

Computer-Aided Security Surveillance
DESIGN OF THE QUO VADIS OBJECT TRACKER

Vincent van der Tuin

Master’s thesis

November 2007

Human Media Interaction Group

Faculty of Electrical Engineering,

Mathematics and Computer Science

Review committee:

Ronald Poppe

Rutger Rienks

Anton Nijholt

Mannes Poel

Computer-Aided Security Surveillance – Vincent van der Tuin

 2

Abstract
In recent years, use of video surveillance in public places has skyrocketed due to increasing

security concerns. To help in coping with the task of monitoring this huge amount of data, a

software system to track people and objects seen in order to be able to detect possible threats

such as left luggage would be useful. We examine the issues involved in the design of com-

puter vision software systems for people and object tracking, and present the design of a sys-

tem that can track people and objects in an indoor environment, and detect their inaction. The

tracking algorithm is based on a combination of matching overlapping regions of motion and

matching colour profiles. It is able to follow multiple people or objects simultaneously and

still tell them apart after occlusion. Experimental results will be presented to demonstrate the

system’s performance.

Computer-Aided Security Surveillance – Vincent van der Tuin

 3

Table of Contents
Abstract...2

Table of Contents..3

Chapter 1: Introduction...4

Chapter 2: Literature survey ...5

2.1. Introduction ...5

2.2. Calibration ...5

2.3. Background separation ..6

2.4. Tracking...6

2.4.1. Introduction ..6

2.4.2. A taxonomy of tracking tasks ...7

2.4.3. Short and medium term tracking ..7

2.4.4. Tracking with multiple cameras ...8

2.4.5. Long-term tracking ...8

2.5. Summary..8

Chapter 3: Approach overview...10

Chapter 4: Background separation ...11

4.1. Introduction ...11

4.2. Approach ...11

4.2.1. Static differencing...11

4.2.2. Temporal differencing ..12

4.2.3. Combining the approaches ...12

4.3. Implementation..12

4.3.1. Pipeline ...12

4.3.2. Processors ...13

Chapter 5: Blob tracking...18

5.1. Introduction ...18

5.2. The basics ..18

5.3. Overlap tracker ..19

5.4. Histogram tracker ..20

5.5. Cascaded tracker..21

5.6. Left luggage alerter..21

5.7. Comparison with other tracking methods..21

Chapter 6: Homographic transform..23

Chapter 7: Results and evaluation ..25

7.1. Blob tracker evaluation..25

7.2. Homographic transform evaluation ...30

Chapter 8: Conclusions and future work ..34

Legal note on the datasets...34

References ..35

Appendix A: Blob interactions for evaluation..39

Computer-Aided Security Surveillance – Vincent van der Tuin

 4

Chapter 1: Introduction
In recent years, due to an increased awareness of terrorism and related risks, and the advent of

cheaper cameras and more powerful image processing techniques, the use of cameras for sur-

veillance has increased. However, installing cameras is no goal in itself, and there is very little

use for the camera footage if no sort of threat analysis is performed on it. An example of such

a threat analysis is the so-called left luggage detection, i.e. detecting objects that have been

dropped off at the scene being abandoned by the person who brought them there.

Performing this monitoring manually can require amounts of manpower up to infeasible lev-

els, and the concentration of a human observer can lapse. This is where computer vision

comes in as an automated aid to such an observer.

We examine the issues involved in designing computer vision software systems for security

surveillance and present an approach to tracking multiple persons and objects in an indoor

environment.

We present the design of a system that can track several people or objects simultaneously in

an indoor environment, and retain the object’s identity labelling after occlusion. It will flag

immobile objects as potential threats.

The first component of the system is the background separator, which separates the objects to

track from the rest of the footage. It uses a combination of a motion detector and a back-

ground subtractor which needs to be initialised by an auxiliary component that extracts a

background image from the footage.

The tracking algorithm is based on a combination of checking for overlapping motion/object

regions, paying attention to regions that split and merge to deal with noise and occlusion, and

a comparison of object representations by means of colour frequency histograms to help in

cases where the overlap tracker would be unable to maintain object identity.

The locations of the detected objects are converted to 2D world coordinates, to facilitate dis-

playing and merging detection data streams from multiple cameras. This component needs to

be calibrated by input of the world coordinates of four ground plane locations in the camera

image.

The data corpus of the PETS 2006 workshop will be used to experimentally evaluate the

tracking algorithm, the threat alerter and the coordinate conversion.

The structure of this report is as follows: In chapter 2, a survey is presented of the relevant

issues and literature concerning the design of computer vision systems for security surveil-

lance. Chapter 3 will give an overview of our approach and its environmental parameters.

Chapters 4 through 6 will centre on the individual components of our approach. Finally, chap-

ter 7 will present our experimental results and their evaluation, and chapter 8 will discuss our

conclusions and recommendations for future work.

Computer-Aided Security Surveillance – Vincent van der Tuin

 5

Chapter 2: Literature survey

2.1. Introduction

In this chapter, we will investigate the issues surrounding the design of computer vision soft-

ware systems for people and object tracking. Prototype systems designed in similar projects

can track moving objects such as people as they move through the camera footage. We take a

look at combining the data received from a network of cameras and assigning a unique and

persistent identity to the persons detected, so they can be tracked throughout the network.

Note that this overview will mainly be concerned with tracking persons as a whole, rather

than with pose estimation or motion analysis [Pop06], although some techniques will require

some subdivision, e.g. face recognition.

This chapter aims to give an idea of the technical challenges involved in the design of such a

system, and the existing research into how to solve them. Although this overview is unlikely

to be exhaustive, it will still give a representative impression of problems and solutions in-

volved.

2.2. Calibration

Camera calibration is the determination of the parameters that govern the relation between the

2D image coordinates and the 3D world coordinate system. This is required if the system is

supposed to determine the full 3D or projected 2D world coordinates of detected objects, e.g.

for displaying on a map. For simpler applications, such as object detection or recognition, this

may not always be necessary. Alternatively, particular relations, such as the locations of the

edges of the field of view (FOV) of a particular camera in the image of another camera can be

learned automatically [Kha01, Kha03].

Camera calibration values can be divided into intrinsic and extrinsic properties, also known as

internal and external. Intrinsic properties are specific to and generally invariant for a particu-

lar camera. These include values such as the focal length of the lens, scaling and possibly dis-

tortion factors. Extrinsic properties, on the other hand, refer to the camera in its environment,

i.e. to the location and orientation of the camera and thus also to the relative positions of cam-

eras in a multi-camera network. Note that instead of determining both groups of parameters

explicitly, they can also be represented by coordinate transformations from the camera image

to a common world coordinate system [Bak00, Wil03].

Calibration can be performed manually, but this is labour intensive, making it infeasible if the

network is large and/or dynamic. Therefore, several automatic or semi-automatic camera cali-

bration methods have been developed. Most of these methods assume at least some overlap-

ping of the fields of view to determine the relative extrinsic properties of the cameras. If there

is no such overlapping, it is still possible to estimate the network topology, e.g. in terms of

probable adjacency [Jav03].

To calibrate cameras by means of overlapping views, the algorithms need some way to find

corresponding points in both (or more) camera views. Two main categories of ways to pro-

vide these are using some sort of calibration grid, or using object motion. A calibration grid

could be a planar block pattern [Seb02], but in some settings it is also possible to use objects

with recognisable features which are readily available in the environment, such as the human

face [Kot05]. For calibration by means of motion, one could construct a light-emitting wand

which is easily tracked by the vision system [Bak00, Svo05], or use objects assumed to be in

the system’s typical environment, such as car traffic [Lee00] or mobile robots [Wil03].

Computer-Aided Security Surveillance – Vincent van der Tuin

 6

2.3. Background separation

The vision system needs to know what parts of the image contain objects of interest that

should be tracked, and what parts just contains walls, floors and other objects, usually static,

that should be ignored for the purposes of tracking. This process is called background separa-

tion. It is related, but not identical to motion detection, as although most background separa-

tion algorithms are based on motion detection, if a system is supposed to track a particular

object, it should keep doing so if the object stops moving. However, it would also be possible

to deal with this problem in higher-level reasoning stages.

The simplest way to construct a motion detection algorithm is to compute the pixel-wise dif-

ference between two consecutive frames and threshold the result [Tui05, Lip98]. This usually

generates only an outline of the moving object, rather than all the pixels of the object. It also

introduces a systematic inaccuracy by including a trail of pixels at which the object was in the

previous frame, but currently isn’t anymore. It is possible to include corrective measures to

compensate for this trail and to include additional measures like template matching in case the

object motion halts [Lip98].

A basic form of a common method for background separation which does not suffer from this

is to obtain a reference background image and to compute and threshold the difference with

that [Spa05]. This method, however, cannot compensate for changes in illumination of the

scene, either abruptly by someone opening a door or flipping a light switch, or by gradual

changes such as those caused by daylight. One way to adaptively compute the background

image is to take the median over time [Sie03]. Another common way is to model each pixel

using one or more Gaussian distributions [Ell02, McK00, Rie03, Wre97, Zha01].

Foreground images generated like this will probably still contain noise and other unwanted

areas, such as the ones caused by shadows. These shadows could be rejected by checking

whether the change in chromaticity is negligible [McK00, Ell02, Tho05]. Also, there will

probably be gaps in the detected areas, which could be corrected by post-processing the re-

sults with morphological operations such as closing [Rie03, McK00, Zha01], although this

probably isn’t worth the computational effort if only a bounding box of the object is required.

It will, however, alleviate the problem of a single person being detected as several blobs, for

which corrective measures such as blob clustering would have to be used [Kru00].

It is also possible to combine these algorithms with other modalities than colour spaces. For

instance, when using multiple cameras pointed at the same area, one could use the results of

stereo range finding [Dar00, Har98, Kru00].

All methods described so far have assumed that the camera remains stationary. If this is not

the case, additional compensation is to be performed, e.g. by matching features such as edges

[Cai95].

2.4. Tracking

2.4.1. Introduction

The previous sections have been concerned with the ability to find objects of interests in the

imagery. Now that they have been found, the system needs a way to keep track of the object

or objects. In our case, these objects will usually be people, which will make some generic

tracking approaches inapplicable or more specific ones possible. Where no theoretical distinc-

tion needs to be made, we’ll use the terms person and object interchangeably.

Computer-Aided Security Surveillance – Vincent van der Tuin

 7

2.4.2. A taxonomy of tracking tasks

Tracking systems meant for different purposes have different requirements and characteris-

tics. To structure our discussion, we will first create a classification of tracking system types

according to what they’re required to do, and in what environment.

The first distinction we need to make here is that of track lifetime, i.e. for how long the sys-

tem assigns the same identity to the object it follows, as the technical requirements for meth-

ods to perform this differ. Also, it needs to be taken into account whether the assumption is

made that only one person to be tracked is present in the image at any given time, or that there

can be multiple simultaneously.

The various kinds of track lengths we will consider are as follows:

• Short-term or continuous path tracking, where a tracked person can be absent from the de-

tection for at most a few frames.

• Medium-term tracking, where a person re-enters the tracked area after minutes or hours.

• Long-term tracking, where the person re-enters the area after days or longer. Basically, this

is identification, i.e. linking the detected person to his or her real-world identity, followed

by a shorter-term track.

A final distinction to be made is whether the object is being tracked by a single camera or

whether it is within the field of view of multiple cameras.

Now that we have defined the taxonomy of tasks and requirements involved in tracking, we

will investigate the various methods of performing this. Note that some methods are not

strictly confined to a single class as described above. For instance, methods for obtaining an

object’s identity for any track length can achieve a similar goal to that of a system that tries to

re-label short-term object identities after occlusion by extrapolating their paths.

2.4.3. Short and medium term tracking

For short-term tracking, a number of relatively simple methods can be employed. If there is

no occlusion, a simple check for overlapping bounding boxes can maintain short-term iden-

tity. Faced with occlusion, one way to maintain short-term identity is probabilistically track-

ing and examining the object’s path, heading and velocity. Methods such as Kalman filters

[Ass94, Cai95, Ell02, Jav03, Rie03, Sie03] or particle filters [Tui05, Tan04, Tho05] can be

used here. As mentioned before, this can also be handled by longer-term tracking methods

which aim to recognise the object by its features rather than its expected location.

For short-term tracking of people, we need to have some feature or features to match. One

such feature is the height or aspect ratio of the bounding box [Cai98, Ell02] or the real-world

height of the person being tracked, which can be computed even in a monocular system by

including a priori knowledge of the environment of it in the form of a model of the environ-

ment’s geometry and/or a ground plane assumption [Agg98, Rie03, Spa05]. Usefulness of

height as an auxiliary feature for long-term tracking has also been reported [Dar00].

Generic template matching approaches are often not very well applicable to people tracking

due to the non-rigidity of the human body. Another popular short-term tracking method is to

make use of colour or intensity features. Specific points on a person could be picked for this

[Cai94, Cai98], or the whole person could be used to compute a mean colour probability

[Kru00, McK00, Por03, Ell02]. Alternatively, the person could be subdivided into several

blobs with separate representations, either segmented by connected components analysis

[Kru00, McK00, Por03] or representing specific parts of the person such as the face, hair, skin

or clothes [Dar00, Reh97]. Instead of using just the colour, one could also opt to analyse the

texture [Nug94].

These intensity or colour features could be represented by means such as colour histograms

[Kru00] and/or Gaussian distributions [McK00].

Computer-Aided Security Surveillance – Vincent van der Tuin

 8

2.4.4. Tracking with multiple cameras

For multiple cameras observing the same person, the problem is slightly different. A draw-

back of using the colour approaches for multi-camera systems is that cameras are usually not

consistent in how they perceive colours. This can be compensated for by using additional

calibration to normalise between the cameras [Por03]. One could also choose not to use ap-

pearance features, but to combine location tracking results from multiple cameras by using the

results of external camera calibration to compute a coordinate homography, which will map

the coordinates reported by various cameras onto a global coordinate system [Dev04, Ell02,

Lee00, Sat94, Uts98].

2.4.5. Long-term tracking

For long-term tracking of people, approaches based on things like clothing colour can obvi-

ously be ruled out. Other biometric features can however be found in the image and used in

conjunction, such as the height and the face [Dar00]. Gait recognition could be employed if

the view of the person is large enough for reliable segmentation [Lee02].

2.5. Summary

Designers of software systems for computer-aided surveillance and tracking need to create a

number of system components posing technical challenges. We have discussed a number of

these main components, problems involved in their implementation and possible ways of

solving them.

If we want to be able to map the image coordinates of objects observed to real-world coordi-

nates (2D or 3D) for display or comparison purposes, the cameras used need to be calibrated.

Camera calibration parameters are often divided into intrinsic parameters, which are specific

to the camera itself, and extrinsic parameters, which refer to the camera’s positioning in its

environment. Some methods, however, do not employ this distinction, but represent them in

another way, e.g. directly as a coordinate transformation function.

The required camera calibration parameters can be measured and computed manually, but

automated techniques have also been developed for calibration, making this less labour inten-

sive and therefore more scalable. Many of these methods use a priori knowledge of certain

objects in the scene, such as a calibration grid, or use object motion. This can also be used to

determine relative positioning of cameras in case the system uses several cameras with over-

lapping FOVs simultaneously.

When a camera image comes in, the system needs to separate the objects of interest from the

rest of the image in a process known as background separation. We discuss two main classes

of background separation algorithms: one compares the incoming frame with a frame that

came in shortly before it (temporal differencing), and the other compares the frame to a back-

ground image kept by the algorithm (static differencing). Both methods have their pros and

cons. The temporal differencing method is good at tracking moving targets, but fails when

objects of interest stop moving. Static differencing can overcome this by comparing the in-

coming frame by comparing it to a frame or other data structure (e.g. probability distribution)

known to represent the background, but such a structure will need to be acquired and perhaps

updated, as it can become inapplicable due to changes in the camera’s environment, e.g. light-

ing changes. In designing the background updating algorithm, the goal of updating the back-

ground will need to be balanced with the goal of being able to detect non-moving objects of

interest.

Computer-Aided Security Surveillance – Vincent van der Tuin

 9

Not all areas selected using these frame comparison-based methods may actually be objects of

interest; they could be caused by effects such as shadows or sensor noise. Additional steps can

be taken to eliminate these from the detection, e.g. checking for negligible chromaticity

change to remove shadows. Post-processing with morphological operations such as closing

can fix gaps in detected objects.

To keep track of objects of interest once they have been found, we require a tracking algo-

rithm. Technical requirements for tracking algorithms differ largely depending on the sys-

tem’s goal and environment. Some important points to consider are for how long the system

should be able to track its target, whether there is just one target to track at any given time or

whether there can be multiple (possible occluding), and whether the system processes the feed

from just one camera or whether it should merge the data from several cameras.

A simple method for tracking targets on a continuous path is checking for overlap of their out-

lines or bounding boxes. This method cannot deal with occlusion. Methods that can augment

or replace it to be able to track through occlusion are e.g. predicting the object’s path and ve-

locity with methods such as Kalman filters, or matching the object’s appearance, for instance

by building and comparing a colour histogram of the target.

To reinitialise tracking of people by identifying them after a longer time, it is possible to use

biometric approaches such as face or gait recognition.

If matching the observations of a target by multiple cameras is required, one could use ap-

pearance matching approaches similar to the ones just described, which may require addi-

tional calibration to diminish the effects of differences between cameras, or one could match

the target location by merging it into a common coordinate frame.

Computer-Aided Security Surveillance – Vincent van der Tuin

 10

Chapter 3: Approach overview
After the broad overview of issues and methods in the previous chapter, we have to set

bounds for the domain of the system we are presenting, and select methods that are suited to

our situation. Our approach was designed to be applied to an indoor real world public envi-

ronment. It will be tested on the data corpus of the PETS 2006 workshop [PET06], containing

footage of such an environment (a train station), recorded with a number of static cameras

pointed at the same area from several directions. Several people move through this area, in-

cluding a test subject who leaves his backpack. Our system should be able to track them si-

multaneously. The relative real-world coordinates of several points on the visible part of the

station floor are specified for calibration purposes.

Figure 3.1: Sample images from the PETS 2006 cameras

In order for our system to achieve its vision task, the camera footage is processed by several

subsequent components, forming a processing pipeline (Figure 3.2).

Figure 3.2: System pipeline overview

The system first separates objects that are of interest to the system for tracking purposes (the

foreground) from the rest of the image, depicting the scene’s background. This is done by a

combination of static background subtraction [Lip98] and temporal differencing, to detect

both moving and static objects of interest. To create the static background, a static camera is

assumed, but the availability of a frame containing no foreground objects is not required, as it

can be estimated from a series of frames containing moving foreground objects, using a tem-

poral median filter [Sie03].

Once we know which pixels of the frame are to be tracked, they are grouped into connected

components (blobs) and handed to the blob tracking component. This component’s task is to

match blobs observed in different frames as having the same identity, i.e. they’re depictions

of the same object or person, so we can track them through time. Our approach combines blob

identity maintenance by checking for overlapping blobs [Auv06] and keeping track of blob

interaction states such as merging and splitting [Ell02] with matching blob representations in

the form of colour frequency histograms [Kru00] to obtain an efficient algorithm that is able

to maintain tracked blob identity beyond these blob interactions caused by noise and occlu-

sion.

Blob positions are then converted to world coordinates. This means that output on positions of

objects of interest can be displayed in a floor plan style, and alert trigger conditions can be

expressed in real-world distances. It also facilitates merging the data with that of other cam-

eras during future projects. A homographic transformation [Cri99] is used to perform this

conversion, which is easier to calibrate than full camera calibration [Tsa86], while still giving

satisfactory and useful results. The system thus requires less calibration points, i.e. at least

four corresponding pairs of 2D image/world coordinates to estimate the transformation.

Background estimator

Calibration

Camera Background separation Blob tracking Homographic transform Status/Alert (UI)

Computer-Aided Security Surveillance – Vincent van der Tuin

 11

Chapter 4: Background separation

4.1. Introduction

The background separation step is the part of the vision processing pipeline in which the sys-

tem decides whether any part of the image is an object that may be of interest to the system

and should be tracked, or that it is part of the background. First, a number of approaches and

their pros and cons will be discussed. A description follows of how this is actually achieved in

the prototype implementation, focussing first on the system as a whole and then on its indi-

vidual vision processing filters.

4.2. Approach

Because there are several approaches to background separation, and which is best depends

largely on the situation that is to be processed, a number of methods have been implemented.

4.2.1. Static differencing

This method works by computing the difference between the incoming (colour) image and an

image of the background without any foreground objects, for each colour channel separately.

If no such image is available, one can be constructed by computing the median per pixel and

channel over a number of images spread throughout a dataset of images that also contain

foreground objects (persons etc.) [Sie03]. Assuming the scene is not too crowded, any par-

ticular place will be unoccupied for most of the time, i.e. it will show the background. There-

fore, a median of any given pixel will give us the background colour, even though the absence

of foreground objects does not have to occur throughout the whole scene simultaneously; a

normal bit of surveillance footage can be used, as long as people that should be classified as

foreground are moving and there are not so many people that some parts of the background

will be occluded most of the time. If this is not the case, footage containing less heavy traffic

will need to be selected in order for this method to work.

Selecting the foreground pixels can now be done by applying a minimum threshold to the ab-

solute difference [Sie03, Spa05]. This threshold can be implemented at different levels of

granularity: globally, per colour channel, or even per image section or pixel. The finer the

granularity, the finer the algorithm can be tuned, but this is likely to increase the amount of

data required to train or tune the system.

Differences can not only be caused by foreground objects showing up, but also by the shad-

ows they cast. This will not usually be the kind of things that we wish to track, though, so we

seek a way to remove these shadows from our detection. A way to do this is by taking into

account that shadows are a darker variety of the original background colour at that specific

location [Ell02, Tho05]. Therefore, we convert the image to the Hue-Saturation-Value colour

space [For03] before thresholding, so we can classify pixels with negligible hue difference as

background (shadow).

Detected foreground objects that are so small that they are likely to be just noise can be re-

moved during a post-processing step. Likewise, objects that are only a few pixels apart may

have been split due to noise. This will be covered in greater detail in the implementation sec-

tion.

The static differencing method will, in addition to detecting moving objects, also detect static

foreground objects, which is of course a necessity for purposes such as left luggage detection.

However, the static background image becomes invalid when the background changes due to

Computer-Aided Security Surveillance – Vincent van der Tuin

 12

e.g. a change in lighting conditions. How to automatically adapt the background without loss

of the ability to detect static foreground objects is not clear-cut.

4.2.2. Temporal differencing

Instead of computing a static background from a dataset, two images that are one or a few

frames apart in the video sequence can be compared in the same way as with static differenc-

ing. Sections that contain a moving object in one of the frames will cause an outline of the

object to appear in the resulting difference image, as demonstrated in the image below [Cai95,

Tui05, Lip98].

The difference of the images will now automatically and quickly adapt to changes in the

background, such as the ones caused by lighting change. Foreground objects that are perfectly

still, however, such as left luggage, cannot be detected by this method without additional

measures. Also, the half of the outline that is ‘trailing’ the moving object shows up because in

the current frame the object isn’t at that location anymore; this could cause a systematic inac-

curacy in a naïve implementation of a method to measure the object’s location (e.g. comput-

ing the outline’s centroid).

Figure 4.1: Temporal differencing

4.2.3. Combining the approaches

There are a couple of ways how these methods can be combined to create a “best of breeds”

system. One of the most straightforward ways is to apply a logical disjunction (‘or’) to the

foreground masks generated by both approaches, but this does not optimally harness the bene-

fits of both approaches. Another option is to construct a system that tries to estimate which

method will work best at a certain moment and switches to it, by classifying the situation or

assigning a confidence measure to the foreground masks. For example, a system that uses

static differencing by default could detect the flipping of a light switch as a steep increase in

foreground pixels, and temporarily switch to temporal differencing while the static back-

ground is updated.

4.3. Implementation

An implementation of a combined static/temporal differencing system as described above has

been made based on the HMI group’s ParleVision framework, in which several vision filters,

known as processors, are chained together to form a vision processing pipeline [Bra04]. This

allows for a very modular approach.

We will first discuss the pipeline, which determines the data flow and the behaviour of the

system as a whole, and then take a closer look at the processors which it is made of.

4.3.1. Pipeline

Both the static and temporal differencing algorithms haven been implemented as a combined

pipeline, as represented in the image below. There is a shared section at the start and the end

of the pipeline, to have a common frame source and to combine the output of the algorithms,

respectively.

Computer-Aided Security Surveillance – Vincent van der Tuin

 13

Figure 4.2: Background separation pipeline

4.3.1.1. Static differencing pipeline

The input video frames are delivered by a special class of ParleVision processor called a pro-

ducer; in this case a VideoProducer is used, which reads the frames from a video file. The

static background image used here for differencing is computed by an external tool using the

median method described in Section 4.2.1 and loaded into the pipeline by the StaticImage

processor. Both the input frame and the static background frame are converted to the HSV

colour space before their pixel-wise absolute difference is computed, as computing the differ-

ence in this colour space will help with shadow removal, as described in the Approach sec-

tion. These differences are thresholded to obtain a binary image labelling the foreground and

background pixels. Detected foreground blobs (areas of connected foreground pixels) that are

so small that they are likely to be caused by noise are removed by morphological erosion (and

subsequent dilation to reduce changes to other foreground blobs) [Bre00] and enforcing a

minimum amount of pixels per blob. See the Processors section for examples.

4.3.1.2. Temporal differencing pipeline

The temporal differencing pipeline works in much the same way as the static differencing

pipeline, but now the static image loader is replaced by a processor that outputs a frame that is

a few frames older than the current frame, so that the outlines of moving objects should now

show up in the difference image.

4.3.1.3. Final combining pipeline

As both algorithms now output a binary image, we can apply a simple logical disjunction

(‘or’) to obtain a combined result. A dilation and erosion step are applied to prevent fore-

ground objects being split into several blobs by the effects of noise.

4.3.2. Processors

The processors that are used to build the processing pipeline, most of which have been created

or expanded for this project, will now be discussed in more detail. Care has been taken to

make these processors as generic as possible, so that different algorithms can be prototyped

by rearranging the processors in the processing pipeline and altering their parameters. The

OpenCV image processing library is used as the basis for the image processing [Int00].

Computer-Aided Security Surveillance – Vincent van der Tuin

 14

4.3.2.1. VideoProducer
Inputs: None

Outputs: resized, original

The VideoProducer reads input frames from a video file (in

AVI, WMV or MPEG format) and delivers them to the pipe-

line for processing. The frames are also offered at a normalised

size (320×240 pixels). An option has been added to ignore the

frame rate specified in the video file and output the frames as

fast as they can be processed by the host system.

4.3.2.2. CameraProducer
Inputs: None

Outputs: source

The CameraProducer obtains input frames from a Microsoft

DirectShow-compatible device such as a webcam and delivers

them to the pipeline for processing.

4.3.2.3. ConvertImage
Inputs: inputImage

Outputs: outputImage

The ConvertImage processor converts the incoming colour

(RGB) image to a specified other colour space: grey scale,

Hue-Saturation-Value (HSV) or YCrCb.

Figure 4.3: Figure 4.4:
Sample input Converted to HSV

4.3.2.4. AddSub
Inputs: inputImage1, inputImage2

Outputs: outputImage

The AddSub processor computes the pixel-wise sum or differ-

ence of two input images, for every colour channel separately.

In addition to the normal difference, the absolute difference

can be chosen as output. Of this latter operation, an implemen-

tation has been added which makes fewer internal image buffer

copies, to improve efficiency.

Figure 4.5: Figure 4.6: Figure 4.7:
Sample input 1 Sample input 2 Absolute difference

Computer-Aided Security Surveillance – Vincent van der Tuin

 15

4.3.2.5. SkinDetector
Inputs: inputImage, maskImage

Outputs: outputImage

The SkinDetector processor finds regions of interest (ROIs) by

means of colour space conversions (or colour channel ratio

computations) and applying configurable thresholding rules to

the pixels to obtain a binary (black-and-white) image indicat-

ing the ROIs. In the early versions of this processor, the col-

ours to be identified were skin tones, hence the name, although

its applicability is more generic. A built-in colour space con-

version can be selected, or the raw input can be thresholded to

process an RGB colour image or one pre-processed by a proc-

essor such as ConvertImage. Lower and upper thresholds can

be set for up to three separate colour channels.

The binary ROI map can be post-processed by applying a

specified number of iterations of a morphological erosion

and/or dilation operator (see the next processor). Additionally,

connected components (blobs) can be automatically removed if the number of pixels they

consist of falls below a certain threshold.

The example below shows the result of thresholding an input image obtained by converting

two images to the HSV colour space and computing the absolute difference. No post-

processing has been applied.

Figure 4.8: Figure 4.9:
Input image Output image

4.3.2.6. DilationErosion
Inputs: inputImage

Outputs: outputImage

The DilationErosion processor performs the same morphologi-

cal erosion and/or dilation operations as the SkinDetector proc-

essor (included there for convenience). The number of itera-

tions of either operation can be set, and which is to be per-

formed first.

Computer-Aided Security Surveillance – Vincent van der Tuin

 16

Figure 4.10: Figure 4.11:
Sample input Eroded

Figure 4.12: Figure 4.13:
Dilated First eroded, then dilated

4.3.2.7. StaticImage
Inputs: input

Outputs: outputImage

The StaticImage processor delivers the same image for every

frame. Unlike the ImageProducer processor, it has an input so

it can deliver these images in sync with the rest of the pipeline,

thus avoiding the recomputation issues associated with Parle-

Vision pipelines with multiple producers.

The image to output can either be read from an image file or

grabbed from the input pin. Using this latter function, it can also be used to keep a particular

frame in memory anywhere in the pipeline, for further processing.

4.3.2.8. LogicalOperator
Inputs: input1, input2

Outputs: outputImage

The LogicalOperator processor applies a unary or binary logi-

cal operator to binary (black-and-white) images, such as the

ROI map produced by the SkinDetector processor. The set of

available operators has been chosen in such a way that, in

combination with the ability to negate any input or output pin, any truth table for one or two

inputs and one output can be realised, as demonstrated by the following table:

Computer-Aided Security Surveillance – Vincent van der Tuin

 17

Input A, B Input A, B

0, 0 0, 1 1, 0 1, 1 0, 0 0, 1 1, 0 1, 1

Output Operation Output Operation

0 0 0 0 FALSE
*
 1 0 0 0 NOT (A OR B)

0 0 0 1 A AND B 1 0 0 1 NOT (A XOR B)

0 0 1 0 A AND (NOT B) 1 0 1 0 NOT B

0 0 1 1 A
*
 1 0 1 1 A OR (NOT B)

0 1 0 0 (NOT A) AND B 1 1 0 0 NOT A
*

0 1 0 1 B 1 1 0 1 (NOT A) OR B

0 1 1 0 A XOR B 1 1 1 0 NOT (A AND B)

0 1 1 1 A OR B 1 1 1 1 NOT FALSE
*

* Can be used for unary operation

Table 4.1: LogicalOperator truth table

A few example operations:

Figure 4.14: LogicalOperator examples

4.3.2.9. DelayImage
Inputs: inputImage

Outputs: outputImage

The DelayImage processor keeps the input frames in memory

and outputs them a specified number of frames (clock ticks)

later, enabling analysis algorithms such as the temporal differ-

encing described in the previous section.

Computer-Aided Security Surveillance – Vincent van der Tuin

 18

Chapter 5: Blob tracking

5.1. Introduction

Now that we’ve obtained the foreground pixels from the background segmentation part of the

system pipeline, they will be grouped into blobs of 4-connected pixels on a frame-by-frame

basis. These blobs will form the basis for our tracking implementation. Now, we wish to pair

up blobs from different frames as having the same identity, i.e. they’re depictions of the same

object or person, so we can track them through time.

There are a couple of complications when it comes to just tracking blobs to tracking objects

on a higher semantic level, as blobs do not always have a one-to-one correspondence to the

objects they represent. As we’ve defined our unit to track as a connected component of pixels,

these may merge, split or be temporarily lost due to factors such as sensor noise or occlusion.

An approach to this tracking task will be presented in this chapter.

5.2. The basics

We want to achieve the assigning of a persistent identity (represented by an ID number we’ll

refer to as the path ID) to objects being tracked (e.g. persons). At an implementation level,

however, these IDs are assigned to blobs. Ideally, a path ID refers to an object rather than just

a blob. We’ll try to keep this matching by analysing blob interactions such as merging and

splitting.

Basically, to perform the assigning of this path ID over multiple frames, we attempt to match

all blobs in the current frame to the blobs in the previous frame that should be assigned the

same identity, taking into account the fact that blobs may split and merge due to the reasons

mentioned in the previous section. Therefore, for each input frame, in addition to the determi-

nation of its path ID, each blob gets a state that indicates whether one of these blob interac-

tions has taken place. The following list shows the states that can be assigned to a blob during

an iteration of the algorithm, during which the blobs of one frame are processed [Ell02]. The

Prev and Curr columns list how many blobs in the previous and current frame take part in that

type of blob interaction.

State Description Prev. Curr.

Matched Matched to a previously found blob 1 1

Split Broken off of a previously found blob 1 2..n

Merged Two or more previously found blobs have merged 2..n 1

New Blob could not be matched to a previously found blob 0 1

Unknown Temporary state to indicate that a blob hasn’t been processed

yet

N/A 1

Table 5.1: Tracked blob states

A Missing (1/0) state for previously found blobs that disappear from the footage has not been

included as iterating over the blobs of the current frame to determine their state would not

lead to such an assignment.

To determine the state and the matching blob/path ID to be assigned, several algorithms can

be devised, with different situations in which they outperform others. For this reason, our sys-

tem uses two algorithms: a tracker based on overlapping blobs, which robustly tracks blobs on

a continuous path due to the inherent constraint on blob movement, and a blob matcher based

on colour histograms [Kru00], which relies on the blob’s appearance rather than on its loca-

tion, and can thus support the overlap tracker if it loses a blob due to noise or occlusion.

Computer-Aided Security Surveillance – Vincent van der Tuin

 19

This creates a combined algorithm with a ‘cascading’ structure, i.e. blobs that cannot reliably

be handled by a particular algorithm will be handed on to the next. Both constituent parts and

the combination will be examined in more detail in the following sections.

5.3. Overlap tracker

The overlap tracker is based on the assumption that if we overlay the current image of a mov-

ing blob with its image in the previous frame, these images will partially overlap. This as-

sumption holds if the object’s velocity is not too high in relation to its size and the frame rate.

If it is, predictive methods such as Kalman filters may help. We’ll revisit that point in the

Comparison section.

To compensate for the fact that blobs do not always overlap one-on-one, the detection of split

and merged blobs is integrated into this algorithm.

Consider the following overlaid current and previous frames:

Figure 5.1: Overlap tracker cases

The blobs in this example move predominantly to the right. A number of possible scenarios

have been displayed. We consider a pair of blobs to be overlapping if the number of pixels

they have in common exceeds a preset proportion of the area of the constituent blob (merged

or split). A blob in the current frame (‘new’) overlapping with exactly one blob in the previ-

ous frame (‘old’) will receive the old blob’s path ID and the Matched state. If an old blob

overlaps with two or more new blobs, they get the Split state. As the old blob may have been

the result of a prior merge, the histogram tracker may have a record of these blobs, and they

will be handed to this tracker to determine the path IDs. If two or more old blobs overlap with

one new blob, it is Merged, and is assigned the path ID of the largest old blob, as the other

blobs are assumed to be either blobs that were incorrectly segmented as a separate blob due to

noise, or moving objects that are causing dynamic occlusion, for which overlap tracking of

the separate objects will effectively be suspended for the duration of the occlusion. Any re-

maining new blobs that are not categorised as Matched, Split or Merged will continue on to

the histogram tracker, which will determine whether the blob can be Matched to a previously

observed blob, or that it will get the New state and its data will be associated with a new path

ID.

This algorithm can be implemented efficiently by computing a table containing the number of

overlapping pixels for every pair of new and old blobs (Cartesian product). If we put old

blobs in rows and new blobs in columns, two or more cells in the same row that exceed the

threshold for overlapping will indicate that row’s blob has split. Likewise, two or more values

in the same column exceeding the threshold will indicate a blob merge. Remaining cells that

exceed the threshold indicate the Matched state. Using the table avoids recomputation of blob

overlap amounts.

Frame

1

?

?

2

3

3

0 0

1

?

?
?

Matched Split Merged
New /

Matched?

Previous

frame blob

Current

frame blob

Computer-Aided Security Surveillance – Vincent van der Tuin

 20

5.4. Histogram tracker

Any blobs in the current frame that could not be assigned a path ID by the overlap tracker,

either because they’re the result of a split or because no blob could be found in the previous

frame to match it with, will end up at the histogram tracker to get their path ID determined.

As briefly mentioned previously, the histogram tracker uses colour features rather than spatial

features to match blobs. This allows the histogram tracker to reassociate a blob with its proper

path ID after occlusion or overlap tracker glitches.

To achieve this, the image of the blob in the Hue-Saturation-Value colour space is converted

into a colour frequency histogram, with each axis of the colour space quantised into a number

of bins that is high enough to distinguish the blobs, but low enough to give rise to similar his-

tograms for multiple observations of the same object. In our implementation, the channels are

quantised into 10 bins each. The histogram is normalised with respect to the sum of the bins,

so that the influence of the size of the blob is reduced. This normalisation is performed as fol-

lows:

Ha,b = bin b of histogram a

S = target sum (preset normalisation constant)

Scale (multiply) every bin of Ha by the same value so that ∑(Ha,b) = S

The tracker keeps a list of observed blobs with their most recent histograms, containing one

entry for each path ID. This list is called the blob inventory. It is updated whenever a match to

a path ID is made, even if this is by the overlap tracker. This update means simply writing all

computed metadata of the current frame’s blob to the inventory entry, although e.g. a more

gradual update of the colour histogram could be devised.

For every blob that is handed to it by the overlap tracker for matching, the histogram tracker

iterates through this blob inventory and computes a similarity measure between the blob to

match and the blob in the inventory. This similarity measure is computed as the cumulative

absolute difference between the bins of two histograms, and finding the best match is there-

fore a matter of minimising this difference. If the best match meets a preset matching thresh-

old, the blob to match is assigned the path ID of this inventory blob. If no inventory blob

meets the threshold, a new path ID is assigned to the blob and it is added to the inventory as a

new blob.

If objects need to be tracked that are coloured very similarly, making ID assignments in the

order in which blobs are encountered may not suffice, which could be solved by using an al-

gorithm that minimises the total difference between all pairs of blobs to match and inventory

blobs.

Figure 5.2: Figure 5.3: Figure 5.4:
Sample input frame HSV image of tracked blobs Histogram graphs
 with their path IDs. U indicates
 a matched (updated) blob.

S
at

.

Hue

Blob 0 Blob 1

Computer-Aided Security Surveillance – Vincent van der Tuin

 21

5.5. Cascaded tracker

Now that we’ve seen the constituent tracking algorithms, let’s recap and take a look at how

every blob in the current frame is processed by the cascaded tracker. The following flowchart

shows the basic process of determining a blob’s state and path ID. Note, however, that an ef-

ficient implementation will compute the metadata of all new blobs first, as described in Sec-

tion 5.3.

Figure 5.5: Blob tracker flowchart

5.6. Left luggage alerter

As an example of an automated threat analysis

that can be performed using the tracking data,

we created a simple left luggage alerter that

should find left luggage objects and mark them

in the system’s UI. We do this by detecting

blobs that remain stationary. People and luggage

are distinguished by imposing a maximum

height for luggage items (50 pixels). A blob is

considered stationary if the minimum and

maximum of its last 30 centroids (just over a

second) are no more than 10 pixels apart on ei-

ther the X or Y axis.

5.7. Comparison with other tracking methods

The use of colour histograms can be compared to mean-shift algorithms such as the Continu-

ously Adaptive Mean Shift (CAMSHIFT) algorithm [Bra98], in which the colour histogram

of the colour or object sought is treated as a probability distribution to determine whether

frame pixels are likely to belong to the object. The algorithm then applies iterations of a gra-

dient ascent approach to shift the tracked object to its most likely position in the frame.

CAMSHIFT thus combines the use of spatial and colour features into a single operation,

whereas in our approach these are treated separately. This allows us to use just the spatial fea-

tures for a computationally efficient continuous-path tracking algorithm (the overlap tracker),

as it operates on binary images and requires no iterations. Also, it allows us to use the colour

Segment new blob, compute metadata

(contour, histogram etc.)

Detect split: overlaps

with same old blob as
another new blob?

Detect merge: over-

laps with how many
old blobs?

Histogram matcher

finds match in blob
inventory?

 Merged. Assign path

ID of largest old blob

 Matched. Assign

path ID of old blob

 Matched. Assign path ID

of matching blob

New. Assign

new path ID

Split
Yes

No

0

1

>1

Yes

No

Figure 5.6: A backpack is left behind and
marked as a potential threat.

Computer-Aided Security Surveillance – Vincent van der Tuin

 22

features to reinitialise tracking multiple objects after they occlude each other. The version of

CAMSHIFT described would be unable to track several objects simultaneously if one is fully

occluded, although it might prove useful during partial occlusion.

Our overlap tracker is similar to the tracking approach used by Auvinet et al. [Auv06]. The

authors remark that this tracker alone does not suffice to maintain identity after dynamic oc-

clusion (blob merge and split), and suggest using colour histograms for the relabelling. Our

cascaded tracker is an example of such a combination.

Smoothing out noisy measurements and tracking objects that move too fast for the overlap

tracker to detect the path as continuous can be supported by predictive or stochastic methods

such as Kalman filters [Jul97] or particle filters [Aru02], at the cost of greater computational

and implementation complexity. Also, these predictive methods need a few iterations to adapt

to changing velocity or direction of motion, and may have trouble tracking rapid changes to

these properties [Bas06]. As our method makes no assumptions here, it does not suffer from

this update delay problem. Blob motion that is too fast for the overlap tracker will be handled

by the histogram tracker.

Computer-Aided Security Surveillance – Vincent van der Tuin

 23

Chapter 6: Homographic transform
As mentioned in Chapter 3, we require a transformation from camera coordinates to world

coordinates. Here’s an example transformation task using data from the PETS 2006 workshop

[PET06].

Such a conversion can be achieved using a projective transformation, also known as a homo-

graphy or homographic transform [Har00]. In general, a 2D homographic transform of homo-

geneous coordinates is defined by a 3×3 matrix according to the equation W = H·c, or in more

detail:

=

=•=

11

y

x

hg

fed

cba

S

YS

XS

cHW

with W = world coordinates vector and c = camera coordinates vector

One of the nine elements of the transformation matrix H can have a fixed value without loss

of generality, as the fact that a homographic transform is equal up to scale means that it has

only eight degrees of freedom. This scale factor is represented by S.

Solving for W, we obtain the following expressions for the world coordinates in non-vector

form [Wre98]. Note that a division by S has been performed to compensate for the effects of

equality up to scale.

1++

++=
hygx

cbyax
X 1++

++=
hygx

feydx
Y

Now that we can compute world coordinates from the camera coordinates and the transforma-

tion matrix H, we need a way to obtain that matrix. Knowing the 2D coordinates of at least

four matching pairs of points in camera and world space gives us the eight equations we need

in order to be able to solve this equation for H. If there are exactly four pairs the solution will

be exact, if there are more, it will have to be estimated by a minimisation scheme.

Figure 6.2: Matching ground truth

Figure 6.1: Example scene

Computer-Aided Security Surveillance – Vincent van der Tuin

 24

We now rewrite the system to an equation of the form A·x = b, with x and b column vectors,

so it can be solved with standard least square estimation methods [Cri99]:

=

−−

−−

−−

−−

−−

−−

n

n

nnnnnn

nnnnnn

Y

X

Y

X

Y

X

g

f

e

d

c

b

a

yYxYyx

yXxXyx

yYxYyx

yXxXyx

yYxYyx

yXxXyx

MMMMMMMMM

2

2

1

1

222222

222222

111111

111111

1000

0001

1000

0001

1000

0001

The elements a through g of the matrix H are now obtained by a minimisation method such as

Singular Value Decomposition or the Moore-Penrose pseudoinverse:

bAAAxbAx TT 1)(−=⇒=

This transformation can be applied iteratively to the pixels of an image to warp it. Pixel inter-

polation techniques can be employed to improve the quality of the output image if the pixel

mapping is not one-to-one.

To determine the coordinates of a tracked blob in the transformed coordinate system, a blob’s

centroid is projected onto the baseline of the bounding box (see Figure 6.4).

Figure 6.3: Source image

Figure 6.4: Warped image

Computer-Aided Security Surveillance – Vincent van der Tuin

 25

Chapter 7: Results and evaluation

7.1. Blob tracker evaluation

We will now evaluate the accuracy of our blob tracker. To do this, we will present the tracker

with some selected frame ranges from the PETS data corpus, in which the main actor of the

dataset’s scenario appears and crosses the field-of-view. To observe the influence of a number

of tracker parameters, we will test the same range with different values for these parameters.

The parameters we will test are the number of bins in the colour histograms and the similarity

measure threshold for the histogram matcher. Also, we will take a look at the results of using

different cameras. An input background image is obtained using the method described in Sec-

tion 4.2.1.

We will obtain our measure as follows. We’ll look for runs of consecutive frames containing

a blob with the same path ID, which we’ll call a track. We ignore all tracks that are shorter

than 25 frames (1 second), as we consider them to be noise which the overlap tracker was de-

signed to be able to deal with. This means that we will only notice errors that affect tracks

held over a longer period of time, which are the ones we are interested in, as those are the

only ones which will ever set off activity monitoring alerts such as left luggage detection. For

all tracks that last for at least 25 frames (‘long’ tracks), we will look at the blob interactions

(merges, splits and matches) that take place for that track’s path ID during its duration. We

will manually tally which of these interactions are incorrect, i.e. it breaks the association of

the path ID with a real-world object as mentioned in Chapter 5. By dividing this number of

errors by the cumulative length of the tracks, we gain the fraction of incorrect decisions taken

by the tracker, as the tracker needs to decide once per frame per blob what path ID it should

assign the blob. We will also list a number of other statistics, such as the number of tracks and

the number of path IDs assigned.

The results in Table 7.1 are obtained using PETS set S1-T1-C camera 1, frames 1800-1950.

We compare our default number of 10
3
 bins for the colour histograms to 50

3
, which is a large

enough difference to have a measurable effect, and our histogram similarity threshold of 900

to 500, the sum to which the histograms are normalised. A full list of blob interactions ob-

served can be found in Appendix A.

The metrics in Tables 7.1 and 7.2 are to be interpreted as follows:

Total track length: This is the cumulative length of the long tracks, in frames. It will be used

to compute the error percentage.

Errors: As explained above, this is the number of incorrect path ID assignments to a blob in

a frame, which should be as low as possible.

% Errors: Dividing the number of errors by the total track length gets us the percentage of

path ID assignments that were incorrect, which is our main metric. It should also be as low as

possible.

Long tracks: The number of long tracks detected, which ideally should match the number of

appearances of a person or object to track, as a person moving through the field-of-view

should generate one track. If an assignment error is made, the track may be split, resulting in

an extra track.

Total tracks: This also includes the tracks that are shorter than one second, which are ignored

otherwise. Having these is no problem as long as the overlap tracker can deal with them, and

if it cannot, this will have an effect on the long tracks and error counts.

Computer-Aided Security Surveillance – Vincent van der Tuin

 26

Path IDs: This is the number of unique path IDs assigned during the test. Like long tracks,

this should match the number of objects of interest appearing, but unlike the long track count,

reappearances of the same object should result in only one path ID.

We will now describe the people and objects present in our dataset selection, and their inter-

actions, i.e. touching and occluding causing the blobs representing them to split and merge.

This can be used as ground truth. We manually assign numbers to the people observed, con-

sistent across the four cameras. The following people appear in our input data:

P1: The data corpus’s main actor. He puts his backpack down on the floor and lingers for

a while before moving away from cameras 1 and 2, into the background.

P2: The backpack which is left behind by P1.

P3, P4: Two women walking into the background together, wearing a beige and black coat,

respectively.

P5: A station janitor up on the balcony. Janitors wear yellow safety jackets.

P6: A janitor walking into the background.

P7: A man in a black coat up on the balcony.

P8: A janitor waiting near a store.

P9: A woman in a grey coat coming from the background (from camera 1 and 2’s per-

spective).

P10: A man in a black coat entering from the left of camera 2’s field of view (FOV).

P11: A janitor loitering in the corner.

In addition to these people, cameras 1 and 2 also see some people moving far off in the back-

ground. They will not be labelled individually, as their small appearance in the image will

usually be removed by the background separator’s area threshold, and if they do get detected

as foreground (e.g. as a larger blob of several occluding people), they could still be removed

from the detection by implementing an X axis threshold after the homographic transform.

The following images show these people identifier assignments.

Figure 7.1: People ID assignments as seen from camera 1

Computer-Aided Security Surveillance – Vincent van der Tuin

 27

Figure 7.2: People ID assignments as seen from camera 2

Figure 7.3: People ID assignments as seen from camera 4

The following charts are timelines showing the presence of a person in a camera FOV by

means of a dark grey bar. A light grey bar in between two person bars means that these per-

sons are touching or occluding, causing them to be represented by one single blob. The start

of a light grey bar therefore means a blob merge, and the end means a blob split.

Computer-Aided Security Surveillance – Vincent van der Tuin

 28

Figure 7.4: Timeline of objects and interactions for camera 1

Figure 7.5: Timeline of objects and interactions for camera 2

Figure 7.6: Timeline of objects and interactions for camera 3

Computer-Aided Security Surveillance – Vincent van der Tuin

 29

Figure 7.7: Timeline of objects and interactions for camera 4

Analysing these graphs according to the rules we’ve set for long tracks at the start of this

chapter, we would expect the following values for the long track metric if tracking were per-

fect: Camera’s 1, 3 and 4: 5, Camera 2: 8.

The number of path ID’s should of course not be lower than the number of people listed for

that camera, but measuring a somewhat higher value does not need to indicate a problem if

this is caused by noisy segmentation which can be dealt with by the overlap tracker.

Performing the evaluation on the data mentioned results in the following values:

Bins 10
3
 10

3
 50

3
 50

3

Threshold 500 900 500 900

Total track length 691 736 466 596

Errors 2 10 0 2

% Errors 0.289 1.359 0 0.336

Long tracks 7 10 5 7

Total tracks 90 90 128 89

Path IDs 17 10 128 14
Table 7.1: Evaluation metrics for dataset S1-T1-C1 with varying bins/thresholds

The low number of errors for the 50
3
/500 column is deceptive, as this is caused by the fact

that the diversity of histograms created by the higher number of bins causes the histogram

matcher to split the tracks up into several short tracks, as can be observed from the low num-

ber of long tracks in relation to the high number of path IDs and total tracks. Requiring less

histogram similarity counteracts this effect, as can be seen in the 50
3
/900 column. Also note

that the high number of bins has an adverse impact on the computational performance of the

tracker. Of the options shown here, 10
3
/500 therefore appears to be the most appropriate set-

ting.

A lot of the incorrect assignments are made by the histogram matcher for splitting blobs,

which suggest some additional restrictions to these assignments could be useful, such as the

inability of a blob to jump a large distance in a single frame.

Computer-Aided Security Surveillance – Vincent van der Tuin

 30

The following results were obtained for all four PETS cameras, using set S1-T1-C frames

1800-2150 (10
3
 bins, threshold 900):

Camera 1 2 3 4

Total track length 1327 1457 643 1028

Errors 10 3 2 7

% Errors 0.754 0.206 0.311 0.681

Long tracks 18 10 6 16

Total tracks 178 97 31 92

Path IDs 11 10 7 14
Table 7.2: Evaluation metrics for dataset S1-T1-C for all cameras

To evaluate the left luggage alerter, we will compare the alert locations reported by the alerter

with those listed in the ground truth data included with the PETS data corpus. The following

results refer to the alerts generated for the backpack dropped in PETS dataset S1-T1-C:

Camera Location (m) Error (m) #Alerts

G.Truth (0.2215, -0.4420) 0 1

1 (0.0308, -0.4580) 0.1914 30

2 - - 11

3 (0.1867, -0.2327) 0.2121 1

4 (0.1867, -0.3395) 0.1082 94
Table 7.3: Evaluation results for alerter

PETS specifies some additional criteria for left luggage. Firstly, luggage is only considered

left if it has been abandoned by the person bringing it, i.e. a predetermined minimum distance

between luggage and owner is maintained. This means that alerts generated for other objects

than the backpack are false positives when evaluated according to the rules of PETS.

Secondly, PETS requires that the abandonment criterion is met for at least 30 seconds without

interruption, which means our system’s alert times cannot be compared directly to PETS re-

sults.

The extra alerts in our data are generated for stationary blobs such as the ones representing

groups of people in the background (Camera 1 and 2), person P5 (Camera 1) and P11 (Cam-

era 4). In the image of camera 2, the view of the backpack was too small and was removed as

noise. This camera position does not appear to be very suitable for our system.

7.2. Homographic transform evaluation

We will now take a look at the accuracy of our perspective transform. The PETS data corpus

provides the world coordinates of thirteen corners on the floor tile pattern as ground truth. We

assign an index to each point and manually enter the corresponding coordinates in the camera

images using an external calibration input tool. If a point is not visible to one of the cameras,

it will be ignored in the metrics for that camera.

Computer-Aided Security Surveillance – Vincent van der Tuin

 31

 Camera 1 Camera 2 Camera 3 Camera 4

Figure 7.8: PETS Cameras

Figure 7.9: Ground truth with point indices

The point correspondences are as follows:

Point World Camera 1 Camera 2 Camera 3 Camera 4

1 (-9.38, 3.64) (084, 369) (557, 395) - (672, 147)

2 (-9.38, 0.63) (473, 388) (679, 384) - (572, 136)

3 (-6.37, 3.64) (212, 288) (515, 375) - (651, 170)

4 (-6.37, 0.63) (475, 294) (621, 365) - (541, 154)

5 (-5.46, -0.28) (551, 281) (641, 360) (690, 270) (502, 157)

6 (-1.21, 2.73) (360, 227) (491, 350) (368, 356) (551, 215)

7 (0.00, 4.25) (287, 220) - (236, 423) (611, 242)

8 (0.00, 1.52) (427, 220) (509, 343) (305, 295) (486, 219)

9 (0.00, 0.00) (511, 223) (560, 341) (334, 244) (419, 209)

10 (1.82, 3.64) (339, 209) - (120, 370) (552, 264)

11 (1.82, 0.63) (478, 210) (520, 336) (212, 252) (407, 237)

12 (4.83, 3.64) (359, 196) - - (491, 323)

13 (4.83, 0.63) (477, 197) (497, 328) (052, 238) (329, 284)
Table 7.3: PETS footage point correspondences

Our current implementation of the homographic transform estimation is limited to using four

point correspondences, which will give an exact result for these four points, so their error will

be zero. As the accuracy of the transformation depends on the manual input of corresponding

image coordinates, we examine the effect of introducing a deviation in one of the input coor-

dinates used to compute the transformation. We will pick a random point for each camera and

vary the X coordinate.

The following charts show the transformation error, i.e. the distance between the ground truth

world coordinates and the world coordinates as computed by our transformation, and the ef-

fect of varying the image coordinate inputs. For each of the four cameras, we pick four of the

thirteen available points on the floor pattern as input for the transformation matrix computa-

tion. Of these four points, we pick one of which we will vary the X coordinate. Results for

Computer-Aided Security Surveillance – Vincent van der Tuin

 32

each camera are shown in two charts. The bar charts on the left show the error for each point

separately. The group of five bars above each point label show that point’s error for an intro-

duced deviation of -2, -1, 0, 1 and 2 pixels. Points that are not visible to that camera are not

shown or considered. The points with a zero error value are the input points. The label under-

neath the graph on the right lists the point into which we introduce the deviation. This graph

lists the mean error over all points considered, rather than for each individual point. This is

done for a larger range of deviations ([-10, 10]).

Figure 7.10: Point error, camera 1 Figure 7.11: Mean error, camera 1

Figure 7.12: Point error, camera 2 Figure 7.13: Mean error, camera 2

Computer-Aided Security Surveillance – Vincent van der Tuin

 33

Figure 7.14: Point error, camera 3 Figure 7.15: Mean error, camera 3

Figure 7.16: Point error, camera 4 Figure 7.17: Mean error, camera 4

The first thing that is apparent when evaluating these results is that the error stays within

decimetres, which is a useful range if an expansion of the system were to be used for auto-

mated surveillance tasks such as the left luggage detection of the PETS 2006 workshop

[Thi06], where criteria for the abandonment of luggage are formulated in terms of a distance

of 2 or 3 metres between a luggage owner and his luggage.

Secondly, although we would expect that a larger input error results in a larger output error,

the fact that the minimum of the mean error curve is not at the point corresponding to no in-

troduced deviation indicates that the manually entered calibration points are not optimal. This

would suggest that these curves could be used for optimisation, although it is probably a bet-

ter idea to expand the implementation to be able to use more than four input points, so the in-

exact solution to this transformation can be minimised.

Computer-Aided Security Surveillance – Vincent van der Tuin

 34

Chapter 8: Conclusions and future work
We have shown a tracker design that can handle the simultaneous tracking of multiple ob-

jects, and even deals with occlusion, without being overly complex. The tracker is based on

relatively straightforward checking of spatial consistency (overlap) of the objects tracked, and

only uses the computationally more expensive colour comparison if the simpler method will

not suffice.

Correct decision rates and spatial accuracy of the system have been evaluated using the data

corpus recorded for the tracking task of the PETS 2006 workshop.

The rate of correct identity assignments by the tracker can probably be improved by enforcing

simple rules such as the impossibility to jump a large distance in a single frame, which can

currently be a result of e.g. an erroneous assignment at a blob split. The system requires some

manual calibration for the background and homographic transform; ways could be sought to

automate or obviate this. In particular, the static background used by the background separa-

tor can become obsolete, so a way to update it automatically without jeopardising the ability

to detect non-moving objects would be useful. Distinguishing people from luggage objects is

currently implemented by means of a simple height threshold, which could be replaced with a

more sophisticated classification algorithm. The output of the homographic transform can be

used to facilitate data fusion from multiple camera sources, by mapping the objects observed

into a global coordinate frame, as mentioned previously in Chapter 2.

The memory efficiency of the current implementation limits the maximum uninterrupted run-

time the system can manage. An example of a measure to ameliorate this would be to imple-

ment data aging, i.e. dropping the records kept of objects that have not been observed for a

long time.

Legal note on the datasets
The UK Information Commissioner has agreed that the PETS 2006 datasets described here

may be made publicly available for the purposes of academic research. The video sequences

are copyright ISCAPS consortium and permission for the publication of these sequences is

granted provided that the source is acknowledged.

Computer-Aided Security Surveillance – Vincent van der Tuin

 35

References
[Aru02] Arulampalam, S., Maskell, S., Gordon, N., and Clapp, T., A Tutorial on Particle

Filters for On-line Non-linear/Non-Gaussian Bayesian Tracking. IEEE Transactions

on Signal Processing, 2002. 50(2): p. 174-188. ISSN 1053-587X

[Ass94] Assereto, M., Figari, G., and Tesei, A., Robust approach to tracking human motion

in real scenes. Electronics Letters, 1994. 30(24): p. 2013. DOI 10.1049/el:19941410

[Auv06] Auvinet, E., Grossmann, E., Rougier, C., Dahmane, M., and Meunier, J. Left-

Luggage Detection using Homographies and Simple Heuristics. in Proceedings of

the 9th IEEE International Workshop on Performance Evaluation of Tracking and

Surveillance (PETS 2006). 2006. New York, NY, USA: IEEE Computer Society. pp.

51-58. ISBN 0-7049-1422-0

[Bak00] Baker, P. and Aloimonos, Y. Complete calibration of a multi-camera network. in

Proceedings IEEE Workshop on Omnidirectional Vision (Cat. No. PR00704). 2000.

Hilton Head Island, SC, USA: IEEE Computer Society. pp. 134-141.

doi:10.1109/OMNVIS.2000.853820

[Bas06] Bashir, F. and Porikli, F. Performance Evaluation of Object Detection and Tracking

Systems. in Proceedings of the 9th IEEE International Workshop on Performance

Evaluation of Tracking and Surveillance (PETS 2006). 2006. New York, NY, USA:

IEEE Computer Society. pp. 7-14. ISBN 0-7049-1422-0

[Bla05] Black, J., Makris, D., and Ellis, T., Hierarchical database for a multi-camera

surveillance system. Pattern Analysis and Applications, 2005. 7(4): p. 430-446.

ISSN 1433-7541. doi:10.1007/s10044-005-0243-8

[Bra04] Braam, J., ParleVision 4.0: a framework for development of vision software. 2004,

HMI Group, Faculty of EEMCS, University of Twente: Enschede, The Netherlands

[Bra98] Bradski, G.R., Computer Vision Face Tracking For Use in a Perceptual User

Interface. Intel Technology Journal, 1998. 2(2): p. 1-15. ISSN 1535-864X.

doi:10.1535/itj.1103

[Bre00] Breen, E.J., Jones, R., and Talbot, H., Mathematical morphology: A useful set of

tools for image analysis. Statistics and Computing, 2000. 10(2): p. 105-120. ISSN

0960-3174

[Cai95] Cai, Q., Mitiche, A., and Aggarwal, J.K. Tracking human motion in an indoor

environment. 1995. Washington, DC, USA: IEEE, Los Alamitos, CA, USA. pp.

215-218. doi:10.1109/ICIP.1995.529584

[Cai98] Cai, Q. and Aggarwal, J.K. Automatic tracking of human motion in indoor scenes

across multiple synchronized video streams. 1998. Bombay, India: IEEE,

Piscataway, NJ, USA. pp. 356-362. ISBN 1110-1903.

doi:10.1109/ICCV.1998.710743

[Cri99] Criminisi, A., Reid, I., and Zisserman, A., A Plane Measuring Device. Image and

Vision Computing, 1999. 17(8): p. 625-634. ISSN 0262-8856

[Dar00] Darrell, T., Gordon, G., Harville, M., and Woodfill, J., Integrated person tracking

using stereo, color, and pattern detection. International Journal of Computer Vision,

2000. 37(2): p. 175-185. ISSN 0920-5691. doi:10.1109/CVPR.1998.698667

Computer-Aided Security Surveillance – Vincent van der Tuin

 36

[Dev04] Devarajan, D. and Radke, R.J. Distributed metric calibration of large camera

networks. in First Workshop on Broadband Advanced Sensor Networks

(BASENETS). 2004. San José, CA, USA

[Ell02] Ellis, T.J. Multi-camera video surveillance. in Proceedings of the 36th Annual

International Carnahan Conference on Security Technology. . 2002. Atlantic City,

NJ, USA: Institute of Electrical and Electronics Engineers Inc. pp. 228-233. ISBN 0-

7803-7436-3. doi:10.1109/CCST.2002.1049256

[For03] Forsyth, D.A. and Ponce, J., Computer Vision: A Modern Approach. Prentice Hall

series in Artificial Intelligence. 2003, Upper Saddle River, NJ, USA: Prentice Hall.

ISBN 0-13-085198-1

[Har98] Haritaoglu, I., Harwood, D., and Davis, L.S. W4S: A real-time system for detecting

and tracking people in 2 1/2D. in Proceedings of the 5th European Conference on

Computer Vision. 1998. Freiburg, Germany: Springer-Verlag. pp. 877-892. ISBN 3-

540-64569-1

[Har00] Hartley, R.I. and Zisserman, A., Multiple View Geometry in Computer Vision. 2000,

Cambridge, UK: Cambridge University Press. ISBN 0-521-62304-9

[Int00] Intel. OpenCV Open Source Computer Vision Library. 2000, Intel Corporation:

Santa Clara, CA, USA [cited 18 July 2007]; Available from:

http://www.intel.com/technology/computing/opencv/

[Jav03] Javed, O., Rasheed, Z., Shafique, K., and Shah, M. Tracking across multiple

cameras with disjoint views. in Ninth IEEE International Conference on Computer

Vision (ICCV '03). 2003. Nice, France: Institute of Electrical and Electronics

Engineers Inc. pp. 952-957. doi:10.1109/ICCV.2003.1238451

[Jul97] Julier, S.J. and Uhlmann, J.K. A New Extension of the Kalman Filter to Nonlinear

Systems in Proceedings of SPIE - Signal Processing, Sensor Fusion, and Target

Recognition VI. 1997. Orlando, FL, USA. pp. 182-193. doi:10.1117/12.280797

[Kha01] Khan, S., Javed, O., Rasheed, Z., and Shah, M. Human tracking in multiple cameras.

in Proceedings of the Eighth IEEE International Conference on Computer Vision

(ICCV 2001). 2001. Vancouver, BC, Canada: IEEE Computer Society. pp. 331-336.

doi:10.1109/ICCV.2001.937537

[Kha03] Khan, S. and Shah, M., Consistent labeling of tracked objects in multiple cameras

with overlapping fields of view. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 2003. 25(10): p. 1355-1360. ISSN 0162-8828.

doi:10.1109/TPAMI.2003.1233912

[Kot05] Koterba, S., Baker, S., Matthews, I., Changbo, H., Jing, X., Cohn, J., and Kanade, T.

Multi-view AAM fitting and camera calibration. in Proceedings of the Tenth IEEE

International Conference on Computer Vision. 2005. Beijing, China: IEEE

Computer Society. pp. 511-518. doi:10.1109/ICCV.2005.157

[Kru00] Krumm, J., Harris, S., Meyers, B., Brumitt, B., Hale, M., and Shafer, S. Multi-

camera multi-person tracking for EasyLiving. in Proceedings of the Third IEEE

International Workshop on Visual Surveillance. 2000. Dublin, Ireland: IEEE

Computer Society. pp. 3-10. doi:10.1109/VS.2000.856852

[Lee00] Lee, L., Romano, R., and Stein, G., Monitoring activities from multiple video

streams: Establishing a common coordinate frame. IEEE Transactions on Pattern

Computer-Aided Security Surveillance – Vincent van der Tuin

 37

Analysis and Machine Intelligence, 2000. 22(8): p. 758-767. ISSN 0162-8828.

doi:10.1109/34.868678

[Lee02] Lee, L. and Grimson, W.E.L. Gait Analysis for Recognition and Classification. in

Proceedings of the Fifth IEEE International Conference on Automatic Face and

Gesture Recognition. 2002. Washington, DC, USA: IEEE Computer Society. pp.

148-155. ISBN 0-7695-1602-5. doi:10.1109/AFGR.2002.1004148

[Lip98] Lipton, A.J., Fujiyoshi, H., and Patil, R.S. Moving target classification and tracking

from real-time video. in Proceedings of the Fourth IEEE Workshop on Applications

of Computer Vision (WACV'98). 1998. Princeton, NJ, USA: IEEE Computer

Society. pp. 8-14. doi:10.1109/ACV.1998.732851

[McK00] McKenna, S.J., Jabri, S., Duric, Z., Rosenfeld, A., and Wechsler, H., Tracking

groups of people. Computer Vision and Image Understanding, 2000. 80(1): p. 42-56.

ISSN 1077-3142

[Nug94] Nugroho, H., Hwang, J., and Ozawa, S. Tracking human motion in a complex scene

using textural analysis. in 20th International Conference on Industrial Electronics,

Control and Instrumentation (IECON '94). 1994. Bologna, Italy: IEEE, Los

Alamitos, CA, USA. pp. 727-732. doi:10.1109/IECON.1994.397875

[PET06] PETS. Proceedings of the 9th IEEE International Workshop on Performance

Evaluation of Tracking and Surveillance (PETS 2006). 2006. New York, NY, USA:

IEEE Computer Society. pp. 115. ISBN 0-7049-1422-0

[Pop07] Poppe, R.W., Vision-based human motion analysis, an overview. Computer Vision

and Image Understanding, 2007. 108(1-2): p. 4-18. ISSN 1077-3142.

doi:10.1016/j.cviu.2006.10.016

[Por03] Porikli, F. and Divakaran, A. Multi-camera calibration, object tracking and query

generation. in Proceedings of the 2003 International Conference on Multimedia and

Expo (ICME '03). 2003. Baltimore, MD, USA: IEEE. pp. 653-656.

doi:10.1109/ICME.2003.1221002

[Reh97] Rehg, J.M., Loughlin, M., and Waters, K. Vision for a Smart Kiosk. in Proceedings

of the IEEE Computer Society Conference on Computer Vision and Pattern

Recognition. 1997. San Juan, PR, USA: IEEE, Los Alamitos, CA, USA. pp. 690-

696. ISBN 1063-6919. doi:10.1109/CVPR.1997.609401

[Rie03] Rienks, R., The development of HORUS, a Humanoid Oriented Responsive

Ubiquitous System, Master's thesis, Human Media Interaction, Department of

Computer Science, Faculty of EEMCS, University of Twente, Enschede, The

Netherlands. 2003.

[Sat94] Sato, K., Maeda, T., Kato, H., and Inokuchi, S. CAD-based object tracking with

distributed monocular camera for security monitoring. in Proceedings of the 1994

Second CAD-Based Vision Workshop. 1994. Champion, PA, USA: IEEE Computer

Society. pp. 291-297. doi:10.1109/CADVIS.1994.284490

[Seb02] Sebe, I.O. and Chen, G.Q., Multi-camera calibration, Internship report (MSc),

Stanford University, San Diego, CA, USA. 2002.

[Sie03] Siebel, N.T., Design and Implementation of People Tracking Algorithms for Visual

Surveillance Applications, PhD thesis, Computational Vision Group, Department of

Computer Science, University of Reading, Reading, UK. 2003.

Computer-Aided Security Surveillance – Vincent van der Tuin

 38

[Spa05] Spannenburg, A., Orbons, E., Slomp, E., Veldhuis, J.-W., and Lange, R.d.,

Ontwerpproject People Tracking Eindverslag, Design project final report, Human

Media Interaction group, Department of Computer Science, Faculty of EEMCS,

University of Twente, Enschede, The Netherlands. 2005.

[Svo05] Svoboda, T., Martinec, D., and Pajdla, T., A convenient multicamera self-calibration

for virtual environments. Presence: Teleoperators and Virtual Environments, 2005.

14(4): p. 407-422. ISSN 1054-7460. doi:10.1162/105474605774785325

[Tan04] Tanaka, K. and Kondo, E. Vision-based multi-person tracking by using MCMC-PF

and RRF in office environments. in 2004 IEEE/RSJ International Conference on

Intelligent Robots and Systems (IROS). 2004. Sendai, Japan: IEEE. pp. 637-642.

ISBN 0-7803-8463-6. doi:10.1109/IROS.2004.1389424

[Thi06] Thirde, D., Li, L. and Ferryman, F. Overview of the PETS2006 Challenge. in

Proceedings of the 9th IEEE International Workshop on Performance Evaluation of

Tracking and Surveillance (PETS 2006). 2006. New York, NY, USA: IEEE

Computer Society. pp. 47-50. ISBN 0-7049-1422-0

[Tho05] Thome, N. and Miguet, S. A robust appearance model for tracking human motions.

in IEEE Conference on Advanced Video and Signal Based Surveillance. 2005. pp.

528-533. doi:10.1109/AVSS.2005.1577324

[Tsa86] Tsai, R.Y. An Efficient and Accurate Camera Calibration Technique for 3D

Machine Vision. in Proceedings of IEEE Conference on Computer Vision and

Pattern Recognition. 1986. Miami, FL, USA: IEEE Computer Society. pp. 364-374.

ISSN 1063-6919

[Tui05] Tuin, V.A.v.d., The Watching Window 2005: Architecture and arm tracker changes,

Internship report, Graphics and Vision Research Lab, Department of Computer

Science, University of Otago, Dunedin, New Zealand. 2005.

[Uts98] Utsumi, A., Mori, H., Ohya, J., and Yachida, M. Multiple-view-based tracking of

multiple humans. in Proceedings of the Fourteenth International Conference on

Pattern Recognition. 1998. Brisbane, Queensland, Australia: IEEE Computer

Society. pp. 597-601. doi:10.1109/ICPR.1998.711214

[Wil03] Wildermuth, D. and Schneider, F.E. Maintaining a common coordinate system for a

group of robots based on vision. in Proceedings of the 2003 IEEE International

Conference on Robotics, Intelligent Systems and Signal Processing. 2003.

Changsha, Hunan, China: IEEE. pp. 432-438. doi:10.1109/RISSP.2003.1285613

[Wre97] Wren, C.R., Azarbayejani, A., Darrell, T., and Pentland, A.P., Pfinder: Real-time

tracking of the human body. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 1997. 19(7): p. 780-785. ISSN 0162-8828. doi:10.1109/34.598236

[Wre98] Wren, C.R. Perspective Transform Estimation. 1998, MIT Media Lab: Cambridge,

MA, USA [cited 26 January 2007]; Available from:

http://alumni.media.mit.edu/~cwren/interpolator/

[Zha01] Zhao, T., Nevatia, R., and Lv, F. Segmentation and tracking of multiple humans in

complex situations. in IEEE Computer Society Conference on Computer Vision and

Pattern Recognition. 2001. Kauai, Hawaii, USA: Institute of Electrical and

Electronics Engineers Computer Society. pp. 194-201. ISBN 1063-6919.

doi:10.1109/CVPR.2001.990958

Computer-Aided Security Surveillance – Vincent van der Tuin

 39

Note on the use of DOIs (Digital Object Identifiers):

References listed with a DOI can be looked up at http://dx.doi.org/

Appendix A: Blob interactions for evaluation
Blob interactions are listed in the following format:
PathID (FirstFrame-LastFrame) len: TrackLength SFrame

Each line contains a track. Frame numbers are relative to the start of the chosen frame range.

S, M and U indicate the Split, Merged and Matched states. Erroneous interactions are marked

with “<”.

S1T1C1 1800-1950 10^3 bins, threshold 500

02 (00000-00062) len: 00063 S16 S23 M24 M27 S31 M36 S40 S62<

03 (00000-00102) len: 00103

04 (00000-00149) len: 00150 S1 M2 S11 M12 S15 M20 S24 M34 S35 M37 S38 M42 S44 M47 S52 M54 S55

M56 S59 M60 S69 M70 S75 S76 M77 S78 M79 S80 M84 S86 M87 S89 M90 M91 S92 M93 S94 M95 S97 S98

M99 S100 S101 M102 S103 M104 M105 S106 M107 S112 M113 S128 M129 S130 M132 S133

07 (00004-00149) len: 00146

09 (00016-00130) len: 00115 M59 M124 S130<

10 (00106-00149) len: 00044

14 (00080-00149) len: 00070 M110 M138 S139 M140 S141 M142 S143 M145 S146 M149

S1T1C1 1800-1950 10^3 bins, threshold 900

00 (00004-00150) len: 00147 U4

00 (00219-00273) len: 00055

02 (00080-00150) len: 00071 M110 M138 S139 M140 S141 M142 S143 M145 S146 M149 S150

03 (00000-00102) len: 00103

05 (00062-00086) len: 00025 S62 M66 S67< M68 S70 M79 S80

05 (00103-00128) len: 00026 S103< M104 M105 S106 M107 S112 M113 S128<

06 (00011-00069) len: 00059 S11 M12 S15 M20 S24 M34 S35 M37 S38 M42 S44 M47 S52 M54 S55 M56

S59 M60 S69<

06 (00106-00150) len: 00045

07 (00016-00062) len: 00047 S16 S23 M24 M27 S31 M36 S40 S62<

07 (00078-00102) len: 00025 S78< M79 S80 M84 S86 M87 S89 M90 M91 S92 M93 S94 M95 S97 S98 M99

S100 S101 M102 U103<

07 (00133-00150) len: 00018

08 (00016-00130) len: 00115 M59 M124 S130<

S1T1C1 1800-1950 50^3 bins, threshold 500

03 (00000-00102) len: 00103

08 (00004-00149) len: 00146

18 (00016-00129) len: 00114 M59 M124

65 (00080-00138) len: 00059 M110 M138

91 (00106-00149) len: 00044

S1T1C1 1800-1950 50^3 bins, threshold 900

00 (00004-00149) len: 00146 U4

02 (00000-00086) len: 00087 S16 S23 M24 M27 S31 M36 S40 S62 M66 S67< M68 S70 M79 S80

03 (00000-00102) len: 00103

05 (00001-00145) len: 00145 S1 M2 S11 M12 S15 M20 S24 M34 S35 M37 S38 M42 S44 M47 S52 M54 S55

M56 S59 M60 S69 M70 S75 S76 M77 S78 M79 S80 M84 S86 M87 S89 M90 M91 S92 M93 S94 M95 S97 S98

M99 S100 S101 M102 S103 M104 M105 S106 M107 S112 M113 S128 M129 S130 M132 S133

08 (00016-00130) len: 00115 M59 M124 S130<

09 (00106-00149) len: 00044

11 (00080-00149) len: 00070 M110 M138 S139 M140 S141 M142 S143 M145 S146 M149

S1T1C1 1800-2150 10^3 bins, threshold 900

00 (00004-00150) len: 00147 U4

00 (00193-00217) len: 00025 U193

00 (00219-00273) len: 00055

02 (00080-00159) len: 00080 M110 M138 S139 M140 S141 M142 S143 M145 S146 M149 S150 M151 M153

S157<

03 (00000-00102) len: 00103

03 (00157-00317) len: 00161 S157 M160 S161 M163 S165 M167 S168 M171 S172 S174 M175 M178 S180

M182 S187 M190 M193 S194 S200 M207 S208 M223 M230 S280 S315 S316

05 (00062-00086) len: 00025 S62 M66 S67< M68 S70 M79 S80

05 (00103-00128) len: 00026 S103< M104 M105 S106 M107 S112 M113 S128<

06 (00011-00069) len: 00059 S11 M12 S15 M20 S24 M34 S35 M37 S38 M42 S44 M47 S52 M54 S55 M56

S59 M60 S69<

06 (00106-00169) len: 00064

Computer-Aided Security Surveillance – Vincent van der Tuin

 40

06 (00171-00213) len: 00043 S171

06 (00258-00349) len: 00092 S258

07 (00016-00062) len: 00047 S16 S23 M24 M27 S31 M36 S40 S62<

07 (00078-00102) len: 00025 S78< M79 S80 M84 S86 M87 S89 M90 M91 S92 M93 S94 M95 S97 S98 M99

S100 S101 M102 U103<

07 (00133-00160) len: 00028

08 (00016-00130) len: 00115 M59 M124 S130<

09 (00130-00313) len: 00184 S130 M132 S133 M161 S164 M174 S176 M178 S179 M194 S195 M197 S199

M210 S212 M213 S214 S215 M221 S222 M224 S225 M236 S237 M238 S239 M245 S247 M251 M252 S253 M259

S260 M268 S270 M271 S272 M277 S279<

10 (00279-00326) len: 00048 S279 M314 S315 M317 M318 S322 S326

S1T1C2 1800-2150 10^3 bins, threshold 900

00 (00039-00349) len: 00311 S39<

01 (00171-00197) len: 00027 U171<

02 (00015-00094) len: 00080 U15 M17 S18 M25 S26 M28 S29 M30 S31<

02 (00098-00152) len: 00055 U98

03 (00000-00074) len: 00075

03 (00076-00343) len: 00268 M250

04 (00028-00152) len: 00125 U28

04 (00154-00288) len: 00135 U154

04 (00302-00349) len: 00048 U302

06 (00017-00349) len: 00333 S17 M22 S23 M29 S30 M41

S1T1C3 1800-2150 10^3 bins, threshold 900

00 (00000-00125) len: 00126 S41 M42 S125

00 (00127-00158) len: 00032

00 (00160-00351) len: 00192

01 (00125-00326) len: 00202 S125 M126 S127 U326

02 (00052-00105) len: 00054 M60 S61 M68 S82 S84< M85 S96 M97 S99 M100 S103 S104

03 (00104-00140) len: 00037 S104 M106 S108 M109 S110 M111 S117 S118< M119 S120 M122 S123 M127

S128 M131 S134 M136 S139

S1T1C4 1800-2150 10^3 bins, threshold 900

01 (00014-00073) len: 00060 U14 S72< U73<

01 (00124-00154) len: 00031 U124

01 (00156-00180) len: 00025 U156

01 (00279-00350) len: 00072 U279< M293 S294 M295 M301 M302 S303 S322 M323 M342 M343 S345 M346

02 (00000-00128) len: 00129 S114

02 (00222-00350) len: 00129

03 (00004-00075) len: 00072 M25 M28 S72 M73

03 (00077-00109) len: 00033 U109

03 (00114-00255) len: 00142 S114< M129

03 (00257-00350) len: 00094 S336

06 (00192-00228) len: 00037 M212 S213 M225 S226

07 (00271-00303) len: 00033

08 (00172-00222) len: 00051 U172 S222

09 (00222-00277) len: 00056 S222< M228 M229 S230< S233 M234 M235 S239 S241 S242 M243 S262

M264 S265 M266 S267 M268 S269 S271 S277<

10 (00286-00313) len: 00028

10 (00315-00350) len: 00036 U315

Background separator settings:

Minimum HSV difference (5, 0, 5), erode 1x, dilate 1x, minimum area 200 pixels, dilate 3x, erode 3x

