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ABSTRACT
Flexure based Tip-Tilt-Piston (TTP) mechanisms are often

found in optical applications like micro mirror arrays or large
fast steering mirrors. In this paper the design of a new TTP
mechanism with a high support stiffness over a translational
stroke of ± 4 mm and a rotational stroke of ± 0.04 rad is pre-
sented. Parametric models of multiple concepts with various lev-
els of complexity are generated. By means of optimization a nec-
essary support stiffness is enforced while the actuation stiffness
is minimized. During shape optimization penalty constraints are
applied to the parasitic eigenfrequencies, occurring stress and
support stiffness drop. Analytic and flexible multi-body mod-
elling approaches are used for efficient function evaluations in
the optimization algorithm. Additional efficiency is gained by ex-
ploiting symmetry in the concepts and choosing an optimal test
trajectory. For validation of the results, finite element analyses
are conducted. This resulted in a design with an eigenfrequency
of 31 Hz corresponding to tip-tilt motion and 15 Hz for piston
motion. The first parasitic eigenfrequency corresponding to sup-
port stiffness is found at 734 Hz for a payload of 1 kg.

INTRODUCTION
For applications where high accuracy and repeatability is

required, flexure-based mechanisms are often used as they do
not suffer from hysteresis, backlash and friction. Furthermore,
flexure-based mechanisms are virtually maintenance free [1] [2]
and require no lubrication. Therefore, they are applicable in vac-
uum since there is no contamination or vaporisation from lubri-
cants which makes them suitable for typical high performance
optical applications.

Tip-Tilt-Piston (TTP) mechanisms are mostly found in mir-

ror steering applications on different scales. They provide two
rotational Degrees of Freedom (DoF) and one translational DoF
perpendicular to the tip-tilt rotation axes. On a micro-scale, TTP
mechanisms are found in micro-mirror arrays. The DoFs are en-
abled by Inverted Series Connected (ISC) actuators which results
in a fully planar mechanism [3] [4]. Larger TTP mechanisms are
found in Fast Steering Mirror (FSM) applications [5]. These and
other [6] are typically driven by piezoelectric actuators, yield-
ing high support stiffness but limited range of motion. A rela-
tively high range of motion mechanism is described by Pernette
et al. [7] However, no stiffness properties are mentioned. Hao et
al. [8] designed a fully monolithic flexure based TTP mechanism.
However, it is also limited to a small range of motion.

In this paper, a large range of motion TTP mechanism is pro-
posed which allows for high support stiffness over the full range
of motion. To allow for this large range of motion, a new TTP
mechanism is proposed consisting of radially oriented flexures.

Based on a set of requirements, three different concepts with
a number of sub-concepts are presented. By means of analytic
modelling and Nelder-Mead optimization dimensions of the con-
cepts are determined. Based on the optimization results, a TTP
mechanism is designed and validated by using Finite Element
Methods.

REQUIREMENTS
A given end-effector which is rotationally symmetric around

the z-axis is illustrated in Fig. 1. This end-effector must be sus-
pended by means of flexible elements. The leaf springs are con-
nected to the end-effector on a radius r0 of 20 mm. The inertia
properties of the end-effector are listed in Table 1. The tip of
the end-effector has a desired cylindrical workspace with a ra-
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FIGURE 1: end-effector

dius of 4 mm and a height of 8 mm, illustrated as the top hatched
surface in Fig. 1. At rest the end-effector is in the centre of the
workspace. To span the entire workspace a piston stroke in z-
direction of ± 4 mm and a tip-tilt rotation in the xy-plane of ±
0.04 rad are required, since the shaft has a length of 100 mm.
For any stroke within the workspace a maximum drive stiffness
and a minimum support stiffness is defined, listed in Table 1. As
an additional requirement, the support stiffness in the xy-plane
may drop no more than 50% during any stroke. Internal eigen-
frequencies that do not concern motion of the end-effector (ω i)
must be above 250 Hz.

On the bottom flange three voice coil motors evenly dis-
tributed on a pitch circle will drive the mechanism. The build
volume is defined as a cuboid with dimensions 300 x 300 x 50
mm in x-, y- and z-direction respectively, represented by the bot-
tom hatched surface in Fig. 1.

The most favourable design is an exact constraint mecha-
nism. To achieve this, the Freedom and Constraint Topology
method by Hopkins et al. [9] is used. Tip-tilt motion requires
that all rotation axes in the xy-plane are free, which is illustrated
by a planar square freedom space in Fig. 2a. Translational pis-
ton motion can be emulated by a rotation around an axis at in-
finite distance. This is visualized as the hoop in Fig. 2a. The
complementary constraint space is illustrated in Fig. 2b as three
constraint lines on the xy-plane. The constraint lines indicate
directions for which translation is fixed.

TABLE 1: Boundary conditions

Parameter value unit

uz ±4 mm

θx,θy ±0.04 rad

r0 20 mm

M 1 kg

Ixx, Iyy 1 ·10−3 kgm2

Izz 1.1 ·10−3 kgm2

Kx,Ky 3 ·107 N/m

Kz 3 ·104 N/m

Krx,Kry 12 Nm/rad

Krz 2 ·104 Nm/rad

x

y

z

(a)

z

y

x

(b)

FIGURE 2: (a) Freedom space. (b) Constraint space.

Centre of Compliance
The compliance matrix C of a mechanism is defined as:

{
U
R

}
=C

{
F
M

}
(1)

If the compliance matrix is diagonal, no coupling between rota-
tions R and forces F or translations U and moments M occurs.
In this case the compliance matrix is evaluated in the centre of
compliance, which does not necessarily exist for every spatial
mechanism. The absence of coupling terms is advantageous be-
cause it reduces pivot shift and could reduce the total driving
stiffness. Symmetric systems are more likely to have a centre of
compliance [1], which is therefore required. A typical symmet-
ric design that satisfies the constraint space is found in Fig. 3. It
consists of three folded leaf springs which are interconnected at
the centre. A folded leaf spring has a single constraint line that
is collinear with the fold line [1].
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FIGURE 3: Concept 1a.

METHOD

In this section the design, modelling and optimization strat-
egy is explained. First, an analytical model for the undeflected
state of a folded leaf spring is presented to analyse and under-
stand the concept in Fig. 3. Thereafter, modelling and analysis of
more complex concepts with multi-body software is explained.
For shape optimization of the multi-body models objectives and
constraints are presented.

Analytical Model

For a better understanding of a folded leaf spring, an analytic
model is generated. Previously Van Eijk [10] proposed equations
for the compliance of a folded leaf spring in equilibrium posi-
tion, where loads are applied at the fold. In this section a new
model is introduced that also takes shear, in-plane bending and
warping into account. The model is presented as a compliance
matrix which is evaluated at the free end of the folded leaf spring.
Twelve unique compliance values have to be found that depend
on Elongation, Bending, Torsion, Warping and Shear. The vari-
ables for this model are shown in Fig. 4. In the next sections the
compliance terms for each deformation mode are presented. For
the plots and validations, the following dimensions are used:

La = 50mm

Lb = 50mm

w = 40mm

t = 0.50mm

θ = π/3rad

La

Lb
w

t

θ

FIGURE 4: Analytic model variables

Elongation. The compliance matrix for elongation has
the following form.

Celongation =



La+La cos2 θ

EA 0 − La
EA sinθ cosθ 0 0 0

0 0 0 0 0
La sin2 θ

EA 0 0 0
0 0 0

Symm. 0 0
0


(2)

Bending. The compliance for in-plane and out-of-plane
bending is found using the beam deflection formulas for can-
tilever beams with an end force or end moment. The out-of-
plane and in-plane bending compliance matrices can be found in
Eqs. (3) and (4) respectively.

Torsion & Warping. Since the DoFs are strongly depen-
dent on torsion and the leaf springs are expected to be short and
wide, the effects of constrained warping have to be taken into ac-
count [22]. The analytic expression is found by solving a system
of differential equations for φ as found in the following equation
by Vlasov [11].

EIw
d4φ

dx4 −GJ
d2φ

dx2 = mx (5)

In this equation Iw is the warping constant as given in Eq. (6) for
a rectangular cross section and mx is a distributed torque along
the length of the beam.

Iw =
w3t3

144
(6)

Because the torsional moment is constant along the entire beam,
the expression for the total torsional moment in Eq. (7) can be
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used

−EIw
d3φ

dx3 +GJ
dφ

dx
= M (7)

This equation is rewritten to:

− 1
λ 2

d3φ

dx3 +
dφ

dx
=

M
St

(8)

Where

St = GJ (9)

λ =

√
St

EIw
(10)

The folded leaf spring is modelled as two separate beams
which are coupled by the boundary conditions in Eq. (11). The
leaf spring is clamped on one end (φ1(0) = 0) and warping (φ ′)
is constrained at both ends. The twist angle φ is transferred de-
pending on the fold θ angle as illustrated in Fig. 5. Warping φ ′

and Bi-moment B are transferred regardless of the fold angle.

φ1(0) = 0
φ
′
1(0) = 0

φ1(La) =−φ2(La)/cosθ

φ
′
1(La) = φ

′
2(La)

B1(La) = B2(La)

φ
′
2(La +La) = 0

(11)

The compliance matrix in Eq. (12) shows the nonzero terms that
occur due to torsion.

Ctorsion =


0 0 0 0 0 0

CraMzL2
b sinθ 0 CrbMzLb 0 CraMzLb sinθ

0 0 0 0
CrbMx 0 CrbMz

Symm. 0 0
CraMz sinθ

 (12)

To obtain the compliance expressions, the following systems of
equations have to be solved.

[
− 1

λ 2
d3φ1
dx3 + dφ1

dx

− 1
λ 2

d3φ2
dx3 + dφ2

dx

]
=

[−cosθMx
St
Mx
St

]
[
− 1

λ 2
d3φ1
dx3 + dφ1

dx

− 1
λ 2

d3φ2
dx3 + dφ2

dx

]
=

[ sinθMz
St
0

] (13)

Caop =



L3
a sin2 θ

3EI 0 L2
a(La sin2θ−3∗Lb sinθ

6EI 0 L2
a sinθ

2EI 0
0 0 0 0 0

L3
a cos2 θ+3L2

bLa+L3
b−3LbL2

a cos2 θ

3EI 0 −L2
b+2LbLa−L2

a cosθ

2EI 0
0 0 0

Symm. Lb+La
EI 0

0


(3)

Cip =



0 0 0 0 0 0
L3

b+L3
a−3LbL2

a cosθ+3La2La cos2 θ

3EIip
0 −L2

a sinθ−LbLa sin2θ

2EIip
0 L2

b−L2
a cosθ+2LbLa cos2 θ

2EIip
0 0 0 0

La sin2 θ

EIip
0 La cosθ sinθ

EIip
Symm. 0 0

Lb+La cos2 θ

EIip


(4)
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FIGURE 5: Propagation of twist angle through a fold
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FIGURE 6: Torsion plots for θ = 60◦

By taking the derivative of the solutions to their corresponding
input torque, the compliance is found.

CrbMx =
φ2

Mx

CrbMz =
φ2

Mz

CraMz =
φ1

Mz

(14)

In Fig. 6 the propagation of the twist angle, warping, bi-moment
and axial moment can be found for a folded leaf spring. A torque
of 0.1 Nm is applied at the free end and a fold angle of 60◦ is
applied. The plotted values are evaluated in the local coordinate
systems of the leaf spring segments, where the x-axis is parallel
to the leaf spring.

0 /3 2 /3
Fold angle  [rad]

-1

0

1

2

3

4

C
ij

10-3

1,1
2,2
1,3
3,3

FIGURE 7: Translational compliance matrix values

Shear. Compliance caused by shear effects are defined by
Eq. (15) where k is the shear correction factor which is given by
Cowper [12]. For rectangular cross sections k is equal to 0.85.

Cs =
L

GAk
(15)

The compliance matrix for shear effects can be found in Eq. (16)

Cshear =



0 0 0 0 0 0
La+La

GAk 0 0 0 0
0 0 0 0

0 0 0
Symm. 0 0

La
GAkLa

 (16)

Validation of the compliance matrix. The total com-
pliance matrix of a single folded leaf spring is created by adding
all previously presented matrices. To validate that the model
is accurate, it is compared with Multi-Body analysis software
SPACAR. In Figs. 7 and 8 the largest compliance values for
translation and rotation are plotted for the fold angle θ . The +
markers indicate the values obtained from the analytic model.
For 98% of the values found, the difference of between the ana-
lytical model and spacar is less than 1%.

Stress. To find dimensions by optimization, the stress
must be known to constrain the optimization algorithm. An ex-
pression for bending stress in a folded leaf spring is given by
Soemers [1]. However, these equations do not take the fold an-
gle into account. Therefore, the bending stress due to a deforma-
tion in z-direction is calculated using the Beam Constraint Model
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FIGURE 8: Rotational compliance matrix values
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FIGURE 9: Stress comparison between BCM and SPACAR for
uz = 4 mm

(BCM) by Awtar et al. [13]. The BCM was numerically solved
for two coupled beam elements with appropriate constraints to
find the bending moment. The constraints include clamping at
the fixed end and a pure translation of 4 mm in z directing with
no rotation at the free end. In Fig. 9 the calculated stress can be
compared with the equivalent stress results given by SPACAR,
which also takes other stresses into account. The figure shows a
good agreement and indicates that bending stress has the largest
portion in the equivalent stress for this load case.

Optimization of the analytic model. Using the com-
pliance matrix of a single folded leaf spring, the stiffness matrix
of the concept with three leaf springs displayed in Fig. 3 can be
constructed. Grootens [14] presented equations for transforming

compliance matrices to a new translated and rotated coordinate
system. The inverse of the transformed compliance matrices will
be summed to obtain the full stiffness matrix:

K =
n

∑
i=1

(TiST ′i )
−1 (17)

Where S is the compliance matrix, T is the transformation ma-
trix and n is the number of leaf springs. Optimiziation using the
Matlab algorithm fmincon yields the following dimensions:

La = 23.5 mm

Lb = 53.5 mm

w = 44.5 mm

t = 0.30 mm

θ = 3.1456 rad

The corresponding stiffness and eigenfrequencies are:

Kx,Ky = 7.02 ·107 N/m

Kz = 1.72 ·103 N/m

Krx,Kry = 1.54 Nm/rad

Kz = 3.03 ·107 Nm/rad

ω3 = 6.6 Hz

ω4 = 833 Hz

In the undeflected position this is a feasible result. The result for
θ immediately stands out since it is almost equal to π , meaning
the results converged to a flat flexure strip with length La +Lb.
This is caused by the minimum in the stress plot in Fig. 9. To
constrain the optimization, the stress in the deflected situation is
taken into account. However, the decrease in stiffness due to de-
formation is not considered, which would require the thickness
to be larger. In this case the stress will exceed the yield limit,
which could be relieved with a different fold angle. To investi-
gate this, numerical analyses covering the entire range of motion
are required. A fold angle θ is chosen based on Figs. 7 and 8.
The compliance in z-direction (C3,3) is at its maximum for θ = π .
However, a shortening effect occurs which should be released by
a compliance in x-direction (C1,1) is constrained at that angle.
Therefore a fold angle of π/2 is a compromise to allow both
translations. The desired compliance around the y-axis (C5,5) is
independent of the fold angle, where for the x-axis (C4,4) it is
not. A minimum occurs at π/2 which is unfavourable but tol-
erated since a parasitic compliance coupling x- and z-rotation is
zero at that angle. In conclusion, a fold angle of π/2 rad is the
best and will be used in upcoming concepts.
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Simulation Trajectory
The requirements on stiffness and stress have to be met for

the entire range of motion, so during simulation a worst case
trajectory must be covered. A translational stroke along the z-
axis of ± 4 mm and a rotational stroke of ± 0.04 rad is applied
such that the entire workspace is reached. The rotation axis must
be chosen such that the worst case scenario for stiffness drop and
stress occurs. To find the optimal rotation axis analytic equations
are used.

Only the horizontal parts of the leaf springs from Fig. 3 are
observed. The vertical parts are assumed to be rolling supports
with no longitudinal stiffness and infinite lateral stiffness. This
is not an entirely accurate assumption since the vertical part of
a folded leaf spring can twist. However, it is justified since only
the stiffness drop due to deflection is observed. Using analytic
equations by Nijenhuis et al. [15] for lateral support stiffness of
a leaf spring in a 3D deformation the rotation axis that has the
highest impact on support stiffness can be found. Differentiat-
ing the lateral error motion relation to the lateral force yields an
expression for the compliance in that direction:

Sy(φx,φy,uz) =
L3

3EIz
+

L3

180EIy
φ

2
x +

L3

GJ

{
φy uz/L

}[13/1260 −1/105
−1/105 3/35

]{
φy

uz/L

} (18)

The axis around which the rotational deformation is applied
is prescribed by an angle θa with respect to the x-axis. The pre-
scribed rotational deformation φ must be split into torsional ro-
tation φx and bending rotation φz for each leaf spring with index
i:

φxi = cos(θi−θa)φ (19)
φyi = sin(θi−θa)φ (20)

where θi is the angle of leaf spring i with respect to the global
x-axis. This is illustrated in Fig. 10. The total deflection in z-
direction is a combination of pure z-translation and tilting around
the rotation axis due to the offset of the leaf springs.

uzi = uz + rls sin(θi−θa)sin(φ) (21)

The lateral stiffness of each leaf spring is different due to differ-
ent deformations and is determined by:

Ki =
1

Sy(φxi,φzi,uzi)
(22)

θa

θ2

θ3

φ

φx3

φy3

x

y

FIGURE 10: Schematic illustration of rotation φ around an axis
angled at θa.

The total support stiffness of multiple radially arranged leaf
springs along an axis at an angle θ with respect to the global
x-axis is:

K(θ) =
n

∑
i=1

Ki sin(θi−θ)2 (23)

By observing the minimum of Eq. (23) for all rotation axis angles
θa, the rotation axis direction that yields the largest stiffness drop
can be found. In Fig. 11a the stiffness distribution from Eq. (23)
is plotted for θa = π/2.

In Fig. 11b the minimum stiffness is plotted against the rota-
tion axis angle for the case of three radially arranged leaf springs.
The number of periods is equal to the number of leaf springs.
From this figure can be concluded that the first stiffness mini-
mum occurs at a rotation axis angled π/2 with respect to the
x-axis.

As a measure for the occurring stress, bending en tor-
sion stresses per leaf spring are calculated using the load-
displacement relations from Nijenhuis et al. [15].

σ =
E(3uy−2Lφy)t

L2 (24)

τ =
Gφxw

2L
(25)

The maximum Von Mises equivalent stress is plotted in Fig. 12.
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FIGURE 12: Maximum Von Mises stress for 3 leaf springs.

The angles for maximum stress do not match the angles for min-
imum support stiffness. At π/2 the stiffness and stress are both
at a minimum. Because the variation in stiffness is much smaller
than the variation in stress, a rotation axis θa = 0 rad from the
x-axis is chosen. At this θa, the stress is at a maximum and
the stiffness is at the average value. If a higher number of leaf
springs is used, the stiffness distributions transitions from elliptic
to circular, making the stiffness minimum less dependent on the
rotation axis orientation. Also, the difference between minimum
and maximum stress reduces, but independent of the number of
leaf springs a maximum remains at θa = 0.

Multi-Body Modeling and Analysis
For more complex concepts and more detailed analyses,

parametric models are created using the flexible multi body soft-
ware SPACAR [16]. The software uses 3D finite beam elements.
Compared to FEM analyses only a small amount of elements
is required to obtain accurate results, which results in fast sim-
ulation times. This is favourable since optimizations require
many evaluations of the model. To model the flexible sections,
BEAMW elements implemented by Jonker [17] are used, which

take constrained warping into account.
The end-effector connecting the flexures in the centre is

modelled with massless rigid beam elements. To correctly model
the dynamic behaviour a lumped mass with values from Table 1
is applied to the centre node.

During each function evaluation of the optimization al-
gorithm, the parametric model is evaluated by a number of
SPACAR analyses. First, a static simulation is conducted cov-
ering the translational trajectory in z-direction [18]. In this anal-
ysis the end-effector is constrained in all but the z-direction. The
only eigenfrequencies found in this analysis are internal modes
of leaf springs as the position of the end-effector is prescribed
(and not free to move). To obtain the eigenfrequencies of the
unconstrained system in a deflected state, a linearisation is con-
ducted around the obtained static equilibrium solution of the first
simulation with with the position of the end-effector no longer
prescribed [19]. Therefore, during this analysis the driving con-
straints are removed so the eigenfrequencies of the end-effector
can be extracted for the entire trajectory.

Symmetry. To further decrease the simulation time the
rotational symmetry of the concepts is exploited. By analysing
one leaf spring, the properties of the entire mechanism can be
reconstructed. Each leaf spring has the same shape, but not the
same deformation under rotational deflection. Therefore, only
the translational stroke can be used during previously described
SPACAR runs. The drop in support stiffness due to tilting is
relatively small and can be accounted for by increasing the de-
sired support stiffness during optimization. Unfortunately, the
occurring stresses caused by tilting are highly dependent on the
geometry and cannot be compensated for by a lower constraint
value in the optimization. To find the correct maximum stress an
additional SPACAR run is executed where translation and tilt are
applied to a single leaf spring. This causes additional simulation
times but does not exceed the gained reduction by using symme-
try.
To ensure that the single analysed leaf spring follows the same
path as the full mechanism would, additional constraints have
to be added explicitly that would otherwise be imposed by the
other leaf springs. Translation of the end-effector in the xy-
plane is constrained in all analyses and rotations are all either
constrained or prescribed. This blocks parasitic displacements
and pivot shifts at the end-effector, which are necessary during
symmetry analyses, but not entirely realistic. Therefore, after the
optimization the full mechanism is analysed without additional
constraints on the end-effector to validate the results.

Postprocessing. The data from the simulation of a
single leaf spring is postprocessed to obtain the performance
of the full mechanism. The compliance matrix of a single leaf
spring evaluated in the point of symmetry is used to determine
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the stiffness properties of the entire mechanism.
Similar to the method in the analytical model section, the
stiffness matrix of the entire mechanism can be calculated by
transforming the compliance matrix of a single leaf spring with
Eq. (17).

A difference between ‘end-effector-eigenfrequencies’ (ωe)
and ‘internal-eigenfrequencies’ (ω i) is made. The first are eigen-
frequencies concerning displacement of the end-effector, related
to the stiffness matrix at the end-effector from Eq. (17). Those
are calculated by a generalized eigenvalue analysis of the stiff-
ness and mass matrix at the end-effector. The symmetry point
is also the end-effector’s centre of mass, so the mass matrix is
diagonal with values from Table 1. A total of 6 eigenfrequencies
can be found this way. The internal eigenfrequencies regarding
vibrations of a single flexure follow directly from the SPACAR
analysis and need no postprocessing.

Optimization
The parametric SPACAR models are optimized using the

gradient free Nelder-Mead optimization algorithm [20]. Mod-
ifications by Naves et al. [21], being adaptive objective func-
tions with penalty constraints and constraint interpolation, are
used to improve the performance. Since it is known to work well
with a limited number of parameters and not all derivatives of
the system are available, this algorithm is chosen. Each concept
has a specific parameter vector ppp for which optimal values have
to be found. Although the requirements on the mechanism are
defined using stiffness values, optimizing using frequencies is
favourable since they are independent of direction so less con-
straints are required. The desired end-effector-eigenfrequencies
are listed in Table 4. It is common practice to optimize the
first unwanted eigenfrequency [14] [22], which would be end-
effector-eigenfrequency ωe

4 . However, in this paper the support
stiffness is of major interest. Therefore, satisfying the ωe

4 con-
straint is enforced and ωe

3 , which is the highest desired eigenfre-
quency, is minimized. Hence, the cost function is:

F = max(ω3(ppp,uz,θx)), ∀uz ∈ [−umax,umax],

∀θx ∈ [−θmax,θmax]
(26)

To direct the optimization to a feasible solution a number
of constraints and boundary conditions are applied. In Table 2
the boundary conditions are listed that apply to the parameter
vectors. These values are based on the build volume, material
and production methods. The width at the end-effector w1 is
dependent on the number of leaf springs nls and the radius r0 at
which they are connected. The horizontal length which is equal
to Lb for concept 1 and equal to the sum of the building block
lengths for concept 2 and 3, is constrained by the build volume.

TABLE 2: Design parameter boundary conditions

parameter min max

Lhorizontal 5 mm 150 mm

w1 5 mm 2r0 tan(π/nls)

wn 5 mm 80 mm

t 0.2 mm 5 mm

TABLE 3: Optimization constraints

parameter value

σ ≤ 600 Mpa

min(ωe
4) ≥ 872 Hz

min((ωe
4)

2)

max((ωe
4)

2)
≥ 0.5

min(ω i
1) ≥ 250 Hz

Constraints applied to the results from the function evalu-
ations are listed in Table 3. The constraints are enforced us-
ing penalties on the cost function. The selected material is
STAVAX® [23], which is a stainless tool steel with a maximum
yield stress off 1360 MPa and a fatigue limit of 600 Mpa. To
satisfy the support stiffness requirements, a penalty constraint is
applied to ωe

4 . Preliminary simulations showed that the xy-plane
stiffness is critical and rz stiffness is easily satisfied with the ex-
isting concepts. Therefore the constraint is set to 870 Hz. The
difference in frequency between piston and tip-tilt motion is dis-
regarded initially. This will only become relevant when ωe

3 is
satisfactory.

CONCEPT GENERATION
In this section multiple concepts are presented. The follow-

ing concepts evolve from a base concept to which various levels
of complexity and over constraints are added.

Concept 1
Concept 1a. This concept is the basic setup of three pris-

matic folded leaf springs as described in the requirements sec-
tion. The model of the leaf spring is depicted in Fig. 13a. The
parameter vector containing four variables is:

ppp = {La,Lb,w1, t} (27)
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TABLE 4: end-effector-eigenfrequency requirements

n axis ω [Hz]

1 uz 8.72

2 rx 17.4

3 ry 17.4

4 uz 678

5 ux 872

6 uy 872

La

Lb
w1

t

(a)

La

Lb w3

t

w2

w1

(b)

FIGURE 13: (a) Concept 1a. (b) Concept 1b.

Concept 1b. To improve Concept 1a an option for ta-
pered leaf springs is added. The width of the leaf springs is lin-
early tapered with three width parameters, at the base, fold and
end-effector. The performance is expected to improve compared
to prismatic folded leaf springs since the optimization of a ta-
pered leaf spring can also converge to a prismatic leaf spring.
The parameter vector for this concept consists of six variables:

ppp = {La,Lb,w1,w2,w3, t} (28)

In Fig. 13b the parametric model of a single leaf spring is illus-
trated.

Concept 1c. Driving stiffness and support stiffness are
both closely related to the ratio w/t. If the vertical part of a
folded leaf spring is not taken into account, the load displacement

δls

FIGURE 14: Concept 1c.

relations for driving directions are:

uz = Fz
L3

12EIy
= Fz

L3

Ewt3 (29)

θ = Mx
L

GJ
≈Mx

3L
Gwt3 (30)

The load displacement relation in lateral direction as described
by Nijenhuis [24] is

uy = Fy(
L3

12EIz
+

L
kzGA

+
L

28GJ
u2

z )

≈ Fy(
L3

Ew3t
+

L
kzwt

+
3L

28Gwt3 u2
z )

(31)

For a high lateral support stiffness and low driving stiffness, a
high w/t ratio is desired. However, a torsion related stiffness
drop occurs that requires a low w/t ratio to reduce its effect. A
solution is to add an additional set of three folded leaf spring
which will be placed at an offset to the first set. This is illustrated
in Fig. 14. By maintaining the folds of the leaf springs coplanar
the constraint space remains satisfied. This modification enables
a smaller stiffness drop so a lower support stiffness can be used.
Because the support stiffness is related to the driving stiffness,
this will also decrease. The parameter vector from concept 1b is
augmented with one variable, the offset.

ppp = {La,Lb,w1,w2,w3, t,δls} (32)

Concept 2
The horizontal part of the leaf spring mainly accounts for the

deflection required for a stroke, where the vertical part accounts
for the shortening effect caused by the stroke. The stiffness of
the vertical part has an influence on the drive stiffness of the
end-effector. To further reduce this drive stiffness, the vertical
and horizontal part are designed separately. The vertical part is
modelled as a straight guidance consisting of two parallel leaf
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springs, as illustrated in Fig. 15. When modelling the horizon-
tal part, the straight guidance is assumed to have infinite support
stiffness, zero driving stiffness and zero parasitic motion. Zero
driving stiffness can be achieved by balancing, for example by
exploiting post-buckled behaviour of leaf springs as described
by Soemers [1].

In Fig. 16 a schematic model can be found. This setup im-
poses a number of overconstraints. Where a single folded leaf
spring has one Degree of Constraint (DoC) and five DoFs, this
mechanims constrains an additional DoF. By implementing it 3
times, 3 overconstraints are created. The rotation around z is
overconstrained twice and translation in the xy-plane is overcon-
strained once.

For the topology generation of the horizontal part a building
block method is adopted. Naves et al. [21] previously described
such a method for parallel systems where all building blocks re-
lease the same DoF. In this paper the building blocks are con-
nected in a serial chain where the entire system has to release at
least three DoFs. The building blocks and corresponding param-
eter vectors are:

Leaf spring (LS): ppp = {L,w, t}
Compliant revolute joint (CR): ppp = {L,w, t1,h, t2} [25]
Torsionally reinforced leaf spring (TRLS): ppp = {L,w, t,h}
[21]

A fourth rigid building block exists in the case one of the build-
ing blocks above converges to a high thickness and width. The
total parameter vector is a concatenation of three sub-parameter
vectors from the building blocks:

ppp = {ppp1, ppp2, ppp3} (33)

To find the optimal topology, a fast optimization method is used
that swaps the building blocks and only optimizes a part of the
parameter vector that corresponds to the active building block.
The building blocks are optimized consecutively, but the perfor-
mance of the entire system is taken into account. The small num-
ber of parameters per optimization run yields a fast convergence.
Initial dimensions for the blocks that are not yet optimized have
to be chosen. To eliminate the effect of initial dimensions, the
loop of consecutive optimization is passed twice. In the current
approach there is no strategy for swapping building blocks other
than trying all possible combinations. This is feasible for a lim-
ited number of different building blocks. Three different topolo-
gies resulted from this method, which are listed in Table 5.

In the above-mentioned method, only one width parameter
per building block is used. This implies that these blocks are pris-
matic. It is desirable to use tapered building blocks for a smooth
transition between the blocks. This adds a width parameter and
implies sharing the width parameters between building block pa-
rameter vectors. Consecutive optimization of the building blocks

FIGURE 15: Concept 2.

uz

(1)
(2)

(3)

FIGURE 16: Concept 2 model.

TABLE 5: Block configurations for concept 2

Concept Block 1 Block 2 Block 3

2a LS LS LS

2b LS CR LS

2c TRLS CR TRLS

as described above does not work any more in this case, so the
entire parameter vector is optimized simultaneously for the final
design.

Concept 3
This concept concerns modifications of the previous con-

cept, where the determined optimal topology is used as a starting
point. The alterations are: (a) adding more flexures in parallel,
(b) creating an offset between two layers of leaf springs at the
end-effector and (c) creating an offset at the outer radius.

Concept 3a. By increasing the number of leaf springs,
the number of over constraints also increases. By over constrain-
ing the support stiffness can increase substantially, but it can
introduce additional stress when not properly assembled. This
problem also occurs with non-uniform expansion due to heat or
when large deformations are applied. The performance of this
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TABLE 6: Optimization results

Concept ωe
3 [Hz] ωe

4 [Hz] ω i
1 σ [Mpa] (∆ωe

4)
2

1a 167 871 368 615 0.90

1b 132 868 357 544 0.88

1c 135 883 659 576 0.86

2a 44.0 886 311 624 0.77

2b 66.6 901 357 576 0.71

2c 136 878 426 917 0.84

3a5 29.1 871 272 600 0.82

3a6 26.7 887 302 543 0.87

3a7 25.5 871 365 528 0.80

3b 48.2 880 347 595 0.82

3c 25.9 876 251 546 0.81

concept is investigated for 5, 6 and 7 flexures, denoted as con-
cept 3a5, 3a6 and 3a7 respectively.

Concept 3b. Similarly to concept 1c, creating two layer
of leaf springs at an offset to distribute the support stiffness could
be favourable. The horizontal leaf springs will be pre-curved in
an s-shape and connected to the end-effector with an offset. This
makes overlap possible thus increasing the maximum width at
the end-effector.

Concept 3c. This concept is similar to concept 3b, with
the only modification being the location of the offset. In this case
the connections at the end-effector are in the same plane and the
offset is applied at the straight guidance.

ppp = {ppp1, ppp2, ppp3,δls} (34)

RESULTS & DISCUSSION
For each concept the optimizations are executed using the

method explained previously. Using these results the best con-
cept can be chosen for detailed design and validation. In Table 6
the results of the performance criteria for each concept are listed.
The corresponding parameters and illustrations can be found in
Appendix B.

The concepts are optimized for a minimal ωe
3 with the con-

straints from Table 3. The optimal results are expected to exactly

meet the constraints for ωe
4 and σ . However, this is not the case

because the symmetry of the concepts is exploited during opti-
mization. As explained in the Method section, additional bound-
ary conditions on the end-effector are necessary if only one flex-
ure is analysed. The boundary conditions required for a single
leaf spring to follow the test trajectory are infinitely stiff, where
in the full mechanism they are not because they are imposed by
other leaf springs. This causes parasitic displacements of the
end-effector to be constrained during optimization, where in the
final full simulation they are released, yielding different results.

During the optimization of concept 1a no feasible results
were found. Either the ωe

3 or σ constraint was violated in each
result. Tapering the leaf springs of concept 1a to obtain concept
1b yields a significant drop of the third eigenfrequency. Adding
an inverted layer of leaf springs in concept 1c does not increase
(∆ωe

4)
2 which was expected. Furthermore, only the internal

eigenfrequencies significantly increase with respect to concept
1b.

Within concept 2, concept 2a clearly performs best. Com-
pared to 2b and 2c it reaches the lowest ωe

3 . The centre building
block converges to a long reinforcement with respect to the other
two building blocks. Torsion is accounted for by building block 1
and bending by building block 1 and 3 simultaneously. Concept
2c suffers severely from the effect of changing boundary condi-
tions as described above. Therefore it has a high stress and can
not be compared properly.

To obtain the results for concepts 3a-c, the building block
topology from concept 2a is used. It is clear that increasing the
number of flexures from 3 to 5, 6 or 7 has a positive effect on
the results. The decrease of ωe

3 is caused by thinner flexure strips
compared to concept 2a. The effect of using more than 5 flexures
is mainly limited to a lower stress and higher internal eigenfre-
quency, but does not affect ωe

4 significantly. Some decrease of
ωe

3 is observed between 5 and 6 flexures, but this small compared
to other modifications. Introducing an offset at the end-effector
between two sets of 3 flexures has no positive effect. This is ob-
vious when compared to concept 3a6, which has the same lay-out
without offset. Due to limitations in the simulation, a minimum
offset of 1 mm was set. The offset converged to a value of 1.19
mm, which is close to the minimum. (∆ωe

4)
2 did not increase by

introducing an offset and ωe
3 also performs worse. The model of

Concept 3c requires no minimum offset and converges to 0.66
mm. This also suggests an offset is not favourable and it is con-
firmed by the similarity of the result with concept 3a6.

Summarizing, Concepts 3a yield the best results. To min-
imize the number of over constraints, concept 3a5 is chosen as
the final concept. An additional advantage of this concept is the
prime number of flexures which creates no additional symmetry
lines. In Fig. 17 a visualization of the SPACAR model is dis-
played.
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FIGURE 17: SPACAR model

Validation
With the optimal parameter set an ANSYS model is con-

structed from shell elements to compare the result with SPACAR.
The SHELL181 element is used because it well suited for large
rotations and strains in non-linear analyses. To couple and con-
strain the flexures Multipoint Constraint elements (MPC184) are
used. In the centre a MASS21 element is placed to model the
end-effector. To obtain the same data for the entire stroke, i.e.
eigenfrequencies and stiffness matrix, a linear perturbation anal-
ysis is executed. Similarly to the SPACAR analysis, first a non-
linear static analysis is run to follow the trajectory. Next, con-
straints defining the trajectory are removed and linear perturba-
tion analyses are run by restarting the simulation in each substep
of the static analysis consecutively. To find the unconstrained
eigenfrequencies, a modal analysis type is used in the restart.
Finding the stiffness at the end-effector requires converting the
deflected system into a superelement with a master node at the
end-effector position. Restarting the analysis in substructure
mode calculates the 6x6 stiffness matrix of the superelement.

In Table 7 the first 16 vibration modes are listed in the neu-
tral position. Low frequency behaviour is sufficiently accurate
which can also be seen in Fig. 18 where the first three eigenfre-
quencies over the entire stroke are plotted. For the higher fre-
quencies, an increasing difference between SPACAR and AN-
SYS occurs, as plotted in Fig. 19. The different trend of the
eigenfrequency towards the end of the stroke stands out, which
is caused by a difference in mode shape between SPACAR and
ANSYS.

From Fig. 21 can be concluded that there is a difference
in calculated stress between ANSYS and SPACAR. From the
SPACAR stress calculations it is known that warping and anti-
clastic bending are not taken into account. The high stress pro-
duced by ANSYS is concentrated at the clamped nodes, as dis-
played in Fig. 22. The overall stiffness properties of the system

TABLE 7: First 16 eigenfrequencies

SPACAR ANSYS

1 15.14 ωe
1 uz 14.35 ωe

1 uz

2 23.71 ωe
2 rx 2443 ωe

2 rx

3 23.71 ωe
3 ry 24.43 ωe

3 ry

4 271.6 ω i
1 Bending 284.8 ω i

1 Bending

5 271.6 ω i
2 Bending 284.8 ω i

2 Bending

6 277.1 ω i
3 Bending 290.5 ω i

3 Bending

7 277.1 ω i
4 Bending 290.5 ω i

4 Bending

8 286.3 ω i
5 Bending 297.2 ω i

5 Bending

9 771.8 ω i
6 Torsion 745.5 ωe

4 ux

10 771.8 ω i
7 Torsion 745.5 ωe

5 uy

11 771.8 ω i
8 Torsion 1223 ω i

6 Torsion

12 771.8 ω i
9 Torsion 1223 ω i

7 Torsion

13 771.8 ω i
10 Torsion 1223 ω i

8 Torsion

14 842.8 ωe
4 ux 1223 ω i

9 Torsion

15 842.8 ωe
5 uy 1223 ω i

10 Torsion

16 1503 ωe
6 rz 1493 ωe

6 rz
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FIGURE 18: end-effector mode 1, 2 and 3

are slightly underestimated by SPACAR according to the plots
in Fig. 20. Therefore, another design iteration could be made to
reduce the stiffness and stress in the mechanism.
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FIGURE 19: end-effector mode 4, 5 and 6

-5 0 5

z [mm]
r
x

100 [rad]

1

1.1

1.2

K
 [N

/m
]

104 u
z

SPACAR
ANSYS

-5 0 5

z [mm]
r
x

100 [rad]

20

30

40

K
 [N

m
/r

ad
]

r
x

-5 0 5

z [mm]
r
x

100 [rad]

20

40

60

80

K
 [N

m
/r

ad
]

r
y

-5 0 5

z [mm]
r
x

100 [rad]

3.2

3.4

3.6

K
 [N

/m
]

107 u
x

-5 0 5

z [mm]
r
x

100 [rad]

3

3.2

3.4

3.6

K
 [N

/m
]

107 u
y

-5 0 5

z [mm]
r
x

100 [rad]

8

9

10

K
 [N

m
/r

ad
]

104 r
z

FIGURE 20: Stiffnesss comparison
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FIGURE 21: Stress

FIGURE 22: Stress concentration for uz = 4 mm and rx = 0.04
rad.

FIGURE 23: Von Mises stress

Pivot shift

Although no requirements were set on pivot shift, it is an
important factor in flexure mechanism performance. In Table 8
the pivot shift in x- and y-direction are listed as calculated in
SPACAR and ANSYS. Similar values are obtained by both meth-
ods. The calculated values are approximately 0.1 % of the total
deflection, which is small compared to a conventional straight
guidance or cross spring pivot.
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TABLE 8: Pivot shift

SPACAR ANSYS

δx [mm] −1.07 ·10−4 −1.96 ·10−4

δy [mm] −6.73 ·10−3 −6.79 ·10−3

CONCLUSION
The desired specifications for a specific TTP mechanism can

be approached by improving a base concept of three folded leaf
springs. An analytical model shows that the requirements can be
met in the equilibrium position. To meet the requirements for the
entire range of motion more extensive multi-body analyses are
required. Tapering the flexures has a positive effect on the per-
formance of the mechanism. Moreover, using building blocks to
enable varying width and thickness through the leaf spring yield
better results. To decrease the simulation time during optimiza-
tion, an optimal simulation trajectory was determined analyti-
cally. Through this trajectory the best and worst case scenarios
within the workspace are covered. Exploiting the symmetry of
the mechanism by simulating a single repetitive element proved
to be a good method to reduce simulation time. Through opti-
mization was found that a circular pattern of five tapered flexure
elements consisting of three segments is the best result consid-
ering driving stiffness and overconstraints. The flexure elements
need to be supported by an appropriately designed straight guid-
ance with minimal driving stiffness. The last desired eigenfre-
quency is reduced to 29.1 Hz, where 17.4 Hz was required. Val-
idation of this result by ANSYS yields a comparable value of
31 Hz. Since the stress and support stiffness computed by AN-
SYS exceed the requirements, a re-iteration of the design process
could result in a design closer to the requirements.

RECOMMENDATIONS
The fold angle of the leaf spring was chosen based on the

compliance matrix graphs from the analytical model. This model
is only valid in the equilibrium position so only limited conclu-
sions can be drawn. Adding the fold angle to the parameter vec-
tor of concept 1 could improve its results.

The stress calculation in SPACAR does not take warping and
anticlastic bending into account, which could alter the optimiza-
tion results. Since this is a known and recurring effect, it could
be corrected for by decreasing the maximum stress during opti-
mization.

Validity of tapered leaf springs only tested for low frequency
behaviour. From validation results it is apparent that high fre-
quency behaviour is significantly different.

A straight guidance with high support stiffness and low driv-

ing stiffness will have to be designed. By balancing the driving
stiffness can be decreased. A possible method consists of im-
plementing a leaf spring in post-buckled state to a parallel guid-
ance [1]. If designed properly, the negative stiffness could coun-
teract the driving stiffness.
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APPENDIX A Tapered Leaf springs
The main advantage of SPACAR is the ability to model a beam with approximately three beam elements. Unfortunately, tapered

beam models are not supported so tapered beams must be discretized with prismatic beam elements. This causes the number of elements
to rapidly increase which is undesirable. Therefore, the lowest amount of beam elements necessary to accurately model a tapered beam
is sought. This is done by analysing a cantilever leaf spring for different taper ratios and different numbers of elements. The taper ratio
is defined as

T R =
W1

W2
(35)

The width of the prismatic beam elements is determined by the width of the tapered leaf spring at the centre of the segment. In Fig. 24
this is schematically displayed.

FIGURE 24: Discrete approximation of a tapered leaf spring.FIGURE 25: Eigenfrequencies versus number of elements for
T R = 0.5

The number of elements is sufficient if the first 3 eigenfrequencies of the simulation are within 5% of the asymptotic value for a
certain taper ratio. The asymptotic value is calculated using a simulation with 20 elements. In Fig. 25 the first 3 eigenfrequencies are
plotted versus different numbers of elements for T R = 0.5.

The required number of element is dependent on the taper ratio of the leaf spring. For a straight leaf spring three elements are
required and this number increases for higher taper ratios. In Fig. 26 a graph can be found for required number of elements for taper
ratios between 0.1 and 1.

To complete this appendix the effect of different aspect ratios is observed. The aspect ratio is defined as:

AR =
L2

S
=

2L
(W1 +W2)

(36)

In figure the required numer of elements versus the aspect ratio is plotted for a taper ratio of 1:10, which is the worst case ratio from
Fig. 26. It appears that the accuracy is less dependent on aspect ratio than on taper ratio. Only in the worst case with a taper ratio of 1:10
and an aspect ratio of 1, 7 elements are required. A significant dependence on the thickness of the leaf spring is not found.
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FIGURE 26: Required number of elements for different taper
ratios

FIGURE 27: Required number of elements for different taper
ratios

APPENDIX B Optimization Results
Concept 1a.

FIGURE 28: SPACAR model

La 150
Lb 11.4
w1 69.3
t 1.73

TABLE 9: Parameters

Concept 1b.

FIGURE 29: SPACAR model

La 149
Lb 15.7
w1 66.4
w2 27.6
w3 86.3
t 1.6

TABLE 10: Parameters
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Concept 1c.

FIGURE 30: SPACAR model

La 149
Lb 15.7
w1 66.4
w2 27.6
w3 86.3
t 1.6

δls 9.99

TABLE 11: Parameters

Concept 2a.

FIGURE 31: SPACAR model

Block 1 2 3
Type LS LS LS

L 21.0 72.3 5.80
w1 49.4 33.4 79.7
w2 33.4 79.7 79.9
t1 0.524 4.78 0.486
t2 - - -
h1 - - -

TABLE 12: Parameters

Concept 2b.

FIGURE 32: SPACAR model

Block 1 2 3
Type LS CR LS

L 31.3 54.9 11.0
w1 65.9 30.9 76.8
w2 30.9 76.8 78.3
t1 0.702 4.79 0.811
t2 - 0.24 -
h1 - 2.91 -

TABLE 13: Parameters
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Concept 2c.

FIGURE 33: SPACAR model

Block 1 2 3
Type TRLS CR TRLS

L 13.0 87.8 7.13
w1 62.33 62.3 74.5
w2 - 74.5 -
t1 0.879 1.19 0.595
t2 - 1.97 -
h1 - 3.27 -

TABLE 14: Parameters

Concept 3a5.

FIGURE 34: SPACAR model

Block 1 2 3
Type LS LS LS

L 12.0 72.4 5.04
w1 26.2 12.0 77.4
w2 12.0 77.4 76.5
t1 0.329 4.71 0.364
t2 - - -
h1 - - -

TABLE 15: Parameters

Concept 3a6.

FIGURE 35: SPACAR model

Block 1 2 3
Type LS LS LS

L 11.2 81.5 5.09
w1 17.21 12.3 77.8
w2 12.3 77.8 79.5
t1 0.345 4.21 0.393
t2 - - -
h1 - - -

TABLE 16: Parameters
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Concept 3a7.

FIGURE 36: SPACAR model

Block 1 2 3
Type LS LS LS

L 10.8 68.5 5.82
w1 17.8 9.93 78.1
w2 9.93 78.1 78.3
t1 0.319 2.72 0.346
t2 - - -
h1 - - -

TABLE 17: Parameters

Concept 3b.

FIGURE 37: SPACAR model

Block 1 2 3
Type LS LS LS

L 17.5 70.8 15.3
w1 22.9 10.8 79.8
w2 10.8 79.8 79.9
t1 0.559 4.36 0.837
t2 - - -
h1 - - -
δls 1.19

TABLE 18: Parameters

Concept 3c.

FIGURE 38: SPACAR model

Block 1 2 3
Type LS LS LS

L 11.1 81.7 5.91
w1 21.3 15.1 79.9.0
w2 15.1 79.9 58.9
t1 0.308 4.971 0.381
t2 - - -
h1 - - -
δls 0.662

TABLE 19: Parameters
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