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Abstract

Physical interaction with objects by unmanned aerial vehicles (UAVs) is an emerging field in
current research. To interact with objects accurately, without damaging them or the UAV itself,
exact representations of objects are desirable.
Often predefined three-dimensional (3D) models are provided to meet this constraint. To not
have to rely on predefined 3D models, it is necessary to gain them by the UAV “on-the-fly”.
A common method to reconstruct online objects or environments is to attach sensors to UAVs
and use the output as an input for simultaneous localization and mapping (SLAM) algorithms.
In this research it has been investigated if the thereby created 3D models can be improved by
multiple coverage.
At first it was necessary to determine an appropriate visual SLAM algorithm, which works reli-
able with a stereo camera in a simulation. Based on this different coverage path planning (CPP)
methods were evaluated if multiple coverage of areas of the object of interest can improve
a resulting 3D model. Two were thereby designed as online path planning algorithms to au-
tonomously determine flight directions.
As SLAM algorithm ORB-SLAM2 by Mur-Artal and Tardos (2017) has been chosen and is shown
to be suitable. Furthermore, results indicating that multiple coverage improves 3D models,
represented as point cloud output of ORB-SLAM2, are provided. Moreover, potential for online
path planning algorithms to improve flight time could be found.
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1 Introduction

1.1 Context

For many years the usage of unmanned aerial vehicles (UAVs) has drastically increased. Origi-
nally mainly in military operations, it has also expanded to civilian fields (González-Jorge et al.
(2017)). Today they are used for a wide number of fields, for instance, surveillance (Zaheer
et al. (2016), Avola et al. (2017)), supporting precision agriculture (Hoffmann et al. (2016)) and
visual inspection of civil infrastructure (Ham et al. (2016)).
For a while, this was limited to contactless flights using different sensors to orientate and avoid
collisions with objects and other UAVs. Recently also tasks that include physical contact with
objects are getting into the focus of research (Na and Baek (2016), Mattar et al. (2018)).
In the case of structural inspection of objects, like buildings or other big (partially) difficult to
reach structures, some tasks require contact to their surfaces. As a consequence, people might
have to reach those. For instance, rope access to wind turbines as shown in figure 1.1 is such a
case. One easily can imagine the danger of personal injury as well as the very time-consuming
efforts which have to be made to safely reach certain parts of the wind turbine. Therefore, it
is beneficial to work towards replacing people in as much of such tasks as possible by using
UAVs.
Nevertheless, UAV operators would still be necessary. By providing at least partial autonomous
execution of tasks by UAVs, it is possible to reduce the operators’ working schedule. Thereby,
the number of required operators would be lower for the same number of UAVs in operation.
To not damage the UAV or the object of interest during autonomous operation, besides
common collision avoidance to other objects, retrieving the distance to it as well as its three-
dimensional (3D) representation at high detail is crucial.

Figure 1.1: Two maintenance engineers using rope access at a wind turbine (Schroeder (2012))

1.2 Problem Formulation and Research Questions

To gain a 3D model of the object of interest a common solution is to provide computer-aided
design (CAD)-models on beforehand to path planning algorithms. This is common as espe-
cially for some industrial applications CAD-models are often available.
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2 3D reconstruction improvement by path planning towards physical interaction with a UAV

As this is not always the case and in general a limiting factor, it would be desirable to avoid it.
To achieve this, one has to use simultaneous localization and mapping (SLAM)-algorithms to
approximately gain a spatial representation as well as the pose of the UAV relative to it.
These are different in accuracy and not always available as open source and due to this the first
research question is facing these issues:

“Which SLAM algorithm would be useful to create 3D visual models on-the-fly?”

Solving the SLAM-problem, in general, does not restrict one to use visual sensors like cameras
but in the case of aerial vehicles, those are a cost-efficient solution to provide contact-free in-
formation about the environment and therefore commonly used.
The resulting models as the output of such algorithms are dependent on several factors. One
of these is the path along the object of interest is observed. Different poses at which it is inves-
tigated might lead to a different approximated model. As they affect the representation of the
environment within the field of view (FOV) of the camera.
For being generally able to represent a complete model of an object of interest all its surfaces
have to be once covered when flying the path. Covered means being visible within the FOV of
the UAV’s camera.
Those coverage paths often try to cover parts of the object only once, to keep the flight time
short, and imply to gain thereby a sufficient level of detail in the object of interest’s representa-
tion.
Due to this, if introducing multiple coverage of parts of the object of interest can improve the
resulting model, currently represents a research gap.
Investigating it should answer the following research question:

“Does multiple coverage of an object’s surface lead to an improved 3D visual model of
it?”

As rescanning using the same coverage path leads to a multiple in terms of flight duration,
more time efficient methods would be desirable. These should avoid manual control input
and therefore provide some degree of autonomy in making decisions about parts of the objects
being rescanned. Formulated as a research question:

“In order to autonomously improve the 3D visual model of an object, is it possible to
determine suitable flight directions on-the-fly, which lead also to a reduction in flight
time?”

All these investigations in this research are answered by using a simulated environment. One
reason for this is the safety for not flying a UAV with experimental control input in the real-
world. Moreover, creating the necessary environment in real would require allocating relatively
huge indoor space.
To get close to the later real-world application with physical interaction the model of “betaX”,
shown in figure 1.2 is used as UAV in the simulation. It is a hexarotor, with fixed angle tilted
rotors to gain full actuation, providing a manipulator for physical interaction at its front, rigidly
connected to its base frame.
Also, the specifications of a real stereo camera, which is possible and intended to be mounted
on the “betaX”, are simulated, namely the Kayeton KYT-U130-3R60ND. For the simulation, two
cubes are used as dummy representation of its two image sensors to identify their pose.
The object of interest, which is scanned to be reconstructed as a 3D-model, more precisely a
point cloud, is a cylinder. A cylinder has homogeneous surfaces, which provide the possibility
to keep a uniform distance when the UAV is flying concentric around it to inspect the lateral
surface.
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CHAPTER 1. INTRODUCTION 3

Figure 1.2: UAV “betaX” with the simplified representation of the stereo camera as two cubes below the
central base frame (the red arrow is pointing at them)

1.3 Related Work

As, according to the best knowledge, multiple coverage of object surfaces represents a research
gap, in this section coverage path planning (CPP) for single coverage are presented. Moreover,
previous works on visual SLAM-algorithms and their evaluation are also covered in this section.

1.3.1 Visual SLAM-Algorithms

Currently, there are three common open source SLAM-algorithms providing support for stereo
cameras: ORB-SLAM2 by Mur-Artal and Tardos (2017), RTAB-Map by Labbé and Michaud
(2018) and S-PTAM by Pire et al. (2017). All three are graph based SLAM-algorithms. They have
been also independently evaluated against each other.
In the comparative study of Gaspar et al. (2018), they stated that S-PTAM might lack on low
times between image input. Further that RTAB-Map is in general very dependent on the
environment. Regarding ORB-SLAM2 they showed that in the majority of their experiments
it provides a good motion estimation as well as lower error. Although it shows higher CPU
utilization compared to the others, it was the one being able to reproduce a trajectory close to
“ground truth” in most cases. “Ground truth” denotes the exact position/pose or path that the
algorithms are trying to estimate. Their tests were based on several publicly available datasets
to benchmark, namely the KITTI dataset of Geiger et al. (2012), the MIT Stata Center dataset of
Fallon et al. (2013) and the New College vision and laser data set of Smith et al. (2009). Those
datasets provide stereo image streams and the according “ground truth”.
In difference to the previous, the work of Giubilato et al. (2018) was not based on existing
datasets, as they created their own instead.
Giubilato et al. (2018) noticed that although ORB-SLAM2 might have the highest drift away
from the “ground truth” path over distance, its robust loop-closure makes it the only one ca-
pable of estimating the full trajectory. They considered RTAB-Map and S-PTAM to fail due to
their low number of tracked features.
As a result of these insights, ORB-SLAM2 is evaluated in chapter 3 on its suitability for this
research.
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4 3D reconstruction improvement by path planning towards physical interaction with a UAV

1.3.2 Coverage Path Planning

Galceran and Carreras (2013a) showed that CPP by unmanned vehicles in current literature
seems to focus mostly on methods where the environment can be modeled as a planar surface
and solving the problem in two dimensions.
But the field is wide, reaching from covering building fronts as in the work of Teixeira and Chli
(2016) to in-detail inspection of the ocean floor researched by Galceran and Carreras (2013b).
A common coverage path to cover a single object with a UAV seems to be flying concentric
circles around it and increasing height.
One representative work with such object-centric coverage paths is Cheng et al. (2008). This
was reasoned as they decided to simplify single buildings also as cylindrical coverage models,
as shown in figure 1.3. Another research investigating a single detached object has been done

Figure 1.3: Cylindrical coverage model with coverage path as dashed line as used by Cheng et al. (2008)

by Mansouri et al. (2018). They also follow the same approach of rotating around the object
and increasing height to fully cover it.
To the best knowledge, a work involving multiple coverage of areas of the object of interest has
not been published yet.

1.4 Report Organization

The other parts of this thesis are presented in the following chapters and appendices.
Chapter 2 provides the necessary background knowledge to the reader. Topics covered are
path/trajectory planning, in particular also CPP, as well as description of the SLAM problem.
Furthermore, the components and their functionalities of the, in this research, used SLAM al-
gorithm ORB-SLAM2 by Mur-Artal and Tardos (2017) are described.
In chapter 3 the first experiments are presented. Those determine the performance of ORB-
SLAM2 and its suitability within the simulation.
The following chapter 4 consists of sections introducing and evaluating different CPP methods
for the 3D reconstruction as a point cloud of the object of interest in the simulation.
Chapter 5 is recapitulating the relevant insights of the previous two chapters and relating it to
the research questions of this thesis.
General suggestions for future work are presented in chapter 6.
Details of the implementation and used components can be found in appendix A.
Appendix B shows all textures applied to the object of interest.
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5

2 Background

In this chapter, relevant background information is presented. First in section 2.1 the concepts
of path planning and trajectory planning. It is also specifically elaborated towards coverage
path planning (CPP).
The problem regarding a robot following a path and thereby localizing itself as well as mapping
the environment is covered in section 2.2. The algorithm, namely ORB-SLAM2, which is used
to deal with this problem in this thesis, is described in section 2.3.

2.1 Path Planning

According to Chung et al. (2016), “a path is a geometric representation of a plan to move from a
start to a target pose”. Moreover, they define finding a path without colliding with obstacles as
path planning.
They define trajectories and trajectory planning as a refinement of a path and path planning. In
comparison, a trajectory additionally includes parameters like velocities, accelerations and/or
jerks along a path. In this research, all paths/trajectories are always defined with respect to
velocities, therefore these terms can be seen as interchangeable.
Planning is differentiated in offline and online planning. In the case of offline planning, a static
path is calculated before the flight and thereby cannot be influenced anymore during it. Online
planning methods are depending on conditions during the flight. They can react to changes in
the environment, and/or other dynamic events.
A special case is CPP, which adds the requirement of coverage of an area or volume by a path.
In an early work of Cao et al. (1988), where CPP is referred to as “region filling”, from the original
development of a robot lawn mower, generic conclusions are made. Doing so they have derived
six criteria for CPP:

1. The robot must move through all the points in the target area covering it completely.

2. The robot must inherently have the ability to fill the region without overlapping paths.

3. Continuous and sequential operation without any repetition of path is required.

4. The robot must avoid all obstacles.

5. Simple motion trajectories (e.g., straight lines or circles) should be used for simplicity
and control.

6. An “optimal” path is desired under available conditions.

Although those are inspired by a robot moving in two dimensions in a planar environment,
Galceran and Carreras (2013a) stated that these are applicable in other coverage scenarios too.
They remark that not all of them might be satisfied in complex scenarios.
A complex scenario, for example, is coverage of objects in a 3D-environment by a UAV. As
Cheng et al. (2008) showed, coverage, in this case, refers to coverage of an attached sensor. A
sensor might be, as in this research, a camera. For this reason, coverage of a surface is deter-
mined by being visible within its FOV.
Mentioned in section 1.2, in this research it will be investigated if multiple coverage of a surface
can improve a from this camera input created 3D-model.
To do so the FOV has to cover the same areas, which have been investigated before, as a whole
or partially again. This is clearly violating the second criterion of Cao et al. (1988) by following
overlapping paths.

Robotics and Mechatronics Patrick D. Radl



6 3D reconstruction improvement by path planning towards physical interaction with a UAV

2.2 SLAM - Simultaneous Localization and Mapping

SLAM describes the problem of simultaneous localization and mapping. This is described as
creating a map of the surrounding environment from sensor input and estimating the position
of the exploring robot in it, e.g. an autonomous UAV.
The relations in this scenario are presented demonstrative by Stachniss et al. (2016) with a
graphical model shown in figure 2.1. Following this graphical model in this part of the report

Figure 2.1: Model by Stachniss et al. (2016) demonstrating the SLAM-problem. Shaded nodes represent
direct observations used to recover the others. The arrows show causal relationships.

their notation is used.
With m the map of the environment of a robot is denoted. Describing the locations of other
objects in the surrounding. Like m, a robot’s pose xt is not directly observable. They are repre-
senting points in time by t .
A sequence of poses representing a path is given as:

XT = {x0, x1, x2, ..., xT } (2.1)

A terminal time of a sequence is given by T . According to Stachniss et al. (2016) estimation
algorithms often use the initial pose x0 as a reference.
What in general terms can be observed by a robot are sensor measurements zt of features in m.
Given as a sequence:

ZT = {z0, z1, z2, ..., zT } (2.2)

From zt it is possible to relate between m and xt .
The relation of a previous point in time xt−1 and the current point xt is usually called odometry.
Odometry ut is thereby describing the motion of a robot. Given as a sequence:

UT = {u0,u1,u2, ...,uT } (2.3)

With these formalizations, the problem can be mathematically described in probabilistic ter-
minology and further specified. Stachniss et al. (2016) categorized it into two main forms that
can be found in the literature:

Patrick D. Radl University of Twente



CHAPTER 2. BACKGROUND 7

2.2.1 Full SLAM

Full SLAM is solving the problem for the full path XT of the exploration. The path consists of
all poses xt during the exploration. Mathematically described as the joint posterior probability
from discoverable ZT and UT over XT and m.

p (XT ,m | ZT ,UT ) (2.4)

Stachniss et al. (2016) mentioned that algorithms addressing this type are often processing all
the collected discoverable data offline at once.

2.2.2 Online SLAM

According to Stachniss et al. (2016) in contrast to the previous full SLAM, online SLAM is esti-
mating the current position xt , not the whole path XT .
Thereby, it can be denoted as follows:

p (xt ,m | ZT ,UT ) (2.5)

Algorithms for this type can operate iteratively. Based on the previous, they are able to estimate
the current pose xt of the robot. For example, the in this research used ORB-SLAM2 represents
such an online SLAM-algorithm and is described in section 2.3.

2.3 ORB-SLAM2

ORB-SLAM2 by Mur-Artal and Tardos (2017) is a derivative of their earlier work on ORB-SLAM
(Mur-Artal et al. (2015)). It was extended to use beside monocular cameras also (synchronized)
stereo and RGB-D cameras as input sensors. The estimation of the environment results in a 3D
model represented as a point cloud. It is capable of estimating the current pose of the camera
with respect to this map of points. Thereby it is also providing visual odometry.
Map points represent visual features in the environment. The map is estimated by following
a keyframe-based approach, where not all input frames from the camera are used for solving
the SLAM-problem. By only using specific keyframes for feature detection the computational
efficiency is improved.
ORB-SALM2 is divided into three main components, tracking, local mapping and loop clos-
ing. Those are realized as threads. An overview of them can be found in figure 2.2 and their
functionality is described in the following sections 2.3.1 to 2.3.3.

2.3.1 Tracking

In the tracking thread, ORB-SLAM2 is processing each input frame and searching for distin-
guishable features, which are used as map points. Therefore, it is using the ORB feature detec-
tion algorithm of Rublee et al. (2011).
By using a constant velocity model, the camera pose gets predicted from the previous frame,
and a guided search is performed to search matching features between the frames. In case
tracking was lost, the current frame gets compared to keyframes to match features and thereby
relocalize. If in both cases enough features are found the current pose of the camera gets pre-
dicted.
With these initial features and camera pose the map is projected to search for map point cor-
respondence of features. To reduce the computation load only points of related keyframes are
taken into account and called “local map”. Related keyframes are keyframes that should have
map points in common with the current frame and their neighbors. Neighboring keyframes are
determined on their shared map points with each other. Based on the corresponding points,
which are also in the frame visible, the camera pose gets optimized and updated.

Robotics and Mechatronics Patrick D. Radl



8 3D reconstruction improvement by path planning towards physical interaction with a UAV

Figure 2.2: Structure of ORB-SLAM2 by Mur-Artal and Tardos (2017), showing the three main threads
tracking, local mapping and loop closing. The last one can call the additional full BA thread.

Another core function of the tracking is to determine new keyframes. According to Mur-Artal
et al. (2015) the following criteria have to be met for the current frame:

• Since the last relocalization, more than 20 frames must have passed.

• Since the last keyframe insertion at least 20 frames have passed, or the local mapping
thread is idle.

• At least 50 points are tracked.

• At least 90% of the points of the keyframe with the highest map point correspondence
are tracked.

One exception for all these exits. Using the stereoscopic version of the algorithm in this re-
search, the initial frame is used as initial keyframe, as Mur-Artal and Tardos (2017) point out.
At this point, the camera is also set to the origin and an initial map is created from detected
features.

2.3.2 Local Mapping

For every new keyframe, local mapping is invoked. At insertion, it is getting related to the other
keyframes depending on common map points.
Unmatched features are searched within the related keyframes. To become a map point it has
to be initially observed in two keyframes.
On the long-term, map point culling is determining map points to be kept in the map. Map
points get culled dependent on two conditions:

• After another keyframe was determined since the creation of a map point, the point has
to be detected within three keyframes or more.

• The map point must be tracked in more than 25% of frames it should be visible

A local bundle adjustment (BA) is applied to optimize the current keyframes, all to it related key
frames as well as the map points in them.

Patrick D. Radl University of Twente



CHAPTER 2. BACKGROUND 9

Not only map points can get culled by the local mapping, but also redundant keyframes. This
can lead to a map point culling for those points that do not fulfill the previously mentioned
conditions anymore.
Keyframes are removed if 90% or more of its map points are found in at least three other key
frames with the same or higher accuracy.

2.3.3 Loop Closing

ORB-SLAM2 provides a loop closing feature, which targets to reduce the accumulated error
during the observation. When reaching the same pose, this drift in the map should be possi-
ble to estimate. Hence, the last keyframe processed by the local mapping is compared with a
database to determine if the scene was previously observed.
Between the detected loop keyframe and the current key frame a map point matching is ap-
plied to determine the error accumulated in the loop to construct a “similarity transformation”.
In a first step, this transformation is applied to the current frame and its neighbors to fuse
matched map points.
Finally, all the keyframes within the loop are getting transformed to remove the drift error. This
corrects also the map points covered by those key frames.
In ORB-SLAM2 a full BA is invoked after closing a loop. As it is computationally very costly and
to not avoid detecting new loops, it is running in a separate thread. Therefore, it represents a
detached block in figure 2.2. Full BA distinguishes from the previously mentioned local BA that
it is optimizing all key frames and all map points. When it is finished the map has to be updated
with the output of the full BA. Meanwhile, newly introduced keyframes and their map points
are transformed by propagating the correction, which was applied to the optimized ones.

Robotics and Mechatronics Patrick D. Radl



10 3D reconstruction improvement by path planning towards physical interaction with a UAV

3 Evaluation of ORB-SLAM2’s performance within the
simulation

In this chapter ORB-SLAM2’s performance is evaluated to determine its suitability to be used
in the simulation to scan an object and create a point cloud from it. Therefore spatial relations
of the components within the simulation are described first in section 3.1. This should provide
the necessary overview to relate the flight trajectory presented in section 3.2. The trajectory is
followed in both experiments of this chapter.
The first experiment, which can be found in section 3.3, is evaluating the best texture out of a
set. The evaluation is dependent on the number of map points ORB-SLAM2 is mapping and if
it is not losing track. The experiment in section 3.4 is measuring the error between the “ground
truth” and estimated flight trajectory.

3.1 Spatial Configuration in Simulation

In figure 3.1 one can see the object of interest, represented by a cylinder with a radius of 1m
and 3m height in front of the UAV as well as the world frameΨW . ΨW axes are represented by
colored lines (x red, y green, z blue). The grid on the x y-plane consists of squares with 1m side
length.

Figure 3.1: UAV at initial position PW
Ui ni t

in front of the textured object.

The position and orientation of the cylinder inΨW are:

PW
O =

⎡⎣ 3
0

1.5

⎤⎦ RW
O = I (3.1)
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CHAPTER 3. EVALUATION OF ORB-SLAM2’S PERFORMANCE WITHIN THE SIMULATION 11

The initial position and orientation of the UAV in the world frameΨW are:

PW
Ui ni t

=
⎡⎣ 0

0
1.5

⎤⎦ RW
Ui ni t

= I (3.2)

The distance to the ground is necessary as otherwise ORB-SLAM2 initializes only or mainly with
the drone shadow within its stereo camera’s FOV. As described in section 2.3.1, the first frame
is used to create an initial map when ORB-SLAM2 is started. For this initial map the detected
features, which would become map points, would be the edges of the drone shadow on the
ground. This would result in detected map points’ positions in ΨW dependent on PW

U . When
PW

U changes those are not present anymore and it loses track. This results in not accumulating
new features/map points as it only can localize itself in the starting position.
Shadows, in general, are due to the directed light source. Instead of uniformly lightning the
whole simulation environment a single global directed light source is used to provide a visually
more challenging environment.
The two image sensor’s simplified visual representations of the simulated stereo camera are the
white cubes below the UAV in figure 1.2.
The position and orientation of the camera, as a single object consisting of both sensors, in the
UAV base frameΨU are:

PU
phC =

⎡⎣ 0
0

−0.1

⎤⎦ RU
phC =

⎡⎣ 0.9082 0 0.4186
0 1 0

−0.4186 0 0.9082

⎤⎦ (3.3)

The position below the center of the UAV in combination with a pitch θ = 24.75° has multiple
reasons.
It avoids the tilted propellers of being in the FOV, which would interfere the image processing

heavily. Therefore, θ = VFOV
2 is ensuring the upper boarder of the vertical field of view (VFOV)

being parallel to the x-axis ofΨU . Placing the camera below the UAV allows parts of the object
near to ground being visible while flying close to the object. The distance to the base frame
provides reasonable space for a mounted stereo camera for future works which do not base on
simulation. Figure 3.2 provides an overview of this spatial configuration.

3.2 Flight Trajectory

As mentioned in section 1.3.2, in previous researches of Cheng et al. (2008) and Mansouri
et al. (2018), to completely cover similar shapes, rotating around them and increasing step-
wise height was chosen as CPP method. To provide a more steady and continuous motion, but
following the same principle, for this research, a helical trajectory is chosen. This should lead
to better results from the rigidly connected camera’s output as input to ORB-SLAM2. From its
initial position PW

U = PW
Ui ni t

, the UAV follows the clockwise helix flight trajectory facing towards
the cylinder as in equation (3.4):

x(t ) =−r · cos(ωt )+x0

y(t ) = r · si n(ωt )+ y0

z(t ) = vz · t + z0

ψ(t ) =−ωt +ψ0

(3.4)
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12 3D reconstruction improvement by path planning towards physical interaction with a UAV

PphC
90°VFOV θ

z

y x
ΨU

l
r

dcc

Figure 3.2: The position of the camera PU
phC with respect to the UAV base frameΨU , showing the result-

ing VFOV in relation to the object of interest. How the pitch with an angle of θ is changing the direction
of the camera’s center dcc is depicted. The radius r related to the object’s center and the distance l of the
camera/UAV to the object’s surface can also be found.

with r = 3m ω= 0.25rad/s and vz = 0.025m/s.
This trajectory leads to an overlap of undiscovered and discovered areas of the object, to pro-
vide the possibility to localize only with the single object in the simulation. Furthermore, it
enables to detect a loop when flying the path and perform loop closing.

r

PUi ni t

PUs0

Figure 3.3: Helical flight path of the UAV as a dashed line around the object starting at PUi ni t to reach
PUs0

The velocities are chosen with respect to the limits of the simulation hardware.
Starting at PW

Ui ni t
the UAV flies around the cylinder following the trajectory, which is illustrated

as a dashed line in figure 3.3. Reaching PW
Us0

where z(t ) = 4.5m the UAV as well as the mapping
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of ORB-SLAM2 gets stopped. The limit in z-direction is set to 4.5m as at higher points, the
distance between camera and object gets so large that no new features can be detected.

3.3 Different Texture Evaluation on Object of Interest

As ORB-SLAM2 is based on feature matching different object surface characteristics should
make a noticeable difference in the resulting point cloud output.
Therefore the object of interest, which is placed in the simulation environment to be investi-
gated by the UAV, is scanned with different textures mapped on it. The textures can be found
in figure B.1 in appendix B. The trajectory followed to scan it can be found in section 3.2.
Comparing the resulting arithmetic mean of detected points against each other, it should be
possible to determine its suitability for further usage. The suitability is defined based on the
higher number of detected map points by ORB-SLAM2. A description of how it is mapping
points can be found in section 2.3.2. Furthermore, if ORB-SLAM2 is losing track while the UAV
is scanning the object, is a reason for unsuitability. When ORB-SLAM2 is losing track it is not
adding new features as map points until it has relocalized the UAV’s, more precisely the cam-
era’s pose.

3.3.1 Results and Discussion

In table 3.1 the results when flying the trajectory from equation (3.4) with r = 3m,ω= 0.25rad/s
vz = 0.025m/s can be found. “Red grey bricks” provides the highest number of determined

texture single flights mean
worn aluminium 6533 6240 6987 6373 6533.25
old scratched metal 6556 7233 7774 7437 7250
concrete 5350 5181 5006 5114 5162.75
clean concrete 6025 6388 5673 5999 6021.25
red grey bricks a 9608 9566 9645 9606.33
factory rock wall b b a b b

Table 3.1: Number of points captured by ORB-SLAM2 at multiple flights of the UAV as well as the re-
sulting mean, for each evaluated texture. “a” and “b” are denoting flights during which tracking was
lost.

features/map points but the “a” in its first run denotes that in some cases ORB-SLAM2 is losing
track due to wrong loop closing and afterward cannot relocalize. This is caused as it seems to
be too similar in different areas due to its repetitive brick pattern.
In the case of “factory rock wall” there are wrong loop detections at every test. Once like above
but “b” flights show that it is relocalizing at a wrong position and continuing mapping. This
remaps the exiting points to wrong positions and therefore leads to a wrong pose of the existing
map withinΨW . Also, new points’ positions are determined wrong and thereby reconstructing
a wrong and/or multiple representations of the cylinder’s shape.
From the remaining textures1, which do not lead to the above-described errors, “old scratched
metal”, which can be found in figure B.1d, shows the highest number of points detected by
ORB-SLAM2. This very likely relates to its inhomogeneous placed high number of scratches
leading to more distinguishable features.
Due to this, it was used as a texture for the object in the whole project.
Between each flight, ORB-SLAM2 has to be restarted. When using its provided reset function
after a full test trajectory it always loses the tracking at the first rotation around the object
when facing the shady side of the object. In shady areas, the algorithm, in general, might

1“clean concrete” was only partially taken as otherwise it provides a 4 times higher resolution compared to the
others
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14 3D reconstruction improvement by path planning towards physical interaction with a UAV

have difficulties to not lose track, as also Gaspar et al. (2018) detected it losing track during a
transition to a darker area.
Such replicable behavior with textures that otherwise does not lead to this fault implies that
ORB-SLAM2 at some point is not completely freeing resources.
When resetting it in the starting position, without flying a test trajectory before, this cannot be
discovered.

3.4 Error Between “Ground Truth” and Estimated Flight Trajectory

In this section, the error between the by ORB-SLAM2 estimated camera position compared to
the as “ground truth” specified position provided by the simulation is investigated. It should
provide insight into the position error of its tracking as well as the influence of its loop closing
feature. Similar evaluations have been done by Giubilato et al. (2018) and Gaspar et al. (2018).
Details of its tracking method can be found in section 2.3.1. Loop closing is described in sec-
tion 2.3.3.
Previously in section 3.3 the texture “old scratched metal”, which can be found in figure B.1d,
provided the highest arithmetic mean of mapped points without losing track. Due to this, it
was also used in this experiment.
Flying the trajectory described in section 3.2 with this texture on the object of interest should
reveal the error between the from ORB-SLAM2 estimated position of the camera center inΨW

compared to the “ground truth”. With respect to the PW
estC (t ) being the position of the camera

estimated by ORB-SLAM2’s tracking and PW
phC (t ) the “physical”/ground truth position within

the simulation, |∆x|+|∆y | is the accumulated absolute error in x and y-direction between them,
|∆z| describes the absolute difference on the z-axis.
Implementation details can be found in appendix A.1.

3.4.1 Results and Discussion

The error between PW
estC (t ) and PW

phC (t ) evolving over time is shown in figure 3.4.
One can see after approximately 10s that the error is increasing as the UAV starts flying the tra-
jectory.
Especially on the x y-plane the error increases with the distance of the UAV to the starting po-
sition resulting in the relatively high peaks in the graph. Such behavior has also been described
by Giubilato et al. (2018).
Close to the initial position the error gets lower. This should be caused due to ORB-SLAM2 es-
timating the position of new map points in reference to already detected ones.
Also, the later peaks, representing each a rotation, show a more uniform shape. This might
be caused to the loop closing feature of the algorithm which is activated at the end of the first
rotation. It corrects the accumulated error over the detected loop in the flight path. The ac-
cumulated error gets distributed over the in the loop detected points. These rearranged points
should act as a more accurate reference at the later flights for new points. The observed error
of the later rotations against this expectation is not decreasing just the previously mentioned
more steady change can be seen in figure 3.4. Similar results have been observed for the z di-
rection although the significantly lower absolute error.
As the magnitude of the |∆x|+ |∆y | error is similar to that of the real-world experiment of Giu-
bilato et al. (2018) for translational forward motion, ORB-SLAM2 seems to be suitable for the
simulation.
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Figure 3.4: Plots of the error |∆x| + |∆y | on the x y-plane and the error |∆z| in z-direction between the
by ORB-SLAM2 estimated camera position PW

estC and the “ground truth” camera position PW
phC
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16 3D reconstruction improvement by path planning towards physical interaction with a UAV

4 Trajectory Planning Methods for 3D Reconstruction

In chapter 3 ORB-SLAM2 itself was investigated on its performance and resulting suitability
to be used within the simulation. Building on top of it, in this chapter different methods, to
calculate flight trajectories for scanning the object of interest and 3D reconstructing it as a point
cloud, are tested. The parameter to evaluate the reconstruction is denoted as the entropy n.
This entropy is defined as the number of map points detected by ORB-SLAM2.
In section 4.1 the common design of the methods is shown. It describes how the different
methods are based on a common coordinate system as well as how to change the position of
the UAV, following circular motions, in it. Furthermore, how the CPP is divided into steps.
In sections 4.2 to 4.4 the different CPP methods are described by elaborating what trajectories
are followed in each step and why. There are also the results of each method provided and
discussed for flights with different velocities and distances to the object. Parts of the results
were also presented by Sirmaçek et al. (2019).

4.1 Common Design of Methods

In this section, the common design of the methods described and investigated in sections 4.2
to 4.4 is provided to avoid redundancy.

4.1.1 Path Steps

All methods are divided into steps describing the trajectories of the method’s whole path. These
steps are limited by their execution time. Therefore, the duration of a step is denoted by ∆ts .
Moreover, some steps are determining how to proceed with the trajectory planning. This form
of online trajectory planning is dependent on the, by ORB-SLAM2, determined map points
at parts of the object. These four parts are called segments and in relation to an introduced
cylindrical coordinate system described in section 4.1.3.

4.1.2 Spatial Configuration

The spatial configuration of the object, as well as the camera position relative to the UAV, re-
mains the same as described in section 3.1. The position of the UAV PU is described by using a
frame with a cylindrical coordinate system, which is presented in the following section.

4.1.3 Cylindrical Coordinate System

As on the x y-plane, all methods in sections 4.2 to 4.4 follow circular motions around the object
on their trajectories. Therefore, the frameΨP using a polar coordinate system on the x y-plane
in the world frameΨW was defined.
It is describingφ as the angle and by the radius r the distance of the origin at which a reachable
flight position P P

U of the UAV can be found.
The coordinate system’s origin is defined in the object’s center xOC = 3m, yOC = 0m leading
to the following translations to the in Cartesian coordinates defined x y-plane of ΨW for the
position PW

U of the UAV setpoint:

x(t ) = r · cos(φ(t ))+xOC

y(t ) = r · si n(φ(t ))+ yOC
(4.1)

The z-axis to evolve it to a 3D cylindrical coordinate system is equivalent in both frames. Ve-
locities are described by the angular velocity ω. Radius r is for the whole path of a method and
any position constant.

Patrick D. Radl University of Twente



CHAPTER 4. TRAJECTORY PLANNING METHODS FOR 3D RECONSTRUCTION 17

PUi ni t

φ= 0 | 2π

φ= π
2

φ=π

φ= 3π
2

r

φ

Figure 4.1: Top view of the cylinder with its colored segments in the polar coordinate system ofΨP . The
arrow at the angle φ shows the positive rotation direction (d = 1)

The cylindrical coordinate system’s underlying polar coordinate system including a top view of
the cylinder with the previously described segments can be found in figure 4.1. Segments are
the colored quarters within the inner circle which is representing the cylinder.
Segment 0 (S0) in red, segment 1 (S1) in blue, segment 2 (S2) in green and segment 3 (S3) in
yellow. Simulated sunlight is directed towards the center of S0, S1 and S3 are in the transition
and S2 is in the shadow. The entropy n is also investigated for those segments. Hence, ntot al

denotes the number of points for the whole object and nseg a for a = {0,1,2,3} the number of
points for each segment.

Figure 4.2: UAV next to the point cloud gained from a flight using the helix CPP method, described in
section 4.2
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18 3D reconstruction improvement by path planning towards physical interaction with a UAV

A dashed circle with distance r to the origin represents possible flight positions. PUi ni t can be
found on it. It is the initial position of every method’s path in these two dimensions. Relative to
frameΨP it is:

P P
Ui ni t

=
⎡⎣ r
φUi ni t =π

zUi ni t

⎤⎦ (4.2)

zUi ni t is defining the height and φUi ni t the angular position at the start of the first step’s trajec-
tory. The latter is for every method πrad.
The pose of the UAV, as well as the points per segment, have been visualized during the exper-
iments. An example screenshot of the UAV next to the point cloud after a flight using the helix
method, described in section 4.2, can be found in figure 4.2. The colors of the points are identi-
cal to the colors of the segments, in which they are located, and have been described above for
figure 4.1.

4.1.4 Circular Motion

All methods have in common that they only or also consist of steps with a circular motion. In
these cases, the trajectory duration∆ts is defined as in equation (4.3). ∆φ describes the angular
distance which has to be flight and ω the desired angular velocity.

∆ts = ∆φ
ω

(4.3)

Furthermore, the flight direction has to be taken into account. It is denoted by d . In the case
of d = 1 it is called a positive direction, which is shown by the arrow at the angle φ in figure 4.1.
For the opposite negative direction d = 0.
With these parameters, the current angular position φ(t ) for a step including a circular flight is
calculated as in the pseudocode of algorithm 4.1. With φ0 the angular position at the start of

Algorithm 4.1: Calculation of current angle φ(t ) of the trajectory for a step of ∆ts duration

1while t <∆ts do
2if d=1 then
3φ(t ) ← (φ0 +ωt ) mod 2π
4else
5φ(t ) ←φ0 − (ωt mod 2π)
6if φ(t ) < 0 then
7φ(t ) ←φ(t )+2π
8end
9end

10end

the trajectory φ(t = 0) is described.
The binary operation providing the remainder of a Euclidean division is denoted as “ mod ”. It
is used with 2π as a second operand to scaleφ(t ) to a corresponding value in the interval [0,2π].
Also adding 2π in line 7 is for this purpose.

4.2 Method 1: Helix

This method’s path is similar to the in section 3.2 presented helix flight. In contrast, just the
lateral surface is investigated to simplify the comparison with the other methods.
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As described in section 3.2, in previous researches of Cheng et al. (2008) and Mansouri et al.
(2018), coverage paths have been considered efficient, which are rotating around the object
and stepwise increase height. To follow this principle but provide a constant motion, a helical
trajectory is chosen as this first method.
It is used to determine a maximum of detectable features, more specifically map points, by
increasing the number of rotations during one flight. Increasing the number of rotations, while
not changing the total height to fly, leads to covering the same area more often. Therefore, this
method should show if multiple coverage of the same area can improve the 3D-model of the
object of interest.

4.2.1 Path Steps

The Helix method only consists of one step, which is flying the helix starting at a previous
reached initial position P P

Ui ni t
to P P

Us0
. During this flight the UAV has to climb a height difference

hdi f f = 1.5m.
This path can be seen as a dashed line around the cylinder in figure 4.3

hdi f f r

PUi ni t

PUs0

Figure 4.3: Flight path of the UAV as dashed line around object starting at PUi ni t to PUs0

The circular motion of the trajectory follows the principle described in section 4.1.4. To gain
∆φ for equation (4.3) it is computed as in equation (4.4). The number of desired rotations nr ot

is the limiting factor of the angular distance.

∆φ= 2π ·nr ot (4.4)

Besides the circular motion, there is also the velocity vz along the z-axis. To let the UAV not
exceed the height distance hdi f f between P P

Ui ni t
and P P

Us0
it is also related to ∆ts from equa-

tion (4.3):

vz =
hdi f f

∆ts
(4.5)

Leading to z(t ) of the setpoint of the UAV P P
U :
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z(t ) = zUi ni t + vz t (4.6)

4.2.2 Results

In this section, the results of multiple flights with a number of rotations nr ot from 2 to 100 for
a different radius r can be found. All of them with an angular velocity ω= 0.25rad/s starting in
positive direction d = 1 at P P

Ui ni t
:

P P
Ui ni t

=
⎡⎣ r

π

zUi ni t = 1.5

⎤⎦ (4.7)

Covering a flight distance of hdi f f = 1.5m. Therefore, P P
US0

is:

P P
US0

=
⎡⎣ r

π

zUi ni t +hdi f f

⎤⎦=
⎡⎣r
π

3

⎤⎦ (4.8)

For r = 2m in table 4.1, r = 2.5m in table 4.2 and for r = 3m table 4.3. A comparing plot of the
results can be found in figure 4.4.

∆ts [s] nr ot ntot al nseg 0 nseg 1 nseg 2 nseg 3

50.27 2 3823 1462 691 716 954
125.66 5 5047 1737 967 1016 1327
251.33 10 6982 2142 1540 1622 1678
376.99 15 7573 2291 1623 1708 1951
502.65 20 7944 2252 1973 1786 1933
628.32 25 8802 2354 2250 2058 2140

1256.64 50 8637 2394 2117 2022 2104
2513.27 100 8846 2472 2202 2053 2119

Table 4.1: Number of points captured when flying a helix with a radius of 2m (1m distance to the object
surface) with ω= 0.25rad/s
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∆ts [s] nr ot ntot al nseg 0 nseg 1 nseg 2 nseg 3

50.27 2 3569 1261 724 710 874
125.66 5 3670 1258 781 716 915
251.33 10 4575 1335 1140 1027 1073
376.99 15 5200 1523 1290 1128 1259
502.65 20 5145 1438 1424 1086 1197
628.32 25 5237 1537 1283 1218 1199

1256.64 50 5375 1238 1526 1297 1314
2513.27 100 5182 1234 1117 1394 1437

Table 4.2: Number of points captured when flying a helix with a radius of 2.5m (1.5m distance to the
object surface) with ω= 0.25rad/s

∆ts [s] nr ot ntot al nseg 0 nseg 1 nseg 2 nseg 3

50.27 2 7713 1924 2200 2144 1445
125.66 5 5200 1340 1198 1324 1338
251.33 10 4565 1385 1071 1001 1108
376.99 15 4477 1285 1071 961 1160
502.65 20 4255 1201 955 987 1112
628.32 25 3993 1105 990 894 1004

1256.64 50 3856 1067 960 895 934
2513.27 100 3931 1134 898 902 997

Table 4.3: Number of points captured when flying a helix with a radius of 3m (2m distance to the object
surface) with ω= 0.25rad/s
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Figure 4.4: Plots showing the number of points captured when flying a helix with different radii r and
number of rotations at ω= 0.25rad/s
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4.2.3 Discussion

In figure 4.4 and tables 4.1 to 4.3 a saturation of accumulated points ntot al for the flights with
25 rotations and more can be discovered for all radii. This represents flight durations ∆ts at
ω= 0.25rad/s which are equal or longer than 502.65s (8mi n 22.65s).
Furthermore, for those flights, it appears that increasing the distance to the object leads to
less detected points. This might reason in the lower resolution of detectable features when the
distance to the object gets increased. An interesting outcome is that, in contrast to a radius
r = 2.5m or r = 2m, in the case of r = 3m the entropy ntot al is decreasing while increasing
rotations. This might be caused due to the higher distance to the object, which could lead
to more wrong detected map points. With more rotations, and thereby more often covering
the same area, those possibly wrong detected points might get removed from the map. As a
consequence increasing the quantity of rotations seems to lead to better error correction by
ORB-SLAM2.
In other cases, r = 2.5m or r = 2m, the increase of rotations leads also to a higher number of in
total detected features. This could indicate that because of a higher number of rotations ORB-
SLAM2 is able to detect more features as the surface gets more often covered.
The entropies of the segments nseg a behave the same as the total number of map points ntot al .
In the case of r = 2m the, saturation seems to be reached already for nr ot ≥ 15, in difference to
the other two radii. Also for those flights, the segments’ entropies are varying more than in the
case of r = 2m and r = 3m.

4.3 Method 2: Circular Scan with Static Height Autonomous Segment Rescan

Five trajectories with only circular motion are forming this method. An initial circle followed
by four segment rescans. This is to investigate if rescanning from the same position leads to
a noticeable improvement in the number of map points for the segments and/or the whole
object.
Segments to rescan are determined dependent on the map point-entropy n.

4.3.1 Path Steps

Step 0: Initial Circle

In section 2.3.3 the loop closing feature of ORB-SLAM2 was described as being intended to re-
duce the error in the estimated map, according to Mur-Artal and Tardos (2017). Gaspar et al.
(2018) referred to loop closing as a “key feature”. Mentioned previously in section 1.3.1, Giubi-
lato et al. (2018) pointed out that they identified ORB-SLAM2’s loop closure as the reason for
being able to reconstruct the whole path in their test.
Therefore, to ensure a possible loop closure at an early stage as well as being able to evaluate on
the map point-entropy, in the next step a circle around the object is flight as an initial trajectory.
The starting position P P

Ui ni t
is:

P P
Ui ni t

=
⎡⎣ r

π

zUi ni t = 3

⎤⎦ (4.9)

From P P
Ui ni t

flying a full circle at constant height zUi ni t = 3m where ∆φ= 2π for equation (4.3),

results in the position at the end of this step P P
Us0

= P P
Ui ni t

. A visualization of the trajectory can
be found in figure 4.5.

Step 1: Lowest Global Entropy

After flying the initial circle a first map was built by ORB-SLAM2. From this map, the number
of map points within a segment’s boundaries is known for each segment.
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rPUi ni t = PUs0

Figure 4.5: Method 1’s step 0 circle trajectory as a dashed line from the position P P
Ui ni t

to P P
Us0

= P P
Ui ni t

The goal of this step is to reach a position in front of the segment with the lowest number of
map points. The possible destination positions P P

d st in front of the segments are P P
S0

, P P
S1

, P P
S2

and P P
S3

shown in figure 4.6. With φS0 = 3π
4 rad, φS1 = π

4 rad, φS2 = 7π
4 rad and φS3 = 5π

4 rad.

To reach these positions from the starting position P P
st = PU i ni t

P the direction d as well as the
angular distance ∆φ have to be provided for a circular flight as described in section 4.1.4.
For this step the directions are defined as follows:

d =
{︄

1 for P P
S2 ∨P P

S3

0 for P P
S0 ∨P P

S1

(4.10)

PUi ni t

φ= 0 | 2π

φ= π
2

φ=π

φ= 3π
2

r

φ

PS0 PS1

PS2PS3

Figure 4.6: Top view of the cylinder with its colored segments and possible rescan positions PS0 , PS1 ,
PS2 and PS3 in front of their centers
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In equation (4.11) the different cases for the calculation of the angular distance ∆φ can be
found. Those are dependent on the relation between the angle φst of P P

st and φd st of P P
d st .

Although only two of the cases are possible in this step, in the case of later steps, all are taken
into account and for completeness also added here.

∆φ=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
φd st −φst for φst <φd st , d = 1

2π+φd st −φst for φst >φd st , d = 1

φst −φd st for φst >φd st , d = 0

2π+φst −φd st for φst <φd st , d = 0

(4.11)

Following the example being shown in figure 4.7, the segment after the initial circle step 0 with
the lowest entropy is segment 3. Because of this, the destination position to fly for this step
P P

d st = P P
Us1

= P P
S3.

rPUs0

PUs1

Figure 4.7: Method 1’s step 1 example trajectory from the position P P
Us0

, which is reached after step 0, to

segment 3 with the lowest entropy at P P
Us1

= P P
S3

Step 2 to 4: Lowest Neighbor Entropy and Keep Direction

After reaching the segment with the lowest entropy in the previous step, in step 2 the direction
towards the next and following segments to scan is determined.
Independent of the direction d the previous step 1 was reached, in both directions the two
neighbor segments’ numbers of points are compared. The direction to the segment with the
lower entropy is defined as the direction for the remaining steps. In the case of an equal en-
tropy it is flying in negative direction d = 0.
By only inspecting the neighbor segments in step 2 and using the same direction for the steps
3 and 4 to visit the remaining two segments after another, it is possible to keep the distance to
fly at a minimum.
Due to the constant angular velocity ω and fixed radius r during the whole path, a lower dis-
tance results in a proportional lower time to visit all remaining segments.
Continuing from the previous example and the start position being the position after step 1,
P P

st = Ps1, the neighbor segment with the lowest entropy to segment 3 is segment 0. This leads
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to P P
d st = P P

Us2
= P P

S0 and the UAV flying to segment 0 in the negative direction during step 2.
This can be seen as in figure 4.8 as well as following the same direction for step 3 and 4 such
that P P

Us3
= P P

S1 and P P
Us4

= P P
S2.

r

PUs1 PUs4

PUs3PUs2

Figure 4.8: Method 2’s example trajectories of step 2, 3 and 4

4.3.2 Results

Results of multiple flights showing the different number of points for each step can be found in
this section’s tables 4.4 to 4.7 and figures 4.9 to 4.12.
Those provide all possible combinations for a radius r = 2m and r = 3m with an angular veloc-
ity ω= 0.25rad/s and ω= 0.55rad/s starting step 0 in positive direction d = 1 at P P

Ui ni t
:

P P
Ui ni t

=
⎡⎣ r

π

zUi ni t = 3.0

⎤⎦ (4.12)

t [s] step segment id ntot al nseg 0 nseg 1 nseg 2 nseg 3

25.13 0 −1 2460 1068 355 316 721
35.57 1 2 2404 427 350 493 1134
42.86 2 1 2538 427 737 615 759
50.16 3 0 2945 955 800 431 759
57.45 4 3 3120 1092 671 431 926

Table 4.4: Number of points n after each step when flying the “circular scan with static height au-
tonomous segment rescan” with a radius of 2m (1m distance to the object surface) with ω= 0.25rad/s
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Figure 4.9: Plots showing the number of points after each step when flying the “circular scan with static
height autonomous segment rescan” with a radius of 2m (1m distance to the object surface) with ω =
0.25rad/s

t [s] step segment id ntot al nseg 0 nseg 1 nseg 2 nseg 3

11.42 0 −1 2496 1129 463 343 561
16.72 1 1 2704 1238 338 343 785
20.6 2 2 2825 549 1096 610 570

24.46 3 3 2901 549 703 903 746
28.32 4 0 3274 892 703 522 1157

Table 4.5: Number of points n after each step when flying the “circular scan with static height au-
tonomous segment rescan” with a radius of 2m (1m distance to the object surface) with ω= 0.55rad/s
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Figure 4.10: Plots showing the number of points after each step when flying the “circular scan with
static height autonomous segment rescan” with a radius of 2m (1m distance to the object surface) with
ω= 0.55rad/s

t [s] step segment id ntot al nseg 0 nseg 1 nseg 2 nseg 3

25.13 0 −1 3554 1037 800 810 907
35.58 1 1 3560 885 994 812 869
42.87 2 2 3500 830 864 935 871
50.17 3 3 3340 830 798 763 949
57.46 4 0 3258 906 798 704 850

Table 4.6: Number of points n after each step when flying the “circular scan with static height au-
tonomous segment rescan” with a radius of 3m (2m distance to the object surface) with ω= 0.25rad/s
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Figure 4.11: Plots showing the number of points after each step when flying the “circular scan with
static height autonomous segment rescan” with a radius of 3m (2m distance to the object surface) with
ω= 0.25rad/s

t [s] step segment id ntot al nseg 0 nseg 1 nseg 2 nseg 3

11.42 0 −1 3529 944 875 1037 673
13.87 1 3 3573 835 854 1042 842
17.73 2 0 3657 771 854 1060 972
21.6 3 1 3712 960 873 1043 836

25.46 4 2 3671 800 992 1065 814

Table 4.7: Number of points n after each step when flying the “circular scan with static height au-
tonomous segment rescan” with a radius of 3m (2m distance to the object surface) with ω= 0.55rad/s
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Figure 4.12: Plots showing the number of points after each step when flying the “circular scan with
static height autonomous segment rescan” with a radius of 3m (2m distance to the object surface) with
ω= 0.55rad/s

4.3.3 Discussion

Comparing the results for r = 2m in tables 4.4 and 4.5 and figures 4.9 and 4.10 with those for
r = 3m of tables 4.6 and 4.7 and figures 4.11 and 4.12, one can identify a significant differ-
ence in the total number of map points ntot al . On the one hand, the reason might be a larger
area of the object being visible due to the higher distance, but on the other hand, more wrong
detected points could also be a reason. The latter cannot be excluded, especially due to in-
dications found in the method described in section 4.2. There an increase in the number of
rotations, for r = 3m, was leading to a decrease in the quantity of map points, which was indi-
cating a high number of wrong detected map points for fewer rescans.
Furthermore, in the case of r = 2m, the total number of points for the whole object is notice-
ably increasing. However, for r = 3m it is not changing significantly over the steps. Also by
investigating the number of points of the segments, the first show a higher variation indicating
a high number of points getting not only detected but also discarded. When passing segments
obviously nseg a is increasing due to new detected points. After it is out of the FOV, while scan-
ning other segments, only the error correction is affecting nseg a by culling map points.
Within step 2 to 4, the UAV is passing the remaining half of the previously reached segment and
the first half of the destination segment of the current step. Due to this in the following step
points for this segment can be accumulated, after a segment was reached in the previous step.
In the flight presented in table 4.4 and figure 4.9, one can identify this for example for segment
2. Its P P

S2 is reached in step 1, as it had the lowest entropy after step 0 with 316 map points,
increasing nseg 2 to 493. As in the next step 2 to reach the neighbor segment 1 its remaining half
gets passed, afterward nseg 2 = 615. In step 3, where segment 2 is not visible only ORB-SLAM2’s
error correction seems affecting it as nseg 2 = 431.
Slightly different for step 1 either a half or a full and a half segment can be passed. The second
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also holds for the currently investigated flight. To reach P P
S2 the UAV has to completely pass

segment 3 as φUi ni t <φS3 <φS2 and according to equation (4.10) in this case d = 1.
This leads to an increase of points in segment 3 after step 1 but in contrast to segment 2 already
to a decrease in the following step.
A flight in the different direction, but also passing a full segment in step 1, can be found in ta-
ble 4.5 and figure 4.10. Due to φUi ni t > φS0 > φS1 and according to equation (4.10) d = 0, the
UAV is after the initial circle with d = 1 changing direction and thereby immediately passing
segment 0 and the first half of segment 1. In the case of segment 0, it is increasing the quantity
of map points but nseg 1 is decreasing. This assumes that the amount of culled points is exceed-
ing the newly detected ones or the aggregation of the latter is delayed, which could also cause
the relatively high increase after the following step.
The other instance, where a half segment is passed in step 1, occurs for the flight of table 4.7
and figure 4.12 when flying from P P

Ui ni t
to P P

S3. In contrast to the flights with r = 2m, a more
steady quantity of map points per segment can be observed.
A reason for this, in general when r = 3m, could be more keyframes are created due to a higher
amount of detected features resulting from the larger area of the object within the FOV. Fur-
thermore, due to the higher radius, a longer distance is flight, which causes longer flight time.
This leads to more captured frames and therefore the possibility of more created keyframes.
More keyframes would offer the opportunity for more culled map points within the duration
of one step. Another reason could be as previously mentioned that already in section 4.2 for
r = 3m few rescans might avoid proper map point culling.
In contrast to changing the radius, changing the angular velocity ω does not lead to noticeable
different characteristics in the results. This supposes that ORB-SLAM2 at this order of magni-
tude behaves stably.

4.4 Method 3: Circular Scan with Vertical Autonomous Segment Rescan

This method is very similar to the previously described one in section 4.3. It also follows the
idea of segment rescanning and evolves it with additional steps for flying a vertical trajectory at
each segment.
By also reaching positions providing a closer view of areas with probably a low number of map
points or no points, it should increase the entropy significantly.

hdi f f

PUs0

r

PUs1

PUs2

PUs3

PUs4
PUs5

PUs6

PUs8

PUs7

Figure 4.13: Method 3’s trajectories for each step after the initial circle step 0
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4.4.1 Path Steps

Step 0 and 1: Initial Circle and Lowest Global Entropy

These first two steps are identical to those described in section 4.3.1.

Step 3, 5, 7: Lowest Neighbor Entropy and Keep Direction

The steps to reach the next segment are nearly identical to the previously described method’s
steps 2 to 4 in section 4.3.1. Only their P P

st and P P
d st might change in the z-coordinate due to

the additional vertical steps described in the following description of steps 2, 4, 6 and 8.

Step 2, 4, 6 and 8: Vertical Segment Scan

Dependent on the radius, or rather the distance, to the object, a varying large area is covered by
the stereo camera’s FOV. By also flying the initial circle in this method or the whole method, as
in section 4.3, around the top of the object, the lower regions of the cylinder might suffer from
a low density of points or are not covered.
To overcome this in these steps a vertical motion along the previously reached segment is flight.
The desired velocity vz and the height difference hdi f f have to be provided to the algorithm to
calculate the limiting flight time ∆ts for the step as in equation (4.13).

∆ts =
hdi f f

vz
(4.13)

The direction of the motion has to alternate in negative or positive z-direction starting from the
step’s z-position at the begin of the trajectory z0. As step 0 and step 1 do not change the height
of the UAV, for the first vertical segment scan, step 2 follows its trajectory z(t ) represented by
line 3 in algorithm 4.2.
Visualizing this in figure 4.13, after the example flight of step 1 from P P

Us0
to P P

Us1
= P P

S2, for step

2 it is going down the distance hdi f f to P P
Us2

.

After a flight of step 3 to the next segment P P
Us3

= P P
S1, the UAV is flying to the original height. To

reach PUs4 in step 4 the trajectory of line 5 in algorithm 4.2 is calculated.
Step 6 follows the same principle as step 2 and step 8 the same as step 4.

Algorithm 4.2: Calculation of z(t ) of the trajectory for a vertical step of ∆ts duration

1while t <∆ts do
2if step 2 ∨ step 6 then
3z(t ) ← z0 − vz t
4else
5z(t ) ← z0 −hdi f f + vz t
6end
7end

4.4.2 Results

In this section, the results of multiple object coverage flights are presented with different angu-
lar velocitiesω, vertical velocities vz and at a different radius r around the cylinder in tables 4.8
to 4.15 and figures 4.14 to 4.21.
It was already elaborated on ORB-SLAM2 losing track if not being restarted after a previous cov-
erage flight in section 3.3. For the methods presented in sections 4.2 and 4.3, this was necessary
as well, but the behavior and consequences here are, compared to the others, more demonstra-
tive and, due to this, provided in table 4.16 and figure 4.22.
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t [s] step segment id ntot al nseg 0 nseg 1 nseg 2 nseg 3

25.13 0 −1 2660 1061 370 400 829
35.58 1 1 2660 1061 370 400 829
46.58 2 1 2812 477 1255 415 665
53.88 3 2 3160 452 1103 940 665
64.88 4 2 3558 452 913 1513 680
72.17 5 3 3463 447 910 1135 971
83.18 6 3 3912 464 910 912 1626
90.47 7 0 4304 1043 910 894 1457

101.47 8 0 4538 1510 926 894 1208

Table 4.8: Number of points n after each step when flying the “circular scan with vertical autonomous
segment rescan” at each segment with a radius of 2m (1m distance to the object surface) with ω =
0.25rad/s, vz = 0.15m/s
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Figure 4.14: Plots showing the number of points after each step when flying the “circular scan with
vertical autonomous segment rescan” at each segment with a radius of 2m (1m distance to the object
surface) with ω= 0.25rad/s, vz = 0.15m/s
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t [s] step segment id ntot al nseg 0 nseg 1 nseg 2 nseg 3

11.42 0 −1 2908 1461 503 360 584
16.72 1 2 2407 467 375 367 1198
27.72 2 2 2863 457 376 1345 685
31.58 3 1 3341 457 696 1508 680
42.6 4 1 3381 474 1328 899 680

46.46 5 0 3460 599 1287 894 680
57.46 6 0 4190 1716 890 893 691
61.32 7 3 4408 1731 872 893 912
72.32 8 3 4502 1122 871 900 1609

Table 4.9: Number of points n after each step when flying the “circular scan with vertical autonomous
segment rescan” at each segment with a radius of 2m (1m distance to the object surface) with ω =
0.55rad/s, vz = 0.15m/s
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Figure 4.15: Plots showing the number of points after each step when flying the “circular scan with
vertical autonomous segment rescan” at each segment with a radius of 2m (1m distance to the object
surface) with ω= 0.55rad/s, vz = 0.15m/s
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t [s] step segment id ntot al nseg 0 nseg 1 nseg 2 nseg 3

25.13 0 −1 2495 1079 354 330 732
35.57 1 2 2380 385 344 824 827
41.57 2 2 2897 385 352 1439 721
48.86 3 1 3208 385 788 1328 707
54.86 4 1 3544 403 1340 1094 707
62.15 5 0 3494 396 1305 1086 707
68.15 6 0 4142 1593 750 1074 725
75.44 7 3 4278 1203 733 1074 1268
81.44 8 3 4430 927 733 1085 1685

Table 4.10: Number of points n after each step when flying the “circular scan with vertical autonomous
segment rescan” at each segment with a radius of 2m (1m distance to the object surface) with ω =
0.25rad/s, vz = 0.3m/s
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Figure 4.16: Plots showing the number of points after each step when flying the “circular scan with
vertical autonomous segment rescan” at each segment with a radius of 2m (1m distance to the object
surface) with ω= 0.25rad/s, vz = 0.3m/s
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t [s] step segment id ntot al nseg 0 nseg 1 nseg 2 nseg 3

11.42 0 −1 2502 1041 451 348 662
16.73 1 2 2432 453 376 416 1187
22.73 2 2 2891 453 380 1283 775
26.59 3 1 3091 453 577 1301 760
32.61 4 1 3403 468 1316 859 760
36.47 5 0 3588 695 1290 843 760
42.47 6 0 3991 1483 889 843 776
46.33 7 3 4264 1537 871 843 1013
52.33 8 3 4448 974 871 852 1751

Table 4.11: Number of points n after each step when flying the “circular scan with vertical autonomous
segment rescan” at each segment with a radius of 2m (1m distance to the object surface) with ω =
0.55rad/s, vz = 0.3m/s
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Figure 4.17: Plots showing the number of points after each step when flying the “circular scan with
vertical autonomous segment rescan” at each segment with a radius of 2m (1m distance to the object
surface) with ω= 0.55rad/s, vz = 0.3m/s
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t [s] step segment id ntot al nseg 0 nseg 1 nseg 2 nseg 3

25.13 0 −1 3617 1065 862 802 888
35.57 1 2 3464 858 854 915 837
46.57 2 2 4035 858 879 1469 829
53.86 3 3 4385 858 875 1518 1134
64.87 4 3 4831 919 875 1528 1509
72.16 5 0 4705 997 877 1515 1316
83.17 6 0 5158 1414 906 1516 1322
90.46 7 1 5612 1444 1339 1516 1313

101.47 8 1 5962 1463 1616 1570 1313

Table 4.12: Number of points n after each step when flying the “circular scan with vertical autonomous
segment rescan” at each segment with a radius of 3m (2m distance to the object surface) with ω =
0.25rad/s, vz = 0.15m/s
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Figure 4.18: Plots showing the number of points after each step when flying the “circular scan with
vertical autonomous segment rescan” at each segment with a radius of 3m (2m distance to the object
surface) with ω= 0.25rad/s, vz = 0.15m/s
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t [s] step segment id ntot al nseg 0 nseg 1 nseg 2 nseg 3

11.42 0 −1 4249 1251 1330 1145 523
13.86 1 3 4297 1118 1298 1135 746
24.87 2 3 4984 1125 1298 1189 1372
28.73 3 0 5424 1334 1298 1186 1606
39.73 4 0 5621 1652 1330 1184 1455
43.6 5 1 5621 1651 1331 1184 1455
54.6 6 1 5975 1556 1744 1235 1440

58.47 7 2 6599 1555 1896 1708 1440
69.47 8 2 6715 1555 1799 1891 1470

Table 4.13: Number of points n after each step when flying the “circular scan with vertical autonomous
segment rescan” at each segment with a radius of 3m (2m distance to the object surface) with ω =
0.55rad/s, vz = 0.15m/s
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Figure 4.19: Plots showing the number of points after each step when flying the “circular scan with
vertical autonomous segment rescan” at each segment with a radius of 3m (2m distance to the object
surface) with ω= 0.55rad/s, vz = 0.15m/s
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t [s] step segment id ntot al nseg 0 nseg 1 nseg 2 nseg 3

25.13 0 −1 3560 1073 870 721 896
35.57 1 2 3447 846 844 919 838
41.57 2 2 3748 846 868 1237 797
48.86 3 3 4219 848 870 1404 1097
54.87 4 3 4662 923 870 1410 1459
62.16 5 0 4547 913 870 1409 1355
68.18 6 0 4966 1351 900 1398 1317
75.47 7 1 5489 1485 1294 1398 1312
81.47 8 1 5880 1493 1627 1448 1312

Table 4.14: Number of points n after each step when flying the “circular scan with vertical autonomous
segment rescan” at each segment with a radius of 3m (2m distance to the object surface) with ω =
0.25rad/s, vz = 0.3m/s
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Figure 4.20: Plots showing the number of points after each step when flying the “circular scan with
vertical autonomous segment rescan” at each segment with a radius of 3m (2m distance to the object
surface) with ω= 0.25rad/s, vz = 0.3m/s
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t [s] step segment id ntot al nseg 0 nseg 1 nseg 2 nseg 3

11.42 0 −1 3116 940 783 759 634
16.73 1 2 3348 707 764 878 999
22.73 2 2 3987 691 800 1652 844
26.59 3 1 4399 691 999 1879 830
32.59 4 1 5106 755 1701 1820 830
36.45 5 0 5114 852 1635 1797 830
42.45 6 0 5387 1204 1528 1789 866
46.31 7 3 6003 1552 1530 1789 1132
52.32 8 3 6283 1422 1529 1817 1515

Table 4.15: Number of points n after each step when flying the “circular scan with vertical autonomous
segment rescan” at each segment with a radius of 3m (2m distance to the object surface) with ω =
0.55rad/s, vz = 0.3m/s
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Figure 4.21: Plots showing the number of points after each step when flying the “circular scan with
vertical autonomous segment rescan” at each segment with a radius of 3m (2m distance to the object
surface) with ω= 0.55rad/s, vz = 0.3m/s
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t [s] step segment id ntot al nseg 0 nseg 1 nseg 2 nseg 3

25.13 0 −1 2634 1125 387 392 730
35.57 1 1 2970 790 1111 398 671
41.58 2 1 2973 749 1157 396 671
48.87 3 2 2973 749 1157 396 671
54.88 4 2 2973 749 1157 396 671
62.17 5 3 2973 749 1157 396 671
68.17 6 3 3498 728 739 414 1617
75.46 7 0 3897 1379 739 394 1385
81.46 8 0 4155 1815 753 394 1193

Table 4.16: Number of points n after each step when flying the “circular scan with vertical autonomous
segment rescan” at each segment with a radius of 2m (1m distance to the object surface) with ω =
0.25rad/s, vz = 0.3m/s. ORB-SLAM2 losing track during step 2.
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Figure 4.22: Plots showing the number of points after each step when flying the “circular scan with
vertical autonomous segment rescan” at each segment with a radius of 2m (1m distance to the object
surface) with ω= 0.25rad/s, vz = 0.3m/s. ORB-SLAM2 losing track during step 2.

4.4.3 Discussion

The impact of the newly introduced steps for the vertical scan can be identified by a noticeable
increase of the nseg a of the different segments at the corresponding steps 2, 4, 6 and 8 in the
cases where tracking was not lost as in tables 4.8 to 4.15 and figures 4.14 to 4.21. A large part
of the in these steps gained increase in additional map points seems to be not considered as
wrong detected features by ORB-SLAM2. Compared to the results without them in section 4.3
even the total number of map points for r = 3m is increasing significantly over steps, as one
can see in tables 4.12 to 4.15 and figures 4.18 to 4.21.
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This seems to be also the cause that after all steps ntot al increased to a far higher quantity than
in the previous method with static height for r = 2m and r = 3m.
Besides the changes of nseg a for transitions to the next segment showing the same characteris-
tics as described in section 4.3, for the cases where r = 3m an influence of the vertical scan can
be found. For segments reached in step 1 and flight down in step 2 or reached in step 5 and
flight down in step 6, in the step after, which is performing the transition to the next segment,
nseg a is increasing. In unlike for segments reached in step 3 and flight up in step 4, during the
transition step afterwards the number of map points is decreasing. Because for the first case,
the transition is at z=1.5m, but for the second case at z = 3m. Therefore at z = 3m, the UAV is
rescanning along the same path as the initial circle of step 0.
The rescan at z = 3m might lead to a lower quantity of new detected points and might be
outnumbered by the map points culled due to error correction. Another similarity with the
previous method, where flights with r = 2m showed also a less steady quantity of map points
per segment than those with r = 3m, strengthens the raised assumptions of more correction
steps within a step or few rescans leading to less wrong detected map points getting culled.
Furthermore, changing the angular velocity ω again does not lead to noticeable different char-
acteristics in the results. Same holds for vz of the vertical scan steps. Leading to the assumption
that ORB-SLAM2 in z-direction for this order of magnitude behaves stably.
Therefore, one can compare the result of this method for a radius of 2m, with ω =
0.55rad/s, vz = 0.3m/s, presented in table 4.11 and figure 4.17, with the results of flying the he-
lix method with two rotations at a radius of 2m, with ω= 0.25rad/s, in table 4.1 and figure 4.4.
In the first case, a total duration of 52.33s leads to 4448 map points detected by ORB-SLAM2.
This is noticeably more than the 3823 points in the case of the helix flight, but for a similar
duration of 50.27s.
This shows the potential in this method as it is outperforming the common helix method for
similar flight time and could reduce flight time at higher velocities.
In table 4.16 and figure 4.22 the results of a flight with ORB-SLAM2 losing track during step 2 is
shown. One can notice it by the constant number of map points after step 2 to 5.
Although ORB-SLAM2 lost tracking, due to not being restarted before the test flight, is an
unpleasant outcome, it provides the possibility to show a basic degree of robustness of the
trajectory planning method. As long as during step 0 the tracking is not lost but at a later step,
it is possible to relocalize the UAV and continue building the map. Even if the tracking is lost as
in this case at segment 1, it is found again at the opposite side of the cylinder at segment 3.
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5 Conclusions

The initial question of this research was the following:

“Which SLAM algorithm would be useful to create 3D visual models on-the-fly?”

Due time constraints searching the literature as described in section 1.3.1 was necessary to de-
termine a suitable candidate. Following previous studies ORB-SLAM2, by Mur-Artal and Tar-
dos (2017), was considered as the most appropriate to be further invested in chapter 3. There
it turned out that it shows weaknesses when textures on the object of interest are used, which
show a repetitive pattern. This was related to its loop closing functionality. Loop closing is in-
tended to reduce the position error, which was also shown by Gaspar et al. (2018) and Giubilato
et al. (2018). The same was expected for this research but could not be confirmed. However,
with textures that contained some variety, a reliable tracking could be discovered in the simula-
tion. Furthermore, the position estimated by ORB-SLAM2 showed an absolute error of similar
magnitude as discovered in a real-world experiment by Giubilato et al. (2018).
Also, the following question could be answered:

“Does multiple coverage of an object’s surface lead to an improved 3D visual model of
it?”

In the case of the helix method in section 4.2, it was shown that increasing rotations leads at
approximately 25 rotations, for each distance to the object, to a saturation in the total number
of points. On the one hand, this indicated that by further increasing them the point cloud 3D
model of the object cannot be improved anymore, but on the other hand it did until this point
by multiple coverage.
Accordingly, the two test series for a radius of 2m and 2.5m showed an increase of map points
until reaching saturation. An interesting outcome was that for a radius of 3m the number
of points was decreasing while increasing rotations, in contrast to the other two test series.
This suggests that the higher number of points from flights with lower rotations originates in
wrongly detected features. Removing wrong detected map points is thereby the other type of
improvement of a point cloud, that could be discovered.
This insight also showed that there might be uncertainty if the increase in the number of map
points is representing always an improvement of the model. This uncertainty required inves-
tigations in the behavior after each step of the other two methods in sections 4.3 and 4.4, to
examine the following research question:

“In order to autonomously improve the 3D visual model of an object, is it possible to
determine suitable flight directions on-the-fly, which lead also to a reduction in flight
time?”

Generally, the variability in the number of map points could be related to the point culling of
ORB-SLAM2.
In the case of the method “circular scan with vertical autonomous segment rescan”, in sec-
tion 4.4, also a significant increase in the number of points could be detected during all flights.
Furthermore, for different vertical and angular velocities, it is showing similar results. Also, a
to a helix test flight comparable flight of this method could be determined and shown to be
capable of outperforming it for similar flight time and showing potential to reduce flight time
at higher velocities.
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6 Future work

Especially due to time limitations some extensions of this work could not be considered, but
are presented in this chapter for possible future work(s):

• Fine-grained 3D segmentation. In this work, the whole object was split in four quarters
on a two-dimensional plane. Using for example voxels to segment the point cloud in 3D
could be used to develop more complex multiple coverage methods.

• Add accuracy as an additional constraint for reasoning on the model improvement. Con-
sidering the impact of map point culling of ORB-SLAM2 on the number of points, it might
be beneficial to reason if it increases the accuracy of a resulting model.

• Test the error of the by ORB-SLAM2 estimated camera orientation compared to the real
one. Similar as in the case of its position in section 3.4, this could provide insight regard-
ing the accuracy of ORB-SLAM2 in the simulation.

• Usage of different shaped objects of interest. Although it might have been beneficial to
compare the different methods with an object that provides a constant distance to the
camera, others could be providing additional insight.

• Real-world experiments. By repeating the tests with the same setup in real it should be
possible to determine if the simulation is an appropriate testbed.
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A Implementation

In this appendix details about the implementation of this research are presented.
The whole work is based on the Robot Operating System (ROS) middleware (Open Robotics
(2019b)) in combination with the Gazebo robotics simulator (Open Robotics (2019a)).
Using the RotorS Gazebo simulator framework, of Furrer et al. (2016), for it provides several
advantages due to its modular design. One is the possibility to use own designed UAV-models
within it, in this case, “betaX” shown in figure 1.2. The other to provide an own controller for
it. The controller for “betaX”, by Rashad et al. (2019), used in this research will be published
soon. In total the structure of its modular design is also aimed towards matching a real UAV as
close as possible. According to Furrer et al. (2016), this should provide easy portability of used
components to be also used on a real UAV without any changes in the ideal case.
In the following appendices A.1 and A.2, the data flow between the different components for
scenarios in this research is shown.
One of the components is ORB-SLAM2 by Mur-Artal and Tardos (2017). It has to be stated that
an improved version has been used. This version was made public by the appliedAI Initiative
(2019). It is more comprehensive and up-to-date with respect to its integration into ROS. Its
point cloud output and the pose of the UAV relative to it has been in every scenario observed
with rviz (Open Robotics (2019c)). For simplicity, this is neither mentioned in appendices A.1
and A.2 nor added to figures A.1 and A.2.

A.1 Error Between “Ground Truth” and Estimated Flight Trajectory

In section 3.4 the absolute error, on the x y-plane |∆x|+ |∆y | and in z-direction |∆z|, between
the camera position PW

estC (t ), estimated by ORB-SLAM2, and the “physical”/ground truth po-
sition within the simulation PW

phC (t ), was investigated. The interaction of components needed
for this is described here.
The simulation, represented by the RotorS block in figure A.1, is aware of the physical camera
pose but not of the estimated camera pose by itself. It is retrieved from ORB-SLAM2, which has

RotorS ORB-SLAM2

rqt Multiplot
 cams plot re-
broadcaster

stereo frame

est. camera pose 

physical camera pose
estimated camera pose

position error

Figure A.1: Data flow between the involved components when measuring the error between “ground
truth” and estimated flight trajectory
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to get stereo frames from the simulation’s camera to estimate it as described in section 2.3.1.
The “physical”, as well as the estimated camera pose, are taken from the simulation by the
“cams plot re-broadcaster”. This component was developed for this research to calculate the
position error and provide it to rqt Multiplot. The latter has been developed by ANYbotics
(2019). It was used to show live the error during the simulated flights of the UAV and also for
capturing it related to the simulation time to be presented as a plot in figure 3.4.

A.2 Trajectory Planning Methods for 3D Reconstruction

Different trajectory planning methods have been described in chapter 4. Two of them, which
are expressed in sections 4.3 and 4.4, are doing online trajectory planning based on the point
cloud provided by ORB-SLAM2.
To create and continuously improve this map of points, as described in sections 2.3.2 and 2.3.3,
it receives in this work stereo frames. These stereo frames are gained from a simulated stereo
camera in the simulation, which is represented as the RotorS block in the dataflow diagram in
figure A.2.
Originating at ORB-SLAM2 the point cloud is received by the “Point Cloud Processor”. It was
developed for this research to determine the number of points per segments and do the pre-
viously mentioned online trajectory planning. Moreover, to remove the majority of the map
point outliers, it is filtering out points outside of a cuboid, which is enclosing the object. The
results of the methods, which are described in chapter 4, are also written into log files by the
“Point Cloud Processor”.
The outcome of its trajectory planning represents a constantly published setpoint, consisting
of the position and yaw angle, sent to the graphical user interface (GUI). The position is calcu-
lated as described in chapter 4, but the yaw angle is set such that the camera on the UAV points
always towards the cylinder. The GUI, which is generally capable of calculating offline trajecto-
ries and sending the regarding setpoints to RotorS’ UAV controller, in this case, is overriding its
calculated setpoint and providing the one from the “Point Cloud Processor” to the simulation.

RotorS ORB-SLAM2

Point Cloud 
Processor

GUI

stereo frame

setpoint

setpoint point cloud

Figure A.2: Data flow between the involved components when executing the trajectory planning meth-
ods for 3D reconstruction
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B Evaluated Textures

In figure B.1 the textures, which were used in this research, and their names, can be found.
Those were taken either from opengameart.org (Open Game Art (2019)) or Dmitriy Chugai
(2019) and were released for personal and commercial use.

(a) clean concrete (b) concrete

(c) factory rock wall (d) old scratched metal

(e) red grey bricks (f ) worn aluminum

Figure B.1: Different textures, which were used in this research, with their names
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