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Abstract 
In recent years, use of video surveillance in public places has skyrocketed due to increasing 

security concerns. To help in coping with the task of monitoring this huge amount of data, a 

software system to track people and objects seen in order to be able to detect possible threats 

such as left luggage would be useful. We examine the issues involved in the design of com-

puter vision software systems for people and object tracking, and present the design of a sys-

tem that can track people and objects in an indoor environment, and detect their inaction. The 

tracking algorithm is based on a combination of matching overlapping regions of motion and 

matching colour profiles. It is able to follow multiple people or objects simultaneously and 

still tell them apart after occlusion. Experimental results will be presented to demonstrate the 

system’s performance. 
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Chapter 1: Introduction 
In recent years, due to an increased awareness of terrorism and related risks, and the advent of 

cheaper cameras and more powerful image processing techniques, the use of cameras for sur-

veillance has increased. However, installing cameras is no goal in itself, and there is very little 

use for the camera footage if no sort of threat analysis is performed on it. An example of such 

a threat analysis is the so-called left luggage detection, i.e. detecting objects that have been 

dropped off at the scene being abandoned by the person who brought them there. 

Performing this monitoring manually can require amounts of manpower up to infeasible lev-

els, and the concentration of a human observer can lapse. This is where computer vision 

comes in as an automated aid to such an observer. 

We examine the issues involved in designing computer vision software systems for security 

surveillance and present an approach to tracking multiple persons and objects in an indoor 

environment. 

 

We present the design of a system that can track several people or objects simultaneously in 

an indoor environment, and retain the object’s identity labelling after occlusion. It will flag 

immobile objects as potential threats. 

The first component of the system is the background separator, which separates the objects to 

track from the rest of the footage. It uses a combination of a motion detector and a back-

ground subtractor which needs to be initialised by an auxiliary component that extracts a 

background image from the footage. 

The tracking algorithm is based on a combination of checking for overlapping motion/object 

regions, paying attention to regions that split and merge to deal with noise and occlusion, and 

a comparison of object representations by means of colour frequency histograms to help in 

cases where the overlap tracker would be unable to maintain object identity. 

The locations of the detected objects are converted to 2D world coordinates, to facilitate dis-

playing and merging detection data streams from multiple cameras. This component needs to 

be calibrated by input of the world coordinates of four ground plane locations in the camera 

image. 

The data corpus of the PETS 2006 workshop will be used to experimentally evaluate the 

tracking algorithm, the threat alerter and the coordinate conversion. 

 

The structure of this report is as follows: In chapter 2, a survey is presented of the relevant 

issues and literature concerning the design of computer vision systems for security surveil-

lance. Chapter 3 will give an overview of our approach and its environmental parameters. 

Chapters 4 through 6 will centre on the individual components of our approach. Finally, chap-

ter 7 will present our experimental results and their evaluation, and chapter 8 will discuss our 

conclusions and recommendations for future work.  
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Chapter 2: Literature survey 

2.1. Introduction 

In this chapter, we will investigate the issues surrounding the design of computer vision soft-

ware systems for people and object tracking. Prototype systems designed in similar projects 

can track moving objects such as people as they move through the camera footage. We take a 

look at combining the data received from a network of cameras and assigning a unique and 

persistent identity to the persons detected, so they can be tracked throughout the network. 

Note that this overview will mainly be concerned with tracking persons as a whole, rather 

than with pose estimation or motion analysis [Pop06], although some techniques will require 

some subdivision, e.g. face recognition.  

This chapter aims to give an idea of the technical challenges involved in the design of such a 

system, and the existing research into how to solve them. Although this overview is unlikely 

to be exhaustive, it will still give a representative impression of problems and solutions in-

volved. 

2.2. Calibration 

Camera calibration is the determination of the parameters that govern the relation between the 

2D image coordinates and the 3D world coordinate system. This is required if the system is 

supposed to determine the full 3D or projected 2D world coordinates of detected objects, e.g. 

for displaying on a map. For simpler applications, such as object detection or recognition, this 

may not always be necessary. Alternatively, particular relations, such as the locations of the 

edges of the field of view (FOV) of a particular camera in the image of another camera can be 

learned automatically [Kha01, Kha03]. 

Camera calibration values can be divided into intrinsic and extrinsic properties, also known as 

internal and external. Intrinsic properties are specific to and generally invariant for a particu-

lar camera. These include values such as the focal length of the lens, scaling and possibly dis-

tortion factors. Extrinsic properties, on the other hand, refer to the camera in its environment, 

i.e. to the location and orientation of the camera and thus also to the relative positions of cam-

eras in a multi-camera network. Note that instead of determining both groups of parameters 

explicitly, they can also be represented by coordinate transformations from the camera image 

to a common world coordinate system [Bak00, Wil03]. 

Calibration can be performed manually, but this is labour intensive, making it infeasible if the 

network is large and/or dynamic. Therefore, several automatic or semi-automatic camera cali-

bration methods have been developed. Most of these methods assume at least some overlap-

ping of the fields of view to determine the relative extrinsic properties of the cameras. If there 

is no such overlapping, it is still possible to estimate the network topology, e.g. in terms of 

probable adjacency [Jav03]. 

To calibrate cameras by means of overlapping views, the algorithms need some way to find 

corresponding points in both (or more) camera views. Two main categories of ways to pro-

vide these are using some sort of calibration grid, or using object motion. A calibration grid 

could be a planar block pattern [Seb02], but in some settings it is also possible to use objects 

with recognisable features which are readily available in the environment, such as the human 

face [Kot05]. For calibration by means of motion, one could construct a light-emitting wand 

which is easily tracked by the vision system [Bak00, Svo05], or use objects assumed to be in 

the system’s typical environment, such as car traffic [Lee00] or mobile robots [Wil03]. 
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2.3. Background separation 

The vision system needs to know what parts of the image contain objects of interest that 

should be tracked, and what parts just contains walls, floors and other objects, usually static, 

that should be ignored for the purposes of tracking. This process is called background separa-

tion. It is related, but not identical to motion detection, as although most background separa-

tion algorithms are based on motion detection, if a system is supposed to track a particular 

object, it should keep doing so if the object stops moving. However, it would also be possible 

to deal with this problem in higher-level reasoning stages. 

The simplest way to construct a motion detection algorithm is to compute the pixel-wise dif-

ference between two consecutive frames and threshold the result [Tui05, Lip98]. This usually 

generates only an outline of the moving object, rather than all the pixels of the object. It also 

introduces a systematic inaccuracy by including a trail of pixels at which the object was in the 

previous frame, but currently isn’t anymore. It is possible to include corrective measures to 

compensate for this trail and to include additional measures like template matching in case the 

object motion halts [Lip98]. 

A basic form of a common method for background separation which does not suffer from this 

is to obtain a reference background image and to compute and threshold the difference with 

that [Spa05]. This method, however, cannot compensate for changes in illumination of the 

scene, either abruptly by someone opening a door or flipping a light switch, or by gradual 

changes such as those caused by daylight. One way to adaptively compute the background 

image is to take the median over time [Sie03]. Another common way is to model each pixel 

using one or more Gaussian distributions [Ell02, McK00, Rie03, Wre97, Zha01]. 

Foreground images generated like this will probably still contain noise and other unwanted 

areas, such as the ones caused by shadows. These shadows could be rejected by checking 

whether the change in chromaticity is negligible [McK00, Ell02, Tho05]. Also, there will 

probably be gaps in the detected areas, which could be corrected by post-processing the re-

sults with morphological operations such as closing [Rie03, McK00, Zha01], although this 

probably isn’t worth the computational effort if only a bounding box of the object is required. 

It will, however, alleviate the problem of a single person being detected as several blobs, for 

which corrective measures such as blob clustering would have to be used [Kru00]. 

It is also possible to combine these algorithms with other modalities than colour spaces. For 

instance, when using multiple cameras pointed at the same area, one could use the results of 

stereo range finding [Dar00, Har98, Kru00]. 

All methods described so far have assumed that the camera remains stationary. If this is not 

the case, additional compensation is to be performed, e.g. by matching features such as edges 

[Cai95]. 

2.4. Tracking 

2.4.1. Introduction 

The previous sections have been concerned with the ability to find objects of interests in the 

imagery. Now that they have been found, the system needs a way to keep track of the object 

or objects. In our case, these objects will usually be people, which will make some generic 

tracking approaches inapplicable or more specific ones possible. Where no theoretical distinc-

tion needs to be made, we’ll use the terms person and object interchangeably. 
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2.4.2. A taxonomy of tracking tasks 

Tracking systems meant for different purposes have different requirements and characteris-

tics. To structure our discussion, we will first create a classification of tracking system types 

according to what they’re required to do, and in what environment. 

The first distinction we need to make here is that of track lifetime, i.e. for how long the sys-

tem assigns the same identity to the object it follows, as the technical requirements for meth-

ods to perform this differ. Also, it needs to be taken into account whether the assumption is 

made that only one person to be tracked is present in the image at any given time, or that there 

can be multiple simultaneously. 

The various kinds of track lengths we will consider are as follows: 

• Short-term or continuous path tracking, where a tracked person can be absent from the de-

tection for at most a few frames. 

• Medium-term tracking, where a person re-enters the tracked area after minutes or hours. 

• Long-term tracking, where the person re-enters the area after days or longer. Basically, this 

is identification, i.e. linking the detected person to his or her real-world identity, followed 

by a shorter-term track. 

A final distinction to be made is whether the object is being tracked by a single camera or 

whether it is within the field of view of multiple cameras. 

Now that we have defined the taxonomy of tasks and requirements involved in tracking, we 

will investigate the various methods of performing this. Note that some methods are not 

strictly confined to a single class as described above. For instance, methods for obtaining an 

object’s identity for any track length can achieve a similar goal to that of a system that tries to 

re-label short-term object identities after occlusion by extrapolating their paths. 

2.4.3. Short and medium term tracking 

For short-term tracking, a number of relatively simple methods can be employed. If there is 

no occlusion, a simple check for overlapping bounding boxes can maintain short-term iden-

tity. Faced with occlusion, one way to maintain short-term identity is probabilistically track-

ing and examining the object’s path, heading and velocity. Methods such as Kalman filters 

[Ass94, Cai95, Ell02, Jav03, Rie03, Sie03] or particle filters [Tui05, Tan04, Tho05] can be 

used here. As mentioned before, this can also be handled by longer-term tracking methods 

which aim to recognise the object by its features rather than its expected location. 

For short-term tracking of people, we need to have some feature or features to match. One 

such feature is the height or aspect ratio of the bounding box [Cai98, Ell02] or the real-world 

height of the person being tracked, which can be computed even in a monocular system by 

including a priori knowledge of the environment of it in the form of a model of the environ-

ment’s geometry and/or a ground plane assumption [Agg98, Rie03, Spa05]. Usefulness of 

height as an auxiliary feature for long-term tracking has also been reported [Dar00]. 

Generic template matching approaches are often not very well applicable to people tracking 

due to the non-rigidity of the human body. Another popular short-term tracking method is to 

make use of colour or intensity features. Specific points on a person could be picked for this 

[Cai94, Cai98], or the whole person could be used to compute a mean colour probability 

[Kru00, McK00, Por03, Ell02]. Alternatively, the person could be subdivided into several 

blobs with separate representations, either segmented by connected components analysis 

[Kru00, McK00, Por03] or representing specific parts of the person such as the face, hair, skin 

or clothes [Dar00, Reh97]. Instead of using just the colour, one could also opt to analyse the 

texture [Nug94]. 

These intensity or colour features could be represented by means such as colour histograms 

[Kru00] and/or Gaussian distributions [McK00]. 
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2.4.4. Tracking with multiple cameras 

For multiple cameras observing the same person, the problem is slightly different. A draw-

back of using the colour approaches for multi-camera systems is that cameras are usually not 

consistent in how they perceive colours. This can be compensated for by using additional 

calibration to normalise between the cameras [Por03]. One could also choose not to use ap-

pearance features, but to combine location tracking results from multiple cameras by using the 

results of external camera calibration to compute a coordinate homography, which will map 

the coordinates reported by various cameras onto a global coordinate system [Dev04, Ell02, 

Lee00, Sat94, Uts98]. 

2.4.5. Long-term tracking 

For long-term tracking of people, approaches based on things like clothing colour can obvi-

ously be ruled out. Other biometric features can however be found in the image and used in 

conjunction, such as the height and the face [Dar00]. Gait recognition could be employed if 

the view of the person is large enough for reliable segmentation [Lee02]. 

2.5. Summary 

Designers of software systems for computer-aided surveillance and tracking need to create a 

number of system components posing technical challenges. We have discussed a number of 

these main components, problems involved in their implementation and possible ways of 

solving them. 

 

If we want to be able to map the image coordinates of objects observed to real-world coordi-

nates (2D or 3D) for display or comparison purposes, the cameras used need to be calibrated. 

Camera calibration parameters are often divided into intrinsic parameters, which are specific 

to the camera itself, and extrinsic parameters, which refer to the camera’s positioning in its 

environment. Some methods, however, do not employ this distinction, but represent them in 

another way, e.g. directly as a coordinate transformation function. 

The required camera calibration parameters can be measured and computed manually, but 

automated techniques have also been developed for calibration, making this less labour inten-

sive and therefore more scalable. Many of these methods use a priori knowledge of certain 

objects in the scene, such as a calibration grid, or use object motion. This can also be used to 

determine relative positioning of cameras in case the system uses several cameras with over-

lapping FOVs simultaneously. 

 

When a camera image comes in, the system needs to separate the objects of interest from the 

rest of the image in a process known as background separation. We discuss two main classes 

of background separation algorithms: one compares the incoming frame with a frame that 

came in shortly before it (temporal differencing), and the other compares the frame to a back-

ground image kept by the algorithm (static differencing). Both methods have their pros and 

cons. The temporal differencing method is good at tracking moving targets, but fails when 

objects of interest stop moving. Static differencing can overcome this by comparing the in-

coming frame by comparing it to a frame or other data structure (e.g. probability distribution) 

known to represent the background, but such a structure will need to be acquired and perhaps 

updated, as it can become inapplicable due to changes in the camera’s environment, e.g. light-

ing changes. In designing the background updating algorithm, the goal of updating the back-

ground will need to be balanced with the goal of being able to detect non-moving objects of 

interest. 
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Not all areas selected using these frame comparison-based methods may actually be objects of 

interest; they could be caused by effects such as shadows or sensor noise. Additional steps can 

be taken to eliminate these from the detection, e.g. checking for negligible chromaticity 

change to remove shadows. Post-processing with morphological operations such as closing 

can fix gaps in detected objects. 

 

To keep track of objects of interest once they have been found, we require a tracking algo-

rithm. Technical requirements for tracking algorithms differ largely depending on the sys-

tem’s goal and environment. Some important points to consider are for how long the system 

should be able to track its target, whether there is just one target to track at any given time or 

whether there can be multiple (possible occluding), and whether the system processes the feed 

from just one camera or whether it should merge the data from several cameras. 

A simple method for tracking targets on a continuous path is checking for overlap of their out-

lines or bounding boxes. This method cannot deal with occlusion. Methods that can augment 

or replace it to be able to track through occlusion are e.g. predicting the object’s path and ve-

locity with methods such as Kalman filters, or matching the object’s appearance, for instance 

by building and comparing a colour histogram of the target. 

To reinitialise tracking of people by identifying them after a longer time, it is possible to use 

biometric approaches such as face or gait recognition. 

If matching the observations of a target by multiple cameras is required, one could use ap-

pearance matching approaches similar to the ones just described, which may require addi-

tional calibration to diminish the effects of differences between cameras, or one could match 

the target location by merging it into a common coordinate frame. 
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Chapter 3: Approach overview 
After the broad overview of issues and methods in the previous chapter, we have to set 

bounds for the domain of the system we are presenting, and select methods that are suited to 

our situation. Our approach was designed to be applied to an indoor real world public envi-

ronment. It will be tested on the data corpus of the PETS 2006 workshop [PET06], containing 

footage of such an environment (a train station), recorded with a number of static cameras 

pointed at the same area from several directions. Several people move through this area, in-

cluding a test subject who leaves his backpack. Our system should be able to track them si-

multaneously. The relative real-world coordinates of several points on the visible part of the 

station floor are specified for calibration purposes. 
 

 
Figure 3.1: Sample images from the PETS 2006 cameras 
 

In order for our system to achieve its vision task, the camera footage is processed by several 

subsequent components, forming a processing pipeline (Figure 3.2). 
 

 
Figure 3.2: System pipeline overview 
 

The system first separates objects that are of interest to the system for tracking purposes (the 

foreground) from the rest of the image, depicting the scene’s background. This is done by a 

combination of static background subtraction [Lip98] and temporal differencing, to detect 

both moving and static objects of interest. To create the static background, a static camera is 

assumed, but the availability of a frame containing no foreground objects is not required, as it 

can be estimated from a series of frames containing moving foreground objects, using a tem-

poral median filter [Sie03]. 

Once we know which pixels of the frame are to be tracked, they are grouped into connected 

components (blobs) and handed to the blob tracking component. This component’s task is to 

match blobs observed in different frames as having the same identity, i.e. they’re depictions 

of the same object or person, so we can track them through time. Our approach combines blob 

identity maintenance by checking for overlapping blobs [Auv06] and keeping track of blob 

interaction states such as merging and splitting [Ell02] with matching blob representations in 

the form of colour frequency histograms [Kru00] to obtain an efficient algorithm that is able 

to maintain tracked blob identity beyond these blob interactions caused by noise and occlu-

sion. 

Blob positions are then converted to world coordinates. This means that output on positions of 

objects of interest can be displayed in a floor plan style, and alert trigger conditions can be 

expressed in real-world distances. It also facilitates merging the data with that of other cam-

eras during future projects. A homographic transformation [Cri99] is used to perform this 

conversion, which is easier to calibrate than full camera calibration [Tsa86], while still giving 

satisfactory and useful results. The system thus requires less calibration points, i.e. at least 

four corresponding pairs of 2D image/world coordinates to estimate the transformation. 

Background estimator 

 
Calibration 

 

Camera Background separation Blob tracking Homographic transform Status/Alert (UI) 
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Chapter 4: Background separation 

4.1. Introduction 

The background separation step is the part of the vision processing pipeline in which the sys-

tem decides whether any part of the image is an object that may be of interest to the system 

and should be tracked, or that it is part of the background. First, a number of approaches and 

their pros and cons will be discussed. A description follows of how this is actually achieved in 

the prototype implementation, focussing first on the system as a whole and then on its indi-

vidual vision processing filters. 

4.2. Approach 

Because there are several approaches to background separation, and which is best depends 

largely on the situation that is to be processed, a number of methods have been implemented. 

4.2.1. Static differencing 

This method works by computing the difference between the incoming (colour) image and an 

image of the background without any foreground objects, for each colour channel separately. 

If no such image is available, one can be constructed by computing the median per pixel and 

channel over a number of images spread throughout a dataset of images that also contain 

foreground objects (persons etc.) [Sie03]. Assuming the scene is not too crowded, any par-

ticular place will be unoccupied for most of the time, i.e. it will show the background. There-

fore, a median of any given pixel will give us the background colour, even though the absence 

of foreground objects does not have to occur throughout the whole scene simultaneously; a 

normal bit of surveillance footage can be used, as long as people that should be classified as 

foreground are moving and there are not so many people that some parts of the background 

will be occluded most of the time. If this is not the case, footage containing less heavy traffic 

will need to be selected in order for this method to work. 

Selecting the foreground pixels can now be done by applying a minimum threshold to the ab-

solute difference [Sie03, Spa05]. This threshold can be implemented at different levels of 

granularity: globally, per colour channel, or even per image section or pixel. The finer the 

granularity, the finer the algorithm can be tuned, but this is likely to increase the amount of 

data required to train or tune the system. 

Differences can not only be caused by foreground objects showing up, but also by the shad-

ows they cast. This will not usually be the kind of things that we wish to track, though, so we 

seek a way to remove these shadows from our detection. A way to do this is by taking into 

account that shadows are a darker variety of the original background colour at that specific 

location [Ell02, Tho05]. Therefore, we convert the image to the Hue-Saturation-Value colour 

space [For03] before thresholding, so we can classify pixels with negligible hue difference as 

background (shadow). 

Detected foreground objects that are so small that they are likely to be just noise can be re-

moved during a post-processing step. Likewise, objects that are only a few pixels apart may 

have been split due to noise. This will be covered in greater detail in the implementation sec-

tion. 

 

The static differencing method will, in addition to detecting moving objects, also detect static 

foreground objects, which is of course a necessity for purposes such as left luggage detection. 

However, the static background image becomes invalid when the background changes due to 
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e.g. a change in lighting conditions. How to automatically adapt the background without loss 

of the ability to detect static foreground objects is not clear-cut. 

4.2.2. Temporal differencing 

Instead of computing a static background from a dataset, two images that are one or a few 

frames apart in the video sequence can be compared in the same way as with static differenc-

ing. Sections that contain a moving object in one of the frames will cause an outline of the 

object to appear in the resulting difference image, as demonstrated in the image below [Cai95, 

Tui05, Lip98]. 

The difference of the images will now automatically and quickly adapt to changes in the 

background, such as the ones caused by lighting change. Foreground objects that are perfectly 

still, however, such as left luggage, cannot be detected by this method without additional 

measures. Also, the half of the outline that is ‘trailing’ the moving object shows up because in 

the current frame the object isn’t at that location anymore; this could cause a systematic inac-

curacy in a naïve implementation of a method to measure the object’s location (e.g. comput-

ing the outline’s centroid). 

 

 
Figure 4.1: Temporal differencing 

4.2.3. Combining the approaches 

There are a couple of ways how these methods can be combined to create a “best of breeds” 

system. One of the most straightforward ways is to apply a logical disjunction (‘or’) to the 

foreground masks generated by both approaches, but this does not optimally harness the bene-

fits of both approaches. Another option is to construct a system that tries to estimate which 

method will work best at a certain moment and switches to it, by classifying the situation or 

assigning a confidence measure to the foreground masks. For example, a system that uses 

static differencing by default could detect the flipping of a light switch as a steep increase in 

foreground pixels, and temporarily switch to temporal differencing while the static back-

ground is updated. 

4.3. Implementation 

An implementation of a combined static/temporal differencing system as described above has 

been made based on the HMI group’s ParleVision framework, in which several vision filters, 

known as processors, are chained together to form a vision processing pipeline [Bra04]. This 

allows for a very modular approach. 

We will first discuss the pipeline, which determines the data flow and the behaviour of the 

system as a whole, and then take a closer look at the processors which it is made of. 

4.3.1. Pipeline 

Both the static and temporal differencing algorithms haven been implemented as a combined 

pipeline, as represented in the image below. There is a shared section at the start and the end 

of the pipeline, to have a common frame source and to combine the output of the algorithms, 

respectively. 
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Figure 4.2: Background separation pipeline 

4.3.1.1. Static differencing pipeline 

The input video frames are delivered by a special class of ParleVision processor called a pro-

ducer; in this case a VideoProducer is used, which reads the frames from a video file. The 

static background image used here for differencing is computed by an external tool using the 

median method described in Section 4.2.1 and loaded into the pipeline by the StaticImage 

processor. Both the input frame and the static background frame are converted to the HSV 

colour space before their pixel-wise absolute difference is computed, as computing the differ-

ence in this colour space will help with shadow removal, as described in the Approach sec-

tion. These differences are thresholded to obtain a binary image labelling the foreground and 

background pixels. Detected foreground blobs (areas of connected foreground pixels) that are 

so small that they are likely to be caused by noise are removed by morphological erosion (and 

subsequent dilation to reduce changes to other foreground blobs) [Bre00] and enforcing a 

minimum amount of pixels per blob. See the Processors section for examples. 

4.3.1.2. Temporal differencing pipeline 

The temporal differencing pipeline works in much the same way as the static differencing 

pipeline, but now the static image loader is replaced by a processor that outputs a frame that is 

a few frames older than the current frame, so that the outlines of moving objects should now 

show up in the difference image. 

4.3.1.3. Final combining pipeline 

As both algorithms now output a binary image, we can apply a simple logical disjunction 

(‘or’) to obtain a combined result. A dilation and erosion step are applied to prevent fore-

ground objects being split into several blobs by the effects of noise. 

4.3.2. Processors 

The processors that are used to build the processing pipeline, most of which have been created 

or expanded for this project, will now be discussed in more detail. Care has been taken to 

make these processors as generic as possible, so that different algorithms can be prototyped 

by rearranging the processors in the processing pipeline and altering their parameters. The 

OpenCV image processing library is used as the basis for the image processing [Int00]. 
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4.3.2.1. VideoProducer 
Inputs:  None 

Outputs: resized, original 

The VideoProducer reads input frames from a video file (in 

AVI, WMV or MPEG format) and delivers them to the pipe-

line for processing. The frames are also offered at a normalised 

size (320×240 pixels). An option has been added to ignore the 

frame rate specified in the video file and output the frames as 

fast as they can be processed by the host system. 

4.3.2.2. CameraProducer 
Inputs:  None 

Outputs: source 

The CameraProducer obtains input frames from a Microsoft 

DirectShow-compatible device such as a webcam and delivers 

them to the pipeline for processing. 

4.3.2.3. ConvertImage 
Inputs:  inputImage 

Outputs: outputImage 

The ConvertImage processor converts the incoming colour 

(RGB) image to a specified other colour space: grey scale, 

Hue-Saturation-Value (HSV) or YCrCb. 

 

  
Figure 4.3: Figure 4.4: 
Sample input Converted to HSV 

4.3.2.4. AddSub 
Inputs:  inputImage1, inputImage2 

Outputs: outputImage 

The AddSub processor computes the pixel-wise sum or differ-

ence of two input images, for every colour channel separately. 

In addition to the normal difference, the absolute difference 

can be chosen as output. Of this latter operation, an implemen-

tation has been added which makes fewer internal image buffer 

copies, to improve efficiency. 
 

   
Figure 4.5: Figure 4.6: Figure 4.7: 
Sample input 1 Sample input 2 Absolute difference 
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4.3.2.5. SkinDetector 
Inputs:  inputImage, maskImage 

Outputs: outputImage 

The SkinDetector processor finds regions of interest (ROIs) by 

means of colour space conversions (or colour channel ratio 

computations) and applying configurable thresholding rules to 

the pixels to obtain a binary (black-and-white) image indicat-

ing the ROIs. In the early versions of this processor, the col-

ours to be identified were skin tones, hence the name, although 

its applicability is more generic. A built-in colour space con-

version can be selected, or the raw input can be thresholded to 

process an RGB colour image or one pre-processed by a proc-

essor such as ConvertImage. Lower and upper thresholds can 

be set for up to three separate colour channels. 

The binary ROI map can be post-processed by applying a 

specified number of iterations of a morphological erosion 

and/or dilation operator (see the next processor). Additionally, 

connected components (blobs) can be automatically removed if the number of pixels they 

consist of falls below a certain threshold. 

 

The example below shows the result of thresholding an input image obtained by converting 

two images to the HSV colour space and computing the absolute difference. No post-

processing has been applied. 

 

  
Figure 4.8: Figure 4.9: 
Input image Output image 

4.3.2.6. DilationErosion 
Inputs:  inputImage 

Outputs: outputImage 

The DilationErosion processor performs the same morphologi-

cal erosion and/or dilation operations as the SkinDetector proc-

essor (included there for convenience). The number of itera-

tions of either operation can be set, and which is to be per-

formed first. 
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Figure 4.10: Figure 4.11: 
Sample input Eroded 
 

  
Figure 4.12: Figure 4.13: 
Dilated First eroded, then dilated 

4.3.2.7. StaticImage 
Inputs:  input 

Outputs: outputImage 

The StaticImage processor delivers the same image for every 

frame. Unlike the ImageProducer processor, it has an input so 

it can deliver these images in sync with the rest of the pipeline, 

thus avoiding the recomputation issues associated with Parle-

Vision pipelines with multiple producers. 

The image to output can either be read from an image file or 

grabbed from the input pin. Using this latter function, it can also be used to keep a particular 

frame in memory anywhere in the pipeline, for further processing. 

4.3.2.8. LogicalOperator 
Inputs:  input1, input2 

Outputs: outputImage 

The LogicalOperator processor applies a unary or binary logi-

cal operator to binary (black-and-white) images, such as the 

ROI map produced by the SkinDetector processor. The set of 

available operators has been chosen in such a way that, in 

combination with the ability to negate any input or output pin, any truth table for one or two 

inputs and one output can be realised, as demonstrated by the following table: 
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Input A, B   Input A, B  

0, 0 0, 1 1, 0 1, 1   0, 0 0, 1 1, 0 1, 1  

Output Operation  Output Operation 

0 0 0 0 FALSE
*
  1 0 0 0 NOT (A OR B) 

0 0 0 1 A AND B  1 0 0 1 NOT (A XOR B) 

0 0 1 0 A AND (NOT B)  1 0 1 0 NOT B 

0 0 1 1 A
*
  1 0 1 1 A OR (NOT B) 

0 1 0 0 (NOT A) AND B  1 1 0 0 NOT A
*
 

0 1 0 1 B  1 1 0 1 (NOT A) OR B 

0 1 1 0 A XOR B  1 1 1 0 NOT (A AND B) 

0 1 1 1 A OR B  1 1 1 1 NOT FALSE
*
 

* Can be used for unary operation 

  

Table 4.1: LogicalOperator truth table 

 

A few example operations: 

  
Figure 4.14: LogicalOperator examples 

4.3.2.9. DelayImage 
Inputs:  inputImage 

Outputs: outputImage 

The DelayImage processor keeps the input frames in memory 

and outputs them a specified number of frames (clock ticks) 

later, enabling analysis algorithms such as the temporal differ-

encing described in the previous section. 
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Chapter 5: Blob tracking 

5.1. Introduction 

Now that we’ve obtained the foreground pixels from the background segmentation part of the 

system pipeline, they will be grouped into blobs of 4-connected pixels on a frame-by-frame 

basis. These blobs will form the basis for our tracking implementation. Now, we wish to pair 

up blobs from different frames as having the same identity, i.e. they’re depictions of the same 

object or person, so we can track them through time. 

There are a couple of complications when it comes to just tracking blobs to tracking objects 

on a higher semantic level, as blobs do not always have a one-to-one correspondence to the 

objects they represent. As we’ve defined our unit to track as a connected component of pixels, 

these may merge, split or be temporarily lost due to factors such as sensor noise or occlusion. 

An approach to this tracking task will be presented in this chapter. 

5.2. The basics 

We want to achieve the assigning of a persistent identity (represented by an ID number we’ll 

refer to as the path ID) to objects being tracked (e.g. persons). At an implementation level, 

however, these IDs are assigned to blobs. Ideally, a path ID refers to an object rather than just 

a blob. We’ll try to keep this matching by analysing blob interactions such as merging and 

splitting. 

Basically, to perform the assigning of this path ID over multiple frames, we attempt to match 

all blobs in the current frame to the blobs in the previous frame that should be assigned the 

same identity, taking into account the fact that blobs may split and merge due to the reasons 

mentioned in the previous section. Therefore, for each input frame, in addition to the determi-

nation of its path ID, each blob gets a state that indicates whether one of these blob interac-

tions has taken place. The following list shows the states that can be assigned to a blob during 

an iteration of the algorithm, during which the blobs of one frame are processed [Ell02]. The 

Prev and Curr columns list how many blobs in the previous and current frame take part in that 

type of blob interaction. 

 

State Description Prev. Curr. 

Matched  Matched to a previously found blob 1 1 

Split  Broken off of a previously found blob 1 2..n 

Merged Two or more previously found blobs have merged 2..n 1 

New Blob could not be matched to a previously found blob 0 1 

Unknown Temporary state to indicate that a blob hasn’t been processed 

yet 

N/A 1 

Table 5.1: Tracked blob states 

 

A Missing (1/0) state for previously found blobs that disappear from the footage has not been 

included as iterating over the blobs of the current frame to determine their state would not 

lead to such an assignment. 

To determine the state and the matching blob/path ID to be assigned, several algorithms can 

be devised, with different situations in which they outperform others. For this reason, our sys-

tem uses two algorithms: a tracker based on overlapping blobs, which robustly tracks blobs on 

a continuous path due to the inherent constraint on blob movement, and a blob matcher based 

on colour histograms [Kru00], which relies on the blob’s appearance rather than on its loca-

tion, and can thus support the overlap tracker if it loses a blob due to noise or occlusion.  
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This creates a combined algorithm with a ‘cascading’ structure, i.e. blobs that cannot reliably 

be handled by a particular algorithm will be handed on to the next. Both constituent parts and 

the combination will be examined in more detail in the following sections. 

5.3. Overlap tracker 

The overlap tracker is based on the assumption that if we overlay the current image of a mov-

ing blob with its image in the previous frame, these images will partially overlap. This as-

sumption holds if the object’s velocity is not too high in relation to its size and the frame rate. 

If it is, predictive methods such as Kalman filters may help. We’ll revisit that point in the 

Comparison section. 

To compensate for the fact that blobs do not always overlap one-on-one, the detection of split 

and merged blobs is integrated into this algorithm. 

Consider the following overlaid current and previous frames: 

 
Figure 5.1: Overlap tracker cases 

 

The blobs in this example move predominantly to the right. A number of possible scenarios 

have been displayed. We consider a pair of blobs to be overlapping if the number of pixels 

they have in common exceeds a preset proportion of the area of the constituent blob (merged 

or split). A blob in the current frame (‘new’) overlapping with exactly one blob in the previ-

ous frame (‘old’) will receive the old blob’s path ID and the Matched state. If an old blob 

overlaps with two or more new blobs, they get the Split state. As the old blob may have been 

the result of a prior merge, the histogram tracker may have a record of these blobs, and they 

will be handed to this tracker to determine the path IDs. If two or more old blobs overlap with 

one new blob, it is Merged, and is assigned the path ID of the largest old blob, as the other 

blobs are assumed to be either blobs that were incorrectly segmented as a separate blob due to 

noise, or moving objects that are causing dynamic occlusion, for which overlap tracking of 

the separate objects will effectively be suspended for the duration of the occlusion. Any re-

maining new blobs that are not categorised as Matched, Split or Merged will continue on to 

the histogram tracker, which will determine whether the blob can be Matched to a previously 

observed blob, or that it will get the New state and its data will be associated with a new path 

ID. 

This algorithm can be implemented efficiently by computing a table containing the number of 

overlapping pixels for every pair of new and old blobs (Cartesian product). If we put old 

blobs in rows and new blobs in columns, two or more cells in the same row that exceed the 

threshold for overlapping will indicate that row’s blob has split. Likewise, two or more values 

in the same column exceeding the threshold will indicate a blob merge. Remaining cells that 

exceed the threshold indicate the Matched state. Using the table avoids recomputation of blob 

overlap amounts. 

Frame 

1 
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5.4. Histogram tracker 

Any blobs in the current frame that could not be assigned a path ID by the overlap tracker, 

either because they’re the result of a split or because no blob could be found in the previous 

frame to match it with, will end up at the histogram tracker to get their path ID determined. 

As briefly mentioned previously, the histogram tracker uses colour features rather than spatial 

features to match blobs. This allows the histogram tracker to reassociate a blob with its proper 

path ID after occlusion or overlap tracker glitches. 

To achieve this, the image of the blob in the Hue-Saturation-Value colour space is converted 

into a colour frequency histogram, with each axis of the colour space quantised into a number 

of bins that is high enough to distinguish the blobs, but low enough to give rise to similar his-

tograms for multiple observations of the same object. In our implementation, the channels are 

quantised into 10 bins each. The histogram is normalised with respect to the sum of the bins, 

so that the influence of the size of the blob is reduced. This normalisation is performed as fol-

lows: 

 
Ha,b = bin b of histogram a 

S = target sum (preset normalisation constant) 

Scale (multiply) every bin of Ha by the same value so that ∑(Ha,b) = S 

 

The tracker keeps a list of observed blobs with their most recent histograms, containing one 

entry for each path ID. This list is called the blob inventory. It is updated whenever a match to 

a path ID is made, even if this is by the overlap tracker. This update means simply writing all 

computed metadata of the current frame’s blob to the inventory entry, although e.g. a more 

gradual update of the colour histogram could be devised.  

For every blob that is handed to it by the overlap tracker for matching, the histogram tracker 

iterates through this blob inventory and computes a similarity measure between the blob to 

match and the blob in the inventory. This similarity measure is computed as the cumulative 

absolute difference between the bins of two histograms, and finding the best match is there-

fore a matter of minimising this difference. If the best match meets a preset matching thresh-

old, the blob to match is assigned the path ID of this inventory blob. If no inventory blob 

meets the threshold, a new path ID is assigned to the blob and it is added to the inventory as a 

new blob. 

If objects need to be tracked that are coloured very similarly, making ID assignments in the 

order in which blobs are encountered may not suffice, which could be solved by using an al-

gorithm that minimises the total difference between all pairs of blobs to match and inventory 

blobs.  

 

    
Figure 5.2: Figure 5.3: Figure 5.4: 
Sample input frame HSV image of tracked blobs Histogram graphs 
 with their path IDs. U indicates 
 a matched (updated) blob. 

S
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. 

Hue 

Blob 0 Blob 1 
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5.5. Cascaded tracker 

Now that we’ve seen the constituent tracking algorithms, let’s recap and take a look at how 

every blob in the current frame is processed by the cascaded tracker. The following flowchart 

shows the basic process of determining a blob’s state and path ID. Note, however, that an ef-

ficient implementation will compute the metadata of all new blobs first, as described in Sec-

tion 5.3. 

 
Figure 5.5: Blob tracker flowchart 

5.6. Left luggage alerter 

As an example of an automated threat analysis 

that can be performed using the tracking data, 

we created a simple left luggage alerter that 

should find left luggage objects and mark them 

in the system’s UI. We do this by detecting 

blobs that remain stationary. People and luggage 

are distinguished by imposing a maximum 

height for luggage items (50 pixels). A blob is 

considered stationary if the minimum and 

maximum of its last 30 centroids (just over a 

second) are no more than 10 pixels apart on ei-

ther the X or Y axis. 

5.7. Comparison with other tracking methods 

The use of colour histograms can be compared to mean-shift algorithms such as the Continu-

ously Adaptive Mean Shift (CAMSHIFT) algorithm [Bra98], in which the colour histogram 

of the colour or object sought is treated as a probability distribution to determine whether 

frame pixels are likely to belong to the object. The algorithm then applies iterations of a gra-

dient ascent approach to shift the tracked object to its most likely position in the frame. 

CAMSHIFT thus combines the use of spatial and colour features into a single operation, 

whereas in our approach these are treated separately. This allows us to use just the spatial fea-

tures for a computationally efficient continuous-path tracking algorithm (the overlap tracker), 

as it operates on binary images and requires no iterations. Also, it allows us to use the colour 

Segment new blob, compute metadata 

(contour, histogram etc.) 

Detect split: overlaps 

with same old blob as 
another new blob? 

Detect merge: over-

laps with how many 
old blobs? 

Histogram matcher 
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 Merged. Assign path 
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Yes 

No 
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No 

 
Figure 5.6: A backpack is left behind and 
marked as a potential threat. 
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features to reinitialise tracking multiple objects after they occlude each other. The version of 

CAMSHIFT described would be unable to track several objects simultaneously if one is fully 

occluded, although it might prove useful during partial occlusion. 

Our overlap tracker is similar to the tracking approach used by Auvinet et al. [Auv06]. The 

authors remark that this tracker alone does not suffice to maintain identity after dynamic oc-

clusion (blob merge and split), and suggest using colour histograms for the relabelling. Our 

cascaded tracker is an example of such a combination. 

Smoothing out noisy measurements and tracking objects that move too fast for the overlap 

tracker to detect the path as continuous can be supported by predictive or stochastic methods 

such as Kalman filters [Jul97] or particle filters [Aru02], at the cost of greater computational 

and implementation complexity. Also, these predictive methods need a few iterations to adapt 

to changing velocity or direction of motion, and may have trouble tracking rapid changes to 

these properties [Bas06]. As our method makes no assumptions here, it does not suffer from 

this update delay problem. Blob motion that is too fast for the overlap tracker will be handled 

by the histogram tracker. 
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Chapter 6: Homographic transform 
As mentioned in Chapter 3, we require a transformation from camera coordinates to world 

coordinates. Here’s an example transformation task using data from the PETS 2006 workshop 

[PET06]. 

 

      

 

 

Such a conversion can be achieved using a projective transformation, also known as a homo-

graphy or homographic transform [Har00]. In general, a 2D homographic transform of homo-

geneous coordinates is defined by a 3×3 matrix according to the equation W = H·c, or in more 

detail: 
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with W = world coordinates vector and c = camera coordinates vector 

 

One of the nine elements of the transformation matrix H can have a fixed value without loss 

of generality, as the fact that a homographic transform is equal up to scale means that it has 

only eight degrees of freedom. This scale factor is represented by S. 

Solving for W, we obtain the following expressions for the world coordinates in non-vector 

form [Wre98]. Note that a division by S has been performed to compensate for the effects of 

equality up to scale. 
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Now that we can compute world coordinates from the camera coordinates and the transforma-

tion matrix H, we need a way to obtain that matrix. Knowing the 2D coordinates of at least 

four matching pairs of points in camera and world space gives us the eight equations we need 

in order to be able to solve this equation for H. If there are exactly four pairs the solution will 

be exact, if there are more, it will have to be estimated by a minimisation scheme. 

 
Figure 6.2: Matching ground truth  

Figure 6.1: Example scene 
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We now rewrite the system to an equation of the form A·x = b, with x and b column vectors, 

so it can be solved with standard least square estimation methods [Cri99]: 
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The elements a through g of the matrix H are now obtained by a minimisation method such as 

Singular Value Decomposition or the Moore-Penrose pseudoinverse: 

 

bAAAxbAx TT 1)( −=⇒=  

 

This transformation can be applied iteratively to the pixels of an image to warp it. Pixel inter-

polation techniques can be employed to improve the quality of the output image if the pixel 

mapping is not one-to-one. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

To determine the coordinates of a tracked blob in the transformed coordinate system, a blob’s 

centroid is projected onto the baseline of the bounding box (see Figure 6.4). 

 

 
Figure 6.3: Source image 

 

 
Figure 6.4: Warped image 
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Chapter 7: Results and evaluation 

7.1. Blob tracker evaluation 

We will now evaluate the accuracy of our blob tracker. To do this, we will present the tracker 

with some selected frame ranges from the PETS data corpus, in which the main actor of the 

dataset’s scenario appears and crosses the field-of-view. To observe the influence of a number 

of tracker parameters, we will test the same range with different values for these parameters. 

The parameters we will test are the number of bins in the colour histograms and the similarity 

measure threshold for the histogram matcher. Also, we will take a look at the results of using 

different cameras. An input background image is obtained using the method described in Sec-

tion 4.2.1. 

We will obtain our measure as follows. We’ll look for runs of consecutive frames containing 

a blob with the same path ID, which we’ll call a track. We ignore all tracks that are shorter 

than 25 frames (1 second), as we consider them to be noise which the overlap tracker was de-

signed to be able to deal with. This means that we will only notice errors that affect tracks 

held over a longer period of time, which are the ones we are interested in, as those are the 

only ones which will ever set off activity monitoring alerts such as left luggage detection. For 

all tracks that last for at least 25 frames (‘long’ tracks), we will look at the blob interactions 

(merges, splits and matches) that take place for that track’s path ID during its duration. We 

will manually tally which of these interactions are incorrect, i.e. it breaks the association of 

the path ID with a real-world object as mentioned in Chapter 5. By dividing this number of 

errors by the cumulative length of the tracks, we gain the fraction of incorrect decisions taken 

by the tracker, as the tracker needs to decide once per frame per blob what path ID it should 

assign the blob. We will also list a number of other statistics, such as the number of tracks and 

the number of path IDs assigned. 

 

The results in Table 7.1 are obtained using PETS set S1-T1-C camera 1, frames 1800-1950. 

We compare our default number of 10
3
 bins for the colour histograms to 50

3
, which is a large 

enough difference to have a measurable effect, and our histogram similarity threshold of 900 

to 500, the sum to which the histograms are normalised. A full list of blob interactions ob-

served can be found in Appendix A. 

 

The metrics in Tables 7.1 and 7.2 are to be interpreted as follows: 

Total track length: This is the cumulative length of the long tracks, in frames. It will be used 

to compute the error percentage. 

# Errors: As explained above, this is the number of incorrect path ID assignments to a blob in 

a frame, which should be as low as possible. 

% Errors: Dividing the number of errors by the total track length gets us the percentage of 

path ID assignments that were incorrect, which is our main metric. It should also be as low as 

possible. 

Long tracks: The number of long tracks detected, which ideally should match the number of 

appearances of a person or object to track, as a person moving through the field-of-view 

should generate one track. If an assignment error is made, the track may be split, resulting in 

an extra track. 

Total tracks: This also includes the tracks that are shorter than one second, which are ignored 

otherwise. Having these is no problem as long as the overlap tracker can deal with them, and 

if it cannot, this will have an effect on the long tracks and error counts. 
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Path IDs: This is the number of unique path IDs assigned during the test. Like long tracks, 

this should match the number of objects of interest appearing, but unlike the long track count, 

reappearances of the same object should result in only one path ID. 

 

We will now describe the people and objects present in our dataset selection, and their inter-

actions, i.e. touching and occluding causing the blobs representing them to split and merge. 

This can be used as ground truth. We manually assign numbers to the people observed, con-

sistent across the four cameras. The following people appear in our input data: 

P1: The data corpus’s main actor. He puts his backpack down on the floor and lingers for 

a while before moving away from cameras 1 and 2, into the background. 

P2: The backpack which is left behind by P1. 

P3, P4: Two women walking into the background together, wearing a beige and black coat, 

respectively. 

P5: A station janitor up on the balcony. Janitors wear yellow safety jackets. 

P6: A janitor walking into the background. 

P7: A man in a black coat up on the balcony. 

P8: A janitor waiting near a store. 

P9: A woman in a grey coat coming from the background (from camera 1 and 2’s per-

spective). 

P10: A man in a black coat entering from the left of camera 2’s field of view (FOV). 

P11: A janitor loitering in the corner. 

In addition to these people, cameras 1 and 2 also see some people moving far off in the back-

ground. They will not be labelled individually, as their small appearance in the image will 

usually be removed by the background separator’s area threshold, and if they do get detected 

as foreground (e.g. as a larger blob of several occluding people), they could still be removed 

from the detection by implementing an X axis threshold after the homographic transform. 

The following images show these people identifier assignments. 

 

 
Figure 7.1: People ID assignments as seen from camera 1 
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Figure 7.2: People ID assignments as seen from camera 2 

 

 
Figure 7.3: People ID assignments as seen from camera 4 

 

The following charts are timelines showing the presence of a person in a camera FOV by 

means of a dark grey bar. A light grey bar in between two person bars means that these per-

sons are touching or occluding, causing them to be represented by one single blob. The start 

of a light grey bar therefore means a blob merge, and the end means a blob split. 



Computer-Aided Security Surveillance – Vincent van der Tuin 

 

 28 

 
Figure 7.4: Timeline of objects and interactions for camera 1 

 

 
Figure 7.5: Timeline of objects and interactions for camera 2 

 

 
Figure 7.6: Timeline of objects and interactions for camera 3 
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Figure 7.7: Timeline of objects and interactions for camera 4 

 

Analysing these graphs according to the rules we’ve set for long tracks at the start of this 

chapter, we would expect the following values for the long track metric if tracking were per-

fect: Camera’s 1, 3 and 4: 5, Camera 2: 8. 

The number of path ID’s should of course not be lower than the number of people listed for 

that camera, but measuring a somewhat higher value does not need to indicate a problem if 

this is caused by noisy segmentation which can be dealt with by the overlap tracker. 

 

Performing the evaluation on the data mentioned results in the following values: 

 

Bins 10
3
 10

3
 50

3
 50

3
 

Threshold 500 900 500 900 

Total track length 691 736 466 596 

# Errors 2 10 0 2 

% Errors 0.289 1.359 0 0.336 

Long tracks 7 10 5 7 

Total tracks 90 90 128 89 

Path IDs 17 10 128 14 
Table 7.1: Evaluation metrics for dataset S1-T1-C1 with varying bins/thresholds 

 

The low number of errors for the 50
3
/500 column is deceptive, as this is caused by the fact 

that the diversity of histograms created by the higher number of bins causes the histogram 

matcher to split the tracks up into several short tracks, as can be observed from the low num-

ber of long tracks in relation to the high number of path IDs and total tracks. Requiring less 

histogram similarity counteracts this effect, as can be seen in the 50
3
/900 column. Also note 

that the high number of bins has an adverse impact on the computational performance of the 

tracker. Of the options shown here, 10
3
/500 therefore appears to be the most appropriate set-

ting. 

A lot of the incorrect assignments are made by the histogram matcher for splitting blobs, 

which suggest some additional restrictions to these assignments could be useful, such as the 

inability of a blob to jump a large distance in a single frame. 
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The following results were obtained for all four PETS cameras, using set S1-T1-C frames 

1800-2150 (10
3
 bins, threshold 900): 

 

Camera 1 2 3 4 

Total track length 1327 1457 643 1028 

# Errors 10 3 2 7 

% Errors 0.754 0.206 0.311 0.681 

Long tracks 18 10 6 16 

Total tracks 178 97 31 92 

Path IDs 11 10 7 14 
Table 7.2: Evaluation metrics for dataset S1-T1-C for all cameras 

 

To evaluate the left luggage alerter, we will compare the alert locations reported by the alerter 

with those listed in the ground truth data included with the PETS data corpus. The following 

results refer to the alerts generated for the backpack dropped in PETS dataset S1-T1-C: 

 

Camera Location (m) Error (m) #Alerts 

G.Truth (0.2215, -0.4420) 0 1 

1 (0.0308, -0.4580) 0.1914 30 

2 - - 11 

3 (0.1867, -0.2327) 0.2121 1 

4 (0.1867, -0.3395) 0.1082 94 
Table 7.3: Evaluation results for alerter 

 

PETS specifies some additional criteria for left luggage. Firstly, luggage is only considered 

left if it has been abandoned by the person bringing it, i.e. a predetermined minimum distance 

between luggage and owner is maintained. This means that alerts generated for other objects 

than the backpack are false positives when evaluated according to the rules of PETS.  

Secondly, PETS requires that the abandonment criterion is met for at least 30 seconds without 

interruption, which means our system’s alert times cannot be compared directly to PETS re-

sults. 

The extra alerts in our data are generated for stationary blobs such as the ones representing 

groups of people in the background (Camera 1 and 2), person P5 (Camera 1) and P11 (Cam-

era 4). In the image of camera 2, the view of the backpack was too small and was removed as 

noise. This camera position does not appear to be very suitable for our system. 

7.2. Homographic transform evaluation 

We will now take a look at the accuracy of our perspective transform. The PETS data corpus 

provides the world coordinates of thirteen corners on the floor tile pattern as ground truth. We 

assign an index to each point and manually enter the corresponding coordinates in the camera 

images using an external calibration input tool. If a point is not visible to one of the cameras, 

it will be ignored in the metrics for that camera. 

 



Computer-Aided Security Surveillance – Vincent van der Tuin 

 

 31 

 Camera 1 Camera 2 Camera 3 Camera 4 

 
Figure 7.8: PETS Cameras 

 

 
Figure 7.9: Ground truth with point indices 

 

The point correspondences are as follows: 

 

Point World Camera 1 Camera 2 Camera 3 Camera 4 

1 (-9.38,  3.64) (084, 369) (557, 395) -          (672, 147) 

2 (-9.38,  0.63) (473, 388) (679, 384) -          (572, 136) 

3 (-6.37,  3.64) (212, 288) (515, 375) -          (651, 170) 

4 (-6.37,  0.63) (475, 294) (621, 365) -          (541, 154) 

5 (-5.46, -0.28) (551, 281) (641, 360) (690, 270) (502, 157) 

6 (-1.21,  2.73) (360, 227) (491, 350) (368, 356) (551, 215) 

7 ( 0.00,  4.25) (287, 220) -          (236, 423) (611, 242) 

8 ( 0.00,  1.52) (427, 220) (509, 343) (305, 295) (486, 219) 

9 ( 0.00,  0.00) (511, 223) (560, 341) (334, 244) (419, 209) 

10 ( 1.82,  3.64) (339, 209) -          (120, 370) (552, 264) 

11 ( 1.82,  0.63) (478, 210) (520, 336) (212, 252) (407, 237) 

12 ( 4.83,  3.64) (359, 196) -          -          (491, 323) 

13 ( 4.83,  0.63) (477, 197) (497, 328) (052, 238)  (329, 284) 
Table 7.3: PETS footage point correspondences 

 

Our current implementation of the homographic transform estimation is limited to using four 

point correspondences, which will give an exact result for these four points, so their error will 

be zero. As the accuracy of the transformation depends on the manual input of corresponding 

image coordinates, we examine the effect of introducing a deviation in one of the input coor-

dinates used to compute the transformation. We will pick a random point for each camera and 

vary the X coordinate. 

The following charts show the transformation error, i.e. the distance between the ground truth 

world coordinates and the world coordinates as computed by our transformation, and the ef-

fect of varying the image coordinate inputs. For each of the four cameras, we pick four of the 

thirteen available points on the floor pattern as input for the transformation matrix computa-

tion. Of these four points, we pick one of which we will vary the X coordinate. Results for 
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each camera are shown in two charts. The bar charts on the left show the error for each point 

separately. The group of five bars above each point label show that point’s error for an intro-

duced deviation of -2, -1, 0, 1 and 2 pixels. Points that are not visible to that camera are not 

shown or considered. The points with a zero error value are the input points. The label under-

neath the graph on the right lists the point into which we introduce the deviation. This graph 

lists the mean error over all points considered, rather than for each individual point. This is 

done for a larger range of deviations ([-10, 10]). 

 

 

  
Figure 7.10: Point error, camera 1 Figure 7.11: Mean error, camera 1 

 

  
Figure 7.12: Point error, camera 2 Figure 7.13: Mean error, camera 2 
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Figure 7.14: Point error, camera 3 Figure 7.15: Mean error, camera 3 

 

  
Figure 7.16: Point error, camera 4 Figure 7.17: Mean error, camera 4 

 

The first thing that is apparent when evaluating these results is that the error stays within 

decimetres, which is a useful range if an expansion of the system were to be used for auto-

mated surveillance tasks such as the left luggage detection of the PETS 2006 workshop 

[Thi06], where criteria for the abandonment of luggage are formulated in terms of a distance 

of 2 or 3 metres between a luggage owner and his luggage. 

Secondly, although we would expect that a larger input error results in a larger output error, 

the fact that the minimum of the mean error curve is not at the point corresponding to no in-

troduced deviation indicates that the manually entered calibration points are not optimal. This 

would suggest that these curves could be used for optimisation, although it is probably a bet-

ter idea to expand the implementation to be able to use more than four input points, so the in-

exact solution to this transformation can be minimised. 
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Chapter 8: Conclusions and future work 
We have shown a tracker design that can handle the simultaneous tracking of multiple ob-

jects, and even deals with occlusion, without being overly complex. The tracker is based on 

relatively straightforward checking of spatial consistency (overlap) of the objects tracked, and 

only uses the computationally more expensive colour comparison if the simpler method will 

not suffice. 

Correct decision rates and spatial accuracy of the system have been evaluated using the data 

corpus recorded for the tracking task of the PETS 2006 workshop. 

 

The rate of correct identity assignments by the tracker can probably be improved by enforcing 

simple rules such as the impossibility to jump a large distance in a single frame, which can 

currently be a result of e.g. an erroneous assignment at a blob split. The system requires some 

manual calibration for the background and homographic transform; ways could be sought to 

automate or obviate this. In particular, the static background used by the background separa-

tor can become obsolete, so a way to update it automatically without jeopardising the ability 

to detect non-moving objects would be useful. Distinguishing people from luggage objects is 

currently implemented by means of a simple height threshold, which could be replaced with a 

more sophisticated classification algorithm. The output of the homographic transform can be 

used to facilitate data fusion from multiple camera sources, by mapping the objects observed 

into a global coordinate frame, as mentioned previously in Chapter 2. 

The memory efficiency of the current implementation limits the maximum uninterrupted run-

time the system can manage. An example of a measure to ameliorate this would be to imple-

ment data aging, i.e. dropping the records kept of objects that have not been observed for a 

long time. 

Legal note on the datasets 
The UK Information Commissioner has agreed that the PETS 2006 datasets described here 

may be made publicly available for the purposes of academic research. The video sequences 

are copyright ISCAPS consortium and permission for the publication of these sequences is 

granted provided that the source is acknowledged.  
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Note on the use of DOIs (Digital Object Identifiers): 

References listed with a DOI can be looked up at http://dx.doi.org/ 

Appendix A: Blob interactions for evaluation 
Blob interactions are listed in the following format: 
PathID (FirstFrame-LastFrame) len: TrackLength  SFrame 

Each line contains a track. Frame numbers are relative to the start of the chosen frame range. 

S, M and U indicate the Split, Merged and Matched states. Erroneous interactions are marked 

with “<”. 

 
S1T1C1 1800-1950 10^3 bins, threshold 500 

02 (00000-00062) len: 00063  S16 S23 M24 M27 S31 M36 S40 S62< 

03 (00000-00102) len: 00103   

04 (00000-00149) len: 00150  S1 M2 S11 M12 S15 M20 S24 M34 S35 M37 S38 M42 S44 M47 S52 M54 S55 

M56 S59 M60 S69 M70 S75 S76 M77 S78 M79 S80 M84 S86 M87 S89 M90 M91 S92 M93 S94 M95 S97 S98 

M99 S100 S101 M102 S103 M104 M105 S106 M107 S112 M113 S128 M129 S130 M132 S133  

07 (00004-00149) len: 00146   

09 (00016-00130) len: 00115  M59 M124 S130< 

10 (00106-00149) len: 00044   

14 (00080-00149) len: 00070  M110 M138 S139 M140 S141 M142 S143 M145 S146 M149  

 

S1T1C1 1800-1950 10^3 bins, threshold 900 

00 (00004-00150) len: 00147  U4  

00 (00219-00273) len: 00055   

02 (00080-00150) len: 00071  M110 M138 S139 M140 S141 M142 S143 M145 S146 M149 S150 

03 (00000-00102) len: 00103   

05 (00062-00086) len: 00025  S62 M66 S67< M68 S70 M79 S80 

05 (00103-00128) len: 00026  S103< M104 M105 S106 M107 S112 M113 S128< 

06 (00011-00069) len: 00059  S11 M12 S15 M20 S24 M34 S35 M37 S38 M42 S44 M47 S52 M54 S55 M56 

S59 M60 S69< 

06 (00106-00150) len: 00045   

07 (00016-00062) len: 00047  S16 S23 M24 M27 S31 M36 S40 S62< 

07 (00078-00102) len: 00025  S78< M79 S80 M84 S86 M87 S89 M90 M91 S92 M93 S94 M95 S97 S98 M99 

S100 S101 M102 U103< 

07 (00133-00150) len: 00018   

08 (00016-00130) len: 00115  M59 M124 S130< 

 

S1T1C1 1800-1950 50^3 bins, threshold 500 

03 (00000-00102) len: 00103   

08 (00004-00149) len: 00146   

18 (00016-00129) len: 00114  M59 M124 

65 (00080-00138) len: 00059  M110 M138  

91 (00106-00149) len: 00044   

 

S1T1C1 1800-1950 50^3 bins, threshold 900 

00 (00004-00149) len: 00146  U4  

02 (00000-00086) len: 00087  S16 S23 M24 M27 S31 M36 S40 S62 M66 S67< M68 S70 M79 S80  

03 (00000-00102) len: 00103   

05 (00001-00145) len: 00145  S1 M2 S11 M12 S15 M20 S24 M34 S35 M37 S38 M42 S44 M47 S52 M54 S55 

M56 S59 M60 S69 M70 S75 S76 M77 S78 M79 S80 M84 S86 M87 S89 M90 M91 S92 M93 S94 M95 S97 S98 

M99 S100 S101 M102 S103 M104 M105 S106 M107 S112 M113 S128 M129 S130 M132 S133  

08 (00016-00130) len: 00115  M59 M124 S130< 

09 (00106-00149) len: 00044   

11 (00080-00149) len: 00070  M110 M138 S139 M140 S141 M142 S143 M145 S146 M149  

 

S1T1C1 1800-2150 10^3 bins, threshold 900 

00 (00004-00150) len: 00147  U4  

00 (00193-00217) len: 00025  U193  

00 (00219-00273) len: 00055   

02 (00080-00159) len: 00080  M110 M138 S139 M140 S141 M142 S143 M145 S146 M149 S150 M151 M153 

S157<  

03 (00000-00102) len: 00103   

03 (00157-00317) len: 00161  S157 M160 S161 M163 S165 M167 S168 M171 S172 S174 M175 M178 S180 

M182 S187 M190 M193 S194 S200 M207 S208 M223 M230 S280 S315 S316 

05 (00062-00086) len: 00025  S62 M66 S67< M68 S70 M79 S80 

05 (00103-00128) len: 00026  S103< M104 M105 S106 M107 S112 M113 S128< 

06 (00011-00069) len: 00059  S11 M12 S15 M20 S24 M34 S35 M37 S38 M42 S44 M47 S52 M54 S55 M56 

S59 M60 S69< 

06 (00106-00169) len: 00064   
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06 (00171-00213) len: 00043  S171  

06 (00258-00349) len: 00092  S258 

07 (00016-00062) len: 00047  S16 S23 M24 M27 S31 M36 S40 S62< 

07 (00078-00102) len: 00025  S78< M79 S80 M84 S86 M87 S89 M90 M91 S92 M93 S94 M95 S97 S98 M99 

S100 S101 M102 U103< 

07 (00133-00160) len: 00028   

08 (00016-00130) len: 00115  M59 M124 S130< 

09 (00130-00313) len: 00184  S130 M132 S133 M161 S164 M174 S176 M178 S179 M194 S195 M197 S199 

M210 S212 M213 S214 S215 M221 S222 M224 S225 M236 S237 M238 S239 M245 S247 M251 M252 S253 M259 

S260 M268 S270 M271 S272 M277 S279< 

10 (00279-00326) len: 00048  S279 M314 S315 M317 M318 S322 S326 

 

S1T1C2 1800-2150 10^3 bins, threshold 900 

00 (00039-00349) len: 00311  S39< 

01 (00171-00197) len: 00027  U171< 

02 (00015-00094) len: 00080  U15 M17 S18 M25 S26 M28 S29 M30 S31< 

02 (00098-00152) len: 00055  U98  

03 (00000-00074) len: 00075   

03 (00076-00343) len: 00268  M250 

04 (00028-00152) len: 00125  U28  

04 (00154-00288) len: 00135  U154  

04 (00302-00349) len: 00048  U302  

06 (00017-00349) len: 00333  S17 M22 S23 M29 S30 M41 

 

S1T1C3 1800-2150 10^3 bins, threshold 900 

00 (00000-00125) len: 00126  S41 M42 S125  

00 (00127-00158) len: 00032   

00 (00160-00351) len: 00192   

01 (00125-00326) len: 00202  S125 M126 S127 U326  

02 (00052-00105) len: 00054  M60 S61 M68 S82 S84< M85 S96 M97 S99 M100 S103 S104 

03 (00104-00140) len: 00037  S104 M106 S108 M109 S110 M111 S117 S118< M119 S120 M122 S123 M127 

S128 M131 S134 M136 S139 

 

S1T1C4 1800-2150 10^3 bins, threshold 900 

01 (00014-00073) len: 00060  U14 S72< U73<  

01 (00124-00154) len: 00031  U124  

01 (00156-00180) len: 00025  U156  

01 (00279-00350) len: 00072  U279< M293 S294 M295 M301 M302 S303 S322 M323 M342 M343 S345 M346 

02 (00000-00128) len: 00129  S114  

02 (00222-00350) len: 00129   

03 (00004-00075) len: 00072  M25 M28 S72 M73  

03 (00077-00109) len: 00033  U109 

03 (00114-00255) len: 00142  S114< M129 

03 (00257-00350) len: 00094  S336 

06 (00192-00228) len: 00037  M212 S213 M225 S226 

07 (00271-00303) len: 00033   

08 (00172-00222) len: 00051  U172 S222 

09 (00222-00277) len: 00056  S222< M228 M229 S230< S233 M234 M235 S239 S241 S242 M243 S262 

M264 S265 M266 S267 M268 S269 S271 S277<  

10 (00286-00313) len: 00028   

10 (00315-00350) len: 00036  U315 

 

Background separator settings: 

Minimum HSV difference (5, 0, 5), erode 1x, dilate 1x, minimum area 200 pixels, dilate 3x, erode 3x 


