May 17, 2019

MASTER THESIS

ADAPTING A HIERARCHICAL GAUSSIAN PROCESS MODEL TO PREDICT THE LOSS RESERVE OF A NON-LIFE INSURER

P.L. Ruitenberg Industrial Engineering and Management (IEM) Specialisation Financial Engineering and Management (FEM)

Faculty of Behavioural, Management and Social Sciences (BMS) Department Industrial Engineering and Business Information Systems (IEBIS)

Exam committee: dr. B. Roorda (University of Twente) dr. P.K. Mandal (University of Twente) M.K. Lam, PhD. (KPMG)

UNIVERSITY OF TWENTE.

Preface

Dear reader,

This thesis concludes approximately 8 months of research that I have conducted at the Financial Risk Management department of KPMG Advisory N.V., in order to conclude the master Financial Engineering and Management.

First of all, I want to thank my supervisor and colleagues of KPMG. I have had numerous meetings with Miekee during my internship, all of which were insightful and productive. No matter how big or small an issue was, Miekee was always willing to assist me, guide me in the right direction and supply me with feedback. Furthermore, I want to thank everyone who has helped me in the process of this research, including (but not limited to) Rinze, Helen, Peter and Luuk.

Furthermore, I want to thank my supervisors Berend and Pranab from the University of Twente. Both Berend and Pranab have been lecturers during my Master's study. Berend's lectures have sparked my interest in the field of Risk Management, while Pranab's expertise in statistics and Risk Theory has been inspirational. The meetings with Berend and Pranab during this research have been productive, and their input has ensured the academic level of this thesis.

Delivering this thesis also concludes my student life. During these eight years, I have met many people and made a lot of friends, be it by working together, being in a committee (or board!) together, living in the same home or just by being in "Beneden Peil" at the same time. I want to thank everyone who has been a part of this for making it as unforgettable as it has been.

Last, but definitely not least, I want to thank my family, but my parents in particular, for their unconditional support.

I hope you enjoy reading this thesis.

Patrick Ruitenberg Amstelveen, May 8th, 2019.

Executive Summary

In this thesis, we have researched potential improvements of a hierarchical Gaussian process model on the actuarial challenge of predicting the Loss Reserve of a non-life insurer. The Hierarchical Gaussian process model is described in a paper by Lally and Hartman (2018) and is able to give adequate Best Estimate predictions, but the uncertainty of the prediction results in a wider confidence interval than other methods currently applied in actuarial practice.

The research performed consists of multiple parts: The model performance and design is validated, by assessing the model performance on a more extensive data set. The data set contains historical losses of 1988-2006 of multiple insurers of multiple Lines of Business. Furthermore, we will validate design choices by varying the prior distributions on hyperparameters in the model to other weakly informative priors used in literature on Gaussian processes.

Furthermore, we have researched if the model can be extended with external information, outside of the run-off triangle. We research various methods, including Bornheutter-Ferguson, to incorporate premium information in the model, and assess if performance is improved.

We compare the GP model by Lally and Hartman (2018) with the Chain Ladder method - which is commonly used in actuarial practice. Furthermore, we use the model results of the model by Lally and Hartman (2018) as a benchmark for our variations in design choices and model extension. As the data set used contains all observed losses, we can compare performance of the Best Estimate of the Loss Reserve, and the Root Mean Square Error of prediction of the estimated losses. Furthermore, we analyse the density of the prediction of the Loss Reserve.

Our results indicate that the performance on volatile run-off triangles by the model of Lally and Hartman (2018) still has room for improvement. However, in some cases the Gaussian process model outperforms the Chain Ladder. The design choices of the prior distributions of the hyperparameters made by Lally and Hartman (2018) are adequate. Most notably, changing the prior distribution of the Bandwidth parameter applied to a Cauchy (0, 2.5) distribution has varying results, and should not be used in combination with a Squared Exponential covariance function. For the model in general, we conclude that most weakly informative priors give adequate results.

With regards to supplying the model with premium information, the results show that a transformation to Loss Ratio's have a positive effect on the prediction of the Best Estimate of the Loss Reserve. Adding a Bornheutter-Ferguson estimation to the model, and allowing the Gaussian Process model to add noise to these estimations, give good results regarding to the uncertainty of the prediction. However, this implementation is very reliant on the quality of these estimations, as the Best Estimate of the Loss Reserve is reliant on them.

We conclude that the Gaussian process model is well designed and generally applicable on a

multitude of data sets. However, we recommend testing the model performance on incremental data, or run-off triangles of incurred claims. We also recommend tuning the kernel function of the model to triangle specific characteristics. As for implementing external data in the model, other data such as the number of claims could be researched. Moreover, validating a faster Gaussian process approximation as described by Flaxman et al. (2016) is recommended.

Contents

1	Intr	roduction 1
	1.1	Organisation
	1.2	Loss Reserve of an non-life insurer 1
	1.3	Gaussian Process regression
	1.4	Research
		1.4.1 Research Questions
		1.4.2 Methodology $\ldots \ldots \ldots$
2	Pre	dicting Loss Reserves 7
	2.1	An example of a Claim Timeline
	2.2	The Run-off Triangle
	2.3	Predicting the Loss Reserve
		2.3.1 Chain Ladder
		2.3.2 Bornheutter-Ferguson
		2.3.3 Recent Research for Loss Reserve prediction
3	AC	Gaussian process model to predict loss reserves 15
Ū	3.1	Introduction on the model
	3.2	Covariance functions
	0.2	3.2.1 Squared Exponential
		3.2.2 Matérn 3/2 and Matérn 5/2 17
		3.2.3 Signal and Noise
	3.3	Input Warping
	3.4	Input data preparation
	3.5	Hyperparameters and prior distributions
	3.6	Model limitations 22
4	D	and action of
4	Res 4.1	earch setup 25 Methodology 26
	4.1 4.2	Prior distribution of hyperparameters
	4.2	
		0 1
	19	4.2.3 Warping parameters
	4.3	Extending the model with premium information294.3.1Transform observations to Loss Ratio's29
		4.3.2 Supply Premiums as input instead of Accident Years

		4.3.3	Add Estimators of the Ultimate Loss to the model
5	Dat	a set u	used 3
	5.1	Medica	al Malpractice (MM) 3
		5.1.1	Physicians Reciprocal Insurers (Triangle 1.1) 3
		5.1.2	Promutual Group (Triangle 1.2)
		5.1.3	Scpie Indemnity Company (Triangle 1.3)
	5.2	Comm	ercial Automobile (CA)
		5.2.1	Farmers' Automobile (Triangle 2.1)
		5.2.2	State Farm (Triangle 2.2) 3
		5.2.3	The Ins Co (Triangle 2.3)
	5.3	Person	al Automobile (PA)
		5.3.1	Farmers' Automobile (Triangle 3.1)
		5.3.2	Federal Insurance Company (Triangle 3.2)
		5.3.3	State Farm (Triangle 3.3) 4
	5.4	Produ	ct Liability (PL)
		5.4.1	Allstate Insurance Company (Triangle 4.1) 4
		5.4.2	Federal Insurance Company (Triangle 4.2)
		5.4.3	Federated Mutual Group (Triangle 4.3)
	5.5	Worke	rs' Compensation (WC)
		5.5.1	Allstate Insurance Company (Triangle 5.1)
		5.5.2	Lumbermen's Underwriting Alliance (Triangle 5.2)
		5.5.3	State Farm (Triangle 5.3) 4
6	Ros	ulte	1
6	\mathbf{Res}		mark measurements 4
6	6.1	Bench	mark measurements
6		Bench Prior o	mark measurements
6	6.1	Bench Prior o 6.2.1	mark measurements4listributions5Bandwidth parameter (ψ) 5
6	6.1	Bench: Prior 6 6.2.1 6.2.2	mark measurements 4 listributions 5 Bandwidth parameter (ψ) 5 Noise parameter (σ^2) 5
6	6.1	Bench: Prior 6 6.2.1 6.2.2 6.2.3	mark measurements4distributions5Bandwidth parameter (ψ) 5Noise parameter (σ^2) 5Signal parameter (η^2) 5
6	6.1	Bench: Prior 6 6.2.1 6.2.2 6.2.3 6.2.4	mark measurements4distributions5Bandwidth parameter (ψ) 5Noise parameter (σ^2) 5Signal parameter (η^2) 5Warping parameters (α, β) 5
6	6.1 6.2	Bench Prior 6 6.2.1 6.2.2 6.2.3 6.2.4 6.2.5	mark measurements4distributions5Bandwidth parameter (ψ) 5Noise parameter (σ^2) 5Signal parameter (η^2) 5Warping parameters (α, β) 5Optimal prior configuration5
6	6.1	Bench Prior 6 6.2.1 6.2.2 6.2.3 6.2.4 6.2.5 Premis	mark measurements4distributions5Bandwidth parameter (ψ) 5Noise parameter (σ^2) 5Signal parameter (η^2) 5Warping parameters (α, β) 5Optimal prior configuration5un Information6
6	6.1 6.2	Bench: Prior 6 6.2.1 6.2.2 6.2.3 6.2.3 6.2.4 6.2.5 Premis 6.3.1	mark measurements4distributions5Bandwidth parameter (ψ) 5Noise parameter (σ^2) 5Signal parameter (η^2) 5Warping parameters (α, β) 5Optimal prior configuration5un Information6Loss Ratio's6
6	6.1 6.2	Bench: Prior of 6.2.1 6.2.2 6.2.3 6.2.4 6.2.5 Premit 6.3.1 6.3.2	mark measurements4distributions5Bandwidth parameter (ψ) 5Noise parameter (σ^2) 5Signal parameter (η^2) 5Warping parameters (α, β) 5Optimal prior configuration5un Information6Loss Ratio's6Premium as input6
6	6.16.26.3	Bench: Prior 6 6.2.1 6.2.2 6.2.3 6.2.4 6.2.5 Premit 6.3.1 6.3.2 6.3.3	mark measurements4listributions5Bandwidth parameter (ψ) 5Noise parameter (σ^2) 5Signal parameter (η^2) 5Warping parameters (α, β) 5Optimal prior configuration5um Information6Loss Ratio's6Premium as input6Bornheutter-Ferguson Estimations7
6	6.16.26.3	Bench Prior o 6.2.1 6.2.2 6.2.3 6.2.4 6.2.5 Premi 6.3.1 6.3.2 6.3.3	mark measurements4distributions5Bandwidth parameter (ψ) 5Noise parameter (σ^2) 5Signal parameter (η^2) 5Warping parameters (α, β) 5Optimal prior configuration5um Information6Loss Ratio's6Premium as input6Bornheutter-Ferguson Estimations7
	6.16.26.3	Bench Prior o 6.2.1 6.2.2 6.2.3 6.2.4 6.2.5 Premi 6.3.1 6.3.2 6.3.3	mark measurements4distributions5Bandwidth parameter (ψ) 5Noise parameter (σ^2) 5Signal parameter (η^2) 5Warping parameters (α, β) 5Optimal prior configuration5um Information6Loss Ratio's6Premium as input6Bornheutter-Ferguson Estimations7
	6.16.26.3Cor	Bench Prior 6 6.2.1 6.2.2 6.2.3 6.2.4 6.2.5 Premin 6.3.1 6.3.2 6.3.3 nclusion Data a	mark measurements4distributions5Bandwidth parameter (ψ) 5Noise parameter (σ^2) 5Signal parameter (η^2) 5Warping parameters (α, β) 5Optimal prior configuration5um Information6Loss Ratio's6Premium as input6Bornheutter-Ferguson Estimations7
	 6.1 6.2 6.3 Cort 7.1 	Bench Prior o 6.2.1 6.2.2 6.2.3 6.2.4 6.2.5 Premin 6.3.1 6.3.2 6.3.3 nclusion Data a Prior o	mark measurements4distributions5Bandwidth parameter (ψ) 5Noise parameter (σ^2) 5Signal parameter (η^2) 5Warping parameters (α, β) 5Optimal prior configuration5um Information6Loss Ratio's6Premium as input6Bornheutter-Ferguson Estimations7n7pplicability7
	 6.1 6.2 6.3 Con 7.1 7.2 7.3 	Bench: Prior of 6.2.1 6.2.2 6.2.3 6.2.4 6.2.5 Premit 6.3.1 6.3.2 6.3.3 nclusion Data a Prior of Adding	mark measurements 4 listributions 5 Bandwidth parameter (ψ) 5 Noise parameter (σ^2) 5 Signal parameter (η^2) 5 Warping parameters (α, β) 5 Optimal prior configuration 5 Information 6 Loss Ratio's 6 Premium as input 6 Bornheutter-Ferguson Estimations 7 n 7 piplicability 7 distributions and model design 7
7	 6.1 6.2 6.3 Con 7.1 7.2 7.3 	Bench Prior of 6.2.1 6.2.2 6.2.3 6.2.4 6.2.5 Premin 6.3.1 6.3.2 6.3.3 nclusion Data a Prior of Adding	mark measurements 4 distributions 5 Bandwidth parameter (ψ) 5 Noise parameter (σ^2) 5 Signal parameter (η^2) 5 Warping parameters (α, β) 5 Optimal prior configuration 5 um Information 6 Loss Ratio's 6 Premium as input 6 Bornheutter-Ferguson Estimations 7 n 7 ngplicability 7 g premium information to the model 7
7	 6.1 6.2 6.3 Cort 7.1 7.2 7.3 Dise 	Bench: Prior of 6.2.1 6.2.2 6.2.3 6.2.4 6.2.5 Premin 6.3.1 6.3.2 6.3.3 nclusion Data a Prior of Adding Cussion	mark measurements4distributions5Bandwidth parameter (ψ) 5Noise parameter (σ^2) 5Signal parameter (η^2) 5Warping parameters (α, β) 5Optimal prior configuration5um Information6Loss Ratio's6Premium as input6Bornheutter-Ferguson Estimations7n7n7n7n and Recommendations7
7	 6.1 6.2 6.3 6.3 Con 7.1 7.2 7.3 Dise 8.1 	Bench: Prior of 6.2.1 6.2.2 6.2.3 6.2.4 6.2.5 Premit 6.3.1 6.3.2 6.3.3 nclusion Data a Prior of Adding Cussion Data s Priors	mark measurements4distributions5Bandwidth parameter (ψ) 5Noise parameter (σ^2) 5Signal parameter (η^2) 5Warping parameters (α, β) 5Optimal prior configuration5um Information6Loss Ratio's6Premium as input6Bornheutter-Ferguson Estimations7n7<

8.5 Technical possibilities and limitations	79
References	81
Appendix A Glossary of abbreviations	85
Appendix B Run-off triangle: Example	87
Appendix C Run-off triangles of the data set	89
Appendix D Results: 3D-plots of benchmark measurements	99
Appendix E Results: Inference of prior parameters	115
E.1 Bandwidth parameter (ψ)	115
E.2 Noise parameter (σ^2)	117
E.3 Signal parameter (η^2)	117
E.4 Warping parameters $(\alpha_1, \beta_1, \alpha_2, \beta_2)$	117
Appendix F Results: Bornheutter-Ferguson Estimators	121

1 Introduction

Contents

1.1	Orga	anisation	1
1.2	Loss	Reserve of an non-life insurer	1
1.3	Gau	ssian Process regression	3
1.4	Rese	earch	5
	1.4.1	Research Questions	5
	1.4.2	Methodology	5

This chapter will give a brief introduction to this thesis, discussing the basics of the loss reserve that we wish to estimate, an introduction on a Gaussian process and applying it for regression, and the organisation at which this research has been performed. This section will conclude with our research question and methodology.

1.1 Organisation

This research has been performed from the 1st of October 2018 to the 17th of May 2019 at KPMG Advisory N.V. in Amstelveen, at the department of Financial Risk Management (FRM). This department advises financial institutions on various risk-related topics. Clients of this department include, for instance, large banks, insurers and pension funds. Topics that FRM advises on can range from regulatory questions (i.e. Basel IV, Solvency II), advising on Mergers & Acquisitions and assisting the colleagues of KPMG Accountants N.V.. As such, the FRM department is interested in gaining knowledge in more sophisticated methods to adequately model risks.

1.2 Loss Reserve of an non-life insurer

Insurers are inherently, due to the nature of their business, exposed to various sources of risk. Insurance companies take on a specific risk that an individual (or business) wants to hedge, at the cost of a fixed premium (Kaas, Goovaerts, Dhaene, & Denuit, 2008). Besides the risks that are inherent to this business model (*Insurance Risk*), insurers have exposure to the financial market (*Market Risk*), there are several *Business Risks*, such as unforeseen large expenses, and they also have an *Operational Risk*, for instance when safeguards or internal models fail.

In insurance, there is a distinction in Life and Non-Life insurance companies. A life insurer writes life policies (e.g.: in case of death of the policyholder, pay out a specified amount to the beneficiaries), and a non-life (also known as Property & Casualty) insurance company writes all kind other insurance policies except life insurance, such as automobile and healthcare insurance.

This separation is made for both legal reasons and due to the difference between the two products: contract terms and claim types are different. As such, life and non-life insurance is usually modelled differently. (Wüthrich & Merz, 2006)

A non-life insurer usually has two main actuarial reserves: a premium reserve and a loss reserve. The premium reserve of a non-life insurer consists of premiums that are expected to still be received. In this thesis, the loss reserve of an non-life insurance company will be the main focus. A loss reserve contains provisions for payment obligations from losses that have occurred, but have not yet been settled (Radtke, Schmidt, & Schnaus, 2016). As this reserve should cover losses/payments that will occur in the future, there is a considerable amount of uncertainty while attempting to adequately assess the size of this reserve. This poses a risk to the insurance company: when the loss reserve is too low, it can run into problems when making payments on claims. On the other hand, when too much money is pooled in the loss reserve, this might be detrimental to business - as that money cannot be used for other purposes.

Distinctions can be made in determining this loss reserve, usually along several Lines of Business (LoB's) that a non-life insurer has, such as commercial or personal automobile. Every branch can have a unique pattern in claims development, and claims usually have a delay in settlement unique to the type of claim. For instance, liability products can have a substantial delay due to litigation/lawsuits (Kaas et al., 2008). As such, a distinction can be made in short-tail LoB's (of which losses are known relatively quickly) and long-tail LoB's (which take longer to develop).

The Loss Reserve is built up by of two types of claims: claims that are IBNR or RBNS. Claims that are known to the insurer, but have not yet been paid in full yet, are referred to as *RBNS: Reported, But Not Settled.* Furthermore, claims that have been incurred, but are not yet known to the insurance company are referred to as *IBNR: Incurred, but not reported.* Both types of claims form a future payment obligation, and as such are included in the loss reserve.

This research focuses on improving the prediction of the loss reserve. For this, historical payment data is considered in order to model the size of this reserve. Depending on the Line of Business, and/or business size, the level of detail of this data may be yearly, monthly or even daily. The lag between when the claim is incurred and when a payment is made is known as the development lag.

	Development lag					
Incurral Year	1	2	3	4	5	
1997	1,188,675	$3,\!446,\!584$	4,141,821	4,308,633	4,400,762	
1998	1,235,402	$4,\!485,\!415$	$5,\!135,\!343$	$5,\!346,\!687$	•	
1999	2,209,850	$5,\!928,\!544$	6,746,912	•	•	
2000	2,662,546	$6,\!149,\!580$	•	•	•	
2001	2,457,265	•	•	•	•	

Table 1.1: Example of a cumulative run-off triangle. Source: Frees (2009)

The aggregated data is usually illustrated in a so-called run-off triangle, of which an example is given in Table 1.1¹. In any run-off triangle, each payment is categorised by its' Incurral Year and a Development Lag. This triangle has a total time span of 5 years. The Incurral Year is defined as the origin of the claim: The claim was incurred on a policy written in that specific year. However, there is a delay in payments. In 1997, a total of \notin 1,188,675 was paid. In the

¹A more elaborate (but simplified) example is given in Appendix B

subsequent year (1998), thus in development year 2, this insurer has paid out a grand total of €3,446,584 for claims incurred in 1997, and so forth.

For both the insured and the insurer, it is important that all (previously) incurred claims can be paid. These payments will have to be made from our loss reserve. Referring back to our example in Table 1.1, we want to estimate the loss reserve by inferring the blanks in the triangle. For this, several methods are available. We will elaborate on some of the methods in Chapter 2.

When making an estimation of risks and/or reserves, a distinction should be made between a Best Estimate (BE) and the uncertainty of this estimate. When using a strictly discrete method, the outcome of such a model would strictly result in a point estimate. On the other hand, when modelling a risk, a realistic assumption of the spread of the possible outcomes is of interest, and thus the volatility that underlies the estimation. Solvency II requires insurers to determine their provisions (such as the loss reserve) at Best Estimate.

1.3 Gaussian Process regression

A Gaussian process (GP) is stochastic process, by generalisation of the Gaussian distribution (Rasmussen & Williams, 2006). Stochastic processes are commonly known in Mathematical/Financial literature. An example of a financial application of a stochastic process is the Black-Scholes formula used to price the value of option contracts, which applies Geometric Brownian Motion to model a random process. (Black & Scholes, 1973). We define a Gaussian process in Definition 1.1.

Definition 1.1: Gaussian process

A Gaussian process is a collection of random variables, any finite number of which have a joint Gaussian distribution.

Source: Rasmussen and Williams (2006)

In a GP, we assume that the underlying process f(x) follows a Gaussian distribution. Where a Gaussian Distribution is defined by its' mean and covariance *parameters*, a Gaussian Process is defined by it's mean and covariance *function*. We define m(x) as the mean function and k(x, x')as the covariance function. An example of a GP is given mathematically in (1.1), where notation of Rasmussen and Williams (2006) is followed.

$$m(x) = \mathbb{E}[f(x)],$$

$$k(x, x') = \mathbb{E}[(f(x) - m(x))(f(x') - m(x'))],$$
(1.1)

$$f(x) \sim GP(m(x), k(x, x'))$$

For simplification purposes, the mean of the GP is often set equal to zero (Rasmussen & Williams, 2006). Therefore, a GP is most commonly defined by its' covariance function: also known as the kernel function (Rasmussen & Williams, 2006).

A Gaussian process can be applied for regression purposes. The goal of any regression is to find a relationship between various variables: given input parameters, we want to predict a certain output that is related to these inputs. A GP regression intends to estimate a function that can relate a series of known inputs to a series of outputs. Here, the input vector will be

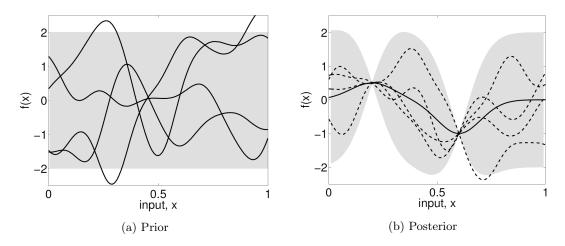


Figure 1.1: (a): 4 draws from the prior distribution, with mean 0 and standard deviation 1. There are no known observations. (b) 4 draws from the posterior distribution, after adding two noiseless observations. The solid line indicates the mean, the shaded region indicates a distance of two standard deviations. Source: Rasmussen and Williams (2006)

defined as $x = \{x_1, x_2, ..., x_n\}$, and the corresponding output as f(x). In case a value of $f(x_i)$ is known for a certain value of x_i , that data point will be referred to as an observation. The covariance function is determined on the input vector x, which is known for all data points, both the data with a known observation $f(x_i)$ and the data we want to infer. An example of a covariance function is the squared exponential function. Taking fictive inputs x_p and x_q , this function is given by:

$$cov(f(x_p), f(x_q)) = k(x_p, x_q) = \exp(-\frac{1}{2}|x_p - x_q|^2)$$
(1.2)

The covariance can thus be defined for any input pair (x_p, x_q) , resulting in a covariance matrix K of size [n, n] which describes the covariance between any two inputs.

The covariance function is one of the various design choices of the model. Based on the data and application, it is assumed that the actual process could be described by this covariance function.

Without any observations $f(x_i)$ this results in our Bayesian prior distribution that is based on the model design choices. By adding observations of $f(x_i)$ (i.e. adding evidence), this results in the posterior distribution conditioned on the observations. Figure 1.1 gives an example of the difference between generating draws from the prior and posterior distribution of a onedimensional Gaussian process, by adding two noiseless observations.

As displayed in Figure 1.1, the noiseless observations result in changes in the mean and covariance. The *posterior distribution* is determined by applying the *joint gaussian distribution* property of the Gaussian process as described in Definition 1.1. X_1 is defined as the input that belongs to observations $f(X_1)$ and X_2 as the input that belongs to the *unknown output* $f(X_2)$. As $f(X_1)$ and $f(X_2)$ are generated from the same underlying process, the joint distribution of $f(X_1)$ and $f(X_2)$ can be described as follows:

$$\begin{bmatrix} f(X_1) \\ f(X_2) \end{bmatrix} \sim \mathcal{N}\left(\begin{bmatrix} m(X_1) \\ m(X_2) \end{bmatrix}, \begin{pmatrix} k(X_1, X_1) & k(X_1, X_2) \\ k(X_2, X_1) & k(X_2, X_2) \end{pmatrix} \right)$$
(1.3)

For simplicity we assume $m(X_1) = m(X_2) = 0$. The posterior distribution of $f(X_2)$ is then

given by conditioning it on the observations:

$$f(X_2)|f(X_1), X_1, X_2 \sim \mathcal{N}\big(k(X_2, X_1)k(X_1, X_1)^{-1}f(X_1), k(X_2, X_2) - k(X_2, X_1)k(X_1, X_1)^{-1}k(X_1, X_2)\big)$$
(1.4)

Equation 1.4 gives the posterior distribution of the Gaussian process, which we can then use for inferring $f(X_2)$.

1.4 Research

In a paper by Lally and Hartman (2018), it has been described that a hierarchical Gaussian process model can be used in order to estimate loss reserves, by using the run-off triangle as input. While the predictions of the Best Estimate were comparable (if not better) to the current industry practice and recent research, the uncertainty surrounding the predictions is larger than would be expected in practice. Having an adequate measurement of the expected uncertainty and volatility is important in order to determine the risk that an insurer has. This makes the model in its' current state unfeasible for use in actuarial practice, as an accurate estimation of the uncertainty in the predictions made is important. As such, it is not yet an appropriate model of the true risk involved. Therefore, we will research various attempts to reduce the uncertainty, and improve the predictions that are made by the model.

1.4.1 Research Questions

Given the model limitations described, we want to both improve the best estimate of the model, reduce the confidence interval of these results and validate the model design. Our main research question is as follows:

Can we improve the Hierarchical Gaussian Process model to predict the loss reserve of a non-life insurer?

With the following sub-questions:

- In order to validate the design choices:
 - Is the model applicable on a more extensive data set?
 - Are the prior distributions on the hyperparameters adequately chosen?
- In order to improve the Best Estimate and/or reduce the confidence interval:
 - Can relevant, out-of-triangle information be supplied to the model?
 - Can the GP model be extended with a Bornheutter-Ferguson estimation method?

1.4.2 Methodology

The results of our variations on the Gaussian process model is able to give a representation of the loss reserve and the uncertainty therein. As such, the results of the model can be compared to both the current industry standard (The Chain Ladder method (Shi & Frees, 2011; Côté, Genest, & Abdallah, 2016)) and the current Gaussian Process model in the paper of Lally and Hartman (2018). Furthermore, a data set is publicly available which contains loss reserving data from insurers in multiple Lines of Business in the USA (Meyers & Shi, 2011). This data set contains the actual observed losses, and can be used to both train our model and quantify the error of all models by using it as a testing set. As such, we have a ground truth that can be used for analysis, determining if the predicted Loss Reserve is sufficient and what the error statistics (Root Mean Square Error) are in order to assess performance.

We have selected a 3 different triangles which represent the cumulative paid loss along 5 different Lines of Business, resulting in a total of 15 triangles that will be analysed. These triangles are presented in Appendix B, and their key characteristics will be explained in Chapter 5.

2 | Predicting Loss Reserves

Contents

2.1 An	example of a Claim Timeline	7
2.2 The	e Run-off Triangle	8
2.3 Pre	edicting the Loss Reserve	8
2.3.1	Chain Ladder	9
2.3.2	Bornheutter-Ferguson	10
2.3.3	Recent Research for Loss Reserve prediction	13

Central in this thesis is the prediction of the loss reserve of a non-life insurer. In order to clarify this, this chapter will first discuss the typical timeline of an insurance claim. After that, the historical developments of claims will be discussed and how they are usually presented in a spreadsheet. This is subsequently used as input for predicting the reserve.

2.1 An example of a Claim Timeline

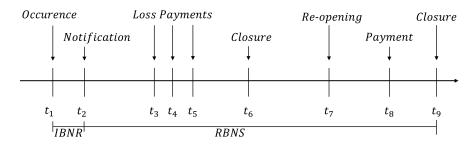


Figure 2.1: A typical timeline of a claim. Based on Antonio and Plat (2014)

The typical timeline of a claim is displayed schematically in Figure 2.1. At a certain moment in time, the claim (damage) occurs (t_1) . There is a certain delay when this is reported to the insurer, which occurs at moment t_2 . When the notification is made, (several) payments have to be made (t_3, t_4, t_5) until the dossier is closed (t_6) . After this, it could occur that a dossier is re-opened in case new information becomes available. In that case, a final payment has to be made until it is closed again (t_7, t_8, t_9) .

A claim is *Incurred*, *but not Reported* (IBNR) during the time span between the occurrence and notification of a claim to the insurer. After that, it is RBNS: *Reported*, *but not Settled* as payments still have to be made on the claim. Moreover, it can be IBNER: *Incurred*, *but not enough reported*, for instance when an initial assessment of the claim results in an insufficient amount reserved for payments.

2.2 The Run-off Triangle

As described in the previous section, payments or notifications of claims occur at different points in time, even if they originate from the same moment in time. An overview of the cumulative payment size can be generated, based on their moment in time that the claim originated (i.e. was incurred), as well as the moment in time when the insurer has made payments on this claim. Furthermore, we can define a specific calendar year at which the observed loss occurred in time. Properties of the run-off triangle are determined as:

i = Incurral year	$Z_{i,j} = \text{Observed loss}$
j = Development lag	$\hat{Z}_{i,j} = \text{Estimated loss}$
k = Calendar Year $= i + j$	$\hat{R}_i = \mathrm{Loss}$ reserve for Incurral year i
n = No. of development years ¹ = max(j)	\hat{R} = Total loss reserve = $\sum_{i=1}^{n} \hat{R}_i$

With i as the incurral year - starting at 1, j as the development lag and $Z_{i,j}$ as the loss at that specific moment, a spreadsheet of these claims can be created. This is commonly known as a loss triangle or run-off triangle. An example is given in Example 2.1, and a more elaborate example is given in Appendix B.

		Development lag (j)				
Incurral Year (i)	1	2	3	4	5	
1997(1)	1,188,675	3,446,584	4,141,821	4,308,633	4,400,762	
1998(2)	1,235,402	$4,\!485,\!415$	$5,\!135,\!343$	$5,\!346,\!687$		
1999 (3)	2,209,850	$5,\!928,\!544$	6,746,912		•	
2000(4)	$2,\!662,\!546$	$6,\!149,\!580$	•	•	•	
2001 (5)	$2,\!457,\!265$					

The loss paid in 1997, claimed in that year is defined as $Z_{1,1} = 1,188,675$, and so forth.

2.3 Predicting the Loss Reserve

Prediction of the loss reserve is done by completing the run-off triangle into a rectangle with adequate estimations. Referring to Example 2.1, the data points that are marked with a (·) are to be estimated. The summation of the differences between the estimated cumulative ultimate loss (at j = n) and the most recent observation for all incurral years (j = n + 1 - i) is the total loss reserve (\hat{R}):

$$\hat{R}_{i} = \begin{cases} 0 & \text{if } i = 1\\ \hat{Z}_{i,n} - Z_{i,n+1-i} & \text{if } i > 1 \end{cases}$$
(2.1)

¹The number of development years is usually identical to the number of incurral years. i.e.: max(i) = max(j).

2.3.1 Chain Ladder

The most common and well-known method of predicting the Loss Reserve is the Chain Ladder. It has been popularised by the papers of Mack (1993, 1999) and is widely described in various books and papers. Using i as incurral year and j as development lag, historical development factors can be determined, which can be used to make estimations of future losses and the loss reserve²:

$$DF_{j} = \frac{\sum_{i=1}^{n+1-j} Z_{i,j}}{\sum_{i=1}^{n+1-j} Z_{i,j-1}}$$

$$\hat{Z}_{i,j} = Z_{i,n+1-i} \prod_{l=n-i+2}^{j} DF_{l}$$
(2.2)

Example 2.2: Chain Ladder

The following (fictive) run-off triangle is given:

	Development lag (j)			
Incurral Year (i)	1	2	3	
2010 (1)	1,000	1,500	1,750	
2011 (2)	1,250	1,700	•	
2012 (3)	1,400	•	•	

The Chain Ladder method as given in (2.2) is applied. First, DF_2 and DF_3 are calculated:

$$DF_3 = \frac{\sum_{i=1}^{3+1-3} Z_{i,3}}{\sum_{i=1}^{3+1-3} Z_{i,2}} = \frac{1,750}{1,500} \approx 1.17$$
$$DF_2 = \frac{\sum_{i=1}^{3+1-2} Z_{i,2}}{\sum_{i=1}^{3+1-2} Z_{i,1}} = \frac{1500 + 1700}{1000 + 1250} \approx 1.42$$

These development factors are used to calculate estimates for future losses:

$$\hat{Z}_{2,3} = Z_{2,2} \prod_{l=3}^{3} DF_l \approx 1,700 * 1.17 \qquad \approx 1,983$$
$$\hat{Z}_{3,2} = Z_{3,1} \prod_{l=2}^{2} DF_l \approx 1,400 * 1.42 \qquad \approx 1,991$$
$$\hat{Z}_{3,3} = Z_{3,1} \prod_{l=2}^{3} DF_l \approx 1,400 * 1.42 * 1.17 \qquad \approx 2,323$$

The estimated losses and corresponding reserve (by following Equation 2.1) are thus:

	Development lag (j)			
Incurral Year (i)	1	2	3	Reserve (\hat{R}_i)
2010 (1)	1,000	1,500	1,750	0
2011 (2)	1,250	1,700	1,983	283
2012 (3)	1,400	$1,\!991$	2,323	923
Development Factors		1.42	1.17	1,206 (= \hat{R})

²Both $\hat{Z}_{i,j}$ and DF_j are indexed on j. To avoid confusion, a temporary variable l is introduced in (2.2)

2.3.2 Bornheutter-Ferguson

The Bornheutter-Ferguson (BF) method is also commonly used for determining the loss reserve, and is named after the authors of the paper in which it is first described (Bornhuetter & Ferguson, 1972). The BF method relies on both an estimated ultimate loss and estimated development through time, and uses these in order to predict the loss reserve. These estimates can be based on data inside the triangle (therefore only consisting of previously observed losses) or external data, such as the number of claims or premium volume. Considering that the method is heavily reliant on these estimators, the quality and accuracy of these estimators is crucial to result in adequate predictions.

First, definitions used throughout this section will be given:

 $\hat{\alpha}_i = \text{Estimated}$ ultimate loss in Incurral Year i

 DF_j = Chain Ladder development factor of development lag j

 $\hat{\gamma}_j$ = Estimated cumulative development parameter up to development lag j

 $\hat{\vartheta}_j$ = Estimated incremental development parameter of development lag j

Definition 2.1: Development Pattern				
There exist parameters $\gamma_1, \gamma_2, \ldots, \gamma_n$ with $\gamma_n = 1$ such that the identity				
$\frac{\mathbb{E}[Z_{i,j}]}{\mathbb{E}[Z_{i,n}]} = \gamma_j$				
holds for all $j \in 1, 2,, n$ and for all $i \in 1, 2,, n$				
Source: Radtke et al. (2016), with adaptations to match notation in this thesis.				

The Bornheutter-Ferguson method implies (similar to the Chain Ladder method) that at the final development lag observed in the triangle, all claims are incurred³. As such: $\hat{\gamma}_n = 1$, as also mentioned in Definition 2.1.

We can estimate losses at a specific moment in time (i, j) by estimating the development that still has to occur, multiplying that with the estimated ultimate loss and adding that to the most recently observed loss:

$$\hat{Z}_{i,j} = Z_{i,n-i+1} + (\sum_{l=n-i+2}^{j} \hat{\vartheta}_l) * \hat{\alpha}_i$$
(2.3)

It should be noted that are several methods available to make estimations for both $\hat{\alpha}$ and $\hat{\vartheta}$. It goes beyond the scope of this research to mention all of them and their pros and cons. Instead, we will elaborate on the methods applied in this research - which is the original version of the BF method (Radtke et al., 2016).

Estimation of the cumulative and incremental development parameters $\hat{\gamma}$ and $\hat{\vartheta}$ can be performed using the Chain Ladder development factors⁴:

³If this assumption does not hold, a tail factor can be introduced. However, this is out of scope for this thesis. ⁴Both DF and γ are indexed on j. To avoid confusion, a temporary variable m is introduced in (2.4)

$$\hat{\gamma}_{j} = \begin{cases}
1 & \text{if } j = n \\
(\prod_{m=j+1}^{n} DF_{m})^{-1} & \text{elsewhere} \\
\hat{\vartheta}_{j} = \begin{cases}
\hat{\gamma}_{j} & \text{if } j = 1 \\
\hat{\gamma}_{j} - \hat{\gamma}_{j-1} & \text{elsewhere}
\end{cases}$$
(2.4)

Example 2.3: Bornheutter-Ferguson

Consider the same triangle as in Example 2.2, but this is expanded with estimated losses:

	Development lag (j)			
Incurral Year (i)	1	2	3	Est. Ultimate Loss $(\hat{\alpha}_i)$
2010 (1)	1,000	1,500	1,750	1,750
2011 (2)	1,250	1,700		2,039
2012 (3)	1,400	•		2,209
Chain Ladder Factors (DF_j)		1.42	1.17	
Cum. Development Parameters	$\hat{\gamma}_1$	$\hat{\gamma}_2$	$\hat{\gamma}_3$	
Inc. Development Parameters	$\hat{\vartheta}_1$	$\hat{\vartheta}_2$	$\hat{\vartheta}_3$	

Using the Chain Ladder Factors and (2.4), the development parameters can be estimated:

$$\hat{\gamma}_3 = 1$$

$$\hat{\gamma}_2 = (1.17)^{-1} \approx 0.85$$

$$\hat{\gamma}_1 = (1.42 * 1.17)^{-1} \approx 0.60$$

$$\hat{\vartheta}_1 = 0.60$$

$$\hat{\vartheta}_2 = 0.85 - 0.60 \approx 0.25$$

$$\hat{\vartheta}_3 = 1 - 0.85 \approx 0.15$$

Which can be used to estimate the future losses:

$$\hat{Z}_{2,3} = 1,700 + 0.15 * 2,039 \qquad \approx 2,006$$
$$\hat{Z}_{3,2} = 1,400 + 0.25 * 2,209 \qquad \approx 1,952$$
$$\hat{Z}_{3,3} = 1,400 + (0.25 + 0.15) * 2,209 \qquad \approx 2,283$$

Resulting in the following triangle and loss reserve by applying (2.1):

	Deve	lopment	lag (j)		
Incurral Year (i)	1	2	3	\hat{lpha}_i	\hat{R}_i
2010 (1)	1,000	1,500	1,750	1,750	0
2011 (2)	1,250	1,700	2,006	2,039	306
2012 (3)	1,400	1,952	2,283	2,209	883
Chain Ladder Factors (DF_j)		1.42	1.17		1,189
Cum. Development Parameters	0.60	0.85	1		
Inc. Development Parameters	0.60	0.25	0.15		
-	11		1	I	

It should be noted that, while counterintuitive, the estimated loss and the calculated ultimate loss need not be the same, i.e. it is possible that $\hat{Z}_{i,n} \neq \hat{\alpha}_i$. This is inherent to the BF-method, as $\hat{\alpha}_i$ is only used for the undeveloped part of the incurral year *i* when determining $\hat{Z}_{i,n}$.

A method to estimate the ultimate loss $(\hat{\alpha})$ is now derived. For this, data outside of the triangle is used, in the form of premiums received (net of reinsurance). Using these premiums, the Loss Ratio (LR) can be determined at every observed loss, and the expected ultimate Loss Ratio can be determined, based on the expected development that still has to occur:

$$P_{i} = \text{Premium received in incurral year } i, \text{ net of reinsurance}$$

$$\hat{LR}_{i,j} = \frac{\frac{Z_{i,j}}{\hat{\gamma}_{j}}}{P_{i}}$$
(2.5)

Using these Loss Ratio's, the expected ultimate loss $\hat{\alpha}_i$ is calculated after determining an estimated \hat{LR}_i for each incurral year:

$$\hat{\alpha}_i = P_i * \hat{LR}_i \tag{2.6}$$

Example 2.4: Estimating the ultimate loss

Once again, the triangle given in Example 2.2 is considered, but premiums received are included.

	Develo	opment	lag (j)	
Incurral Year (i)	1	2	3	(P_i)
2010 (1)	1,000	1,500	1,750	2,060
2011 (2)	1,250	$1,500 \\ 1,700$	•	2,060 2,400
2012 (3)	1,400	•	•	2,600
Cum. Dev. Parameters $(\hat{\gamma}_j)$	0.60	0.85	1	

By applying (2.5), the estimated Loss Ratio is determined for every observation. This is explicitly calculated for $\hat{LR}_{1,1}$, and (2.5) is also applied on the other observed losses:

	L	$\hat{R}_{1,1} =$	$\frac{\frac{1,000}{0.60}}{2,060} \approx$	0.81
	Devel	lopmen	t lag (j)	
Incurral Year (i)	1	2	3	P_i
2010 (1)	0.81	0.85	0.85	2,060
2011 (2)	0.87	$\begin{array}{c} 0.85 \\ 0.83 \end{array}$	•	2,400
2012 (3)	0.89	•		2,600
Cum. Dev. Parameters $(\hat{\gamma}_j)$	0.60	0.85	1	

Based on the average of these Estimated Loss Ratio's, the ultimate Loss Ratio is approximated at 0.85 for all incurral years. (2.6) is applied to estimate the ultimate losses $\hat{\alpha}_i$:

$$\hat{\alpha}_1 = P_1 * LR_i = 2,060 * 0,85 = 1,750$$
$$\hat{\alpha}_2 = P_2 * \hat{LR}_i = 2,400 * 0,85 \approx 2,039$$
$$\hat{\alpha}_3 = P_3 * \hat{LR}_i = 2,600 * 0,85 \approx 2,209$$

Using the estimated ultimate loss, (2.3) can be applied to determine the expected loss at a given moment, and (2.1) to determine the Loss Reserve for *i*. As can be seen in Examples 2.3 and 2.4, having adequate estimators for both the premium and development is key for the performance of this method.

2.3.3 Recent Research for Loss Reserve prediction

The Chain Ladder as described in Section 2.3.1 is a deterministic method. It is able to make an estimation, but can give no indication of the error that it may produce. In the papers of Mack (1993, 1999), methods have been described to determine the distribution-free standard error produced by the CL method, as to give an indication for the uncertainty in the estimation.

In recent research, most focus has been on incorporating external data (i.e. information not captured in the triangle) in order to improve the accuracy of the predictions. For instance, a Double Chain Ladder method has been proposed, which does not only take observed aggregated losses into account, but also reported count data to infer both the IBNR and RBNS claims (Martinez-Miranda, Nielsen, & Verrall, 2012). This method results in a comparable best estimate for the loss reserve as the Chain Ladder, but a lower Root Mean Square Error (RMSE).

A different approach has been proposed by Kuang, Nielsen, and Perch Nielsen (2011), where the Chain Ladder has been extended with a calendar-year trend, which can be used in combination with non-stationary time-series forecasting. This method has an improved accuracy of predictions if the data has an unstable calendar year trend.

Zhang (2010) has described an implementation of a Multivariate Chain Ladder method, where correlation between triangles has been taken into account by applying an unrelated regression method. It is used to model intercepts of paid and incurred triangles or different lines of business, resulting in improved predictions.

Another implementation of correlation between triangle dependence is researched by Shi and Frees (2011), where a copula regression model with bootstrapping is implemented, resulting in both a Best Estimate and the uncertainty underlying the model prediction. Incorporating dependence along multiple insurers in an identical Line of Business has been subsequently researched (Shi, 2017). Both researches have given similar Best Estimates (BE) of the loss reserve, but can more accurately determine the uncertainty underlying this estimate.

There are also methods that are focused on the increased granularity of available data in an insurance company. For instance, models have been proposed to derive the loss reserves on an individual claims level, as opposed to the aggregate losses or claims that is currently used in actuarial practice (Antonio & Plat, 2014; Maciak, Okhrin, & Pešta, 2018). Most notably, Machine Learning in the form of Regression Trees has been applied by Wüthrich (2018), by learning policy and/or claims characteristics that have an influence on the loss incurred. While the Best Estimate of Wüthrich (2018) was comparable to current practice, the uncertainty of prediction is not yet calculated or implemented.

Another Machine Learning application on aggregated data has been researched, in the form of a Gaussian Process (GP) regression (Lally & Hartman, 2018). It enables capturing of trends in the data and learn those, solely based on the data presented in the run-off triangle. This model results in a comparable or better prediction of the BE of the Loss Reserve. However, the volatility and uncertainty in the model is still large.

As the Gaussian Process model by Lally and Hartman (2018) will be the main focus for this research, it will be described in more detail in Chapter 3.

3 | A Gaussian process model to predict loss reserves

Contents

3.1 Introduction on the model	
3.2 Covariance functions 16	
3.2.1 Squared Exponential	
3.2.2 Matérn 3/2 and Matérn 5/2	
3.2.3 Signal and Noise	
3.3 Input Warping 19	
3.4 Input data preparation	
3.5 Hyperparameters and prior distributions	
3.6 Model limitations	

In this chapter, the Gaussian process model to predict loss reserves is explained, as introduced in the paper by Lally and Hartman (2018). A brief introduction on the model will be given, after which the model design and hyperparameters are explained. Then, we will elaborate on the transformations of the input data to make the data suitable to be used in Gaussian process model. We will conclude by discussing the limitations of the current model.

3.1 Introduction on the model

A hierarchical Gaussian process model to predict loss reserves is introduced by Lally and Hartman (2018). The actuarial problem of predicting loss reserves is discussed in Section 2, and a brief introduction on Gaussian process regression is given in Section 1.3. The application of a GP regression on run-off triangles is new, while it is more common in e.g. geostatistics (where it is known as Kriging) (Gelfand & Schliep, 2016). In geostatistics, spatial or spatio-temporal data is analysed, usually on \mathbb{R}^2 . Measurements (observations) are then used to predict missing points of interest. An example of an application in geostatistics is to examine the spatial variation of relative risk of a disease, given several observations at specific locations, or making an interpolation of radioactivity, given a limited number of observations (Diggle, Tawn, & Moyeed, 1998).

3.2 Covariance functions

As described in Section 1.3, a Gaussian process regression model is mostly defined by its' covariance function, also referred to as the kernel function. A kernel function is valid if it results in a positive semidefinite (PSD) correlation matrix (Rasmussen & Williams, 2006). Three different kernel functions will be applied on the run-off triangle, effectively resulting in three different Gaussian process models. All kernel functions considered are both stationary and isotropic, of which definitions are given in Definitions 3.1 and 3.2.

Definition 3.1: Stationary kernel

We define x as the input for a one-dimensional Gaussian process, and x_p, x_q as two locations on x.

A kernel $k(x_p, x_q)$ is stationary if the kernel depends only on the separation $x_p - x_q$. That is: $k(x_p, x_q) = k(x_p - x_q)$

Sources: Barber (2012), with adaptations to match notation.

Definition 3.2: Isotropic covariance

A covariance function is isotropic if it is a function only of the distance $d = |x_p - x_q|$. Such covariance functions are, by construction, rotationally invariant.

Source: Barber (2012), with adaptations to match notation.

As will be described in Section 3.4, the euclidean distance between two data points will be calculated and used as input, based on vectors x_1 (development lag) and x_2 (incurral year). This distance will be the input for the kernel functions. As such, the covariance functions considered are both stationary and isotropic kernel functions.

Moreover, a characteristic length-scale (ℓ) is defined to apply in our covariance functions. Loosely speaking, the length-scale defines how far one needs to move along a particular axis for the function values to become uncorrelated (Rasmussen & Williams, 2006). A visual onedimensional example of this is given in Figure 3.1, where the length-scale is varied between $\ell = 1$, $\ell = 0.3$ and $\ell = 3$.

Lally and Hartman (2018) introduce a bandwidth parameter $\psi = \frac{1}{2\ell^2}$ to implement the characteristic length-scale in the GP model. Hence, larger values of ψ result in a shorter length-scale and vice versa. They define two separate bandwidth parameters for both x_1 and x_2 , defined as respectively ψ_1 and ψ_2 . As such, all covariance functions considered are defined as a function of r^2 :

$$x_{p} = (x_{1,p}, x_{2,p})$$

$$x_{q} = (x_{1,q}, x_{2,q})$$

$$r_{p,q}^{2} = \psi_{1}(x_{1,p} - x_{1,q})^{2} + \psi_{2}(x_{2,p} - x_{2,q})^{2}$$
(3.1)

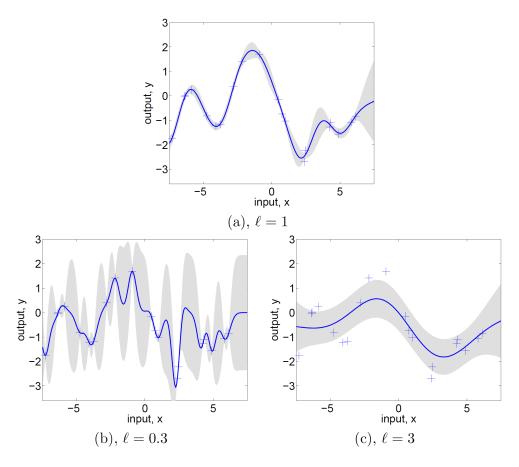


Figure 3.1: Three examples of a varying length-scale for a one-dimensional Gaussian process regression. Data marked with a "+" are observations from a GP with $\ell = 1$, the shaded grey area is the 95% CI for the underlying process f(x). Source: Rasmussen and Williams (2006)

3.2.1 Squared Exponential

The Squared Exponential (SE) covariance function, also known as the Radial Basis Function, the Exponentiated Quadratic function or the Gaussian Kernel, is defined in (3.2):

$$k(x_p, x_q) = \exp(-r_{p,q}^2)$$
(3.2)

The SE covariance function is infinitely differentiable, and thus generally results in smooth predictions (Rasmussen & Williams, 2006). As this might not be a realistic representation of the actual process, we also include two covariance functions that result in rougher predictions.

3.2.2 Matérn 3/2 and Matérn 5/2

The Matérn-class of covariance functions results in rougher functions than the Squared Exponential function. They are parametrised by one value, and the values $\frac{3}{2}$ and $\frac{5}{2}$ are most commonly used for Machine Learning purposes (Rasmussen & Williams, 2006), where the Matérn $\frac{3}{2}$ function is rougher than the Matérn $\frac{5}{2}$ function. Matérn $\frac{3}{2}$ is given in (3.3) and Matérn $\frac{5}{2}$ in (3.4).

$$k(x_p, x_q) = (1 + \sqrt{3}r_{p,q})\exp(-\sqrt{3}r_{p,q})$$
(3.3)

$$k(x_p, x_q) = (1 + \sqrt{5}r_{p,q} + \frac{5}{3}r_{p,q}^2)\exp(-\sqrt{5}r_{p,q})$$
(3.4)

In order to visualise the roughness of these covariance functions, random draws from onedimensional Gaussian processes with these covariance functions have been plotted in Figure 3.2.

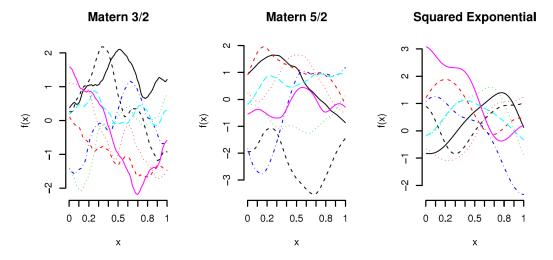


Figure 3.2: Random draws from one-dimensional Gaussian processes with different kernel functions, with $\psi = 10$. Source: Lally and Hartman (2018)

3.2.3 Signal and Noise

The covariance functions that we will consider are in normalised form. Hence, if $r_{p,q}^2 = 0$ (i.e. the distance between two points is zero), then k(x, x') = 1 for all functions. This assumes that the underlying process has a variance of 1. In order to relax this assumption, Lally and Hartman (2018) introduce a parameter η^2 for all covariance functions, by which the covariance functions will be multiplied.

Moreover, observations might be noisy, as such that they are not entirely accurate. For actual observed losses, it can be assumed that the data quality is sufficient enough to be noise-free. However, if estimators would be introduced to the model (for example, in the case of Bornheutter-Ferguson), these estimations can contain noise, as their true value is unknown. Henceforth, we will add a parameter $\sigma^2 \delta_{pq}$ to the covariance functions, where δ_{pq} is the Kronecker delta (which equals 1 if p = q, and 0 otherwise) (Lally & Hartman, 2018).

As such, our Squared Exponential, Matérn $\frac{3}{2}$ and Matérn $\frac{5}{2}$ functions are modified and the resulting functions are given in (3.5), where the subscript of r_{pq} is suppressed for notation purposes. The functions as given in (3.5) are the final form of the covariance functions that will be considered in the research.

$$k_{SE}(x_p, x_q) = \eta^2 \exp(-r^2) + \sigma^2 \delta_{pq}$$

$$k_{M\frac{3}{2}}(x_p, x_q) = \eta^2 (1 + \sqrt{3}r) \exp(-\sqrt{3}r) + \sigma^2 \delta_{pq}$$

$$k_{M\frac{5}{2}}(x_p, x_q) = \eta^2 (1 + \sqrt{5}r + \frac{5}{3}r^2) \exp(-\sqrt{5}r) + \sigma^2 \delta_{pq}$$
(3.5)

Page 18

3.3 Input Warping

Input Warping is a methodology that can be applied in order improve results when a nonstationary process is modelled with a stationary covariance function (as defined in Definition 3.1) (Snoek, Swersky, S. Zemel, & P. Adams, 2014). Commonly, processes that we wish to model are non-stationary.

Lally and Hartman (2018) have established that the application of a Gaussian process on the prediction of loss reserves require such a correction, and have applied Input Warping in their model. Input Warping is introduced in the paper of Snoek et al. (2014). It translates the non-stationary process to a stationary one, by changing the covariance function from $k(x_p, x_q)$ to $k(w(x_p), w(x_q))$. The function w(x) is the warping function that modifies the input vectors to one that is stationary (Snoek et al., 2014).

In theory, a multitude of warping functions can be applied. However, Snoek et al. (2014) recommend to use the Beta cumulative distribution function (CDF), as the Beta-function can take on a multitude of forms (e.g. linear, exponential, logarithmic, sigmoidal) by varying the two parameters α and β . As the Beta-distribution can only take values on [0, 1], the input vectors of our data is normalised to this interval, as described in Section 3.4.

For our model, we will warp the input vectors x_1 and x_2 with their own warping function. Our covariance functions thus change accordingly. We therefore redefine the $r_{p,q}$ term that we have defined in (3.1) to be warped:

$$w_{1}(x) = \text{BetaCDF}(x, \alpha_{1}, \beta_{1})$$

$$w_{2}(x) = \text{BetaCDF}(x, \alpha_{2}, \beta_{2})$$

$$r_{p,q}^{2} = \psi_{1}(w_{1}(x_{1,p}) - w_{1}(x_{1,q}))^{2} + \psi_{2}(w_{2}(x_{2,p}) - w_{2}(x_{2,q}))^{2}$$
(3.6)

Where BetaCDF is the Beta Cumulative Distribution Function. From (3.6), we can see that an unique warping function is defined for each axis, with their own α and β parameters.

3.4 Input data preparation

The Gaussian Process model by Lally and Hartman (2018) defines two input dimensions for every data point that is in the data set: the development lag (x_1) and incurral year (x_2) . Using these two input parameters, we can determine the euclidean distance between two data points. This distance is then used as parameter for the covariance function.

Example 3.1: Indexing every data point in the triangle										
Consider the triang	le prese	nted in l	Example	e 2.2:						
	Devel	opment	lag (j)							
Incurral Year (i)	1	2	3	_						
2010 (1)	1,000	1,500	1,750	_						
2011 (2)	1,250	1,700	\circ_2							
2012 (3)	1,400	\circ_1	\circ_3							
For every Z in the	triangle	, x_1 (DL) and x	$_2$ (IY) is	defined	, with i	denti	cal in	dices:	
	1	2	3	4	5	6	7	8	9	
	1,000	$1,\!250$	1,400	1,500	1,700	1,750	°1	\circ_2	03	
x_1	1	1	1	2	2	3	2	3	3	
x_2	1	2	3	1	2	1	3	2	3	

The input vectors x_1 and x_2 will be normalised on the interval [0, 1] in order to be able to apply Input Warping, as described in Section 3.3. Normalisation is performed by applying (3.7) on both vectors x_1 and x_2 , to transform them to the normalised vectors x'_1 and x'_2 :

$$x' = \frac{x - \min(x)}{\max(x) - \min(x)} \tag{3.7}$$

Example 3.2	2: Nor	malising	the inp	out vecto	ors						
Consider the	data	as given	in Exa	mple 3.1	:						
		1	2	3	4	5	6	7	8	9	
	Z	1,000	1,250	1,400	1,500	1,700	1,750	\circ_1	\circ_2	03	
	x_1	1	1	1	2	2	3	2	3	3	
	x_2	1	2	3	1	2	1	3	2	3	
(3.7) is now	applie	d on the	vectors	x_1 and	x_2 , to t	ransforn	n them t	to the	inter	val [0	1]:
		1	2	3	4	5	6	7	8	9	
	Z	1,000	$1,\!250$	1,400	1,500	1,700	1,750	\circ_1	\circ_2	03	
	x'_1	0	0	0	0.5	0.5	1	0.5	1	1	
	x'_2	0	0.5	1	0	0.5	0	1	0.5	1	

Furthermore, the observations Z will be standardised such that it has a mean of zero, and a standard deviation of 1. These transformations improve the predictions that can be made by the Gaussian process model, in such a way that one configuration of the model suffices regardless of which run-off triangle we use as input. This also allows us to set the mean of the Gaussian process model to zero. Standardisation is performed by applying (3.8) to our observations Z_i , with \overline{Z} as the mean of Z, and s as the standard deviation of Z.

$$Z_i' = \frac{Z_i - \bar{Z}}{s} \tag{3.8}$$

Exam	ple 3.3	8: Sta	ndardisi	ng the c	observati	ons					
Consi	idering †	the da	ata from	Examp	le 3.2, ti	he <i>obser</i>	vations	of Z are	e to be	e stan	dardized
			1 1,000 0 0	2	3	4	5	6	7	8	9
		Z	1,000	1,250	1,400	1,500	1,700	1,750	°1	\circ_2	03
		x'_1	0	0	0	0.5	0.5	1	0.5	1	1
		x'_2	0	0.5	1	0	0.5	0	1	0.5	1
- mi			1								

The mean of Z is $1,433\frac{1}{3}$ and the standard deviation is approximately 282.25. Z can now be standardised by applying (3.8), resulting in the following data:

		1	2	3	4	5	6	7	8	9
	Z'	-1.535	-0.650	-0.118	0.236	0.945	1.122	°1	\circ_2	03
	x'_1	0 0	0	0	0.5	0.5	1	0.5	1	1
	x_2'	0	0.5	1	0	0.5	0	1	0.5	1
The resultin	g vec	tor Z' no	ow has a	mean of	zero, an	d a SD	of 1.			

Throughout this thesis, an identical setup is followed as applied by Lally and Hartman (2018). The data transformations and programming is performed using the R Project (R Core Team, 2018). We sample from the posterior distribution by applying Markov Chain Monte Carlo (MCMC) sampling, implemented using the STAN package, which is available as a plugin for R (Carpenter et al., 2017).

MCMC allows us to sample directly from the posterior distribution. The No-U-Turn Sampler (NUTS) is applied (Hoffman & Gelman, 2014), and we setup 4 chains of 2,000 iterations - of which the first 1,000 iterations are regarded as a warm-up period and are thus discarded. The remaining 1,000 iterations (of 4 chains, so 4,000 in total) are samples from our Bayesian posterior distribution. We derive the mean of this posterior distribution as our Best Estimate, and can determine the uncertainty in this prediction directly from the samples of the posterior distribution.

3.5 Hyperparameters and prior distributions

All hyperparameters that will be applied in the model have been discussed. In order to adequately make inferences of each hyperparameter, a prior distribution for every hyperparameter is defined from which we can sample using MCMC. In the model of Lally and Hartman (2018), weakly informative priors have been defined for every hyperparameter. The hyperparameters and their prior distributions are summarised in Table 3.1.

The prior gamma(4, 4) is the Gamma distribution and is parametrised with a shape and rate value of 4. It approximately has a mean of 1 and a variance of 0.25 (Lally & Hartman, 2018). The $\mathcal{T}^+(4,0,1)$ is the Student's T-distribution, with four degrees of freedom, a mean of zero and a variance of 1. Finally, $\ln \mathcal{N}(0,0.5)$ is the lognormal distribution, with a mean of zero and a standard deviation of 0.5.

All prior distributions are constrained to be ≥ 0 . These distributions are flexible enough to take on extreme values if the data suggests to do so. We have included plots of the probability density functions (PDF) of all prior distributions in Figure 3.3 on the interval [0,3].

Parameter	Description	Prior Distribution
$\overline{\psi_1}$	Bandwidth-parameter $\frac{1}{2\ell^2}$ of the DL-axis	gamma(4,4)
ψ_2	Bandwidth-parameter $\frac{2\hat{Y}}{2\ell^2}$ of the IY-axis	$\operatorname{gamma}(4,4)$
$\overline{\eta^2}$	Signal parameter of the entire Gaussian process	$\mathcal{T}^+(4,0,1)$
σ^2	Noise parameter of the entire Gaussian process	$\mathcal{T}^+(4,0,1)$
$\overline{\alpha_1}$	Alpha-parameter of the warping function of the DL-axis	$\ln \mathcal{N}(0, 0.5)$
β_1	Beta-parameter of the warping function of the DL-axis	$\ln \mathcal{N}(0, 0.5)$
α_2	Alpha-parameter of the warping function of the IY-axis	$\ln \mathcal{N}(0, 0.5)$
β_2	Beta-parameter of the warping function of the IY-axis	$\ln \mathcal{N}(0, 0.5)$

Table 3.1: Overview of hyperparameters and prior distributions in the Gaussian process model

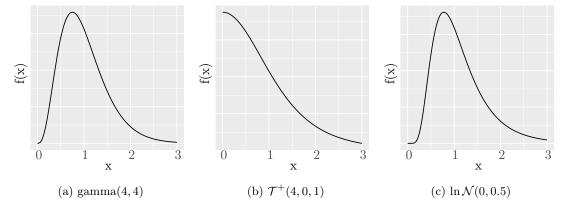


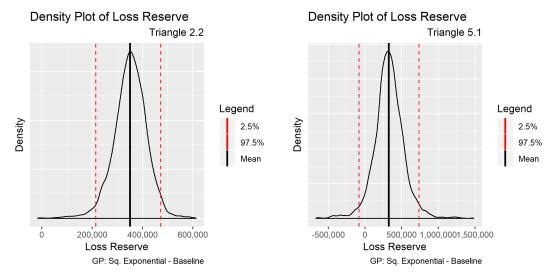
Figure 3.3: Plots of the PDF of prior distributions on the interval [0,3]

3.6 Model limitations

The model presented in this section generally performs well in predicting a best estimate of the loss reserve, which is the mean of the posterior distribution. The results are similar to other methods currently used in actuarial practice and recent research, but the density of the posterior distribution is wider than can be expected of the actual uncertainty. As such, it is not currently applicable into actuarial practice, and might require changes to adequately reflect this risk.

In order to give an indication of the uncertainty of the model results, two density plots of the model by Lally and Hartman (2018) are given in Figure 3.4. While the prediction of Triangle 2.2 (Figure 3.4a) is wide (95% Confidence Interval: [215k, 473k]), its' Best Estimate is adequate (351k, actual observed losses 354k).

However, the model is not able to capture all trends accordingly, as becomes obvious for Triangle 5.1. The density plot of Triangle 5.1 (Figure 3.4b) gives no conclusive results whatsoever (95% CI: [-80k, 736k]), and the Best Estimate that the model produces for Triangle 5.1 is 325k, while the actual observed losses are 46k. As such, the performance of the model has room for improvement. How we intend to improve the model is explained in Chapter 4.



(a) Density plot of Triangle 2.2, Sq. Exponential (b) Density plot of Triangle 5.1, Sq. Exponential

Figure 3.4: Density plots of predicted Loss Reserves, by the Gaussian process model of Lally and Hartman (2018).

4 Research setup

Contents

4.1	Met	hodology	26
4.2	Prio	r distribution of hyperparameters	26
	4.2.1	Bandwidth parameter	26
	4.2.2	Signal and noise parameters	27
	4.2.3	Warping parameters	27
4.3	Exte	ending the model with premium information $\ldots \ldots \ldots$	29
	4.3.1	Transform observations to Loss Ratio's	29
	4.3.2	Supply Premiums as input instead of Accident Years	29
	4.3.3	Add Estimators of the Ultimate Loss to the model	30

This chapter will cover the research that we will perform on the Gaussian process model as described in Chapter 3, based on the limitations identified and the research questions given in Section 1.4. We will perform several analyses on a larger data set than the paper of Lally and Hartman (2018) in order to validate the accuracy and applicability of the model.

Furthermore, we wish to extend the model by supplying it with external information in order to improve our predictions. Our data set has external data in the form of received premiums in an incurral year. As such, we want to investigate if the model can be adapted in such a way to include this data to improve the best estimate prediction of the loss reserve. Investigating the appropriate method to implement this is important, because simply assuming relatedless of data and learning them together can be detrimental for performance of a Machine Learning model (Bonilla, Chai, & Williams, 2008).

We recall our research questions:

Can we improve the Hierarchical Gaussian Process model to predict the loss reserve of a non-life insurer?

With the following sub-questions:

- In order to validate the design choices:
 - Is the model applicable on a more extensive data set?
 - Are the prior distributions on the hyperparameters adequately chosen?
- In order to improve the Best Estimate and/or reduce the confidence interval:
 - Can relevant, out-of-triangle information be supplied to the model?
 - Can the GP model be extended with a Bornheutter-Ferguson estimation method?

4.1 Methodology

We will elaborate on the data set that we will apply in Chapter 5. Performance of the models will be analysed based on both the Best Estimate of the Loss Reserve, and the Root Mean Square Error of prediction (RMSE) of this Best Estimate - as defined in Equation 4.1 - where Z_t is a data point that we wish to estimate, and T is the total number of data points to estimate.

Given that our data set consists of both the upper and lower triangle, we have a natural split in a training and testing set for validation. Furthermore, we can determine the 95% Confidence Interval of the posterior distribution by analysing the MCMC samples, and the standard deviation of the 4,000 samples. For the Chain Ladder method, we can determine the Standard Error of the prediction as described in the paper of Mack (1993).

$$RMSE = \frac{\sum_{t=1}^{T} (\hat{Z}_t - Z_t)^2}{T}$$
(4.1)

Before conducting our research, we will calculate baseline measurements consisting of both the Chain Ladder predictions and the Gaussian process model as given in the paper of Lally and Hartman (2018) to investigate the performance of the model on a larger data set. This will give an answer to our first sub-question: "Is the model applicable on a more extensive data set?"

4.2 Prior distribution of hyperparameters

With this analysis, we aim to deduct a new combination of prior parameters and measure it against the baseline measurements performed earlier. In these researches, we will only vary one parameter, while keeping the others identical to the baseline GP model. As such, we can strictly identify the influence of the prior distribution on this specific parameter. Using these analyses, we can determine an 'optimal' prior distribution for every triangle of each hyperparameter, in order to draw a conclusion of the influence of these choices. These analyses will be used to answer our second sub-question: "Are the prior distributions on the hyperparameters adequately chosen?"

4.2.1 Bandwidth parameter

Flaxman et al. (2016) have described a fast inference method for hierarchical Gaussian processes. In this manuscript, they argue to use a Cauchy-distribution for the "inverse length-scale" (i.e. the bandwidth as defined earlier), with a location of 0 and a scale of 2.5 and constrained to be positive. This argument is also supported by a different research focused on using the Cauchy-distribution, which comes to this conclusion based on a frequentist-risk analysis (Polson & Scott, 2012). This prior distribution is notably different than the gamma distribution used in the model by Lally and Hartman (2018), and we thus investigate its' performance on run-off triangles. We summarise in Table 4.1 and Figure 4.1.

Table 4.1: Overview of researched prior distributions for the bandwidth parameters

Parameter	Prior Distribution (Original)	Prior Distribution (Researched)
$\overline{\psi_1}$	gamma(4,4)	Cauchy(0, 2.5)
ψ_2	$\operatorname{gamma}(4,4)$	Cauchy(0, 2.5)

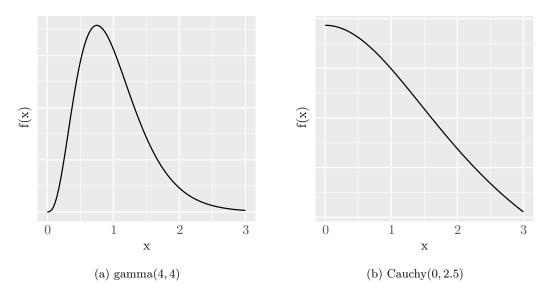


Figure 4.1: Plots of the PDF of prior distributions of the bandwidth parameters, on the interval [0,3]

4.2.2 Signal and noise parameters

In the manuscript of Flaxman et al. (2016), a $\ln \mathcal{N}(0, 1)$ distribution is applied for the signal and noise parameters, mentioning that these parameters should resemble the scale of the data. As we standardise our input to have a mean of zero, and a standard deviation of one, the $\ln \mathcal{N}(0, 1)$ could also be an appropriate prior for our data; given that we also constrain this prior to be positive. This is summarised in Table 4.2 and Figure 4.2.

Table 4.2: Overview of researched prior distributions for signal and noise parameters

Parameter	Prior Distribution (Original)	Prior Distribution (Researched)
$\overline{\eta^2}$	$\mathcal{T}^+(4,0,1)$	$\ln \mathcal{N}(0,1)$
σ^2	$\mathcal{T}^+(4,0,1)$	$\ln \mathcal{N}(0,1)$

4.2.3 Warping parameters

In the paper of Snoek et al. (2014), where Input Warping is first described, several prior distributions for α and β are given in order to get several functional forms of the Beta-distribution. For our application, Lally and Hartman (2018) conclude that an Exponential warping function performs best. An exponential warping function is recommended by Snoek et al. (2014) to be modelled by different priors than the priors applied by Lally and Hartman (2018). As such, we investigate the influence of this choice on model performance.

The parameters and their distributions are given in Table 4.3, and their PDF's are plotted in Figure 4.3.

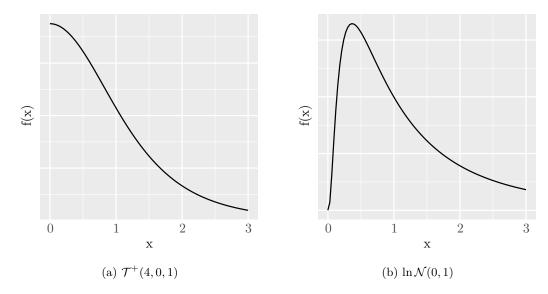


Figure 4.2: Plots of the PDF of prior distributions of the signal and noise parameters, on the interval [0,3]

Parameter	Prior Distribution (Lally)	Prior Distribution (Snoek)
$\overline{\alpha_1}$	$\ln \mathcal{N}(0, 0.5)$	$\ln \mathcal{N}(1,1)$
β_1	$\ln \mathcal{N}(0, 0.5)$	$\ln \mathcal{N}(0, 0.25)$
α_2	$\ln \mathcal{N}(0, 0.5)$	$\ln \mathcal{N}(1,1)$
β_2	$\ln \mathcal{N}(0, 0.5)$	$\ln \mathcal{N}(0, 0.25)$

Table 4.3: Overview of researched prior distributions for Input Warping

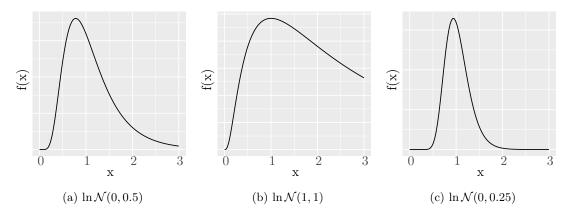


Figure 4.3: Plots of the PDF of prior distributions of the warping parameters on the interval [0,3]

4.3 Extending the model with premium information

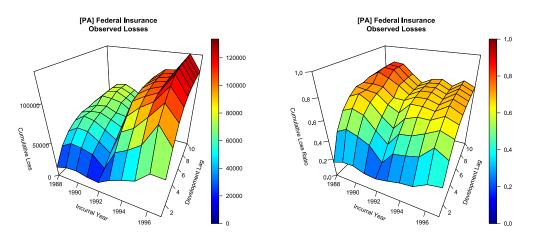
Parallel to an analysis of prior distributions, we will try several configurations to include the received premium. As we intend to determine the feasibility of such a method, we will restrict these setups to the model with the prior distributions as initially described by Lally and Hartman (2018) for equal comparison. We will, however, apply all three covariance functions on the model. By doing this, we wish to answer the following two sub-questions:

In order to improve the Best Estimate and/or reduce the confidence interval:

- Can relevant, out-of-triangle information be supplied to the model?
- Can the GP model be extended with a Bornheutter-Ferguson estimation method?

4.3.1 Transform observations to Loss Ratio's

One of the methods to implicitly give information on the premiums is by pre-transforming the input data. We do so by dividing the observed losses at a specific moment in time $(Z_{i,j})$ by the net premiums received in that year (P_i) . Using this standardisation, the Development-lag run-off will not materially change, as they are all divided by an identical constant (for example: the Chain Ladder factors will remain identical). However, over the incurral-year axis, different trends might become visible. We wonder if the model's behaviour can cope with these changes, and if they could potentially improve model predictions. We visualise the transformation in Figure 4.4, where we give an example of observed losses and observed loss ratio's.



(a) Observed cumulative losses (Triangle 3.2) (b) Observed cumulative LR (Triangle 3.2)

Figure 4.4: Plots of observed cumulative losses and loss ratio of Triangle 3.2

We transform the predictions by the GP model back by multiplying it with the same constants, and then determine the Loss Reserve and error metrics. We will compare this with the Chain Ladder and the Hierarchical GP model by Lally and Hartman (2018) without adaptations that might arise from the prior distributions analysis.

4.3.2 Supply Premiums as input instead of Accident Years

In the data set we consider, both the known observations and the net premiums received in that year are available. As we will present in Section 5, both premiums and ultimate losses in that

year fluctuate heavily in some run-off triangles. As such, we want to investigate if using net premiums, as opposed to the incurral year, could be a more meaningful input parameter.

As premiums might fluctuate throughout the years, the model could find more support for relatively distant observations due to a reshuffling of data points, reducing the standard error of the model and potentially narrowing the confidence interval. An example of such a revised spreadsheet is given in Table 4.4.

Premium	1	2	3	4	5	6	7	8	9	10
177k	22k	61k	85k	100k	109k	115k	119k	122k	123k	125k
201k	27k	78k	106k	122k	133k	139k	143k	146k	147k	
245k	25k	•	•	•	•	•	•	•	•	
246k	33k	100k	135k	158k	169k	178k	183k	188k	•	
286k	39k	114k	157k	181k	197k	209k	213k	•	•	
287k	29k	66k	•	•	•	•	•	•	•	
338k	36k	83k	111k						•	
340k	42k	126k	165k	189k	204k	214k		•	•	
366k	41k	100k	132k	151k	• •	•	•	•	•	
419k	46k	117k	155k	179k	194k	•	•	•	•	•

Table 4.4: Triangle 5.3: Upper Triangle. Sorted on premium received.

As can be seen in Table 4.4, due to the reshuffling of data, the prediction of losses or a general trend might be more difficult in the Incurral-year axis. As such, we do not expect this method to give sufficient results on every triangle that we analyse. For triangles that have few shocks, however, this method could potentially give a more accurate result. We will, nonetheless, analyse on all triangles.

4.3.3 Add Estimators of the Ultimate Loss to the model

The Bornheutter-Ferguson method is reliant on estimated ultimate losses for each incurral year. As our model has a significant uncertainty in the most distant predictions, we attempt to mitigate this by adding estimated observations as extra input to our model based on the observed premium.

We apply somewhat identical logic to our estimations as the BF-method described in 2.3.2. Of a triangle, we will determine the Estimated Loss Ratio of every observed point in the triangle, based on the development parameters as described in Section 2.3.2. Our estimation method is given in (4.2) and is built up out of two parts: the development to date, and the development that still has to occur. The development to date is modeled by multiplying the most recent Estimated Loss Ratio with its' cumulative development parameter ($\hat{\gamma}_l$), effectively returning the most recent observed Loss Ratio. For the development that still has to occur, we will apply Gaussian Noise. We generate this noise by defining a new random variable X, which has a normal distribution. It has a mean equal to the mean of the estimated Loss Ratio's in the triangle, and the standard deviation equal to the standard deviation of these estimations. Therefore: if a triangle has few shocks, its' standard deviation will be smaller and estimators will thus be less volatile than when a triangle has more shocks.

$$X \sim \mathcal{N}(L\overline{R}, \mathrm{SD}(LR))$$

$$l = n + 1 - i$$

$$\hat{\alpha}_i = ((\hat{\gamma}_l * LR_{i,l}) + (1 - \hat{\gamma}_l) * X) * P_i$$

$$(4.2)$$

Example 4.1: Estimators based on Bornheutter-Ferguson

We recall the estimated Loss Ratio's as calculated in Example 2.4: \parallel Development year (i) \parallel

	DUVU	opmen	(J)	
Incurral Year (i)	1	2	3	P_i
2010 (1)	0.81	0.85	0.85	2,060
2011 (2)	0.87	$\begin{array}{c} 0.85 \\ 0.83 \end{array}$		2,400
2012 (3)	0.89	•	•	2,600
Cum. Dev. Parameters $(\hat{\gamma}_j)$	0.60	0.85	1	

We analyse the six estimated Loss Ratio's. Of these, the mean is approx. 0.85 and the standard deviation is approx. 0.03. We want to make a estimation of the ultimate losses of i = 2 and i = 3. We do this by applying Equation 4.2:

$$X \sim \mathcal{N}(0.85, 0.03)$$

$$\hat{\alpha}_2 = (0.85 * 0.83 + (1 - 0.85) * X) * 2,400$$

$$\hat{\alpha}_3 = (0.60 * 0.89 + (1 - 0.60) * X) * 2,600$$

Given that a X is a random variable, we can not give a deterministic outcome in this example.

The estimations are supplied as extra observations of the model at j = n, but we model this with a different noise-parameter σ_{est}^2 , which will have an identical prior distribution as σ^2 . All other parameters will be kept equal. We will give an example of renewed input in Table 4.5, where the observations marked in bold are the estimators applied - and thus modeled with their own noise-parameter.

Table 4.5: Upper Triangle of 5.2, with added BF-estimators

IY					Develop	ment Lag				
	1	2	3	4	5	6	7	8	9	10
1988	19,016	$44,\!632$	$59,\!804$	$66,\!052$	$70,\!115$	$72,\!219$	$73,\!565$	$74,\!273$	$75,\!112$	$75,\!655$
1989	17,346	$42,\!058$	$59,\!686$	$64,\!821$	$67,\!313$	69,036	69,942	$70,\!428$	70,846	$71,\!192$
1990	12,212	$28,\!087$	42,719	$46,\!564$	48,016	49,030	49,700	$49,\!994$	· ·	$50,\!817$
1991	9,490	$19,\!697$	32,062	$38,\!698$	40,369	$41,\!220$	$41,\!970$	•	•	42,739
1992	7,605	$14,\!874$	$21,\!105$	29,016	$35,\!208$	$36,\!884$		•		$39,\!511$
1993	5,596	$11,\!527$	$14,\!677$	$17,\!073$	20,813	•	•			$23,\!007$
1994	4,885	$10,\!118$	$13,\!103$	$14,\!570$	•	•				18,781
1995	4,056	$8,\!435$	$10,\!439$	•	•	•				$17,\!490$
1996	4,213	8,768	•	•	•	•			•	$17,\!604$
1997	5,258	•	•	•	•	•	•		•	$25,\!048$

The noise-parameter allows the GP to take the uncertainty of the estimators into account when making predictions. Because there are now extra observations, the Gaussian process model now has more observations to make predictions with, and it can now perform an interpolation as opposed to only extrapolating, and as such we expect the confidence interval to take on more realistic values.

5 Data set used

Contents

5.1	Med	lical Malpractice (MM)	33
	5.1.1	Physicians Reciprocal Insurers (Triangle 1.1)	34
	5.1.2	Promutual Group (Triangle 1.2)	34
	5.1.3	Scpie Indemnity Company (Triangle 1.3)	36
5.2	Con	amercial Automobile (CA)	36
	5.2.1	Farmers' Automobile (Triangle 2.1)	36
	5.2.2	State Farm (Triangle 2.2) \ldots	38
	5.2.3	The Ins Co (Triangle 2.3)	38
5.3	Pers	sonal Automobile (PA)	40
	5.3.1	Farmers' Automobile (Triangle 3.1)	40
	5.3.2	Federal Insurance Company (Triangle 3.2)	40
	5.3.3	State Farm (Triangle 3.3)	42
5.4	Pro	duct Liability (PL)	42
	5.4.1	Allstate Insurance Company (Triangle 4.1)	42
	5.4.2	Federal Insurance Company (Triangle 4.2)	44
	5.4.3	Federated Mutual Group (Triangle 4.3)	44
5.5	Wor	kers' Compensation (WC)	46
	5.5.1	Allstate Insurance Company (Triangle 5.1)	46
	5.5.2	Lumbermen's Underwriting Alliance (Triangle 5.2) \ldots	46
	5.5.3	State Farm (Triangle 5.3) \ldots	48

In order to test and improve our model, we have selected a total of 15 triangles from different Lines of Business. 3D-plots of both the upper triangle (which is supplied to the model as input) and the actual observed losses are presented (which the model attempts to estimate), along with a summary table containing the yearly premiums, ultimate losses and the corresponding loss ratio. We will highlight the most important challenges these data sets pose for our model. The actual data underlying these plots are given in Appendix C. Furthermore, all LoB's will be briefly addressed.

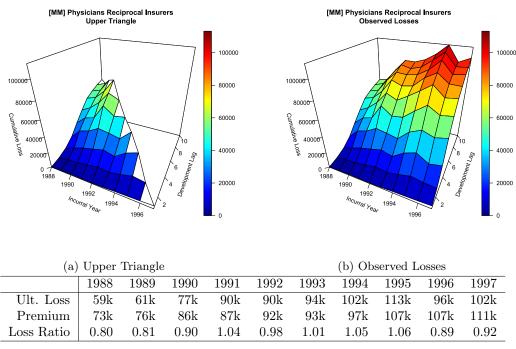
5.1 Medical Malpractice (MM)

Medical Malpractice policies protect a customer (healthcare professional) against claims from a patient. These products usually have a relatively long run-off period, as these procedures (such

as lawsuits) can have a considerable duration. Furthermore, payments can be made over a longer period of time.

5.1.1 Physicians Reciprocal Insurers (Triangle 1.1)

In Figure 5.1, both the upper triangle and observed losses are presented for this insurer. Payments are made gradually along the development lag-axis, and we can also observe a growth along the incurral year-axis. The triangle is relatively stable, with incurral year 1995 having a larger claims volume than surrounding observations. We expect the models to be able to capture these properties adequately.



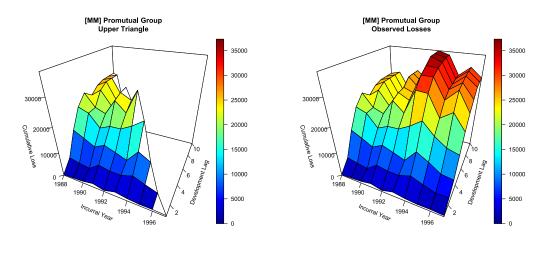
(c) Overview of losses and premiums

Figure 5.1: Data set of Physicians Reciprocal Insurers (Medical Malpractice)

5.1.2 Promutual Group (Triangle 1.2)

The Promutual Group details are given in Figure 5.2. Comparing this to the Triangle 1.1, we see a more rough pattern emerging, while the payments along the development lag-axis appear to stabilise after DL = 6.

We also see a smaller volume of both claims and premiums in comparison with Triangle 1.1. When looking at the underlying data in Table C.2 (Appendix C), we see that the ultimate claims level is fairly stable, while the premium volume has declined. As such, we expect that models that take Loss Ratio's and/or Premiums into account will have considerable difficulty with this triangle.



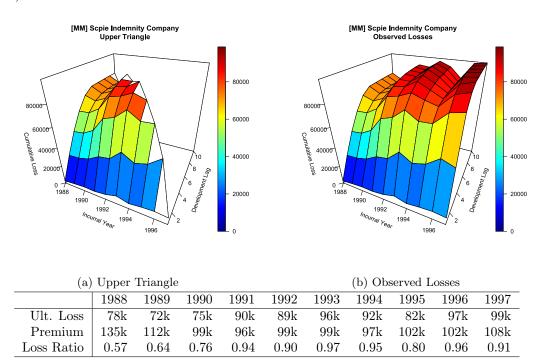
(a)	Upper	Triangle			(b) Observed Losses						
	1988	1989	1990	1991	1992	1993	1994	1995	1996	1997	
Ult. Loss	26k	27k	20k	29k	26k	37k	36k	29k	33k	29k	
Premium	53k	61k	52k	44k	29k	26k	25k	26k	27k	23k	
Loss Ratio	0.49	0.44	0.39	0.65	0.87	1.41	1.43	1.10	1.20	1.29	

(c) Overview of losses and premiums

Figure 5.2: Data set of Promutual Group (Medical Malpractice)

5.1.3 Scpie Indemnity Company (Triangle 1.3)

The plots of Scpie Indemnity Company are displayed in Figure 5.3. Here, we see that the payments along the development lag-axis appear to take on substantial size between DL = 1 and DL = 3, after which they stabilise after DL = 5. Premium volumes are declining from 1988-1991, after which they gradually grow. Loss Ratio's from the early incurral years are considerably lower than that of the later incurral years. As such, we also expect that the LR/Premium model might underperform. We do expect that the normal Gaussian Process models are able to reflect the general trend observed, as it has already been applied on this triangle (Lally & Hartman, 2018).



(c) Overview of losses and premiums

Figure 5.3: Data set of Scpie Indemnity Company (Medical Malpractice)

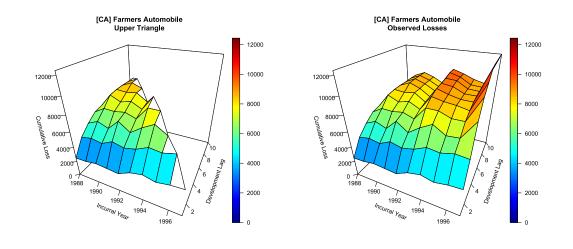
5.2 Commercial Automobile (CA)

Automobile insurance products, both Commercial and Personal, in general have shorter tails and thus a quicker development than other insurance products (Shi, 2017).

5.2.1 Farmers' Automobile (Triangle 2.1)

The Farmers' Automobile triangle is plotted in Figure 5.4a and the observed losses are plotted in Figure 5.4b. We see that the pattern along the development-lag is relatively stable and flattens out at approximately DL = 5. Along the Incurral Year-axis, we see that it is fairly rough, both in the upper triangle and the observed losses. We expect that Matern-covariance functions are thus better at capturing this.

Some errors are to be expected, as there is an outlier in Incurral Year 1997 that is not captured by the first observation of IY 1997, nor by an increase in the net premium received.



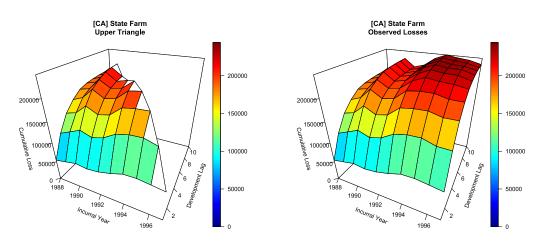
	(a) Uppe	er Triang	le		(b) Observed Losses						
	1988	1989	1990	1991	1992	1993	1994	1995	1996	1997	
Ult. Loss	7,115	$8,\!425$	8,991	8,549	7,853	9,980	9,583	9,038	8,719	12k	
Premium	9,147	9,854	11k	11k	12k	13k	13k	14k	14k	14k	
Loss Ratio	0.78	0.85	0.81	0.75	0.67	0.80	0.71	0.64	0.61	0.89	

(c) Overview of losses and premiums

Figure 5.4: Data set of Farmers' Automobile (Commercial Automobile)

5.2.2 State Farm (Triangle 2.2)

State Farm is the largest Commercial Automobile insurer (based on net premiums) that we analyse in this research. Its data is given in Figure 5.5 and Table C.5. We see a relatively stable (and thus predictable) loss development along all axis. When looking at the premiums, we see an increase that is not necessarily reflected in the claim volume. As such, the Loss Ratio's have declined over gradually over time. Models applying Premium information should be able to capture this behaviour.



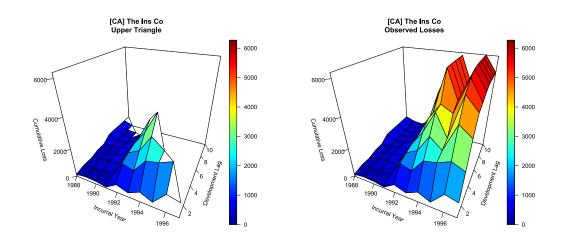
(a)	Upper	Triangle)	(b) Observed Losses							
	1988	1989	1990	1991	1992	1993	1994	1995	1996	1997	
Ult. Loss	193k	200k	225k	207k	215k	233k	244k	240k	237k	231k	
Premium	286k	309k	326k	333k	342k	356k	380k	399k	407k	407k	
Loss Ratio	0.68	0.65	0.69	0.62	0.63	0.66	0.64	0.60	0.58	0.57	

(c) Overview of losses and premiums

Figure 5.5: Data set of State Farm (Commercial Automobile)

5.2.3 The Ins Co (Triangle 2.3)

Upon inspection of the data of The Ins Co (Figure 5.6, we see a highly volatile claims development, most notably in Incurral Years from 1992 onward. We also see a significant growth in premium volume. Claims development in the incurral years up to and including 1991 might therefore be less relevant. Model performance on such an unstable triangle is interesting. The upper triangle on losses does show indicators of enlarged claims development, but which model is able to capture and estimate these characteristics best is difficult to hypothesise.



	(a) Upp	er Triang	gle		(b) Observed Losses					
	1988	1989	1990	1991	1992	1993	1994	1995	1996	1997
Ult. Loss	791	553	479	936	2,254	4,458	6,117	4,480	6,273	5,322
Premium	1,300	$1,\!697$	1,553	$1,\!425$	$3,\!252$	$5,\!617$	9,536	$5,\!674$	$7,\!389$	$6,\!378$
Loss Ratio	0.61	0.33	0.31	0.66	0.69	0.79	0.64	0.79	0.85	0.83

(c) Overview of losses and premiums

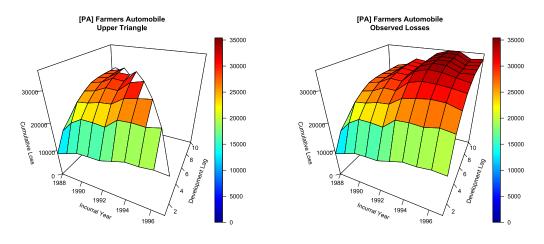
Figure 5.6: Data set of The Ins Co (Commercial Automobile)

5.3 Personal Automobile (PA)

Personal Automobile insurances are much alike Commercial Automobile in regards to claims development (Shi, 2017). However, paid claims appear to be a bit slower: having a more gradual cumulative development in the early development-lags, and levelling out around DL = 6.

5.3.1 Farmers' Automobile (Triangle 3.1)

The Farmers' Automobile triangle and losses are displayed in Figure 5.7. It is not very volatile throughout time, as no significant shocks can be observed. Both premium and claims volume are aligned with regards to growth. As such, the models should be able to predict these losses adequately.



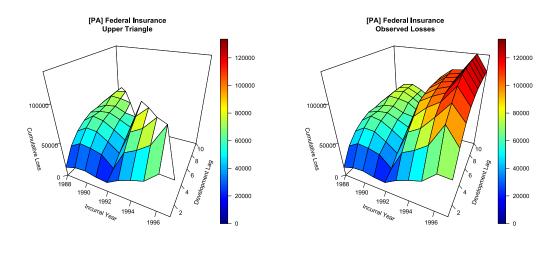
(a)	Upper	Triangle			(b) Observed Losses						
	1988	1989	1990	1991	1992	1993	1994	1995	1996	1997	
Ult. Loss	21k	28k	29k	31k	31k	34k	35k	35k	33k	34k	
Premium	28k	31k	37k	40k	43k	43k	44k	45k	45k	47k	
Loss Ratio	0.73	0.89	0.79	0.78	0.72	0.79	0.81	0.80	0.74	0.71	

(c)	Overview	of	losses	and	premiums
-----	----------	----	--------	-----	----------

Figure 5.7: Data set of Farmers' Automobile (Commercial Automobile)

5.3.2 Federal Insurance Company (Triangle 3.2)

In Figure 5.8b, we see that on the incurral year-axis a growth of claims volume has occurred, while the development-lag axis has few fluctuations. The Gaussian process model might run into over-estimation with regards to the losses in incurral year 1997, caused by the larger volume in the previous incurral year. Premium volumes, however, are aligned with this. As such, we hypothesise that this extra information will aid the model.



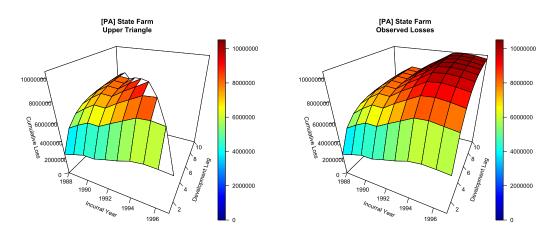
(a)	Upper	Triangle	;		(b) Observed Losses					
	1988	1989	1990	1991	1992	1993	1994	1995	1996	1997
Ult. Loss	64k	77k	79k	73k	62k	98k	110k	112k	134k	113k
Premium	83k	92k	96k	99k	96k	139k	152k	168k	181k	165k
Loss Ratio	0.76	0.84	0.83	0.73	0.65	0.70	0.72	0.66	0.74	0.69

(c)	Overview	of losses	and	premiums

Figure 5.8: Data set of Federal Insurance Company (Commercial Automobile)

5.3.3 State Farm (Triangle 3.3)

The State Farm Personal Automobile insurance is the largest triangle with regards to claims volume. As such, it has few outliers and appears to have a fairly smooth development over time, as is displayed in Figure 5.9. We expect the models to be able to reflect this behaviour.



(a) Upper Triangle						(b) Observed Losses					
	1988	1989	1990	1991	1992	1993	1994	1995	1996	1997	
Ult. Loss	6.8M	$7.7 \mathrm{M}$	8.4M	8.3M	9.0M	$9.7 \mathrm{M}$	$10.4 \mathrm{M}$	$10.5 \mathrm{M}$	$10.4 \mathrm{M}$	10.2M	
Premium	7.8M	$8.7 \mathrm{M}$	$9.8 \mathrm{M}$	$10.6 \mathrm{M}$	11.5M	12.2M	13.3M	$14.1 \mathrm{M}$	$14.7 \mathrm{M}$	14.9M	
Loss Ratio	0.87	0.88	0.86	0.78	0.79	0.79	0.78	0.74	0.71	0.68	

(c) Overview of losses and premiums

Figure 5.9: Data set of State Farm (Personal Automobile)

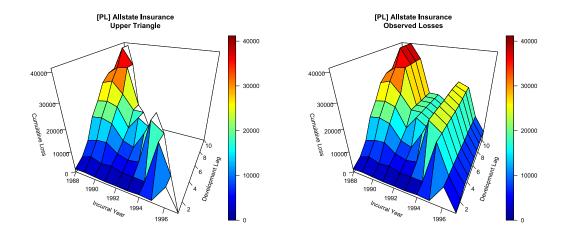
5.4 Product Liability (PL)

Product Liability is a type of insurance policy that protects companies that develop and/or create products from liability claims caused by those products, for instance in the case of a defect. We see in general that the development of these claims are more volatile than the other triangles considered so far, and they are thus challenging for any model to capture adequately.

5.4.1 Allstate Insurance Company (Triangle 4.1)

The Allstate Insurance Company is one of the insurers considered for this Line of Business. Upon inspection of the 3D-plots, we observe that the run-off period for all Incurral Years is relatively flat in the development lag-axis. Furthermore, IY 1997 has a low claims volume, which is reflected in the net premium received, but might result in over-estimation if this is unknown.

The cause of this flat run-off period might be a diagonal shock that we observe in Calendar Year 1996 (not to be confused with incurral year 1996). We verify this by making a plot of the incurral claims, which is given in Figure 5.11, where such a diagonal shock can be observed. Also taking the significantly reduced claims and premiums in 1997 into account, we hypothesise that a business action could be underlying these changes. We do not expect any model to be able to adequately reflect this characteristic.



(a)	Upper	Triangle	e	(b) Observed Losses						
	1988	1989	1990	1991	1992	1993	1994	1995	1996	1997
Ult. Loss	36k	41k	35k	19k	19k	16k	27k	25k	12k	5,049
Premium	49k	47k	39k	32k	22k	24k	34k	27k	23k	$4,\!450$
Loss Ratio	0.75	0.88	0.89	0.61	0.86	0.67	0.79	0.95	0.51	1.13

(c) Overview of losses and premiums

Figure 5.10: Data set of Allstate Insurance Company (Product Liability)

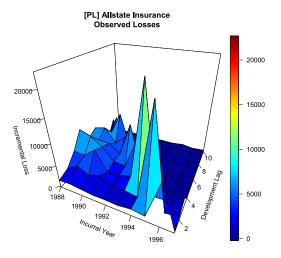
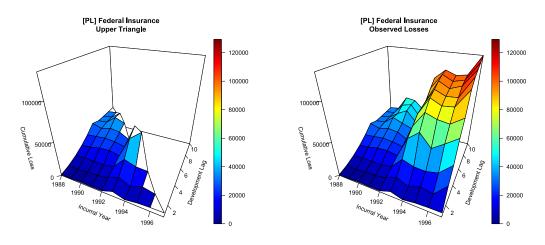


Figure 5.11: Incremental losses of Allstate Insurance Company (Product Liability)

5.4.2 Federal Insurance Company (Triangle 4.2)

This triangle, as opposed to Triangle 4.1, has a positive development in the incurral year-axis, especially from 1993 onwards. This is partially reflected in the information in the upper triangle, but considering most of the development takes place in the lower triangle, we wonder if any model is able to capture this behaviour accordingly. Furthermore, this behaviour is not adequately captured in the premium information.



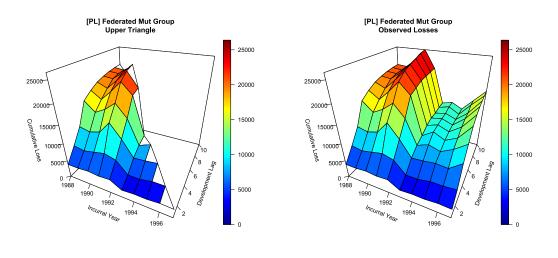
(a)	Upper	Triangle	<u>)</u>		(b) Observed Losses					
	1988	1989	1990	1991	1992	1993	1994	1995	1996	1997
Ult. Loss	32k	34k	56k	54k	41k	94k	106k	101k	104k	129k
Premium	102k	99k	100k	104k	105k	114k	124k	140k	150k	150k
Loss Ratio	0.32	0.35	0.55	0.52	0.39	0.82	0.86	0.72	0.69	0.86

(c) Overview of losses and premiums

Figure 5.12: Data set of Federal Insurance Company (Product Liability)

5.4.3 Federated Mutual Group (Triangle 4.3)

Finally in the Product Liability Line of Business, we consider the Federated Mutual Group. This insurance company has seen a descent in claims volume with regards to the incurral year axis, while having a relatively stable development pattern, especially when comparing this to its' peers. This decline in claims volume is not reflected in the premium information, and we thus hypothesise that all models will have considerable difficulty in making predictions.



(a)	Upper	Triangle			(b) Observed Losses					
	1988	1989	1990	1991	1992	1993	1994	1995	1996	1997
Ult. Loss	21k	21k	23k	26k	22k	12k	12k	11k	14k	17k
Premium	30k	28k	28k	28k	29k	24k	26k	28k	30k	32k
Loss Ratio	0.72	0.76	0.82	0.94	0.75	0.48	0.47	0.38	0.47	0.54

(c) Overview of losses and premiums

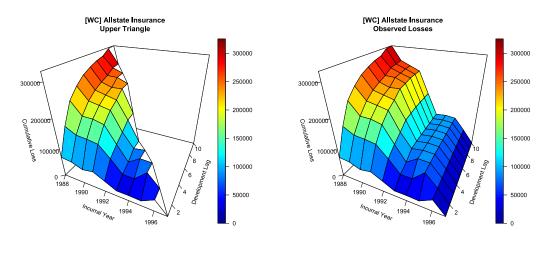
Figure 5.13: Data set of Federated Mutual Group (Product Liability)

5.5 Workers' Compensation (WC)

Finally, we look at Workers' Compensation lines of business, which insures the policy holders' income and treatment in the case of a medical injury occured at their work.

5.5.1 Allstate Insurance Company (Triangle 5.1)

The most notable trend that can be seen in Figure 5.14 is the decline of claims volumes along the incurral year-axis, also reflected in the premium volumes. Furthermore, we see that this triangle is relatively stable from $DL \ge 4$, and that the reduced claims volumes is forebode by the reduced claims in the first development lag period of 1997. We thus expect the models to be able to estimate this appropriately.



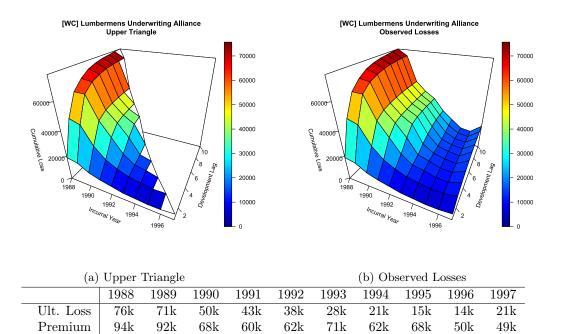
(a)		(b) Observed Losses								
	1988	1989	1990	1991	1992	1993	1994	1995	1996	1997
Ult. Loss	325k	278k	263k	248k	169k	91k	95k	91k	49k	2,909
Premium	395k	374k	280k	314k	253k	201k	174k	146k	93k	$7,\!651$
Loss Ratio	0.82	0.74	0.94	0.79	0.67	0.45	0.54	0.62	0.53	0.38

(c) Overview of losses and premiums

Figure 5.14: Data set of Allstate Insurance Company (Workers' Compensation)

5.5.2 Lumbermen's Underwriting Alliance (Triangle 5.2)

Much like Triangle 5.1, we see that the losses from the Lumbermen's Underwriting Alliance (LUA) have a declining trend with regards to the incurral year-axis. Furthermore, most of the development has occured prior to DL = 5. As such, it shows a fairly similar pattern to the AIC triangle, and the models should show roughly similar results.



0.60

0.72

0.39

0.34

0.22

0.27

0.42

0.80

0.77

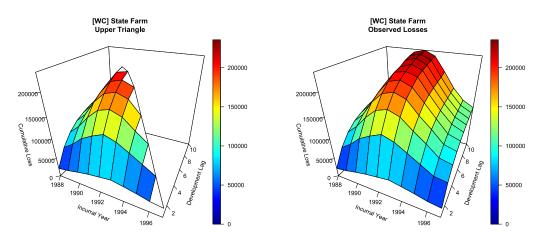
0.74

Loss Ratio

Figure 5.15: Data set of Lumbermen's Underwriting Alliance (Workers' Compensation)

5.5.3 State Farm (Triangle 5.3)

The State Farm triangle has been used in the paper of Lally and Hartman (2018) to validate the applicability of the Gaussian Process model on predicting Loss Reserves. When looking at the triangle, we once again see a clear trend emerging on the incurral year-axis, while the development stabilises from $DL \geq 5$, much like the two peers that we will analyse in this Line of Business. The Loss Ratio is gradually declining, and models incorporating premium information could thus benefit from this information.



(a)	Upper	Triangle	e e		(b) Observed Losses					
	1988	1989	1990	1991	1992	1993	1994	1995	1996	1997
Ult. Loss	125k	149k	196k	230k	236k	225k	191k	153k	126k	112k
Premium	177k	201k	246k	286k	340k	419k	366k	338k	287k	245k
Loss Ratio	0.71	0.74	0.80	0.80	0.69	0.54	0.52	0.45	0.44	0.45

(c) Overview of losses and premiums

Figure 5.16: Data set of State Farm (Workers' Compensation)

6 Results

Contents

6.1 Ben	chmark measurements	49
6.2 Pric	\mathbf{pr} distributions	51
6.2.1	Bandwidth parameter (ψ)	51
6.2.2	Noise parameter (σ^2)	54
6.2.3	Signal parameter (η^2)	57
6.2.4	Warping parameters (α, β)	58
6.2.5	Optimal prior configuration	59
6.3 Pre	mium Information	63
6.3.1	Loss Ratio's	63
6.3.2	Premium as input	67
6.3.3	Bornheutter-Ferguson Estimations	71

In this chapter, we will present the results of the research performed. We will follow notation of Chapter 4, where our research is further outlined. The triangles that we will analyse on are described in detail in Chapter 5.

For each research, we will give both the predicted Loss Reserve and the Root Mean Square Error of prediction. Furthermore, we will highlight several \mathbb{R}^3 -plots where the models give adequate predictions or where they underperform.

In the tables comparing predicted Loss Reserves, we have marked the best prediction in **bold**. For the tables comparing RMSE calculations and Standard Deviations, the lowest error or deviation has been marked in **bold**.

6.1 Benchmark measurements

We will analyse the results of the Chain Ladder method (as described in Section 2.3.1) and the Gaussian Process model as defined by Lally and Hartman (2018) and described in Section 3.

The goal of this is threefold: we want to verify our implementation, get a better understanding of the prediction and the current error of the models, but also perform this analysis to answer the following research question:

• Is the model applicable on a more extensive data set?

Triangles that are already analysed by Lally and Hartman (2018) are 1.3, 3.1 and 5.3.

An overview of the predicted Loss Reserve by these models is given in Table 6.1, which is compared to the actual observed losses. In Table 6.2, an overview of the RMSE of all methods can be found. Finally, we give an overview of the Standard Deviation of all predicted Loss Reserves in Table 6.3, to give an indication of the confidence of the predictions.

#	LoB	Observed	Chain Ladder	Matérn $3/2$	Matérn $5/2$	Sq. Exponential
1.1	MM	407,525	740,677	288,484	$313,\!911$	284,687
1.2	MM	104,094	$63,\!104$	83,937	77,709	$77,\!340$
1.3	MM	$164,\!633$	$240,\!423$	$155,\!306$	$156,\!467$	$153,\!394$
2.1	CA	16,640	17,239	14,254	13,789	13,891
2.2	CA	$353,\!949$	410,384	$329,\!846$	$345,\!927$	350,702
2.3	CA	$13,\!046$	$11,\!377$	$6,\!627$	6,993	$6,\!652$
3.1	PA	37,397	42,833	38,901	40,278	37,737
3.2	PA	$137,\!642$	$367,\!607$	280,729	$368,\!464$	$212,\!727$
3.3	PA	$11,\!561,\!327$	$12,\!586,\!821$	$10,\!113,\!582$	$10,\!996,\!920$	$11,\!087,\!032$
4.1	PL	10,965	162,098	90,421	103,467	98,422
4.2	PL	422,513	$325,\!328$	$179,\!658$	231,733	212,941
4.3	PL	$37,\!612$	36,863	35,031	$32,\!638$	28,782
5.1	WC	45,916	$193,\!320$	310,663	$334{,}577$	325,816
5.2	WC	40,225	$34,\!490$	$55,\!831$	$55,\!688$	51,710
5.3	WC	307,810	$304,\!882$	$328,\!945$	$343,\!456$	311,081

Table 6.1: Benchmark Measurement: Observed and predicted Loss Reserves

Table 6.2: Benchmark Measurement: RMSE

LoB	Chain Ladder	Matérn $3/2$	Matérn $5/2$	Sq. Exponential
MM	60,512	13,756	11,015	13,416
MM	6,735	4,039	4,786	4,904
MM	$15{,}544$	$6,\!675$	$6,\!153$	$6,\!107$
CA	896	1,472	$1,\!354$	1,347
CA	5,781	5,010	$4,\!217$	4,727
CA	629	1,368	$1,\!155$	1,100
PA	1,685	1,042	1,378	1,420
PA	$43,\!475$	17,015	$28,\!351$	$12,\!590$
PA	$328,\!024$	224,798	$163,\!189$	$197,\!843$
PL	24,160	$11,\!898$	14,798	16,188
PL	$12,\!996$	26,986	19,588	20,015
PL	$1,\!592$	2,476	2,223	2,058
WC	20,100	34,701	44,033	53,562
WC	$2,\!413$	3,505	3,716	4,126
WC	$7,\!165$	14,815	14,934	10,062
	MM MM CA CA CA PA PA PA PA PL PL PL WC WC	MM 60,512 MM 6,735 MM 15,544 CA 896 CA 5,781 CA 629 PA 1,685 PA 43,475 PA 328,024 PL 24,160 PL 1,592 WC 20,100 WC 2,413	MM 60,512 13,756 MM 6,735 4,039 MM 15,544 6,675 CA 896 1,472 CA 5,781 5,010 CA 629 1,368 PA 1,685 1,042 PA 328,024 224,798 PL 24,160 11,898 PL 12,996 26,986 PL 1,592 2,476 WC 20,100 34,701 WC 2,413 3,505	MM60,51213,75611,015MM6,7354,0394,786MM15,5446,6756,153CA8961,4721,354CA5,7815,0104,217CA6291,3681,155PA1,6851,0421,378PA328,024224,798163,189PL24,16011,89814,798PL12,99626,98619,588PL1,5922,4762,223WC20,10034,70144,033WC2,4133,5053,716

When comparing Table 6.1 and Table 6.2, we notice that, with some exceptions, a better prediction of the Loss Reserve results in a lower RMSE. In general, we observe from Table 6.1 that the Gaussian Process models are able to perform better or than or comparable to the Chain Ladder model, but is also outperformed in some triangles by the Chain Ladder. The GP method is generally outperformed by the CL in the Workers' Compensation and Product Liability Lines of Business, with the notable exception of Triangle 4.1 - which has a Diagonal Shock that neither model is able to capture accordingly.

When comparing the covariance functions of the Gaussian Process model, we see that there is no significant outperformance of any one along all triangles. In general, when comparing the predictions, we see that the triangles that have a smooth pattern are better predicted by the Squared Exponential function, and the models applying a Matérn covariance function perform better on the triangles that are more volatile.

In Appendix D, plots are given of the actual observed losses, the Chain Ladder prediction and the best performing Gaussian process model in order to visualise the predictions by these models.

#	LoB	Chain Ladder	Matérn $3/2$	Matérn $5/2$	Sq. Exponential
1.1	MM	106,809	$86,\!625$	90,804	83,825
1.2	MM	$22,\!698$	$33,\!058$	27,092	26,187
1.3	MM	$30,\!106$	41,430	36,476	37,098
2.1	CA	2,472	5,458	4,712	4,128
2.2	CA	18,221	$73,\!495$	$74,\!844$	$65,\!842$
2.3	CA	4,760	$3,\!931$	4,061	4,335
3.1	PA	$2,\!675$	8,039	8,852	8,223
3.2	PA	$51,\!036$	$92,\!948$	$118,\!434$	$98,\!847$
3.3	PA	$549,\!869$	$2,\!400,\!639$	$2,\!616,\!817$	$2,\!541,\!395$
4.1	PL	86,611	57,195	56,209	58,213
4.2	PL	84,093	$95,\!199$	$128,\!196$	116,028
4.3	PL	4,702	21,155	21,202	18,783
5.1	WC	49,582	229,973	226,372	202,139
5.2	WC	$7,\!378$	37,775	$37,\!127$	26,968
5.3	WC	20,364	107,898	$120,\!175$	$104,\!266$

Table 6.3: Benchmark Measurement: Standard Deviation of Loss Reserve

An overview of the Standard Deviation of the Loss Reserve prediction is given in Table 6.3. In general, the Chain Ladder has the lowest Standard Deviation, with three exceptions. In the case of all three exceptions, the predictions made by the GP models are considerably lower than the prediction by the Chain Ladder. Considering that the wide density of the Loss Reserve was a limitation of the Gaussian process model, this meets our expectations.

6.2 **Prior distributions**

In this section, we will vary the prior distributions as explained in Section 4.2. We benchmark the different prior distribution of the parameter that we wish to investigate against the results of the Gaussian process models as given in Section 6.1.

The relevant research question that we attempt to answer with this analysis is:

• Are the prior distributions on the hyperparameters adequately chosen?

6.2.1 Bandwidth parameter (ψ)

We have changed the prior distribution of the bandwidth parameter from a Gamma(4,4) to a Cauchy(0,2.5) distribution. Table 6.4 presents the predicted loss reserves and Table 6.5 contains the RMSE of the predictions. The results of the estimated parameters are given in Appendix E.

The Cauchy prior distribution for the bandwidth parameter has varying results: sometimes it results in better predictions and/or a lower RMSE, but its' performance is unstable - once even suggesting a negative loss reserve (marked in red). As can be seen in Tables E.1 and E.2 (Appendix E), the inferred values of ψ are remarkably high, and thus would result in more volatile functions as described in Section 3.2. Especially in the case of the Squared Exponential

	1		0./0		۲ /۵		
		Matéri	1.3/2	Mate	${ m ern} 5/2$	Sq. Exponential	
#	Observed	Cauchy	Gamma	Cauchy	Gamma	Cauchy	Gamma
1.1	407,525	269,104	$288,\!484$	263,070	$313,\!911$	$216,\!849$	$284,\!687$
1.2	104,094	80,073	$83,\!937$	69,541	77,709	63,729	$77,\!340$
1.3	164,633	$151,\!235$	$155,\!306$	$150,\!681$	$156,\!467$	$137,\!297$	$153,\!394$
2.1	16,640	12,372	$14,\!254$	12,169	13,789	9,285	13,891
2.2	$353,\!949$	$323,\!956$	$329,\!846$	334,710	$345,\!927$	$324,\!372$	350,702
2.3	13,046	3,101	$6,\!627$	2,059	$6,\!993$	-838	$6,\!652$
3.1	37,397	37,993	38,901	38,613	40,278	38,126	37,737
3.2	137,642	209,772	280,729	$221,\!388$	$368,\!464$	166,334	212,727
3.3	11,561,327	$10,\!124,\!963$	$10,\!113,\!582$	$10,\!645,\!458$	$10,\!996,\!920$	$10,\!447,\!237$	$11,\!087,\!032$
4.1	10,965	48,026	90,421	57,721	103,467	62,062	98,422
4.2	422,513	99,228	$179,\!658$	81,173	$231,\!733$	19,260	$212,\!941$
4.3	37,612	$32,\!338$	$35,\!031$	32,725	$32,\!638$	$30,\!524$	28,782
5.1	45,916	$285,\!877$	310,663	268,616	$334,\!577$	303,043	325,816
5.2	40,225	$52,\!439$	$55,\!831$	53,097	$55,\!688$	$46,\!105$	51,710
5.3	307,810	$323,\!255$	$328,\!945$	$330,\!246$	$343,\!456$	302,472	$311,\!081$

Table 6.4: Loss Reserve predictions of variations on the prior distribution of ψ

Table 6.5: Root Mean Square Errors of variations on the prior distribution of ψ

		Matér	n 3/2	Matér	n 5/2	Sq. Exp	Sq. Exponential	
#	LoB	Cauchy	Gamma	Cauchy	Gamma	Cauchy	Gamma	
1.1	MM	15,868	13,756	15,934	11,015	18,284	13,416	
1.2	MM	3,598	4,039	4,779	4,786	$5,\!831$	$4,\!904$	
1.3	MM	6,863	$6,\!675$	6,429	$6,\!153$	$6,\!658$	$6,\!107$	
2.1	CA	1,676	$1,\!472$	1,709	$1,\!354$	1,916	1,347	
2.2	CA	5,639	5,010	3,878	4,217	3,983	4,727	
2.3	CA	1,897	1,368	2,062	$1,\!155$	$2,\!436$	$1,\!100$	
3.1	PA	975	1,042	1,219	$1,\!378$	$1,\!386$	1,420	
3.2	PA	8,818	$17,\!015$	10,086	$28,\!351$	$7,\!001$	$12,\!590$	
3.3	PA	221,335	224,798	150,992	$163,\!189$	$138,\!657$	$197,\!843$	
4.1	PL	6,149	11,898	$7,\!446$	14,798	9,085	16,188	
4.2	PL	38,779	26,986	40,347	$19,\!588$	$47,\!914$	20,015	
4.3	PL	2,601	$2,\!476$	2,245	2,223	$1,\!965$	2,058	
5.1	WC	30,970	34,701	$28,\!873$	44,033	34,910	53,562	
5.2	WC	$3,\!174$	3,505	3,267	3,716	$2,\!844$	$4,\!126$	
5.3	WC	13,365	14,815	$13,\!157$	14,934	9,304	10,062	

covariance function, the Cauchy prior distribution appears to get too much freedom. Performance of the Cauchy prior seems to be a better combination with the Matérn covariance functions.

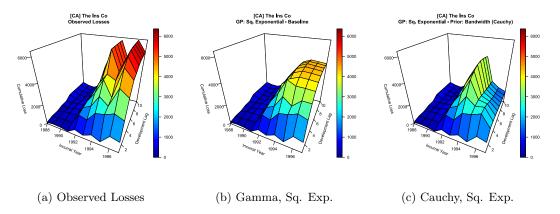
We visualise results by plotting Triangle 2.3 (Squared Exponential), Triangle 4.1 (Matérn 3/2) and Triangle 4.2 (Squared Exponential) in respectively Figures 6.1, 6.2 and 6.3.

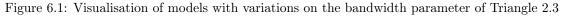
Figure 6.1c (Triangle 2.3 - Sq. Exponential) displays a weakness of the Cauchy prior: the instability of the triangle is captured for the Incurral Year of 1994, but it does not adequately capture the larger claims of 1995, 1996 and 1997, as a result of the flexibility caused by the large bandwidth parameter of the Incurral Year ($\psi_2 = 45.0727$, Table E.2). On the other hand, the Gamma(4, 4) prior distribution (Figure 6.1b) is unable to capture any of the outliers in this unstable triangle.

This is also visible in the results of Triangle 4.2 (Figure 6.3, where the Cauchy-distribution results in unrealistic estimates: the increased losses (starting from 1994 onward) appear to be interpreted as an outlier. As a result, the run-off for 1994 is very unrealistic. We have also

included the predicted run-off in Table 6.6 - from which it is visible that the GP model predicts losses to become lower over time. We have highlighted decreasing values on the DL-axis in red, which is uncommon behaviour for a run-off triangle.

On the other hand, Figure 6.2c (Triangle 4.1, Matérn 3/2) displays how the increased flexibility of the Cauchy prior improves the model predictions when compared to the Gamma(4,4) prior (Figure 6.2b). Trends in the data are more adequately captured, resulting in a significant improvement of both the Loss Reserve prediction and the RMSE.





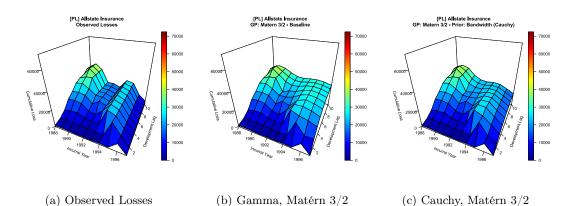


Figure 6.2: Visualisation of models with variations on the bandwidth parameter of Triangle 4.1

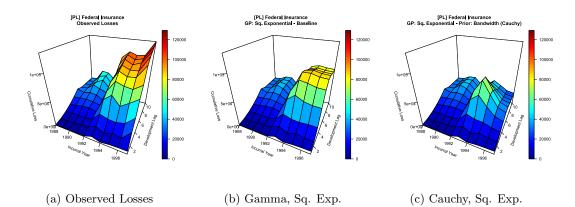


Figure 6.3: Visualisation of models with variations on the bandwidth parameter of Triangle 4.2

Table 6.6: Run-off prediction by the half-Cauchy distribution, applied on Triangle 4.2, Squared Exponential as displayed in Figure 6.3c

IY					Develop	ment Lag				
	1	2	3	4	5	6	7	8	9	10
1988	1,249	4,092	$8,\!893$	$15,\!516$	$23,\!806$	34,070	$30,\!699$	$31,\!130$	31,716	$32,\!430$
1989	946	2,929	9,953	$17,\!368$	$25,\!139$	$29,\!628$	$32,\!059$	$32,\!972$	$33,\!610$	34,014
1990	1,765	4,743	9,854	$20,\!471$	26,756	$33,\!654$	$43,\!282$	42,588	41,860	41,616
1991	1,408	$5,\!226$	9,768	$21,\!637$	$25,\!339$	$31,\!574$	37,738	41,942	43,012	42,786
1992	1,647	$7,\!628$	$12,\!848$	18,323	$21,\!943$	$23,\!139$	25,241	27,277	28,363	$28,\!554$
1993	7,566	$14,\!991$	29,466	49,090	$57,\!590$	53,392	44,038	37,063	33,514	$32,\!481$
1994	2,299	$6,\!856$	$23,\!954$	$61,\!496$	80,918	80,006	$66,\!574$	$54,\!359$	$47,\!405$	$45,\!087$
1995	4,959	$13,\!541$	23,003	43,597	57,732	$57,\!995$	$50,\!237$	42,725	38,201	36,736
1996	6,063	9,707	17,840	$28,\!960$	$36,\!698$	$37,\!334$	$33,\!883$	$30,\!537$	$28,\!519$	$27,\!815$
1997	6,507	8,607	14,968	$24,\!051$	30,890	32,010	29,788	$27,\!452$	26,063	$25,\!549$

6.2.2 Noise parameter (σ^2)

We will now present the results on the noise-parameter of the observations (σ^2). The predicted Loss Reserves are given in Table 6.7, and the RMSE of the mean predictions are presented in Table 6.8.

We observe that the variation of the prior distribution of σ^2 in general has a low impact. While we have accentuated the best prediction and lowest error, it can be argued if these differences are of any significance. While both prior distributions are weakly informative, the Student-T distribution in general performs better. For some triangles, however, a notable change of performance can be observed (e.g. Triangle 3.2). The estimations of σ^2 for each simulation is displayed in Table 6.9.

In general, we observe that $\hat{\sigma}^2$ tends to converge to zero. The Student-T prior distribution always results in lower estimates of $\hat{\sigma}^2$, which is as expected, considering the underlying distributions (Figure 4.2).

Assuming that the data-set is of such a quality that it consists of noise-free observations, a convergence to zero is to be expected. However, in case data quality would be worse, the log-normal distribution might perform better. The minor variations in the predictions between the two prior distributions is in line with the minor differences of the Loss Reserve and RMSE.

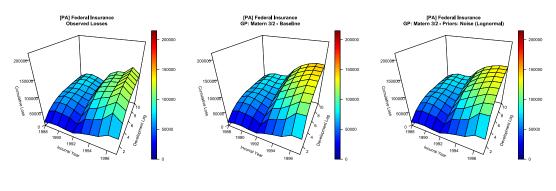
We visualise Triangle 3.2 (Matérn 3/2) and 3.3 (Sq. Exponential) in Figures 6.4 and 6.5. As can be seen, differences between both prior distributions are minimal.

		Maté	rn 3/2	Matér	rn 5/2	Sq. Exp	onential
#	Observed	Log-normal	Student-T	Log-normal	Student-T	Log-normal	Student-T
1.1	407,525	272,601	$288,\!484$	298,574	313,911	$306,\!052$	284,687
1.2	104,094	74,194	$83,\!937$	72,700	77,709	71,019	$77,\!340$
1.3	164,633	$155,\!526$	$155,\!306$	$159,\!180$	$156,\!467$	$154,\!512$	$153,\!394$
2.1	16,640	12,485	$14,\!254$	13,471	13,789	13,518	13,891
2.2	353,949	324,416	$329,\!846$	344,222	$345,\!927$	$325,\!100$	350,702
2.3	13,046	$5,\!672$	$6,\!627$	6,777	$6,\!993$	$6,\!673$	$6,\!652$
3.1	37,397	36,923	38,901	37,068	40,278	35,782	37,737
3.2	137,642	$244,\!253$	280,729	$307,\!681$	$368,\!464$	$195,\!412$	212,727
3.3	11,561,327	9,957,777	$10,\!113,\!582$	$10,\!629,\!365$	$10,\!996,\!920$	$10,\!680,\!209$	$11,\!087,\!032$
4.1	10,965	90,796	$90,\!421$	$101,\!121$	$103,\!467$	$96,\!122$	98,422
4.2	422,513	$174,\!581$	$179,\!658$	208,862	$231,\!733$	200,162	$212,\!941$
4.3	37,612	$38,\!584$	$35,\!031$	$36,\!824$	$32,\!638$	30,206	28,782
5.1	45,916	377,474	310,663	385,721	$334,\!577$	347,118	$325,\!816$
5.2	40,225	60,455	$55,\!831$	$59,\!887$	$55,\!688$	$53,\!423$	$51,\!710$
5.3	307,810	342,114	$328,\!945$	355,063	$343,\!456$	313,746	311,081

Table 6.7: Estimated Loss Reserves of variations on the prior distribution of σ^2

Table 6.8: Root Mean Square Errors of variations on the prior distribution of σ^2

		Matér	n 3/2	Matér	n 5/2	Sq. Expo	onential
#	LoB	Log-normal	Student-T	Log-normal	Student-T	Log-normal	Student-T
1.1	MM	15,345	13,756	12,703	11,015	$11,\!115$	13,416
1.2	MM	4,906	4,039	5,195	4,786	$5,\!324$	$4,\!904$
1.3	MM	6,697	$6,\!675$	6,158	$6,\!153$	$6,\!251$	$6,\!107$
2.1	CA	1,461	1,472	1,372	$1,\!354$	1,366	$1,\!347$
2.2	CA	5,855	5,010	4,764	$4,\!217$	6,565	4,727
2.3	CA	1,371	1,368	1,158	$1,\!155$	1,102	$1,\!100$
3.1	PA	1,105	1,042	1,264	1,378	$1,\!358$	1,420
3.2	PA	13,707	17,015	$21,\!194$	$28,\!351$	$11,\!500$	$12,\!590$
3.3	PA	251,794	$224,\!798$	204,904	$163,\!189$	$278,\!615$	$197,\!843$
4.1	PL	11,889	11,898	$14,\!522$	14,798	$15,\!526$	16,188
4.2	PL	27,727	$26,\!986$	22,047	$19,\!588$	21,738	20,015
4.3	PL	2,563	$2,\!476$	2,331	2,223	$2,\!253$	2,058
5.1	WC	45,989	34,701	52,412	44,033	46,797	53,562
5.2	WC	3,952	3,505	4,206	3,716	$4,\!180$	$4,\!126$
5.3	WC	16,944	$14,\!815$	16,780	$14,\!934$	$10,\!840$	10,062

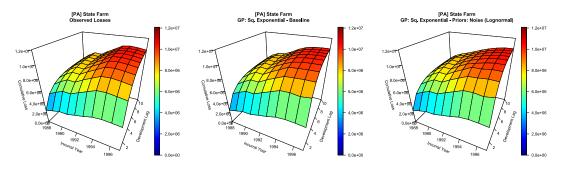


(a) Observed Losses (b) Student-T, Matérn 3/2 (c) Lognormal, Matérn 3/2

Figure 6.4: Visualisation of models with variations on the noise parameter of Triangle 3.2

$\hat{\sigma}$		Matér	n 3/2	Matéri	n 5/2	Sq. Exponential	
#	LoB	Log-normal	Student-T	Log-normal	Student-T	Log-normal	Student-T
1.1	MM	0.0117	0.0020	0.0142	0.0027	0.0197	0.0086
1.2	MM	0.0439	0.0228	0.0529	0.0425	0.0582	0.0484
1.3	MM	0.0083	0.0014	0.0083	0.0016	0.0090	0.0019
2.1	CA	0.0354	0.0039	0.0435	0.0348	0.0474	0.0405
2.2	CA	0.0067	0.0009	0.0068	0.0008	0.0158	0.0007
2.3	CA	0.0388	0.0075	0.0618	0.0495	0.0669	0.0584
3.1	PA	0.0085	0.0015	0.0091	0.0020	0.0098	0.0027
3.2	PA	0.0154	0.0024	0.0205	0.0029	0.0768	0.0634
3.3	PA	0.0061	0.0008	0.0065	0.0008	0.0090	0.0008
4.1	PL	0.0767	0.0641	0.0872	0.0763	0.0911	0.0794
4.2	PL	0.0192	0.0042	0.0203	0.0063	0.0465	0.0133
4.3	PL	0.0093	0.0016	0.0091	0.0017	0.0096	0.0017
5.1	WC	0.0097	0.0014	0.0113	0.0017	0.0272	0.0033
5.2	WC	0.0063	0.0009	0.0074	0.0010	0.0088	0.0019
5.3	WC	0.0050	0.0007	0.0044	0.0006	0.0041	0.0006

Table 6.9: Estimations of σ^2 , split per triangle and prior distribution



(a) Observed Losses(b) Student-T, Sq. Exponential(c) Lognormal, Sq. ExponentialFigure 6.5: Visualisation of models with variations on the noise parameter on Triangle 3.3

6.2.3 Signal parameter (η^2)

In this section, we investigate the effect of the prior distribution of the Signal parameter. The estimated Loss Reserves are given in Table 6.10 and the Root Mean Square Error of these predictions in Table 6.11.

		Matéri	n 3/2	Matéri	n 5/2	Sq. Expo	onential
#	Observed	Log-normal	Student-T	Log-normal	Student-T	Log-normal	Student-T
1.1	407,525	$293,\!655$	288,484	$321,\!546$	313,911	$289,\!649$	284,687
1.2	104,094	$88,\!815$	$83,\!937$	$81,\!078$	77,709	80,300	$77,\!340$
1.3	$164,\!633$	$157,\!072$	$155,\!306$	$161,\!363$	$156,\!467$	$154,\!665$	$153,\!394$
2.1	16,640	$14,\!699$	14,254	$14,\!468$	13,789	13,268	13,891
2.2	$353,\!949$	$328,\!106$	$329,\!846$	$351,\!765$	$345,\!927$	$344,\!004$	350,702
2.3	13,046	$7,\!152$	$6,\!627$	$7,\!774$	6,993	$7,\!674$	$6,\!652$
3.1	37,397	39,503	38,901	39,328	40,278	38,107	37,737
3.2	137,642	296,369	280,729	$398,\!443$	$368,\!464$	238,091	$212,\!727$
3.3	$11,\!561,\!327$	$10,\!120,\!266$	$10,\!113,\!582$	$11,\!123,\!106$	$10,\!996,\!920$	$11,\!090,\!064$	$11,\!087,\!032$
4.1	10,965	93,502	90,421	111,827	$103,\!467$	101,058	$98,\!422$
4.2	422,513	185,705	$179,\!658$	$237,\!454$	$231,\!733$	$223,\!322$	$212,\!941$
4.3	37,612	$35,\!638$	$35,\!031$	$33,\!748$	$32,\!638$	29,072	28,782
5.1	45,916	313,856	310,663	$315{,}743$	$334,\!577$	332,444	$325,\!816$
5.2	40,225	$54,\!835$	$55,\!831$	50,707	$55,\!688$	$50,\!550$	51,710
5.3	307,810	341,215	$328,\!945$	346,722	$343,\!456$	$305,\!868$	311,081

Table 6.10: Estimated Loss Reserves of variations on the prior distribution of η^2

Table 6.11: RMSE of variations on the prior distribution of η^2

		Matér	n 3/2	Matér	n 5/2	Sq. Expo	onential
#	LoB	Log-normal	Student-T	Log-normal	Student-T	Log-normal	Student-T
1.1	MM	13,515	13,756	10,091	11,015	$12,\!693$	13,416
1.2	MM	3,753	4,039	$4,\!594$	4,786	$4,\!741$	4,904
1.3	MM	$6,\!520$	$6,\!675$	6,099	$6,\!153$	$6,\!087$	6,107
2.1	CA	1,458	1,472	1,315	1,354	1,367	1,347
2.2	CA	5,112	5,010	4,006	4,217	$4,\!687$	4,727
2.3	CA	1,312	1,368	1,084	$1,\!155$	991	1,100
3.1	PA	1,073	1,042	1,335	1,378	1,472	1,420
3.2	PA	$18,\!659$	$17,\!015$	31,302	$28,\!351$	$15,\!287$	$12,\!590$
3.3	PA	$221,\!738$	224,798	$154,\!732$	$163,\!189$	$199,\!666$	$197,\!843$
4.1	PL	11,928	11,898	15,316	14,798	16,813	$16,\!188$
4.2	PL	26,209	$26,\!986$	$19,\!254$	19,588	$18,\!971$	20,015
4.3	PL	2,487	$2,\!476$	$2,\!173$	2,223	1,990	2,058
5.1	WC	35,009	34,701	39,683	44,033	54,109	53,562
5.2	WC	$3,\!433$	3,505	$3,\!423$	3,716	4,037	4,126
5.3	WC	15,665	$14,\!815$	15,050	$14,\!934$	9,887	10,062

Minor differences can be observed in the variations of the prior distribution of the signalparameter, analogous to the noise-parameter. The log-normal distribution appears to be a better combination with the Matérn 5/2 kernel function, while for both the Squared Exponential and the Matérn 3/2 kernel functions both prior distributions appear to be adequate. In all cases, the variation in prior distribution gives similar visual results (i.e. no difference in trends modeled are visible). Therefore, no further visualisations are given.

6.2.4 Warping parameters (α, β)

The parameters for the Input Warping ensure that the stationary covariance function is able to make adequate estimations, even when the underlying process need not be stationary. We have investigated suggestions of these hyperpriors given in the original paper describing Input Warping (Snoek et al., 2014), against the benchmark of the model by Lally and Hartman (2018). The estimated Loss Reserve of these models are given in Table 6.12, and Table 6.13 gives the RMSE of all models. The researched setup of the parameters in these tables are indicated by the names of the respective authors. The inferred values of $\alpha_1, \beta_1, \alpha_2, \beta_2$ are given in Appendix E.

Table 6.12: Estimated Loss Reserves of variations on the prior distribution of Input Warping parameters

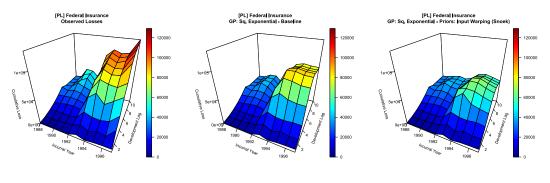
		Matéri	n 3/2	Maté	rn 5/2	Sq. Ex	ponential
#	Observed	Snoek	Lally	Snoek	Lally	Snoek	Lally
1.1	407,525	290,902	288,484	318,213	313,911	299,256	284,687
1.2	104,094	64,756	83,937	64,732	77,709	65,200	$77,\!340$
1.3	164,633	$145,\!554$	$155,\!306$	139,773	$156,\!467$	$115,\!130$	$153,\!394$
2.1	16,640	$14,\!946$	14,254	14,236	13,789	$13,\!873$	$13,\!891$
2.2	$353,\!949$	$342,\!116$	$329,\!846$	$360,\!514$	$345,\!927$	302,151	$350,\!702$
2.3	13,046	$7,\!115$	$6,\!627$	$7,\!231$	6,993	$6,\!910$	$6,\!652$
3.1	37,397	$37,\!544$	38,901	35,779	40,278	31,976	37,737
3.2	137,642	292,426	280,729	$392,\!496$	$368,\!464$	$178,\!848$	212,727
3.3	11,561,327	$10,\!374,\!343$	$10,\!113,\!582$	$10,\!809,\!192$	$10,\!996,\!920$	9,779,046	$11,\!087,\!032$
4.1	10,965	89,576	90,421	$103,\!009$	103,467	$95,\!305$	98,422
4.2	422,513	170,923	$179,\!658$	$224,\!991$	231,733	$115,\!097$	$212,\!941$
4.3	37,612	$39,\!693$	$35,\!031$	$40,\!824$	$32,\!638$	33,318	28,782
5.1	45,916	318,854	310,663	$314,\!423$	$334,\!577$	$396,\!805$	$325,\!816$
5.2	40,225	$67,\!647$	$55,\!831$	$61,\!629$	$55,\!688$	50,727	51,710
5.3	307,810	$361,\!863$	$328,\!945$	$371,\!890$	$343,\!456$	$314,\!450$	$311,\!081$

Table 6.13: RMSE of variations on the prior distribution of Input Warping parameters

		Matér	n 3/2	Matér	n 5/2	Sq. Exp	oonential
#	LoB	Snoek	Lally	Snoek	Lally	Snoek	Lally
1.1	MM	14,046	13,756	10,956	11,015	10,839	13,416
1.2	MM	6,247	4,039	6,192	4,786	$5,\!699$	$4,\!904$
1.3	MM	7,071	$6,\!675$	6,793	$6,\!153$	$7,\!373$	$6,\!107$
2.1	CA	1,532	$1,\!472$	1,352	$1,\!354$	$1,\!354$	1,347
2.2	CA	6,419	5,010	3,380	4,217	$6,\!569$	4,727
2.3	CA	1,349	1,368	1,182	$1,\!155$	$1,\!121$	1,100
3.1	PA	1,148	1,042	$1,\!375$	$1,\!378$	1,411	1,420
3.2	PA	17,556	$17,\!015$	30,168	$28,\!351$	$10,\!221$	$12,\!590$
3.3	PA	$207,\!115$	$224,\!798$	138,204	$163,\!189$	$231,\!661$	$197,\!843$
4.1	PL	10,927	11,898	$13,\!410$	14,798	$15,\!002$	16,188
4.2	PL	29,900	$26,\!986$	23,135	$19,\!588$	$33,\!694$	20,015
4.3	PL	2,827	$2,\!476$	2,247	2,223	$1,\!661$	2,058
5.1	WC	34,089	34,701	$36,\!685$	44,033	$54,\!253$	$53,\!562$
5.2	WC	4,091	3,505	4,077	3,716	$3,\!893$	4,126
5.3	WC	16,603	$14,\!815$	$16,\!158$	$14,\!934$	$9,\!470$	10,062

In general, we observe that the Prior distribution as used in the model by Lally and Hartman (2018) is adequate for most triangles. In the case that the setup by Snoek et al. (2014) gives better results, the difference in general is fairly minor.

The effect of these variations are visualised by \mathbb{R}^3 -plots of Triangles 4.2 (Matérn 3/2) in Figure 6.6 and Triangle 3.2 (Sq. Exponential) in Figure 6.7. The priors by Snoek appear to be unable to model the growth witnessed in Triangle 4.2 in the Incurral Year-axis - while the trend of Triangle 2.3 (which is similar, not visualised) is captured accordingly by Snoek's prior distribution. For all other triangles, including Triangle 3.2 visualised in Figure 6.7, the general trend remains identical.



(a) Observed Losses (b) Lally, Sq. Exponential (c) Snoek, Sq. Exponential

Figure 6.6: Visualisation of models applying Snoek's Input Warping prior distributions on Triangle 4.2

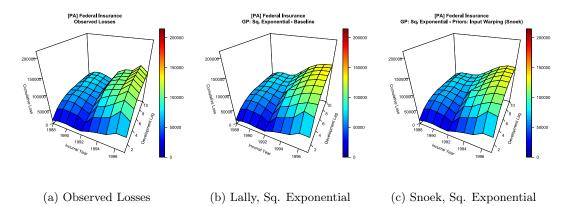


Figure 6.7: Visualisation of models applying Snoek's Input Warping prior distributions on Triangle 3.2

6.2.5 Optimal prior configuration

Given the results from the previous sections on the prior distributions, we can identify an optimal combination of priors per triangle and covariance function, based on the RMSE of the previous results. These configurations are given in Tables 6.14, 6.15 and 6.16, where variations on the model by Lally and Hartman (2018) are marked in **bold**.

In three cases, the configuration by Lally and Hartman (2018) gave the lowest RMSE for the GP model. In 15 cases, only one different prior distribution than the configuration by Lally and Hartman (2018) gave the lowest RMSE. For the 28 other combinations, we ran the model with the optimal configuration. The predicted Loss Reserves are given in Table 6.17 and the corresponding RMSE is given in Table 6.18, with the best performing method overall marked in green.

Triangle	Bandwidth (ψ)	Noise (σ^2)	Signal (η^2)	Warping (α, β)
1.1	Gamma	Student-T	Log-normal	Lally
1.2	Cauchy	Student-T	Log-normal	Lally
1.3	Gamma	Student-T	Log-normal	Lally
2.1	Gamma	Log-normal	Log-normal	Lally
2.2	Gamma	Student-T	Student-T	Lally
2.3	Gamma	Student-T	Log-normal	Snoek
3.1	Cauchy	Student-T	Student-T	Lally
3.2	Cauchy	Log-normal	Student-T	Lally
3.3	Cauchy	Student-T	Log-normal	Snoek
4.1	Cauchy	Log-normal	Student-T	Snoek
4.2	Gamma	Student-T	Log-normal	Lally
4.3	Gamma	Student-T	Student-T	Lally
5.1	Cauchy	Student-T	Student-T	Snoek
5.2	Cauchy	Student-T	Log-normal	Lally
5.3	Cauchy	Student-T	Student-T	Lally

Table 6.14: Optimal prior configuration of Matérn 3/2 covariance function

Table 6.15: Optimal prior configuration of Matérn 5/2 covariance function

Triangle	Bandwidth (ψ)	Noise (σ^2)	Signal (η^2)	Warping (α, β)
1.1	Gamma	Student-T	Log-normal	Snoek
1.2	Cauchy	Student-T	Log-normal	Lally
1.3	Gamma	Student-T	Log-normal	Lally
2.1	Gamma	Student-T	Log-normal	Snoek
2.2	Cauchy	Student-T	Log-normal	Snoek
2.3	Gamma	Student-T	Log-normal	Lally
3.1	Cauchy	Log-normal	Log-normal	Snoek
3.2	Cauchy	Log-normal	Student-T	Lally
3.3	Cauchy	Student-T	Log-normal	Snoek
4.1	Cauchy	Log-normal	Student-T	Snoek
4.2	Gamma	Student-T	Log-normal	Lally
4.3	Gamma	Student-T	Log-normal	Lally
5.1	Cauchy	Student-T	Log-normal	Snoek
5.2	Cauchy	Student-T	Log-normal	Lally
5.3	Cauchy	Student-T	Student-T	Lally

We observe that tweaking the prior distribution can have a positive impact on the model performance, especially for the Matérn covariance functions. We visualise the model predictions of Triangles 3.2 and 4.1, Squared Exponential, in Figures 6.8 and 6.9.

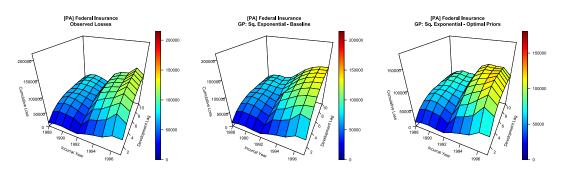
For Triangle 3.2, we see that the optimal priors are able to capture the more volatile trend, resulting in a lower RMSE and more accurate Best Estimate. In Figure 6.9, it can be observed that the optimal priors are also able to capture the more volatile trend, most notably the declined claims in Incurral Year 1997.

Triangle	Bandwidth (ψ)	Noise (σ^2)	Signal (η^2)	Warping (α, β)
1.1	Gamma	Log-normal	Log-normal	Snoek
1.2	Gamma	Student-T	Log-normal	Lally
1.3	Gamma	Student-T	Log-normal	Lally
2.1	Gamma	Student-T	Student-T	Lally
2.2	Cauchy	Student-T	Log-normal	Lally
2.3	Gamma	Student-T	Log-normal	Lally
3.1	Cauchy	Log-normal	Student-T	Snoek
3.2	Cauchy	Log-normal	Student-T	Snoek
3.3	Cauchy	Student-T	Student-T	Lally
4.1	Cauchy	Log-normal	Student-T	Snoek
4.2	Gamma	Student-T	Log-normal	Lally
4.3	Cauchy	Student-T	Log-normal	Snoek
5.1	Cauchy	Log-normal	Student-T	Lally
5.2	Cauchy	Student-T	Log-normal	Snoek
5.3	Cauchy	Student-T	Log-normal	Snoek

Table 6.16: Optimal prior configuration of Squared Exponential covariance functions

Table 6.17: Estimated Loss Reserves of models with optimal prior configuration

		Matérn 3/2		Matérn $5/2$		Sq. Exponential	
#	Observed	Optimal	Lally	Optimal	Lally	Optimal	Lally
1.1	407,525	$293,\!655$	288,484	$340,\!579$	313,911	$312,\!492$	284,687
1.2	104,094	$84,\!920$	$83,\!937$	$74,\!270$	77,709	80,300	$77,\!340$
1.3	$164,\!633$	$157,\!072$	$155,\!306$	161, 363	$156,\!467$	$154,\!665$	$153,\!394$
2.1	16,640	13,330	$14,\!254$	14,903	13,789	13,891	13,891
2.2	$353,\!949$	329,846	$329,\!846$	$333,\!871$	$345,\!927$	338,740	350,702
2.3	13,046	$7,\!351$	$6,\!627$	7,774	6,993	$7,\!674$	$6,\!652$
3.1	37,397	37,993	38,901	31,861	$40,\!278$	28,429	37,737
3.2	137,642	$187,\!778$	280,729	$193,\!522$	$368,\!464$	$135,\!655$	212,727
3.3	$11,\!561,\!327$	$10,\!584,\!904$	$10,\!113,\!582$	$10,\!517,\!807$	$10,\!996,\!920$	$10,\!447,\!237$	$11,\!087,\!032$
4.1	10,965	64,614	90,421	64,792	103,467	$56,\!876$	98,422
4.2	422,513	185,705	$179,\!658$	$237,\!454$	231,733	$223,\!322$	$212,\!941$
4.3	37,612	$35,\!031$	$35,\!031$	33,748	$32,\!638$	30,712	28,782
5.1	45,916	306,089	310,663	$299,\!159$	$334{,}577$	347,729	$325,\!816$
5.2	40,225	$51,\!995$	$55,\!831$	$54,\!563$	$55,\!688$	60,724	$51,\!710$
5.3	307,810	$323,\!255$	$328,\!945$	$330,\!246$	$343,\!456$	$304,\!559$	$311,\!081$



(a) Observed Losses(b) Lally, Sq. Exponential(c) Optimal, Sq. ExponentialFigure 6.8: Visualisation of models with optimal priors on Triangle 3.2

	Matérn 3/2		Matérn $5/2$		Sq. Exponential	
#	Optimal	Lally	Optimal	Lally	Optimal	Lally
1.1	$13,\!515$	13,756	8,389	11,015	9,596	13,416
1.2	3,223	4,039	$4,\!504$	4,786	$4,\!741$	4,904
1.3	$6,\!520$	$6,\!675$	6,099	$6,\!153$	$6,\!087$	$6,\!107$
2.1	$1,\!427$	$1,\!472$	1,320	$1,\!354$	$1,\!347$	1,347
2.2	5,010	$5,\!010$	5,231	4,217	3,255	4,727
2.3	$1,\!353$	1,368	1,084	$1,\!155$	991	$1,\!100$
3.1	975	1,042	1,325	1,378	$1,\!418$	1,420
3.2	$7,\!454$	$17,\!015$	$7,\!849$	$28,\!351$	8,912	$12,\!590$
3.3	$191,\!528$	224,798	$143,\!372$	$163,\!189$	$138,\!657$	$197,\!843$
4.1	7,706	11,898	8,117	14,798	8,298	16,188
4.2	26,209	$26,\!986$	$19,\!254$	19,588	$18,\!971$	20,015
4.3	2,476	$2,\!476$	$2,\!173$	2,223	2,259	2,058
5.1	31,736	34,701	30,305	44,033	$44,\!363$	53,562
5.2	$3,\!139$	3,505	3,365	3,716	4,049	$4,\!126$
5.3	13,365	$14,\!815$	$13,\!157$	$14,\!934$	8,315	10,062

Table 6.18: RMSE of variations of models with optimal prior configuration

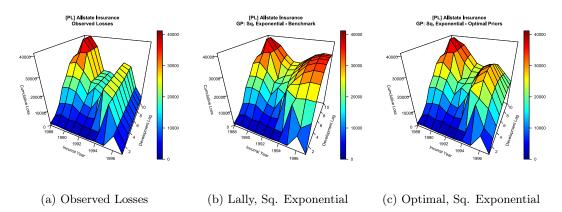


Figure 6.9: Visualisation of models with optimal priors on Triangle 4.1

6.3 Premium Information

In this section, the results of adding premium information to the model are presented. The research setup is described in Section 4.3. The methods of implementing this information researched is either a transformation to Loss Ratio's, using the premium volume as input as opposed to the incurral years or by adding a Bornheutter-Ferguson estimation to the model. In all cases, we use identical prior distribution to the model as initially described by Lally and Hartman (2018). We recall the research questions that we attempt to answer:

In order to improve the Best Estimate and/or reduce the confidence interval:

- Can relevant, out-of-triangle information be supplied to the model?
- Can the GP model be extended with a Bornheutter-Ferguson estimation method?

The triangles which have a smooth variation in premium volume over time are triangles 1.1, 2.1, 2.2, 3.1, 3.3 and 5.2. The triangles with more abrupt changes in volume are triangles 1.2, 2.3, 3.2, 4.1, 4.2, 5.1 and 5.2. Especially for the latter triangles, we intend to improve the Best Estimate predicted by the model by supplying the model with extra information - these triangles are highlighted in all results tables. For all triangles, we with to reduce the confidence interval of the loss reserve.

6.3.1 Loss Ratio's

Prediction and Error of Best Estimate

First, we touch upon the transformation of the entire triangle to Loss Ratio's. We give the predicted Loss Reserves in Table 6.19, and the RMSE of these predictions in Table 6.20.

		Matér	n 3/2	Maté	rn 5/2	Sq. Ex	ponential
#	Observed	LR	Cum. Loss	LR	Cum. Loss	LR	Cum. Loss
1.1	407,525	$338,\!250$	288,484	$356,\!174$	313,911	$351,\!119$	284,687
1.2	104,094	83,921	$83,\!937$	$96,\!231$	77,709	$104,\!655$	$77,\!340$
1.3	164,633	$166,\!147$	$155,\!306$	$164,\!002$	$156,\!467$	$153,\!824$	$153,\!394$
2.1	16,640	16,727	$14,\!254$	$17,\!227$	13,789	$17,\!226$	13,891
2.2	$353,\!949$	$362,\!388$	$329,\!846$	$362,\!530$	$345,\!927$	$354,\!148$	350,702
2.3	13,046	7,707	$6,\!627$	$7,\!551$	6,993	$7,\!189$	$6,\!652$
3.1	37,397	44,361	$38,\!901$	44,721	$40,\!278$	42,930	37,737
3.2	137,642	$285,\!633$	280,729	$320,\!787$	$368,\!464$	323,791	$212,\!727$
3.3	$11,\!561,\!327$	$12,\!372,\!458$	$10,\!113,\!582$	$13,\!010,\!468$	$10,\!996,\!920$	$12,\!327,\!887$	$11,\!087,\!032$
4.1	10,965	39,420	90,421	50,066	103,467	$54,\!592$	98,422
4.2	422,513	$221,\!350$	$179,\!658$	$266,\!676$	231,733	$254,\!007$	$212,\!941$
4.3	37,612	$37,\!744$	$35,\!031$	$36,\!698$	$32,\!638$	28,409	28,782
5.1	45,916	116,491	310,663	$172,\!023$	$334,\!577$	$146,\!763$	325,816
5.2	40,225	49,738	$55,\!831$	$43,\!021$	$55,\!688$	$35,\!880$	51,710
5.3	307,810	$332,\!075$	$328,\!945$	$302,\!573$	$343,\!456$	255,733	$311,\!081$

Table 6.19: Estimated Loss Reserves of Loss Ratio data against Cumulative Loss data

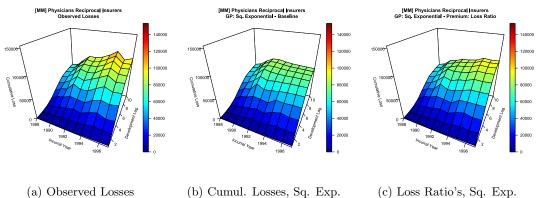
The transformation to Loss Ratio's gives a substantial improvement over the application on cumulative loss figures, most notably in the cases where the models on Cumulative Loss data fail to capture important trends. The model with the lowest RMSE does not always align with the

		Maté	érn $3/2$	Mat	érn $5/2$	Sa Ea	rponential
#	LoB	LR	Cum. Loss	LR	Cum. Loss	LR	Cum. Loss
1.1	MM	8,400	13,756	6,322	11,015	5,759	13,416
1.2	MM	3,346	4,039	$4,\!347$	4,786	6,022	4,904
1.3	MM	$5,\!593$	$6,\!675$	$5,\!420$	$6,\!153$	$5,\!431$	$6,\!107$
2.1	CA	1,395	1,472	1,295	1,354	1,288	1,347
2.2	CA	4,394	5,010	7,789	$4,\!217$	7,761	4,727
2.3	CA	1,047	1,368	1,009	$1,\!155$	977	1,100
3.1	PA	1,920	1,042	2,169	1,378	2,171	1,420
3.2	PA	$16,\!585$	17,015	$21,\!392$	$28,\!351$	$23,\!539$	$12,\!590$
3.3	PA	211,368	224,798	365,734	$163,\!189$	433,816	$197,\!843$
4.1	PL	5,726	11,898	6,929	14,798	7,702	16,188
4.2	PL	$20,\!695$	26,986	$16,\!037$	$19,\!588$	$16,\!490$	20,015
4.3	PL	1,701	2,476	$1,\!534$	2,223	$1,\!675$	2,058
5.1	WC	9,406	34,701	17,765	44,033	$17,\!588$	53,562
5.2	WC	3,270	3,505	3,244	3,716	3,166	4,126
5.3	WC	9,230	$14,\!815$	$7,\!595$	$14,\!934$	$7,\!465$	10,062

Table 6.20: RMSE of Loss Ratio data against Cumulative Loss data

model that has the better Loss Reserve estimation, indicating that some models might still not be able to capture all trends accordingly (e.g. Triangle 2.2, Squared Exponential covariance).

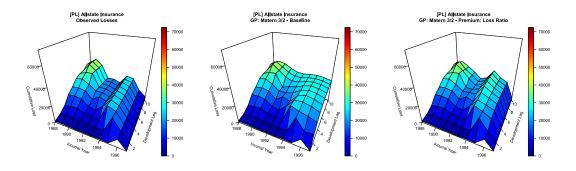
We visualise Triangles 1.1 (Squared Exponential), 4.1 (Matérn 3/2) and 1.2 (Squared Exponential) in, respectively, Figures 6.10, 6.11 and 6.12.



(b) Cullul. Losses, 5q. Exp. (c) Loss Ratio S, 5q. Exp.

Figure 6.10: Visualisation of models applying Loss Ratio's as input on Triangle 1.1

Both Figures 6.10 and 6.11 show an improvement caused by the transformation to Loss Ratio's. Both models are able to predict the trends in the data adequately, resulting in both a lower RMSE and a more accurate Best Estimate of the Loss Reserve. However, Figure 6.12 shows that, while the Best Estimate of the loss reserve is adequate (as presented in Table 6.19), the model does not capture the relevant trends accordingly - as reflected in the RMSE.



(a) Observed Losses (b) Cumul. Losses, Matérn3/2 (c) Loss Ratio's, Matérn3/2

Figure 6.11: Visualisation of models applying Loss Ratio's as input on Triangle 4.1

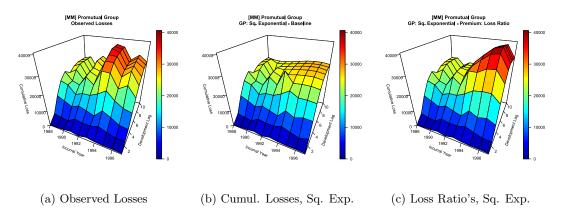


Figure 6.12: Visualisation of models applying Loss Ratio's as input on Triangle 1.2

Confidence of prediction

In Table 6.21, the standard deviations of the predicted Loss Reserves are given. We observe no substantial improvement in this regard when comparing the Loss Ratio implementation against the cumulative loss implementation. We visualise this by two density plots given in Figures 6.13 and 6.14 (resp. Triangle 1.1 (Matérn 5/2) and 1.2 (Sq. Exponential), where no improvement can be observed.

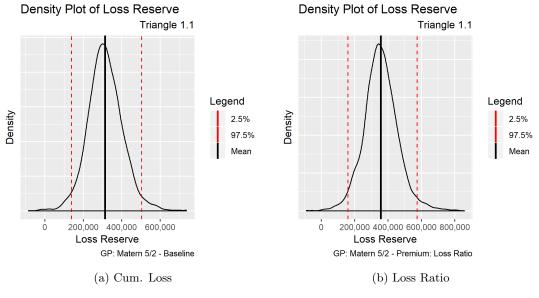


Figure 6.13: Density of Triangle 1.1 (Matérn 5/2)

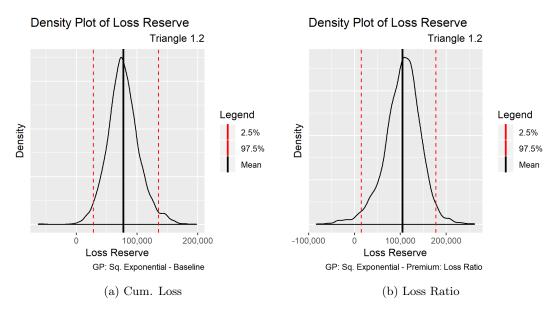


Figure 6.14: Density of Triangle 1.2 (Sq. Exponential)

		Maté	ern 3/2	Maté	rn 5/2	Sq. Ex	ponential
#	LoB	LR	Cum. Loss	LR	Cum. Loss	LR	Cum. Loss
1.1	MM	109,023	$86,\!625$	102,753	90,804	78,349	83,825
1.2	MM	$30,\!975$	$33,\!058$	38,165	27,092	40,184	$26,\!187$
1.3	MM	$40,\!472$	$41,\!430$	38,080	$36,\!476$	41,184	37,098
2.1	CA	6,574	$5,\!458$	4,821	4,712	4,292	4,128
2.2	CA	$98,\!457$	$73,\!495$	96,002	74,844	$95,\!817$	$65,\!842$
2.3	CA	6,092	$3,\!931$	5,134	4,061	4,703	4,335
3.1	PA	9,569	8,039	9,400	8,852	10,210	8,223
3.2	PA	115,785	$92,\!948$	$120,\!643$	$118,\!434$	$101,\!241$	$98,\!847$
3.3	PA	3,729,540	$2,\!400,\!639$	$3,\!885,\!112$	$2,\!616,\!817$	$3,\!394,\!312$	$2,\!541,\!395$
4.1	PL	30,759	$57,\!195$	30,920	56,209	30,956	58,213
4.2	PL	129,409	$95,\!199$	$158,\!818$	$128,\!196$	$144,\!230$	$116,\!028$
4.3	PL	$19,\!890$	$21,\!155$	$19,\!281$	21,202	16,752	18,783
5.1	WC	$75,\!294$	229,973	130,722	226,372	$124,\!941$	202,139
5.2	WC	$36,\!321$	37,775	$34,\!618$	$37,\!127$	28,393	26,968
5.3	WC	$142,\!339$	$107,\!898$	$125,\!286$	$120,\!175$	$101,\!408$	104,266

Table 6.21: Standard Deviation of Loss Ratio data against Cumulative Loss data

6.3.2 Premium as input

Prediction and Error of Best Estimate

In this section, we present the the RMSE and predicted Loss Reserves by supplying the net premium as input to the model, as opposed to the Incurral Year. The predicted Loss Reserves are presented in Table 6.22 and the corresponding RMSE is given in Table 6.23.

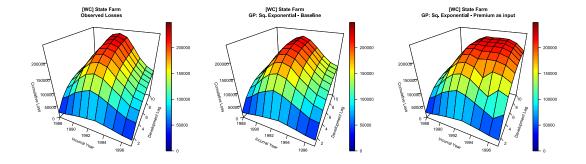
		Matéri	n 3/2	Maté	rn 5/2	Sq. Expo	onential
#	Observed	Premium	Í	Premium	IY	Premium	IY
1.1	407,525	255,061	$288,\!484$	283,618	313,911	$306,\!237$	284,687
1.2	104,094	74,258	$83,\!937$	75,054	77,709	$75,\!283$	$77,\!340$
1.3	164,633	70,174	$155,\!306$	72,442	$156,\!467$	$61,\!084$	$153,\!394$
2.1	16,640	15,021	14,254	$15,\!281$	13,789	$14,\!623$	13,891
2.2	353,949	$343,\!038$	$329,\!846$	$353,\!379$	345,927	360,940	350,702
2.3	13,046	6,032	$6,\!627$	6,144	6,993	3,966	$6,\!652$
3.1	37,397	31,301	$38,\!901$	33,049	$40,\!278$	31,755	37,737
3.2	137,642	$106,\!143$	280,729	$132,\!115$	368,464	$132,\!415$	212,727
3.3	11,561,327	$10,\!216,\!463$	$10,\!113,\!582$	10,918,190	$10,\!996,\!920$	$11,\!225,\!306$	$11,\!087,\!032$
4.1	10,965	74,960	90,421	81,369	103,467	$74,\!415$	98,422
4.2	422,513	141,330	$179,\!658$	172,116	$231,\!733$	173,763	$212,\!941$
4.3	37,612	$58,\!486$	$35,\!031$	57,983	$32,\!638$	55,911	28,782
5.1	45,916	349,603	310,663	364,351	$334,\!577$	335,710	$325,\!816$
5.2	40,225	210,484	$55,\!831$	211,814	$55,\!688$	$210,\!551$	$51,\!710$
5.3	307,810	$505,\!340$	$328,\!945$	536,028	$343,\!456$	$541,\!134$	$311,\!081$

Table 6.22: Estimated Loss Reserves of applying net premium as input

We observe that this method provides no advantage over the regular model. Triangles 3.2 and 4.1 have an improvement in RMSE, but the other results show a detrimental effect, most notably the results of Triangles 5.2 and 5.3. When analysing the estimated loss reserves, we see that performance of this model is considerably worse than applying it on cumulative losses, even for the triangles with a volatile premium development. The results are visualised by plotting Triangle 5.3 (Squared Exponential) in Figure 6.15 and Triangle 3.2 (Matérn 5/2) in Figure 6.16.

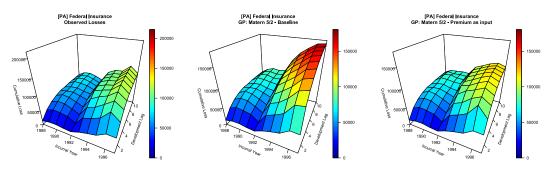
	1					~ 7		
		Ma	térn $3/2$	Ma	Matérn $5/2$		Sq. Exponential	
#	LoB	Premium	Incurral Year	Premium	Incurral Year	Premium	Incurral Year	
1.1	MM	15,151	13,756	12,230	11,015	9,754	13,416	
1.2	MM	5,293	4,039	5,242	4,786	5,208	$4,\!904$	
1.3	MM	15,428	$6,\!675$	15,196	$6,\!153$	$15,\!388$	$6,\!107$	
2.1	CA	1,296	1,472	1,301	1,354	1,340	1,347	
2.2	CA	4,795	5,010	5,198	$4,\!217$	$5,\!658$	4,727	
2.3	CA	1,160	1,368	1,165	$1,\!155$	$1,\!375$	1,100	
3.1	PA	1,551	1,042	1,562	1,378	1,620	1,420	
3.2	PA	8,970	17,015	6,341	$28,\!351$	5,793	$12,\!590$	
3.3	PA	$215,\!809$	224,798	163,488	$163,\!189$	$179,\!581$	$197,\!843$	
4.1	PL	7,547	11,898	7,991	14,798	7,397	16,188	
4.2	PL	29,154	26,986	24,706	$19,\!588$	$24,\!623$	20,015	
4.3	PL	5,561	$2,\!476$	5,545	2,223	5,523	2 ,058	
5.1	WC	36,324	34,701	43,624	44,033	50,766	53,562	
5.2	WC	22,485	3,505	22,518	3,716	$22,\!385$	$4,\!126$	
5.3	WC	54,862	$14,\!815$	55,407	$14,\!934$	$55,\!580$	10,062	

Table 6.23: RMSE of applying net premium as input



(a) Observed Losses(b) Incurral Year, Sq. Exponential(c) Net Premium, Sq. ExponentialFigure 6.15: Visualisation of models having supplied premium as input on Triangle 5.3

In Figure 6.15, we see a clear underperformance of the model. Due to the changed input, the model is unable to grasp the general trend in the model, resulting in detrimental results. On the other hand, we see an improvement of the model in Figure 6.16. While the regular model gives remarkable results (the Matérn 3/2 and Sq. Exponential covariance functions perform better for this triangle), an improvement can be seen. For this triangle, the amount of net premium received appears to be an adequate indicator for the size of the loss reserve.



(a) Observed Losses (b) Incurral Year, Matér
n5/2 (c) Net Premium, Matérn5/2

Figure 6.16: Visualisation of models having supplied premium as input on Triangle 3.2

Confidence of Prediction

Concluding, we present the results of the standard deviation of the loss reserve in Table 6.24. While there is no improvement of Best Estimate predictions, the volatility in the predictions appears to have declined. We visualise this in Figures 6.17 and 6.18, where density plots are given of Triangles 1.1 and 4.3 (Both Squared Exponential). We can see a decrease of the Confidence Interval of the prediction, even though the predictions (as described earlier) are generally of worse quality.

Table 6.24: Standard Deviation of 1	Loss Reserve Predictions: a	applying net premium as input

	Mat	Matérn $3/2$		${ m \acute{e}rn}~5/2$	Sq. Exponential	
#	Premium	Incurral Year	Premium	Incurral Year	Premium	Incurral Year
1.1	76,069	$86,\!625$	$66,\!152$	$90,\!804$	$64,\!015$	83,825
1.2	27,077	$33,\!058$	$23,\!145$	27,092	$22,\!218$	26,187
1.3	46,582	$41,\!430$	42,858	$36,\!476$	45,505	37,098
2.1	5,469	$5,\!458$	5,007	4,712	4,328	4,128
2.2	72,223	$73,\!495$	$79,\!675$	$74,\!844$	$75,\!385$	$65,\!842$
2.3	3,576	3,931	$3,\!809$	4,061	3,883	4,335
3.1	9,058	8,039	8,860	8,852	10,855	8,223
3.2	84,720	$92,\!948$	$77,\!845$	$118,\!434$	$82,\!931$	$98,\!847$
3.3	$2,\!256,\!542$	$2,\!400,\!639$	$2,\!265,\!738$	$2,\!616,\!817$	$2,\!271,\!498$	$2,\!541,\!395$
4.1	48,327	$57,\!195$	$48,\!411$	56,209	48,396	58,213
4.2	91,648	$95,\!199$	$94,\!520$	$128,\!196$	$106,\!841$	116,028
4.3	11,370	$21,\!155$	$10,\!196$	21,202	10,029	18,783
5.1	237,872	$229,\!973$	244,785	$226,\!372$	$191,\!188$	202,139
5.2	63,896	$37,\!775$	$58,\!815$	$37,\!127$	$58,\!343$	26,968
5.3	117,000	$107,\!898$	$108,\!588$	120,175	112,918	104,266

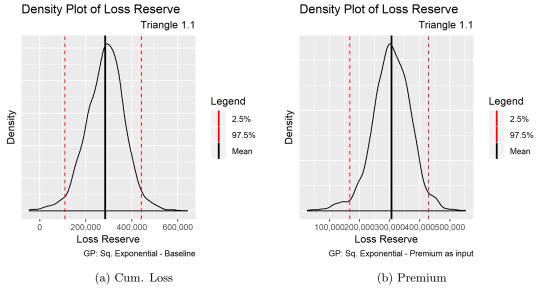


Figure 6.17: Density of Triangle 1.1 (Sq. Exponential)

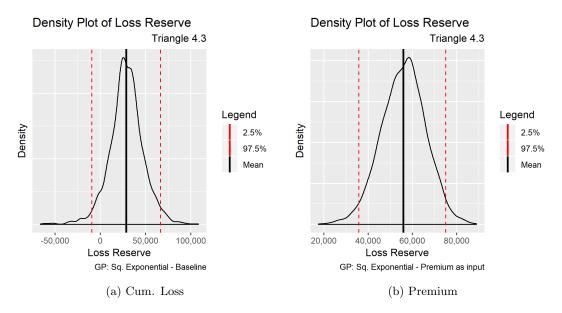


Figure 6.18: Density of Triangle 4.3 (Sq. Exponential)

6.3.3 Bornheutter-Ferguson Estimations

In this section, we attempt to both improve the predictions of triangles by supplying information on the net premium, and get a more accurate prediction of the Loss Reserve and reduce the uncertainty of that prediction.

The estimations made by the Bornheutter-Ferguson method directly result in the Best Estimate for the Loss Reserve, as these estimators are supplied to the model as if they are noisy observations at the final development lag. The GP model is able to estimate the amount of noise in these observations. While the model is thus able to estimate the uncertainty of the Loss Reserve by estimating the noise parameter, the Best Estimate is always equal to the supplied estimators. As such, we do not compare models on their Loss Reserve predictions, but solely on error statistics.

The BF-estimators, compared to their actual ultimate loss, are given in Appendix F.

Error of prediction

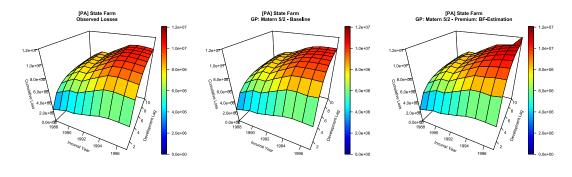
First, we analyse the RMSE of the predictions, given in Table 6.25. It should be noted that this is the RMSE of all missing observations as predicted by the Gaussian process model (i.e. not including Development Lag 10). The BF-observations, as generated by a seperate process, have not been taken in account. For equal comparison, we give the benchmark RMSE for the identical number of estimations (i.e. also excluding DL=10).

		Ma	térn $3/2$	Ma	térn $5/2$	Sq. E	Exponential
#	LoB	BF	Cumul. Loss	BF	Cumul. Loss	BF	Cumul. Loss
1.1	MM	6,206	12,738	$5,\!619$	10,114	$5,\!628$	12,108
1.2	MM	$4,\!350$	4,019	4,827	4,709	4,996	$4,\!834$
1.3	MM	8,239	6,954	$6,\!652$	$6,\!371$	$6,\!306$	$6,\!287$
2.1	CA	1,199	1,527	$1,\!193$	1,389	1,205	1,382
2.2	CA	$9,\!630$	4,927	$10,\!051$	4,205	$9,\!985$	$4,\!824$
2.3	CA	1,025	1,415	977	1174	938	1,102
3.1	PA	1,494	1,06 3	1,606	$1,\!413$	$1,\!649$	1,459
3.2	PA	$25,\!380$	$16,\!442$	$25,\!980$	$27,\!359$	$24,\!343$	$12,\!543$
3.3	PA	$513,\!303$	$220,\!553$	$495,\!037$	$165,\!984$	597,705	$207,\!054$
4.1	PL	12,240	11,988	$14,\!568$	15,090	$16,\!193$	16,757
4.2	PL	$22,\!421$	25,111	19,725	$17,\!580$	$18,\!449$	$17,\!512$
4.3	PL	2,532	$2,\!496$	$2,\!612$	$2,\!238$	2,727	2,061
5.1	WC	14,788	33,806	$15,\!684$	44,063	$21,\!630$	54,903
5.2	WC	$2,\!904$	$3,\!533$	$3,\!171$	3,753	3,986	4,193
5.3	WC	22,230	$14,\!378$	20,501	$14,\!505$	$18,\!305$	9,713

 Table 6.25:
 RMSE of applying Bornheutter-Ferguson estimation

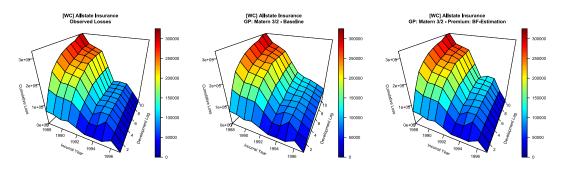
Table 6.25 gives no conclusive preference to any method. The RMSE of the predictions varies between triangles. While the model is able to capture that there is noise in the estimation, this does not necessarily result in better predictions.

The quality of the estimator might have an influence on the results of the interpolation. However, when we zoom in on Triangle 3.3 and its' estimators, we see that even while the estimators are fairly adequate, the errors of the model are significantly increased. This triangle is visualised in Figure 6.19, with Matérn 5/2 as covariance function. Triangle 5.1 (Matérn 3/2) is visualised in Figure 6.20, which has a better performance than the regular model, most notably caused by the estimator of Incurral Year 1997, which is giving the model adequate guidance.



- (a) Observed Losses
- (b) Regular model, Matérn 5/2 (c) BF-Estimation, Matérn 5/2

Figure 6.19: Visualisation of models with a Bornheutter-Ferguson estimator, applied on Triangle 3.3



(a) Observed Losses (b) Regular model, Matérn 3/2 (c) BF-Estimation, Matérn 3/2

Figure 6.20: Visualisation of models with a Bornheutter-Ferguson estimator, applied on Triangle 5.1

Perfect BF-estimators

In order to quantify the influence of the quality of the estimators, we have also performed a model run by supplying the model with perfect estimations, i.e. supplying it with the actual observed losses at DL = 10. The primary goal of this is to rule out the effect of the quality of the estimators, and solely assessing the model performance. The RMSE of the estimations is given in Table 6.26. As expected, providing the model with perfect information drastically reduces the errors of the model.

In contrast to earlier results, we are unable to give a density or confidence interval of the loss reserve due to the implementation that we have performed. However, we can visualise the standard deviation per predicted point, based on the 4,000 MCMC samples for each prediction. This is visualised in Figures 6.21, 6.22 and 6.23. An improvement of all BF models over the Regular GP model can be seen. For most triangles, the perfect estimators reduce the spread. However, for Triangle 2.1 (Figure 6.21), this is not the case.

		Matér	n 3/2	Matér	n 5/2	Sq. Expo	onential
#	LoB	Perfect	BF	Perfect	BF	Perfect	BF
1.1	MM	5,304	6,206	$5,\!206$	$5,\!619$	5,358	5,628
1.2	MM	3,123	4,350	4,096	4,827	$4,\!237$	4,996
1.3	MM	5,951	8,239	$6,\!082$	$6,\!652$	$6,\!200$	$6,\!306$
2.1	CA	1,203	$1,\!199$	1,249	$1,\!193$	1,247	1,205
2.2	CA	$3,\!127$	$9,\!630$	$3,\!853$	$10,\!051$	$4,\!406$	$9,\!985$
2.3	CA	772	1,025	772	977	779	938
3.1	PA	733	1,494	1,055	1,606	1,260	1,649
3.2	PA	6,045	$25,\!380$	$7,\!824$	$25,\!980$	$8,\!441$	$24,\!343$
3.3	PA	139,165	$513,\!303$	$151,\!615$	$495,\!037$	$182,\!248$	597,705
4.1	PL	4,728	12,240	7,782	14,568	9,596	16,193
4.2	PL	9,778	$22,\!421$	$9,\!935$	19,725	10,708	$18,\!449$
4.3	PL	1,517	2,532	$1,\!664$	$2,\!612$	$1,\!680$	2,727
5.1	WC	6,196	14,788	8,037	$15,\!684$	22,860	21,630
5.2	WC	2,549	2,904	$2,\!780$	$3,\!171$	$3,\!502$	$3,\!986$
5.3	WC	2,846	$22,\!230$	2,734	20,501	$2,\!617$	$18,\!305$

Table 6.26: RMSE of "Perfect" Bornheutter-Ferguson estimation

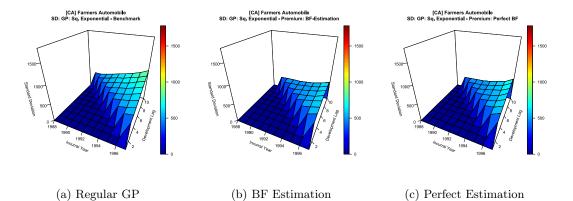


Figure 6.21: Visualisation of Standard Deviations of Triangle 2.1, Sq. Exponential

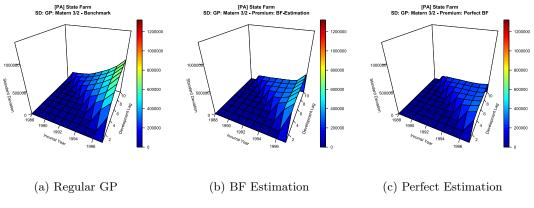


Figure 6.22: Visualisation of Standard Deviations of Triangle 3.3, Matérn 3/2

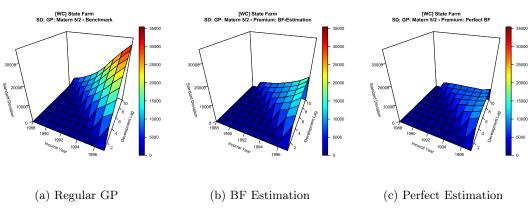


Figure 6.23: Visualisation of Standard Deviations of Triangle 5.3, Matérn5/2

7 Conclusion

Contents

7.1	Data applicability	75
7.2	Prior distributions and model design	75
7.3	Adding premium information to the model	76

In this chapter, we will draw conclusions from the results as presented in Chapter 6. Our research questions are:

Can we improve the Hierarchical Gaussian Process model to predict the loss reserve of a non-life insurer?

With the following sub-questions:

- In order to validate the design choices:
 - Is the model applicable on a more extensive data set?
 - Are the prior distributions on the hyperparameters adequately chosen?
- In order to improve the Best Estimate and/or reduce the confidence interval:
 - Can relevant, out-of-triangle information be supplied to the model?
 - Can the GP model be extended with a Bornheutter-Ferguson estimation method?

7.1 Data applicability

The model performance has been tested on a more extensive data set in order to validate applicability of the model to multiple characteristics. From this, we conclude that the Gaussian Process model is able to make comparable or better predictions than the current industry practice. However, all models have problems when making estimations on a data set that is less predictable: such as having a diagonal shock, an increase in received premiums or other influences that cause a volatile claims development.

7.2 Prior distributions and model design

We have applied a multitude of prior distributions in order to validate design choices made in the model. From this analysis, we conclude that distributions and/or covariance functions that perform best are dependent on the triangle. For the entire model, we can not conclude a preferred setting that performs best, regardless of the data.

The signal and noise parameters and their prior distributions have minimal impact on the model performance: while the model should be able to have the freedom to infer the adequate values for these parameters, most weakly informative priors will give adequate results. Furthermore, considering that the noise parameter tends to converge to zero for nearly all models of this dataset, one can consider fixing the noise to zero - but only if the data is of sufficient quality. The prior distribution on the Input Warping parameters have an impact on model performance of some triangles - but the priors by Snoek et al. (2014) sometimes fail to capture important trends.

We have observed that the prior distribution on the bandwidth parameter has the most influence on model performance. The Cauchy distribution (constrained to be positive) allows for more extreme values, and thus offers more flexibility to the model. For some triangles (with a more volatile development) this results in better predictions, while the increased flexibility sometimes converges to less realistic values - once even predicting a negative loss reserve. Especially in the case of a combination with the Squared Exponential covariance function, this results in too much freedom of the model. By applying the Cauchy-distribution, the model tends to consider realistic values as outliers, and thus fails to capture a trend in the data. As such, we do not recommend applying the Cauchy-distribution for the bandwidth parameter.

Concluding, while the prior distributions should be adequately chosen, weakly informative priors seem to give adequate results.

7.3 Adding premium information to the model

Supplying premium information to the model is researched. Based on our results, we conclude that a transformation of the model to Loss Ratio's appear to give the most adequate results. Technically speaking, this is not *adding* premium information to the model, but rather pretransforming the data to remove premium influences out of the supplied data. With some exceptions, this transformation gives good results for nearly all triangles, for both the Best Estimate and the RMSE.

Supplying the premiums as input does not generally result in better predictions of the loss reserve. The standard deviation of the predictions (and thus, the uncertainty) has dropped in the majority of triangles. However, given that both the Best Estimates and error statistics of the loss reserves have worsened, we do not recommend this implementation.

Finally, we have added Bornheutter-Ferguson estimators to the model. While the model is able to correct for noisy estimators, the prediction of the loss reserve is (with our implementation) heavily depending on the actual estimators. The quality of the estimators is important for the model performance: better estimators naturally result in better predictions and lower errors.

For improving the Best Estimate predictions, the Loss Ratio transformation produces better results. However, this transformation does not result in a substantially narrower confidence interval. For this, adding estimators on the most distant Development Lag has proper potential. Validation on supplying the actual observed values (naturally) produces good results. Our basic Bornheutter-Ferguson implementation sometimes produces adequate results, but the model is heavily dependant on the quality of these estimators. Therefore, estimations should be done carefully - and we suggest a different method than a draw from a random variable to perform this estimation.

We conclude that a transformation to Loss Ratio's improves model performance with regard to the Best Estimate. Adding information to the model in the form of estimators reduce the density of predictions, which could result in more realistic confidence intervals.

8 Discussion and Recommendations

Contents

8.1	Data set	77
8.2	Priors on Loss Ratio's	78
8.3	Bornheutter-Ferguson Estimation	78
8.4	Implementation in practice	78
8.5	Technical possibilities and limitations	79

In this chapter, we will discuss the results generated by our implemented models and limitations that we have identified. Furthermore, we will give recommendations for future research.

8.1 Data set

The advantages of the data set used are that it is publicly available, and that the run-off of these triangles is known. However, some of these triangles are highly volatile. In this research, we have applied the model to 15 triangles with different characteristics. Some of these characteristics are known without knowledge of the lower triangle: such as increased premiums, or a diagonal shock in the upper triangle.

The model could thus be explicitly tuned to each triangle. For instance, when it is known beforehand that a diagonal shock has occurred for business reasons, we could modify (for instance) the kernel function to capture this trend, for instance by adding a periodical kernel function. A Gaussian process model can be tuned explicitly to the data and corresponding expectations by modifications of the kernel functions - which is a recommendation for future research.

A disadvantage of this data set is that it contains historical data of 1988-2006. It is possible that this data set is less representative for the current actuarial practice. For instance, digitalisation of claims handling could have sped up the process. Applying the model on a more recent data set is therefore recommended.

Furthermore, this research has been performed on either cumulative losses or cumulative Loss Ratio's of paid triangles. It is possible that applying this model on incremental triangles yields different and/or better results. Furthermore, an application on Incurred triangles could be considered, as incurred claims develop differently than paid claims. We recommend both the application of incremental losses, loss ratio's and incurred triangles (both cumulative and incremental) for further research.

In this research, we have attempted to add premium information to the model as it was the only out-of-triangle data available in the data set. In literature on estimating loss reserves, different external data is considered, such as the amount of outstanding claims at a specific moment in time, the amount of written policies, or for instance by combining triangles amongst the same insurer or different insurers, but identical Lines of Business. Subsequent research could focus on identifying different out-of-triangle data that can be taken into account.

8.2 Priors on Loss Ratio's

We have researched transformation of cumulative losses to cumulative loss ratio's, in order to implement premium information. For this, we have used identical priors as the model on cumulative losses. It could very well be that different priors give better results, such as adapting the Input Warping prior distributions in the Incurral Year-axis; as this need not be exponential.

8.3 Bornheutter-Ferguson Estimation

The Bornheutter-Ferguson estimation applied takes the volatility into account of the entire triangle for the random variable used for the unknown portion of the incurral year. This method sometimes results in unrealistic estimators, which could be fine-tuned based on, for instance, expect judgement. Also, different methods are be available to produce estimators that have not been considered in this research, such as the Cape Cod method - which also applies a volume measure (Radtke et al., 2016).

Even though our Gaussian process model is able to cope with noisy observations, more accurate estimations result in lower errors and as such should be determined adequately, depending on triangle characteristics.

The technical implementation of these estimators is that they are modeled as separate observations at the final Development Lag. This implementation is partially hindered by the Input Warping methodology, as this requires all input to be normalised on the interval [0, 1]. It is possible that a different implementation yields better results.

8.4 Implementation in practice

As indicated in our Results and Conclusion, drawing general conclusions about model design is difficult. There are a multitude of variations available, and depending on characteristics in the data, a Gaussian process model can be tuned to give the best results, either by means of adapting the kernel function or the hyperparameters. Tuning the model to the data (and application) should be done with adequate care. This introduces Expert Judgement to the implementation, which comes with new risks. In our research, we were able to tune the model to the actual observed losses and their error statistics, but this is -naturally- not possible in practice. Therefore, identifying the best configuration for the model is difficult, as tuning the model is required for some triangles to get adequate results.

From a regulatory point of view, the model tends to become more and more of a 'black box', especially if it is to be tuned even further to specific triangles. The current implementation with Markov Chain Monte Carlo sampling to infer parameters, and applying Input Warping already requires adequate expertise in this field, which introduces new risks on a governance level. Considering that a lot of Expert Judgement will be required in tuning the model, a single, human point of failure is introduced.

Also, our results still show room for improvement with regards to the limitation of the model that we intended to research: narrowing the confidence interval of the predicted loss reserves. From a regulatory point of view, the uncertainty of these predictions could be a huge barrier.

8.5 Technical possibilities and limitations

The kernel function is one of the most important design choices that can be made in a Gaussian process model. As such, future research could work on identifying different kernel functions based on triangle characteristics. Valid kernel functions can be combined to a new kernel function by either multiplication or addition. For example, our currently analysed covariance functions can be combined with a periodical kernel in order to model periodically inflated claims in the months of December and January of an *supplementary healthcare* insurance - which is an observed phenomenon in practice

Moreover, we have modeled identical covariances along both the Development Lag-axis and Incurral Year-axis. This need not be the case, for instance when along the Incurral Year-axis a more rough pattern is witnessed than along the Development Lag-axis, where the former could then be modelled with a Matérn 3/2 covariance function and the latter with a Squared Exponential covariance function. We were, however, unable to get the sampler to accept such a construction, and thus recommend this for further research.

Finally, the model takes between 4 and 20 minutes to generate results of one model run, depending on the complexity of the triangle. The Computational Complexity of any Gaussian process is $\mathcal{O}(N^3)$ (Barber, 2012), and as such larger dataset become increasingly complicated. In this case, we have only considered yearly run-off triangles consisting of 10 years. If one were to model on monthly run-off triangles over a period of, e.g., 3 years, the time complexity of this would render the model unusable. An approximation method of the Gaussian process is described by Flaxman et al. (2016), but it would require further validation on the application on predicting loss reserves.

References

- Antonio, K., & Plat, R. (2014). Micro-level stochastic loss reserving for general insurance. Scandinavian Actuarial Journal, 2014(7), 649-669. Retrieved from https://doi.org/ 10.1080/03461238.2012.755938 doi: 10.1080/03461238.2012.755938
- Barber, D. (2012). Bayesian Reasoning and Machine Learning. Cambridge University Press.
- Black, F., & Scholes, M. (1973). The pricing of options and corporate liabilities. Journal of Political Economy, 81(3), 637-654. Retrieved from http://www.jstor.org/stable/ 1831029
- Bonilla, E. V., Chai, K. M., & Williams, C. (2008). Multi-task Gaussian Process Prediction. In J. C. Platt, D. Koller, Y. Singer, & S. T. Roweis (Eds.), Advances in Neural Information Processing Systems 20 (pp. 153-160). Curran Associates, Inc. Retrieved from http:// papers.nips.cc/paper/3189-multi-task-gaussian-process-prediction.pdf
- Bornhuetter, R., & Ferguson, R. (1972). The actuary and IBNR. In *Proceedings of the Casualty* Actuarial Society.
- Carpenter, B., Gelman, A., Hoffman, M., Lee, D., Goodrich, B., Betancourt, M., ... Riddell, A. (2017). Stan: A Probabilistic Programming Language. *Journal of Statistical Software*, *Articles*, 76(1), 1–32. Retrieved from https://www.jstatsoft.org/v076/i01 doi: 10 .18637/jss.v076.i01
- Côté, M.-P., Genest, C., & Abdallah, A. (2016, Dec 01). Rank-based methods for modeling dependence between loss triangles. *European Actuarial Journal*, 6(2), 377–408. Retrieved from https://doi.org/10.1007/s13385-016-0134-y doi: 10.1007/s13385-016-0134-y
- Diggle, P. J., Tawn, J. A., & Moyeed, R. A. (1998). Model-based geostatistics. Journal of the Royal Statistical Society: Series C (Applied Statistics), 47(3), 299-350. Retrieved from https://rss.onlinelibrary.wiley.com/doi/abs/10.1111/1467-9876.00113 doi: 10 .1111/1467-9876.00113
- Flaxman, S., Gelman, A., Neill, D., Smola, A., Vehtari, A., & Wilson, A. G. (2016). Fast hierarchical Gaussian processes. (Unpublished manuscript)
- Frees, E. W. (2009). Regression Modeling with Actuarial and Financial Applications. Cambridge University Press. doi: 10.1017/CBO9780511814372
- Gelfand, A. E., & Schliep, E. M. (2016). Spatial statistics and gaussian processes: A beautiful marriage. Spatial Statistics, 18, 86 - 104. Retrieved from http://www.sciencedirect .com/science/article/pii/S2211675316300033 (Spatial Statistics Avignon: Emerging Patterns) doi: https://doi.org/10.1016/j.spasta.2016.03.006
- Hoffman, M. D., & Gelman, A. (2014). The No-U-Turn Sampler: Adaptively Setting Path Lengths in Hamiltonian Monte Carlo. Journal of Machine Learning Research, 15, 1593-1623. Retrieved from http://jmlr.org/papers/v15/hoffman14a.html

- Kaas, R., Goovaerts, M., Dhaene, J., & Denuit, M. (2008). Modern Actuarial Risk Theory: Using R.
- Kuang, D., Nielsen, B., & Perch Nielsen, J. (2011). Forecasting in an Extended Chain-Ladder-Type Model. Journal of Risk and Insurance, 78(2), 345-359. Retrieved from https:// onlinelibrary.wiley.com/doi/abs/10.1111/j.1539-6975.2010.01395.x doi: 10 .1111/j.1539-6975.2010.01395.x
- Lally, N., & Hartman, B. (2018). Estimating loss reserves using hierarchical Bayesian Gaussian process regression with input warping. Insurance: Mathematics and Economics, 82, 124 - 140. Retrieved from http://www.sciencedirect.com/science/article/pii/ S0167668717304523 doi: https://doi.org/10.1016/j.insmatheco.2018.06.008
- Maciak, M., Okhrin, O., & Pešta, M. (2018, 01 08). Dynamic and granular loss reserving with copulae.
- Mack, T. (1993, 11). Distribution-Free Calculation of the Standard Error of Chain Ladder Reserve Estimates. Astin Bulletin - ASTIN BULL, 23. doi: 10.2143/AST.23.2.2005092
- Mack, T. (1999). The Standard Error of Chain Ladder Reserve Estimates: Recursive Calculation and Inclusion of a Tail Factor. ASTIN Bulletin, 29(2), 361–366. doi: 10.2143/AST.29.2 .504622
- Martinez-Miranda, M. D., Nielsen, J., & Verrall, R. (2012, 05). Double Chain Ladder. ASTIN Bulletin, 42. doi: 10.2143/AST.42.1.2160712
- Meyers, G. G., & Shi, P. (2011). Loss reserves. https://www.casact.org/research/index .cfm?fa=loss_reserves_data. ([Online])
- Polson, N. G., & Scott, J. G. (2012, 12). On the half-cauchy prior for a global scale parameter. Bayesian Anal., 7(4), 887–902. Retrieved from https://doi.org/10.1214/12-BA730 doi: 10.1214/12-BA730
- R Core Team. (2018). R: A language and environment for statistical computing [Computer software manual]. Vienna, Austria. Retrieved from https://www.R-project.org/
- Radtke, M., Schmidt, K., & Schnaus, A. (2016). *Handbook on loss reserving*. doi: 10.1007/ 978-3-319-30056-6
- Rasmussen, C., & Williams, C. (2006). Gaussian Processes for Machine Learning. the MIT Press.
- Shi, P. (2017). A multivariate analysis of intercompany loss triangles. Journal of Risk and Insurance, 84(2), 717-737. Retrieved from https://onlinelibrary.wiley.com/doi/abs/ 10.1111/jori.12102 doi: 10.1111/jori.12102
- Shi, P., & Frees, E. W. (2011). Dependent loss reserving using copulas. ASTIN Bulletin, 41(2), 449–486. doi: 10.2143/AST.41.2.2136985
- Snoek, J., Swersky, K., S. Zemel, R., & P. Adams, R. (2014, 02). Input Warping for Bayesian Optimization of Non-stationary Functions. 31st International Conference on Machine Learning, ICML 2014, 5.
- Wüthrich, M. V. (2018). Machine learning in individual claims reserving. Scandinavian Actuarial Journal, 2018(6), 465-480. Retrieved from https://doi.org/10.1080/03461238.2018 .1428681 doi: 10.1080/03461238.2018.1428681
- Wüthrich, M. V., & Merz, M. (2006). Stochastic claims reserving methods in non-life insurance. (Retrieved from https://www.actuaries.ch/fr/downloads/aid!b4ae4834-66cd -464b-bd27-1497194efc96/id!98/Vorlesung_SLR.pdf)
- Zhang, Y. (2010). A general multivariate chain ladder model. Insurance: Mathematics and

Economics, 46(3), 588 - 599. Retrieved from http://www.sciencedirect.com/science/ article/pii/S0167668710000302 doi: https://doi.org/10.1016/j.insmatheco.2010.03 .002

A | Glossary of abbreviations

Abbreviation	Meaning	
BE	Best Estimate	
\mathbf{BF}	Bornheutter-Ferguson	
CDF	Cumulative Distribution Function	
CA	Commercial Automobile	
\mathbf{CL}	Chain Ladder	
FRM	Financial Risk Management	
GP	Gaussian Process	
IBN(E)R	Incurred but not (enough) reported	
LoB	Line of Business	
MAE	Mean Absolute Error	
MCMC	Markov Chain Monte Carlo	
$\mathbf{M}\mathbf{M}$	Medical Malpractice	
NAIC	National Association of Insurance Commissioners	
P&C	Property & Casualty	
PA	Personal Automobile	
PDF	Probability Density Function	
\mathbf{PL}	Product Liability	
PSD	Positive Semidefinite	
RBNS	Reported but not settled	
RMSE	Root Mean Square Error	
WC	Workers' Compensation	

Below is a table which includes the abbreviations that are used in this thesis.

B | Run-off triangle: Example

Example B.1: Run-off triangle

An insurance company has been writing policies in 2016, 2017 and 2018. It has received the following claims:

- Two claims in calendar year 2017:
 - − One originating from a policy written in 2016 of €1.000
 - One originating from a policy written in 2017 of ${\ensuremath{\in}}\, 500$
- Two claims in calendar year 2018:
 - One originating from a policy written in 2016 of $\odot\,250$
 - − One originating from a policy written in 2018 of €2.000

We can summarise this in the following incremental run-off triangle:

	Development lag							
Incurral year	1	2	3					
2016	€0	€1.000	€250					
2017	€ 500	€0						
2018	€2.000							

Fields that are marked with a \cdot are unknown, as they refer to years that have not yet passed/finished. This can also be presented in a cumulative triangle, which is commonly done:

Developr	Development lag							
1	2	3						
€0	€1.000	€1.250						
€ 500	€ 500							
€2.000								
	1 €0 €500	€ 500 € 500						

Page 88

C | Run-off triangles of the data set

In this appendix, the triangles that are used for training and testing the model are presented. We have selected 5 different Lines of Business, and have selected 3 insurers (and thus: triangles) from each Line of Business. All triangles are extracted from the data set made available by the National Association of Insurance Commissioners on the website of the Casualty Actuarial Society (Meyers & Shi, 2011). All insurance companies are located in the United States of America, and the selected triangles are paid claims (as opposed to incurred claims).

Of each Line of Business, we have selected triangles with non-zero claims for all data points and have attempted to select different characteristics that test the accuracy of the model. The Lines of Business and the selected insurers are discussed in more detail in Chapter 5. Also, 3D plots of both the upper triangle and the observed losses are presented in that section.

IY					Develo	opment La	ag				Premium
	1	2	3	4	5	6	7	8	9	10	
1988	258	2,546	6,709	14,322	26,353	37,519	47,651	$52,\!359$	$55,\!997$	58,703	73,259
1989	548	$4,\!645$	$11,\!259$	$26,\!348$	$36,\!464$	$43,\!677$	$51,\!381$	$55,\!971$	60,119	61,272	75,519
1990	1,113	$5,\!540$	$15,\!937$	$30,\!230$	40,287	$53,\!564$	$62,\!345$	$71,\!358$	74,387	76,947	85,661
1991	976	$7,\!609$	$19,\!104$	$37,\!548$	$58,\!428$	$67,\!809$	$78,\!260$	83,123	88,195	89,983	86,797
1992	914	10,504	$22,\!641$	$35,\!314$	$48,\!978$	$61,\!901$	73,525	82,150	85,302	89,784	91,918
1993	1,242	$8,\!605$	18,760	$32,\!304$	50,990	69,471	75,750	84,168	89,044	94,038	93,210
1994	2,087	11,566	$28,\!145$	44,708	61,536	77,778	87,094	91,609	98,291	102,083	97,266
1995	2,596	$15,\!296$	$33,\!315$	50,784	70,978	86,742	94,441	103,330	108,103	113,189	106,992
1996	$3,\!196$	$12,\!987$	24,692	46,068	63,115	75,547	84,909	90,259	94,560	95,935	107,264
1997	4,039	11,910	27,631	49,559	65,411	77,425	84,494	92,102	95,511	101,971	110,832

 Table C.1: Triangle 1.1: Medical Malpractice: Physicians' Reciprocal Insurers

 Table C.2: Triangle 1.2: Medical Malpractice: Promutual Group

IY	Development Lag												
	1	2	3	4	5	6	7	8	9	10	Premium		
1988	292	4,697	$13,\!938$	$21,\!175$	$24,\!834$	22,360	24,779	25,792	$25,\!891$	25,942	53,178		
1989	524	$3,\!666$	11,778	$19,\!663$	$19,\!941$	25,068	26,915	$26,\!971$	27,022	27,039	60,809		
1990	829	2,943	9,327	$14,\!676$	$18,\!355$	$19,\!650$	$19,\!820$	20,199	20,312	20,374	51,806		
1991	$1,\!658$	$6,\!121$	$11,\!419$	$16,\!512$	$24,\!338$	$25,\!625$	26,041	28,735	28,772	28,805	44,101		
1992	518	5,166	9,775	$16,\!649$	$20,\!587$	$23,\!465$	24,508	24,979	25,453	25,531	29,242		
1993	1,850	$5,\!076$	$7,\!974$	$18,\!872$	29,528	33,034	35,005	37,073	37,144	37,326	26,379		
1994	1,064	$6,\!647$	$13,\!035$	$21,\!891$	29,199	33,047	34,699	35,500	36,097	36,154	25,343		
1995	703	4,803	10,388	17,420	21,629	26,032	28,087	28,467	29,132	29,147	26,396		
1996	796	$3,\!143$	7,196	14,290	24,606	30,148	31,099	31,963	32,489	32,659	27,300		
1997	556	3,283	6,505	12,970	18,850	23,259	26,116	28,810	29,193	29,292	22,719		

IY		Development Lag												
11	1	2	3	4	5	6	7	8	9	10	Premium			
1988	2,716	$24,\!576$	$43,\!990$	59,722	$71,\!019$	$76,\!354$	76,792	$77,\!207$	$77,\!588$	$77,\!656$	135,318			
1989	3,835	$25,\!158$	$45,\!145$	60,331	$67,\!457$	70,821	71,769	$72,\!085$	$72,\!035$	72,171	111,938			
1990	4,838	$27,\!965$	$50,\!873$	66,400	$71,\!875$	74,755	$75,\!176$	$75,\!250$	75,250	75,250	99,293			
1991	4,456	$34,\!241$	64,737	$79,\!390$	$84,\!465$	$87,\!375$	$89,\!119$	89,825	90,333	90,343	96,483			
1992	5,970	$36,\!080$	68,268	81,783	$86,\!076$	87,167	88,282	88,857	89,087	89,102	98,608			
1993	9,398	46,210	$77,\!045$	$86,\!298$	91,796	93,827	95,871	95,943	95,987	96,008	99,133			
1994	6,181	39,204	70,006	$82,\!385$	86,523	88,387	90,408	90,525	91,640	91,796	97,097			
1995	7,828	$42,\!356$	70,729	79,340	81,142	81,891	81,905	81,897	81,781	81,782	101,600			
1996	8,854	$51,\!400$	81,653	90,504	94,284	96,456	97,305	97,175	97,212	97,225	101,537			
1997	7,818	47,098	84,142	93,724	97,401	97,726	98,250	98,355	98,627	98,655	108,198			

 Table C.3: Triangle 1.3: Medical Malpractice: Scpie Indemnity Company

Table C.4: Triangle 2.1: Commercial Automobile: Farmers' Automobile

IY					Develo	pment La	ıg				Premium
11	1	2	3	4	5	6	7	8	9	10	
1988	2,491	4,426	$5,\!484$	6,275	6,544	6,828	7,103	7,103	7,111	7,115	9,147
1989	2,526	$4,\!690$	$6,\!073$	7,036	8,139	8,310	$8,\!373$	$8,\!378$	$8,\!424$	8,425	9,854
1990	2,760	4,442	$5,\!529$	6,965	7,533	$8,\!192$	8,919	$8,\!983$	8,985	8,991	11,142
1991	$2,\!633$	$5,\!124$	$6,\!812$	$7,\!187$	$7,\!882$	$8,\!388$	$8,\!403$	8,524	8,538	8,549	11,380
1992	2,502	4,780	5,790	6,705	$7,\!193$	$7,\!473$	7,546	7,808	7,842	7,853	11,808
1993	3,226	5,098	6,776	8,333	9,019	9,391	9,514	9,665	9,943	9,980	12,514
1994	$3,\!567$	5,796	$7,\!553$	8,322	8,717	8,955	9,345	9,576	9,582	9,583	13,460
1995	3,215	$5,\!625$	$6,\!655$	7,785	8,570	8,644	8,721	8,797	8,802	9,038	14,206
1996	3,516	6,025	6,798	7,807	8,286	8,614	8,727	8,727	8,723	8,719	14,231
1997	$3,\!628$	5,907	8,950	10,581	$11,\!453$	12,364	12,431	12,432	12,433	12,434	13,929

Appe
ndix
C: R
lun-o
ff tri
Appendix C: Run-off triangles of the data set
s of
the
data
set

IY					Develop	ment Lag					Premium
11	1	2	3	4	5	6	7	8	9	10	
1988	54,699	$108,\!337$	143,899	164,818	$179{,}538$	185,391	188,023	189,759	190,520	193,499	286,378
1989	60,091	119,366	$151,\!151$	$174,\!665$	$185,\!469$	$192,\!213$	$196,\!152$	$198,\!013$	$199,\!997$	200,480	308,908
1990	65,860	$130,\!803$	$172,\!390$	$197,\!977$	$210,\!230$	$219,\!267$	$222,\!428$	$224,\!078$	224,855	225,430	326,503
1991	61,946	$121,\!108$	$158,\!880$	$182,\!689$	$195,\!247$	$201,\!854$	204,911	205,535	206,051	206,719	332,616
1992	65,043	$128,\!550$	$164,\!433$	187,508	$199,\!823$	208,008	210,925	213,006	214,097	214,524	341,890
1993	72,295	$144,\!579$	$185,\!446$	$208,\!388$	$219,\!345$	225,981	230,040	231,594	232,739	233,365	355,840
1994	81,988	$151,\!197$	$189,\!630$	$212,\!446$	229,511	237,406	240,779	242,463	242,860	244,280	379,781
1995	83,207	$152,\!470$	$190,\!974$	212,923	226, 193	233,723	237,024	237,748	239,596	240,184	398,755
1996	79,699	$143,\!590$	184,346	206,780	224, 327	233, 298	237, 216	236,725	236,825	237,368	406,609
1997	75,827	143,120	184,965	206,565	220,052	225,837	229,414	230,996	230,301	230,775	406,516

Table C.5: Triangle 2.2: Commercial Automobile: State Farm

Table C.6: Triangle 2.3: Commercial Automobile: The Ins Co

IY		Development Lag												
11	1	2	3	4	5	6	7	8	9	10	Premium			
1988	152	288	276	429	442	802	802	791	791	791	1,300			
1989	253	285	475	344	474	479	521	538	551	553	1,697			
1990	217	404	567	587	594	479	479	479	479	479	1,553			
1991	82	398	563	719	692	936	936	936	936	936	1,425			
1992	602	$1,\!495$	1,703	1,855	$1,\!903$	1,919	1,926	2,254	2,254	2,254	3,252			
1993	326	$1,\!258$	$2,\!091$	2,860	$3,\!328$	3,363	4,333	4,352	4,452	4,458	5,617			
1994	731	2,209	3,218	4,243	4,368	6,098	6,111	6,117	6,117	6,117	9,536			
1995	362	$2,\!361$	$2,\!583$	2,861	3,973	4,409	4,450	4,463	4,472	4,480	$5,\!674$			
1996	1,293	2,705	4,280	5,442	5,976	6,213	6,273	6,273	6,273	6,273	7,389			
1997	1,082	2,360	3,726	4,687	4,880	5,165	5,322	5,322	5,322	5,322	6,378			

IY		Development Lag												
11	1	2	3	4	5	6	7	8	9	10	Premium			
1988	8,784	15,009	$17,\!840$	19,388	20,299	$20,\!482$	20,611	20,748	20,743	20,739	28,355			
1989	10,262	$18,\!849$	$24,\!027$	26,024	$27,\!483$	$27,\!907$	$28,\!054$	$27,\!979$	$28,\!013$	28,009	31,312			
1990	11,733	$21,\!109$	$24,\!500$	$26,\!815$	$28,\!238$	$28,\!516$	28,729	$28,\!808$	28,811	28,826	36,707			
1991	11,915	$21,\!078$	$25,\!506$	$28,\!481$	$30,\!054$	$30,\!645$	$31,\!065$	31,150	31,241	31,272	40,265			
1992	11,949	$20,\!676$	$25,\!841$	$28,\!292$	29,766	$30,\!440$	30,571	30,746	30,781	30,780	42,570			
1993	13,270	$23,\!902$	28,318	$31,\!328$	$33,\!197$	33,605	33,882	33,946	33,987	34,035	42,879			
1994	14,561	$24,\!177$	29,091	$32,\!281$	34,287	34,962	35,027	35,094	35,226	35,226	43,684			
1995	14,545	$23,\!908$	$29,\!665$	32,150	34,016	34,844	35,000	35,029	35,334	35,400	44,500			
1996	15,098	$24,\!813$	29,524	31,727	33,144	33,221	33,274	33,317	33,315	33,316	45,276			
1997	14,846	24,270	28,303	31,097	32,304	33,378	33,522	33,583	33,662	33,661	47,331			

 Table C.7: Triangle 3.1: Personal Automobile: Farmers' Automobile

Table C.8: Triangle 3.2: Personal Automobile: Federal Insurance Company

IY					Develop	pment Lag					Premium
11	1	2	3	4	5	6	7	8	9	10	r remium
1988	13,440	$35,\!680$	48,703	56,319	61,018	61,119	63,049	$63,\!556$	63,744	63,835	83,473
1989	18,757	$44,\!166$	$57,\!578$	66,264	$65,\!600$	67,721	$75,\!369$	76,713	77,007	77,029	91,800
1990	19,834	$42,\!225$	$56,\!347$	$63,\!194$	$67,\!112$	$69,\!459$	$74,\!267$	79,208	79,250	79,308	95,877
1991	16,230	$38,\!045$	$46,\!055$	$53,\!983$	$60,\!638$	62,917	$71,\!074$	71,885	72,560	72,579	99,256
1992	14,629	$22,\!427$	$33,\!873$	$43,\!339$	$53,\!168$	60,413	61,452	62,363	62,464	62,458	96,170
1993	24,597	$51,\!373$	$68,\!484$	80,253	$92,\!192$	94,939	97,226	97,536	97,654	97,787	139,038
1994	31,723	59,733	$77,\!398$	$94,\!395$	101,008	104,557	107,399	108,067	108,476	110,038	152,174
1995	37,397	$71,\!133$	$94,\!294$	103,996	107,948	109,478	110,401	111,051	111,108	111,598	167,833
1996	53,670	$98,\!628$	112,473	123,070	129,739	131,549	132,682	133, 137	133,426	133,522	180,523
1997	52,837	77,758	95,357	104,789	109,025	111,835	112,467	113,000	113,086	113,371	164,717

Page 93

IY					Devel	opment Lag					Premium
	1	2	3	4	5	6	7	8	9	10	
1988	2,439,272	4,722,902	5,705,646	6,238,289	6,519,491	6,677,426	6,750,431	6,787,444	6,808,809	6,815,646	7,809,394
1989	2,828,267	5,368,026	$6,\!494,\!597$	$7,\!096,\!377$	$7,\!417,\!869$	$7,\!575,\!814$	$7,\!655,\!217$	$7,\!693,\!240$	7,712,077	7,721,911	8,764,863
1990	3,186,948	$5,\!913,\!490$	$7,\!140,\!613$	$7,\!774,\!615$	$8,\!096,\!374$	$8,\!251,\!086$	$8,\!325,\!184$	$8,\!364,\!955$	8,382,479	8,394,117	9,796,463
1991	3,192,619	$5,\!878,\!000$	$7,\!075,\!254$	$7,\!698,\!459$	$7,\!996,\!404$	$8,\!140,\!065$	$8,\!215,\!810$	8,256,338	8,279,401	8,288,143	10,594,952
1992	3,561,950	$6,\!474,\!291$	7,763,969	8,404,713	8,716,926	$8,\!876,\!813$	8,959,761	8,998,462	9,016,704	9,026,329	11,457,922
1993	3,895,076	7,024,867	$8,\!343,\!417$	9,003,120	$9,\!337,\!099$	9,509,203	9,599,735	9,642,522	9,660,532	9,673,610	12,240,633
1994	4,323,103	$7,\!590,\!944$	$8,\!924,\!062$	$9,\!640,\!098$	10,030,681	10,216,964	10,299,231	10,340,679	10,361,560	10,375,605	13,277,675
1995	4,491,070	$7,\!664,\!190$	$9,\!006,\!113$	9,736,570	10,120,120	10,312,088	10,412,421	10,461,753	10,497,027	10,512,108	14,125,898
1996	4,444,088	$7,\!486,\!113$	8,845,221	9,583,622	9,999,739	10, 196, 271	10,293,776	10,347,058	10,373,438	10,387,245	14,664,665
1997	4,344,144	7,305,064	8,614,474	9,379,418	9,792,901	9,988,209	10,076,219	10, 123, 792	10,148,983	10,165,481	14,923,375

Table C.9: Triangle 3.3: Personal Automobile: State Farm

Table C.10:	Triangle 4.1:	Product	Liability:	All state	Insurance	Company

IY		Development Lag											
11	1	2	3	4	5	6	7	8	9	10	Premium		
1988	1,501	3,916	8,834	$17,\!450$	$22,\!495$	$28,\!687$	31,311	32,039	$36,\!357$	$36,\!358$	48,622		
1989	1,697	5,717	$10,\!442$	$18,\!125$	$23,\!284$	30,092	$34,\!338$	$41,\!094$	41,164	41,189	46,663		
1990	1,373	4,002	$10,\!829$	$16,\!695$	21,788	$25,\!332$	$34,\!875$	$34,\!893$	35,037	35,037	39,473		
1991	1,069	$4,\!594$	6,920	9,996	$13,\!249$	19,221	$19,\!256$	19,230	19,232	19,233	31,571		
1992	1,134	$3,\!068$	$5,\!412$	8,210	19,164	$19,\!187$	19,190	19,209	19,209	19,213	22,317		
1993	979	3,079	$6,\!407$	$16,\!113$	$16,\!131$	16,148	16,153	16,201	16,222	16,247	24,398		
1994	1,397	$2,\!990$	$25,\!688$	26,030	26,165	26,294	26,765	27,075	27,085	27,086	34,271		
1995	1,016	$21,\!935$	$22,\!095$	22,388	22,694	22,882	23,253	23,969	24,861	25,216	26,583		
1996	9,852	10,071	10,444	10,743	11,011	11,037	11,567	11,788	11,829	11,841	23,440		
1997	319	964	3,410	3,179	3,460	4,006	4,333	4,650	4,812	5,049	4,450		

IV	IY Development Lag										
11	1	2	3	4	5	6	7	8	9	10	Premium
1988	1,249	4,092	$8,\!893$	$15,\!516$	$23,\!806$	34,070	$30,\!699$	$31,\!130$	31,716	32,430	102,414
1989	946	2,929	$9,\!953$	$17,\!368$	$25,\!139$	$29,\!628$	$32,\!059$	32,972	$33,\!610$	34,292	98,541
1990	1,765	4,743	$9,\!854$	$20,\!471$	26,756	$33,\!654$	43,282	42,588	49,336	55,502	100,215
1991	1,408	$5,\!226$	9,768	$21,\!637$	$25,\!339$	$31,\!574$	37,738	50,255	53,313	53,586	103,518
1992	1,647	$7,\!628$	$12,\!848$	18,323	$21,\!943$	23,139	32,579	34,833	36,287	40,504	104,926
1993	7,566	$14,\!991$	29,466	49,090	$57,\!590$	66,854	69,663	72,885	84,050	93,531	$113,\!504$
1994	2,299	6,856	$23,\!954$	$61,\!496$	78,905	90,416	95,287	100,858	104,661	106,357	123,984
1995	4,959	$13,\!541$	$23,\!003$	44,313	73,566	83,381	89,134	93,387	97,683	101, 142	140,440
1996	6,063	9,707	26,814	55,185	71,471	85,110	90,315	99,066	101,633	103,677	150,180
1997	6,507	29,036	43,380	66,827	82,385	107,656	116,351	120,486	124,430	129,300	149,656

 Table C.11: Triangle 4.2: Product Liability: Federal Insurance Company

Table C.12: Triangle 4.3: Product Liability: Federated Mutual Group

IY		Development Lag											
11	1	2	3	4	5	6	7	8	9	10	Premium		
1988	3,894	7,409	11,199	16,913	18,517	19,722	20,417	20,902	21,208	21,368	29,513		
1989	3,883	$6,\!869$	$10,\!489$	$14,\!410$	$16,\!605$	$18,\!485$	20,112	$20,\!654$	$20,\!835$	21,119	27,835		
1990	4,178	$7,\!473$	$11,\!281$	$15,\!874$	$19,\!186$	20,993	22,069	$22,\!477$	22,742	23,279	28,309		
1991	3,872	8,137	$14,\!577$	$18,\!071$	$22,\!125$	23,770	$24,\!559$	25,283	26,017	26,380	28,091		
1992	4,095	$7,\!260$	$11,\!015$	$14,\!844$	19,309	20,097	20,927	21,138	21,424	21,658	29,036		
1993	2,223	4,048	$6,\!651$	8,229	9,141	10,446	11,078	11,098	11,510	11,598	23,916		
1994	2,500	4,003	$6,\!893$	$9,\!379$	11,092	11,386	11,602	11,684	12,304	12,353	26,223		
1995	2,442	$4,\!657$	7,303	8,380	9,553	10,170	10,446	10,522	10,618	10,883	28,379		
1996	2,761	$4,\!661$	7,009	10,018	11,108	12,333	13,023	13,131	14,071	14,100	29,809		
1997	2,642	5,027	9,539	12,343	15,013	16,282	16,917	17,105	17,236	17,336	31,953		

	1										
IY	Development Lag										
	1	2	3	4	5	6	7	8	9	10	Premium
1988	70,571	$155,\!905$	220,744	$251,\!595$	$274,\!156$	$287,\!676$	298,499	304,873	321,808	325,322	394,742
1989	66,547	$136,\!447$	$179,\!142$	$211,\!343$	$231,\!430$	244,750	$254,\!557$	$270,\!059$	$273,\!873$	277,574	374,252
1990	52,233	$133,\!370$	$178,\!444$	$204,\!442$	$222,\!193$	$232,\!940$	$253,\!337$	256,788	261,166	263,000	280,320
1991	59,315	$128,\!051$	169,793	$196,\!685$	$213,\!165$	$234,\!676$	$239,\!195$	245,499	247,131	248,319	313,982
1992	39,991	$89,\!873$	$114,\!117$	$133,\!003$	$154,\!362$	$159,\!496$	164,013	166,212	167, 397	168,844	252,698
1993	19,744	$47,\!229$	61,909	85,099	$87,\!215$	88,602	89,444	89,899	90,446	90,686	201,055
1994	20,379	46,773	$88,\!636$	$91,\!077$	92,583	93,346	93,897	94,165	94,558	94,730	174,381
1995	18,756	84,712	87,311	89,200	90,001	90,247	90,687	91,068	91,001	91,161	146,366
1996	42,609	44,916	46,981	47,899	48,583	49,109	49,442	49,073	49,161	49,255	93,294
1997	691	2,085	2,795	2,866	2,905	2,909	2,908	2,909	2,909	2,909	7,651

 Table C.13: Triangle 5.1: Workers' Compensation: Allstate Insurance Company

 Table C.14: Triangle 5.2: Workers' Compensation: Lumbermen's Underwriting Alliance

IY		Development Lag											
11	1	2	3	4	5	6	7	8	9	10	Premium		
1988	19,016	44,632	$59,\!804$	66,052	$70,\!115$	72,219	$73,\!565$	74,273	75,112	$75,\!655$	94,389		
1989	17,346	$42,\!058$	$59,\!686$	$64,\!821$	$67,\!313$	69,036	69,942	$70,\!428$	$70,\!846$	71,001	92,238		
1990	12,212	$28,\!087$	42,719	$46,\!564$	48,016	49,030	49,700	$49,\!994$	50,144	50,385	68,123		
1991	9,490	$19,\!697$	32,062	$38,\!698$	40,369	$41,\!220$	$41,\!970$	42,359	42,720	42,887	59,587		
1992	7,605	$14,\!874$	$21,\!105$	29,016	$35,\!208$	$36,\!884$	37,456	37,767	37,536	37,684	62,295		
1993	5,596	$11,\!527$	$14,\!677$	$17,\!073$	20,813	24,037	26,021	27,557	27,593	27,752	70,875		
1994	4,885	$10,\!118$	$13,\!103$	$14,\!570$	15,193	15,680	16,474	18,136	19,774	21,102	62,394		
1995	4,056	8,435	$10,\!439$	11,424	13,000	13,611	13,847	14,252	14,526	14,678	67,685		
1996	4,213	8,768	10,280	11,093	11,848	12,180	12,657	13,232	13,318	13,544	50,118		
1997	5,258	10,661	13,346	15,717	17,620	18,884	19,382	19,914	20,523	20,734	49,456		

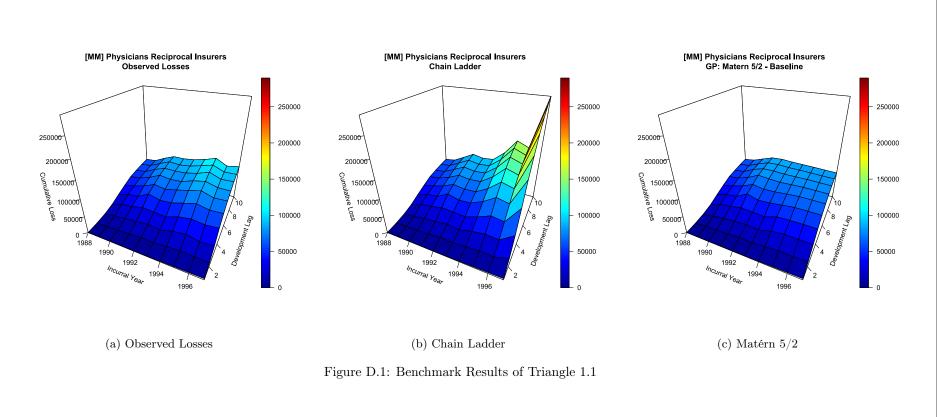
IY					Develop	oment Lag					Premium
11	1	2	3	4	5	6	7	8	9	10	
1988	22,190	60,834	85,104	100,151	108,802	114,967	118,790	$121,\!558$	123,492	125,049	177,104
1989	26,542	77,798	$106,\!407$	$122,\!422$	$133,\!359$	$138,\!599$	$143,\!029$	145,712	$147,\!358$	149,252	201,118
1990	32,977	$100,\!494$	$134,\!886$	157,758	168,991	178,065	182,787	187,760	192,576	196,092	246,010
1991	38,604	$114,\!428$	$157,\!103$	$181,\!322$	$197,\!411$	$208,\!804$	$213,\!396$	221,596	226,756	229,642	286,019
1992	42,466	$125,\!820$	164,776	189,045	$204,\!377$	$213,\!904$	221,659	228,415	231,760	235,831	340,183
1993	46,447	116,764	$154,\!897$	$179,\!419$	$193,\!676$	206,073	212,193	216,710	220,900	224,868	418,755
1994	41,368	100,344	$132,\!021$	$151,\!081$	165,667	173, 167	177,960	181,932	185,039	190,572	366,031
1995	35,719	$83,\!216$	$111,\!268$	127,221	136,597	142,371	146,359	148,538	151,476	153,299	338,186
1996	28,746	66,033	87,748	100,432	108,442	116,297	119,566	121,885	124,377	126,403	286,631
1997	25,265	61,872	81,038	92,519	99,006	103,738	106,810	108,329	110,509	111,592	245,378

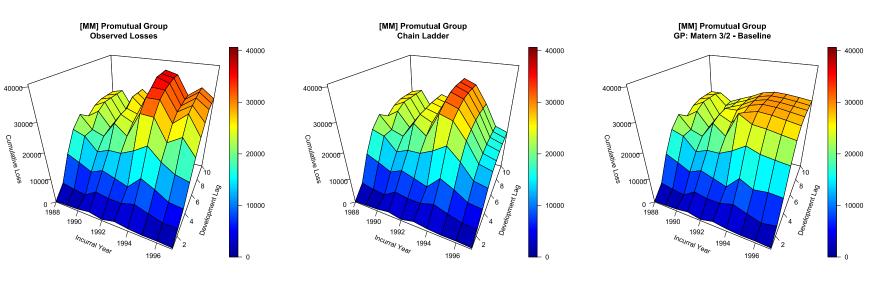
Table C.15: Triangle 5.3: Workers' Compensation: State Farm

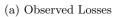
Page 98

D Results: 3D-plots of benchmark measurements

In this Appendix, we will give 3D-plots of all observed losses, the Chain Ladder prediction and the best performing Gaussian process model.



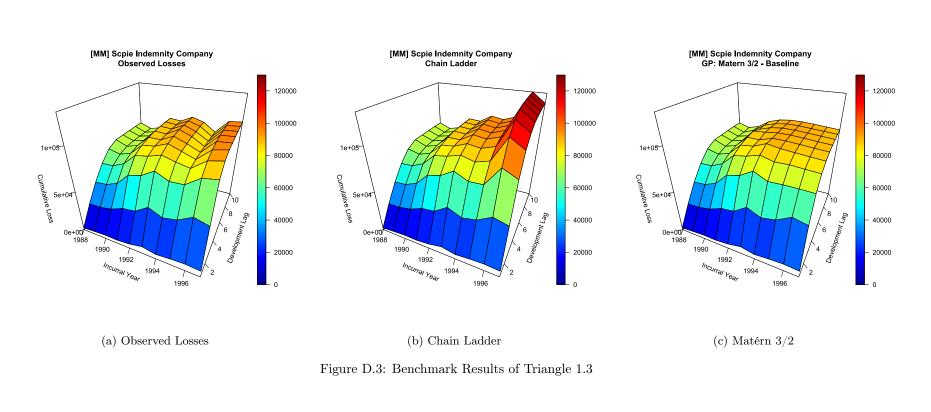


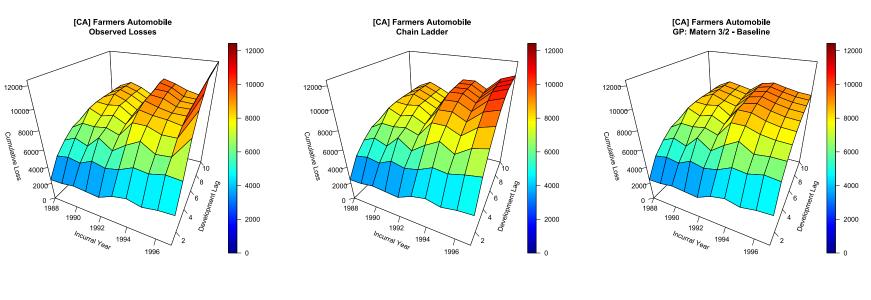


(b) Chain Ladder

Figure D.2: Benchmark Results of Triangle 1.2

(c) Matérn 3/2



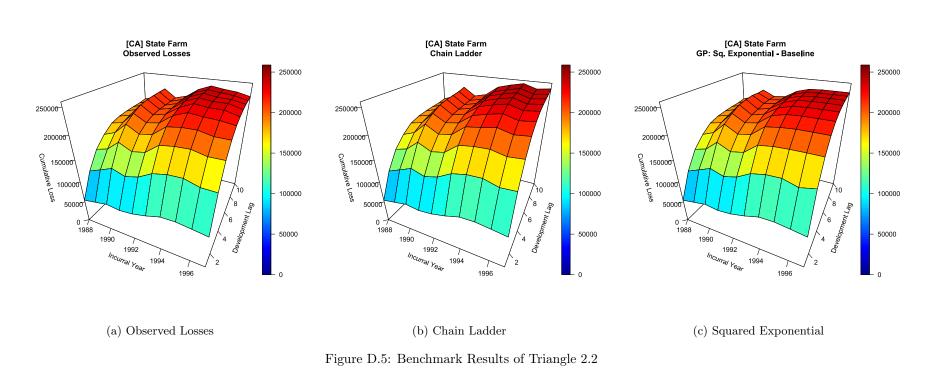


(a) Observed Losses

(b) Chain Ladder

Figure D.4: Benchmark Results of Triangle 2.1

(c) Matérn 3/2



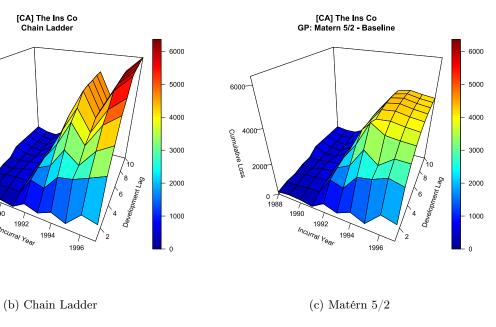


Figure D.6: Benchmark Results of Triangle 2.3

[CA] The Ins Co Observed Losses

6000-

Cumulative Loss

4000

2000

0 /× 1988

, 1990

, 1992

1994

(a) Observed Losses

Incurral Year

6000

5000

4000

3000

2000

1000

0

10

`8

Dela

6

<u>،</u>

2

, 1996

^{slopment Lag}

6000-

Cumulative Loss 4000-

2000

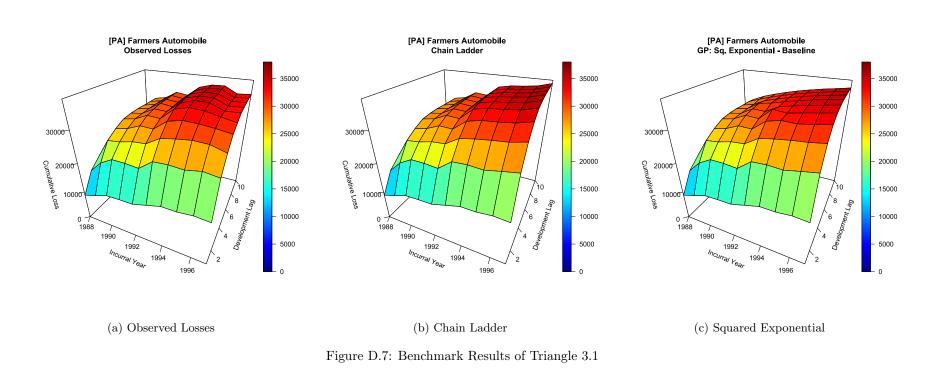
0 / 1988

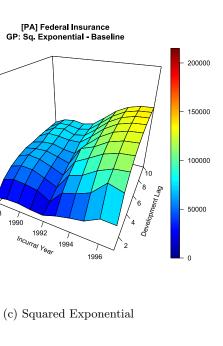
1990

1992

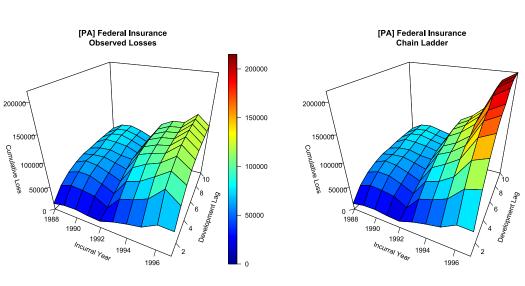
, 1994

Incurral Year





Appendix D: Results: 3D-plots of benchmark measurements



(a) Observed Losses

(b) Chain Ladder

200000

150000

100000

50000

200000

Cum

ulative Loss

150000

100000

50000

0 X 1988

, 1990

Incurral Year 1992

1994

Figure D.8: Benchmark Results of Triangle 3.2

Cum

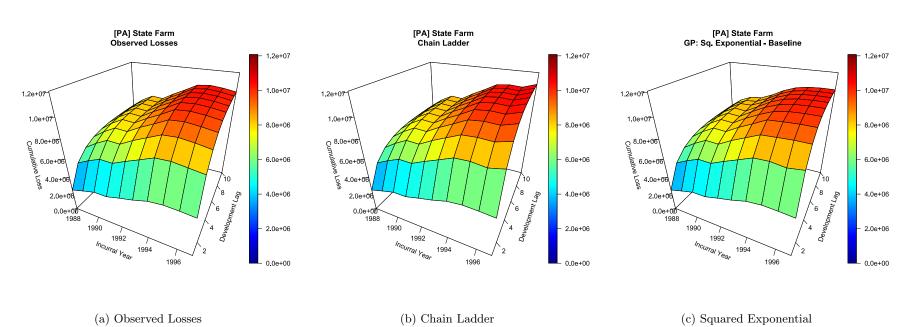


Figure D.9: Benchmark Results of Triangle 3.3

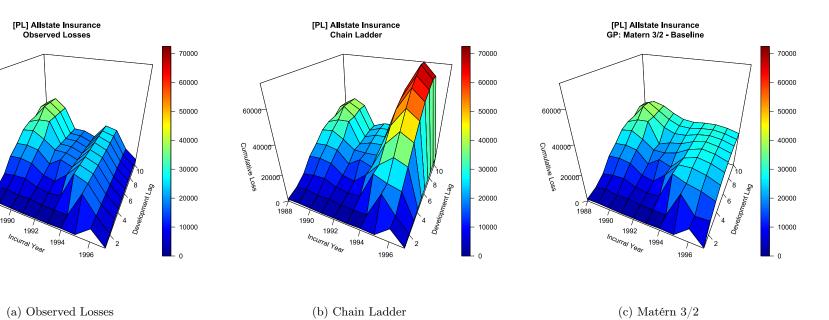


Figure D.10: Benchmark Results of Triangle 4.1

60000-

운 40000

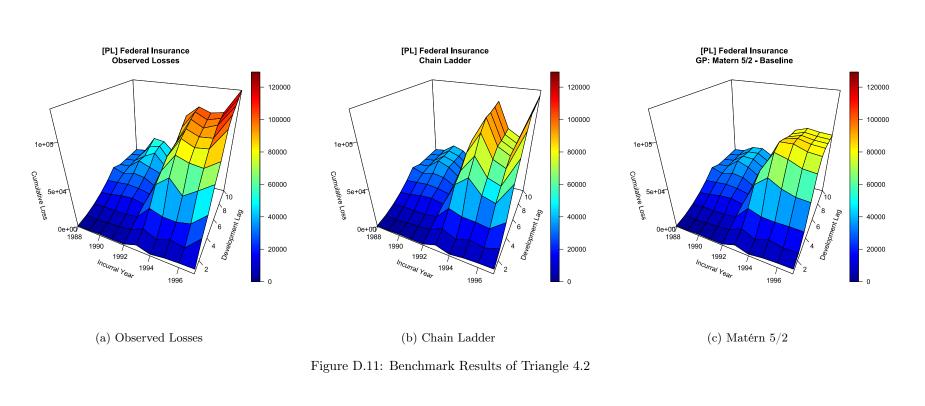
20000

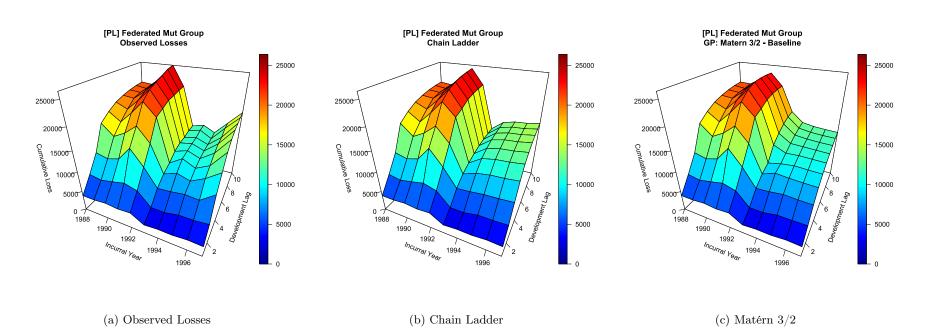
0 /× 1988

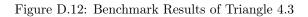
, 1990

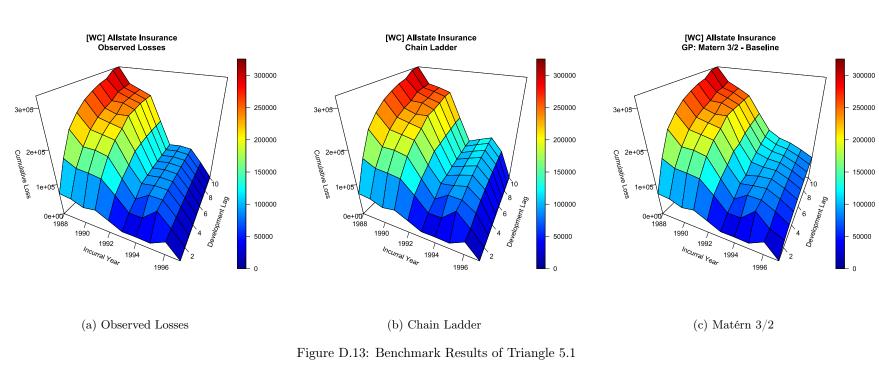
1992

Jmulative Loss









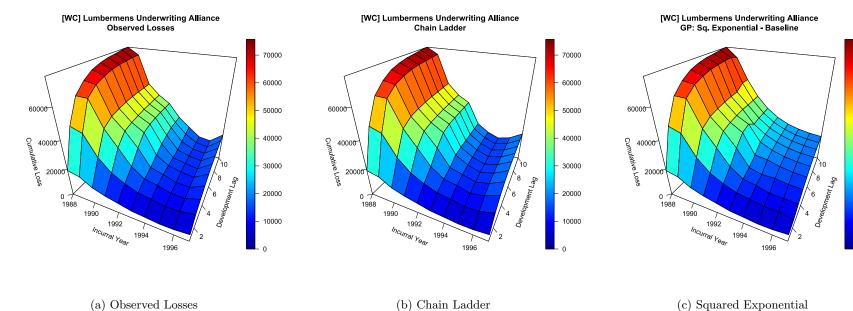
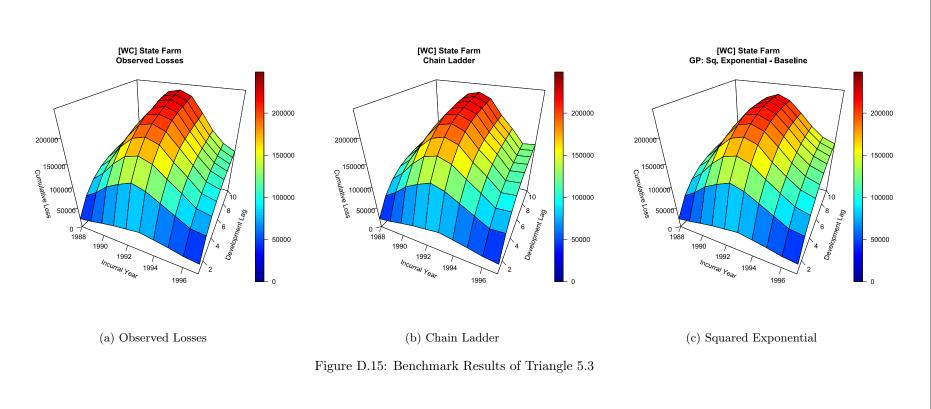


Figure D.14: Benchmark Results of Triangle 5.2

Page 113



E | Results: Inference of prior parameters

In this Appendix, we will present the inferred parameters by varying the prior distribution of that parameter.

E.1 Bandwidth parameter (ψ)

Table E.1: Inferred values of ψ_1 (Development Lag), by variations on the prior distribution

		Maté	rn 3/2	Matér	rn 5/2	Sq. Exp	onential
	LoB	Cauchy	Gamma	Cauchy	Gamma	Cauchy	Gamma
1.1	MM	0.9011	0.759	1.5666	1.011	2.0112	1.3025
1.2	MM	1.8657	1.0696	3.6252	1.46	3.9048	1.4869
1.3	MM	1.7194	1.057	2.3654	1.2587	2.3059	1.3705
2.1	CA	0.9572	0.5899	1.6179	1.1411	2.0127	1.1697
2.2	CA	0.7161	0.6716	0.9816	0.7754	1.2269	0.9325
2.3	CA	1.4056	0.592	2.377	1.0622	2.9131	1.2317
3.1	PA	0.8552	0.7606	1.2409	0.918	1.3248	1.0163
3.2	PA	0.6965	0.3983	1.2279	0.4822	1.7508	0.9917
3.3	PA	0.7707	0.741	1.0265	0.799	1.1367	0.895
4.1	PL	2.9466	0.9792	3.4757	1.2253	2.7313	1.3839
4.2	PL	2.3923	0.9886	4.0955	1.3872	4.7952	1.8635
4.3	PL	0.6576	0.5898	1.1864	0.8247	1.4953	1.0867
5.1	WC	0.3939	0.3992	0.6899	0.5168	0.8435	0.7688
5.2	WC	0.8526	0.7151	1.3228	0.9011	1.3575	0.9721
5.3	WC	0.5408	0.594	0.8642	0.771	1.0241	0.8764

Considering several remarkably high values of the bandwidth parameter, we investigate the Standard Deviation of the predicted Loss Reserve, given in Table E.3. For some triangles, we see that the high inferred values result in a lower standard deviation.

		Matér	rn 3/2	Matér	rn $5/2$	Sq. Exp	onential
	LoB	Cauchy	Gamma	Cauchy	Gamma	Cauchy	Gamma
1.1	MM	1.8771	1.2233	3.9375	1.7262	5.7244	1.5311
1.2	MM	4.2627	1.2793	4.3455	0.8887	0.7579	0.8109
1.3	MM	0.842	0.7447	1.4059	1.0019	1.6367	1.1599
2.1	CA	5.1424	2.1202	11.3557	1.0481	18.7123	0.842
2.2	CA	1.5652	1.1588	3.3262	1.7291	5.1914	2.1369
2.3	CA	16.7376	2.7361	34.3191	2.132	45.0727	2.1477
3.1	PA	1.209	0.9369	1.6958	1.0855	1.6692	0.9507
3.2	PA	7.1923	2.4592	14.9481	3.785	25.471	2.9871
3.3	PA	1.1165	0.9635	2.2756	1.476	3.479	1.9834
4.1	PL	11.5624	1.6699	14.2031	1.8285	11.0983	2.0517
4.2	PL	8.5283	2.2414	14.2702	3.1457	18.1432	4.777
4.3	PL	3.4516	1.6806	6.4467	2.2157	8.0759	2.6933
5.1	WC	3.6954	1.8756	7.7373	2.7808	12.3416	3.3932
5.2	WC	1.7569	1.1723	3.4214	1.7134	4.9405	1.4946
5.3	WC	1.2261	1.0546	1.9667	1.3962	2.3216	1.5795

Table E.2: Inferred values of ψ_2 (Incurral year), by variations on the prior distribution

Table E.3: Standard Deviation of Loss Reserve predictions, by variations on the prior distribution of ψ

		Motó	rn 3/2	Matá	rn 5/2	So Fr	ponential
	TD		/		, 		-
	LoB	Cauchy	Gamma	Cauchy	Gamma	Cauchy	Gamma
1.1	MM	89,726	$86,\!625$	$98,\!296$	$90,\!804$	$112,\!678$	$83,\!825$
1.2	MM	34,405	$33,\!058$	35,024	27,092	29,277	$26,\!187$
1.3	MM	43,673	$41,\!430$	46,733	$36,\!476$	49,412	$37,\!098$
2.1	CA	$5,\!175$	$5,\!458$	5,737	4,712	6,094	4,128
2.2	CA	73,820	$73,\!495$	80,097	74,844	104,107	$65,\!842$
2.3	CA	2,821	3,931	3,080	4061	3,314	$4,\!335$
3.1	PA	8,474	8,039	9,854	8,852	10,948	8,223
3.2	PA	80,404	$92,\!948$	89,888	$118,\!434$	$92,\!693$	$98,\!847$
3.3	PA	$2,\!550,\!905$	$2,\!400,\!639$	$2,\!654,\!248$	$2,\!616,\!817$	$3,\!135,\!120$	$2,\!541,\!395$
4.1	PL	$51,\!172$	$57,\!195$	$52,\!128$	56,209	$58,\!583$	58,213
4.2	PL	88,689	$95,\!199$	$94,\!270$	$128,\!196$	$94,\!220$	116,028
4.3	PL	$17,\!664$	$21,\!155$	$20,\!138$	21,202	20,169	18,783
5.1	WC	179,668	229,973	188,070	$226,\!372$	189,414	202,139
5.2	WC	36,374	37,775	38,995	$37,\!127$	$37,\!352$	26,968
5.3	WC	$103,\!864$	$107,\!898$	$111,\!896$	$120,\!175$	109,435	$104,\!266$

E.2 | Noise parameter (σ^2)

		Matér	n 3/2	Matér	n 5/2	Sq. Expo	onential
	LoB	Log-normal	Student-T	Log-normal	Student-T	Log-normal	Student-T
1.1	MM	0.0117	0.0020	0.0142	0.0027	0.0197	0.0086
1.2	MM	0.0439	0.0228	0.0529	0.0425	0.0582	0.0484
1.3	MM	0.0083	0.0014	0.0083	0.0016	0.0090	0.0019
2.1	CA	0.0354	0.0039	0.0435	0.0348	0.0474	0.0405
2.2	CA	0.0067	0.0009	0.0068	0.0008	0.0158	0.0007
2.3	CA	0.0388	0.0075	0.0618	0.0495	0.0669	0.0584
3.1	PA	0.0085	0.0015	0.0091	0.0020	0.0098	0.0027
3.2	PA	0.0154	0.0024	0.0205	0.0029	0.0768	0.0634
3.3	PA	0.0061	0.0008	0.0065	0.0008	0.0090	0.0008
4.1	PL	0.0767	0.0641	0.0872	0.0763	0.0911	0.0794
4.2	PL	0.0192	0.0042	0.0203	0.0063	0.0465	0.0133
4.3	PL	0.0093	0.0016	0.0091	0.0017	0.0096	0.0017
5.1	WC	0.0097	0.0014	0.0113	0.0017	0.0272	0.0033
5.2	WC	0.0063	0.0009	0.0074	0.0010	0.0088	0.0019
5.3	WC	0.0050	0.0007	0.0044	0.0006	0.0041	0.0006

Table E.4: Inferred values of σ^2 , by variations on the prior distribution

E.3 Signal parameter (η^2)

Table E.5: Inferred values of η^2 by variations on the prior distribution

	1		0./0		r /0	0 1	. 1
		Matér	n 3/2	Matér	/	Sq. Expo	
$\hat{\eta}$	LoB	Log-normal	Student-T	Log-normal	Student-T	Log-normal	Student-T
1.1	MM	2.6722	2.2072	4.271	3.0145	2.9359	2.149
1.2	MM	2.923	2.1061	2.4737	1.8748	1.9976	1.5398
1.3	MM	1.6074	1.4984	2.3112	1.8552	2.0993	1.735
2.1	CA	4.3613	3.341	3.0393	2.0477	2.1474	1.7373
2.2	CA	2.2507	1.9389	3.62	2.7136	3.3295	2.4536
2.3	CA	9.1009	6.6204	7.0691	4.3056	4.5172	2.9945
3.1	PA	2.1043	1.8129	2.9691	2.3423	3.0276	2.2183
3.2	PA	10.1939	7.5789	23.0048	17.765	6.7857	4.5751
3.3	PA	2.1512	1.8537	3.5401	2.6887	3.7304	2.7291
4.1	PL	3.5845	2.6519	4.401	3.1203	3.8026	2.5663
4.2	PL	8.2508	6.1809	14.8427	11.096	8.9884	6.1213
4.3	PL	2.3928	2.0015	3.4916	2.5203	2.4177	1.8492
5.1	WC	2.8707	2.3103	5.2233	3.5938	3.5168	2.5707
5.2	WC	1.3889	1.3048	2.1633	1.7856	1.7648	1.5268
5.3	WC	2.0471	1.7975	3.2412	2.5005	2.9885	2.3228

E.4 Warping parameters $(\alpha_1, \beta_1, \alpha_2, \beta_2)$

		Matér	m 3/2	Matér	m 5/2	Sq. Exp	onential
$\hat{\alpha_1}$	LoB	Snoek	Lally	Snoek	Lally	Snoek	Lally
1.1	MM	1.0901	1.1121	1.1111	1.1537	1.0836	1.094
1.2	MM	0.939	1.1883	1.0106	1.1894	1.0244	1.1904
1.3	MM	0.5156	0.7005	0.6352	0.8245	0.7074	0.8696
2.1	CA	0.5234	0.6033	0.573	0.6486	0.5818	0.6373
2.2	CA	0.4517	0.5804	0.6018	0.6764	0.6011	0.6958
2.3	CA	0.504	0.5846	0.5986	0.6671	0.6647	0.7209
3.1	PA	0.4309	0.5523	0.538	0.6323	0.5879	0.6589
3.2	PA	0.4782	0.5285	0.5566	0.5729	0.5146	0.574
3.3	PA	0.3812	0.4945	0.497	0.572	0.5473	0.6036
4.1	PL	0.7656	0.8249	0.8229	0.864	0.8646	0.8866
4.2	PL	1.5888	1.7867	1.7253	1.9277	1.3074	2.0347
4.3	PL	0.9409	1.0043	1.0361	1.0879	1.0595	1.0886
5.1	WC	0.4791	0.5509	0.571	0.6123	0.5691	0.5969
5.2	WC	0.4709	0.6107	0.5807	0.7163	0.6032	0.7411
5.3	WC	0.4593	0.5459	0.5308	0.5876	0.5629	0.597

Table E.6: Inferred values of α_1 , by variations on the prior distribution

Table E.7: Inferred values of β_1 , by variations on the prior distribution

		Matér	m 3/2	Matér	m 5/2	Sq. Exp	onential
$\hat{\beta_1}$	LoB	Snoek	Lally	Snoek	Lally	Snoek	Lally
1.1	MM	1.2497	1.4873	1.3075	1.5958	1.2576	1.5253
1.2	MM	1.3111	2.4547	1.4146	2.4519	1.5303	2.5075
1.3	MM	1.4577	3.0128	1.5287	3.0144	1.6209	2.8011
2.1	CA	1.2195	1.7028	1.2357	1.7282	1.2285	1.68
2.2	CA	1.4334	2.5556	1.4194	2.5284	1.3726	2.3668
2.3	CA	1.1486	1.6145	1.1536	1.6114	1.1815	1.551
3.1	PA	1.351	2.8381	1.3567	2.6662	1.4068	2.4101
3.2	PA	1.1099	1.2914	1.105	1.2574	1.1518	1.4711
3.3	PA	1.3734	2.7678	1.3456	2.6783	1.3542	2.4626
4.1	PL	1.1298	1.317	1.1555	1.3937	1.1737	1.4711
4.2	PL	1.6556	2.5565	1.7762	2.6642	1.5819	2.97
4.3	PL	1.2731	1.8569	1.3309	1.9894	1.4691	2.1408
5.1	WC	1.1242	1.2762	1.1545	1.3778	1.1609	1.388
5.2	WC	1.3288	2.3214	1.3646	2.3217	1.4443	2.503
5.3	WC	1.2342	1.7929	1.2393	1.7239	1.2686	1.7567

		Matér	m 3/2	Matér	m 5/2	Sa. Exp	onential
$\hat{\alpha_2}$	LoB	Snoek	Lally	Snoek	Lally	Snoek	Lally
1.1	MM	1.3093	1.4051	1.4991	1.68	1.1532	1.7014
1.2	MM	9.4698	1.1952	8.5882	1.2394	7.7088	1.3909
1.3	MM	0.9557	0.9604	0.8559	0.9691	0.7891	1.0013
2.1	CA	1.1078	1.2688	0.5313	0.6313	0.4469	0.5368
2.2	CA	1.133	1.5127	1.3153	2.0453	1.2318	2.8785
2.3	CA	2.0925	2.1649	2.5022	2.3705	2.3933	2.2898
3.1	PA	0.442	0.5661	0.3999	0.4888	0.3369	0.4025
3.2	PA	1.3893	1.425	1.4888	1.5419	2.1892	1.4886
3.3	PA	0.9152	0.9981	0.972	1.1999	1.0037	1.5519
4.1	PL	1.7774	1.52	1.8358	1.707	2.155	1.9708
4.2	PL	2.2556	2.6427	2.4534	2.8741	2.7115	3.4028
4.3	PL	1.8373	2.3685	2.2602	3.3787	3.2987	4.455
5.1	WC	1.0366	1.0188	1.0929	1.1495	1.3147	1.6144
5.2	WC	0.6744	0.9501	0.5813	0.9617	0.4088	0.5692
5.3	WC	1.1269	1.1422	1.2254	1.2634	1.3193	1.3636

Table E.8: Inferred values of α_2 , by variations on the prior distribution

Table E.9: Inferred values of β_2 , by variations on the prior distribution

		Matér	rn 3/2	Matér	m 5/2	Sq. Exp	onential
$\hat{eta_2}$	LoB	Snoek	Lally	Snoek	Lally	Snoek	Lally
1.1	MM	1.3712	1.8887	1.5294	2.17	1.402	2.4755
1.2	MM	1.0138	1.9851	1.0105	1.4009	1.0189	1.2237
1.3	MM	1.2142	1.7445	1.3139	2.2691	1.4356	2.719
2.1	CA	1.4132	1.8947	1.0736	1.2992	1.0176	1.1735
2.2	CA	1.5341	2.8664	1.8901	4.0755	1.673	6.1015
2.3	CA	1.3925	1.5891	1.618	2.069	1.7408	2.2767
3.1	PA	1.0718	1.399	1.0341	1.2732	0.9418	1.0574
3.2	PA	1.294	1.4211	1.4159	1.5798	1.5237	2.1588
3.3	PA	1.1664	1.6642	1.2629	2.2294	1.3768	3.3471
4.1	PL	1.1734	1.3539	1.294	1.7375	1.4336	2.1014
4.2	PL	1.8487	2.6756	2.1151	3.0004	1.9258	3.7116
4.3	PL	1.702	2.7363	2.1257	3.7784	3.0205	5.0685
5.1	WC	1.0364	1.0632	1.1985	1.483	1.5441	3.0899
5.2	WC	1.3766	2.2062	1.3976	2.39	1.3532	1.9528
5.3	WC	1.2248	1.3679	1.3589	1.5461	1.5172	1.7022

Page 120

F Results: Bornheutter-Ferguson Estimators

In this Appendix, we will give the estimated development and estimated loss as used in generating the results of Section 6.3.3

	1988	1989	1990	1991	1992	1993	1994	1995	1996	1997
Ult. Loss	58,703	$61,\!272$	$76,\!947$	89,983	89,784	94,038	102,083	$113,\!189$	$95,\!935$	101,971
Est. Development	1.00	0.95	0.89	0.80	0.68	0.54	0.36	0.20	0.09	0.01
Est. Loss	58,703	$62,\!677$	84,511	$96,\!977$	$105,\!529$	$91,\!147$	$153,\!263$	$82,\!430$	$103,\!813$	115,788

Table F.1: Estimators of Development and Cumulative Loss of Triangle 1.1

Table F.2: Estimators of Development and Cumulative Loss of Triangle 1.2

	1988	1989	1990	1991	1992	1993	1994	1995	1996	1997
Ult. Loss	25,942	27,039	$20,\!374$	$28,\!805$	$25,\!531$	$37,\!326$	$36,\!154$	29,147	$32,\!659$	29,292
Est. Development	1.00	1.00	1.00	0.98	0.93	0.86	0.67	0.40	0.18	0.03
Est. Loss	$25,\!942$	$27,\!109$	$20,\!498$	$26,\!685$	24,758	$33,\!857$	$23,\!262$	$32,\!455$	$32,\!439$	16,558

Table F.3: Estimators of Development and Cumulative Loss of Triangle 1.3

	1988	1989	1990	1991	1992	1993	1994	1995	1996	1997
Ult. Loss	$77,\!656$	$72,\!171$	$75,\!250$	90,343	89,102	96,008	91,796	81,782	$97,\!225$	$98,\!655$
Est. Development	1.00	1.00	1.00	0.99	0.98	0.94	0.87	0.70	0.40	0.07
Est. Loss	$77,\!656$	$72,\!091$	$75,\!524$	$89,\!621$	$88,\!581$	$97,\!352$	$96,\!014$	$104,\!691$	$112,\!039$	$53,\!280$

Table F.4: Estimators of Development and Cumulative Loss of Triangle 2.1

	1988	1989	1990	1991	1992	1993	1994	1995	1996	1997
Ult. Loss	7,115	$8,\!425$	8,991	$8,\!549$	$7,\!853$	9,980	9,583	9,038	8,719	$12,\!434$
Est. Development	1.00	1.00	1.00	0.99	0.96	0.91	0.84	0.73	0.57	0.33
Est. Loss	7,115	8,428	9,018	8,460	$7,\!850$	9,928	10,028	9,972	10,726	$10,\!594$

Table F.5: Estimators of Development and Cumulative Loss of Triangle 2.2

	1988	1989	1990	1991	1992	1993	1994	1995	1996	1997
Ult. Loss	$193,\!499$	200,480	$225,\!430$	206,719	$214,\!524$	$233,\!365$	$244,\!280$	240,184	$237,\!368$	230,775
Est. Development	1.00	0.98	0.98	0.97	0.95	0.92	0.86	0.76	0.59	0.31
Est. Loss	$193,\!499$	$203,\!117$	$228,\!458$	$212,\!130$	$218,\!991$	$238,\!821$	$247,\!230$	$255{,}548$	$258,\!646$	$249,\!556$

Table F.6: Estimators of Development and Cumulative Loss of Triangle 2.3

	1988	1989	1990	1991	1992	1993	1994	1995	1996	1997
Ult. Loss	791	553	479	936	2,254	4,458	6,117	4,480	$6,\!273$	5,322
Est. Development	1.00	1.00	0.99	0.99	0.97	0.86	0.79	0.64	0.48	0.17
Est. Loss	791	551	488	950	$1,\!970$	$3,\!910$	5,926	4,266	$5,\!884$	3,768

Table F.7: Estimators of Development and Cumulative Loss of Triangle 3.1

	1988	1989	1990	1991	1992	1993	1994	1995	1996	1997
Ult. Loss	20,739	28,009	$28,\!826$	31,272	30,780	34,035	35,226	$35,\!400$	33,316	33,661
Est. Development	1.00	1.00	1.00	1.00	0.99	0.97	0.92	0.84	0.69	0.40
Est. Loss	20,739	$28,\!008$	$28,\!820$	$31,\!138$	30,794	$34,\!115$	$34,\!890$	$35,\!158$	$36,\!247$	$36,\!442$

	1988	1989	1990	1991	1992	1993	1994	1995	1996	1997
Ult. Loss	$63,\!835$	77,029	79,308	$72,\!579$	$62,\!458$	97,787	110,038	111,598	$133,\!522$	113,371
Est. Development	1.00	1.00	1.00	0.96	0.89	0.85	0.77	0.65	0.49	0.25
Est. Loss	$63,\!835$	$77,\!154$	$79,\!579$	$73,\!898$	$69,\!471$	108,949	$124,\!464$	150, 117	179,219	166,331

Table F.8: Estimators of Development and Cumulative Loss of Triangle 3.2

Table F.9: Estimators of Development and Cumulative Loss of Triangle 3.3

	1988	1989	1990	1991	1992	1993	1994	1995	1996	1997
Ult. Loss	6,815,646	7,721,911	8,394,117	8,288,143	90,26,329	9,673,610	$10,\!375,\!605$	10,512,108	10,387,245	10,165,481
Est. Development	1.00	1.00	1.00	0.99	0.98	0.96	0.92	0.85	0.71	0.40
Est. Loss	$6,\!815,\!646$	7,719,135	$8,\!396,\!402$	8,290,064	9,048,159	9,729,040	$10,\!414,\!583$	$10,\!589,\!695$	10,731,391	$12,\!077,\!363$

Table F.10: Estimators of Development and Cumulative Loss of Triangle 4.1

	1988	1989	1990	1991	1992	1993	1994	1995	1996	1997
Ult. Loss	36,358	41,189	$35,\!037$	19,233	19,213	$16,\!247$	27,086	25,216	11,841	5,049
Est. Development	1.00	1.00	0.94	0.88	0.76	0.62	0.46	0.31	0.16	0.05
Est. Loss	$36,\!358$	$41,\!167$	33,728	$21,\!585$	$30,\!142$	$19,\!845$	$59,\!670$	$34,\!562$	$42,\!012$	10,328

Table F.11: Estimators of Development and Cumulative Loss of Triangle 4.2

	1988	1989	1990	1991	1992	1993	1994	1995	1996	1997
Ult. Loss	32,430	34,292	55,502	$53,\!586$	40,504	$93,\!531$	106,357	101,142	$103,\!677$	129,300
Est. Development	1	0.98	0.96	0.95	0.86	0.69	0.55	0.28	0.13	0.05
Est. Loss	$32,\!430$	$34,\!476$	$43,\!444$	$37,\!628$	$26,\!231$	$85,\!281$	$98,\!243$	$78,\!314$	$13,\!191$	$104,\!953$

Table F.12:	Estimators o	of Development	and Cumulative	Loss of Triangle 4.3
-------------	--------------	----------------	----------------	----------------------

	1988	1989	1990	1991	1992	1993	1994	1995	1996	1997
Ult. Loss	21,368	$21,\!119$	$23,\!279$	$26,\!380$	$21,\!658$	11,598	$12,\!353$	10,883	14,100	$17,\!336$
Est. Development	1.00	0.99	0.98	0.96	0.91	0.85	0.71	0.53	0.33	0.18
Est. Loss	21,368	20,988	$22,\!815$	$25,\!083$	$21,\!089$	$11,\!921$	$16,\!445$	$15,\!925$	$17,\!353$	$23,\!114$

Page 123

1

	1988	1989	1990	1991	1992	1993	1994	1995	1996	1997
Ult. Loss	325,322	$277,\!574$	263,000	248,319	168,844	$90,\!686$	94,730	91,161	49,255	2,909
Est. Development	1.00	0.99	0.95	0.93	0.89	0.84	0.77	0.66	0.49	0.22
Est. Loss	$325,\!322$	$277,\!104$	$265,\!993$	254,406	$183,\!880$	$114,\!889$	$129,\!013$	$123,\!220$	$57,\!261$	$6,\!347$

Table F.13: Estimators of Development and Cumulative Loss of Triangle 5.1

Table F.14: Estimators of Development and Cumulative Loss of Triangle 5.2

	1988	1989	1990	1991	1992	1993	1994	1995	1996	1997
Ult. Loss	$75,\!655$	71,001	$50,\!385$	42,887	$37,\!684$	27,752	21,102	$14,\!678$	$13,\!544$	20,734
Est. Development	1.00	0.99	0.98	0.98	0.96	0.94	0.87	0.76	0.54	0.24
Est. Loss	$75,\!655$	$71,\!192$	$50,\!817$	42,739	39,511	$23,\!007$	18,781	$17,\!490$	$17,\!604$	$25,\!048$

Table F.15: Estimators of Development and Cumulative Loss of Triangle 5.3

	1988	1989	1990	1991	1992	1993	1994	1995	1996	1997
Ult. Loss	$125,\!049$	149,252	$196,\!092$	$229,\!642$	$235,\!831$	$224,\!868$	190,572	$153,\!299$	$126,\!403$	111,592
Est. Development	1.00	0.99	0.97	0.95	0.93	0.88	0.81	0.70	0.53	0.20
Est. Loss	$125,\!049$	$149,\!157$	$192,\!076$	$222,\!433$	$229,\!174$	$221,\!338$	$194,\!013$	$152,\!589$	$136{,}506$	$207,\!938$