB’s (of which losses are known relatively quickly) and long-tail LoB’s (which take longer
to develop).

The Loss Reserve is built up by of two types of claims: claims that are IBNR or RBNS.
Claims that are known to the insurer, but have not yet been paid in full yet, are referred to as
RBNS: Reported, But Not Settled. Furthermore, claims that have been incurred, but are not yet
known to the insurance company are referred to as IBNR: Incurred, but not reported. Both types
of claims form a future payment obligation, and as such are included in the loss reserve.

This research focuses on improving the prediction of the loss reserve. For this, historical
payment data is considered in order to model the size of this reserve. Depending on the Line of
Business, and/or business size, the level of detail of this data may be yearly, monthly or even
daily. The lag between when the claim is incurred and when a payment is made is known as the
development lag.

Development lag
Incurral Year 1 2 3 4 5
1997 1,188,675 3,446,584 4,141,821 4,308,633 4,400,762
1998 1,235,402 4,485,415 5,135,343 5,346,687 ·
1999 2,209,850 5,928,544 6,746,912 · ·
2000 2,662,546 6,149,580 · · ·
2001 2,457,265 · · · ·

Table 1.1: Example of a cumulative run-off triangle. Source: Frees (2009)

The aggregated data is usually illustrated in a so-called run-off triangle, of which an example
is given in Table 1.11. In any run-off triangle, each payment is categorised by its’ Incurral Year
and a Development Lag. This triangle has a total time span of 5 years. The Incurral Year is
defined as the origin of the claim: The claim was incurred on a policy written in that specific
year. However, there is a delay in payments. In 1997, a total of AC1,188,675 was paid. In the

1A more elaborate (but simplified) example is given in Appendix B



Chapter 1: Introduction

subsequent year (1998), thus in development year 2, this insurer has paid out a grand total of
AC3,446,584 for claims incurred in 1997, and so forth.

For both the insured and the insurer, it is important that all (previously) incurred claims
can be paid. These payments will have to be made from our loss reserve. Referring back to our
example in Table 1.1, we want to estimate the loss reserve by inferring the blanks in the triangle.
For this, several methods are available. We will elaborate on some of the methods in Chapter 2.

When making an estimation of risks and/or reserves, a distinction should be made between a
Best Estimate (BE) and the uncertainty of this estimate. When using a strictly discrete method,
the outcome of such a model would strictly result in a point estimate. On the other hand, when
modelling a risk, a realistic assumption of the spread of the possible outcomes is of interest, and
thus the volatility that underlies the estimation. Solvency II requires insurers to determine their
provisions (such as the loss reserve) at Best Estimate.

1.3 | Gaussian Process regression

A Gaussian process (GP) is stochastic process, by generalisation of the Gaussian distribution
(Rasmussen & Williams, 2006). Stochastic processes are commonly known in Mathemati-
cal/Financial literature. An example of a financial application of a stochastic process is the
Black-Scholes formula used to price the value of option contracts, which applies Geometric Brow-
nian Motion to model a random process. (Black & Scholes, 1973). We define a Gaussian process
in Definition 1.1.

Definition 1.1: Gaussian process

A Gaussian process is a collection of random variables, any finite number of which have a joint
Gaussian distribution.

Source: Rasmussen and Williams (2006)

In a GP, we assume that the underlying process f(x) follows a Gaussian distribution. Where
a Gaussian Distribution is defined by its’ mean and covariance parameters, a Gaussian Process is
defined by it’s mean and covariance function. We define m(x) as the mean function and k(x, x′)

as the covariance function. An example of a GP is given mathematically in (1.1), where notation
of Rasmussen and Williams (2006) is followed.

m(x) = E[f(x)],

k(x, x′) = E[(f(x)−m(x))(f(x′)−m(x′))],

f(x) ∼ GP (m(x), k(x, x′))

(1.1)

For simplification purposes, the mean of the GP is often set equal to zero (Rasmussen &
Williams, 2006). Therefore, a GP is most commonly defined by its’ covariance function: also
known as the kernel function (Rasmussen & Williams, 2006).

A Gaussian process can be applied for regression purposes. The goal of any regression is
to find a relationship between various variables: given input parameters, we want to predict a
certain output that is related to these inputs. A GP regression intends to estimate a function
that can relate a series of known inputs to a series of outputs. Here, the input vector will be
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Chapter 1: Introduction

(a) Prior (b) Posterior

Figure 1.1: (a): 4 draws from the prior distribution, with mean 0 and standard deviation 1.
There are no known observations. (b) 4 draws from the posterior distribution, after adding two
noiseless observations. The solid line indicates the mean, the shaded region indicates a distance
of two standard deviations. Source: Rasmussen and Williams (2006)

defined as x = {x1, x2, ..., xn}, and the corresponding output as f(x). In case a value of f(xi)

is known for a certain value of xi, that data point will be referred to as an observation. The
covariance function is determined on the input vector x, which is known for all data points,
both the data with a known observation f(xi) and the data we want to infer. An example of
a covariance function is the squared exponential function. Taking fictive inputs xp and xq, this
function is given by:

cov(f(xp), f(xq)) = k(xp, xq) = exp(−1

2
|xp − xq|2) (1.2)

The covariance can thus be defined for any input pair (xp, xq), resulting in a covariance matrix
K of size [n, n] which describes the covariance between any two inputs.

The covariance function is one of the various design choices of the model. Based on the
data and application, it is assumed that the actual process could be described by this covariance
function.

Without any observations f(xi) this results in our Bayesian prior distribution that is based
on the model design choices. By adding observations of f(xi) (i.e. adding evidence), this results
in the posterior distribution conditioned on the observations. Figure 1.1 gives an example of
the difference between generating draws from the prior and posterior distribution of a one-
dimensional Gaussian process, by adding two noiseless observations.

As displayed in Figure 1.1, the noiseless observations result in changes in the mean and
covariance. The posterior distribution is determined by applying the joint gaussian distribution
property of the Gaussian process as described in Definition 1.1. X1 is defined as the input that
belongs to observations f(X1) and X2 as the input that belongs to the unknown output f(X2).
As f(X1) and f(X2) are generated from the same underlying process, the joint distribution of
f(X1) and f(X2) can be described as follows:[

f(X1)

f(X2)

]
∼ N

([
m(X1)

m(X2)

]
,

(
k(X1, X1) k(X1, X2)

k(X2, X1) k(X2, X2)

))
(1.3)

For simplicity we assume m(X1) = m(X2) = 0. The posterior distribution of f(X2) is then
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Chapter 1: Introduction

given by conditioning it on the observations:

f(X2)|f(X1), X1, X2 ∼ N
(
k(X2, X1)k(X1, X1)−1f(X1),

k(X2, X2)− k(X2, X1)k(X1, X1)−1k(X1, X2)
) (1.4)

Equation 1.4 gives the posterior distribution of the Gaussian process, which we can then use
for inferring f(X2).

1.4 | Research

In a paper by Lally and Hartman (2018), it has been described that a hierarchical Gaussian
process model can be used in order to estimate loss reserves, by using the run-off triangle as
input. While the predictions of the Best Estimate were comparable (if not better) to the current
industry practice and recent research, the uncertainty surrounding the predictions is larger than
would be expected in practice. Having an adequate measurement of the expected uncertainty
and volatility is important in order to determine the risk that an insurer has. This makes the
model in its’ current state unfeasible for use in actuarial practice, as an accurate estimation of
the uncertainty in the predictions made is important. As such, it is not yet an appropriate model
of the true risk involved. Therefore, we will research various attempts to reduce the uncertainty,
and improve the predictions that are made by the model.

1.4.1 | Research Questions

Given the model limitations described, we want to both improve the best estimate of the model,
reduce the confidence interval of these results and validate the model design. Our main research
question is as follows:

Can we improve the Hierarchical Gaussian Process model
to predict the loss reserve of a non-life insurer?

With the following sub-questions:
• In order to validate the design choices:

– Is the model applicable on a more extensive data set?
– Are the prior distributions on the hyperparameters adequately chosen?

• In order to improve the Best Estimate and/or reduce the confidence interval:
– Can relevant, out-of-triangle information be supplied to the model?
– Can the GP model be extended with a Bornheutter-Ferguson estimation method?

1.4.2 | Methodology

The results of our variations on the Gaussian process model is able to give a representation of
the loss reserve and the uncertainty therein. As such, the results of the model can be compared
to both the current industry standard (The Chain Ladder method (Shi & Frees, 2011; Côté,
Genest, & Abdallah, 2016)) and the current Gaussian Process model in the paper of Lally and
Hartman (2018). Furthermore, a data set is publicly available which contains loss reserving data
from insurers in multiple Lines of Business in the USA (Meyers & Shi, 2011). This data set
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contains the actual observed losses, and can be used to both train our model and quantify the
error of all models by using it as a testing set. As such, we have a ground truth that can be used
for analysis, determining if the predicted Loss Reserve is sufficient and what the error statistics
(Root Mean Square Error) are in order to assess performance.

We have selected a 3 different triangles which represent the cumulative paid loss along 5
different Lines of Business, resulting in a total of 15 triangles that will be analysed. These
triangles are presented in Appendix B, and their key characteristics will be explained in Chapter
5.
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Central in this thesis is the prediction of the loss reserve of a non-life insurer. In order to
clarify this, this chapter will first discuss the typical timeline of an insurance claim. After that,
the historical developments of claims will be discussed and how they are usually presented in a
spreadsheet. This is subsequently used as input for predicting the reserve.

2.1 | An example of a Claim Timeline

Figure 2.1: A typical timeline of a claim. Based on Antonio and Plat (2014)

The typical timeline of a claim is displayed schematically in Figure 2.1. At a certain moment
in time, the claim (damage) occurs (t1). There is a certain delay when this is reported to the
insurer, which occurs at moment t2. When the notification is made, (several) payments have to
be made (t3, t4, t5) until the dossier is closed (t6). After this, it could occur that a dossier is
re-opened in case new information becomes available. In that case, a final payment has to be
made until it is closed again (t7, t8, t9).

A claim is Incurred, but not Reported (IBNR) during the time span between the occurrence
and notification of a claim to the insurer. After that, it is RBNS: Reported, but not Settled -
as payments still have to be made on the claim. Moreover, it can be IBNER: Incurred, but not
enough reported, for instance when an initial assessment of the claim results in an insufficient
amount reserved for payments.
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2.2 | The Run-off Triangle

As described in the previous section, payments or notifications of claims occur at different points
in time, even if they originate from the same moment in time. An overview of the cumulative
payment size can be generated, based on their moment in time that the claim originated (i.e.
was incurred), as well as the moment in time when the insurer has made payments on this claim.
Furthermore, we can define a specific calendar year at which the observed loss occurred in time.
Properties of the run-off triangle are determined as:

i = Incurral year Zi,j = Observed loss

j = Development lag Ẑi,j = Estimated loss

k = Calendar Year = i+ j R̂i = Loss reserve for Incurral year i

n = No. of development years1= max(j) R̂ = Total loss reserve =

n∑
i=1

R̂i

With i as the incurral year - starting at 1, j as the development lag and Zi,j as the loss at
that specific moment, a spreadsheet of these claims can be created. This is commonly known as
a loss triangle or run-off triangle. An example is given in Example 2.1, and a more elaborate
example is given in Appendix B.

Example 2.1: Run-off Triangle

Development lag (j)
Incurral Year (i) 1 2 3 4 5

1997 (1) 1,188,675 3,446,584 4,141,821 4,308,633 4,400,762
1998 (2) 1,235,402 4,485,415 5,135,343 5,346,687 ·
1999 (3) 2,209,850 5,928,544 6,746,912 · ·
2000 (4) 2,662,546 6,149,580 · · ·
2001 (5) 2,457,265 · · · ·

Example of a cumulative run-off triangle. Source: Frees (2009)
The loss paid in 1997, claimed in that year is defined as Z1,1 = 1,188,675, and so forth.

2.3 | Predicting the Loss Reserve

Prediction of the loss reserve is done by completing the run-off triangle into a rectangle with
adequate estimations. Referring to Example 2.1, the data points that are marked with a (·) are
to be estimated. The summation of the differences between the estimated cumulative ultimate
loss (at j = n) and the most recent observation for all incurral years (j = n+ 1− i) is the total
loss reserve (R̂):

R̂i =

0 if i = 1

Ẑi,n − Zi,n+1−i if i > 1
(2.1)

1The number of development years is usually identical to the number of incurral years. i.e.: max(i) = max(j).
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2.3.1 | Chain Ladder

The most common and well-known method of predicting the Loss Reserve is the Chain Ladder.
It has been popularised by the papers of Mack (1993, 1999) and is widely described in various
books and papers. Using i as incurral year and j as development lag, historical development
factors can be determined, which can be used to make estimations of future losses and the loss
reserve2:

DFj =

∑n+1−j
i=1 Zi,j∑n+1−j
i=1 Zi,j−1

Ẑi,j = Zi,n+1−i
∏j

l=n−i+2
DFl

(2.2)

Example 2.2: Chain Ladder

The following (fictive) run-off triangle is given:

Development lag (j)
Incurral Year (i) 1 2 3

2010 (1) 1,000 1,500 1,750
2011 (2) 1,250 1,700 ·
2012 (3) 1,400 · ·

The Chain Ladder method as given in (2.2) is applied. First, DF2 and DF3 are calculated:

DF3 =

∑3+1−3
i=1 Zi,3∑3+1−3
i=1 Zi,2

=
1, 750

1, 500
≈ 1.17

DF2 =

∑3+1−2
i=1 Zi,2∑3+1−2
i=1 Zi,1

=
1500 + 1700

1000 + 1250
≈ 1.42

These development factors are used to calculate estimates for future losses:

Ẑ2,3 = Z2,2

∏3

l=3
DFl ≈ 1, 700 ∗ 1.17 ≈ 1, 983

Ẑ3,2 = Z3,1

∏2

l=2
DFl ≈ 1, 400 ∗ 1.42 ≈ 1, 991

Ẑ3,3 = Z3,1

∏3

l=2
DFl ≈ 1, 400 ∗ 1.42 ∗ 1.17 ≈ 2, 323

The estimated losses and corresponding reserve (by following Equation 2.1) are thus:

Development lag (j)
Incurral Year (i) 1 2 3 Reserve (R̂i)

2010 (1) 1,000 1,500 1,750 0
2011 (2) 1,250 1,700 1,983 283
2012 (3) 1,400 1,991 2,323 923

Development Factors 1.42 1.17 1,206 (= R̂)

2Both Ẑi,j and DFj are indexed on j. To avoid confusion, a temporary variable l is introduced in (2.2)
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2.3.2 | Bornheutter-Ferguson

The Bornheutter-Ferguson (BF) method is also commonly used for determining the loss reserve,
and is named after the authors of the paper in which it is first described (Bornhuetter & Ferguson,
1972). The BF method relies on both an estimated ultimate loss and estimated development
through time, and uses these in order to predict the loss reserve. These estimates can be based
on data inside the triangle (therefore only consisting of previously observed losses) or external
data, such as the number of claims or premium volume. Considering that the method is heavily
reliant on these estimators, the quality and accuracy of these estimators is crucial to result in
adequate predictions.

First, definitions used throughout this section will be given:

α̂i = Estimated ultimate loss in Incurral Year i

DFj = Chain Ladder development factor of development lag j

γ̂j = Estimated cumulative development parameter up to development lag j

ϑ̂j = Estimated incremental development parameter of development lag j

Definition 2.1: Development Pattern

There exist parameters γ1, γ2, . . . , γn with γn = 1 such that the identity

E[Zi,j ]

E[Zi,n]
= γj

holds for all j ∈ 1, 2, . . . , n and for all i ∈ 1, 2, . . . , n

Source: Radtke et al. (2016), with adaptations to match notation in this thesis.

The Bornheutter-Ferguson method implies (similar to the Chain Ladder method) that at the
final development lag observed in the triangle, all claims are incurred3. As such: γ̂n = 1, as also
mentioned in Definition 2.1.

We can estimate losses at a specific moment in time (i, j) by estimating the development that
still has to occur, multiplying that with the estimated ultimate loss and adding that to the most
recently observed loss:

Ẑi,j = Zi,n−i+1 + (

j∑
l=n−i+2

ϑ̂l) ∗ α̂i (2.3)

It should be noted that are several methods available to make estimations for both α̂ and ϑ̂.
It goes beyond the scope of this research to mention all of them and their pros and cons. Instead,
we will elaborate on the methods applied in this research - which is the original version of the
BF method (Radtke et al., 2016).

Estimation of the cumulative and incremental development parameters γ̂ and ϑ̂ can be per-
formed using the Chain Ladder development factors4:

3If this assumption does not hold, a tail factor can be introduced. However, this is out of scope for this thesis.
4Both DF and γ are indexed on j. To avoid confusion, a temporary variable m is introduced in (2.4)
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γ̂j =

1 if j = n

(
∏n
m=j+1DFm)−1 elsewhere

ϑ̂j =

γ̂j if j = 1

γ̂j − γ̂j−1 elsewhere

(2.4)

Example 2.3: Bornheutter-Ferguson

Consider the same triangle as in Example 2.2, but this is expanded with estimated losses:

Development lag (j)
Incurral Year (i) 1 2 3 Est. Ultimate Loss (α̂i)

2010 (1) 1,000 1,500 1,750 1,750
2011 (2) 1,250 1,700 · 2,039
2012 (3) 1,400 · · 2,209

Chain Ladder Factors (DFj) 1.42 1.17
Cum. Development Parameters γ̂1 γ̂2 γ̂3

Inc. Development Parameters ϑ̂1 ϑ̂2 ϑ̂3

Using the Chain Ladder Factors and (2.4), the development parameters can be estimated:

γ̂3 = 1

γ̂2 = (1.17)−1 ≈ 0.85

γ̂1 = (1.42 ∗ 1.17)−1 ≈ 0.60

ϑ̂1 = 0.60

ϑ̂2 = 0.85− 0.60 ≈ 0.25

ϑ̂3 = 1− 0.85 ≈ 0.15

Which can be used to estimate the future losses:

Ẑ2,3 = 1, 700 + 0.15 ∗ 2, 039 ≈ 2, 006

Ẑ3,2 = 1, 400 + 0.25 ∗ 2, 209 ≈ 1, 952

Ẑ3,3 = 1, 400 + (0.25 + 0.15) ∗ 2, 209 ≈ 2, 283

Resulting in the following triangle and loss reserve by applying (2.1):

Development lag (j)
Incurral Year (i) 1 2 3 α̂i R̂i

2010 (1) 1,000 1,500 1,750 1,750 0
2011 (2) 1,250 1,700 2,006 2,039 306
2012 (3) 1,400 1,952 2,283 2,209 883

Chain Ladder Factors (DFj) 1.42 1.17 1,189
Cum. Development Parameters 0.60 0.85 1
Inc. Development Parameters 0.60 0.25 0.15
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It should be noted that, while counterintuitive, the estimated loss and the calculated ultimate
loss need not be the same, i.e. it is possible that Ẑi,n 6= α̂i. This is inherent to the BF-method,
as α̂i is only used for the undeveloped part of the incurral year i when determining Ẑi,n.

A method to estimate the ultimate loss (α̂) is now derived. For this, data outside of the
triangle is used, in the form of premiums received (net of reinsurance). Using these premiums,
the Loss Ratio (LR) can be determined at every observed loss, and the expected ultimate Loss
Ratio can be determined, based on the expected development that still has to occur:

Pi = Premium received in incurral year i, net of reinsurance

L̂Ri,j =

Zi,j

γ̂j

Pi

(2.5)

Using these Loss Ratio’s, the expected ultimate loss α̂i is calculated after determining an
estimated L̂Ri for each incurral year:

α̂i = Pi ∗ L̂Ri (2.6)

Example 2.4: Estimating the ultimate loss

Once again, the triangle given in Example 2.2 is considered, but premiums received are included.
Development lag (j)

Incurral Year (i) 1 2 3 (Pi)

2010 (1) 1,000 1,500 1,750 2,060
2011 (2) 1,250 1,700 · 2,400
2012 (3) 1,400 · · 2,600

Cum. Dev. Parameters (γ̂j) 0.60 0.85 1

By applying (2.5), the estimated Loss Ratio is determined for every observation. This is explicitly
calculated for L̂R1,1, and (2.5) is also applied on the other observed losses:

L̂R1,1 =
1,000
0.60

2, 060
≈ 0.81

Development lag (j)
Incurral Year (i) 1 2 3 Pi

2010 (1) 0.81 0.85 0.85 2,060
2011 (2) 0.87 0.83 · 2,400
2012 (3) 0.89 · · 2,600

Cum. Dev. Parameters (γ̂j) 0.60 0.85 1

Based on the average of these Estimated Loss Ratio’s, the ultimate Loss Ratio is approximated
at 0.85 for all incurral years. (2.6) is applied to estimate the ultimate losses α̂i:

α̂1 = P1 ∗ L̂Ri = 2, 060 ∗ 0, 85 = 1, 750

α̂2 = P2 ∗ L̂Ri = 2, 400 ∗ 0, 85 ≈ 2, 039

α̂3 = P3 ∗ L̂Ri = 2, 600 ∗ 0, 85 ≈ 2, 209
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Using the estimated ultimate loss, (2.3) can be applied to determine the expected loss at
a given moment, and (2.1) to determine the Loss Reserve for i. As can be seen in Examples
2.3 and 2.4, having adequate estimators for both the premium and development is key for the
performance of this method.

2.3.3 | Recent Research for Loss Reserve prediction

The Chain Ladder as described in Section 2.3.1 is a deterministic method. It is able to make
an estimation, but can give no indication of the error that it may produce. In the papers of
Mack (1993, 1999), methods have been described to determine the distribution-free standard
error produced by the CL method, as to give an indication for the uncertainty in the estimation.

In recent research, most focus has been on incorporating external data (i.e. information not
captured in the triangle) in order to improve the accuracy of the predictions. For instance, a
Double Chain Ladder method has been proposed, which does not only take observed aggregated
losses into account, but also reported count data to infer both the IBNR and RBNS claims
(Martinez-Miranda, Nielsen, & Verrall, 2012). This method results in a comparable best estimate
for the loss reserve as the Chain Ladder, but a lower Root Mean Square Error (RMSE).

A different approach has been proposed by Kuang, Nielsen, and Perch Nielsen (2011), where
the Chain Ladder has been extended with a calendar-year trend, which can be used in combi-
nation with non-stationary time-series forecasting. This method has an improved accuracy of
predictions if the data has an unstable calendar year trend.

Zhang (2010) has described an implementation of a Multivariate Chain Ladder method, where
correlation between triangles has been taken into account by applying an unrelated regression
method. It is used to model intercepts of paid and incurred triangles or different lines of business,
resulting in improved predictions.

Another implementation of correlation between triangle dependence is researched by Shi and
Frees (2011), where a copula regression model with bootstrapping is implemented, resulting in
both a Best Estimate and the uncertainty underlying the model prediction. Incorporating depen-
dence along multiple insurers in an identical Line of Business has been subsequently researched
(Shi, 2017). Both researches have given similar Best Estimates (BE) of the loss reserve, but can
more accurately determine the uncertainty underlying this estimate.

There are also methods that are focused on the increased granularity of available data in
an insurance company. For instance, models have been proposed to derive the loss reserves on
an individual claims level, as opposed to the aggregate losses or claims that is currently used
in actuarial practice (Antonio & Plat, 2014; Maciak, Okhrin, & Pešta, 2018). Most notably,
Machine Learning in the form of Regression Trees has been applied by Wüthrich (2018), by
learning policy and/or claims characteristics that have an influence on the loss incurred. While
the Best Estimate of Wüthrich (2018) was comparable to current practice, the uncertainty of
prediction is not yet calculated or implemented.

Another Machine Learning application on aggregated data has been researched, in the form
of a Gaussian Process (GP) regression (Lally & Hartman, 2018). It enables capturing of trends
in the data and learn those, solely based on the data presented in the run-off triangle. This
model results in a comparable or better prediction of the BE of the Loss Reserve. However, the
volatility and uncertainty in the model is still large.

As the Gaussian Process model by Lally and Hartman (2018) will be the main focus for this
research, it will be described in more detail in Chapter 3.
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In this chapter, the Gaussian process model to predict loss reserves is explained, as introduced
in the paper by Lally and Hartman (2018). A brief introduction on the model will be given, after
which the model design and hyperparameters are explained. Then, we will elaborate on the
transformations of the input data to make the data suitable to be used in Gaussian process
model. We will conclude by discussing the limitations of the current model.

3.1 | Introduction on the model

A hierarchical Gaussian process model to predict loss reserves is introduced by Lally and Hart-
man (2018). The actuarial problem of predicting loss reserves is discussed in Section 2, and a
brief introduction on Gaussian process regression is given in Section 1.3. The application of a
GP regression on run-off triangles is new, while it is more common in e.g. geostatistics (where
it is known as Kriging) (Gelfand & Schliep, 2016). In geostatistics, spatial or spatio-temporal
data is analysed, usually on R2. Measurements (observations) are then used to predict missing
points of interest. An example of an application in geostatistics is to examine the spatial vari-
ation of relative risk of a disease, given several observations at specific locations, or making an
interpolation of radioactivity, given a limited number of observations (Diggle, Tawn, & Moyeed,
1998).
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3.2 | Covariance functions

As described in Section 1.3, a Gaussian process regression model is mostly defined by its’ covari-
ance function, also referred to as the kernel function. A kernel function is valid if it results in a
positive semidefinite (PSD) correlation matrix (Rasmussen & Williams, 2006). Three different
kernel functions will be applied on the run-off triangle, effectively resulting in three different
Gaussian process models. All kernel functions considered are both stationary and isotropic, of
which definitions are given in Definitions 3.1 and 3.2.

Definition 3.1: Stationary kernel

We define x as the input for a one-dimensional Gaussian process, and xp, xq as two locations on
x.
A kernel k(xp, xq) is stationary if the kernel depends only on the separation xp − xq. That is:
k(xp, xq) = k(xp − xq)

Sources: Barber (2012), with adaptations to match notation.

Definition 3.2: Isotropic covariance

A covariance function is isotropic if it is a function only of the distance d = |xp − xq|. Such
covariance functions are, by construction, rotationally invariant.

Source: Barber (2012), with adaptations to match notation.

As will be described in Section 3.4, the euclidean distance between two data points will be
calculated and used as input, based on vectors x1 (development lag) and x2 (incurral year). This
distance will be the input for the kernel functions. As such, the covariance functions considered
are both stationary and isotropic kernel functions.

Moreover, a characteristic length-scale (`) is defined to apply in our covariance functions.
Loosely speaking, the length-scale defines how far one needs to move along a particular axis
for the function values to become uncorrelated (Rasmussen & Williams, 2006). A visual one-
dimensional example of this is given in Figure 3.1, where the length-scale is varied between ` = 1,
` = 0.3 and ` = 3.

Lally and Hartman (2018) introduce a bandwidth parameter ψ = 1
2`2 to implement the

characteristic length-scale in the GP model. Hence, larger values of ψ result in a shorter length-
scale and vice versa. They define two separate bandwidth parameters for both x1 and x2, defined
as respectively ψ1 and ψ2. As such, all covariance functions considered are defined as a function
of r2:

xp = (x1,p, x2,p)

xq = (x1,q, x2,q)

r2p,q = ψ1(x1,p − x1,q)2 + ψ2(x2,p − x2,q)2
(3.1)
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Figure 3.1: Three examples of a varying length-scale for a one-dimensional Gaussian process
regression. Data marked with a "+" are observations from a GP with ` = 1, the shaded grey
area is the 95% CI for the underlying process f(x). Source: Rasmussen and Williams (2006)

3.2.1 | Squared Exponential

The Squared Exponential (SE) covariance function, also known as the Radial Basis Function,
the Exponentiated Quadratic function or the Gaussian Kernel, is defined in (3.2):

k(xp, xq) = exp(−r2p,q) (3.2)

The SE covariance function is infinitely differentiable, and thus generally results in smooth
predictions (Rasmussen & Williams, 2006). As this might not be a realistic representation of the
actual process, we also include two covariance functions that result in rougher predictions.

3.2.2 | Matérn 3/2 and Matérn 5/2

The Matérn-class of covariance functions results in rougher functions than the Squared Exponen-
tial function. They are parametrised by one value, and the values 3

2 and 5
2 are most commonly

used for Machine Learning purposes (Rasmussen &Williams, 2006), where the Matérn 3
2 function

is rougher than the Matérn 5
2 function. Matérn 3

2 is given in (3.3) and Matérn 5
2 in (3.4).

k(xp, xq) = (1 +
√

3rp,q) exp(−
√

3rp,q) (3.3)
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k(xp, xq) = (1 +
√

5rp,q + 5
3r

2
p,q) exp(−

√
5rp,q) (3.4)

In order to visualise the roughness of these covariance functions, random draws from one-
dimensional Gaussian processes with these covariance functions have been plotted in Figure 3.2.

Figure 3.2: Random draws from one-dimensional Gaussian processes with different kernel func-
tions, with ψ = 10. Source: Lally and Hartman (2018)

3.2.3 | Signal and Noise

The covariance functions that we will consider are in normalised form. Hence, if r2p,q = 0 (i.e.
the distance between two points is zero), then k(x, x′) = 1 for all functions. This assumes that
the underlying process has a variance of 1. In order to relax this assumption, Lally and Hartman
(2018) introduce a parameter η2 for all covariance functions, by which the covariance functions
will be multiplied.

Moreover, observations might be noisy, as such that they are not entirely accurate. For actual
observed losses, it can be assumed that the data quality is sufficient enough to be noise-free.
However, if estimators would be introduced to the model (for example, in the case of Bornheutter-
Ferguson), these estimations can contain noise, as their true value is unknown. Henceforth, we
will add a parameter σ2δpq to the covariance functions, where δpq is the Kronecker delta (which
equals 1 if p = q, and 0 otherwise) (Lally & Hartman, 2018).

As such, our Squared Exponential, Matérn 3
2 and Matérn 5

2 functions are modified and
the resulting functions are given in (3.5), where the subscript of rpq is suppressed for notation
purposes. The functions as given in (3.5) are the final form of the covariance functions that will
be considered in the research.

kSE(xp, xq) = η2 exp(−r2) + σ2δpq

kM 3
2
(xp, xq) = η2(1 +

√
3r) exp(−

√
3r) + σ2δpq

kM 5
2
(xp, xq) = η2(1 +

√
5r + 5

3r
2) exp(−

√
5r) + σ2δpq

(3.5)
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3.3 | Input Warping

Input Warping is a methodology that can be applied in order improve results when a non-
stationary process is modelled with a stationary covariance function (as defined in Definition
3.1) (Snoek, Swersky, S. Zemel, & P. Adams, 2014). Commonly, processes that we wish to model
are non-stationary.

Lally and Hartman (2018) have established that the application of a Gaussian process on
the prediction of loss reserves require such a correction, and have applied Input Warping in
their model. Input Warping is introduced in the paper of Snoek et al. (2014). It translates the
non-stationary process to a stationary one, by changing the covariance function from k(xp, xq)

to k(w(xp), w(xq)). The function w(x) is the warping function that modifies the input vectors
to one that is stationary (Snoek et al., 2014).

In theory, a multitude of warping functions can be applied. However, Snoek et al. (2014)
recommend to use the Beta cumulative distribution function (CDF), as the Beta-function can
take on a multitude of forms (e.g. linear, exponential, logarithmic, sigmoidal) by varying the two
parameters α and β. As the Beta-distribution can only take values on [0, 1], the input vectors of
our data is normalised to this interval, as described in Section 3.4.

For our model, we will warp the input vectors x1 and x2 with their own warping function.
Our covariance functions thus change accordingly. We therefore redefine the rp,q term that we
have defined in (3.1) to be warped:

w1(x) = BetaCDF(x, α1, β1)

w2(x) = BetaCDF(x, α2, β2)

r2p,q = ψ1(w1(x1,p)− w1(x1,q))
2 + ψ2(w2(x2,p)− w2(x2,q))

2

(3.6)

Where BetaCDF is the Beta Cumulative Distribution Function. From (3.6), we can see that
an unique warping function is defined for each axis, with their own α and β parameters.

3.4 | Input data preparation

The Gaussian Process model by Lally and Hartman (2018) defines two input dimensions for
every data point that is in the data set: the development lag (x1) and incurral year (x2). Using
these two input parameters, we can determine the euclidean distance between two data points.
This distance is then used as parameter for the covariance function.
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Example 3.1: Indexing every data point in the triangle

Consider the triangle presented in Example 2.2:

Development lag (j)
Incurral Year (i) 1 2 3

2010 (1) 1,000 1,500 1,750
2011 (2) 1,250 1,700 ◦2
2012 (3) 1,400 ◦1 ◦3

For every Z in the triangle, x1 (DL) and x2 (IY) is defined, with identical indices:

1 2 3 4 5 6 7 8 9
Z 1,000 1,250 1,400 1,500 1,700 1,750 ◦1 ◦2 ◦3
x1 1 1 1 2 2 3 2 3 3
x2 1 2 3 1 2 1 3 2 3

The input vectors x1 and x2 will be normalised on the interval [0, 1] in order to be able to
apply Input Warping, as described in Section 3.3. Normalisation is performed by applying (3.7)
on both vectors x1 and x2, to transform them to the normalised vectors x′1 and x′2:

x′ =
x−min(x)

max(x)−min(x)
(3.7)

Example 3.2: Normalising the input vectors

Consider the data as given in Example 3.1:

1 2 3 4 5 6 7 8 9
Z 1,000 1,250 1,400 1,500 1,700 1,750 ◦1 ◦2 ◦3
x1 1 1 1 2 2 3 2 3 3
x2 1 2 3 1 2 1 3 2 3

(3.7) is now applied on the vectors x1 and x2, to transform them to the interval [0, 1]:

1 2 3 4 5 6 7 8 9
Z 1,000 1,250 1,400 1,500 1,700 1,750 ◦1 ◦2 ◦3
x′1 0 0 0 0.5 0.5 1 0.5 1 1
x′2 0 0.5 1 0 0.5 0 1 0.5 1

Furthermore, the observations Z will be standardised such that it has a mean of zero, and a
standard deviation of 1. These transformations improve the predictions that can be made by the
Gaussian process model, in such a way that one configuration of the model suffices regardless
of which run-off triangle we use as input. This also allows us to set the mean of the Gaussian
process model to zero. Standardisation is performed by applying (3.8) to our observations Zi,
with Z̄ as the mean of Z, and s as the standard deviation of Z.

Z ′i =
Zi − Z̄
s

(3.8)
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Example 3.3: Standardising the observations

Considering the data from Example 3.2, the observations of Z are to be standardized:

1 2 3 4 5 6 7 8 9
Z 1,000 1,250 1,400 1,500 1,700 1,750 ◦1 ◦2 ◦3
x′1 0 0 0 0.5 0.5 1 0.5 1 1
x′2 0 0.5 1 0 0.5 0 1 0.5 1

The mean of Z is 1,433 1
3 and the standard deviation is approximately 282.25. Z can now be

standardised by applying (3.8), resulting in the following data:

1 2 3 4 5 6 7 8 9
Z ′ -1.535 -0.650 -0.118 0.236 0.945 1.122 ◦1 ◦2 ◦3
x′1 0 0 0 0.5 0.5 1 0.5 1 1
x′2 0 0.5 1 0 0.5 0 1 0.5 1

The resulting vector Z ′ now has a mean of zero, and a SD of 1.

Throughout this thesis, an identical setup is followed as applied by Lally and Hartman (2018).
The data transformations and programming is performed using the R Project (R Core Team,
2018). We sample from the posterior distribution by applying Markov Chain Monte Carlo
(MCMC) sampling, implemented using the STAN package, which is available as a plugin for
R (Carpenter et al., 2017).

MCMC allows us to sample directly from the posterior distribution. The No-U-Turn Sampler
(NUTS) is applied (Hoffman & Gelman, 2014), and we setup 4 chains of 2,000 iterations -
of which the first 1,000 iterations are regarded as a warm-up period and are thus discarded.
The remaining 1,000 iterations (of 4 chains, so 4,000 in total) are samples from our Bayesian
posterior distribution. We derive the mean of this posterior distribution as our Best Estimate,
and can determine the uncertainty in this prediction directly from the samples of the posterior
distribution.

3.5 | Hyperparameters and prior distributions

All hyperparameters that will be applied in the model have been discussed. In order to adequately
make inferences of each hyperparameter, a prior distribution for every hyperparameter is defined
from which we can sample using MCMC. In the model of Lally and Hartman (2018), weakly
informative priors have been defined for every hyperparameter. The hyperparameters and their
prior distributions are summarised in Table 3.1.

The prior gamma(4, 4) is the Gamma distribution and is parametrised with a shape and rate
value of 4. It approximately has a mean of 1 and a variance of 0.25 (Lally & Hartman, 2018).
The T +(4, 0, 1) is the Student’s T-distribution, with four degrees of freedom, a mean of zero and
a variance of 1. Finally, lnN (0, 0.5) is the lognormal distribution, with a mean of zero and a
standard deviation of 0.5.

All prior distributions are constrained to be ≥ 0. These distributions are flexible enough to
take on extreme values if the data suggests to do so. We have included plots of the probability
density functions (PDF) of all prior distributions in Figure 3.3 on the interval [0,3].
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Table 3.1: Overview of hyperparameters and prior distributions in the Gaussian process model

Parameter Description Prior Distribution

ψ1 Bandwidth-parameter 1
2`2 of the DL-axis gamma(4, 4)

ψ2 Bandwidth-parameter 1
2`2 of the IY-axis gamma(4, 4)

η2 Signal parameter of the entire Gaussian process T +(4, 0, 1)
σ2 Noise parameter of the entire Gaussian process T +(4, 0, 1)
α1 Alpha-parameter of the warping function of the DL-axis lnN (0, 0.5)
β1 Beta-parameter of the warping function of the DL-axis lnN (0, 0.5)
α2 Alpha-parameter of the warping function of the IY-axis lnN (0, 0.5)
β2 Beta-parameter of the warping function of the IY-axis lnN (0, 0.5)

0 1 2 3
x

f(
x)

(a) gamma(4, 4)

0 1 2 3
x

f(
x)

(b) T +(4, 0, 1)

0 1 2 3
x

f(
x)

(c) lnN (0, 0.5)

Figure 3.3: Plots of the PDF of prior distributions on the interval [0,3]

3.6 | Model limitations

The model presented in this section generally performs well in predicting a best estimate of the
loss reserve, which is the mean of the posterior distribution. The results are similar to other
methods currently used in actuarial practice and recent research, but the density of the posterior
distribution is wider than can be expected of the actual uncertainty. As such, it is not currently
applicable into actuarial practice, and might require changes to adequately reflect this risk.

In order to give an indication of the uncertainty of the model results, two density plots of the
model by Lally and Hartman (2018) are given in Figure 3.4. While the prediction of Triangle
2.2 (Figure 3.4a) is wide (95% Confidence Interval: [215k, 473k]), its’ Best Estimate is adequate
(351k, actual observed losses 354k).

However, the model is not able to capture all trends accordingly, as becomes obvious for
Triangle 5.1. The density plot of Triangle 5.1 (Figure 3.4b) gives no conclusive results whatsoever
(95% CI: [−80k, 736k]), and the Best Estimate that the model produces for Triangle 5.1 is 325k,
while the actual observed losses are 46k. As such, the performance of the model has room for
improvement. How we intend to improve the model is explained in Chapter 4.
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(a) Density plot of Triangle 2.2, Sq. Exponential (b) Density plot of Triangle 5.1, Sq. Exponential

Figure 3.4: Density plots of predicted Loss Reserves, by the Gaussian process model of Lally and
Hartman (2018).
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This chapter will cover the research that we will perform on the Gaussian process model as
described in Chapter 3, based on the limitations identified and the research questions given in
Section 1.4. We will perform several analyses on a larger data set than the paper of Lally and
Hartman (2018) in order to validate the accuracy and applicability of the model.

Furthermore, we wish to extend the model by supplying it with external information in order
to improve our predictions. Our data set has external data in the form of received premiums in
an incurral year. As such, we want to investigate if the model can be adapted in such a way to
include this data to improve the best estimate prediction of the loss reserve. Investigating the
appropriate method to implement this is important, because simply assuming relatedless of data
and learning them together can be detrimental for performance of a Machine Learning model
(Bonilla, Chai, & Williams, 2008).

We recall our research questions:

Can we improve the Hierarchical Gaussian Process model
to predict the loss reserve of a non-life insurer?

With the following sub-questions:

• In order to validate the design choices:
– Is the model applicable on a more extensive data set?
– Are the prior distributions on the hyperparameters adequately chosen?

• In order to improve the Best Estimate and/or reduce the confidence interval:
– Can relevant, out-of-triangle information be supplied to the model?
– Can the GP model be extended with a Bornheutter-Ferguson estimation method?
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4.1 | Methodology

We will elaborate on the data set that we will apply in Chapter 5. Performance of the models will
be analysed based on both the Best Estimate of the Loss Reserve, and the Root Mean Square
Error of prediction (RMSE) of this Best Estimate - as defined in Equation 4.1 - where Zt is a
data point that we wish to estimate, and T is the total number of data points to estimate.

Given that our data set consists of both the upper and lower triangle, we have a natural split
in a training and testing set for validation. Furthermore, we can determine the 95% Confidence
Interval of the posterior distribution by analysing the MCMC samples, and the standard deviation
of the 4,000 samples. For the Chain Ladder method, we can determine the Standard Error of
the prediction as described in the paper of Mack (1993).

RMSE =

∑T
t=1(Ẑt − Zt)2

T
(4.1)

Before conducting our research, we will calculate baseline measurements consisting of both
the Chain Ladder predictions and the Gaussian process model as given in the paper of Lally and
Hartman (2018) to investigate the performance of the model on a larger data set. This will give
an answer to our first sub-question: "Is the model applicable on a more extensive data set?"

4.2 | Prior distribution of hyperparameters

With this analysis, we aim to deduct a new combination of prior parameters and measure it
against the baseline measurements performed earlier. In these researches, we will only vary one
parameter, while keeping the others identical to the baseline GP model. As such, we can strictly
identify the influence of the prior distribution on this specific parameter. Using these analyses,
we can determine an ’optimal’ prior distribution for every triangle of each hyperparameter, in
order to draw a conclusion of the influence of these choices. These analyses will be used to
answer our second sub-question: "Are the prior distributions on the hyperparameters adequately
chosen?"

4.2.1 | Bandwidth parameter

Flaxman et al. (2016) have described a fast inference method for hierarchical Gaussian processes.
In this manuscript, they argue to use a Cauchy-distribution for the "inverse length-scale" (i.e.
the bandwidth as defined earlier), with a location of 0 and a scale of 2.5 and constrained to be
positive. This argument is also supported by a different research focused on using the Cauchy-
distribution, which comes to this conclusion based on a frequentist-risk analysis (Polson & Scott,
2012). This prior distribution is notably different than the gamma distribution used in the model
by Lally and Hartman (2018), and we thus investigate its’ performance on run-off triangles. We
summarise in Table 4.1 and Figure 4.1.

Table 4.1: Overview of researched prior distributions for the bandwidth parameters

Parameter Prior Distribution (Original) Prior Distribution (Researched)

ψ1 gamma(4, 4) Cauchy(0, 2.5)
ψ2 gamma(4, 4) Cauchy(0, 2.5)
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Figure 4.1: Plots of the PDF of prior distributions of the bandwidth parameters, on the interval
[0,3]

4.2.2 | Signal and noise parameters

In the manuscript of Flaxman et al. (2016), a lnN (0, 1) distribution is applied for the signal and
noise parameters, mentioning that these parameters should resemble the scale of the data. As
we standardise our input to have a mean of zero, and a standard deviation of one, the lnN (0, 1)

could also be an appropriate prior for our data; given that we also constrain this prior to be
positive. This is summarised in Table 4.2 and Figure 4.2.

Table 4.2: Overview of researched prior distributions for signal and noise parameters

Parameter Prior Distribution (Original) Prior Distribution (Researched)

η2 T +(4, 0, 1) lnN (0, 1)
σ2 T +(4, 0, 1) lnN (0, 1)

4.2.3 | Warping parameters

In the paper of Snoek et al. (2014), where Input Warping is first described, several prior distri-
butions for α and β are given in order to get several functional forms of the Beta-distribution.
For our application, Lally and Hartman (2018) conclude that an Exponential warping function
performs best. An exponential warping function is recommended by Snoek et al. (2014) to be
modelled by different priors than the priors applied by Lally and Hartman (2018). As such, we
investigate the influence of this choice on model performance.

The parameters and their distributions are given in Table 4.3, and their PDF’s are plotted
in Figure 4.3.
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Figure 4.2: Plots of the PDF of prior distributions of the signal and noise parameters, on the
interval [0,3]

Table 4.3: Overview of researched prior distributions for Input Warping

Parameter Prior Distribution (Lally) Prior Distribution (Snoek)

α1 lnN (0, 0.5) lnN (1, 1)
β1 lnN (0, 0.5) lnN (0, 0.25)
α2 lnN (0, 0.5) lnN (1, 1)
β2 lnN (0, 0.5) lnN (0, 0.25)
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Figure 4.3: Plots of the PDF of prior distributions of the warping parameters on the interval
[0,3]
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4.3 | Extending the model with premium information

Parallel to an analysis of prior distributions, we will try several configurations to include the
received premium. As we intend to determine the feasibility of such a method, we will restrict
these setups to the model with the prior distributions as initially described by Lally and Hartman
(2018) for equal comparison. We will, however, apply all three covariance functions on the model.
By doing this, we wish to answer the following two sub-questions:

In order to improve the Best Estimate and/or reduce the confidence interval:
• Can relevant, out-of-triangle information be supplied to the model?
• Can the GP model be extended with a Bornheutter-Ferguson estimation method?

4.3.1 | Transform observations to Loss Ratio’s

One of the methods to implicitly give information on the premiums is by pre-transforming the
input data. We do so by dividing the observed losses at a specific moment in time (Zi,j) by
the net premiums received in that year (Pi). Using this standardisation, the Development-lag
run-off will not materially change, as they are all divided by an identical constant (for example:
the Chain Ladder factors will remain identical). However, over the incurral-year axis, different
trends might become visible. We wonder if the model’s behaviour can cope with these changes,
and if they could potentially improve model predictions. We visualise the transformation in
Figure 4.4, where we give an example of observed losses and observed loss ratio’s.

(a) Observed cumulative losses (Triangle 3.2) (b) Observed cumulative LR (Triangle 3.2)

Figure 4.4: Plots of observed cumulative losses and loss ratio of Triangle 3.2

We transform the predictions by the GP model back by multiplying it with the same constants,
and then determine the Loss Reserve and error metrics. We will compare this with the Chain
Ladder and the Hierarchical GP model by Lally and Hartman (2018) without adaptations that
might arise from the prior distributions analysis.

4.3.2 | Supply Premiums as input instead of Accident Years

In the data set we consider, both the known observations and the net premiums received in that
year are available. As we will present in Section 5, both premiums and ultimate losses in that
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year fluctuate heavily in some run-off triangles. As such, we want to investigate if using net
premiums, as opposed to the incurral year, could be a more meaningful input parameter.

As premiums might fluctuate throughout the years, the model could find more support for
relatively distant observations due to a reshuffling of data points, reducing the standard error
of the model and potentially narrowing the confidence interval. An example of such a revised
spreadsheet is given in Table 4.4.

Table 4.4: Triangle 5.3: Upper Triangle. Sorted on premium received.

Premium 1 2 3 4 5 6 7 8 9 10

177k 22k 61k 85k 100k 109k 115k 119k 122k 123k 125k
201k 27k 78k 106k 122k 133k 139k 143k 146k 147k ·
245k 25k · · · · · · · · ·
246k 33k 100k 135k 158k 169k 178k 183k 188k · ·
286k 39k 114k 157k 181k 197k 209k 213k · · ·
287k 29k 66k · · · · · · · ·
338k 36k 83k 111k · · · · · · ·
340k 42k 126k 165k 189k 204k 214k · · · ·
366k 41k 100k 132k 151k · · · · · · ·
419k 46k 117k 155k 179k 194k · · · · ·

As can be seen in Table 4.4, due to the reshuffling of data, the prediction of losses or a general
trend might be more difficult in the Incurral-year axis. As such, we do not expect this method
to give sufficient results on every triangle that we analyse. For triangles that have few shocks,
however, this method could potentially give a more accurate result. We will, nonetheless, analyse
on all triangles.

4.3.3 | Add Estimators of the Ultimate Loss to the model

The Bornheutter-Ferguson method is reliant on estimated ultimate losses for each incurral year.
As our model has a significant uncertainty in the most distant predictions, we attempt to mit-
igate this by adding estimated observations as extra input to our model based on the observed
premium.

We apply somewhat identical logic to our estimations as the BF-method described in 2.3.2.
Of a triangle, we will determine the Estimated Loss Ratio of every observed point in the triangle,
based on the development parameters as described in Section 2.3.2. Our estimation method is
given in (4.2) and is built up out of two parts: the development to date, and the development that
still has to occur. The development to date is modeled by multiplying the most recent Estimated
Loss Ratio with its’ cumulative development parameter (γ̂l), effectively returning the most recent
observed Loss Ratio. For the development that still has to occur, we will apply Gaussian Noise.
We generate this noise by defining a new random variable X, which has a normal distribution.
It has a mean equal to the mean of the estimated Loss Ratio’s in the triangle, and the standard
deviation equal to the standard deviation of these estimations. Therefore: if a triangle has few
shocks, its’ standard deviation will be smaller and estimators will thus be less volatile than when
a triangle has more shocks.
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X ∼ N (L̄R,SD(LR))

l = n+ 1− i

α̂i = ((γ̂l ∗ LRi,l) + (1− γ̂l) ∗X) ∗ Pi

(4.2)

Example 4.1: Estimators based on Bornheutter-Ferguson

We recall the estimated Loss Ratio’s as calculated in Example 2.4:
Development year (j)

Incurral Year (i) 1 2 3 Pi

2010 (1) 0.81 0.85 0.85 2,060
2011 (2) 0.87 0.83 · 2,400
2012 (3) 0.89 · · 2,600

Cum. Dev. Parameters (γ̂j) 0.60 0.85 1

We analyse the six estimated Loss Ratio’s. Of these, the mean is approx. 0.85 and the standard
deviation is approx. 0.03. We want to make a estimation of the ultimate losses of i = 2 and
i = 3. We do this by applying Equation 4.2:

X ∼ N (0.85, 0.03)

α̂2 = (0.85 ∗ 0.83 + (1− 0.85) ∗X) ∗ 2, 400

α̂3 = (0.60 ∗ 0.89 + (1− 0.60) ∗X) ∗ 2, 600

Given that a X is a random variable, we can not give a deterministic outcome in this example.

The estimations are supplied as extra observations of the model at j = n, but we model this
with a different noise-parameter σ2

est, which will have an identical prior distribution as σ2. All
other parameters will be kept equal. We will give an example of renewed input in Table 4.5,
where the observations marked in bold are the estimators applied - and thus modeled with their
own noise-parameter.

Table 4.5: Upper Triangle of 5.2, with added BF-estimators

IY Development Lag
1 2 3 4 5 6 7 8 9 10

1988 19,016 44,632 59,804 66,052 70,115 72,219 73,565 74,273 75,112 75,655
1989 17,346 42,058 59,686 64,821 67,313 69,036 69,942 70,428 70,846 71,192
1990 12,212 28,087 42,719 46,564 48,016 49,030 49,700 49,994 · 50,817
1991 9,490 19,697 32,062 38,698 40,369 41,220 41,970 · · 42,739
1992 7,605 14,874 21,105 29,016 35,208 36,884 · · · 39,511
1993 5,596 11,527 14,677 17,073 20,813 · · · · 23,007
1994 4,885 10,118 13,103 14,570 · · · · · 18,781
1995 4,056 8,435 10,439 · · · · · · 17,490
1996 4,213 8,768 · · · · · · · 17,604
1997 5,258 · · · · · · · · 25,048

The noise-parameter allows the GP to take the uncertainty of the estimators into account
when making predictions. Because there are now extra observations, the Gaussian process model
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now has more observations to make predictions with, and it can now perform an interpolation
as opposed to only extrapolating, and as such we expect the confidence interval to take on more
realistic values.
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In order to test and improve our model, we have selected a total of 15 triangles from different
Lines of Business. 3D-plots of both the upper triangle (which is supplied to the model as input)
and the actual observed losses are presented (which the model attempts to estimate), along with
a summary table containing the yearly premiums, ultimate losses and the corresponding loss
ratio. We will highlight the most important challenges these data sets pose for our model. The
actual data underlying these plots are given in Appendix C. Furthermore, all LoB’s will be
briefly addressed.

5.1 | Medical Malpractice (MM)

Medical Malpractice policies protect a customer (healthcare professional) against claims from a
patient. These products usually have a relatively long run-off period, as these procedures (such
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as lawsuits) can have a considerable duration. Furthermore, payments can be made over a longer
period of time.

5.1.1 | Physicians Reciprocal Insurers (Triangle 1.1)

In Figure 5.1, both the upper triangle and observed losses are presented for this insurer. Payments
are made gradually along the development lag-axis, and we can also observe a growth along the
incurral year-axis. The triangle is relatively stable, with incurral year 1995 having a larger
claims volume than surrounding observations. We expect the models to be able to capture these
properties adequately.

(a) Upper Triangle (b) Observed Losses
1988 1989 1990 1991 1992 1993 1994 1995 1996 1997

Ult. Loss 59k 61k 77k 90k 90k 94k 102k 113k 96k 102k
Premium 73k 76k 86k 87k 92k 93k 97k 107k 107k 111k

Loss Ratio 0.80 0.81 0.90 1.04 0.98 1.01 1.05 1.06 0.89 0.92

(c) Overview of losses and premiums

Figure 5.1: Data set of Physicians Reciprocal Insurers (Medical Malpractice)

5.1.2 | Promutual Group (Triangle 1.2)

The Promutual Group details are given in Figure 5.2. Comparing this to the Triangle 1.1, we
see a more rough pattern emerging, while the payments along the development lag-axis appear
to stabilise after DL = 6.

We also see a smaller volume of both claims and premiums in comparison with Triangle 1.1.
When looking at the underlying data in Table C.2 (Appendix C), we see that the ultimate claims
level is fairly stable, while the premium volume has declined. As such, we expect that models
that take Loss Ratio’s and/or Premiums into account will have considerable difficulty with this
triangle.
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(a) Upper Triangle (b) Observed Losses
1988 1989 1990 1991 1992 1993 1994 1995 1996 1997

Ult. Loss 26k 27k 20k 29k 26k 37k 36k 29k 33k 29k
Premium 53k 61k 52k 44k 29k 26k 25k 26k 27k 23k

Loss Ratio 0.49 0.44 0.39 0.65 0.87 1.41 1.43 1.10 1.20 1.29

(c) Overview of losses and premiums

Figure 5.2: Data set of Promutual Group (Medical Malpractice)
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5.1.3 | Scpie Indemnity Company (Triangle 1.3)

The plots of Scpie Indemnity Company are displayed in Figure 5.3. Here, we see that the
payments along the development lag-axis appear to take on substantial size between DL = 1

and DL = 3, after which they stabilise after DL = 5. Premium volumes are declining from 1988-
1991, after which they gradually grow. Loss Ratio’s from the early incurral years are considerably
lower than that of the later incurral years. As such, we also expect that the LR/Premium model
might underperform. We do expect that the normal Gaussian Process models are able to reflect
the general trend observed, as it has already been applied on this triangle (Lally & Hartman,
2018).

(a) Upper Triangle (b) Observed Losses
1988 1989 1990 1991 1992 1993 1994 1995 1996 1997

Ult. Loss 78k 72k 75k 90k 89k 96k 92k 82k 97k 99k
Premium 135k 112k 99k 96k 99k 99k 97k 102k 102k 108k

Loss Ratio 0.57 0.64 0.76 0.94 0.90 0.97 0.95 0.80 0.96 0.91

(c) Overview of losses and premiums

Figure 5.3: Data set of Scpie Indemnity Company (Medical Malpractice)

5.2 | Commercial Automobile (CA)

Automobile insurance products, both Commercial and Personal, in general have shorter tails and
thus a quicker development than other insurance products (Shi, 2017).

5.2.1 | Farmers’ Automobile (Triangle 2.1)

The Farmers’ Automobile triangle is plotted in Figure 5.4a and the observed losses are plotted in
Figure 5.4b. We see that the pattern along the development-lag is relatively stable and flattens
out at approximately DL = 5. Along the Incurral Year-axis, we see that it is fairly rough, both
in the upper triangle and the observed losses. We expect that Matèrn-covariance functions are
thus better at capturing this.

Some errors are to be expected, as there is an outlier in Incurral Year 1997 that is not captured
by the first observation of IY 1997, nor by an increase in the net premium received.
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(a) Upper Triangle (b) Observed Losses
1988 1989 1990 1991 1992 1993 1994 1995 1996 1997

Ult. Loss 7,115 8,425 8,991 8,549 7,853 9,980 9,583 9,038 8,719 12k
Premium 9,147 9,854 11k 11k 12k 13k 13k 14k 14k 14k

Loss Ratio 0.78 0.85 0.81 0.75 0.67 0.80 0.71 0.64 0.61 0.89

(c) Overview of losses and premiums

Figure 5.4: Data set of Farmers’ Automobile (Commercial Automobile)
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5.2.2 | State Farm (Triangle 2.2)

State Farm is the largest Commercial Automobile insurer (based on net premiums) that we
analyse in this research. Its data is given in Figure 5.5 and Table C.5. We see a relatively
stable (and thus predictable) loss development along all axis. When looking at the premiums,
we see an increase that is not necessarily reflected in the claim volume. As such, the Loss Ratio’s
have declined over gradually over time. Models applying Premium information should be able
to capture this behaviour.

(a) Upper Triangle (b) Observed Losses
1988 1989 1990 1991 1992 1993 1994 1995 1996 1997

Ult. Loss 193k 200k 225k 207k 215k 233k 244k 240k 237k 231k
Premium 286k 309k 326k 333k 342k 356k 380k 399k 407k 407k

Loss Ratio 0.68 0.65 0.69 0.62 0.63 0.66 0.64 0.60 0.58 0.57

(c) Overview of losses and premiums

Figure 5.5: Data set of State Farm (Commercial Automobile)

5.2.3 | The Ins Co (Triangle 2.3)

Upon inspection of the data of The Ins Co (Figure 5.6, we see a highly volatile claims devel-
opment, most notably in Incurral Years from 1992 onward. We also see a significant growth
in premium volume. Claims development in the incurral years up to and including 1991 might
therefore be less relevant. Model performance on such an unstable triangle is interesting. The
upper triangle on losses does show indicators of enlarged claims development, but which model
is able to capture and estimate these characteristics best is difficult to hypothesise.
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(a) Upper Triangle (b) Observed Losses
1988 1989 1990 1991 1992 1993 1994 1995 1996 1997

Ult. Loss 791 553 479 936 2,254 4,458 6,117 4,480 6,273 5,322
Premium 1,300 1,697 1,553 1,425 3,252 5,617 9,536 5,674 7,389 6,378

Loss Ratio 0.61 0.33 0.31 0.66 0.69 0.79 0.64 0.79 0.85 0.83

(c) Overview of losses and premiums

Figure 5.6: Data set of The Ins Co (Commercial Automobile)

Page 39



Chapter 5: Data set used

5.3 | Personal Automobile (PA)

Personal Automobile insurances are much alike Commercial Automobile in regards to claims
development (Shi, 2017). However, paid claims appear to be a bit slower: having a more gradual
cumulative development in the early development-lags, and levelling out around DL = 6.

5.3.1 | Farmers’ Automobile (Triangle 3.1)

The Farmers’ Automobile triangle and losses are displayed in Figure 5.7. It is not very volatile
throughout time, as no significant shocks can be observed. Both premium and claims volume
are aligned with regards to growth. As such, the models should be able to predict these losses
adequately.

(a) Upper Triangle (b) Observed Losses
1988 1989 1990 1991 1992 1993 1994 1995 1996 1997

Ult. Loss 21k 28k 29k 31k 31k 34k 35k 35k 33k 34k
Premium 28k 31k 37k 40k 43k 43k 44k 45k 45k 47k

Loss Ratio 0.73 0.89 0.79 0.78 0.72 0.79 0.81 0.80 0.74 0.71

(c) Overview of losses and premiums

Figure 5.7: Data set of Farmers’ Automobile (Commercial Automobile)

5.3.2 | Federal Insurance Company (Triangle 3.2)

In Figure 5.8b, we see that on the incurral year-axis a growth of claims volume has occurred,
while the development-lag axis has few fluctuations. The Gaussian process model might run into
over-estimation with regards to the losses in incurral year 1997, caused by the larger volume
in the previous incurral year. Premium volumes, however, are aligned with this. As such, we
hypothesise that this extra information will aid the model.
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(a) Upper Triangle (b) Observed Losses
1988 1989 1990 1991 1992 1993 1994 1995 1996 1997

Ult. Loss 64k 77k 79k 73k 62k 98k 110k 112k 134k 113k
Premium 83k 92k 96k 99k 96k 139k 152k 168k 181k 165k

Loss Ratio 0.76 0.84 0.83 0.73 0.65 0.70 0.72 0.66 0.74 0.69

(c) Overview of losses and premiums

Figure 5.8: Data set of Federal Insurance Company (Commercial Automobile)
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5.3.3 | State Farm (Triangle 3.3)

The State Farm Personal Automobile insurance is the largest triangle with regards to claims
volume. As such, it has few outliers and appears to have a fairly smooth development over time,
as is displayed in Figure 5.9. We expect the models to be able to reflect this behaviour.

(a) Upper Triangle (b) Observed Losses
1988 1989 1990 1991 1992 1993 1994 1995 1996 1997

Ult. Loss 6.8M 7.7M 8.4M 8.3M 9.0M 9.7M 10.4M 10.5M 10.4M 10.2M
Premium 7.8M 8.7M 9.8M 10.6M 11.5M 12.2M 13.3M 14.1M 14.7M 14.9M

Loss Ratio 0.87 0.88 0.86 0.78 0.79 0.79 0.78 0.74 0.71 0.68

(c) Overview of losses and premiums

Figure 5.9: Data set of State Farm (Personal Automobile)

5.4 | Product Liability (PL)

Product Liability is a type of insurance policy that protects companies that develop and/or create
products from liability claims caused by those products, for instance in the case of a defect. We
see in general that the development of these claims are more volatile than the other triangles
considered so far, and they are thus challenging for any model to capture adequately.

5.4.1 | Allstate Insurance Company (Triangle 4.1)

The Allstate Insurance Company is one of the insurers considered for this Line of Business.
Upon inspection of the 3D-plots, we observe that the run-off period for all Incurral Years is
relatively flat in the development lag-axis. Furthermore, IY 1997 has a low claims volume, which
is reflected in the net premium received, but might result in over-estimation if this is unknown.

The cause of this flat run-off period might be a diagonal shock that we observe in Calendar
Year 1996 (not to be confused with incurral year 1996). We verify this by making a plot of the
incurral claims, which is given in Figure 5.11, where such a diagonal shock can be observed. Also
taking the significantly reduced claims and premiums in 1997 into account, we hypothesise that
a business action could be underlying these changes. We do not expect any model to be able to
adequately reflect this characteristic.
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(a) Upper Triangle (b) Observed Losses
1988 1989 1990 1991 1992 1993 1994 1995 1996 1997

Ult. Loss 36k 41k 35k 19k 19k 16k 27k 25k 12k 5,049
Premium 49k 47k 39k 32k 22k 24k 34k 27k 23k 4,450

Loss Ratio 0.75 0.88 0.89 0.61 0.86 0.67 0.79 0.95 0.51 1.13

(c) Overview of losses and premiums

Figure 5.10: Data set of Allstate Insurance Company (Product Liability)

Figure 5.11: Incremental losses of Allstate Insurance Company (Product Liability)
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5.4.2 | Federal Insurance Company (Triangle 4.2)

This triangle, as opposed to Triangle 4.1, has a positive development in the incurral year-axis,
especially from 1993 onwards. This is partially reflected in the information in the upper triangle,
but considering most of the development takes place in the lower triangle, we wonder if any model
is able to capture this behaviour accordingly. Furthermore, this behaviour is not adequately
captured in the premium information.

(a) Upper Triangle (b) Observed Losses
1988 1989 1990 1991 1992 1993 1994 1995 1996 1997

Ult. Loss 32k 34k 56k 54k 41k 94k 106k 101k 104k 129k
Premium 102k 99k 100k 104k 105k 114k 124k 140k 150k 150k

Loss Ratio 0.32 0.35 0.55 0.52 0.39 0.82 0.86 0.72 0.69 0.86

(c) Overview of losses and premiums

Figure 5.12: Data set of Federal Insurance Company (Product Liability)

5.4.3 | Federated Mutual Group (Triangle 4.3)

Finally in the Product Liability Line of Business, we consider the Federated Mutual Group.
This insurance company has seen a descent in claims volume with regards to the incurral year
axis, while having a relatively stable development pattern, especially when comparing this to its’
peers. This decline in claims volume is not reflected in the premium information, and we thus
hypothesise that all models will have considerable difficulty in making predictions.
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(a) Upper Triangle (b) Observed Losses
1988 1989 1990 1991 1992 1993 1994 1995 1996 1997

Ult. Loss 21k 21k 23k 26k 22k 12k 12k 11k 14k 17k
Premium 30k 28k 28k 28k 29k 24k 26k 28k 30k 32k

Loss Ratio 0.72 0.76 0.82 0.94 0.75 0.48 0.47 0.38 0.47 0.54

(c) Overview of losses and premiums

Figure 5.13: Data set of Federated Mutual Group (Product Liability)
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5.5 | Workers’ Compensation (WC)

Finally, we look at Workers’ Compensation lines of business, which insures the policy holders’
income and treatment in the case of a medical injury occured at their work.

5.5.1 | Allstate Insurance Company (Triangle 5.1)

The most notable trend that can be seen in Figure 5.14 is the decline of claims volumes along
the incurral year-axis, also reflected in the premium volumes. Furthermore, we see that this
triangle is relatively stable from DL ≥ 4, and that the reduced claims volumes is forebode by
the reduced claims in the first development lag period of 1997. We thus expect the models to be
able to estimate this appropriately.

(a) Upper Triangle (b) Observed Losses
1988 1989 1990 1991 1992 1993 1994 1995 1996 1997

Ult. Loss 325k 278k 263k 248k 169k 91k 95k 91k 49k 2,909
Premium 395k 374k 280k 314k 253k 201k 174k 146k 93k 7,651

Loss Ratio 0.82 0.74 0.94 0.79 0.67 0.45 0.54 0.62 0.53 0.38

(c) Overview of losses and premiums

Figure 5.14: Data set of Allstate Insurance Company (Workers’ Compensation)

5.5.2 | Lumbermen’s Underwriting Alliance (Triangle 5.2)

Much like Triangle 5.1, we see that the losses from the Lumbermen’s Underwriting Alliance
(LUA) have a declining trend with regards to the incurral year-axis. Furthermore, most of the
development has occured prior to DL = 5. As such, it shows a fairly similar pattern to the AIC
triangle, and the models should show roughly similar results.
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(a) Upper Triangle (b) Observed Losses
1988 1989 1990 1991 1992 1993 1994 1995 1996 1997

Ult. Loss 76k 71k 50k 43k 38k 28k 21k 15k 14k 21k
Premium 94k 92k 68k 60k 62k 71k 62k 68k 50k 49k

Loss Ratio 0.80 0.77 0.74 0.72 0.60 0.39 0.34 0.22 0.27 0.42

(c) Overview of losses and premiums

Figure 5.15: Data set of Lumbermen’s Underwriting Alliance (Workers’ Compensation)
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5.5.3 | State Farm (Triangle 5.3)

The State Farm triangle has been used in the paper of Lally and Hartman (2018) to validate
the applicability of the Gaussian Process model on predicting Loss Reserves. When looking
at the triangle, we once again see a clear trend emerging on the incurral year-axis, while the
development stabilises from DL ≥ 5, much like the two peers that we will analyse in this Line of
Business. The Loss Ratio is gradually declining, and models incorporating premium information
could thus benefit from this information.

(a) Upper Triangle (b) Observed Losses
1988 1989 1990 1991 1992 1993 1994 1995 1996 1997

Ult. Loss 125k 149k 196k 230k 236k 225k 191k 153k 126k 112k
Premium 177k 201k 246k 286k 340k 419k 366k 338k 287k 245k

Loss Ratio 0.71 0.74 0.80 0.80 0.69 0.54 0.52 0.45 0.44 0.45

(c) Overview of losses and premiums

Figure 5.16: Data set of State Farm (Workers’ Compensation)
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In this chapter, we will present the results of the research performed. We will follow notation
of Chapter 4, where our research is further outlined. The triangles that we will analyse on are
described in detail in Chapter 5.

For each research, we will give both the predicted Loss Reserve and the Root Mean Square
Error of prediction. Furthermore, we will highlight several R3-plots where the models give
adequate predictions or where they underperform.

In the tables comparing predicted Loss Reserves, we have marked the best prediction in
bold. For the tables comparing RMSE calculations and Standard Deviations, the lowest error
or deviation has been marked in bold.

6.1 | Benchmark measurements

We will analyse the results of the Chain Ladder method (as described in Section 2.3.1) and the
Gaussian Process model as defined by Lally and Hartman (2018) and described in Section 3.

The goal of this is threefold: we want to verify our implementation, get a better understand-
ing of the prediction and the current error of the models, but also perform this analysis to answer
the following research question:

• Is the model applicable on a more extensive data set?

Triangles that are already analysed by Lally and Hartman (2018) are 1.3, 3.1 and 5.3.
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An overview of the predicted Loss Reserve by these models is given in Table 6.1, which is
compared to the actual observed losses. In Table 6.2, an overview of the RMSE of all methods
can be found. Finally, we give an overview of the Standard Deviation of all predicted Loss
Reserves in Table 6.3, to give an indication of the confidence of the predictions.

Table 6.1: Benchmark Measurement: Observed and predicted Loss Reserves

# LoB Observed Chain Ladder Matérn 3/2 Matérn 5/2 Sq. Exponential
1.1 MM 407,525 740,677 288,484 313,911 284,687
1.2 MM 104,094 63,104 83,937 77,709 77,340
1.3 MM 164,633 240,423 155,306 156,467 153,394
2.1 CA 16,640 17,239 14,254 13,789 13,891
2.2 CA 353,949 410,384 329,846 345,927 350,702
2.3 CA 13,046 11,377 6,627 6,993 6,652
3.1 PA 37,397 42,833 38,901 40,278 37,737
3.2 PA 137,642 367,607 280,729 368,464 212,727
3.3 PA 11,561,327 12,586,821 10,113,582 10,996,920 11,087,032
4.1 PL 10,965 162,098 90,421 103,467 98,422
4.2 PL 422,513 325,328 179,658 231,733 212,941
4.3 PL 37,612 36,863 35,031 32,638 28,782
5.1 WC 45,916 193,320 310,663 334,577 325,816
5.2 WC 40,225 34,490 55,831 55,688 51,710
5.3 WC 307,810 304,882 328,945 343,456 311,081

Table 6.2: Benchmark Measurement: RMSE

# LoB Chain Ladder Matérn 3/2 Matérn 5/2 Sq. Exponential
1.1 MM 60,512 13,756 11,015 13,416
1.2 MM 6,735 4,039 4,786 4,904
1.3 MM 15,544 6,675 6,153 6,107
2.1 CA 896 1,472 1,354 1,347
2.2 CA 5,781 5,010 4,217 4,727
2.3 CA 629 1,368 1,155 1,100
3.1 PA 1,685 1,042 1,378 1,420
3.2 PA 43,475 17,015 28,351 12,590
3.3 PA 328,024 224,798 163,189 197,843
4.1 PL 24,160 11,898 14,798 16,188
4.2 PL 12,996 26,986 19,588 20,015
4.3 PL 1,592 2,476 2,223 2,058
5.1 WC 20,100 34,701 44,033 53,562
5.2 WC 2,413 3,505 3,716 4,126
5.3 WC 7,165 14,815 14,934 10,062

When comparing Table 6.1 and Table 6.2, we notice that, with some exceptions, a better
prediction of the Loss Reserve results in a lower RMSE. In general, we observe from Table 6.1
that the Gaussian Process models are able to perform better or than or comparable to the Chain
Ladder model, but is also outperformed in some triangles by the Chain Ladder. The GP method
is generally outperformed by the CL in the Workers’ Compensation and Product Liability Lines
of Business, with the notable exception of Triangle 4.1 - which has a Diagonal Shock that neither
model is able to capture accordingly.

When comparing the covariance functions of the Gaussian Process model, we see that there
is no significant outperformance of any one along all triangles. In general, when comparing the
predictions, we see that the triangles that have a smooth pattern are better predicted by the
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Squared Exponential function, and the models applying a Matérn covariance function perform
better on the triangles that are more volatile.

In Appendix D, plots are given of the actual observed losses, the Chain Ladder prediction
and the best performing Gaussian process model in order to visualise the predictions by these
models.

Table 6.3: Benchmark Measurement: Standard Deviation of Loss Reserve

# LoB Chain Ladder Matérn 3/2 Matérn 5/2 Sq. Exponential
1.1 MM 106,809 86,625 90,804 83,825
1.2 MM 22,698 33,058 27,092 26,187
1.3 MM 30,106 41,430 36,476 37,098
2.1 CA 2,472 5,458 4,712 4,128
2.2 CA 18,221 73,495 74,844 65,842
2.3 CA 4,760 3,931 4,061 4,335
3.1 PA 2,675 8,039 8,852 8,223
3.2 PA 51,036 92,948 118,434 98,847
3.3 PA 549,869 2,400,639 2,616,817 2,541,395
4.1 PL 86,611 57,195 56,209 58,213
4.2 PL 84,093 95,199 128,196 116,028
4.3 PL 4,702 21,155 21,202 18,783
5.1 WC 49,582 229,973 226,372 202,139
5.2 WC 7,378 37,775 37,127 26,968
5.3 WC 20,364 107,898 120,175 104,266

An overview of the Standard Deviation of the Loss Reserve prediction is given in Table 6.3.
In general, the Chain Ladder has the lowest Standard Deviation, with three exceptions. In the
case of all three exceptions, the predictions made by the GP models are considerably lower than
the prediction by the Chain Ladder. Considering that the wide density of the Loss Reserve was
a limitation of the Gaussian process model, this meets our expectations.

6.2 | Prior distributions

In this section, we will vary the prior distributions as explained in Section 4.2. We benchmark
the different prior distribution of the parameter that we wish to investigate against the results
of the Gaussian process models as given in Section 6.1.

The relevant research question that we attempt to answer with this analysis is:

• Are the prior distributions on the hyperparameters adequately chosen?

6.2.1 | Bandwidth parameter (ψ)

We have changed the prior distribution of the bandwidth parameter from a Gamma(4,4) to a
Cauchy(0,2.5) distribution. Table 6.4 presents the predicted loss reserves and Table 6.5 contains
the RMSE of the predictions. The results of the estimated parameters are given in Appendix E.

The Cauchy prior distribution for the bandwidth parameter has varying results: sometimes
it results in better predictions and/or a lower RMSE, but its’ performance is unstable - once
even suggesting a negative loss reserve (marked in red). As can be seen in Tables E.1 and E.2
(Appendix E), the inferred values of ψ are remarkably high, and thus would result in more
volatile functions as described in Section 3.2. Especially in the case of the Squared Exponential
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Table 6.4: Loss Reserve predictions of variations on the prior distribution of ψ

Matérn 3/2 Matérn 5/2 Sq. Exponential
# Observed Cauchy Gamma Cauchy Gamma Cauchy Gamma
1.1 407,525 269,104 288,484 263,070 313,911 216,849 284,687
1.2 104,094 80,073 83,937 69,541 77,709 63,729 77,340
1.3 164,633 151,235 155,306 150,681 156,467 137,297 153,394
2.1 16,640 12,372 14,254 12,169 13,789 9,285 13,891
2.2 353,949 323,956 329,846 334,710 345,927 324,372 350,702
2.3 13,046 3,101 6,627 2,059 6,993 -838 6,652
3.1 37,397 37,993 38,901 38,613 40,278 38,126 37,737
3.2 137,642 209,772 280,729 221,388 368,464 166,334 212,727
3.3 11,561,327 10,124,963 10,113,582 10,645,458 10,996,920 10,447,237 11,087,032
4.1 10,965 48,026 90,421 57,721 103,467 62,062 98,422
4.2 422,513 99,228 179,658 81,173 231,733 19,260 212,941
4.3 37,612 32,338 35,031 32,725 32,638 30,524 28,782
5.1 45,916 285,877 310,663 268,616 334,577 303,043 325,816
5.2 40,225 52,439 55,831 53,097 55,688 46,105 51,710
5.3 307,810 323,255 328,945 330,246 343,456 302,472 311,081

Table 6.5: Root Mean Square Errors of variations on the prior distribution of ψ

Matérn 3/2 Matérn 5/2 Sq. Exponential
# LoB Cauchy Gamma Cauchy Gamma Cauchy Gamma
1.1 MM 15,868 13,756 15,934 11,015 18,284 13,416
1.2 MM 3,598 4,039 4,779 4,786 5,831 4,904
1.3 MM 6,863 6,675 6,429 6,153 6,658 6,107
2.1 CA 1,676 1,472 1,709 1,354 1,916 1,347
2.2 CA 5,639 5,010 3,878 4,217 3,983 4,727
2.3 CA 1,897 1,368 2,062 1,155 2,436 1,100
3.1 PA 975 1,042 1,219 1,378 1,386 1,420
3.2 PA 8,818 17,015 10,086 28,351 7,001 12,590
3.3 PA 221,335 224,798 150,992 163,189 138,657 197,843
4.1 PL 6,149 11,898 7,446 14,798 9,085 16,188
4.2 PL 38,779 26,986 40,347 19,588 47,914 20,015
4.3 PL 2,601 2,476 2,245 2,223 1,965 2,058
5.1 WC 30,970 34,701 28,873 44,033 34,910 53,562
5.2 WC 3,174 3,505 3,267 3,716 2,844 4,126
5.3 WC 13,365 14,815 13,157 14,934 9,304 10,062

covariance function, the Cauchy prior distribution appears to get too much freedom. Performance
of the Cauchy prior seems to be a better combination with the Matérn covariance functions.

We visualise results by plotting Triangle 2.3 (Squared Exponential), Triangle 4.1 (Matérn
3/2) and Triangle 4.2 (Squared Exponential) in respectively Figures 6.1, 6.2 and 6.3.

Figure 6.1c (Triangle 2.3 - Sq. Exponential) displays a weakness of the Cauchy prior: the
instability of the triangle is captured for the Incurral Year of 1994, but it does not adequately
capture the larger claims of 1995, 1996 and 1997, as a result of the flexibility caused by the
large bandwidth parameter of the Incurral Year (ψ2 = 45.0727, Table E.2). On the other hand,
the Gamma(4, 4) prior distribution (Figure 6.1b) is unable to capture any of the outliers in this
unstable triangle.

This is also visible in the results of Triangle 4.2 (Figure 6.3, where the Cauchy-distribution
results in unrealistic estimates: the increased losses (starting from 1994 onward) appear to be
interpreted as an outlier. As a result, the run-off for 1994 is very unrealistic. We have also
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included the predicted run-off in Table 6.6 - from which it is visible that the GP model predicts
losses to become lower over time. We have highlighted decreasing values on the DL-axis in red,
which is uncommon behaviour for a run-off triangle.

On the other hand, Figure 6.2c (Triangle 4.1, Matérn 3/2) displays how the increased flex-
ibility of the Cauchy prior improves the model predictions when compared to the Gamma(4,4)
prior (Figure 6.2b). Trends in the data are more adequately captured, resulting in a significant
improvement of both the Loss Reserve prediction and the RMSE.

(a) Observed Losses (b) Gamma, Sq. Exp. (c) Cauchy, Sq. Exp.

Figure 6.1: Visualisation of models with variations on the bandwidth parameter of Triangle 2.3

(a) Observed Losses (b) Gamma, Matérn 3/2 (c) Cauchy, Matérn 3/2

Figure 6.2: Visualisation of models with variations on the bandwidth parameter of Triangle 4.1
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(a) Observed Losses (b) Gamma, Sq. Exp. (c) Cauchy, Sq. Exp.

Figure 6.3: Visualisation of models with variations on the bandwidth parameter of Triangle 4.2

Table 6.6: Run-off prediction by the half-Cauchy distribution, applied on Triangle 4.2, Squared
Exponential as displayed in Figure 6.3c

IY Development Lag
1 2 3 4 5 6 7 8 9 10

1988 1,249 4,092 8,893 15,516 23,806 34,070 30,699 31,130 31,716 32,430
1989 946 2,929 9,953 17,368 25,139 29,628 32,059 32,972 33,610 34,014
1990 1,765 4,743 9,854 20,471 26,756 33,654 43,282 42,588 41,860 41,616
1991 1,408 5,226 9,768 21,637 25,339 31,574 37,738 41,942 43,012 42,786
1992 1,647 7,628 12,848 18,323 21,943 23,139 25,241 27,277 28,363 28,554
1993 7,566 14,991 29,466 49,090 57,590 53,392 44,038 37,063 33,514 32,481
1994 2,299 6,856 23,954 61,496 80,918 80,006 66,574 54,359 47,405 45,087
1995 4,959 13,541 23,003 43,597 57,732 57,995 50,237 42,725 38,201 36,736
1996 6,063 9,707 17,840 28,960 36,698 37,334 33,883 30,537 28,519 27,815
1997 6,507 8,607 14,968 24,051 30,890 32,010 29,788 27,452 26,063 25,549

6.2.2 | Noise parameter (σ2)

We will now present the results on the noise-parameter of the observations (σ2). The predicted
Loss Reserves are given in Table 6.7, and the RMSE of the mean predictions are presented in
Table 6.8.

We observe that the variation of the prior distribution of σ2 in general has a low impact. While
we have accentuated the best prediction and lowest error, it can be argued if these differences
are of any significance. While both prior distributions are weakly informative, the Student-
T distribution in general performs better. For some triangles, however, a notable change of
performance can be observed (e.g. Triangle 3.2). The estimations of σ2 for each simulation is
displayed in Table 6.9.

In general, we observe that σ̂2 tends to converge to zero. The Student-T prior distribu-
tion always results in lower estimates of σ̂2, which is as expected, considering the underlying
distributions (Figure 4.2).

Assuming that the data-set is of such a quality that it consists of noise-free observations,
a convergence to zero is to be expected. However, in case data quality would be worse, the
log-normal distribution might perform better. The minor variations in the predictions between
the two prior distributions is in line with the minor differences of the Loss Reserve and RMSE.

We visualise Triangle 3.2 (Matérn 3/2) and 3.3 (Sq. Exponential) in Figures 6.4 and 6.5. As
can be seen, differences between both prior distributions are minimal.
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Table 6.7: Estimated Loss Reserves of variations on the prior distribution of σ2

Matérn 3/2 Matérn 5/2 Sq. Exponential
# Observed Log-normal Student-T Log-normal Student-T Log-normal Student-T
1.1 407,525 272,601 288,484 298,574 313,911 306,052 284,687
1.2 104,094 74,194 83,937 72,700 77,709 71,019 77,340
1.3 164,633 155,526 155,306 159,180 156,467 154,512 153,394
2.1 16,640 12,485 14,254 13,471 13,789 13,518 13,891
2.2 353,949 324,416 329,846 344,222 345,927 325,100 350,702
2.3 13,046 5,672 6,627 6,777 6,993 6,673 6,652
3.1 37,397 36,923 38,901 37,068 40,278 35,782 37,737
3.2 137,642 244,253 280,729 307,681 368,464 195,412 212,727
3.3 11,561,327 9,957,777 10,113,582 10,629,365 10,996,920 10,680,209 11,087,032
4.1 10,965 90,796 90,421 101,121 103,467 96,122 98,422
4.2 422,513 174,581 179,658 208,862 231,733 200,162 212,941
4.3 37,612 38,584 35,031 36,824 32,638 30,206 28,782
5.1 45,916 377,474 310,663 385,721 334,577 347,118 325,816
5.2 40,225 60,455 55,831 59,887 55,688 53,423 51,710
5.3 307,810 342,114 328,945 355,063 343,456 313,746 311,081

Table 6.8: Root Mean Square Errors of variations on the prior distribution of σ2

Matérn 3/2 Matérn 5/2 Sq. Exponential
# LoB Log-normal Student-T Log-normal Student-T Log-normal Student-T
1.1 MM 15,345 13,756 12,703 11,015 11,115 13,416
1.2 MM 4,906 4,039 5,195 4,786 5,324 4,904
1.3 MM 6,697 6,675 6,158 6,153 6,251 6,107
2.1 CA 1,461 1,472 1,372 1,354 1,366 1,347
2.2 CA 5,855 5,010 4,764 4,217 6,565 4,727
2.3 CA 1,371 1,368 1,158 1,155 1,102 1,100
3.1 PA 1,105 1,042 1,264 1,378 1,358 1,420
3.2 PA 13,707 17,015 21,194 28,351 11,500 12,590
3.3 PA 251,794 224,798 204,904 163,189 278,615 197,843
4.1 PL 11,889 11,898 14,522 14,798 15,526 16,188
4.2 PL 27,727 26,986 22,047 19,588 21,738 20,015
4.3 PL 2,563 2,476 2,331 2,223 2,253 2,058
5.1 WC 45,989 34,701 52,412 44,033 46,797 53,562
5.2 WC 3,952 3,505 4,206 3,716 4,180 4,126
5.3 WC 16,944 14,815 16,780 14,934 10,840 10,062

(a) Observed Losses (b) Student-T, Matérn 3/2 (c) Lognormal, Matérn 3/2

Figure 6.4: Visualisation of models with variations on the noise parameter of Triangle 3.2
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Table 6.9: Estimations of σ2, split per triangle and prior distribution

σ̂ Matérn 3/2 Matérn 5/2 Sq. Exponential
# LoB Log-normal Student-T Log-normal Student-T Log-normal Student-T
1.1 MM 0.0117 0.0020 0.0142 0.0027 0.0197 0.0086
1.2 MM 0.0439 0.0228 0.0529 0.0425 0.0582 0.0484
1.3 MM 0.0083 0.0014 0.0083 0.0016 0.0090 0.0019
2.1 CA 0.0354 0.0039 0.0435 0.0348 0.0474 0.0405
2.2 CA 0.0067 0.0009 0.0068 0.0008 0.0158 0.0007
2.3 CA 0.0388 0.0075 0.0618 0.0495 0.0669 0.0584
3.1 PA 0.0085 0.0015 0.0091 0.0020 0.0098 0.0027
3.2 PA 0.0154 0.0024 0.0205 0.0029 0.0768 0.0634
3.3 PA 0.0061 0.0008 0.0065 0.0008 0.0090 0.0008
4.1 PL 0.0767 0.0641 0.0872 0.0763 0.0911 0.0794
4.2 PL 0.0192 0.0042 0.0203 0.0063 0.0465 0.0133
4.3 PL 0.0093 0.0016 0.0091 0.0017 0.0096 0.0017
5.1 WC 0.0097 0.0014 0.0113 0.0017 0.0272 0.0033
5.2 WC 0.0063 0.0009 0.0074 0.0010 0.0088 0.0019
5.3 WC 0.0050 0.0007 0.0044 0.0006 0.0041 0.0006

(a) Observed Losses (b) Student-T, Sq. Exponential (c) Lognormal, Sq. Exponential

Figure 6.5: Visualisation of models with variations on the noise parameter on Triangle 3.3
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6.2.3 | Signal parameter (η2)

In this section, we investigate the effect of the prior distribution of the Signal parameter. The
estimated Loss Reserves are given in Table 6.10 and the Root Mean Square Error of these
predictions in Table 6.11.

Table 6.10: Estimated Loss Reserves of variations on the prior distribution of η2

Matérn 3/2 Matérn 5/2 Sq. Exponential
# Observed Log-normal Student-T Log-normal Student-T Log-normal Student-T
1.1 407,525 293,655 288,484 321,546 313,911 289,649 284,687
1.2 104,094 88,815 83,937 81,078 77,709 80,300 77,340
1.3 164,633 157,072 155,306 161,363 156,467 154,665 153,394
2.1 16,640 14,699 14,254 14,468 13,789 13,268 13,891
2.2 353,949 328,106 329,846 351,765 345,927 344,004 350,702
2.3 13,046 7,152 6,627 7,774 6,993 7,674 6,652
3.1 37,397 39,503 38,901 39,328 40,278 38,107 37,737
3.2 137,642 296,369 280,729 398,443 368,464 238,091 212,727
3.3 11,561,327 10,120,266 10,113,582 11,123,106 10,996,920 11,090,064 11,087,032
4.1 10,965 93,502 90,421 111,827 103,467 101,058 98,422
4.2 422,513 185,705 179,658 237,454 231,733 223,322 212,941
4.3 37,612 35,638 35,031 33,748 32,638 29,072 28,782
5.1 45,916 313,856 310,663 315,743 334,577 332,444 325,816
5.2 40,225 54,835 55,831 50,707 55,688 50,550 51,710
5.3 307,810 341,215 328,945 346,722 343,456 305,868 311,081

Table 6.11: RMSE of variations on the prior distribution of η2

Matérn 3/2 Matérn 5/2 Sq. Exponential
# LoB Log-normal Student-T Log-normal Student-T Log-normal Student-T
1.1 MM 13,515 13,756 10,091 11,015 12,693 13,416
1.2 MM 3,753 4,039 4,594 4,786 4,741 4,904
1.3 MM 6,520 6,675 6,099 6,153 6,087 6,107
2.1 CA 1,458 1,472 1,315 1,354 1,367 1,347
2.2 CA 5,112 5,010 4,006 4,217 4,687 4,727
2.3 CA 1,312 1,368 1,084 1,155 991 1,100
3.1 PA 1,073 1,042 1,335 1,378 1,472 1,420
3.2 PA 18,659 17,015 31,302 28,351 15,287 12,590
3.3 PA 221,738 224,798 154,732 163,189 199,666 197,843
4.1 PL 11,928 11,898 15,316 14,798 16,813 16,188
4.2 PL 26,209 26,986 19,254 19,588 18,971 20,015
4.3 PL 2,487 2,476 2,173 2,223 1,990 2,058
5.1 WC 35,009 34,701 39,683 44,033 54,109 53,562
5.2 WC 3,433 3,505 3,423 3,716 4,037 4,126
5.3 WC 15,665 14,815 15,050 14,934 9,887 10,062

Minor differences can be observed in the variations of the prior distribution of the signal-
parameter, analogous to the noise-parameter. The log-normal distribution appears to be a better
combination with the Matérn 5/2 kernel function, while for both the Squared Exponential and
the Matérn 3/2 kernel functions both prior distributions appear to be adequate. In all cases, the
variation in prior distribution gives similar visual results (i.e. no difference in trends modeled
are visible). Therefore, no further visualisations are given.
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6.2.4 | Warping parameters (α, β)

The parameters for the Input Warping ensure that the stationary covariance function is able
to make adequate estimations, even when the underlying process need not be stationary. We
have investigated suggestions of these hyperpriors given in the original paper describing Input
Warping (Snoek et al., 2014), against the benchmark of the model by Lally and Hartman (2018).
The estimated Loss Reserve of these models are given in Table 6.12, and Table 6.13 gives the
RMSE of all models. The researched setup of the parameters in these tables are indicated by the
names of the respective authors. The inferred values of α1, β1, α2, β2 are given in Appendix E.

Table 6.12: Estimated Loss Reserves of variations on the prior distribution of Input Warping
parameters

Matérn 3/2 Matérn 5/2 Sq. Exponential
# Observed Snoek Lally Snoek Lally Snoek Lally
1.1 407,525 290,902 288,484 318,213 313,911 299,256 284,687
1.2 104,094 64,756 83,937 64,732 77,709 65,200 77,340
1.3 164,633 145,554 155,306 139,773 156,467 115,130 153,394
2.1 16,640 14,946 14,254 14,236 13,789 13,873 13,891
2.2 353,949 342,116 329,846 360,514 345,927 302,151 350,702
2.3 13,046 7,115 6,627 7,231 6,993 6,910 6,652
3.1 37,397 37,544 38,901 35,779 40,278 31,976 37,737
3.2 137,642 292,426 280,729 392,496 368,464 178,848 212,727
3.3 11,561,327 10,374,343 10,113,582 10,809,192 10,996,920 9,779,046 11,087,032
4.1 10,965 89,576 90,421 103,009 103,467 95,305 98,422
4.2 422,513 170,923 179,658 224,991 231,733 115,097 212,941
4.3 37,612 39,693 35,031 40,824 32,638 33,318 28,782
5.1 45,916 318,854 310,663 314,423 334,577 396,805 325,816
5.2 40,225 67,647 55,831 61,629 55,688 50,727 51,710
5.3 307,810 361,863 328,945 371,890 343,456 314,450 311,081

Table 6.13: RMSE of variations on the prior distribution of Input Warping parameters

Matérn 3/2 Matérn 5/2 Sq. Exponential
# LoB Snoek Lally Snoek Lally Snoek Lally
1.1 MM 14,046 13,756 10,956 11,015 10,839 13,416
1.2 MM 6,247 4,039 6,192 4,786 5,699 4,904
1.3 MM 7,071 6,675 6,793 6,153 7,373 6,107
2.1 CA 1,532 1,472 1,352 1,354 1,354 1,347
2.2 CA 6,419 5,010 3,380 4,217 6,569 4,727
2.3 CA 1,349 1,368 1,182 1,155 1,121 1,100
3.1 PA 1,148 1,042 1,375 1,378 1,411 1,420
3.2 PA 17,556 17,015 30,168 28,351 10,221 12,590
3.3 PA 207,115 224,798 138,204 163,189 231,661 197,843
4.1 PL 10,927 11,898 13,410 14,798 15,002 16,188
4.2 PL 29,900 26,986 23,135 19,588 33,694 20,015
4.3 PL 2,827 2,476 2,247 2,223 1,661 2,058
5.1 WC 34,089 34,701 36,685 44,033 54,253 53,562
5.2 WC 4,091 3,505 4,077 3,716 3,893 4,126
5.3 WC 16,603 14,815 16,158 14,934 9,470 10,062

In general, we observe that the Prior distribution as used in the model by Lally and Hartman
(2018) is adequate for most triangles. In the case that the setup by Snoek et al. (2014) gives
better results, the difference in general is fairly minor.
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The effect of these variations are visualised by R3-plots of Triangles 4.2 (Matérn 3/2) in
Figure 6.6 and Triangle 3.2 (Sq. Exponential) in Figure 6.7. The priors by Snoek appear to
be unable to model the growth witnessed in Triangle 4.2 in the Incurral Year-axis - while the
trend of Triangle 2.3 (which is similar, not visualised) is captured accordingly by Snoek’s prior
distribution. For all other triangles, including Triangle 3.2 visualised in Figure 6.7, the general
trend remains identical.

(a) Observed Losses (b) Lally, Sq. Exponential (c) Snoek, Sq. Exponential

Figure 6.6: Visualisation of models applying Snoek’s Input Warping prior distributions on Tri-
angle 4.2

(a) Observed Losses (b) Lally, Sq. Exponential (c) Snoek, Sq. Exponential

Figure 6.7: Visualisation of models applying Snoek’s Input Warping prior distributions on Tri-
angle 3.2

6.2.5 | Optimal prior configuration

Given the results from the previous sections on the prior distributions, we can identify an optimal
combination of priors per triangle and covariance function, based on the RMSE of the previous
results. These configurations are given in Tables 6.14, 6.15 and 6.16, where variations on the
model by Lally and Hartman (2018) are marked in bold.

In three cases, the configuration by Lally and Hartman (2018) gave the lowest RMSE for
the GP model. In 15 cases, only one different prior distribution than the configuration by Lally
and Hartman (2018) gave the lowest RMSE. For the 28 other combinations, we ran the model
with the optimal configuration. The predicted Loss Reserves are given in Table 6.17 and the
corresponding RMSE is given in Table 6.18, with the best performing method overall marked in
green.
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Table 6.14: Optimal prior configuration of Matérn 3/2 covariance function

Triangle Bandwidth (ψ) Noise (σ2) Signal (η2) Warping (α, β)

1.1 Gamma Student-T Log-normal Lally
1.2 Cauchy Student-T Log-normal Lally
1.3 Gamma Student-T Log-normal Lally
2.1 Gamma Log-normal Log-normal Lally
2.2 Gamma Student-T Student-T Lally
2.3 Gamma Student-T Log-normal Snoek
3.1 Cauchy Student-T Student-T Lally
3.2 Cauchy Log-normal Student-T Lally
3.3 Cauchy Student-T Log-normal Snoek
4.1 Cauchy Log-normal Student-T Snoek
4.2 Gamma Student-T Log-normal Lally
4.3 Gamma Student-T Student-T Lally
5.1 Cauchy Student-T Student-T Snoek
5.2 Cauchy Student-T Log-normal Lally
5.3 Cauchy Student-T Student-T Lally

Table 6.15: Optimal prior configuration of Matérn 5/2 covariance function

Triangle Bandwidth (ψ) Noise (σ2) Signal (η2) Warping (α, β)

1.1 Gamma Student-T Log-normal Snoek
1.2 Cauchy Student-T Log-normal Lally
1.3 Gamma Student-T Log-normal Lally
2.1 Gamma Student-T Log-normal Snoek
2.2 Cauchy Student-T Log-normal Snoek
2.3 Gamma Student-T Log-normal Lally
3.1 Cauchy Log-normal Log-normal Snoek
3.2 Cauchy Log-normal Student-T Lally
3.3 Cauchy Student-T Log-normal Snoek
4.1 Cauchy Log-normal Student-T Snoek
4.2 Gamma Student-T Log-normal Lally
4.3 Gamma Student-T Log-normal Lally
5.1 Cauchy Student-T Log-normal Snoek
5.2 Cauchy Student-T Log-normal Lally
5.3 Cauchy Student-T Student-T Lally

We observe that tweaking the prior distribution can have a positive impact on the model
performance, especially for the Matérn covariance functions. We visualise the model predictions
of Triangles 3.2 and 4.1, Squared Exponential, in Figures 6.8 and 6.9.

For Triangle 3.2, we see that the optimal priors are able to capture the more volatile trend,
resulting in a lower RMSE and more accurate Best Estimate. In Figure 6.9, it can be observed
that the optimal priors are also able to capture the more volatile trend, most notably the declined
claims in Incurral Year 1997.
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Table 6.16: Optimal prior configuration of Squared Exponential covariance functions

Triangle Bandwidth (ψ) Noise (σ2) Signal (η2) Warping (α, β)

1.1 Gamma Log-normal Log-normal Snoek
1.2 Gamma Student-T Log-normal Lally
1.3 Gamma Student-T Log-normal Lally
2.1 Gamma Student-T Student-T Lally
2.2 Cauchy Student-T Log-normal Lally
2.3 Gamma Student-T Log-normal Lally
3.1 Cauchy Log-normal Student-T Snoek
3.2 Cauchy Log-normal Student-T Snoek
3.3 Cauchy Student-T Student-T Lally
4.1 Cauchy Log-normal Student-T Snoek
4.2 Gamma Student-T Log-normal Lally
4.3 Cauchy Student-T Log-normal Snoek
5.1 Cauchy Log-normal Student-T Lally
5.2 Cauchy Student-T Log-normal Snoek
5.3 Cauchy Student-T Log-normal Snoek

Table 6.17: Estimated Loss Reserves of models with optimal prior configuration

Matérn 3/2 Matérn 5/2 Sq. Exponential
# Observed Optimal Lally Optimal Lally Optimal Lally
1.1 407,525 293,655 288,484 340,579 313,911 312,492 284,687
1.2 104,094 84,920 83,937 74,270 77,709 80,300 77,340
1.3 164,633 157,072 155,306 161,363 156,467 154,665 153,394
2.1 16,640 13,330 14,254 14,903 13,789 13,891 13,891
2.2 353,949 329,846 329,846 333,871 345,927 338,740 350,702
2.3 13,046 7,351 6,627 7,774 6,993 7,674 6,652
3.1 37,397 37,993 38,901 31,861 40,278 28,429 37,737
3.2 137,642 187,778 280,729 193,522 368,464 135,655 212,727
3.3 11,561,327 10,584,904 10,113,582 10,517,807 10,996,920 10,447,237 11,087,032
4.1 10,965 64,614 90,421 64,792 103,467 56,876 98,422
4.2 422,513 185,705 179,658 237,454 231,733 223,322 212,941
4.3 37,612 35,031 35,031 33,748 32,638 30,712 28,782
5.1 45,916 306,089 310,663 299,159 334,577 347,729 325,816
5.2 40,225 51,995 55,831 54,563 55,688 60,724 51,710
5.3 307,810 323,255 328,945 330,246 343,456 304,559 311,081

(a) Observed Losses (b) Lally, Sq. Exponential (c) Optimal, Sq. Exponential

Figure 6.8: Visualisation of models with optimal priors on Triangle 3.2
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Table 6.18: RMSE of variations of models with optimal prior configuration

Matérn 3/2 Matérn 5/2 Sq. Exponential
# Optimal Lally Optimal Lally Optimal Lally
1.1 13,515 13,756 8,389 11,015 9,596 13,416
1.2 3,223 4,039 4,504 4,786 4,741 4,904
1.3 6,520 6,675 6,099 6,153 6,087 6,107
2.1 1,427 1,472 1,320 1,354 1,347 1,347
2.2 5,010 5,010 5,231 4,217 3,255 4,727
2.3 1,353 1,368 1,084 1,155 991 1,100
3.1 975 1,042 1,325 1,378 1,418 1,420
3.2 7,454 17,015 7,849 28,351 8,912 12,590
3.3 191,528 224,798 143,372 163,189 138,657 197,843
4.1 7,706 11,898 8,117 14,798 8,298 16,188
4.2 26,209 26,986 19,254 19,588 18,971 20,015
4.3 2,476 2,476 2,173 2,223 2,259 2,058
5.1 31,736 34,701 30,305 44,033 44,363 53,562
5.2 3,139 3,505 3,365 3,716 4,049 4,126
5.3 13,365 14,815 13,157 14,934 8,315 10,062

(a) Observed Losses (b) Lally, Sq. Exponential (c) Optimal, Sq. Exponential

Figure 6.9: Visualisation of models with optimal priors on Triangle 4.1
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6.3 | Premium Information

In this section, the results of adding premium information to the model are presented. The re-
search setup is described in Section 4.3. The methods of implementing this information researched
is either a transformation to Loss Ratio’s, using the premium volume as input as opposed to the
incurral years or by adding a Bornheutter-Ferguson estimation to the model. In all cases, we use
identical prior distribution to the model as initially described by Lally and Hartman (2018). We
recall the research questions that we attempt to answer:

In order to improve the Best Estimate and/or reduce the confidence interval:

• Can relevant, out-of-triangle information be supplied to the model?
• Can the GP model be extended with a Bornheutter-Ferguson estimation method?

The triangles which have a smooth variation in premium volume over time are triangles 1.1,
2.1, 2.2, 3.1, 3.3 and 5.2 . The triangles with more abrupt changes in volume are triangles 1.2,
2.3, 3.2, 4.1, 4.2, 5.1 and 5.2. Especially for the latter triangles, we intend to improve the Best
Estimate predicted by the model by supplying the model with extra information - these triangles
are highlighted in all results tables. For all triangles, we with to reduce the confidence interval
of the loss reserve.

6.3.1 | Loss Ratio’s

Prediction and Error of Best Estimate

First, we touch upon the transformation of the entire triangle to Loss Ratio’s. We give the
predicted Loss Reserves in Table 6.19, and the RMSE of these predictions in Table 6.20.

Table 6.19: Estimated Loss Reserves of Loss Ratio data against Cumulative Loss data

Matérn 3/2 Matérn 5/2 Sq. Exponential
# Observed LR Cum. Loss LR Cum. Loss LR Cum. Loss
1.1 407,525 338,250 288,484 356,174 313,911 351,119 284,687
1.2 104,094 83,921 83,937 96,231 77,709 104,655 77,340
1.3 164,633 166,147 155,306 164,002 156,467 153,824 153,394
2.1 16,640 16,727 14,254 17,227 13,789 17,226 13,891
2.2 353,949 362,388 329,846 362,530 345,927 354,148 350,702
2.3 13,046 7,707 6,627 7,551 6,993 7,189 6,652
3.1 37,397 44,361 38,901 44,721 40,278 42,930 37,737
3.2 137,642 285,633 280,729 320,787 368,464 323,791 212,727
3.3 11,561,327 12,372,458 10,113,582 13,010,468 10,996,920 12,327,887 11,087,032
4.1 10,965 39,420 90,421 50,066 103,467 54,592 98,422
4.2 422,513 221,350 179,658 266,676 231,733 254,007 212,941
4.3 37,612 37,744 35,031 36,698 32,638 28,409 28,782
5.1 45,916 116,491 310,663 172,023 334,577 146,763 325,816
5.2 40,225 49,738 55,831 43,021 55,688 35,880 51,710
5.3 307,810 332,075 328,945 302,573 343,456 255,733 311,081

The transformation to Loss Ratio’s gives a substantial improvement over the application on
cumulative loss figures, most notably in the cases where the models on Cumulative Loss data fail
to capture important trends. The model with the lowest RMSE does not always align with the
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Table 6.20: RMSE of Loss Ratio data against Cumulative Loss data

Matérn 3/2 Matérn 5/2 Sq. Exponential
# LoB LR Cum. Loss LR Cum. Loss LR Cum. Loss
1.1 MM 8,400 13,756 6,322 11,015 5,759 13,416
1.2 MM 3,346 4,039 4,347 4,786 6,022 4,904
1.3 MM 5,593 6,675 5,420 6,153 5,431 6,107
2.1 CA 1,395 1,472 1,295 1,354 1,288 1,347
2.2 CA 4,394 5,010 7,789 4,217 7,761 4,727
2.3 CA 1,047 1,368 1,009 1,155 977 1,100
3.1 PA 1,920 1,042 2,169 1,378 2,171 1,420
3.2 PA 16,585 17,015 21,392 28,351 23,539 12,590
3.3 PA 211,368 224,798 365,734 163,189 433,816 197,843
4.1 PL 5,726 11,898 6,929 14,798 7,702 16,188
4.2 PL 20,695 26,986 16,037 19,588 16,490 20,015
4.3 PL 1,701 2,476 1,534 2,223 1,675 2,058
5.1 WC 9,406 34,701 17,765 44,033 17,588 53,562
5.2 WC 3,270 3,505 3,244 3,716 3,166 4,126
5.3 WC 9,230 14,815 7,595 14,934 7,465 10,062

model that has the better Loss Reserve estimation, indicating that some models might still not
be able to capture all trends accordingly (e.g. Triangle 2.2, Squared Exponential covariance).

We visualise Triangles 1.1 (Squared Exponential), 4.1 (Matérn 3/2) and 1.2 (Squared Expo-
nential) in, respectively, Figures 6.10, 6.11 and 6.12.

(a) Observed Losses (b) Cumul. Losses, Sq. Exp. (c) Loss Ratio’s, Sq. Exp.

Figure 6.10: Visualisation of models applying Loss Ratio’s as input on Triangle 1.1

Both Figures 6.10 and 6.11 show an improvement caused by the transformation to Loss
Ratio’s. Both models are able to predict the trends in the data adequately, resulting in both
a lower RMSE and a more accurate Best Estimate of the Loss Reserve. However, Figure 6.12
shows that, while the Best Estimate of the loss reserve is adequate (as presented in Table 6.19),
the model does not capture the relevant trends accordingly - as reflected in the RMSE.
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(a) Observed Losses (b) Cumul. Losses, Matérn 3/2 (c) Loss Ratio’s, Matérn 3/2

Figure 6.11: Visualisation of models applying Loss Ratio’s as input on Triangle 4.1

(a) Observed Losses (b) Cumul. Losses, Sq. Exp. (c) Loss Ratio’s, Sq. Exp.

Figure 6.12: Visualisation of models applying Loss Ratio’s as input on Triangle 1.2

Confidence of prediction

In Table 6.21, the standard deviations of the predicted Loss Reserves are given. We observe no
substantial improvement in this regard when comparing the Loss Ratio implementation against
the cumulative loss implementation. We visualise this by two density plots given in Figures 6.13
and 6.14 (resp. Triangle 1.1 (Matérn 5/2) and 1.2 (Sq. Exponential), where no improvement can
be observed.
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(a) Cum. Loss (b) Loss Ratio

Figure 6.13: Density of Triangle 1.1 (Matérn 5/2)

(a) Cum. Loss (b) Loss Ratio

Figure 6.14: Density of Triangle 1.2 (Sq. Exponential)
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Table 6.21: Standard Deviation of Loss Ratio data against Cumulative Loss data

Matérn 3/2 Matérn 5/2 Sq. Exponential
# LoB LR Cum. Loss LR Cum. Loss LR Cum. Loss
1.1 MM 109,023 86,625 102,753 90,804 78,349 83,825
1.2 MM 30,975 33,058 38,165 27,092 40,184 26,187
1.3 MM 40,472 41,430 38,080 36,476 41,184 37,098
2.1 CA 6,574 5,458 4,821 4,712 4,292 4,128
2.2 CA 98,457 73,495 96,002 74,844 95,817 65,842
2.3 CA 6,092 3,931 5,134 4,061 4,703 4,335
3.1 PA 9,569 8,039 9,400 8,852 10,210 8,223
3.2 PA 115,785 92,948 120,643 118,434 101,241 98,847
3.3 PA 3,729,540 2,400,639 3,885,112 2,616,817 3,394,312 2,541,395
4.1 PL 30,759 57,195 30,920 56,209 30,956 58,213
4.2 PL 129,409 95,199 158,818 128,196 144,230 116,028
4.3 PL 19,890 21,155 19,281 21,202 16,752 18,783
5.1 WC 75,294 229,973 130,722 226,372 124,941 202,139
5.2 WC 36,321 37,775 34,618 37,127 28,393 26,968
5.3 WC 142,339 107,898 125,286 120,175 101,408 104,266

6.3.2 | Premium as input

Prediction and Error of Best Estimate

In this section, we present the the RMSE and predicted Loss Reserves by supplying the net
premium as input to the model, as opposed to the Incurral Year. The predicted Loss Reserves
are presented in Table 6.22 and the corresponding RMSE is given in Table 6.23.

Table 6.22: Estimated Loss Reserves of applying net premium as input

Matérn 3/2 Matérn 5/2 Sq. Exponential
# Observed Premium IY Premium IY Premium IY
1.1 407,525 255,061 288,484 283,618 313,911 306,237 284,687
1.2 104,094 74,258 83,937 75,054 77,709 75,283 77,340
1.3 164,633 70,174 155,306 72,442 156,467 61,084 153,394
2.1 16,640 15,021 14,254 15,281 13,789 14,623 13,891
2.2 353,949 343,038 329,846 353,379 345,927 360,940 350,702
2.3 13,046 6,032 6,627 6,144 6,993 3,966 6,652
3.1 37,397 31,301 38,901 33,049 40,278 31,755 37,737
3.2 137,642 106,143 280,729 132,115 368,464 132,415 212,727
3.3 11,561,327 10,216,463 10,113,582 10,918,190 10,996,920 11,225,306 11,087,032
4.1 10,965 74,960 90,421 81,369 103,467 74,415 98,422
4.2 422,513 141,330 179,658 172,116 231,733 173,763 212,941
4.3 37,612 58,486 35,031 57,983 32,638 55,911 28,782
5.1 45,916 349,603 310,663 364,351 334,577 335,710 325,816
5.2 40,225 210,484 55,831 211,814 55,688 210,551 51,710
5.3 307,810 505,340 328,945 536,028 343,456 541,134 311,081

We observe that this method provides no advantage over the regular model. Triangles 3.2
and 4.1 have an improvement in RMSE, but the other results show a detrimental effect, most
notably the results of Triangles 5.2 and 5.3. When analysing the estimated loss reserves, we see
that performance of this model is considerably worse than applying it on cumulative losses, even
for the triangles with a volatile premium development. The results are visualised by plotting
Triangle 5.3 (Squared Exponential) in Figure 6.15 and Triangle 3.2 (Matérn 5/2) in Figure 6.16.
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Table 6.23: RMSE of applying net premium as input

Matérn 3/2 Matérn 5/2 Sq. Exponential
# LoB Premium Incurral Year Premium Incurral Year Premium Incurral Year
1.1 MM 15,151 13,756 12,230 11,015 9,754 13,416
1.2 MM 5,293 4,039 5,242 4,786 5,208 4,904
1.3 MM 15,428 6,675 15,196 6,153 15,388 6,107
2.1 CA 1,296 1,472 1,301 1,354 1,340 1,347
2.2 CA 4,795 5,010 5,198 4,217 5,658 4,727
2.3 CA 1,160 1,368 1,165 1,155 1,375 1,100
3.1 PA 1,551 1,042 1,562 1,378 1,620 1,420
3.2 PA 8,970 17,015 6,341 28,351 5,793 12,590
3.3 PA 215,809 224,798 163,488 163,189 179,581 197,843
4.1 PL 7,547 11,898 7,991 14,798 7,397 16,188
4.2 PL 29,154 26,986 24,706 19,588 24,623 20,015
4.3 PL 5,561 2,476 5,545 2,223 5,523 2,058
5.1 WC 36,324 34,701 43,624 44,033 50,766 53,562
5.2 WC 22,485 3,505 22,518 3,716 22,385 4,126
5.3 WC 54,862 14,815 55,407 14,934 55,580 10,062

(a) Observed Losses (b) Incurral Year, Sq. Exponential(c) Net Premium, Sq. Exponential

Figure 6.15: Visualisation of models having supplied premium as input on Triangle 5.3

In Figure 6.15, we see a clear underperformance of the model. Due to the changed input, the
model is unable to grasp the general trend in the model, resulting in detrimental results. On the
other hand, we see an improvement of the model in Figure 6.16. While the regular model gives
remarkable results (the Matérn 3/2 and Sq. Exponential covariance functions perform better
for this triangle), an improvement can be seen. For this triangle, the amount of net premium
received appears to be an adequate indicator for the size of the loss reserve.
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(a) Observed Losses (b) Incurral Year, Matérn 5/2 (c) Net Premium, Matérn 5/2

Figure 6.16: Visualisation of models having supplied premium as input on Triangle 3.2

Confidence of Prediction

Concluding, we present the results of the standard deviation of the loss reserve in Table 6.24.
While there is no improvement of Best Estimate predictions, the volatility in the predictions
appears to have declined. We visualise this in Figures 6.17 and 6.18, where density plots are given
of Triangles 1.1 and 4.3 (Both Squared Exponential). We can see a decrease of the Confidence
Interval of the prediction, even though the predictions (as described earlier) are generally of
worse quality.

Table 6.24: Standard Deviation of Loss Reserve Predictions: applying net premium as input

Matérn 3/2 Matérn 5/2 Sq. Exponential
# Premium Incurral Year Premium Incurral Year Premium Incurral Year
1.1 76,069 86,625 66,152 90,804 64,015 83,825
1.2 27,077 33,058 23,145 27,092 22,218 26,187
1.3 46,582 41,430 42,858 36,476 45,505 37,098
2.1 5,469 5,458 5,007 4,712 4,328 4,128
2.2 72,223 73,495 79,675 74,844 75,385 65,842
2.3 3,576 3,931 3,809 4,061 3,883 4,335
3.1 9,058 8,039 8,860 8,852 10,855 8,223
3.2 84,720 92,948 77,845 118,434 82,931 98,847
3.3 2,256,542 2,400,639 2,265,738 2,616,817 2,271,498 2,541,395
4.1 48,327 57,195 48,411 56,209 48,396 58,213
4.2 91,648 95,199 94,520 128,196 106,841 116,028
4.3 11,370 21,155 10,196 21,202 10,029 18,783
5.1 237,872 229,973 244,785 226,372 191,188 202,139
5.2 63,896 37,775 58,815 37,127 58,343 26,968
5.3 117,000 107,898 108,588 120,175 112,918 104,266
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(a) Cum. Loss (b) Premium

Figure 6.17: Density of Triangle 1.1 (Sq. Exponential)

(a) Cum. Loss (b) Premium

Figure 6.18: Density of Triangle 4.3 (Sq. Exponential)
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6.3.3 | Bornheutter-Ferguson Estimations

In this section, we attempt to both improve the predictions of triangles by supplying information
on the net premium, and get a more accurate prediction of the Loss Reserve and reduce the
uncertainty of that prediction.

The estimations made by the Bornheutter-Ferguson method directly result in the Best Es-
timate for the Loss Reserve, as these estimators are supplied to the model as if they are noisy
observations at the final development lag. The GP model is able to estimate the amount of
noise in these observations. While the model is thus able to estimate the uncertainty of the Loss
Reserve by estimating the noise parameter, the Best Estimate is always equal to the supplied
estimators. As such, we do not compare models on their Loss Reserve predictions, but solely on
error statistics.

The BF-estimators, compared to their actual ultimate loss, are given in Appendix F.

Error of prediction

First, we analyse the RMSE of the predictions, given in Table 6.25. It should be noted that this
is the RMSE of all missing observations as predicted by the Gaussian process model (i.e. not
including Development Lag 10). The BF-observations, as generated by a seperate process, have
not been taken in account. For equal comparison, we give the benchmark RMSE for the identical
number of estimations (i.e. also excluding DL=10).

Table 6.25: RMSE of applying Bornheutter-Ferguson estimation

Matérn 3/2 Matérn 5/2 Sq. Exponential
# LoB BF Cumul. Loss BF Cumul. Loss BF Cumul. Loss
1.1 MM 6,206 12,738 5,619 10,114 5,628 12,108
1.2 MM 4,350 4,019 4,827 4,709 4,996 4,834
1.3 MM 8,239 6,954 6,652 6,371 6,306 6,287
2.1 CA 1,199 1,527 1,193 1,389 1,205 1,382
2.2 CA 9,630 4,927 10,051 4,205 9,985 4,824
2.3 CA 1,025 1,415 977 1174 938 1,102
3.1 PA 1,494 1,063 1,606 1,413 1,649 1,459
3.2 PA 25,380 16,442 25,980 27,359 24,343 12,543
3.3 PA 513,303 220,553 495,037 165,984 597,705 207,054
4.1 PL 12,240 11,988 14,568 15,090 16,193 16,757
4.2 PL 22,421 25,111 19,725 17,580 18,449 17,512
4.3 PL 2,532 2,496 2,612 2,238 2,727 2,061
5.1 WC 14,788 33,806 15,684 44,063 21,630 54,903
5.2 WC 2,904 3,533 3,171 3,753 3,986 4,193
5.3 WC 22,230 14,378 20,501 14,505 18,305 9,713

Table 6.25 gives no conclusive preference to any method. The RMSE of the predictions varies
between triangles. While the model is able to capture that there is noise in the estimation, this
does not necessarily result in better predictions.

The quality of the estimator might have an influence on the results of the interpolation.
However, when we zoom in on Triangle 3.3 and its’ estimators, we see that even while the
estimators are fairly adequate, the errors of the model are significantly increased. This triangle
is visualised in Figure 6.19, with Matérn 5/2 as covariance function. Triangle 5.1 (Matérn 3/2) is
visualised in Figure 6.20, which has a better performance than the regular model, most notably
caused by the estimator of Incurral Year 1997, which is giving the model adequate guidance.
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(a) Observed Losses (b) Regular model, Matérn 5/2 (c) BF-Estimation, Matérn 5/2

Figure 6.19: Visualisation of models with a Bornheutter-Ferguson estimator, applied on Triangle
3.3

(a) Observed Losses (b) Regular model, Matérn 3/2 (c) BF-Estimation, Matérn 3/2

Figure 6.20: Visualisation of models with a Bornheutter-Ferguson estimator, applied on Triangle
5.1

Perfect BF-estimators

In order to quantify the influence of the quality of the estimators, we have also performed a
model run by supplying the model with perfect estimations, i.e. supplying it with the actual
observed losses at DL = 10. The primary goal of this is to rule out the effect of the quality
of the estimators, and solely assessing the model performance. The RMSE of the estimations
is given in Table 6.26. As expected, providing the model with perfect information drastically
reduces the errors of the model.

In contrast to earlier results, we are unable to give a density or confidence interval of the
loss reserve due to the implementation that we have performed. However, we can visualise the
standard deviation per predicted point, based on the 4,000 MCMC samples for each prediction.
This is visualised in Figures 6.21, 6.22 and 6.23. An improvement of all BF models over the
Regular GP model can be seen. For most triangles, the perfect estimators reduce the spread.
However, for Triangle 2.1 (Figure 6.21), this is not the case.
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Table 6.26: RMSE of "Perfect" Bornheutter-Ferguson estimation

Matérn 3/2 Matérn 5/2 Sq. Exponential
# LoB Perfect BF Perfect BF Perfect BF
1.1 MM 5,304 6,206 5,206 5,619 5,358 5,628
1.2 MM 3,123 4,350 4,096 4,827 4,237 4,996
1.3 MM 5,951 8,239 6,082 6,652 6,200 6,306
2.1 CA 1,203 1,199 1,249 1,193 1,247 1,205
2.2 CA 3,127 9,630 3,853 10,051 4,406 9,985
2.3 CA 772 1,025 772 977 779 938
3.1 PA 733 1,494 1,055 1,606 1,260 1,649
3.2 PA 6,045 25,380 7,824 25,980 8,441 24,343
3.3 PA 139,165 513,303 151,615 495,037 182,248 597,705
4.1 PL 4,728 12,240 7,782 14,568 9,596 16,193
4.2 PL 9,778 22,421 9,935 19,725 10,708 18,449
4.3 PL 1,517 2,532 1,664 2,612 1,680 2,727
5.1 WC 6,196 14,788 8,037 15,684 22,860 21,630
5.2 WC 2,549 2,904 2,780 3,171 3,502 3,986
5.3 WC 2,846 22,230 2,734 20,501 2,617 18,305

(a) Regular GP (b) BF Estimation (c) Perfect Estimation

Figure 6.21: Visualisation of Standard Deviations of Triangle 2.1, Sq. Exponential

(a) Regular GP (b) BF Estimation (c) Perfect Estimation

Figure 6.22: Visualisation of Standard Deviations of Triangle 3.3, Matérn 3/2
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(a) Regular GP (b) BF Estimation (c) Perfect Estimation

Figure 6.23: Visualisation of Standard Deviations of Triangle 5.3, Matérn 5/2
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In this chapter, we will draw conclusions from the results as presented in Chapter 6. Our
research questions are:

Can we improve the Hierarchical Gaussian Process model
to predict the loss reserve of a non-life insurer?

With the following sub-questions:
• In order to validate the design choices:

– Is the model applicable on a more extensive data set?
– Are the prior distributions on the hyperparameters adequately chosen?

• In order to improve the Best Estimate and/or reduce the confidence interval:
– Can relevant, out-of-triangle information be supplied to the model?
– Can the GP model be extended with a Bornheutter-Ferguson estimation method?

7.1 | Data applicability

The model performance has been tested on a more extensive data set in order to validate applica-
bility of the model to multiple characteristics. From this, we conclude that the Gaussian Process
model is able to make comparable or better predictions than the current industry practice. How-
ever, all models have problems when making estimations on a data set that is less predictable:
such as having a diagonal shock, an increase in received premiums or other influences that cause
a volatile claims development.

7.2 | Prior distributions and model design

We have applied a multitude of prior distributions in order to validate design choices made in
the model. From this analysis, we conclude that distributions and/or covariance functions that
perform best are dependant on the triangle. For the entire model, we can not conclude a preferred
setting that performs best, regardless of the data.

The signal and noise parameters and their prior distributions have minimal impact on the
model performance: while the model should be able to have the freedom to infer the adequate

Page 75



Chapter 7: Conclusion

values for these parameters, most weakly informative priors will give adequate results. Further-
more, considering that the noise parameter tends to converge to zero for nearly all models of this
dataset, one can consider fixing the noise to zero - but only if the data is of sufficient quality.
The prior distribution on the Input Warping parameters have an impact on model performance
of some triangles - but the priors by Snoek et al. (2014) sometimes fail to capture important
trends.

We have observed that the prior distribution on the bandwidth parameter has the most influ-
ence on model performance. The Cauchy distribution (constrained to be positive) allows for more
extreme values, and thus offers more flexibility to the model. For some triangles (with a more
volatile development) this results in better predictions, while the increased flexibility sometimes
converges to less realistic values - once even predicting a negative loss reserve. Especially in the
case of a combination with the Squared Exponential covariance function, this results in too much
freedom of the model. By applying the Cauchy-distribution, the model tends to consider realistic
values as outliers, and thus fails to capture a trend in the data. As such, we do not recommend
applying the Cauchy-distribution for the bandwidth parameter.

Concluding, while the prior distributions should be adequately chosen, weakly informative
priors seem to give adequate results.

7.3 | Adding premium information to the model

Supplying premium information to the model is researched. Based on our results, we conclude
that a transformation of the model to Loss Ratio’s appear to give the most adequate results.
Technically speaking, this is not adding premium information to the model, but rather pre-
transforming the data to remove premium influences out of the supplied data. With some
exceptions, this transformation gives good results for nearly all triangles, for both the Best
Estimate and the RMSE.

Supplying the premiums as input does not generally result in better predictions of the loss
reserve. The standard deviation of the predictions (and thus, the uncertainty) has dropped in
the majority of triangles. However, given that both the Best Estimates and error statistics of
the loss reserves have worsened, we do not recommend this implementation.

Finally, we have added Bornheutter-Ferguson estimators to the model. While the model is
able to correct for noisy estimators, the prediction of the loss reserve is (with our implementation)
heavily depending on the actual estimators. The quality of the estimators is important for the
model performance: better estimators naturally result in better predictions and lower errors.

For improving the Best Estimate predictions, the Loss Ratio transformation produces better
results. However, this transformation does not result in a substantially narrower confidence
interval. For this, adding estimators on the most distant Development Lag has proper potential.
Validation on supplying the actual observed values (naturally) produces good results. Our basic
Bornheutter-Ferguson implementation sometimes produces adequate results, but the model is
heavily dependant on the quality of these estimators. Therefore, estimations should be done
carefully - and we suggest a different method than a draw from a random variable to perform
this estimation.

We conclude that a transformation to Loss Ratio’s improves model performance with regard
to the Best Estimate. Adding information to the model in the form of estimators reduce the
density of predictions, which could result in more realistic confidence intervals.
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In this chapter, we will discuss the results generated by our implemented models and limita-
tions that we have identified. Furthermore, we will give recommendations for future research.

8.1 | Data set

The advantages of the data set used are that it is publicly available, and that the run-off of these
triangles is known. However, some of these triangles are highly volatile. In this research, we have
applied the model to 15 triangles with different characteristics. Some of these characteristics are
known without knowledge of the lower triangle: such as increased premiums, or a diagonal shock
in the upper triangle.

The model could thus be explicitly tuned to each triangle. For instance, when it is known be-
forehand that a diagonal shock has occurred for business reasons, we could modify (for instance)
the kernel function to capture this trend, for instance by adding a periodical kernel function. A
Gaussian process model can be tuned explicitly to the data and corresponding expectations by
modifications of the kernel functions - which is a recommendation for future research.

A disadvantage of this data set is that it contains historical data of 1988-2006. It is possible
that this data set is less representative for the current actuarial practice. For instance, digitali-
sation of claims handling could have sped up the process. Applying the model on a more recent
data set is therefore recommended.

Furthermore, this research has been performed on either cumulative losses or cumulative
Loss Ratio’s of paid triangles. It is possible that applying this model on incremental triangles
yields different and/or better results. Furthermore, an application on Incurred triangles could
be considered, as incurred claims develop differently than paid claims. We recommend both
the application of incremental losses, loss ratio’s and incurred triangles (both cumulative and
incremental) for further research.

In this research, we have attempted to add premium information to the model as it was
the only out-of-triangle data available in the data set. In literature on estimating loss reserves,
different external data is considered, such as the amount of outstanding claims at a specific
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moment in time, the amount of written policies, or for instance by combining triangles amongst
the same insurer or different insurers, but identical Lines of Business. Subsequent research could
focus on identifying different out-of-triangle data that can be taken into account.

8.2 | Priors on Loss Ratio’s

We have researched transformation of cumulative losses to cumulative loss ratio’s, in order to
implement premium information. For this, we have used identical priors as the model on cumu-
lative losses. It could very well be that different priors give better results, such as adapting the
Input Warping prior distributions in the Incurral Year-axis; as this need not be exponential.

8.3 | Bornheutter-Ferguson Estimation

The Bornheutter-Ferguson estimation applied takes the volatility into account of the entire tri-
angle for the random variable used for the unknown portion of the incurral year. This method
sometimes results in unrealistic estimators, which could be fine-tuned based on, for instance,
expect judgement. Also, different methods are be available to produce estimators that have not
been considered in this research, such as the Cape Cod method - which also applies a volume
measure (Radtke et al., 2016).

Even though our Gaussian process model is able to cope with noisy observations, more accu-
rate estimations result in lower errors and as such should be determined adequately, depending
on triangle characteristics.

The technical implementation of these estimators is that they are modeled as seperate obser-
vations at the final Development Lag. This implementation is partially hindered by the Input
Warping methodology, as this requires all input to be normalised on the interval [0, 1]. It is
possible that a different implementation yields better results.

8.4 | Implementation in practice

As indicated in our Results and Conclusion, drawing general conclusions about model design
is difficult. There are a multitude of variations available, and depending on characteristics in
the data, a Gaussian process model can be tuned to give the best results, either by means
of adapting the kernel function or the hyperparameters. Tuning the model to the data (and
application) should be done with adequate care. This introduces Expert Judgement to the
implementation, which comes with new risks. In our research, we were able to tune the model
to the actual observed losses and their error statistics, but this is -naturally- not possible in
practice. Therefore, identifying the best configuration for the model is difficult, as tuning the
model is required for some triangles to get adequate results.

From a regulatory point of view, the model tends to become more and more of a ‘black box’,
especially if it is to be tuned even further to specific triangles. The current implementation
with Markov Chain Monte Carlo sampling to infer parameters, and applying Input Warping
already requires adequate expertise in this field, which introduces new risks on a governance
level. Considering that a lot of Expert Judgement will be required in tuning the model, a single,
human point of failure is introduced.
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Also, our results still show room for improvement with regards to the limitation of the model
that we intended to research: narrowing the confidence interval of the predicted loss reserves.
From a regulatory point of view, the uncertainty of these predictions could be a huge barrier.

8.5 | Technical possibilities and limitations

The kernel function is one of the most important design choices that can be made in a Gaussian
process model. As such, future research could work on identifying different kernel functions based
on triangle characteristics. Valid kernel functions can be combined to a new kernel function
by either multiplication or addition. For example, our currently analysed covariance functions
can be combined with a periodical kernel in order to model periodically inflated claims in the
months of December and January of an supplementary healthcare insurance - which is an observed
phenomenon in practice

Moreover, we have modeled identical covariances along both the Development Lag-axis and
Incurral Year-axis. This need not be the case, for instance when along the Incurral Year-axis
a more rough pattern is witnessed than along the Development Lag-axis, where the former
could then be modelled with a Matérn 3/2 covariance function and the latter with a Squared
Exponential covariance function. We were, however, unable to get the sampler to accept such a
construction, and thus recommend this for further research.

Finally, the model takes between 4 and 20 minutes to generate results of one model run,
depending on the complexity of the triangle. The Computational Complexity of any Gaussian
process is O(N3) (Barber, 2012), and as such larger dataset become increasingly complicated.
In this case, we have only considered yearly run-off triangles consisting of 10 years. If one were
to model on monthly run-off triangles over a period of, e.g., 3 years, the time complexity of
this would render the model unusable. An approximation method of the Gaussian process is
described by Flaxman et al. (2016), but it would require further validation on the application on
predicting loss reserves.
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A | Glossary of abbreviations

Below is a table which includes the abbreviations that are used in this thesis.

Abbreviation Meaning

BE Best Estimate
BF Bornheutter-Ferguson
CDF Cumulative Distribution Function
CA Commercial Automobile
CL Chain Ladder
FRM Financial Risk Management
GP Gaussian Process
IBN(E)R Incurred but not (enough) reported
LoB Line of Business
MAE Mean Absolute Error
MCMC Markov Chain Monte Carlo
MM Medical Malpractice
NAIC National Association of Insurance Commissioners
P&C Property & Casualty
PA Personal Automobile
PDF Probability Density Function
PL Product Liability
PSD Positive Semidefinite
RBNS Reported but not settled
RMSE Root Mean Square Error
WC Workers’ Compensation
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B | Run-off triangle: Example

Example B.1: Run-off triangle

An insurance company has been writing policies in 2016, 2017 and 2018.
It has received the following claims:
• Two claims in calendar year 2017:

– One originating from a policy written in 2016 of AC1.000
– One originating from a policy written in 2017 of AC500

• Two claims in calendar year 2018:
– One originating from a policy written in 2016 of AC250
– One originating from a policy written in 2018 of AC2.000

We can summarise this in the following incremental run-off triangle:

Development lag
Incurral year 1 2 3

2016 AC0 AC1.000 AC250
2017 AC500 AC0 ·
2018 AC2.000 · ·

Fields that are marked with a · are unknown, as they refer to years that have not yet
passed/finished. This can also be presented in a cumulative triangle, which is commonly done:

Development lag
Incurral year 1 2 3

2016 AC0 AC1.000 AC1.250
2017 AC500 AC500 ·
2018 AC2.000 · ·
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C | Run-off triangles of the data set

In this appendix, the triangles that are used for training and testing the model are presented. We have selected 5 different Lines of Business, and have
selected 3 insurers (and thus: triangles) from each Line of Business. All triangles are extracted from the data set made available by the National Association
of Insurance Commissioners on the website of the Casualty Actuarial Society(Meyers & Shi, 2011). All insurance companies are located in the United States
of America, and the selected triangles are paid claims (as opposed to incurred claims).

Of each Line of Business, we have selected triangles with non-zero claims for all data points and have attempted to select different characteristics that
test the accuracy of the model. The Lines of Business and the selected insurers are discussed in more detail in Chapter 5. Also, 3D plots of both the upper
triangle and the observed losses are presented in that section.
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Table C.1: Triangle 1.1: Medical Malpractice: Physicians’ Reciprocal Insurers

IY Development Lag Premium1 2 3 4 5 6 7 8 9 10
1988 258 2,546 6,709 14,322 26,353 37,519 47,651 52,359 55,997 58,703 73,259
1989 548 4,645 11,259 26,348 36,464 43,677 51,381 55,971 60,119 61,272 75,519
1990 1,113 5,540 15,937 30,230 40,287 53,564 62,345 71,358 74,387 76,947 85,661
1991 976 7,609 19,104 37,548 58,428 67,809 78,260 83,123 88,195 89,983 86,797
1992 914 10,504 22,641 35,314 48,978 61,901 73,525 82,150 85,302 89,784 91,918
1993 1,242 8,605 18,760 32,304 50,990 69,471 75,750 84,168 89,044 94,038 93,210
1994 2,087 11,566 28,145 44,708 61,536 77,778 87,094 91,609 98,291 102,083 97,266
1995 2,596 15,296 33,315 50,784 70,978 86,742 94,441 103,330 108,103 113,189 106,992
1996 3,196 12,987 24,692 46,068 63,115 75,547 84,909 90,259 94,560 95,935 107,264
1997 4,039 11,910 27,631 49,559 65,411 77,425 84,494 92,102 95,511 101,971 110,832

Table C.2: Triangle 1.2: Medical Malpractice: Promutual Group

IY Development Lag Premium1 2 3 4 5 6 7 8 9 10
1988 292 4,697 13,938 21,175 24,834 22,360 24,779 25,792 25,891 25,942 53,178
1989 524 3,666 11,778 19,663 19,941 25,068 26,915 26,971 27,022 27,039 60,809
1990 829 2,943 9,327 14,676 18,355 19,650 19,820 20,199 20,312 20,374 51,806
1991 1,658 6,121 11,419 16,512 24,338 25,625 26,041 28,735 28,772 28,805 44,101
1992 518 5,166 9,775 16,649 20,587 23,465 24,508 24,979 25,453 25,531 29,242
1993 1,850 5,076 7,974 18,872 29,528 33,034 35,005 37,073 37,144 37,326 26,379
1994 1,064 6,647 13,035 21,891 29,199 33,047 34,699 35,500 36,097 36,154 25,343
1995 703 4,803 10,388 17,420 21,629 26,032 28,087 28,467 29,132 29,147 26,396
1996 796 3,143 7,196 14,290 24,606 30,148 31,099 31,963 32,489 32,659 27,300
1997 556 3,283 6,505 12,970 18,850 23,259 26,116 28,810 29,193 29,292 22,719
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Table C.3: Triangle 1.3: Medical Malpractice: Scpie Indemnity Company

IY Development Lag Premium1 2 3 4 5 6 7 8 9 10
1988 2,716 24,576 43,990 59,722 71,019 76,354 76,792 77,207 77,588 77,656 135,318
1989 3,835 25,158 45,145 60,331 67,457 70,821 71,769 72,085 72,035 72,171 111,938
1990 4,838 27,965 50,873 66,400 71,875 74,755 75,176 75,250 75,250 75,250 99,293
1991 4,456 34,241 64,737 79,390 84,465 87,375 89,119 89,825 90,333 90,343 96,483
1992 5,970 36,080 68,268 81,783 86,076 87,167 88,282 88,857 89,087 89,102 98,608
1993 9,398 46,210 77,045 86,298 91,796 93,827 95,871 95,943 95,987 96,008 99,133
1994 6,181 39,204 70,006 82,385 86,523 88,387 90,408 90,525 91,640 91,796 97,097
1995 7,828 42,356 70,729 79,340 81,142 81,891 81,905 81,897 81,781 81,782 101,600
1996 8,854 51,400 81,653 90,504 94,284 96,456 97,305 97,175 97,212 97,225 101,537
1997 7,818 47,098 84,142 93,724 97,401 97,726 98,250 98,355 98,627 98,655 108,198

Table C.4: Triangle 2.1: Commercial Automobile: Farmers’ Automobile

IY Development Lag Premium1 2 3 4 5 6 7 8 9 10
1988 2,491 4,426 5,484 6,275 6,544 6,828 7,103 7,103 7,111 7,115 9,147
1989 2,526 4,690 6,073 7,036 8,139 8,310 8,373 8,378 8,424 8,425 9,854
1990 2,760 4,442 5,529 6,965 7,533 8,192 8,919 8,983 8,985 8,991 11,142
1991 2,633 5,124 6,812 7,187 7,882 8,388 8,403 8,524 8,538 8,549 11,380
1992 2,502 4,780 5,790 6,705 7,193 7,473 7,546 7,808 7,842 7,853 11,808
1993 3,226 5,098 6,776 8,333 9,019 9,391 9,514 9,665 9,943 9,980 12,514
1994 3,567 5,796 7,553 8,322 8,717 8,955 9,345 9,576 9,582 9,583 13,460
1995 3,215 5,625 6,655 7,785 8,570 8,644 8,721 8,797 8,802 9,038 14,206
1996 3,516 6,025 6,798 7,807 8,286 8,614 8,727 8,727 8,723 8,719 14,231
1997 3,628 5,907 8,950 10,581 11,453 12,364 12,431 12,432 12,433 12,434 13,929

P
age

91



A
ppendix

C
:R

un-off
triangles

of
the

data
set

Table C.5: Triangle 2.2: Commercial Automobile: State Farm

IY Development Lag Premium1 2 3 4 5 6 7 8 9 10
1988 54,699 108,337 143,899 164,818 179,538 185,391 188,023 189,759 190,520 193,499 286,378
1989 60,091 119,366 151,151 174,665 185,469 192,213 196,152 198,013 199,997 200,480 308,908
1990 65,860 130,803 172,390 197,977 210,230 219,267 222,428 224,078 224,855 225,430 326,503
1991 61,946 121,108 158,880 182,689 195,247 201,854 204,911 205,535 206,051 206,719 332,616
1992 65,043 128,550 164,433 187,508 199,823 208,008 210,925 213,006 214,097 214,524 341,890
1993 72,295 144,579 185,446 208,388 219,345 225,981 230,040 231,594 232,739 233,365 355,840
1994 81,988 151,197 189,630 212,446 229,511 237,406 240,779 242,463 242,860 244,280 379,781
1995 83,207 152,470 190,974 212,923 226,193 233,723 237,024 237,748 239,596 240,184 398,755
1996 79,699 143,590 184,346 206,780 224,327 233,298 237,216 236,725 236,825 237,368 406,609
1997 75,827 143,120 184,965 206,565 220,052 225,837 229,414 230,996 230,301 230,775 406,516

Table C.6: Triangle 2.3: Commercial Automobile: The Ins Co

IY Development Lag Premium1 2 3 4 5 6 7 8 9 10
1988 152 288 276 429 442 802 802 791 791 791 1,300
1989 253 285 475 344 474 479 521 538 551 553 1,697
1990 217 404 567 587 594 479 479 479 479 479 1,553
1991 82 398 563 719 692 936 936 936 936 936 1,425
1992 602 1,495 1,703 1,855 1,903 1,919 1,926 2,254 2,254 2,254 3,252
1993 326 1,258 2,091 2,860 3,328 3,363 4,333 4,352 4,452 4,458 5,617
1994 731 2,209 3,218 4,243 4,368 6,098 6,111 6,117 6,117 6,117 9,536
1995 362 2,361 2,583 2,861 3,973 4,409 4,450 4,463 4,472 4,480 5,674
1996 1,293 2,705 4,280 5,442 5,976 6,213 6,273 6,273 6,273 6,273 7,389
1997 1,082 2,360 3,726 4,687 4,880 5,165 5,322 5,322 5,322 5,322 6,378
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Table C.7: Triangle 3.1: Personal Automobile: Farmers’ Automobile

IY Development Lag Premium1 2 3 4 5 6 7 8 9 10
1988 8,784 15,009 17,840 19,388 20,299 20,482 20,611 20,748 20,743 20,739 28,355
1989 10,262 18,849 24,027 26,024 27,483 27,907 28,054 27,979 28,013 28,009 31,312
1990 11,733 21,109 24,500 26,815 28,238 28,516 28,729 28,808 28,811 28,826 36,707
1991 11,915 21,078 25,506 28,481 30,054 30,645 31,065 31,150 31,241 31,272 40,265
1992 11,949 20,676 25,841 28,292 29,766 30,440 30,571 30,746 30,781 30,780 42,570
1993 13,270 23,902 28,318 31,328 33,197 33,605 33,882 33,946 33,987 34,035 42,879
1994 14,561 24,177 29,091 32,281 34,287 34,962 35,027 35,094 35,226 35,226 43,684
1995 14,545 23,908 29,665 32,150 34,016 34,844 35,000 35,029 35,334 35,400 44,500
1996 15,098 24,813 29,524 31,727 33,144 33,221 33,274 33,317 33,315 33,316 45,276
1997 14,846 24,270 28,303 31,097 32,304 33,378 33,522 33,583 33,662 33,661 47,331

Table C.8: Triangle 3.2: Personal Automobile: Federal Insurance Company

IY Development Lag Premium1 2 3 4 5 6 7 8 9 10
1988 13,440 35,680 48,703 56,319 61,018 61,119 63,049 63,556 63,744 63,835 83,473
1989 18,757 44,166 57,578 66,264 65,600 67,721 75,369 76,713 77,007 77,029 91,800
1990 19,834 42,225 56,347 63,194 67,112 69,459 74,267 79,208 79,250 79,308 95,877
1991 16,230 38,045 46,055 53,983 60,638 62,917 71,074 71,885 72,560 72,579 99,256
1992 14,629 22,427 33,873 43,339 53,168 60,413 61,452 62,363 62,464 62,458 96,170
1993 24,597 51,373 68,484 80,253 92,192 94,939 97,226 97,536 97,654 97,787 139,038
1994 31,723 59,733 77,398 94,395 101,008 104,557 107,399 108,067 108,476 110,038 152,174
1995 37,397 71,133 94,294 103,996 107,948 109,478 110,401 111,051 111,108 111,598 167,833
1996 53,670 98,628 112,473 123,070 129,739 131,549 132,682 133,137 133,426 133,522 180,523
1997 52,837 77,758 95,357 104,789 109,025 111,835 112,467 113,000 113,086 113,371 164,717
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Table C.9: Triangle 3.3: Personal Automobile: State Farm

IY Development Lag Premium1 2 3 4 5 6 7 8 9 10
1988 2,439,272 4,722,902 5,705,646 6,238,289 6,519,491 6,677,426 6,750,431 6,787,444 6,808,809 6,815,646 7,809,394
1989 2,828,267 5,368,026 6,494,597 7,096,377 7,417,869 7,575,814 7,655,217 7,693,240 7,712,077 7,721,911 8,764,863
1990 3,186,948 5,913,490 7,140,613 7,774,615 8,096,374 8,251,086 8,325,184 8,364,955 8,382,479 8,394,117 9,796,463
1991 3,192,619 5,878,000 7,075,254 7,698,459 7,996,404 8,140,065 8,215,810 8,256,338 8,279,401 8,288,143 10,594,952
1992 3,561,950 6,474,291 7,763,969 8,404,713 8,716,926 8,876,813 8,959,761 8,998,462 9,016,704 9,026,329 11,457,922
1993 3,895,076 7,024,867 8,343,417 9,003,120 9,337,099 9,509,203 9,599,735 9,642,522 9,660,532 9,673,610 12,240,633
1994 4,323,103 7,590,944 8,924,062 9,640,098 10,030,681 10,216,964 10,299,231 10,340,679 10,361,560 10,375,605 13,277,675
1995 4,491,070 7,664,190 9,006,113 9,736,570 10,120,120 10,312,088 10,412,421 10,461,753 10,497,027 10,512,108 14,125,898
1996 4,444,088 7,486,113 8,845,221 9,583,622 9,999,739 10,196,271 10,293,776 10,347,058 10,373,438 10,387,245 14,664,665
1997 4,344,144 7,305,064 8,614,474 9,379,418 9,792,901 9,988,209 10,076,219 10,123,792 10,148,983 10,165,481 14,923,375

Table C.10: Triangle 4.1: Product Liability: Allstate Insurance Company

IY Development Lag Premium1 2 3 4 5 6 7 8 9 10
1988 1,501 3,916 8,834 17,450 22,495 28,687 31,311 32,039 36,357 36,358 48,622
1989 1,697 5,717 10,442 18,125 23,284 30,092 34,338 41,094 41,164 41,189 46,663
1990 1,373 4,002 10,829 16,695 21,788 25,332 34,875 34,893 35,037 35,037 39,473
1991 1,069 4,594 6,920 9,996 13,249 19,221 19,256 19,230 19,232 19,233 31,571
1992 1,134 3,068 5,412 8,210 19,164 19,187 19,190 19,209 19,209 19,213 22,317
1993 979 3,079 6,407 16,113 16,131 16,148 16,153 16,201 16,222 16,247 24,398
1994 1,397 2,990 25,688 26,030 26,165 26,294 26,765 27,075 27,085 27,086 34,271
1995 1,016 21,935 22,095 22,388 22,694 22,882 23,253 23,969 24,861 25,216 26,583
1996 9,852 10,071 10,444 10,743 11,011 11,037 11,567 11,788 11,829 11,841 23,440
1997 319 964 3,410 3,179 3,460 4,006 4,333 4,650 4,812 5,049 4,450
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Table C.11: Triangle 4.2: Product Liability: Federal Insurance Company

IY Development Lag Premium1 2 3 4 5 6 7 8 9 10
1988 1,249 4,092 8,893 15,516 23,806 34,070 30,699 31,130 31,716 32,430 102,414
1989 946 2,929 9,953 17,368 25,139 29,628 32,059 32,972 33,610 34,292 98,541
1990 1,765 4,743 9,854 20,471 26,756 33,654 43,282 42,588 49,336 55,502 100,215
1991 1,408 5,226 9,768 21,637 25,339 31,574 37,738 50,255 53,313 53,586 103,518
1992 1,647 7,628 12,848 18,323 21,943 23,139 32,579 34,833 36,287 40,504 104,926
1993 7,566 14,991 29,466 49,090 57,590 66,854 69,663 72,885 84,050 93,531 113,504
1994 2,299 6,856 23,954 61,496 78,905 90,416 95,287 100,858 104,661 106,357 123,984
1995 4,959 13,541 23,003 44,313 73,566 83,381 89,134 93,387 97,683 101,142 140,440
1996 6,063 9,707 26,814 55,185 71,471 85,110 90,315 99,066 101,633 103,677 150,180
1997 6,507 29,036 43,380 66,827 82,385 107,656 116,351 120,486 124,430 129,300 149,656

Table C.12: Triangle 4.3: Product Liability: Federated Mutual Group

IY Development Lag Premium1 2 3 4 5 6 7 8 9 10
1988 3,894 7,409 11,199 16,913 18,517 19,722 20,417 20,902 21,208 21,368 29,513
1989 3,883 6,869 10,489 14,410 16,605 18,485 20,112 20,654 20,835 21,119 27,835
1990 4,178 7,473 11,281 15,874 19,186 20,993 22,069 22,477 22,742 23,279 28,309
1991 3,872 8,137 14,577 18,071 22,125 23,770 24,559 25,283 26,017 26,380 28,091
1992 4,095 7,260 11,015 14,844 19,309 20,097 20,927 21,138 21,424 21,658 29,036
1993 2,223 4,048 6,651 8,229 9,141 10,446 11,078 11,098 11,510 11,598 23,916
1994 2,500 4,003 6,893 9,379 11,092 11,386 11,602 11,684 12,304 12,353 26,223
1995 2,442 4,657 7,303 8,380 9,553 10,170 10,446 10,522 10,618 10,883 28,379
1996 2,761 4,661 7,009 10,018 11,108 12,333 13,023 13,131 14,071 14,100 29,809
1997 2,642 5,027 9,539 12,343 15,013 16,282 16,917 17,105 17,236 17,336 31,953
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Table C.13: Triangle 5.1: Workers’ Compensation: Allstate Insurance Company

IY Development Lag Premium1 2 3 4 5 6 7 8 9 10
1988 70,571 155,905 220,744 251,595 274,156 287,676 298,499 304,873 321,808 325,322 394,742
1989 66,547 136,447 179,142 211,343 231,430 244,750 254,557 270,059 273,873 277,574 374,252
1990 52,233 133,370 178,444 204,442 222,193 232,940 253,337 256,788 261,166 263,000 280,320
1991 59,315 128,051 169,793 196,685 213,165 234,676 239,195 245,499 247,131 248,319 313,982
1992 39,991 89,873 114,117 133,003 154,362 159,496 164,013 166,212 167,397 168,844 252,698
1993 19,744 47,229 61,909 85,099 87,215 88,602 89,444 89,899 90,446 90,686 201,055
1994 20,379 46,773 88,636 91,077 92,583 93,346 93,897 94,165 94,558 94,730 174,381
1995 18,756 84,712 87,311 89,200 90,001 90,247 90,687 91,068 91,001 91,161 146,366
1996 42,609 44,916 46,981 47,899 48,583 49,109 49,442 49,073 49,161 49,255 93,294
1997 691 2,085 2,795 2,866 2,905 2,909 2,908 2,909 2,909 2,909 7,651

Table C.14: Triangle 5.2: Workers’ Compensation: Lumbermen’s Underwriting Alliance

IY Development Lag Premium1 2 3 4 5 6 7 8 9 10
1988 19,016 44,632 59,804 66,052 70,115 72,219 73,565 74,273 75,112 75,655 94,389
1989 17,346 42,058 59,686 64,821 67,313 69,036 69,942 70,428 70,846 71,001 92,238
1990 12,212 28,087 42,719 46,564 48,016 49,030 49,700 49,994 50,144 50,385 68,123
1991 9,490 19,697 32,062 38,698 40,369 41,220 41,970 42,359 42,720 42,887 59,587
1992 7,605 14,874 21,105 29,016 35,208 36,884 37,456 37,767 37,536 37,684 62,295
1993 5,596 11,527 14,677 17,073 20,813 24,037 26,021 27,557 27,593 27,752 70,875
1994 4,885 10,118 13,103 14,570 15,193 15,680 16,474 18,136 19,774 21,102 62,394
1995 4,056 8,435 10,439 11,424 13,000 13,611 13,847 14,252 14,526 14,678 67,685
1996 4,213 8,768 10,280 11,093 11,848 12,180 12,657 13,232 13,318 13,544 50,118
1997 5,258 10,661 13,346 15,717 17,620 18,884 19,382 19,914 20,523 20,734 49,456
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Table C.15: Triangle 5.3: Workers’ Compensation: State Farm

IY Development Lag Premium1 2 3 4 5 6 7 8 9 10
1988 22,190 60,834 85,104 100,151 108,802 114,967 118,790 121,558 123,492 125,049 177,104
1989 26,542 77,798 106,407 122,422 133,359 138,599 143,029 145,712 147,358 149,252 201,118
1990 32,977 100,494 134,886 157,758 168,991 178,065 182,787 187,760 192,576 196,092 246,010
1991 38,604 114,428 157,103 181,322 197,411 208,804 213,396 221,596 226,756 229,642 286,019
1992 42,466 125,820 164,776 189,045 204,377 213,904 221,659 228,415 231,760 235,831 340,183
1993 46,447 116,764 154,897 179,419 193,676 206,073 212,193 216,710 220,900 224,868 418,755
1994 41,368 100,344 132,021 151,081 165,667 173,167 177,960 181,932 185,039 190,572 366,031
1995 35,719 83,216 111,268 127,221 136,597 142,371 146,359 148,538 151,476 153,299 338,186
1996 28,746 66,033 87,748 100,432 108,442 116,297 119,566 121,885 124,377 126,403 286,631
1997 25,265 61,872 81,038 92,519 99,006 103,738 106,810 108,329 110,509 111,592 245,378
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D | Results: 3D-plots of benchmark measurements

In this Appendix, we will give 3D-plots of all observed losses, the Chain Ladder prediction and the best performing Gaussian process model.
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(a) Observed Losses (b) Chain Ladder (c) Matérn 5/2

Figure D.1: Benchmark Results of Triangle 1.1
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(a) Observed Losses (b) Chain Ladder (c) Matérn 3/2

Figure D.2: Benchmark Results of Triangle 1.2
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(a) Observed Losses (b) Chain Ladder (c) Matérn 3/2

Figure D.3: Benchmark Results of Triangle 1.3
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Figure D.4: Benchmark Results of Triangle 2.1
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(a) Observed Losses (b) Chain Ladder (c) Squared Exponential

Figure D.5: Benchmark Results of Triangle 2.2
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(a) Observed Losses (b) Chain Ladder (c) Matérn 5/2

Figure D.6: Benchmark Results of Triangle 2.3
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(a) Observed Losses (b) Chain Ladder (c) Squared Exponential

Figure D.7: Benchmark Results of Triangle 3.1
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(a) Observed Losses (b) Chain Ladder (c) Squared Exponential

Figure D.8: Benchmark Results of Triangle 3.2
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(a) Observed Losses (b) Chain Ladder (c) Squared Exponential

Figure D.9: Benchmark Results of Triangle 3.3
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(a) Observed Losses (b) Chain Ladder (c) Matérn 3/2

Figure D.10: Benchmark Results of Triangle 4.1
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(a) Observed Losses (b) Chain Ladder (c) Matérn 5/2

Figure D.11: Benchmark Results of Triangle 4.2
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(a) Observed Losses (b) Chain Ladder (c) Matérn 3/2

Figure D.12: Benchmark Results of Triangle 4.3
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(a) Observed Losses (b) Chain Ladder (c) Matérn 3/2

Figure D.13: Benchmark Results of Triangle 5.1
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(a) Observed Losses (b) Chain Ladder (c) Squared Exponential

Figure D.14: Benchmark Results of Triangle 5.2
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Figure D.15: Benchmark Results of Triangle 5.3
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E | Results: Inference of prior pa-
rameters

In this Appendix, we will present the inferred parameters by varying the prior distribution of
that parameter.

E.1 | Bandwidth parameter (ψ)

Table E.1: Inferred values of ψ1 (Development Lag), by variations on the prior distribution

Matérn 3/2 Matérn 5/2 Sq. Exponential
LoB Cauchy Gamma Cauchy Gamma Cauchy Gamma

1.1 MM 0.9011 0.759 1.5666 1.011 2.0112 1.3025
1.2 MM 1.8657 1.0696 3.6252 1.46 3.9048 1.4869
1.3 MM 1.7194 1.057 2.3654 1.2587 2.3059 1.3705
2.1 CA 0.9572 0.5899 1.6179 1.1411 2.0127 1.1697
2.2 CA 0.7161 0.6716 0.9816 0.7754 1.2269 0.9325
2.3 CA 1.4056 0.592 2.377 1.0622 2.9131 1.2317
3.1 PA 0.8552 0.7606 1.2409 0.918 1.3248 1.0163
3.2 PA 0.6965 0.3983 1.2279 0.4822 1.7508 0.9917
3.3 PA 0.7707 0.741 1.0265 0.799 1.1367 0.895
4.1 PL 2.9466 0.9792 3.4757 1.2253 2.7313 1.3839
4.2 PL 2.3923 0.9886 4.0955 1.3872 4.7952 1.8635
4.3 PL 0.6576 0.5898 1.1864 0.8247 1.4953 1.0867
5.1 WC 0.3939 0.3992 0.6899 0.5168 0.8435 0.7688
5.2 WC 0.8526 0.7151 1.3228 0.9011 1.3575 0.9721
5.3 WC 0.5408 0.594 0.8642 0.771 1.0241 0.8764

Considering several remarkably high values of the bandwidth parameter, we investigate the
Standard Deviation of the predicted Loss Reserve, given in Table E.3. For some triangles, we
see that the high inferred values result in a lower standard deviation.
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Appendix E: Results: Inference of prior parameters

Table E.2: Inferred values of ψ2 (Incurral year), by variations on the prior distribution

Matérn 3/2 Matérn 5/2 Sq. Exponential
LoB Cauchy Gamma Cauchy Gamma Cauchy Gamma

1.1 MM 1.8771 1.2233 3.9375 1.7262 5.7244 1.5311
1.2 MM 4.2627 1.2793 4.3455 0.8887 0.7579 0.8109
1.3 MM 0.842 0.7447 1.4059 1.0019 1.6367 1.1599
2.1 CA 5.1424 2.1202 11.3557 1.0481 18.7123 0.842
2.2 CA 1.5652 1.1588 3.3262 1.7291 5.1914 2.1369
2.3 CA 16.7376 2.7361 34.3191 2.132 45.0727 2.1477
3.1 PA 1.209 0.9369 1.6958 1.0855 1.6692 0.9507
3.2 PA 7.1923 2.4592 14.9481 3.785 25.471 2.9871
3.3 PA 1.1165 0.9635 2.2756 1.476 3.479 1.9834
4.1 PL 11.5624 1.6699 14.2031 1.8285 11.0983 2.0517
4.2 PL 8.5283 2.2414 14.2702 3.1457 18.1432 4.777
4.3 PL 3.4516 1.6806 6.4467 2.2157 8.0759 2.6933
5.1 WC 3.6954 1.8756 7.7373 2.7808 12.3416 3.3932
5.2 WC 1.7569 1.1723 3.4214 1.7134 4.9405 1.4946
5.3 WC 1.2261 1.0546 1.9667 1.3962 2.3216 1.5795

Table E.3: Standard Deviation of Loss Reserve predictions, by variations on the prior distribution
of ψ

Matérn 3/2 Matérn 5/2 Sq. Exponential
LoB Cauchy Gamma Cauchy Gamma Cauchy Gamma

1.1 MM 89,726 86,625 98,296 90,804 112,678 83,825
1.2 MM 34,405 33,058 35,024 27,092 29,277 26,187
1.3 MM 43,673 41,430 46,733 36,476 49,412 37,098
2.1 CA 5,175 5,458 5,737 4,712 6,094 4,128
2.2 CA 73,820 73,495 80,097 74,844 104,107 65,842
2.3 CA 2,821 3,931 3,080 4061 3,314 4,335
3.1 PA 8,474 8,039 9,854 8,852 10,948 8,223
3.2 PA 80,404 92,948 89,888 118,434 92,693 98,847
3.3 PA 2,550,905 2,400,639 2,654,248 2,616,817 3,135,120 2,541,395
4.1 PL 51,172 57,195 52,128 56,209 58,583 58,213
4.2 PL 88,689 95,199 94,270 128,196 94,220 116,028
4.3 PL 17,664 21,155 20,138 21,202 20,169 18,783
5.1 WC 179,668 229,973 188,070 226,372 189,414 202,139
5.2 WC 36,374 37,775 38,995 37,127 37,352 26,968
5.3 WC 103,864 107,898 111,896 120,175 109,435 104,266
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Appendix E: Results: Inference of prior parameters

E.2 | Noise parameter (σ2)

Table E.4: Inferred values of σ2, by variations on the prior distribution

Matérn 3/2 Matérn 5/2 Sq. Exponential
LoB Log-normal Student-T Log-normal Student-T Log-normal Student-T

1.1 MM 0.0117 0.0020 0.0142 0.0027 0.0197 0.0086
1.2 MM 0.0439 0.0228 0.0529 0.0425 0.0582 0.0484
1.3 MM 0.0083 0.0014 0.0083 0.0016 0.0090 0.0019
2.1 CA 0.0354 0.0039 0.0435 0.0348 0.0474 0.0405
2.2 CA 0.0067 0.0009 0.0068 0.0008 0.0158 0.0007
2.3 CA 0.0388 0.0075 0.0618 0.0495 0.0669 0.0584
3.1 PA 0.0085 0.0015 0.0091 0.0020 0.0098 0.0027
3.2 PA 0.0154 0.0024 0.0205 0.0029 0.0768 0.0634
3.3 PA 0.0061 0.0008 0.0065 0.0008 0.0090 0.0008
4.1 PL 0.0767 0.0641 0.0872 0.0763 0.0911 0.0794
4.2 PL 0.0192 0.0042 0.0203 0.0063 0.0465 0.0133
4.3 PL 0.0093 0.0016 0.0091 0.0017 0.0096 0.0017
5.1 WC 0.0097 0.0014 0.0113 0.0017 0.0272 0.0033
5.2 WC 0.0063 0.0009 0.0074 0.0010 0.0088 0.0019
5.3 WC 0.0050 0.0007 0.0044 0.0006 0.0041 0.0006

E.3 | Signal parameter (η2)

Table E.5: Inferred values of η2 by variations on the prior distribution

Matérn 3/2 Matérn 5/2 Sq. Exponential
η̂ LoB Log-normal Student-T Log-normal Student-T Log-normal Student-T

1.1 MM 2.6722 2.2072 4.271 3.0145 2.9359 2.149
1.2 MM 2.923 2.1061 2.4737 1.8748 1.9976 1.5398
1.3 MM 1.6074 1.4984 2.3112 1.8552 2.0993 1.735
2.1 CA 4.3613 3.341 3.0393 2.0477 2.1474 1.7373
2.2 CA 2.2507 1.9389 3.62 2.7136 3.3295 2.4536
2.3 CA 9.1009 6.6204 7.0691 4.3056 4.5172 2.9945
3.1 PA 2.1043 1.8129 2.9691 2.3423 3.0276 2.2183
3.2 PA 10.1939 7.5789 23.0048 17.765 6.7857 4.5751
3.3 PA 2.1512 1.8537 3.5401 2.6887 3.7304 2.7291
4.1 PL 3.5845 2.6519 4.401 3.1203 3.8026 2.5663
4.2 PL 8.2508 6.1809 14.8427 11.096 8.9884 6.1213
4.3 PL 2.3928 2.0015 3.4916 2.5203 2.4177 1.8492
5.1 WC 2.8707 2.3103 5.2233 3.5938 3.5168 2.5707
5.2 WC 1.3889 1.3048 2.1633 1.7856 1.7648 1.5268
5.3 WC 2.0471 1.7975 3.2412 2.5005 2.9885 2.3228

E.4 | Warping parameters (α1, β1, α2, β2)
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Appendix E: Results: Inference of prior parameters

Table E.6: Inferred values of α1, by variations on the prior distribution

Matérn 3/2 Matérn 5/2 Sq. Exponential
α̂1 LoB Snoek Lally Snoek Lally Snoek Lally
1.1 MM 1.0901 1.1121 1.1111 1.1537 1.0836 1.094
1.2 MM 0.939 1.1883 1.0106 1.1894 1.0244 1.1904
1.3 MM 0.5156 0.7005 0.6352 0.8245 0.7074 0.8696
2.1 CA 0.5234 0.6033 0.573 0.6486 0.5818 0.6373
2.2 CA 0.4517 0.5804 0.6018 0.6764 0.6011 0.6958
2.3 CA 0.504 0.5846 0.5986 0.6671 0.6647 0.7209
3.1 PA 0.4309 0.5523 0.538 0.6323 0.5879 0.6589
3.2 PA 0.4782 0.5285 0.5566 0.5729 0.5146 0.574
3.3 PA 0.3812 0.4945 0.497 0.572 0.5473 0.6036
4.1 PL 0.7656 0.8249 0.8229 0.864 0.8646 0.8866
4.2 PL 1.5888 1.7867 1.7253 1.9277 1.3074 2.0347
4.3 PL 0.9409 1.0043 1.0361 1.0879 1.0595 1.0886
5.1 WC 0.4791 0.5509 0.571 0.6123 0.5691 0.5969
5.2 WC 0.4709 0.6107 0.5807 0.7163 0.6032 0.7411
5.3 WC 0.4593 0.5459 0.5308 0.5876 0.5629 0.597

Table E.7: Inferred values of β1, by variations on the prior distribution

Matérn 3/2 Matérn 5/2 Sq. Exponential
β̂1 LoB Snoek Lally Snoek Lally Snoek Lally
1.1 MM 1.2497 1.4873 1.3075 1.5958 1.2576 1.5253
1.2 MM 1.3111 2.4547 1.4146 2.4519 1.5303 2.5075
1.3 MM 1.4577 3.0128 1.5287 3.0144 1.6209 2.8011
2.1 CA 1.2195 1.7028 1.2357 1.7282 1.2285 1.68
2.2 CA 1.4334 2.5556 1.4194 2.5284 1.3726 2.3668
2.3 CA 1.1486 1.6145 1.1536 1.6114 1.1815 1.551
3.1 PA 1.351 2.8381 1.3567 2.6662 1.4068 2.4101
3.2 PA 1.1099 1.2914 1.105 1.2574 1.1518 1.4711
3.3 PA 1.3734 2.7678 1.3456 2.6783 1.3542 2.4626
4.1 PL 1.1298 1.317 1.1555 1.3937 1.1737 1.4711
4.2 PL 1.6556 2.5565 1.7762 2.6642 1.5819 2.97
4.3 PL 1.2731 1.8569 1.3309 1.9894 1.4691 2.1408
5.1 WC 1.1242 1.2762 1.1545 1.3778 1.1609 1.388
5.2 WC 1.3288 2.3214 1.3646 2.3217 1.4443 2.503
5.3 WC 1.2342 1.7929 1.2393 1.7239 1.2686 1.7567
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Appendix E: Results: Inference of prior parameters

Table E.8: Inferred values of α2, by variations on the prior distribution

Matérn 3/2 Matérn 5/2 Sq. Exponential
α̂2 LoB Snoek Lally Snoek Lally Snoek Lally
1.1 MM 1.3093 1.4051 1.4991 1.68 1.1532 1.7014
1.2 MM 9.4698 1.1952 8.5882 1.2394 7.7088 1.3909
1.3 MM 0.9557 0.9604 0.8559 0.9691 0.7891 1.0013
2.1 CA 1.1078 1.2688 0.5313 0.6313 0.4469 0.5368
2.2 CA 1.133 1.5127 1.3153 2.0453 1.2318 2.8785
2.3 CA 2.0925 2.1649 2.5022 2.3705 2.3933 2.2898
3.1 PA 0.442 0.5661 0.3999 0.4888 0.3369 0.4025
3.2 PA 1.3893 1.425 1.4888 1.5419 2.1892 1.4886
3.3 PA 0.9152 0.9981 0.972 1.1999 1.0037 1.5519
4.1 PL 1.7774 1.52 1.8358 1.707 2.155 1.9708
4.2 PL 2.2556 2.6427 2.4534 2.8741 2.7115 3.4028
4.3 PL 1.8373 2.3685 2.2602 3.3787 3.2987 4.455
5.1 WC 1.0366 1.0188 1.0929 1.1495 1.3147 1.6144
5.2 WC 0.6744 0.9501 0.5813 0.9617 0.4088 0.5692
5.3 WC 1.1269 1.1422 1.2254 1.2634 1.3193 1.3636

Table E.9: Inferred values of β2, by variations on the prior distribution

Matérn 3/2 Matérn 5/2 Sq. Exponential
β̂2 LoB Snoek Lally Snoek Lally Snoek Lally
1.1 MM 1.3712 1.8887 1.5294 2.17 1.402 2.4755
1.2 MM 1.0138 1.9851 1.0105 1.4009 1.0189 1.2237
1.3 MM 1.2142 1.7445 1.3139 2.2691 1.4356 2.719
2.1 CA 1.4132 1.8947 1.0736 1.2992 1.0176 1.1735
2.2 CA 1.5341 2.8664 1.8901 4.0755 1.673 6.1015
2.3 CA 1.3925 1.5891 1.618 2.069 1.7408 2.2767
3.1 PA 1.0718 1.399 1.0341 1.2732 0.9418 1.0574
3.2 PA 1.294 1.4211 1.4159 1.5798 1.5237 2.1588
3.3 PA 1.1664 1.6642 1.2629 2.2294 1.3768 3.3471
4.1 PL 1.1734 1.3539 1.294 1.7375 1.4336 2.1014
4.2 PL 1.8487 2.6756 2.1151 3.0004 1.9258 3.7116
4.3 PL 1.702 2.7363 2.1257 3.7784 3.0205 5.0685
5.1 WC 1.0364 1.0632 1.1985 1.483 1.5441 3.0899
5.2 WC 1.3766 2.2062 1.3976 2.39 1.3532 1.9528
5.3 WC 1.2248 1.3679 1.3589 1.5461 1.5172 1.7022
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F | Results: Bornheutter-Ferguson Estimators

In this Appendix, we will give the estimated development and estimated loss as used in generating the results of Section 6.3.3

Table F.1: Estimators of Development and Cumulative Loss of Triangle 1.1

1988 1989 1990 1991 1992 1993 1994 1995 1996 1997
Ult. Loss 58,703 61,272 76,947 89,983 89,784 94,038 102,083 113,189 95,935 101,971

Est. Development 1.00 0.95 0.89 0.80 0.68 0.54 0.36 0.20 0.09 0.01
Est. Loss 58,703 62,677 84,511 96,977 105,529 91,147 153,263 82,430 103,813 115,788

Table F.2: Estimators of Development and Cumulative Loss of Triangle 1.2

1988 1989 1990 1991 1992 1993 1994 1995 1996 1997
Ult. Loss 25,942 27,039 20,374 28,805 25,531 37,326 36,154 29,147 32,659 29,292

Est. Development 1.00 1.00 1.00 0.98 0.93 0.86 0.67 0.40 0.18 0.03
Est. Loss 25,942 27,109 20,498 26,685 24,758 33,857 23,262 32,455 32,439 16,558
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Table F.3: Estimators of Development and Cumulative Loss of Triangle 1.3

1988 1989 1990 1991 1992 1993 1994 1995 1996 1997
Ult. Loss 77,656 72,171 75,250 90,343 89,102 96,008 91,796 81,782 97,225 98,655

Est. Development 1.00 1.00 1.00 0.99 0.98 0.94 0.87 0.70 0.40 0.07
Est. Loss 77,656 72,091 75,524 89,621 88,581 97,352 96,014 104,691 112,039 53,280

Table F.4: Estimators of Development and Cumulative Loss of Triangle 2.1

1988 1989 1990 1991 1992 1993 1994 1995 1996 1997
Ult. Loss 7,115 8,425 8,991 8,549 7,853 9,980 9,583 9,038 8,719 12,434

Est. Development 1.00 1.00 1.00 0.99 0.96 0.91 0.84 0.73 0.57 0.33
Est. Loss 7,115 8,428 9,018 8,460 7,850 9,928 10,028 9,972 10,726 10,594

Table F.5: Estimators of Development and Cumulative Loss of Triangle 2.2

1988 1989 1990 1991 1992 1993 1994 1995 1996 1997
Ult. Loss 193,499 200,480 225,430 206,719 214,524 233,365 244,280 240,184 237,368 230,775

Est. Development 1.00 0.98 0.98 0.97 0.95 0.92 0.86 0.76 0.59 0.31
Est. Loss 193,499 203,117 228,458 212,130 218,991 238,821 247,230 255,548 258,646 249,556

Table F.6: Estimators of Development and Cumulative Loss of Triangle 2.3

1988 1989 1990 1991 1992 1993 1994 1995 1996 1997
Ult. Loss 791 553 479 936 2,254 4,458 6,117 4,480 6,273 5,322

Est. Development 1.00 1.00 0.99 0.99 0.97 0.86 0.79 0.64 0.48 0.17
Est. Loss 791 551 488 950 1,970 3,910 5,926 4,266 5,884 3,768

Table F.7: Estimators of Development and Cumulative Loss of Triangle 3.1

1988 1989 1990 1991 1992 1993 1994 1995 1996 1997
Ult. Loss 20,739 28,009 28,826 31,272 30,780 34,035 35,226 35,400 33,316 33,661

Est. Development 1.00 1.00 1.00 1.00 0.99 0.97 0.92 0.84 0.69 0.40
Est. Loss 20,739 28,008 28,820 31,138 30,794 34,115 34,890 35,158 36,247 36,442
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Table F.8: Estimators of Development and Cumulative Loss of Triangle 3.2

1988 1989 1990 1991 1992 1993 1994 1995 1996 1997
Ult. Loss 63,835 77,029 79,308 72,579 62,458 97,787 110,038 111,598 133,522 113,371

Est. Development 1.00 1.00 1.00 0.96 0.89 0.85 0.77 0.65 0.49 0.25
Est. Loss 63,835 77,154 79,579 73,898 69,471 108,949 124,464 150,117 179,219 166,331

Table F.9: Estimators of Development and Cumulative Loss of Triangle 3.3

1988 1989 1990 1991 1992 1993 1994 1995 1996 1997
Ult. Loss 6,815,646 7,721,911 8,394,117 8,288,143 90,26,329 9,673,610 10,375,605 10,512,108 10,387,245 10,165,481

Est. Development 1.00 1.00 1.00 0.99 0.98 0.96 0.92 0.85 0.71 0.40
Est. Loss 6,815,646 7,719,135 8,396,402 8,290,064 9,048,159 9,729,040 10,414,583 10,589,695 10,731,391 12,077,363

Table F.10: Estimators of Development and Cumulative Loss of Triangle 4.1

1988 1989 1990 1991 1992 1993 1994 1995 1996 1997
Ult. Loss 36,358 41,189 35,037 19,233 19,213 16,247 27,086 25,216 11,841 5,049

Est. Development 1.00 1.00 0.94 0.88 0.76 0.62 0.46 0.31 0.16 0.05
Est. Loss 36,358 41,167 33,728 21,585 30,142 19,845 59,670 34,562 42,012 10,328

Table F.11: Estimators of Development and Cumulative Loss of Triangle 4.2

1988 1989 1990 1991 1992 1993 1994 1995 1996 1997
Ult. Loss 32,430 34,292 55,502 53,586 40,504 93,531 106,357 101,142 103,677 129,300

Est. Development 1 0.98 0.96 0.95 0.86 0.69 0.55 0.28 0.13 0.05
Est. Loss 32,430 34,476 43,444 37,628 26,231 85,281 98,243 78,314 13,191 104,953

Table F.12: Estimators of Development and Cumulative Loss of Triangle 4.3

1988 1989 1990 1991 1992 1993 1994 1995 1996 1997
Ult. Loss 21,368 21,119 23,279 26,380 21,658 11,598 12,353 10,883 14,100 17,336

Est. Development 1.00 0.99 0.98 0.96 0.91 0.85 0.71 0.53 0.33 0.18
Est. Loss 21,368 20,988 22,815 25,083 21,089 11,921 16,445 15,925 17,353 23,114
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Table F.13: Estimators of Development and Cumulative Loss of Triangle 5.1

1988 1989 1990 1991 1992 1993 1994 1995 1996 1997
Ult. Loss 325,322 277,574 263,000 248,319 168,844 90,686 94,730 91,161 49,255 2,909

Est. Development 1.00 0.99 0.95 0.93 0.89 0.84 0.77 0.66 0.49 0.22
Est. Loss 325,322 277,104 265,993 254,406 183,880 114,889 129,013 123,220 57,261 6,347

Table F.14: Estimators of Development and Cumulative Loss of Triangle 5.2

1988 1989 1990 1991 1992 1993 1994 1995 1996 1997
Ult. Loss 75,655 71,001 50,385 42,887 37,684 27,752 21,102 14,678 13,544 20,734

Est. Development 1.00 0.99 0.98 0.98 0.96 0.94 0.87 0.76 0.54 0.24
Est. Loss 75,655 71,192 50,817 42,739 39,511 23,007 18,781 17,490 17,604 25,048

Table F.15: Estimators of Development and Cumulative Loss of Triangle 5.3

1988 1989 1990 1991 1992 1993 1994 1995 1996 1997
Ult. Loss 125,049 149,252 196,092 229,642 235,831 224,868 190,572 153,299 126,403 111,592

Est. Development 1.00 0.99 0.97 0.95 0.93 0.88 0.81 0.70 0.53 0.20
Est. Loss 125,049 149,157 192,076 222,433 229,174 221,338 194,013 152,589 136,506 207,938
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