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Abstract

Unstructured information in electronic health
records provide an invaluable resource for
medical research. To protect the confiden-
tiality of patients and to conform to privacy
regulations, de-identification methods au-
tomatically remove personally identifying
information from these medical records. How-
ever, due to the unavailability of labeled data,
most existing research is constrained to En-
glish medical text and little is known about the
generalizability of de-identification methods
across languages and domains. In this study,
we construct a novel dataset consisting of the
medical records of 1260 patients among three
domains of Dutch healthcare. We test the
generalizability across languages and domains
for three de-identification methods. Our
experiments show that an existing rule-based
method specifically developed for the Dutch
language fails to generalize to this new data,
and that a state-of-the-art neural architecture
outperforms rule-based and feature-based
methods when testing on new domains even
when limited training data is available.

1 Introduction

With the strong adoption of electronic health
records (EHR), large quantities of unstructured
medical patient data become available. This data
offers significant opportunities to advance medical
research and to improve healthcare related services.
However, it has to be ensured that the privacy of
a patient is protected when performing secondary
analysis of medical data. This is not only an ethical
prerequisite, but also a legal requirement imposed
by privacy legislations such as the US Health Insur-
ance Portability and Accountability Act (HIPAA)
and the European General Data Protection Reg-
ulation (GDPR). To facilitate privacy protection,
de-identification has been proposed as a process
that removes or masks any kind of protected health

information (PHI) of a patient such that it becomes
difficult to establish a link between an individual
and the data (Meystre, 2015). What type of infor-
mation constitutes PHI is in part defined by privacy
laws of the corresponding country. For instance,
the HIPAA regulation defines 18 categories of PHI
including names, geographic locations, and phone
numbers (HIPAA, 2012). According to the HIPAA
safe-harbor rule, data is no longer personally iden-
tifying and subject to the privacy regulation if these
18 PHI categories have been removed.

As most EHRs consist of unstructured, free-form
text, manual de-identification is a time-consuming
and error-prone process (Neamatullah et al., 2008;
Douglass et al., 2004) which does not scale to
the amounts of data needed for many data min-
ing and machine learning scenarios. Therefore,
automatic de-identification methods are desirable.
Previous research proposed a wide range of meth-
ods that make use of natural language processing
techniques including rule-based matching and ma-
chine learning (Meystre, 2015). However, most
evaluations are constrained to medical records writ-
ten in the English language. The generalizability
of de-identification methods across languages and
domains is largely unexplored.

To test the generalizability of existing de-
identification methods, we annotated a new dataset
of 1260 medical records from three sectors of
Dutch healthcare: elderly care, mental care and
disabled care (Section 3). We then compare the per-
formance of the following three de-identification
methods on this data (Section 4):

1. A rule-based system named DEDUCE
developed for Dutch psychiatric clinical
notes (Menger et al., 2018)

2. A feature-based Conditional Random Field
(CRF) as described in Liu et al. (2015)

3. A deep neural network with a bidirectional



long short-term memory architecture and a
CRF prediction layer (BiLSTM-CRF) (Akbik
et al., 2018)

We test the transferability of each method across
three domains of Dutch healthcare. Finally, the
generalizability of the methods is compared across
languages using two widely used English bench-
mark corpora (Section 5).

This paper makes two main contributions. First,
our experiments show that an existing rule-based
de-identification method for the Dutch language
fails to generalize to a new dataset of Dutch medi-
cal records. Second, we offer a novel comparison
of several state-of-the-art de-identification methods
both across languages and domains. Our experi-
ments show that a popular neural architecture gen-
eralizes best even when limited amounts of training
data are available. The neural method only consid-
ers word/character sequences which we find to be
sufficient and more robust across languages and
domains compared to the structural features em-
ployed by traditional machine learning approaches.
However, our experiments also reveal that the neu-
ral method may still experience a substantially
lower performance in new domains. A direct con-
sequence for de-identification practitioners is that
pre-trained models require additional fine-tuning
to be fully applicable to new domains.

The implementation of the de-identification sys-
tems, pre-trained models and code for running
the experiments is available at: github.com/
nedap/deidentify

2 Related Work

Previous work on de-identification can be roughly
organized into four groups: (1) creation of bench-
mark corpora, (2) approaches to de-identification,
(3) work on languages other than English and (4)
cross-domain de-identification.

Various English benchmark corpora have been
created including nursing notes, longitudinal pa-
tient records and psychiatric intake notes (Neamat-
ullah et al., 2008; Stubbs and Uzuner, 2015; Stubbs
et al., 2017). Furthermore, Deléger et al. (2012)
created a heterogeneous dataset of documents of
22 different types. While most existing datasets
only contain records of a single medical institute,
our dataset includes records from 9 different in-
stitutions that are active in the Dutch healthcare
sector. Similar to the corpus created by Deléger

et al. (2012), our dataset consists of heterogeneous
documents that significantly vary in structure, con-
tent and writing style.

Most existing de-identification approaches are
either rule-based or machine learning based. Rule-
based methods combine various heuristics in form
of patterns, lookup lists and fuzzy string matching
to identify PHI (Gupta et al., 2004; Neamatullah
et al., 2008). The majority of machine learning
approaches employ feature-based CRFs (Aberdeen
et al., 2010; He et al., 2015), ensembles combin-
ing CRFs with rules (Stubbs et al., 2015a) and
most recently also neural networks (Dernoncourt
et al., 2017; Liu et al., 2017). A thorough overview
of the different de-identification methods is given
in Meystre (2015). In this study, we compare
several state-of-the-art de-identification methods.
With respect to rule-based approaches, we apply
DEDUCE, a recently developed method for Dutch
data (Menger et al., 2018). For a feature-based ma-
chine learning method, we re-implement the token-
level CRF by Liu et al. (2015). Previous work
on neural de-identification used a BiLSTM-CRF
architecture with character-level and ELMo embed-
dings (Dernoncourt et al., 2017; Khin et al., 2018).
Similarly, we use a BiLSTM-CRF but apply recent
advances in neural sequence modeling by using
contextual string embeddings (Akbik et al., 2018).

To the best of our knowledge, we are the first
study to offer a comparison of de-identification
methods across languages. With respect to de-
identification in other languages, only two stud-
ies consider Dutch data. Scheurwegs et al. (2013)
apply a Support Vector Machine and a Random
Forest classifier to a dataset of 200 clinical records.
Menger et al. (2018) developed and released a rule-
based method on 400 psychiatric nursing notes and
treatment plans of a single Dutch hospital. Further-
more, de-identification in several other languages
has been studied including German, French, Ko-
rean and Swedish (Richter-Pechanski et al., 2018;
Névéol et al., 2018).

With respect to cross-domain de-identification,
the 2016 CEGS N-GRID shared task evaluated the
portability of pre-trained de-identification methods
to a new set of English psychiatric records (Stubbs
et al., 2017). Overall, the existing systems did not
perform well on the new data. Here, we provide
a similar comparison by cross-testing on three do-
mains of Dutch healthcare.

github.com/nedap/deidentify
github.com/nedap/deidentify


Datset Our Corpus i2b2 Nursing

Language Dutch English English
Documents 1260 1304 2434
Patients 1260 296 148
Tokens 448,795 1,057,302 444,484
Vocabulary 25,429 36,743 19,482
PHI categories 16 32 10
PHI instances 17,464 28,872 1779
Median PHI/doc. 9 18 0

Table 1: Overview of the datasets used in this study.

3 Datasets

This section describes the construction of our
Dutch benchmark corpus. The data was sam-
pled from 9 healthcare institutes and annotated
for PHI according to a tagging scheme derived
from Stubbs and Uzuner (2015). Furthermore, fol-
lowing common practice in the preparation of de-
identification corpora, we replaced PHI instances
with realistic surrogates to comply with privacy
regulations. To compare the performance of the
de-identification methods across languages, we use
the English i2b2/UTHealth and the nursing notes
corpus (Stubbs and Uzuner, 2015; Douglass et al.,
2004). An overview of the three datasets can be
found in Table 1.

3.1 Data Sampling

We sample data from a snapshot of the databases
of 9 healthcare institutes with a total of 83,000 pa-
tients. Three domains of healthcare are equally
represented in this snapshot: elderly care, mental
care and disabled care. We consider two classes of
documents to sample from: surveys and progress re-
ports. Surveys are questionnaire-like forms which
are used by the medical staff to take notes during
intake interviews, record the outcomes of medical
tests or to formalize the treatment plan of a patient.
Progress reports are short documents describing
the current conditions of a patient receiving care,
sometimes on a daily basis. The use of surveys and
progress reports differs strongly across healthcare
institute and domain. In total, this snapshot consists
of 630,000 surveys and 13 million progress reports.

When sampling from the snapshot described
above, we aim to maximize both the variety of
document types, and the variety of PHI, two es-
sential properties of a de-identification benchmark
corpus (Deléger et al., 2012). First, to ensure a
wide variety of document types, we select surveys

Category i2b2 (Stubbs and Uzuner, 2015) Our Tags

Name Patient, Doctor, Username Name
Initials

Profession Profession Profession
Location Room, Department Internal Location

Hospital, Organization Hospital, Organization
Care Institute

Street, City, State, ZIP, Country Address
Age Over 90, Under 90 Age
Date Date Date
Contact Phone, FAX, Email Phone/FAX, Email

URL, IP URL/IP
IDs SSN, 8 fine-grained ID tags SSN, ID
Other Other Other

Table 2: PHI tags used to annotate our dataset. The
tagging scheme was derived from the i2b2 tags.

in a stratified fashion according to their type label
provided by the EHR system (e.g., intake interview,
care plan, etc.). Second, to maximize the variety in
PHI, we sample medical reports on a patient basis:
for each patient, a random selection of 10 medical
reports is combined into a patient file. We then
select patient files uniformly at random which en-
sures that no patient appears multiple times within
the sample. Furthermore, to control the annotation
effort, we impose two subjective limits on the doc-
ument length. A document has to contain at least
50 tokens, but no more than 1000 tokens to be in-
cluded in the sample. For each of the 9 healthcare
institutes, we sample 140 documents (70 surveys
and 70 patient files), which yields a total sample
size of 1260 documents (see Table 1).

We received approval for the collection and use
of our dataset from the ethics review board of our
institution.

3.2 Annotation Scheme

Since the GDPR does not provide any strict rules
about which types of PHI should be removed dur-
ing de-identification, we base our PHI tagging
scheme on the guidelines defined by the US HIPAA
regulations. In particular, we closely follow the an-
notation guidelines and the tagging scheme used by
Stubbs and Uzuner (2015) which consists of 32 PHI
tags among 8 classes: Name, Profession, Location,
Age, Date, Contact Information, IDs and Other.
The Other category is used for information that can
be used to identify a patient, but it does not fall into
any of the remaining categories. For example: the
sentence “the patient was a guest speaker on dia-
betes in the Channel 2 talkshow.” would be tagged
as Other. It is worth mentioning that this tagging
scheme does not only capture direct identifiers re-



lating to a patient (e.g., name and date of birth),
but also indirect identifiers that could be used in
combination with other information to reveal the
identity of a patient. Indirect identifiers include, for
example, the doctor’s name, information about the
hospital and a patient’s profession.

We made two adjustments to the tagging scheme
by Stubbs and Uzuner (2015). First, to reduce the
annotation effort, we merged some of the 32 fine-
grained PHI tags to a more generic set of 16 tags
(see Table 2). For example, the fine-grained loca-
tion tags Street, City, State, ZIP, and Country were
merged into a generic Address tag. While this sim-
plifies the annotation process, it complicates the
generation of realistic surrogates. Given an address
string, one has to infer its format to replace the in-
dividual parts with surrogates of the same semantic
type. We address this issue in Section 3.4. Second,
due to the high frequency of care institutes in our
dataset, we decided to introduce a separate Care
Institute tag that complements the Organization tag.
This allows for a straightforward surrogate gener-
ation where names of care institute are replaced
with another care institute rather than with more
generic company names (e.g., Google).

3.3 Annotation Process
Following previous work on the construction of
de-identification benchmark corpora (Stubbs and
Uzuner, 2015; Deléger et al., 2012), we employ a
double-annotation strategy: two annotators read
and tag the same documents. In total, 12 non-
domain experts annotated the sample of 1260 med-
ical records independently and in parallel. The
documents were randomly split into 6 sets and we
randomly assigned a pair of annotators to each
set. To ensure that the annotators had a common
understanding of the annotation instructions, an
evaluation session was held after each pair of an-
notators completed the first 20 documents. The
annotators took in total 77h to double-annotate
the entire corpus of 1260 documents, or approx-
imately 3.6 minutes per document. We measured
the inter-annotator-agreement (IAA) using entity-
level F1 scores1. Table 3 shows the IAA per PHI
category. Overall, the agreement level is fairly high.
However, we find that location names (i.e., care in-
stitutes, hospitals, organizations and internal loca-
tions) are often highly ambiguous which is reflected

1It has been shown that the F-score is more suitable to
quantify IAA in sequence-tagging scenarios compared to other
measures such as the Kappa score (Deléger et al., 2012).

PHI Tag Count Frac. (%) IAA

Name 9558 54.73 0.96
Date 3676 21.05 0.86
Care Institute 997 5.71 0.52
Initials 778 4.45 0.46
Address 748 4.28 0.75
Organization 712 4.08 0.38
Internal Location 242 1.39 0.29
Age 175 1.00 0.39
Profession 122 0.70 0.31
ID 114 0.65 0.43
Phone/Fax 97 0.56 0.93
Email 95 0.54 0.94
Hospital 92 0.53 0.42
Other 33 0.19 0.03
URL/IP 23 0.13 0.70
SSN 2 0.01 0.50

Total 17,464 100 0.84

Table 3: Distribution of PHI tags in our corpus. The
inter-annotator agreement (IAA) as measured by the
micro-averaged F1 score is shown per category.

by the low agreement scores of these categories.
To improve annotation efficiency, we inte-

grated the rule-based de-identification tool DE-
DUCE (Menger et al., 2018) with our annotation
software to pre-annotate each document. This func-
tionality could be activated on a per-document basis
by each annotator. If an annotator used this func-
tionality, they had to review the pre-annotations,
correct potential errors and check for missed PHI
instances. During the evaluation sessions, annota-
tors mentioned that the existing tool proved helpful
when annotating repetitive names, dates and email
addresses. Note that this pre-annotation strategy
might give DEDUCE a slight advantage. However,
the low performance of DEDUCE in the formal
benchmark in Section 5 does not reflect this.

After annotation, the main author of this paper
reviewed 19,165 annotations and resolved any dis-
agreements between the two annotators to form the
gold-standard of 17,464 PHI annotations. Table 3
shows the distribution of PHI tags after adjudica-
tion. Overall the adjudication has been done risk-
averse: if only one annotator identified a piece of
text as PHI, we assume that the other annotator has
missed this potential PHI instance. In addition to
the manual adjudication, we performed two auto-
matic checks: (1) we ensured that PHI instances



occurring in multiple files received the same PHI
tag, and (2) any instances that were tagged in one
part of the corpora but not in the other were manu-
ally reviewed and added to the gold-standard. We
used the BRAT annotation tool for both annotation
and adjudication (Stenetorp et al., 2012). We in-
clude our annotation guidelines and example PHI
annotations in Appendix E.

3.4 Surrogate Generation

As the annotated corpus consists of personally
identifying information which is protected by the
GDPR, we generate artificial replacements for each
of the PHI instances before using the data for the
development of de-identification methods. This
process is known as surrogate generation, a com-
mon practice in the preparation of de-identification
corpora (Stubbs et al., 2015b). As surrogate genera-
tion will inevitably alter the semantics of the corpus
to an extent where it affects the de-identification
performance, it is important that this step is done
as thoroughly as possible (Yeniterzi et al., 2010).
Here, we follow the semi-automatic surrogate gen-
eration procedure that has been used to prepare
the i2b2/UTHealth shared task corpora. Below,
we summarize this procedure and mention the lan-
guage specific resources we used. We refer the
reader to Stubbs et al. (2015b) for a thorough dis-
cussion of the method. After running the automatic
replacement scripts, we reviewed each of the surro-
gates to ensure that continuity within a document is
preserved and no PHI is leaked into the new corpus.

A list of 10,000 most common family names and
given names is used to generate random surrogates
for name PHI instances2. We replace dates by
first parsing the format (e.g., “12 nov. 2018” →
“%d %b. %Y”)3, and then randomly shifting all
dates within a document by the same amount
of years and days into the future. For addresses,
we match names of cities, streets, and countries
with a dictionary of Dutch locations4, and then
pick random replacements from that dictionary.
As Dutch ZIP codes follow a standard format
(“1234AB”), their replacement is straightforward.
Names of hospitals, care institutes, organizations
and internal locations are randomly shuffled within
the corpus. PHI instances of type Age are capped
at 89 years. Finally, alphanumeric strings such

2See www.naamkunde.net, accessed 2019-05-15
3Rule-based date parser: github.com/

jeffreystarr/dateinfer, accessed 2019-05-15
4See openov.nl, accessed 2019-05-15

as Phone/FAX, Email, URL/IP, SSN and IDs
are replaced by substituting each alphanumeric
character with another character of the same class.
We manually rewrite Profession and Other tags,
as an automatic replacement is not applicable.

4 Methods

This section presents the three de-identification
methods and the evaluation procedure.

4.1 Rule-based Method: DEDUCE
DEDUCE is an unsupervised de-identification
method specifically developed for Dutch medical
records (Menger et al., 2018). It is based on lookup
tables, decision rules and fuzzy string matching
and has been validated on a corpus of 400 psychi-
atric nursing notes and treatment plans of a single
hospital. Following the authors’ recommendations,
we customize the method to include a list of 1200
institutions that are common in our domain. Also,
we resolve two incompatibilities between the PHI
coding schemes of our dataset and the DEDUCE
output. First, as DEDUCE does not distinguish be-
tween hospitals, care institutes, organizations and
internal locations, we group these four PHI tags
under a single Named Location tag. Second, our
Name annotations do not include titles (e.g., “Dr.”,
“Ms.”). Therefore, titles are stripped from the DE-
DUCE output.

4.2 Feature-based Method: Conditional
Random Field

CRFs and hybrid rule-based systems provide
state-of-the-art performance in recent shared
tasks (Stubbs et al., 2015a, 2017). Therefore, we
implement a CRF approach to contrast with the
unsupervised rule-based system. In particular, we
re-implement the token-based CRF method by Liu
et al. (2015) an re-use a subset5 of their features
(see Table 4). The linear-chain CRF is trained us-
ing LBFGS and elastic net regularization (Zou and
Hastie, 2005). Using a validation set, we optimize
the two regularization coefficients of the L1 and L2

norms with a random search in the log10 space of
[10−4, 101]. We use the CRFSuite implementation
by Okazaki (2007).

4.3 Neural Method: BiLSTM-CRF
To reduce the need for hand-crafted features in tra-
ditional CRF-based de-identification, recent work

5We disregard word-representation features as Liu et al.
(2015) found that they had a negative performance impact.

www.naamkunde.net
github.com/jeffreystarr/dateinfer
github.com/jeffreystarr/dateinfer
openov.nl


Group Description

Bag-of-words
(BOW)

Token unigrams, bigrams and trigrams
within a window of [−2, 2] of the current
token.

Part-of-speech
(POS)

Same as above but with POS n-grams.

BOW + POS Combinations of the previous, current
and next token and their POS tags.

Sentence Length in tokens, presence of end-mark
such as ’.’, ’?’, ’!’ and whether sentence
contains unmatched brackets.

Affixes Prefix and suffix of length 1 to 5.
Orthographic Binary indicators about word shape: is

all caps, is capitalized, capital letters in-
side, contains digit, contains punctuation,
consists of only ASCII characters.

Word Shapes The abstract shape of a token. For exam-
ple, “7534-Df” becomes “####-Aa”.

Named-entity
recognition

NER tag assigned by the spaCy tagger.

Table 4: Features used by the CRF method. The fea-
tures are identical to the one by Liu et al. (2015), but
we exclude word-representation features.

applies neural methods (Liu et al., 2017; Dernon-
court et al., 2017; Khin et al., 2018). Here, we
re-implement a BiLSTM-CRF architecture with
contextual string embeddings, which has recently
shown to provide state-of-the-art results for se-
quence labeling tasks (Akbik et al., 2018). Hy-
perparameters are set to the best performing con-
figuration in Akbik et al. (2018): we use stochastic
gradient descent with no momentum and an initial
learning rate of 0.1. If the training loss does not de-
crease for 3 consecutive epochs, the learning rate is
halved. Training is stopped if the learning rate falls
below 10−4 or 150 epochs are reached. Further-
more, the number of hidden layers in the LSTM is
set to 1 with 256 recurrent units. We employ locked
dropout with a value of 0.5 and use a mini-batch
size of 32. With respect to the embedding layer,
we use the pre-trained GloVe (English) and fasttext
(Dutch) embedding on a word-level, and concate-
nate them with the pre-trained contextualized string
embeddings included in Flair6 (Pennington et al.,
2014; Grave et al., 2018; Akbik et al., 2019).

4.4 Preprocessing

We use a common preprocessing routine for all
three datasets. For tokenization and sentence seg-

6github.com/zalandoresearch/flair, ac-
cessed 2019-05-15

mentation, the spaCy tokenizer is used7. The
POS/NER features of the CRF method are gen-
erated by the built-in spaCy models. After sen-
tence segmentation, we tag each token according
to the Beginning, Inside, Outside (BIO) scheme.
In rare occasions, sequence labeling methods may
produce invalid transitions (e.g., O-→ I-). In a
post-processing step, we replace invalid I- tags
with B- tags (Reimers and Gurevych, 2017).

4.5 Evaluation

The de-identification methods are assessed accord-
ing to precision, recall and F1 computed on an
entity-level, the standard evaluation approach for
NER systems (Tjong Kim Sang and De Meulder,
2003). In an entity-level evaluation, predicted PHI
offsets and types have to match exactly. Follow-
ing the evaluation of de-identification shared tasks,
we use the micro-averaged entity-level F1 score as
primary metric (Stubbs et al., 2015a)8.

We split our corpus and the nursing notes cor-
pus into train/validation/test sets with a 60/20/20
ratio. As the i2b2 corpus has a pre-defined test
set of 40%, a random set of 20% of the training
documents serves as validation data. Finally, we
test for statistical significance using two-sided ap-
proximate randomization (Yeh, 2000).

5 Results

This section presents our experimental results. An
overview can be found in Table 5.

5.1 De-identification of Dutch Dataset

Both machine learning methods outperform the
rule-based system DEDUCE by a large margin
(see Table 5). Furthermore, the BiLSTM-CRF pro-
vides a substantial improvement of 10% points in
recall over the traditional CRF method, while main-
taining precision. Overall, the neural method has
an entity-level recall of 87.1% while achieving a
recall of 95.6% for names, showing that the neural
method is operational for many de-identification
scenarios. In addition, we make the following ob-
servations.

Neural method performs at least as good as
rule-based method. By inspecting the model
performance on a PHI-tag level, we observe that

7spacy.io, accessed 2019-05-15
8De-identification systems are often also evaluated on a

less strict token-level. As a system that scores high on an
entity-level will also score high on a token-level, we only
measure according to the stricter level of evaluation.

github.com/zalandoresearch/flair
spacy.io


Our Corpus (Dutch) i2b2 (English) Nursing Notes (English)

Method Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1

DEDUCE 0.807 0.564 0.664 - - - - - -
CRF 0.919N 0.775N 0.841N 0.952 0.796 0.867 0.914 0.685 0.783
BiLSTM-CRF 0.917◦ 0.871N 0.893N 0.959N 0.869N 0.912N 0.886◦ 0.797N 0.839N

Table 5: Evaluation summary: micro-averaged scores are shown for each dataset and method. Statistically signifi-
cant improvements over the score on the previous line are marked with N(p < 0.01), and ◦ depicts no significance.
The rule-based method DEDUCE is not applicable to the English datasets.

BiLSTM-CRF DEDUCE

PHI Tag Prec. Rec. Prec. Rec.

Name 0.965 0.956 0.849 0.805
Date 0.926 0.920 0.857 0.441
Initials 0.828 0.624 0.000 0.000
Address 0.835 0.846 0.804 0.526
Age 0.789 0.732 0.088 0.122
Profession 0.917 0.262 0.000 0.000
ID 0.800 0.480 0.000 0.000
Phone/Fax 0.889 1.000 0.929 0.812
Email 0.909 1.000 1.000 0.900
Other 0.000 0.000 0.000 0.000
URL/IP 1.000 0.750 0.750 0.750
Named Loc. 0.797 0.659 0.279 0.058

Care Institute 0.686 0.657 n/a n/a
Organization 0.780 0.522 n/a n/a
Internal Loc. 0.737 0.509 n/a n/a
Hospital 0.778 0.700 n/a n/a

Table 6: Entity-level precision and recall per PHI cat-
egory on our Dutch corpus. Scores are compared be-
tween the rule-based tagger DEDUCE (Menger et al.,
2018) and the BiLSTM-CRF model. The Named Loc.
tag is the union of the 4 specific location tags which
are not supported by DEDUCE. Tags are ordered by
frequency with location tags fixated at the bottom.

the neural method outperforms DEDUCE for all
classes of PHI (see Table 6). Only for the Phone
and Email category, the rule-based method has a
slightly higher precision. This suggests that in most
environments where training data are available (or
can be obtained), the machine learning methods are
to be preferred.

Rule-based method can provide a “safety
net.” It can be observed that DEDUCE performs
reasonably well for names, phone numbers, email
addresses and URLs (see Table 6). As these
PHI instances are likely to directly reveal the
identity of an individual, their removal is essential.
However, DEDUCE does not generalize beyond
the PHI types mentioned above. Especially

named locations are non-trivial to capture with a
rule-based system as their identification strongly
relies on the availability of exhaustive lookup
lists. In contrast, the neural method provides a
significant improvement for named locations (5.8%
vs. 65.9% recall). We assume that word-level and
character-level embeddings provide an effective
tool to capture these entities.

Initials, IDs, professions are hard to detect.
During annotation, we observed a low F1 annota-
tor agreement of 0.46, 0.43, and 0.31 for initials,
IDs and professions, respectively. This shows that
these PHI types are among the hardest to identify,
even for humans (see Table 3). One possible cause
for this is that IDs and initials are often hard to
discriminate from abbreviations and medical mea-
surements. We observe that the BiLSTM-CRF de-
tects those PHI classes with high precision but low
recall. With respect to professions, we find that
phrases are often wrongly tagged. For example,
colloquial job descriptions (e.g., “works behind
the cash desk”) as opposed to the job title (e.g.,
“cashier”) make it infeasible to tackle this problem
with lookup lists, while a machine learner likely
requires more training data to capture this PHI.

5.2 Cross-language De-identification

When training and testing both machine learning
methods on the English i2b2 and the nursing notes
datasets, we can observe that the BiLSTM-CRF
significantly outperforms the CRF in both cases
(see Table 5). Similar to our Dutch dataset, the
neural method provides an increase of up to 11.2%
points in recall (nursing notes) while the precision
remains relatively stable. This shows that the neu-
ral method has the best generalization capabilities
even across languages. More importantly, it does
not require the development of domain-specific
lookup lists or sophisticated pattern matching rules.
To put the results into perspective: the second-



Training Domain

Method Elderly Disabled Mental

DEDUCE 0.683 0.565 0.675
CRF 0.414 0.697 0.719
BiLSTM-CRF 0.775 0.775 0.839

Table 7: Summary of the transfer learning experiment
on our Dutch dataset. Each method is trained on data of
one care domain and tested on the other two domains.
All scores are micro-averaged entity-level F1.

highest ranked team in the i2b2 2014 challenge
used a sophisticated ensemble combining a CRF
with domain-specific rules (Stubbs et al., 2015a).
Their system obtained an entity-level F1 score of
0.9124 which is on-par with the performance of
our neural method that requires no configuration.
We can expect that the performance of the neural
method further improves after hyperparameter opti-
mization. Finally, note that both machine learning
methods can easily be applied to a new PHI tagging
scheme, whereas rule-based methods are limited to
the PHI definition they were developed for.

5.3 Cross-domain De-identification

In many de-identification scenarios, heterogeneous
training data from multiple medical institutes and
domains are rarely available. This raises the ques-
tions, how well a model that has been trained on
a homogeneous set of medical records generalizes
to records of other medical domains. We trained
the three de-identification methods on one domain
of Dutch healthcare (e.g., elderly care) and tested
each model on the records of the remaining two
domains (e.g., disabled care and mental care). Ta-
ble 7 summarizes the performance of each method
on the different tasks. We follow the same training
and evaluation procedures described in Section 4.5.

Again, the neural method consistently outper-
forms the rule-based and feature-based methods in
all three domains which suggests that it is a fair
default choice for de-identification. This is under-
lined by the fact that the amount of training data
is severely limited in this experiment: each do-
main only has 420 documents of which 20% of the
records are reserved for testing. Interestingly, DE-
DUCE performs rather stable and even outperforms
the CRF within the domain of elderly care.

Given an ideal de-identification method, one
would expect that performance on unseen data
of a different domain is similar to the test score

Training Domain

Test Domain Elderly Disabled Mental

Elderly 0.746 0.698 0.703
Disabled 0.796 0.919 0.879
Mental 0.744 0.806 0.871

Table 8: Detailed performance analysis of the BiLSTM-
CRF method in the transfer learning experiment. In-
domain test scores are shown on the diagonal. All
scores are micro-averaged entity-level F1.

obtained on the available (homogeneous) data. Ta-
ble 8 shows a performance breakdown for each of
the three testing domains for the neural method. It
can be seen that in 4 out of 6 cases, the test score in
a new domain is lower than the test score obtained
on the in-domain data. The largest delta of the
observed in-domain test score (disabled care, 0.919
F1) and the performance in the transfer domain (el-
derly care, 0.698 F1) is 0.221 in F1 which raises an
important point when performing de-identification
in practice. While the neural method overall
provides the best generalization capabilities com-
pared to the other de-identification methods, the
performance can still be significantly lower when
applying a pre-trained model in new domains.

6 Conclusion

This paper presents the construction of a novel
Dutch dataset and a comparison of state-of-the-art
de-identification methods across Dutch and English
medical records. Our experimental results show the
following: (1) An existing rule-based method for
the Dutch language does not generalize well to the
new data. (2) If one is looking for an out-of-the-
box de-identification method, neural approaches
show the best generalization performance across
languages and domains. (3) When testing across
different domains, a substantial decrease of perfor-
mance has to be expected, an important considera-
tion when applying de-identification in practice.

There are several directions for future work. Mo-
tivated by the limited generalizability of pre-trained
models across different domains, transfer learning
techniques can provide a way forward. A prelimi-
nary study by Lee et al. (2018) shows that they can
be beneficial for de-identification. Finally, our ex-
periments show that phrases such as professions are
among the most difficult information to de-identify.
It is an open challenge how to design methods that
can capture this type of information.
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A Supplemental Material

This appendix provides additional analyses and
background information for the paper. It includes
an error analysis of the best performing model (Sec-
tion B) and a practical experiment illustrating the
precision/recall tradeoff (Section C). Furthermore,
we discuss how automatic de-identification can be
beneficial for Nedap, a Dutch company that de-
velops software solutions for the healthcare mar-
ket (Section D). Finally, we include the annota-
tion guidelines that were used to annotate our de-
identification benchmark corpus (Section E).

B Error Analysis

To gain a better understanding of the best perform-
ing model and an intuition for its limitations, we
conduct a manual error analysis of the false posi-
tives (FPs) and false negatives (FNs) produced by
the BiLSTM-CRF. This analysis allows to identify
possible error sources and avenues for future work.
We discuss the error categorization scheme in Sec-
tion B.1 and present the results in Section B.2.

B.1 Error Categorization
We distinguish between two main error groups: (1)
modeling errors and (2) annotation/preprocessing
errors. We define modeling errors to be prob-
lems that can be addressed with different de-
identification techniques and additional training
data. In contrast, annotation and preprocessing
errors are not directly caused by the sequence la-
beling model, but are issues in the training data
or the preprocessing pipeline which need to be ad-
dressed manually. Inspired by the classification
scheme of Dernoncourt et al. (2017), we consider
the following sources of modeling errors:

• Abbreviation: PHI instances which are ab-
breviation/acronyms for names, care institutes
and companies. These are hard to detect and
can be ambiguous as they are easily confused
with medical terms and measurements.

• Ambiguity: A human reader may be unable
to decide whether the text fragment is PHI.

• Debatable: It can be argued that the token
should not have been annotated as PHI.

• Prefix: Names of internal locations, organiza-
tions and companies are often prefixed with
articles (i.e., “de” and “het”). Sometimes, it is
unclear whether the prefix is part of the offi-
cial name or part of the sentence construction.

This ambiguity is reflected in the training data
which causes the model to inconsistently in-
clude/exclude those prefixes.

• Common Language: PHI instances which
consist of common-language. These are hard
to discriminate from the surrounding text.

• Other: Remaining modeling errors that do
not fall into the categories mentioned above.
In those cases, it is not immediately apparent
why the misclassification occurs.

Preprocessing errors are categorized as follows:

• Missing Annotation: The text fragment
should have been annotated as PHI, but was
missed during the annotation phase.

• Annotation Error: The annotator assigned
an invalid entity boundary.

• Tokenization Error: The annotated text span
could not be split into a compatible token span.
Those tokens were marked as “Outside (O)”
during BIO tagging.

All error categories are mutually exclusive.

B.2 Results of Error Analysis
Table 9 summarizes the error analysis results and
shows the absolute and relative frequency of each
error category. Overall, we find that the majority of
modeling errors cannot be easily explained through
human inspection (“Other reason” in Table 9). The
remaining errors are mainly caused by ambiguous
PHI instances and preprocessing errors. In more
detail, we make the following observations:
Abbreviations are the second most common
cause for modeling errors (13.9% of FNs, 9.7%
of FPs). We hypothesize that more training data
will likely not in itself help to correctly identify
this type of PHI. It is conceivable to design custom
features (e.g., based on shape, positioning in a sen-
tence, presence/absence in a medical dictionary) to
increase precision. However, it is an open question
how recall can be improved.
PHI instances consisting of common language
are likely to be wrongly tagged (7.5% FNs, 3.1%
FPs). This is caused by the fact that there are insuf-
ficient training examples where common language
is used to refer to PHI. For example, the organiza-
tion name in the sentence “Vandaag Beter Horen
gebeld” (Eng: “Called Hear Better today”) was in-
correctly classified as non-PHI. Each individual
word, and also the combination of the two words,



FNs (n = 469) FPs (n = 288)

Category Count Part Count Part

Model Errors
Abbreviation 65 13.9% 28 9.7%
Ambiguity 15 3.2% 7 2.4%
Debatable 7 1.5% 4 1.4%
Prefix 10 2.1% 10 3.5%
Common language 35 7.5% 9 3.1%
Other reason 275 58.6% 159 55.2%

Annotation/Preprocessing Errors
Missing Annotation - - 33 11.5%
Annotation Error 21 4.5% 18 6.3%
Tokenization Error 41 8.7% 20 6.9%

Total 469 100% 288 100%

Table 9: Summary of the manual error analysis of false
negatives (FNs) and false positives (FPs) produced by
the BiLSTM-CRF. All error categories are mutually ex-
clusive.

can be used in different contexts without referring
to PHI. However, in this specific context, it is ap-
parent that “Beter Horen” must refer to an organi-
zation.
A substantial amount of errors is due to anno-
tation and preprocessing issues. Annotation er-
rors (4.5% FNs, 6.3% FPs) can be resolved by cor-
recting the respective PHI offsets in the gold stan-
dard. Tokenization errors (8.7% FNs, 6.9% FPs)
need to be fixed through a different preprocess-
ing routine. For example, the annotation <DATE
2016>/<DATE 2017> should have been split
into [2016, /, 2017] with BIO tagging [B,
O, B]. However, spaCy segmented this text into
a single token [2016/2017]. In this case, entity
boundaries do no longer align with token bound-
aries which results in an invalid BIO tagging of
[O] for the entire span.
Several false positives are in fact PHI and
should be annotated. The model identifies sev-
eral PHI instances which were missed during the
annotation phase (11.5% of the FPs). Once more,
this demonstrates that proper de-identification is an
error-prone task for human annotators.

B.3 Training Examples vs. Performance

To gain a better understanding of the model perfor-
mance, we study the impact of the training dataset
size on the detection quality of each PHI tag. Fig-
ure 1 visualizes the number of training examples
in relation to the F1 score of the BiLSTM-CRF for
each PHI category. Generally, and as expected, it
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Figure 1: Impact of the number of training examples
on the F1 score of the BiLSTM-CRF. Generally, more
training examples contribute to higher F1 scores.

can be observed that a large number of training ex-
amples correlates with a high F1 score (e.g., Name
and Date tags). However, few training examples
do not necessarily correspond to a low F1 score. In
line with the findings in Dernoncourt et al. (2017),
PHI types which vary significantly in shape and
content (e.g., Organization) require substantially
more training examples to be correctly identified
than PHI types with little variation (e.g., Email).
For instance, the Phone and Email PHI tags have
relatively few training examples (less than 100),
but an F1 score that is just as high as the F1 score
for Name (more than 6000 examples).

B.4 Example Misclassifications

For illustration purposes, Table 10 provides exam-
ple PHI instances that were missed by the BiLSTM-
CRF. There are two interesting observations. First,
the neural method may fail to identify PHI in a
new and unseen context. For example, the date
“woensdag” (Eng: “Wednesday”) has been success-
fully de-identified in other contexts. Furthermore,
we can find several instances where common lan-
guage causes misclassification (see examples for
Organization, Age and in Table 10).

C Precision/Recall Tradeoff

So far, our model analysis considered precision and
recall of a de-identification method to be equally
important. However, this is rarely the case when
applying de-identification in practice where a down-
stream task determines the correct tradeoff between
the two measures. For example, when sharing med-



PHI Category FNs Support Examples

Name 85 1941 Wel wou bas dat vader aan tafel kwam zitten.

Date 64 803 Tevens mut einde zorg per 310167 voor bg-ind. Notitie gestuurd
deelgenomen aan de verlate kerstlunch, heeft hiervan genoten.
Afspraak is vastgelegd voor volgende week woensdag

Care Institute 74 216 We hebben samen gekeken of de ZORGCO hem nog op een ander
Afspraak met woonzorgnet is niet goed gegaan.
Vandaag bij de RAAK geweest. Was ok.

Initials 67 178 N.a.v. overleg KB met trajectbegeleiders is besloten dat
10/02/70: GE: @ KB naar EoR: Vanmiddag telefonisch gesproken

Address 24 156 contact gehad met Florencia van der Voort. (WMO Made)

Organization 65 136 Samen CJIB gebeld om navraag te doen over de OV-boetes.
Vandaag Beter Horen gebeld inverband met

Internal Location 27 55 Wonend in de twee vieren van het Huize Padua.

Profession 31 42 Heeft fietsenmaker en Dienstmeisje opleidingen afgerond.
Sinds juni 2069 ander werk (inkomensconsulent), heeft geen last

Age 11 41 een man van (bijna) halverwege de tachtig.
Hij heeft de eerste 45 jaar van zijn leven in relatieve anarchie

ID 13 25 20/08/71 KG: MUT ZZP AAT BG-ind Kl 5 voor 88100691 en PV
toewijzen naar De Kameleon op AGB 78449083.

Phone/Fax 0 16 No misclassified samples

Email 0 10 No misclassified samples

Hospital 3 10 Overdracht mst:geen cognitieve problemen

URL/IP 1 4 Met vriendelijke groet, https://www.gymmas.nl/tzepcwtnmy Greta

Other 4 4 De televisie uitzendingen brengen veel teweeg bij haar

Table 10: Example entities (underlined) which were missed by the BiLSTM-CRF. Number of false negatives (FNs)
and number of test instances (Support) is shown for each PHI category.

ical records with an external research institute, no
PHI should be leaked. Thus, high levels of recall
are desirable even if it is at the expense of precision.

Below, we illustrate how a pre-trained model
with a probabilistic output can be operationalized
by introducing a classification threshold T that acts
as a parameter to control the precision/recall trade-
off. First, we consider the binary PHI prediction
task: given a token x, decide whether or not it is
PHI. Let P (Y = PHI|x) depict the probability
of token x to be PHI. By default, we obtain the
outcome y as follows:

y =

{
PHI, if P (Y = PHI|x) ≥ T

non-PHI, otherwise,

where T = 0.5. In the multiclass setting, the prob-

ability of P (Y = PHI|x) is the sum of the proba-
bilities for all PHI classes. In case of the BiLSTM-
CRF model, a softmax function is used to obtain
the probability distribution over all PHI tags from
the CRF transition matrix. If we shift the classifi-
cation threshold T , precision/recall for the positive
class (i.e., PHI) can be adjusted: a higher value of
T corresponds to an increase in precision, and a
lower value of T to an increase in recall.

C.1 Thresholding in Binary PHI Detection

Figure 2 shows the precision/recall curves for the
binary PHI prediction problem over all possible
classification thresholds. Two operating points are
highlighted: a recall level of 0.95 and a recall level
of 0.99. Observe that precision remains relatively
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Figure 2: Token-level precision vs. recall over all possible classification thresholds for the binary PHI detection
problem. Scores are for the positive (PHI) class and are reported for the test set. Two operating points are high-
lighted: the classification thresholds which satisfy a recall level of 0.95 and 0.99, respectively. The right figure is
zoomed to the recall range [0.9, 1].

Recall Precision

PHI Category T = .5 T (Rec. = .95) T (Rec. = .99) T = .5 T (Rec. = .95) T (Rec. = .99)

Address 0.89 0.89 ±0.00 0.90 +0.01 0.90 0.90 −0.01 0.76 −0.14
Age 0.82 0.87 +0.05 0.92 +0.10 0.70 0.65 −0.05 0.25 −0.45
Care Institute 0.72 0.77 +0.04 0.86 +0.14 0.74 0.73 −0.01 0.48 −0.26
Date 0.98 0.98 ±0.00 0.99 +0.01 0.97 0.96 −0.01 0.84 −0.13
Email 1.00 1.00 ±0.00 1.00 ±0.00 0.91 0.83 −0.08 0.77 −0.14
Hospital 0.79 0.86 +0.07 0.93 +0.14 0.50 0.46 −0.04 0.18 −0.32
ID 0.56 0.68 +0.12 0.84 +0.28 0.70 0.65 −0.05 0.12 −0.58
Initials 0.65 0.69 +0.04 0.91 +0.26 0.83 0.81 −0.02 0.41 −0.42
Internal Loc. 0.57 0.59 +0.02 0.68 +0.10 0.75 0.70 −0.06 0.26 −0.50
Name 0.97 0.97 ±0.00 0.99 +0.02 0.97 0.96 ±0.00 0.92 −0.05
Organization 0.55 0.61 +0.06 0.65 +0.10 0.71 0.67 −0.04 0.30 −0.41
Other 0.00 0.00 ±0.00 0.00 ±0.00 0.00 0.00 ±0.00 0.00 ±0.00
Phone/Fax 1.00 1.00 ±0.00 1.00 ±0.00 0.97 0.95 −0.02 0.79 −0.18
Profession 0.58 0.68 +0.10 0.90 +0.32 0.85 0.75 −0.10 0.12 −0.73
SSN 0.00 0.00 ±0.00 0.00 ±0.00 0.00 0.00 ±0.00 0.00 ±0.00
URL/IP 0.75 0.75 ±0.00 1.00 +0.25 1.00 1.00 ±0.00 0.80 −0.20

Non-PHI 0.997 0.996 −0.001 0.968 −0.029 0.996 0.997 +0.001 0.999 +0.003
PHI (Binary) 0.935 0.950 +0.015 0.990 +0.055 0.954 0.941 −0.014 0.649 −0.305

Table 11: Token-level precision and recall of the BiLSTM-CRF at three operating points. T (Rec. = .95) and
T (Rec. = .99) denote the classification thresholds at which a recall of 0.95 and 0.99 is obtained on the test set in
the binary PHI prediction problem. For reference, the gray numbers indicate the performance delta compared to
the default classification threshold of T = 0.5.

stable approximately until a recall level of about
0.95. Starting from there, precision experiences
a sharp drop. At a 0.99 recall level, precision
dropped significantly to 0.65. Note that there is no
consensus about what level of recall is acceptable
for de-identification. However, 0.95 has been fre-
quently quoted (Stubbs and Uzuner, 2015) which is
why we are highlighting this operating point along
with an even stricter level of recall.

C.2 Effects of Thresholding on PHI-tag Level

One might ask, to what extend is the detection qual-
ity of each PHI tag affected? Table 11 illustrates
precision and recall on a PHI tag level for three
settings of T : the default threshold T = 0.5, and
the thresholds at which a recall of 0.95 and 0.99 is
obtained on the test set. In this case, we generalize
the binary-PHI prediction as follows. If the sum of
the probabilities for all PHI-tags for a given token,
P (Y = PHI|x), is greater than the threshold T ,



we assign the most likely PHI tag to that token.
The largest changes in performance can be ob-

served for the PHI classes where the model origi-
nally performed poorly (e.g., Initials). On the con-
trary, PHI classes for which the classifier already
performed good (e.g., Names), do not experience
substantial changes when adjusting the threshold.
Furthermore, we see that the recall of the non-PHI
class (i.e., tokens tagged as “Outside” in the BIO
scheme) drops from 0.997 to 0.968 when applying
the strictest threshold with respect to the PHI de-
tection. At a first glance, this change of 3 percent
points seems rather negligible. However, note that
potentially important medical information might
be removed during this step. Depending on the
downstream task, one needs to evaluate the quality
of the remaining text and whether it is still suitable
for the task at hand.

D De-identification at Nedap

This section briefly discusses the relevance of de-
identification techniques for Nedap Healthcare, a
company that provides software solutions to the
Dutch healthcare sector.

D.1 Use Cases

Nedap envisions to use the de-identification meth-
ods developed in this paper in three broader areas:

• Machine learning and data analysis. Pri-
vacy protection is a major concern when
building statistical models in the context of
data mining and machine learning. Prior de-
identification of the input data reduces the risk
that privacy sensitive information is leaked
into the statistical models. To give an example,
the removal of PHI can help to avoid biases
in a language generating model. Similarly,
it can help to ensure that PHI (e.g., a name)
does not become a discriminating feature in a
document classification task.

• Creation of realistic training and develop-
ment software environments. A major fac-
tor that limits effective user training and user
experience design is the lack of realistic soft-
ware environments. Currently, development
environments contain nonsensical and artifi-
cial data which has limited utility. Existing
snapshots of a customer database cannot be
used for training and development purposes as
they contain confidential medical information
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Medical Text De-identification
Demo
Input Text
Dit is stukje tekst met daarin de naam Jan Jansen. De patient J. Jansen (e: j.jnsen@email.com, 
t: 06-12345678) is 64 jaar oud en woonachtig in Utrecht. Hij werd op 10 oktober door arts P.V. 
ontslagen van de kliniek van het medisch spectrum twente.

Submit

Available Tags

ADDRESS  AGE  CARE_INSTITUTE  DATE  EMAIL  HOSPITAL

ID  INITIALS  INTERNAL_LOCATION  NAME  O

ORGANIZATION_COMPANY  OTHER  PHONE_FAX  PROFESSION  SSN

URL_IP

Annotated Text

Dit is stukje tekst met daarin de naam

Jan Jansen NAME . De patient J. Jansen NAME  (e:

j.jnsen@email.com EMAIL , t:

06-12345678 PHONE_FAX ) is 64 jaar AGE  oud en

woonachtig in Utrecht ADDRESS . Hij werd op

10 oktober DATE  door arts P.V. INITIALS  ontslagen

van de kliniek van het medisch

spectrum twente HOSPITAL .

Figure 3: Screenshot of our tool that we developed to
demonstrate the de-identification method.

about the clients. However, when combining
anonymization techniques for structured data
(e.g., k-anonymity) with the methods devel-
oped in this paper, realistically looking repli-
cas of existing applications can be created
while drastically reducing the privacy impact.

• Connecting with academia and research
institutes. We aim to make the de-
identification software alongside with the
trained models publicly available. This will
help Nedap Healthcare to connect with the
community of de-identification practitioners,
research communities and offers the potential
for future collaborations on this subject.

Besides that, this work contributes towards the
privacy protection practices that are implemented
within Nedap and will help to fulfill the obligations
set out by the GDPR.

D.2 Demo

We developed a demo application to allow users
to experiment with the de-identification pipeline.
It consists of two parts: (1) a Python web service



that exposes both the preprocessing pipeline and
the de-identification method as a REST API, and
(2) a lightweight JavaScript client to interact with
this API and to visualize sequence tagging results
(see Figure 3).

D.3 Future Work at Nedap Healthcare

There are two major directions for future work
when it comes to applying de-identification in prac-
tice at Nedap Healthcare.

1. Combine neural and rule-based method.
The error analysis in Section B shows that
the neural method offers little explainability
and may fail to recognize identical PHI oc-
curring in a different context. For that reason,
an ensemble combining a rule-based method
with the neural method may offer additional
assurances that are useful in practice. For ex-
ample, a lookup list can be used to ensure
that if a PHI instance occurs which matches
an entry in the lookup list exactly, it will be
removed regardless of the context.

2. Assess impact on downstream tasks. Sec-
ond, the impact of de-identification on a num-
ber of downstream tasks of Nedap Healthcare
would make an interesting experiment. In
particular, one should assess how much down-
stream tasks are affected under different op-
erating points for the precision/recall tradeoff
(see Section C). This can lead to general rec-
ommendations about which operating points
are suitable for a specific application.

E Annotation Guidelines

For the development of an automatic de-
identification software, we require medical records
where the protected health information (PHI) has
been marked up so that the annotations can be
used to develop automatic de-identification meth-
ods. The annotated data is the type information that
must be removed/replaced from a patient record in
order to be considered de-identified. We defined 8
categories of PHI that can relate to a patient, but
also to relatives, employers, household members
or the doctor of a patient. In total 16 tags can be
assigned to a piece of text:

1. NAME
• Name
• Initials

2. PROFESSION (not of medical staff)

3. LOCATION
• Hospital
• Care Institute (Zorgorganisatie)
• Organization/Company
• Address
• Internal location (e.g., building code,

room, floor)

4. AGE

5. DATE

6. CONTACT
• Phone/FAX
• Email
• URL/IP-address

7. ID
• Social security number (SSN/BSN)
• Any other ID number

8. OTHER

E.1 Overall Annotation Rules
When annotating, the following rules apply:

1. When tagging something that is PHI but it is
not obvious what to tag it as, think about what
it should be replaced with and whether that
will make sense in the document (“replace-
ment test”).

2. When in doubt whether something is tag A or
tag B, annotate it as the most likely tag and
add a note to the annotation.

3. When in doubt, annotate! We do not want to
miss PHI.

To give an example of the replacement test, con-
sider this sentence:

Example E.1. In 2015 is hij met de andere cliënten
verhuisd naar de woonvoorziening Kerklaan in
Bennebroek.
[Translated] In 2015 he moved with other clients to
the housing facility Kerklaan in Bennebroek.

It is clear that the housing facility has been named
after its location “Kerklaan.” So instead of anno-
tating “Kerklaan” as an address, “housing facility



Kerklaan” should be annotated as care institute, as
we would replace this with the name of another care
institute. The final annotation should look like this:

Example E.2. In <DATE 2015> is hij met
de andere cliënten verhuisd naar de <CARE-
INSTITUTE woonvoorziening Kerklaan> in <AD-
DRESS Bennebroek>.
[Translated] In <DATE 2015> he moved with
other clients to the <CARE-INSTITUTE housing
facility Kerklaan> in <ADDRESS Bennebroek>.

E.2 Example Annotations per Category
Table 12 provides example annotations for each
of the PHI categories that were distributed to each
annotator alongside with the instructions.



Category Examples Exclude from Annotation

Name “Bart van der Boor”, “Boor, van der”, “B.
Boor”, “Anne FP Jansen”

Titles (Dhr., Mw., Dr., etc.)

Initials J.F., JF. Titles (see above)
Profession “stratenmaker”, “programmeur”, “militaire

dienst”
Professions of medical staff

Hospital “Universitair Medisch Centrum”, “UMC”
Care Institute “Cromhoff”, “Mgr. Bekkershuis”
Organization “Ikea”, “de Vink”, “de Efteling” Generic names: “bouwmarkt”
Address “Van Meeuwenstraat 2, 1234AB Town”,

“Den Bosch”, “Nieuw-Zeeland”
Internal Location “8.1” Generic locations: “surgery room”
Age “2 jaar en 4 maanden”, “78”
Date “15-02-19”, “2019”, “vrijdag”, “Zomer

’02”, “herfstvakantie”, “koningsdag”,
Time of day (14:27)

ID IBAN, license plate, employee number
SSN/BSN Burgerservicenummer (BSN)

Table 12: Examples provided to the annotators alongside with the annotation instructions.


