
A Framework for Detecting and Preventing Security

Vulnerabilities in Continuous

Integration/Continuous Delivery pipelines

Michael Koopman

June 20th, 2019
Version: Final version

University of Twente

Department of Services, Cybersecurity & Safety

Documentation

A Framework for Detecting and Preventing
Security Vulnerabilities in Continuous

Integration/Continuous Delivery pipelines

Michael Koopman

1. Reviewer Maya Daneva
Department of Services, Cybersecurity & Safety
University of Twente

2. Reviewer Klaas Sikkel
Department of Services, Cybersecurity & Safety
University of Twente

Supervisors Maya Daneva, University of Twente
Maikel Ninaber

June 20th, 2019

Michael Koopman

A Framework for Detecting and Preventing Security Vulnerabilities in Continuous Integra-

tion/Continuous Delivery pipelines

Documentation, June 20th, 2019

Reviewers: Maya Daneva and Klaas Sikkel

Supervisors: Maya Daneva, University of Twente

Maikel Ninaber

University of Twente

Department of Services, Cybersecurity & Safety

Drienerlolaan 5

7522 NB Enschede

Abstract

In a modern, agile, software development team, the goal is to get software made
in a timely manner. To achieve this, these teams usually rely on tools Continuous
Integration and Continuous Delivery to automate a lot of work for them. New code is
automatically tested and integrated with code from other systems to check whether
no new bugs are introduced, and a deployment of a new build to production can
happen with the click of a button or even automatically. Each of these steps has their
own tools that work together to achieve the final goal of bringing new features to
production. Having so many tools does come with security risks: how do these tools
work together? What data is sent from each tool to another? What would happen if
an attacker took over a tool? This paper aims at delivering a framework for detect-
ing and preventing security vulnerabilities in Continuous Integration/Continuous
Delivery pipelines in the context of a large consultancy company which provides
Continuous Integration/Continuous Delivery environments as a service to customers
and internal development teams. Some exploratory research is done on how CI/CD
is used within the company, and together with experts from the company, the frame-
work is built. The end result is a baseline which the company can use to detect and
prevent security vulnerabilities in their platform.

v

Acknowledgement

Dear reader, I am proud to present to you my Master Thesis. Behind every Master
Thesis is a story. There’s more to it than just these words on paper. Before I started, I
heard that a Master Thesis is probably the ultimate test of determination, with ups
and downs. A quote from a Reddit user on /r/GetMotivated reads: “Motivation gets
you started, but discipline keeps you going."

For me, this means two things: The first is that I try to do most of the work as
soon as possible. Early in the morning I am most productive and I expected to lose
motivation for writing this Thesis over time. The second is that I always need to
have something to look forward to, for example a meetup with friends in a pub or
attending all different kinds of local events, but I also travel to a different country
for a long weekend regularly. I would like to thank and name everyone who gave
me the motivation to finish this thesis and was there for me when I needed them:

My thanks goes out to my mom, dad, brother and sister, who would always welcome
me back into the home I left before starting my journey to write this Thesis.

My thanks goes out to the rest of my family and my friends from University, who I
knew I could count on when I needed them.

My thanks goes out to Maya Daneva, my academic supervisor, whose positivity and
support knew no bounds.

My thanks goes out to my company supervisor, who familiarized me with the
company and was able to give me advice and support. We had weekly meetings to
discuss progress.

My thanks goes out to the Secure Development Coordinator, who supported me with
his knowledge during my time at the company, and all other colleagues.

vii

Now some unconventional, but in my opinion needed thanks:

My thanks goes out to my running shoes, which I used periodically to give me the
energy I needed to get through each day, no matter how difficult it was.

My thanks goes out to the Ingress Enlightened Achterhoek, Ingress Enlightened
Twente, Ingress Enlightened Het Gooi, Ingress Enlightened Utrecht, Ingress Enlight-
ened Amersfoort, Ingress Enlightened Athens, Ingress Enlightened Bristol, Ingress
Enlightened Netherlands communities and Niantic for providing an experience that
is “more than a game". During my Master Thesis, I met up with these communities
through social drinks and events. This allowed me to get my mind off work and stay
relaxed throughout the Thesis.

My thanks goes out to my landlord, who has provided me with a positive learning
experience on living on my own for the first time and had the patience to deal with
whatever I had to improve.

My thanks goes out to Samsung for creating the Galaxy Note 9. Using this phone, I
was able to finish the Thesis nearly paperless by taking notes on the phone. I care
quite a bit about the environment, and going paperless is one of the goals I have for
myself. The battery capacity got me through each day, which would not have been
possible with my old phone.

My thanks goes out to the public transport in the Netherlands. Even though the NS
and other transport companies regularly had delays, they always got me where I
needed to be.

My thanks goes out to members of my graduation committee for taking the time to
read this work and raising points of discussion during my defence.

Last, but not least, my thanks goes out to you, the reader, for reading this work.
Without you, the knowledge contained in this work would eventually be lost.

Each of these entities contributed to the success of this thesis in some way and I
personally feel need to be thanked.

viii

Contents

1 Introduction 1
1.1 Motivation and context for this research 2
1.2 Thesis structure . 3

2 Related Work 5

3 Research Goal 9
3.1 Research Goal Formulation . 9
3.2 Research Questions . 10

4 Methods 11
4.1 Research method . 11
4.2 Application of the Research Method 12

5 Results 15
5.1 Getting familiar with the Production Line 15

5.1.1 Interviews with experts . 16
5.1.2 Sample project . 21

5.2 Risk analysis . 22
5.2.1 Sources for threat model . 22

5.3 Framework version 1.0 . 29
5.3.1 Groups of threats . 29
5.3.2 Threat model, controls and risk levels V1.0 31
5.3.3 Feedback on framework V1.0 32
5.3.4 Conclusion and reflection on framework V1.0 35

5.4 Framework version 2.0 . 37
5.4.1 Clarification of “Lam" . 38
5.4.2 Categorization of tool types 38
5.4.3 Threat assessment . 40
5.4.4 Control identification, Risk level assessment, Adding who is

responsible to each control and Grouping of controls 48
5.4.5 Visualization of the DevOps street 48
5.4.6 Evaluation of V2.0 of the framework 49

5.5 Version 3 of the framework . 56
5.5.1 Addressing feedback . 56

ix

5.5.2 Version 3.0 alpha of the framework 66
5.5.3 Converting the framework to match current baselines 66

6 Discussion of Results 69
6.1 Implication . 69

6.1.1 Validity and reliability of the research 69
6.1.2 Conclusion of validation . 74

6.2 Limitations of the Research . 74
6.2.1 Scope . 74
6.2.2 IDEs . 74

7 Conclusion 75
7.1 Answers to research questions . 75
7.2 Future work . 76

7.2.1 Future threats . 76
7.2.2 IDEs . 76
7.2.3 Secure Configuration Baseline 76
7.2.4 Deployment tools like Ansible 76

7.3 Recommendations for the company 77
7.3.1 What can the company do with the new framework? 77
7.3.2 Situations in which the framework is applicable 77
7.3.3 Required expertise . 77

Bibliography 79

A Raw threat list for framework V1.0 85

B Framework v1.0 87

C Raw threat list for framework V2.0 97

D Framework v2.0 99

E Framework v3.alpha.1 109

x

1Introduction

In a modern, agile, software development team, the goal is to get software made in
a timely manner. For this, they usually use one to two week sprints. These sprints
have certain goals to them: implement a specific set of features or fix a specific set
of bugs, all while not introducing new bugs.

To aid developers in this process, a modern team uses continuous integration to
ensure their code is still up to standards after they push new code to their version
control system. Microsoft defines Continuous Integration (CI) as “the process of
automating the build and testing of code every time a team member commits changes
to version control". [24] CI encourages developers to share their code and unit tests
by merging their changes into a shared version control repository after every small
task completion. Committing code triggers an automated build system to grab the
latest code from the shared repository and to build, test, and validate the full master
branch (also known as the trunk or main).”

To automate the deployment of a build from development to testing to production,
developers use Continuous Delivery (CD). Microsoft defines Continuous Delivery
as “the process to build, test, configure and deploy from a build to a production
environment. Multiple testing or staging environments create a Release Pipeline to
automate the creation of infrastructure and deployment of a new.” [23] This release
pipeline ensures that the new build is put into the production environment.

The relation between Continuous Integration (CI) and Continuous Delivery (CD)
is that Continuous Integration starts the CD process. In case the CI pipeline is
successful, CD can be triggered to deliver a build to some test environment. In case
the build passes the test environment, CD can be triggered to bring the build to
production.

The benefits for using CI/CD are that it improves the quality of software, reduces
developer effort and reduces cost. It also gives an overview about build, test and
deploy times, and logs of builds. [40] [1] [5] It usually consists of a link between
tools (a common example is a repository on Github with Jenkins CI which is pushed
to Amazon Web Services (AWS)). There is a lot of freedom in tools and configurations

1

when using CI/CD pipelines. This results in many different configurations across
development teams.

CI/CD has become part of the software supply chain [3] [40]. Securing this supply
chain is becoming more and more important. CI is for example used to check whether
code is up to standards. In a scenario in which these checks are silently disabled
(or made to always pass) and malicious code gets pushed, for example, it is very
difficult to detect this malicious code before it is live in production. The last piece
of the supply chain is the continuous delivery pipeline. It accesses many portions
of a system from different sources, each with security mechanisms introduced by
different people at different times. In many cases, an organization might not have
a complete knowledge of these mechanisms. In case any of these mechanisms get
compromised, the impact could be significant.

As seen from the definitions of CI/CD, their importance and their integration in
the supply chain, security in CI/CD is a growing concern. To aid developers in
systematically securing their pipelines, a framework could be used. In previous
research [20], it was found that there are frameworks which could aid developers in
this, but that those frameworks are either too generic or too specific to be applied
efficiently. In this master thesis, a framework will be designed and validated which
aims at being useful in aiding developers to secure their pipelines.

1.1 Motivation and context for this research

Now that an introduction has been given, the motivation for this research project
and its context follows. According to a survey by DigitalOcean, 42% of respondents
[28] use Continuous Integration/Continuous Deployment in their workflow. This is
expected to grow in the future, since 38% of the respondents who didn’t use CI/CD
said they plan to use it in the future. With more and more teams switching from
traditional workflows to CI/CD, security is becoming more and more important.

As seen in the introduction, CI/CD has major benefits. Improving the quality of soft-
ware, reducing developer effort and reducing cost is something every organisation
wants. When the question "What is your greatest concern?" was asked at a confer-
ence related to release engineering in 2014, the response was "someone subverting
our deployment pipeline". [3] This fear is justified. Once CI/CD is implemented, a
disruption in a pipeline could lead to a loss in productivity and delays in releases. We
therefore need to ensure that the odds of these disruptions happening are minimal,
and if they happen, that we minimize the impact and recovery time.

2 Chapter 1 Introduction

Implementing security for CI/CD might seem not too difficult at first, but it is very
easy to overlook something. Since many systems are linked together to make CI/CD
happen, a leak in one system can be used to gain access to another system. To prevent
overlooking something, a security framework could be used during integration of
CI/CD and while it’s running.

During previous research [20], currently existing frameworks were found, but they
were either too generic or too specific to be directly applicable to CI/CD pipelines.
This is the one of the main reasons on creating a new framework. It is important
that this framework is neither too generic nor too specific. To ensure this framework
meets those criteria, interviews will be held with experts from the company to
determine a scope that works for them. Using this well-defined scope, the experts
can apply this framework to CI/CD pipelines to ensure it is secure and compliant.

Another reason is traceable to the context in which this research project is executed.
This research takes place at a large consulting company providing managed security
services to client organizations worldwide. The company is well aware of the
importance of employing a framework for securing CI/CD pipelines. Several people
within the organization have been interviewed and have confirmed that the current
frameworks are not sufficient for their needs and that a new framework would be
beneficial to them. [20]

Now that the motivation behind this paper is clear, the structure of the thesis will
follow.

1.2 Thesis structure

The structure of this thesis is as follows: Chapter 2 provides related work regarding
CI/CD, DevOps, agile development and other topics relevant to this paper. Chapter
3 describes how the research goal was formulated and what research questions
this thesis answers. Chapter 4 describes the methods that will be used to answer
the research questions. Chapter 5 describes the results from applying the methods.
Chapter 6 discusses these results. Lastly, Chapter 7 provides the conclusions of this
research.

1.2 Thesis structure 3

2Related Work

In this chapter, related work on the topics of Continuous Integration, Continuous
Delivery, DevOps, security and working in an agile environment will be discussed.
As part of preparing this thesis, we searched Scopus for security-related research
related to the topic of the paper. In the Introduction, we provided definitions of CI
and CD. Here, we introduce two other terms related to CI/CD: DevOps and agile
project delivery methods. For clarity, in this thesis we refer to DevOps as a concept
meaning “a development methodology aimed at bridging the gap between Development
and Operations, emphasizing communication and collaboration, continuous integration,
quality assurance and delivery with automated deployment utilizing a set of development
practices", as defined by Jabbari et al. [16]. We refer to agile software development
as a concept that revolves around “The use of light-but-sufficient rules of project
behavior and the use of human- and communication-oriented roles.", as cited from
Cockburn et al. [6]. In agile software development, the concept of DevOps can be
applied as a basis for a list of rules to help achieve light-but-sufficient rules of project
behavior and the use of human- and communication-oriented roles. CI/CD are the
digital tools that can help ease and enforce that process.

Fowler et al. [9] summarize the technique and the current usage of CI very well. It
teaches beginners to CI what it is, what it can do and what its benefits are. It also
gives ideas on how to implement CI in an organization. It is a great article to read
for people who want to understand what CI is exactly. This thesis took the article of
these authors as a starting point.

Hilton et al. [14] present a qualitative study of the barriers and needs developers face
when using CI. They use semi-structured interviews with developers from different
industries and different development scales. This study is a great read to get insight
in how developers experience using CI and what barriers they face while using it.

Humble et al. [15] explain how configuration management, automated testing, con-
tinuous integration and deployment, data management, environment management,
and release management can be brought together as a whole. This book is a great
start for people who want to gain more knowledge about how to successfully apply
Continuous Delivery in an organisation. Our work draws on this textbook.

5

Rodriguez et al. [29] classify and analyse the literature related to continuous
deployment in the software domain in order to scope the phenomenon, provide an
overview of the state-of-the-art, investigate the scientific evidence in the reported
results and identify areas suitable for further research. This study is a great read to
get up-to-date on the latest developments in the area of continous deployment.

Shahin at al. [32] systematically review the state of the art of continuous practices
to classify approaches and tools, identifies challenges and practices in this regard. It
provides a very clear distinction between continous integration, continuous delivery
and continous deployment, as seen in Figure 2.1. As seen in this figure, continous
integration is defined as the process of building and testing automatically. Continous
delivery is the manual process to release a build to Production after a successful
Acceptance Test. In Continous deployment, the process of releasing a build to
production is automated.

Villamizar et al. [41] characterize the publication landscape of approaches that
handle security requirements in agile software projects. They do so by conducting
a systematic mapping to outline relevant work and contemporary gaps for future
research. They conclude that their analysis suggests that more effort needs to be
invested into empirically evaluating the existing approaches and that there is an
avenue for future research in the direction of mitigating the identified limitations.

Daneva et al. [7] report on results from a documentary study initiated to understand
the agile-ready security practices that organizations use. They conclude that Security
RE (requirements engineering) adds up to the documentation in an agile project, as
teams introduce new story types, e.g. evil user stories, abuser stories, security stories.
Plus, they found that Security RE relies on investments into the security training
of the agile project teams and into organizing hack sessions. Last, if companies
take security requirements seriously, it seems that they should consider ignoring the
gatekeeping role of the agile product owner.

Fig. 2.1.: The relationship between continous integation, delivery and deployment.

Bass et al. [3] put the problem of securing a development pipeline into perspective
and give concrete solutions for securing a specific pipeline used in their environment.

6 Chapter 2 Related Work

Security is achieved by having trusted components mediate access to sensitive
portions of the pipeline from other components, which can remain untrusted. We
us

Ullah et al. [40] analyze the effectiveness of 5 security tactics on CD pipelines. A non-
secured pipeline and a secured pipeline are tested both qualitative using assurance
cases with goal-structured notations and qualitative by the use of penetration tools.
Using these security tactics improves the security of the CD pipeline by controlling
access to the components and establishing secure connections.

Jabbari et al. [16] published a literature study focusing on DevOps. Since DevOps
is a vague concept, the study attempts to give it a definition, associates practices
with the concepts of DevOps and identifies similarities and differences with other
development methods. These authors define DevOps as “a development methodology
aimed at bridging the gap between Development and Operations, emphasizing com-
munication and collaboration, continuous integration, quality assurance and delivery
with automated deployment utilizing a set of development practices", which the author
believes summarizes the concept of DevOps very well.

Cockburn et al. [6] introduce the concept of agile software development. In
traditional software development methods, communication between team members
is not optimal. The use of light-but-sufficient rules of project behavior and the
use of human- and communication-oriented roles lay at the heart of agile software
development. Using these rules and roles a development team can become more
efficient at developing software than by using traditional methods.

Now that some context has been given about CI/CD and DevOps in the form of
related work, the research goal will follow in Chapter 3.

7

3Research Goal

Since the framework that follows from this research is designed to be used by
employees of the company, the research goal was designed together with them to
suit their needs.

3.1 Research Goal Formulation

In the interview with the Secure Development Coordinator, the goal was proposed by
the researcher to be “The goal of this research is to develop and validate a framework
that aims at preventing and detecting security vulnerabilities in Continuous Integra-
tion/Continuous Deployment pipelines for software development projects that are made
within the company and for external customers who wish to check the security of their
own Continuous Integration/Continuous Deployment pipelines.". The Secure Devel-
opment Coordinator requested that this was e-mailed to him, and in the reply he
stated that it is well-described, but that the term “framework" is vague, but that it
can be made clearer some other time.

In the interview with the Project Manager and Agile Coach at the company, the
research goal was kept the same, but some interpunction was added to make it
more readable. The Project Manager and Agile Coach told that there are three
situations in which this framework would be applicable. The company provides
a "Production Line" to customers, which is basically a CI/CD environment. The
customer can choose that the company manages this pipeline (“managed") or that
they manage it themselves (“unmanaged"). It is also seen that it would be useful to
apply the framework to CI/CD environments at customers where employees work
which use their own CI/CD environment (“external"). The research goal is updated
to reflect these environments: “The goal of this research is to develop and validate a
framework, that aims at preventing and detecting security vulnerabilities in Continuous
Integration/Continuous Delivery pipelines in managed and unmanaged CI/CD pipelines
provided by the company and external CI/CD pipelines created and used by customers
of the company."

Since developing a framework for three separate environments is very likely signifi-
cantly more work than developing a framework for one environment, it is decided to

9

limit the scope to just the managed environments. This ensures that the framework
is the most useful, since this is the most predictable environment, and that the
framework will be delivered in time. The final research goal is updated to reflect
this: “The goal of this research is to develop and validate a framework, that aims at
preventing and detecting security vulnerabilities in Continuous Integration/Continuous
Delivery pipelines in managed Production Line environments provided by the company
to customers."

3.2 Research Questions

The research questions which support this research goal are:
1. What types of risks are companies using the managed Production Line exposed to?
2. Which practices exist to mitigate each type of risk?
3. How should these risks be mitigated for each risk level?

The answer to the first question is needed in order to understand the problems that
companies experience while using managed CI/CD. We would like to know what
types of risks organizations are exposed to and what risk levels there are. The second
research question will help us understand the solutions in terms of practices that
mitigate each type of risks identified in the answer to the first research question.
Matching the practices to the risks will help us understand any gaps that are possibly
existing, for example it might be the case that there are no practices that match a
particular risk type. In turn, understanding these gaps will lead us to formulating
goals for the risk mitigation framework that will be developed in this thesis. Our
framework is the answer to the third research question.

The methodology to answer each research question will be discussed in the next
chapter.

10 Chapter 3 Research Goal

4Methods

4.1 Research method

The main method that will be used for this research is Wieringa’s Design Science
Methodology [42]. We chose this method for the following reasons:

1. It fits in contexts of industry-relevant research and this is what this master thesis
includes.

2. It is suitable for situations in which a researcher is embedded in a business
organization and can closely observe problems and issues as practitioners experience
them.

3. It is suitable for research which can not be replicated in academic environments.

Wieringa’s method is summarized in figure 4.1.

Fig. 4.1.: Visual representation of Wieringa’s Design Science Methodology

The design cycle starts out with a Problem Investigation. This phase aims at deter-
mining what problem needs to be solved. The problem investigation starts with
the Stakeholder and Goal Analysis. Wieringa defines a stakeholder as “a person,
group of persons, or institution who is affected by treating the problem". These
stakeholders have goals in mind that they wish to achieve to treat the problem,

11

the so called Stakeholder Goals. However, the desires of the stakeholders and the
Stakeholder Goals may conflict. These conflicts might be solvable by technical means
or increasing the budget, but others might not be solvable, due to legal or moral
reasons.

After the Stakeholder and Goal Analysis, the Implementation Evaluation and Problem
Investigation stage begins. In case there is already an implementation, either from a
previous cycle or an existing solution, this implementation is evaluated with respect
to the stakeholder goals.

Problem investigation consists of investigating real-world problems to prepare for
designing a treatment for the problem. The goal of this is to learn about Stakeholder
Goals and to understand the problem that needs to be treated.

After the Implementation Evaluation and Problem Investigation, the Requirements
Specification stage begins. Requirements are treatment goals, which are desired by
some stakeholder who has committed a budget to realize them. They are specified
by the design researcher. Each requirement must, under the assumptions made in
the context of the project, contribute to the stakeholder goal.

After the requirements are clear, it is time to implement these in such a way that
they can be validated to provide the effect they were designed for. If this turns out
to be the case, the artifact could be considered “done". If there is feedback or the
artifact behaves different than expected, this is taken into account and the design
cycle starts anew.

Now that the general idea of Wieringa’s Methodology for Design Science is clear, it
will now be discussed how it is applied in this research.

4.2 Application of the Research Method

The first research question is: “What types of risks are companies using the managed
Production Line exposed to?". To answer this question, the author of this thesis will
first have to understand what the Production Line is, what it is used for and how it
is used. To achieve this goal, interviews have been done with experts on the topic
of the Production Line, and the author has setup a sample project on their own
Production Line environment to get a hands-on feel with the Production Line.

Once the author understands what the Production Line is, what it is used for and
how it is used, a Risk Analysis is done. For this, first a Threat Model is made based

12 Chapter 4 Methods

on several sources, namely literature research, a webinar, lessons learned from past
incidents, and another small research about CI/CD security done by my supervisor.
Experts are asked to validate this threat model and add to it as they seem fit.

Based on this threat model, risks and controls for these risks are identified. This
answers the first and second research question. To repeat, the first research question
is “What types of risks are companies using the managed Production Line exposed
to?". The second research question is “Which practices exist to mitigate each type of
risk?".

Fig. 4.2.: This research performed three iterations of the Design Cycle

Once this is complete, exploratory research on which risk levels are assigned to which
kind of threats in the company will be performed. The author will then propose
risk levels to the controls for the threats that were identified previously. This is
version 1 of the framework. The framework will be sent to the Secure Development
Coordinator, an expert on the topic of frameworks, for initial feedback on whether
the framework is going in the right direction.

4.2 Application of the Research Method 13

Once their feedback has been taken into account, version 2 of the framework will be
delivered. Together with experts, a group evaluation on the framework itself and
on which controls have to be applied at which risk level will be performed. Based
on this, the framework, the threats, controls and risk levels will be validated or
improved.

Version 3 of the framework consists of an extension to the the current framework,
consisting of an Excel sheet with a checklist. It will be extended to include controls
specifically for projects which use the Production Line and to clarify how to apply
existing checks to a Production Line environment. This extension will be evaluated
by some experts on frameworks. This answers the third research question: “How
should these risks be mitigated for each risk level?".

This method will result in a useful framework for preventing and detecting security
vulnerabilities in managed Production Line environments.

14 Chapter 4 Methods

5Results

In this section, the results from applying the Design Science research method as seen
in the previous section will be discussed.

5.1 Getting familiar with the Production Line

In the context of this research, the term Production Line plays an important role. We
define it as follows: A Production Line is a set of server-side collaboration tools for
engagements of the business. It has been developed for supporting project engage-
ments with individual tools like issue tracking, continuous integration, continuous
deployment, documentation, binary storage and much more.

To get familiar with the production line, interviews were conducted with four experts
and a sample project was built. They have been summarized in the next subsection.
In the subsection after that, the process of building the sample project will be
described.

The interview process included four people. They were chosen because of their
expertise, their organisational roles and their professional interest in this research.

The first interview was held with the Secure Development Coordinator. This person
is important in this research, as their knowledge on existing frameworks within the
company and feedback on my versions of the new framework are used to improve
each version of the framework. This person was also interviewed by me during
previous research [20]. On each version of the framework, some feedback is given by
this person and taken into consideration. This interview was aimed at determining
stakeholders and what this person wants from the new framework.

The second interview was held with a Project Manager and Agile Coach at the
company. This person was recommended to interview by the Secure Development
Coordinator in the previous interview, because they are an expert on the topic of how
the company uses Continuous Integration and Continuous Deployment. The goals of
the interview were to understand how and when CI/CD is applied by the company,
understand which tools are used for CI/CD by the company, understand which

15

measures are currently being taken to secure CI/CD environments and potentially
determine a scope for the framework to be designed.

The third interview was held with an Engagement Security and Privacy Manager,
who is responsible that the teams working on projects use the frameworks and that
compliance is checked on a regular basis. This person was also recommended by
the Secure Development Coordinator, since the Engagement Security and Privacy
Manager told the Secure Development Coordinator that they would like to have
some security baselines regarding CI/CD, DevOps streets and development at some
point in the past. The goal of this interview was to find out what they do on a daily
basis, what their responsibilities are and which frameworks they currently use.

The fourth interview was held with the previously mentioned Secure Development
Coordinator and the Security Manager of Delivery in the Netherlands. The Security
Manager is responsible for that anything that is delivered adheres to the ISO stan-
dards and that every Engagement Manager or Service Delivery Manager, who are
responsible for a contract, can deliver the contract according to these specifications,
including security. The goal of this interview was to determine the current state of
the security of CI/CD pipelines, how the new framework could be useful to them
and to identify experts on the area of CI/CD which I could potentially interview in
the future.

After the fourth interview, it was decided that enough information was gathered
for the purpose of this research, and no further interviews were held until after
the delivery of the first version of the framework. The author of this research was
provided with an instance of the company’s CI/CD solution, and used this to build a
sample project to learn how each of the tools in the solution work and how they work
together. The sample project consisted of uploading some code to the version control
system, making new code build automatically and using a static code analyzer to
analyze the quality of the code.

5.1.1 Interviews with experts

Secure Development Coordinator about stakeholders and what they want
from the framework

In the first interview with the Secure Development Coordinator, an expert on the
currently existing framework, the goals were to identify what they want from the
new framework and to understand which people would be affected by the framework
in different use cases. The Secure Development Coordinator was also interviewed

16 Chapter 5 Results

in previous research to get a feel of how CI/CD is used in the company, how CI/CD
pipelines are secured within the company, what the limitations are of the method
used to secure CI/CD pipelines, and how to overcome these [20].

The interview starts off with a stakeholder analysis. The questions that are asked
are in line with the stakeholder analysis method as Wieringa describes in their book
[42]. Assessors and the Account Manager or Service Delivery Manager are identified
as Normal Operators. Assessors get appointed by e.g. the Service Delivery Manager
to check the checklist. The Assessor is responsible that everything on the checklist
gets checked off, but the Service Delivery Manager or the Account Manager are
accountable if something goes wrong.

Another Normal Operator that is identified is the people from the Security Organiza-
tion, who will check (audit) that the Assessor has correctly checked off the checklist.
Firstly, every contract has an Engagement Security Manager, who validates such
assessments. If the Engagement Security Manager has questions about this, a Subject
Matter Expert will decide.

When asked which other users could fall under “Normal Operators", the interviewee
mentions the person(s) setting up the DevOps street (Infra), and the Chief Security
Officer (CSO). Since the framework applies to both development and shaping a
DevOps street, Technical Application management and Operators are also interested.
They will need to keep the environment up and running.

We then try to identify which stakeholders are considered Maintenance Operators.
The Chief Security Officer is ultimately responsible that the framework is updated
once it needs to be updated. These frameworks get could get approved by NL, EU
and/or Global branches of the company.

When talking about stakeholders in the category of Operational Support, the in-
terviewee mentions that the company is currently setting up training to make the
current baselines more clear. The Trainers will be responsible for explaining the
framework to employees who don’t know the framework.

When it is unclear whether something is compliant, several people could give
clarification, e.g. the Secure Development Coordinator or the Engagement Security
Manager. As part of the training program, Champions will be trained, who are
experts on a certain topic. A champion could be trained on the topic of DevOps
security.

When talking about Functional Beneficiaries, the Engagement Security Manager will
benefit from being compliant with the framework. If the guidelines are followed,

5.1 Getting familiar with the Production Line 17

the risk is addressed and you have no more unknown vulnerabilities in your system.
The customer will also benefit from less incidents.

Other entities affected by the new framework (Interfacing Systems) include NL’s
branch of the company’s own Security Baselines or Information Security Management
Systems (ISMS). There is a preference that the framework is an extension to the
currently existing Security Baselines.

In terms of the Wider Environment, there are also negative stakeholders. The As-
sessor might think: “Yet another framework that I have to check...". The Service
Delivery Manager might also not like it for the same reason as the Assessor. Further-
more, all stakeholders could hurt the development, introduction and/or use of the
framework. If they say “no", the framework simply won’t be adopted. It is therefore
very important to involve as many stakeholders as possible during the development
of the framework.

After the interview with the Secure Development Coordinator, an interview with
a Project Manager and Agile Coach follows. It is important to mention that the
Research Goal was created together with the stakeholders to ensure that as many
stakeholders as possible stand behind the research goal and a “no" as mentioned in
the previous paragraph is prevented as much as possible.

Project Manager and Agile Coach about the application of CI/CD by the
company, CI/CD security and stakeholders

The goals of the interview were to understand how and when CI/CD is applied by
the company, understand which tools are used for CI/CD by the company, under-
stand which measures are currently being taken to secure CI/CD environments and
potentially determine a scope for the framework to be designed.

There are two kinds of teams which use CI/CD within the company. The first
are development teams, in case of new development. CI/CD is used very limited
there. The second are administration teams, who have taken over applications from
customers and are using the Production Line to do their deliveries. CI/CD is used
there to optimize the development process.

Several tools are used for CI/CD, about which the author will later go in more detail
about.

18 Chapter 5 Results

There is a team responsible for ensuring the Production Line works and for its
security. This team is divided over Morocco and India and consists of around 20
people. They administer the environments, create new ones, update them, add
new tools to the environment and do everything else related to these environments.
There are hundreds of Production Line instances used by the company.

The Production Line is ISO 27001 compliant, which is great, but also comes with
some limitations. It cannot be accessible from the outside world. It would be
beneficial if it could be accessible from a customer’s environment, which is currently
not possible for security reasons.

Currently, there is no method specifically designed for the security of CI/CD pipelines
as far as the interviewee knows. They feel like ISO is too generic to apply effectively
to the Production Line.

The interview continues with determining a scope, which was discussed in 3. Then,
a stakeholder analysis follows. Only new stakeholders not identified during the
previous interview will be discussed.

The only relevant new stakeholder identified falls under Normal Operators and are
the Testers of the application. A penetration tester could use the framework during
their tests to find possible security issues.

Engagement Security and Privacy Manager on what they do on a daily basis,
what their responsibilities are and which he frameworks currently uses

Their responsibilities are to make sure that the teams working on projects fill out
their forms related to security. If the teams check a checkbox on the form, they can
assume it is done. They also have to make sure that these forms are resubmitted
periodically. When new projects are obtained, the forms are filled in for the first time.
Sometimes, a customer doesn’t want to do one of the things on the form, because it
costs too much money, e.g. Threat Analysis. In this case, higher management has
to sign off that they accept this risk and that they themselves are responsible for
anything that happens because of it. When something does happen though, usually
the company is the party who looks bad, because they should have prevented it,
even though the customer signed a waiver accepting the risks.

5.1 Getting familiar with the Production Line 19

Security Manager and Secure Development Coordinator on the current state
of the security of CI/CD pipelines, how the new framework could be useful
to them and experts on the area of CI/CD

The goals of this interview were to get to know the Security Manager, determine the
current state of the security of CI/CD pipelines, determine how the new framework
could be useful for them, determine some risks for the use of the Production Line
and identify experts on the area of CI/CD.

After providing some background, the Security Manager is asked what their respon-
sibilities within the company are. They are responsible for that anything that is
delivered adheres to ISO standards. This is implemented based on the baselines.
They also ensures that every Engagement Manager or Service Delivery Manager or
Service Coordinator, who are responsible for the contract, can deliver the contract
according to the specifications, including security. They assist them in this and
reports to Delivery Heads and higher management about the progress in this. They
are responsible that the Engagement Manager, Service Delivery Manager or Service
Coordinator know what they have to do, but in the end, they will have to do it
themselves.

Currently, the Security Manager relies on the company France to correctly apply
the Secure Development guidelines to the Production Line. They should, since they
are certified for this framework. The Secure Development Coordinator mentions
that the Production Line can be viewed as an application itself and therefore these
Secure Development guidelines can be directly applied to them. Methods like Threat
Analysis, Vulnerability Assessment can be applied directly to them.

The Security Manager doesn’t really know of any past security incidents on Managed
Production Line instances. If the platform is correctly setup, many problems are
avoided. When Unmanaged Production Line instances are used, there is more risk.
It has happened that the antivirus was not turned on during setup, resulting in
ransomware on the machine. The Secure Development Coordinator does mention
that it has happened that in the case of Managed Production Lines, source code was
leaked to entities of the company that were not supposed to have it, e.g. the Indian
branch of the company got hold of code that couldn’t be distributed outside of NL or
EU.

The Security Manager does see a need for this framework, since the current frame-
work is more aimed at the traditional way of development. More and more tech-
nology keeps getting used nowadays. They mention Docker as an example. Docker
containers are so diverse that it it’s not possible to develop a standard checklist

20 Chapter 5 Results

for them. Of course there could be a high-level checklist, but it would not cover
everything.

The new framework will be an addition to the baselines the Security Manager aligns.
They look at which baselines are applicable to which projects. The new framework
is expected to fit more with activities people are working on.

Both interviewees agree that an addition to the Excel sheet is a desirable method
for making this new framework. Making a new method not based on Excel sheets is
outside of the scope of this project and not possible in time.

Some advice both interviewees gave was to know your audience, and make the
framework understandable to users of all levels, junior, medior and senior. Not
everyone is familiar with the subjects these checklists are about.

A risk analysis is attempted, but it is quickly determined that an interview is not the
best method of doing a risk analysis. The method will be changed according to this
experience.

Both interviewees provided me with some contacts in various topics related to my
research. The interview concludes.

5.1.2 Sample project

In this section, some information about the sample project that was created in the
Production Line will be provided. This sample project was created with the aim of
getting an idea of what the Production Line can do and how it is used. It is not
aimed at becoming an expert on the Production Line, since there is not enough time
for that and is not needed for this research.

The company provided some documentation in their Knowledge Management Sys-
tem on the use of the Production Line. This included, among other things, a Getting
Started guide and policies. I downloaded the Pet Clinic sample project [38], a
commonly used web development framework for Java [26]. The reason I down-
loaded this example is that it was easily findable on Google and that it uses Maven
[2], which integrates really well with one of the tools used in the Production Line
(Jenkins [18]).

The tools that are in the scope of this project and offered within the Production
Line are Jenkins [18], SonarQUBE [35], LDAP Account Manager [22], Selenium
[31], Graylog [12], Nexus3 [36], Grafana [21] and Gitlab [11]. Each tool that was

5.1 Getting familiar with the Production Line 21

not already familiar to the researcher was used to get a basic understanding of the
functionality.

Firstly, the source code of the example project was imported into Gitlab. Then,
Jenkins was linked to Gitlab and builds were made. SonarQUBE was linked to
Jenkins to show code quality for every build, and it was verified that it did that. It
was verified that logs showed up in Graylog. During the process, users were made
with LDAP Account Manager were necessary. The researcher already had experience
with Selenium, Nexus3 and Grafana, so after looking at the tools it was decided that
it was understood how these integrate and no further action was taken.

This sample project gave the author enough information on the use of the Production
Line to understand it well enough. Together with the interviews, enough information
was collected about how the Production Line is used and what it can do. The threat
model will now follow.

5.2 Risk analysis

In this section, the risk analysis on the Production Line will be discussed. A threat
model is made, risks are identified and controls are suggested to keep these risks
acceptable for each risk level. The process is visualized in the following picture:

Fig. 5.1.: Visualization of the risk analysis process

5.2.1 Sources for threat model

The threat model will be created based on five sources. The first is the paper
“Securing a Deployment Pipeline" [3], which describes 3 threats to CI/CD pipelines.
The second is literature research on how some of the current suppliers of CI/CD
pipelines actively help to protect against threats. The third is information shared
during the TrendMicro Webinar on the security of CI/CD pipelines that happened on
the 27th of March 2019 [39]. Fourthly, lessons learned from past incidents will also

22 Chapter 5 Results

identify threats to the CI/CD pipelines. Finally, a research of my Industry Supervisor
at another company will provide more insights in CI/CD security in practice, from
which can be learned.

Below, we summarize the ideas in these sources and explain why we included them
in the development of our frameworks.

Source 1: Paper “Securing a Deployment Pipeline"

The paper “Securing a Deployment Pipeline" [3] mentions three threats to the CI/CD
pipelines. What follows is a direct citation from this paper:

1. A remote attacker attempting to exploit a component in the build environment
that is directly accessible from outside of the environment. If successful, an
attacker can gain the privileges of the process. We do not consider further
privilege escalation (to administrative rights) - this would trivially compromise
all processes on the machine.

2. In the spirit of the authors of [27], a remote attacker attempting to exploit
a component indirectly and without direct network access to the build envi-
ronment. This can be done by a seemingly benign and unnoticeable change
in a third-party repository, with code fetched from there as part of the build
process. The actual code is not malicious itself for the third-party but does
introduce an exploit which can, as above, allow a compromise of the entire
process on the machine, with new privileges for the attacker.

3. Attacks on the network links on the public Internet, i.e. on the connections
between our machine, third-party repositories, Deployer, storage, and cloud.

Each of these are interesting and relevant to include in the threat model, since they
are direct threats to CI/CD pipelines. They will therefore be included.

Source 2: How do current suppliers of CI/CD pipelines actively help to
protect against threats?

Gitlab
Gitlab provides CI/CD tooling in their solution. In the Production Line environment,
this tooling is disabled in favor of using Jenkins. It is nonetheless interesting to look
at how Gitlab protects against current threats.

5.2 Risk analysis 23

Gitlab applies DevSecOps to integrate security best practices in the DevOps work-
flow [10]. Traditionally, it was difficult to balance business velocity with security.
DevSecOps solves this problem by building this architecture into the CI/CD pipeline.
Gitlab mentions the following advantages for DevSecOps:

• Every piece of code is tested upon commit, without incremental cost.

• The developer can remediate now, while they are still working in that code, or
create an issue with one click.

• The dashboard for the security pro is a roll-up of vulnerabilities remaining that
the developer did not resolve on their own.

• Vulnerabilities can be efficiently captured as a by-product of software develop-
ment.

• A single tool also reduces cost over the approach to buy, integrate and maintain
point solutions.

The concrete features Gitlab offers for DevSecOps are as follows:

1. Static Application Security Testing (SAST)
Prevents vulnerabilities early in the development process, allowing to be fixed before
deployment.

2. Dynamic Application Security Testing (DAST)
Once code is deployed, prevent exposure to your application from a new set of
possible attacks as you are running your web applications.

3. Dependency Scanning
Automatically finds security vulnerabilities in your dependencies while you are
developing and testing your applications, such as when you are using an external
(open source) library with known vulnerabilities.

4. Container Scanning
Gitlab can analyze your container images for known vulnerabilities.

5. Auto Remediation
Auto remediation aims to automated vulnerability solution flow, and automatically
create a fix. The fix is then tested, and if it passes all the tests already defined for
the application, it is deployed to production.

24 Chapter 5 Results

6. Secret Detection, IAST and Fuzzing
Future features GitLab will be adding to its Security capabilities.

In conclusion, GitLab offers several features to help customers protect their CI/CD
pipelines.

Jenkins
Jenkins provides a Wiki page with some information on how to secure your Jenkins
instance. [19] This Wiki page mentions 2 aspects, namely Access Control and
Protecting users of Jenkins from other threats. We will briefly elaborate on these
aspects.

1. Access Control
To provide the right users the right access at the right time for the right reasons. An
example is that every logged-in user has all permissions, or that specific users have
specific rights. This is controlled by 2 axes: the Security Realm and the Authorization
Strategy.

The Security Realm determines users and their passwords, as well as what groups the
users belong to. The Authorization Strategy determines who has access to what.

2. Protecting users of Jenkins from other threats
Jenkins also provides some features to protect users from other threats. They are
turned off by default, but should be considered to be turned on after reading the
documentation. These features are:

• CSRF Protection, which prevents a remote attack against Jenkins running
inside of a firewall.

• Building on master. Jenkins master should be protected from malicious builds.

• Slave to Master Access Control, which is used to protect Jenkins master from
malicious build agents.

• Securing JENKINS_HOME, which protects Jenkins from users with local access.

There are also some features which are turned on by default, which are Content
Security Policies, which protects users of Jenkins from malicious builds and Markup
formatting, which protects users of Jenkins from malicious users of Jenkins.

5.2 Risk analysis 25

Source 3: TrendMicro webinar on the security of CI/CD pipelines

On Wednesday the 27th of March 2019 TrendMicro held a webinar with the topic
“Securing Containers and your CI/CD pipeline without friction". The topic was relevant
to this paper, so it was decided to attend this webinar. Although the presentation
was given by sales people with the intent of providing customers information on
how TrendMicro can help protect their CI/CD pipelines, the presentation did include
relevant information on threats TrendMicro is protecting customers from. The
presentation named 7 ways TrendMicro can help protect customers, and 6 of them
were relevant for inclusion:

1. Build Scanning
TrendMicro provides customers with a Jenkins plugin which can be used to scan
builds for viruses. When a virus is found, it will not be possible to deploy the build.
A limitation of this method is that a virus is only stopped if it is within TrendMicro’s
signature database or TrendMicro’s machine learning algorithm picks it up.

This control will prevent a malicious individual (both from within the company
and external) to accidentally or purposefully deploy a file containing a virus to any
environment.

2. Registry Scanning
TrendMicro provides customers with a real-time, continuous registry scanner which
scans for vulnerabilities, malware and embedded secrets while the application
is running. This also scans open-source libraries which are used in projects for
vulnerabilities. When something is found, the user will at least be alerted. If possible,
the suspicious process can also be terminated.

This control will detect new vulnerabilities and malware as soon as the virus def-
initions are updated. It could also prevent secrets from leaking using pattern
recognition.

3. Admission Control
TrendMicro has a feature planned for a future release which ensures that only signed
containers can be deployed and that potentially infected hosts can be excluded from
container deployment. After a container is scanned for vulnerabilities and malware,
it will be signed. When deploying, the deployment environment will check whether
the signature is correct. On an incorrect signature, the deployment fails. When it is
seen that a host is potentially infected with malware, the host will be excluded from
container deployment and can be investigated further.

26 Chapter 5 Results

Only deploying signed containers will prevent direct deployment to the deployment
environment without a build going through the CI/CD environment first, provided
that the private key used for signing is not leaked and the deployment host is not
compromised already. Excluding potentially infected hosts from deployment will
prevent spreading malware to other hosts.

4. Runtime Protection
TrendMicro applies Malware scanning and Vulnerability Shielding to network traffic
coming from and going to containers. This way, suspicious network traffic can be
detected and stopped.

This control will prevent malicious network traffic from going to the host or other
containers, thereby preventing exploits.

5. Container Platform Protection
TrendMicro provides a service to monitor Docker and Kubernetes. It can detect
upgrades, downgrades and removal of these two applications. It also monitors the
binaries of these programs for attribute changes and their processes for abnormal
behaviour. It monitors changes to critical files, like configuration files, keys and
certificates. It monitors for changes to iptables rules to prevent unauthorized port
changes and permissions in key directories to prevent tampering with them. Lastly,
it monitors key events like errors from forbidden actions.

These controls will protect the integrity of the container platform.

6. Container Hosts Protection
TrendMicro provides an anti-virus solution for machines hosting containers. The
anti-virus can detect and remove malware from the host. This prevents malware
on the host machine from disabling other controls or affecting the host machine or
containers in any way.

This control will protect the integrity of the machines hosting containers.

7. Application Protection (Serverless)
In the case the application is stand-alone and does not run on a server, TrendMicro
can provide a library which can detect malicious libraries and code in the application.
This is not very applicable to the CI/CD pipelines, and is just named for the sake of
completeness.

In conclusion, TrendMicro provides 7 controls to mitigate risks in CI/CD pipelines,
of which 6 are related to the Production Line. These 6 will be included in the threat
assessment.

5.2 Risk analysis 27

Source 4: Past incidents

Two incidents were reviewed and served as a source for our framework development.
To get information about these incidents, the author was helped by the Design
Authority of Shared Services. The company’s CI/CD solution falls under Shared
Services. Meeting notes can be found in.

The first one is code that belongs in the Production Line environment being uploaded
outside of the Production Line. This could result to e.g. employees of the Indian
branch of the company to gain access to source code that can’t leave Europe.

The second one would be a hypothetical situation in which an unprotected Excel
sheet with passwords is uploaded to the Production Line environment. This could
result in people getting access to systems they shouldn’t have access to.

Threats related to both incidents were included in the threat list for the threat
model.

Source 5: Research at another company

Since most of this is part of a non-disclosure agreement, the conversation with my
supervisor I had with this will be summarized to include as few details as possible.

Some threats that were identified, are:

• Services in a Docker container should not run as root, but that is the first thing
developers do when setting up the container.

• There can be so many tools in a pipeline that having access to logs and statistics
of these tools might need to be done on a tool-per-tool basis. A recommended
solution is to have this collected centrally in one tool, e.g. Splunk (monitoring
tool) [37].

• No signature checking on deployed containers, which would allow unsigned
Docker containers to be deployed.

• Developers having too many permissions. E.g. one developer can build and
approve their own code. The separation of duties principle could be applied
here. This means that a developer can’t do a critical process all by themselves.
[30]

28 Chapter 5 Results

5.3 Framework version 1.0

Now that some sources are identified for the threat model, we can start to build the
framework. To do this, the threat model must be created, then controls for these
threats must be identified and risk levels must be assigned to each threat.

A well-known way for threat modeling is the STRIDE method. [13] Each letter in
STRIDE stands for a category of threats. For each tool, each currently identified
threat will be categorized. The raw threat list that was categorized can be found in
an appendix [Appendix A]. The categories are as follows:

• Spoofing - How can I spoof my identity?

• Tampering - How can I modify the product maliciously?

• Repudiation - How can I ensure no traces lead back to me?

• Information Disclosure - How can I make data available to people who shouldn’t
have access to it?

• Denial of Service - How can I make the service unavailable to users?

• Elevation of Privilege - How can I gain more permissions than I should have?

5.3.1 Groups of threats

Since there were common threats for each tool, these common threats were grouped.
The decision to group these threats was made in a Skype call with my supervisor.
Controls for these groups of threats are valid for most or all of the threats in the
group. The entire group falls under one category of the STRIDE model. Please note
that these Threat Groups do not include all threats. Threats that are not common
to each tool are not included in the groups, but are included in the threat model
separately. These Threat Groups are:

Spoofing:
Gaining access to another person’s account:

• Compromise a user’s password

• Physical access to a user’s machine

5.3 Framework version 1.0 29

• Compromise session cookie (using XSS for example)

• Access to the database to change someone’s password, then login as them

• Bruteforce password attack

Tampering:
Abuse of privileges:

• Add/Remove projects

• Modify project settings

• Perform admin tasks maliciously

Repudiation:
Improper audit log security/redundancy:

• Local access to modify/delete audit logs, disable audit logging

• No audit logging in place?

• Hard drive failure

Denial of Service:
Denying access for users:

• Remove permissions for users

• Remove users

• Change password for user

Denying access to service:

• Local access to delete/encrypt files related to Jenkins

• Attacks on the network links on the public internet and attacks from the
intranet

Elevation of Privilege:
Improper permission distribution:

30 Chapter 5 Results

• Social engineering someone to give permissions

• Give yourself more permissions

• Local access to the privilege database to manually insert permissions

Please note that there are no groups for the Information Disclosure category.

5.3.2 Threat model, controls and risk levels V1.0

What follows now is version 1.0 of my framework. This framework consists of three
aspects. Each of these aspects will now be explained. A visual representation of the
explanation that follows can be found in Figure 5.2.

Fig. 5.2.: Visual representation of the first version of the framework

Firstly, the framework consists of the threats as identified previously and summarized
in [Appendix A]. These threats are categorized using the STRIDE methodology as
explained previously [13]. Some threats are Threat Groups, consisting of multiple
threats with the same controls. The threats that these Threat Groups consist of,
can be found in section 5.3.1. I have e-mailed the threat list to all of my contacts
regarding the Production Line and CI/CD in general with request for feedback before
making the framework. This resulted in feedback that I should have a look at the
MITRE ATT&CK knowledge base [25] for more threats and controls. This resulted in
seeing that the framework included most of the threats seen there. The knowledge
base was therefore mainly used for identifying controls for threats.

5.3 Framework version 1.0 31

Secondly, the framework consists of controls that can be used to mitigate these
threats that are based on existing policies of the company, the MITRE ATT&CK
knowledge base [25] and common sense.

Finally, the framework includes proposed risk levels for each combination of threat
and control. Each project at the company has a certain risk level associated with
them. Low-risk application include but are not limited to internal applications which
are not connected to the internet. High risk applications include but are not limited
to applications running on critical infrastructure. This risk level indicates at which
risk level a control must be implemented on a scale of 1-5, with 1 being "low risk"
and 5 being "high risk". These risk levels are based on CIAA (Confidentiality, Integrity,
Availability and Accessibility) and are already established by the company in the
Secure Development Baselines. I will make a proposal of these risk levels for each
control to the best of my ability, and experts will be asked to either validate or
improve it.

The first version of the framework can be found in [Appendix B].

This goal of this version of the framework was to serve as a basis to mainly get
some feedback on the layout and the contents of the threat model, controls and risk
levels. I have e-mailed this framework to the Secure Development Coordinator, who
is an expert on the topic of frameworks. They provided me with excellent feedback.
A meeting followed up on this e-mail. The feedback will be discussed in the next
section.

5.3.3 Feedback on framework V1.0

As pat of the application of the design science research cycle, the first proposal of the
framework was reviewed with the Secure Development Coordinator. They provided
me with plenty of feedback on this version of the framework. In this section, the
feedback will be summarized, and concrete actions will be proposed for V2.0 for the
framework. Text in bold are the previously mentioned concrete actions, text not in
bold are the reactions to this.

Consider whether controls on the usage of the Production Line (the DevOps
process) would be beneficial and/or outside the scope of this project. Exam-
ples would be gates and their prerequisites for passing.
This request is considered out of scope for this project, since this framework is for
the security of CI/CD pipelines, and not the DevOps process. No action will be taken
on this point of feedback.

32 Chapter 5 Results

Consider categorizing tool types, e.g. backlog and issue tracker, version con-
trol management and mapping the controls to these tool types, not to the
specific products
These requests are considered fair. The action that will be taken for V2.0 of the
framework is to categorize the tool types according to what they are used for and not
by their name. The name of the tool will still be included to show that the controls
mostly apply to this tool, but the main categorization will be tool type and not tool
name.

Consider adding Integrated Development Environments (IDEs) like Eclipse to
the framework
This is a difficult one to decide. From the IDEs the sources are created, placed and
retrieved in and out of the source code system, from which code scans and unit
tests are initiated. The decision has been made to include the communication from
the IDE to the version control system in the framework, but the IDEs themselves
not. The reason is that IDEs run locally on developer’s machines and the rest of the
Production Line is run on a server somewhere. There are already baselines regarding
the security of developer machines. The action that will be taken for V2.0 of the
framework is that threats to the communication between the IDE and the version
control system will be added to the threat model.

Consider adding deployment tools like Ansible to the framework
This request is considered fair. It is a framework for Continuous Integration and
Continuous Deployment after all. It does not appear that Ansible is available for the
Production Line, but since the threats, controls and risk levels will be categorized by
tool type and not tool name, this is not a problem for the framework. However, for
several reasons explained later in section 5.4.2, this tool will not be added to the
framework.

Consider that the core threats are not sufficiently visible. The Information
Disclosure and Tampering threats are more about insight, stealing or manipu-
lating the developed software. Make this the main focus of the threats
This request is considered fair. The action that will be taken for V2.0 of the frame-
work is that new threat analysis will take place on these two aspects with the
developed software in mind.

Consider that the DevOps street may contain production(-like) data which re-
quires protection
This request is considered fair. The action that will be taken is that during the new
threat analysis for the Information Disclosure and Tampering threats, production(-
like) data will be taken into account.

5.3 Framework version 1.0 33

Consider clarifying what Lam is
This request is considered fair. Lam stands for LDAP Account Management. The
action that will be taken for V2.0 of the framework is that this will be clarified by
indicating that this is the Account Manager.

Consider visualizing the DevOps street
This request is considered fair. This is also feedback that I received from my super-
visor. The action that will be taken for V2.0 of the framework is that this version
will include a more visual variant, probably in the form of PowerPoint slides. An
example of how these PowerPoint slides could look was sent to me by my supervisor,
but can’t be posted in this paper due to an NDA.

Consider adding “who is responsible" to the controls
After some discussion, this request is considered fair. Different controls apply to
different groups of people. The Secure Development Baseline, which this framework
might be merged into, is meant for developers of software. Developers are users of
the Production Line. The action that will be taken for V2.0 of the framework is that
for each control it will be noted to which group of people it is most applicable to.
The visual variant of the framework, as discussed in the previous paragraph, will be
mainly focused on threats, controls and risk levels which apply to developers.

Consider which aspects are interesting for determining risk level
This request is considered as already implemented. The risk levels are based on
the risk levels that are in the Secure Development Baselines, which are based on
CIAA (Confidentiality, Integrity, Availability and Accessibility. They are proposed by
me and reviewed, validated and/or improved by experts. These experts will do so
during after the evaluation of V2.0 of the framework, such that it can be included in
V3.0 of the framework. No action will be taken for V2.0 of the framework.

Consider adding layers of concern: customer, development, APaaS, PLaaS,
TAM, Operations, and indicate control per layer
This request is considered a significant amount of work and not critical for the
development of the framework. Furthermore, it would likely be lost in translation to
the Secure Development Baselines. It is therefore rated as low-priority and may or
may not be included in future versions of the framework. The action that will be
taken for V2.0 of the framework is that it will be considered to include this in this
version of the framework, but most likely this will not happen.

Consider adding more information on context and how to check the controls
This request is considered fair and was planned already to be included in a future
version of the framework. Since V2.0 of the framework is mainly visual, this is
planned for V3.0 of the framework, which is the final version.

34 Chapter 5 Results

Consider adding controls to protect data sources (source code, software config,
binaries etcetera)
After some discussion, this is considered to be a fair request. The action that will be
taken for V2.0 of the framework is that threats to data sources in each tool will be
reanalyzed and added to the framework.

Consider extending the scope to include proprietary tools like Microsoft MFS
This request is considered outside of the scope of this thesis, mainly because these
tools are not offered as part of the Production Line. Some if not most controls will
be applicable to proprietary tools as well, but no specific attention will be given to
proprietary tools.

Consider organizing controls according to architecture, business, information/data
etcetera
Controls will be grouped, but not according to this. I will keep them grouped per
category of the STRIDE model.

Consider that the framework is currently too high-level, and requires more
details
This request is considered fair and was planned already to be included in a future
version of the framework. Since V2.0 of the framework is mainly visual, this is
planned for V3.0 of the framework, which is the final version.

Consider expanding threats and controls to authentication
This request is considered fair. The action that will be taken for V2.0 of the framework
is that threats to authentication for each tool will be re-assessed.

Consider putting more focus on assets (data, source code, binaries)
This request is considered fair. The action that will be taken for V2.0 of the framework
is that threats to assets and controls for this will be re-assessed.

5.3.4 Conclusion and reflection on framework V1.0

STRIDE was a good method for threat modeling. Using this, concrete threats to
the Production Line were found. It was very useful to group threats, to prevent an
endless list of controls. There was not much feedback related to the controls and
risk levels, but that was to be expected, since it wasn’t asked for and the evaluation
for this is planned after the creation of V2.0 of the framework.

Version 1.0 of the framework was a good first attempt at making a useful framework
and has proven to be in a good format to receive feedback on. This feedback will

5.3 Framework version 1.0 35

be taken into account for the creation of V2.0 of the framework. The concrete
improvements that will be made can be found in the next section.

36 Chapter 5 Results

5.4 Framework version 2.0

After receiving plenty of feedback on V1.0 of the framework, it is time to build the
second version. In this version of the framework, the following improvements will
be made:

• Clarification of what “Lam" stands for (LDAP Account Manager)

• Categorization of tool types

• Explanation of exclusion of deployment tools like Ansible

• Threat assessment, control identification and risk level assessment of:

– New threats identified in an interview with a student who used CI/CD in
the past

– Communication between the version control system and IDE

– Core threats related to insight, stealing or manipulating the developed
software in the Tampering and Information Disclosure categories

– Production-like data in tools

– Data sources in each tool (assets)

– Threats related to authentication for each tool

• Adding who is responsible to each control

• Grouping of controls

• Visualization of the DevOps street

The second version of the framework will be structured as seen in Figure 5.3. It
is very similar to the first version of the framework, but the “Who is responsible?"
column has been added.

5.4 Framework version 2.0 37

Fig. 5.3.: Visual representation of the second version of the framework

5.4.1 Clarification of “Lam"

We will start off by clarifying what “Lam" is. Lam stands for LDAP Account Manager.
Lam is used for managing LDAP accounts that are used for the Production Line.
Accounts can be created, deleted, assigned to groups and removed from groups.
Groups have certain permissions assigned to them. An example is that every member
of the “admins" group will be able to perform administrative tasks on certain aspects
of the Production Line. Users within the “users" group have less permissions and
can’t perform administrative tasks. In the rest of the paper, the term LDAP Account
Manager will be used instead of Lam.

5.4.2 Categorization of tool types

Now that it is clear what “Lam" stands for, we will categorize the tool types. Some
tool types were proposed in the feedback on the first version on the framework.
Some tool types do not apply to the tools in the scope of this research, and are
therefore left out. Some tools (like Selenium) don’t fall in the proposed categories
and are therefore categorized differently.

Jenkins is an automation server, as stated by their own website [18] [33]: “The
leading open source automation server, Jenkins provides hundreds of plugins to
support building, deploying and automating any project." [18]. It will therefore be
categorized as such.

SonarQUBE is a static code analyzer, as stated by their About page: “SonarQube is
an open source platform to perform automatic reviews with static analysis of code to

38 Chapter 5 Results

detect bugs, code smells and security vulnerabilities on 25+ programming languages
[...]". [34] It will therefore be categorized as such.

LDAP Account Manager is, as the name says, an account manager. It will therefore
be categorized as such.

Selenium is a bit more difficult to categorize. As per their website: “Primarily, it is for
automating web applications for testing purposes, but is certainly not limited to just
that." [31] Selenium is a tool that automates predefined actions in several browsers
at once. It therefore helps developers test their programs faster. It could therefore be
categorized as a “browser emulator". One could argue that it is a “test server", but
it is not. The application is not launched on the Selenium server, Selenium simply
connects to a running application and performs tests. It will therefore be categorized
as “browser emulator".

Graylog is a log management tool. To get a citation for this, I had to get a bit creative.
The “meta content" HTML tag is used to contain text that search engines will show
in their search results. By viewing the page source of their main website, this quote
was found: “Graylog is a leading centralized log management solution built to open
standards for capturing, storing, and enabling real-time analysis of terabytes of
machine data." [12] Graylog will therefore be categorized as a “log management
tool".

Nexus3 is a repository manager. The text “Sonatype Nexus Repository Manager"
is displayed in the top left corner when opening the tool. It will therefore be
categorized as a “repository manager".

Grafana is a platform for visual analytics and monitoring. According to their website,
they are “The open platform for beautiful analytics and monitoring" [21]. Since
Grafana has multiple features, it will be categorized under multiple categories. The
three categories Grafana falls in are: “analytics", “monitoring" and “dashboards".

Gitlab is a product with many features. In the Production Line, most of these features
are disabled because there are dedicated tools that implement these features better.
According to their website, “GitLab is a single application for the entire software
development lifecycle. From project planning and source code management to
CI/CD, monitoring, and security." [11] It is only used as a version control system.
Since the scope of this research is the tools in the Production Line, it will therefore
be categorized as a “version control system".

5.4 Framework version 2.0 39

Explanation of exclusion of deployment tools like Ansible

Although deployment tools like Ansible were previously considered to be within the
scope of the framework, it was decided to not include these tools in this version of
the framework for the following reasons:

• An approaching soft deadline on finishing the Excel version of V2.0 of the
framework

• An approaching (but a little further away) hard deadline on finishing a visual
version of V2.0 of the framework for the evaluation

• Lack of experience with Ansible and lack of time to get this experience

• No currently available threat models on the internet for Ansible or similar tools

• No time to find and interview experts on threats related to Ansible or compara-
ble tools

• The fact that Ansible has more to do with the Operations side of DevOps, and
that the framework will eventually be merged into the Secure Development
Baselines, which is meant more for developers. This would result in threats
and controls being left out, since they are not applicable to developers.

The value of the addition of Ansible and comparable tools will be re-evaluated during
the group evaluation session of V2.0 of the framework. If deemed valuable, Ansible
and comparable tools will be included in V3.0 of the framework. If time permits, a
V4.0 of the framework could be created, in which feedback on V3.0 of the framework
is processed. By making this decision, the framework will be delivered in time and
all feedback on the previous version of the framework is processed carefully.

An e-mail was sent to the Secure Development Coordinator and my supervisor to
inform them of my decision. The Secure Development Coordinator agreed with this
proposal.

5.4.3 Threat assessment

Now that it is clear why deployment tools like Ansible weren’t included in the
framework, an interview with a student who has used CI/CD before in their projects

40 Chapter 5 Results

will follow. This interview identified new threats which will be added to the list of
threats.

Interview with a student who has used CI/CD before

The student studies at the University of Twente and is a good friend of the author.
After the author asked around in a group chat who had worked with CI/CD, they
said they had worked with CI/CD and that they wouldn’t mind talking with me
about the topic. A meeting was planned and a talk about CI/CD commenced. New
threats identified during the meeting will now be discussed and added to the list of
threats.

The first threat that they identified is a malicious insider pushing code. This falls
under the “Uploading untested code to the repository" that was already identified
in the first version of the framework. The controls identified for that threat are
sufficient to cover this threat and a malicious insider pushing code will therefore not
be considered further.

A noteworthy comment in the interview is that they say that when you have a
small project, most threats are external, e.g. come from outside of the group that is
working on the project. When an insider would sabotage the project, they would
be sabotaging themselves as well. Therefore, there is no or little incentive to be
malicious during a small project.

The second threat that they identify in the category “Spoofing" is having a user with
a known username or e-mailaddress but slightly altered (e.g. uppercase i instead of
lowercase L). This is a valid threat, and will therefore be added to the threat list.

The third threat that they identify is physical access to the machine of the person
you want to spoof. Although this is a valid threat, the security of the machine of the
developer is already covered by existing policies, and will therefore not be added to
the threat list.

The fourth threat that they identify is that uploading malicious Javascript code to
phish users for their login credentials. Uploading malicious code was discussed
before and falls under the “Uploading untested code to the repository" category.
Measures against phishing are already covered in other policies. The threat will
therefore not be added to the threat list.

5.4 Framework version 2.0 41

The fifth threat is that there might be less control on which libraries get added for
the purpose of testing than for other purposes, e.g. development. This is a valid
threat, and will therefore be added to the threat list.

The sixth threat that was identified is that there was a feature to revert to an older
build. If a malicious build were uploaded, and later replaced by a non-malicious
build, this feature could be used to go back to the malicious build. This is a valid
threat, and will be added to the threat list.

The seventh threat is rewriting history in the master branch in Git. For some reason,
an unprotected master branch was not yet considered in the first version of the
framework. This is a significant risk, so the threat of abuse of unprotected master
branch will be added to the threat list.

The eighth threat is that developers could have permission to delete other people’s
branches. This is a valid threat and will be added to the threat list.

The ninth threat is shared accounts. Shared accounts would be a threat in the
category of repudiation. You can’t audit who did something if there are multiple
people on the same account. This is a valid threat and will be added to the threat
list.

The tenth threat is code that is uploaded to the public domain. Code being re-
uploaded by developers to places where it shouldn’t be is a valid threat and will be
added to the threat list.

The eleventh threat is social engineering to get more permissions. This is an already
identified in the category of Tampering in the group Abuse of privileges.

The twelfth threat is that a malicious version of a tool gets added to the pipeline.
This is a valid threat and will be added to the threat list.

Now that some new threats have been identified in an interview, threats related
to the communication between the version control system and the IDE will be
discussed.

Communication between the version control system and the IDE

In this section, threats to the communication between the version control system
(VCS) and the IDE will be identified. These threats and controls to them will be added

42 Chapter 5 Results

to the threat list for version 2.0 of the framework. Some existing controls will be
moved to a different category, as explained later. Two aspects of this communication
will be analyzed, namely the cloning of the code in the repository (when checking
out the project) and pushing new code to the version control system.

Cloning the repository goes as follows: The IDE sends a request for cloning a
repository. If needed, the VCS will request authentication. If authentication succeeds,
a copy of the repository is sent to the IDE. There are two aspects which could go
wrong here, namely the authentication and the connection.

Threats to authentication have already been identified as a global threat to the
Production Line under the category “Spoofing" in the group “Gaining access to
another person’s account". In terms of threats to the connection, the only threat
related to information disclosure would be a Man-In-The-Middle attack. This attack
could either sniff credentials or the source code itself.

Although this threat is already covered by the control “Ensure HTTPS is used through-
out the Production Line", which is meant to cover the global threat of “Gaining access
to another person’s account" in the category “Spoofing", it feels like this control
is better fitted under the category “Information Disclosure". Sniffing authentica-
tion credentials might result in spoofing, but it is a possible result of information
disclosure. Furthermore, obtaining the source code this way would definitely fall
under “Information Disclosure". This control will therefore be moved to the “In-
formation Disclosure" category. The threat that this control will be used for is
“Man-In-The-Middle attacks".

Core threats related to insight, stealing or manipulating the developed
software in the Tampering and Information Disclosure categories

The feedback was given that the threats in the Tampering and Information Disclosure
sections don’t accurately reflect the core threats related to those topics. This means
that some core threats in these categories were absent or misplaced and have to be
added or moved from other categories.

One thing that was already done to improve this is the addition of Man-In-The-Middle
attacks to the Information Disclosure category with the control of using HTTPS in
the Production Line. The reason for this addition can be found in section 5.4.3.

Another threat to Information Disclosure was identified in the interview with the
student, which can be found in subsection 5.4.3. It is the tenth threat in the list,

5.4 Framework version 2.0 43

“uploading code to the public domain". A similar threat was identified when looking
at past incidents in the interview with Benoît, namely code being made uploaded
such that other entities of the company had access to them, which shouldn’t have it.
An example is the Indian branch of the company getting access to source code which
was not supposed to leave Europe. This threat will be grouped as “Source code
disclosure" under the category “Information Disclosure", and includes “Uploading
code to the public domain" and “Entities within the company getting access to source
code they shouldn’t have access to".

One could argue that modifying software that is running in production is a risk to
the deployment tools. Deployment tools were decided not to be included in this
version of the framework in section 5.4.2 and will therefore not be considered at
this time.

To come back to the title of this subsection, insight in the source code of the
developed software is managed by proper access control, which is covered under
Spoofing, and by the new measures regarding Information Disclosure proposed in
the second and third paragraph of this subsection.

Insight in the running software pre-production is related to deployment tools like
Ansible, which were excluded from the scope of this framework. Insight in the
running software in production is covered in other policies and outside of the scope
of this framework.

Stealing the source code or artifacts would either mean improper access control,
which is covered under Spoofing, or Information Disclosure, which, as previously
said, has had controls added which should help to reduce the risk of this happen-
ing.

Manipulation of the source code can be done by rewriting Git history for example,
as identified in the interview with the student in subsection 5.4.3. This threat
has already been identified. Other ways include improper access control, which is
covered under Spoofing.

In conclusion, this point of feedback is now properly addressed.

44 Chapter 5 Results

Production-like data in tools

First of all, it’s usually not a good idea to use production-like data in terms of security,
but it does represent the production environment the best, so it can be understood
why this is done.

Extreme care must be taken in case personal information is involved. Developers
should never have access to personal information of real people. This could be a
violation of the GDPR, since the data subject might not have given permission for
processing of their data in this way [8]. Production-like configuration files would
most likely be fine, provided that they don’t contain secrets used in production. To
make it clear, data stored in the database of the application that is developed is
outside of the scope of this research. Data stored in the database of tools related
to the Production Line is within the scope of this research, as long as they can be
retrieved using the web interface or APIs. Direct access to the database is covered by
other policies and outside of the scope of this research.

Most of the threats related to the databases of tools should be covered by existing
policies, but there are some specific threats to certain applications that are not.

For Jenkins, that would be secrets (e.g. API keys) that are meant for production
stored in a place where everyone has access to them. For Graylog, that would be
logs that come from a Production Environment. For Grafana, that would be statistics
and data coming from a Production Environment. These three threats will be added
to the threat list.

Data sources in each tool

The three threats identified in the previous subsection covers this subsection. Fur-
thermore, the control of “Applying the principle of least-privilege to all accounts"
ensures that data is exposed to as few people as possible, further reducing the risk.

Threats related to authentication for each tool

In short, every tool that does not integrate with LDAP is a risk on itself. Every tool
must support logging in with LDAP credentials and have their own authentication
disabled. This one-time action improves security, reduces setup time and reduces
maintenance time and cost. The threat that will be added to the threat list is “Tools

5.4 Framework version 2.0 45

relying on their own authentication methods instead of LDAP", and will be added
under the category “Repudiation", since someone could create an account with the
name of a user that doesn’t use the tool and perform actions under their name,
therefore leading to non-auditability as to who performed these actions.

Conclusion, threat list V2.0 and summary of differences with the previous
version of the framework

Some new threats have been identified using the feedback given on the first version
of the framework. They are added to the framework. The full threat list V2.0 can
be found in [Appendix C]. In summary, the differences in the second version of the
framework in comparison to the first version of the framework are:

• Added the threat of a “Man-In-The-Middle attack" in the “Information Disclosure
category" in the “Global" threats.

• Removed the control of “Ensuring HTTPS is used throughout the Production Line"
from the “Gaining access to another person’s account" threat in the “Spoofing"
category in the “Global" threats and added it to the newly created “Man-In-The-
Middle attack" in the “Information Disclosure category" in the “Global" threats.

• Added the threat of “Impersonating a user by creating a user with a slightly
altered username or e-mailaddress" to the “Spoofing" category in the “Global"
threats, with the control of “Inform developers that this might happen" with a
risk level of “3,4,5".

• Added the threat of “Malicious tool added to pipeline" to the “Tampering" cate-
gory in the “Global" threats, with the control of “Validate signatures of download
of tools added to the pipeline before installing them" with a risk level of “4,5".

• Added the threat of “Shared accounts" to the “Repudiation" category in the
“Global" threats, with the control of “Each developer must have and use their
own account" with a risk level of “1,2,3,4,5".

• Added the threat of “Tools relying on their own authentication methods instead
of LDAP" to the “Repudiation" category in the “Global" threats, with the control
of “Disable each tools own authentication method and enable LDAP sign-in, e.g.
through a plugin." with a risk level of “2,3,4,5".

46 Chapter 5 Results

• Added the threat of “Secrets for production stored in a place where developers
have access to them" to the “Information Disclosure" category in the “Automation
Server (Jenkins)" threats, with the control of “Ensure that secrets for production
are stored in a place where developers don’t have access to them" with a risk level
of “1,2,3,4,5".

• Added the threat of “Logs from production which developers have access to" to
the “Information Disclosure" category in the “Log Management Tool (Graylog)"
threats, with the control of “Ensure production logs are only visible on a need-to-
know basis" with a risk level of “2,3,4,5".

• Added the threat of “Malicious builds not being deleted after identifying them as
malicious" to the “Tampering" category in the “Repository Manager (Nexus3)"
threats, with the control of “Require malicious builds to be (automatically)
deleted" with a risk level of 1,2,3,4,5.

• Added the threat of “Statistics and data coming from a production environment"
to the “Information Disclosure" category in the “Analytics, Monitoring and
Dashboards (Grafana)" threats, with the control of “Ensure that statistics and
data coming from a production environment is visible on a need-to-know basis"
with a risk level of “2,3,4,5".

• Renamed the threat of “Uploading untested code to the repository" in the “Tam-
pering" category in the “Version Control System (Gitlab)" threats to “Uploading
untested code to the repository / master branch".

• Changed the risk level of the control “Require code reviews before changes can
be pushed to master" for the threat “Uploading untested code to the repository
/ master branch" in the “Tampering" category in the “Version Control System
(Gitlab)" threats from “3,4,5" to “2,3,4,5" to reflect on the renaming of the
threat of the previous bullet point.

• Added the threat of “Developers being able to delete other people’s branches" to
the “Tampering" category in the “Version Control System (Gitlab)" threats, with
the control of “Ensure that developers can only delete their own branches" with a
risk level of “2,3,4,5".

• Added the threat of “Source code disclosure" to the “Information Disclosure"
category in the “Version Control System (Gitlab)" with the control of “Ensure
that every developer knows where code is allowed to be uploaded, e.g. by including
this in every source code file" with a risk level of “3,4,5".

5.4 Framework version 2.0 47

5.4.4 Control identification, Risk level assessment, Adding
who is responsible to each control and Grouping of
controls

Controls have been identified similarly to V1.0, which were based on existing policies
of the company, the MITRE ATT&CK knowledge base [25] and common sense.

Risk levels have been proposed similarly to V1.0 and will be either validated or
improved by experts in the evaluation session.

Responsibilities have been proposed based on knowledge gained previously and by
common sense. They will also be validated or improved by experts in the evaluation
session.

The grouping of the controls is kept in line with STRIDE for this version of the
framework, since that makes evaluation significantly easier. It will most likely be
grouped differently in the next version.

The second version of the framework can be found in [Appendix D]. Additions to
the framework have a green background, removals have a red background.

5.4.5 Visualization of the DevOps street

Feedback was given that this version of the framework was not very visual, and
that it would be beneficial to have this, e.g. one PowerPoint slide per tool. Due
to the complexity of the framework, as seen in Figure 5.3 and in the full second
version of the framework in [Appendix D], and the great number of threats and
controls, this is difficult to realize. To greatly simplify the framework and to have
something comprehensible for the evaluation of this version, it was required to
make some representation of the framework with a maximum of one slide per tool.
The only way I saw this happening would be to make a table for each tool with
2 columns: the threat categories and the threats. I sent the PowerPoint to the
Secure Development Coordinator and my Industry Supervisor for initial feedback,
and the Secure Development Coordinator replied that the visualization was clear
and decently. The author later spoke to their academic supervisor who suggested to
make some improvements to the PowerPoint. This PowerPoint was used during the
evaluation of the second version of the framework.

48 Chapter 5 Results

5.4.6 Evaluation of V2.0 of the framework

A meeting was planned with the Secure Development Coordinator and an Ethical
Hacker to evaluate the second version of the framework. Although there might have
only been two people to evaluate the framework, their skills are complementary.
The Secure Development Coordinator is an expert on the topic of frameworks and
baselines within the company, and the Ethical Hacker is an expert on threats, controls
etcetera. Therefore, the framework can be evaluated and mostly validated by these
two people. It is identified in the evaluation meeting that some additional validation
is needed, which has to be done by other people. Now, a summary of the evaluation
meeting will follow. Although the summary is quite elaborate, it is required to be
this long. A list of actions that are taken on the basis of this evaluation meeting can
be found in section 5.4.6.

Evaluation meeting

The evaluation meeting starts with the interviewer explaining the story until now.
Then, the agenda for the evaluation is brought up. After the planning for the
evaluation is clear, the global threats are evaluated. These threats are applicable to
some, most or all tools of the Production Line. The Secure Development Coordinator
mentions that the “Abuse of Privileges" could be placed in multiple threat categories
of the STRIDE model [13]. The interviewer confirms this, and say that they believe
it belongs in the “Tampering" category, because in the end, the “Abuse of Privileges"
is used to tamper with the tool.

The point is brought up by the Ethical Hacker that the interviewer should look
more at the side of a Developer every now and then, and not just at the side of a
hacker. An example is that in the case external developers get hired who quickly
want to develop code, they will try to get around certain checks to ensure their code
is delivered faster. The interviewer argues that they have identified controls for
multiple groups of people, and shows an example. The Ethical Hacker argues that the
research is not at its full potential, due to not considering what this CI/CD pipeline
is actually used for, and what the most important things are which you have to look
at when you’re going to start using or implementing the CI/CD pipeline. The Secure
Development Coordinator throws in some examples: Securing the source code and
documentation such that they don’t get stolen and ensuring the environment isn’t
taken down. These primary security goals of what the framework protects against
are called Security Objectives. The Secure Development Coordinator thinks that
naming five Security Objectives are sufficient and that the controls against threats
which are in the framework can help achieve these Security Objectives.

5.4 Framework version 2.0 49

The interviewer continues by arguing that an attempt was made to look more from
the side of a developer by looking at past incidents and the research of the Ethical
Hacker at another company for example. It is sad that the past incidents has only
identified a few threats, but that significant effort was put into this. If this has to
be improved, a concrete plan has to be made for this. The Secure Development
Coordinator proposes to talk to the Project Manager and Agile Coach, who was
interviewed previously during the exploratory research. If there were any such
incidents, they should know about them. The Ethical Hacker agrees with this
approach. It is decided to move forward with this plan.

A small discussion ensues, and ends in the Ethical Hacker identifying a new category
of threats: “Configuration mistakes". A concrete threat to the Nexus Repository
Manager is identified in this category: “Having debug mode enabled". An example
of why this is a threat, is that with debug mode enabled, credentials are logged and
everyone can see them. The proposal for a control is that there has to be a Secure
Configuration Baseline for each tool, and that this baseline is checked. To implement
such a Secure Configuration Baseline is outside of the scope of this research and is
seen as potential Future Work.

The Ethical Hacker identifies another threat in the threat group “Configuration
mistakes", namely “Use of root accounts". An example is that from the beginning
a developer is told not to use a root account, but that they do it anyways, or that
they simply rename the root account to e.g. “developer". There could already be
existing baselines for secure configuration on the internet which could prevent these
configuration mistakes from happening.

The evaluation continues with global threats. The interviewer explains that the Man-
In-The-Middle attack was added to the “Information Disclosure" with the control
using using HTTPS, as a response to feedback that this category was lacking core
threats. The Secure Development Coordinator asks whether this also includes
documents, production data, test data, source code, documentation and production-
like test data, which are the most important points to them. The interviewer
mentions that this point of feedback was addressed in this version of the framework,
for example the threat of “Statistics and data coming from a production environment"
in the “Analytics, Monitoring and Dashboards" section. Separate controls have been
proposed for this threat.

The evaluation continues with threats identified to the Nexus Repository Manager.
After discussing the limited list of threats, the comment is made by the interviewer
that the threats identified earlier during this evaluation would make a great addition
to this list.

50 Chapter 5 Results

Then, Graylog, the logging tool, is discussed. The threat of “Running demanding
queries" in the “Denial of Service" category is discussed. The interviewer said that
if this is expected to be a problem, a time-out for queries could be implemented.
The Secure Development Coordinator mentions that this does not just relate to
developers, but that it could also be abused by attackers. The interviewer agrees and
confirms that this should definitely be a control.

Selenium is discussed. The interviewer mentions that this was a weird tool, because
it only contained configuration. A lot of configuration information was visible. The
Secure Development Coordinator asks whether that includes test scripts or that it
was just configuration information to perform the tests. The Ethical Hacker says
that he thinks it is in fact a script. The interviewer mentions that you could see
the configuration, and logs in to their Production Line environment and shows the
tool. It is seen that there is a WebDriver, which you could connect to, and that it
for the rest is just configuration information. The Secure Development Coordinator
then raises the question where the tests are which are executed. The interviewer
mentions that they were not able to find these anywhere. The Secure Development
Coordinator mentions that this is strange and proposes to ask the Project Manager
and Agile Coach about this. The interviewer says that this would indeed be a nice
question for them. The Secure Development Coordinator says that these tests could
also be used to bring the environment down, e.g. by starting a performance test.
The interviewer again shows the configuration information and says “That’s it". The
Secure Development Coordinator thinks there is more than that. The interviewer
agrees and will ask the Project Manager and Agile Coach about this.

Then, LDAP Account Manager is evaluated. There is a discussion about the purpose
of this tool, and it is concluded that this is not clear. It is not clear whether the
CORP account can be used to login to the Production Line, and for which tools the
LDAP Account Manager provides accounts. The decision is made, on advice of the
Ethical Hacker, to contact the person who gave the interviewer access to the server
to gain access to this information. The importance of obtaining this information
is emphasized by the Secure Development Coordinator, who says that the LDAP
Account Manager is an important tool and if it were breached, and the persons who
breached it could access the accounts of persons, they could do anything. It is also
seen in the LDAP Account Manager that First names and Last names are visible,
amongst other information. This could be a form of Information Disclosure, and has
to be investigated further. Lastly, the Secure Development Coordinator comments
that it was initially unclear and slightly confusing that the threat of a compromised
account falls into the “Gaining access to another person’s account" threat in the
“Global" threats, and that if a threat is significant to a certain tool, it could be named
in that tool again. The Secure Development Coordinator understands why the
decision was made to not name this threat again in the threats for this specific tool.

5.4 Framework version 2.0 51

It has to be reconsidered whether to put significant threats to individual tools, which
are already under the “Global" threats, in the threats to that individual tool again.

Then, Jenkins is considered. After naming the threats, the Secure Development
coordinator asks whether specific controls for Docker and Kubernetes are within
the scope. The interviewer says that there are currently two controls, namely
“Monitor for changes in files related to Docker/Kubernetes" and “Ensure that the
running Docker/Kubernetes is called from the correct path". The Secure Development
Coordinator mentions that this does not cover, for example, configuration such that
attackers cannot break out of Docker containers. The interviewer agrees that this
should be included, but that they will make a control of “Ensure there is a baseline
for Docker container security and ensure it is followed" and will not create this
baseline itself. The interviewees confirm that this is fine and not expected.

Lastly, SonarQube is evaluated. The threat “Exploitable vulnerabilities visible to
malicious user" was identified previously, but the Secure Development Coordinator
argues that there are so many possible vulnerabilities and tests possible, a developer
can make many mistakes, and that this is just one of the mistakes that there are
and all mistakes that are made can be abused in the production environment, some
mistakes might even be used consciously. When asked whether they see this as
a threat or not, the Secure Development Coordinator argues that this is a threat,
but not a very special one, and that it can be left in. The control for this, “Give
permissions to show details of exploitable vulnerabilities only on a need-to-know
basis" is quickly mentioned.

After this, it was quickly checked whether anything was missed. A quick discussion
follows, and the control “Ensure that statistics and data coming from a production
environment is visible on a need-to-know basis" for Grafana comes up. Some
explanation is given on how this can be achieved, by making teams for example.
The interviewees indicate that this is clear to them.

Now that the threats have been shown, the Secure Development Coordinator asks
whether Ansible was included in this version of the framework. The interviewer
mentions that Ansible was skipped for this version of the framework, and that it
might be included in the next version of the framework, depending on how much
time there is. The Secure Development Coordinator stresses the importance of this
tool by saying that you could bring a Production Environment down, which could
have major consequences. It is repeated that it is on the To Do list, and will be
included if time allows.

The evaluation moves on with the validation of the visualization of the framework.
Figure 5.3 is shown. The visualization is explained and it is asked whether this

52 Chapter 5 Results

is an accurate respresentation of the framework. Both the Secure Development
Coordinator and the Ethical Hacker confirm this.

Then, an attempt to validate the identified threats is made. The sources for the
threats are shown and explained. The interviewer mentions that the threats that will
be identified in the future conversation about past incidents with the Project Manager
and Agile Coach and threats identified during this evaluation will be included in
the third version of the framework. When asked whether the threat list would
be complete enough for the purpose of this framework, the Secure Development
Coordinator says that they currently cannot judge this, and the interviewer proposes
to send an e-mail to the interviewees with the request to take a look at this, which
they agree to. After the conversation with the person who setup the Production
Line environment, the conversation with the Project Manager and Agile Coach and
the processing of the threats that were gathered during this evaluation, the threat
list will be e-mailed to the Secure Development Coordinator and Ethical Hacker for
validation.

After a discussion about the format of the third version of the framework, an attempt
is made to validate the controls. It is decided to validate these over e-mail as well, in
the same way the threats are validated.

Once this was decided, how to validate the risk levels is discussed. Someone will
have to check and improve them. Normally, 4-5 man do this in a similar way to
planning poker. The control is told to everyone, each person secretly writes down
which risk level the control should apply to, and then it is thrown on the table. If
there are minor differences, a majority vote decides. If there are major differences, a
discussion happens to figure out why people have different opinions. The interviewer
agrees that this is a good idea.

Now that a method for risk level validation is decided, it is time to find a method
for validating the responsibilities. Since this is not very complex, this process can
be done by one person. The Ethical Hacker volunteers to do this job. They will be
e-mailed the framework and asked to either validate or improve who is responsible
for a control.

The big questions follow: Is the framework useful to the interviewees? And how
would it be used? The Secure Development Coordinator answers positively to the
first question with “Yes." To the second question they answer: “There is currently
already a demand for security baselines regarding CI/CD pipelines. For that, we
just want to use it." The Ethical Hacker further validates the usefulness of the
framework by saying that “In my view in the direction of customers, we can now

5.4 Framework version 2.0 53

give consultancy with the advice you have put forward". These two answers validate
the usefulness of the framework.

The evaluation concludes with the topic of confidentiality. It is asked whether the
entire thesis is confidential, or that they can censor certain things and publish it. To
summarize, the thesis has to be censored such that it meets Security Level 0. This
means that it is public information. This Security Level can be reached by censoring
certain parts of the thesis, and will be determined in consultation with the Ethical
Hacker.

The Secure Development Coordinator mentions that it could be useful to create
dataflow diagrams of threats, which would show how data is moved between tools.
The interviewer mentions that something like that has already been created in the
form of a whiteboard drawing, but that it could definitely be included in the thesis.
This whiteboard drawing can be seen in Figure 5.4.

Fig. 5.4.: Whiteboard drawing of the visualization of the Production Line

The Secure Development Coordinator mentions that this does include the processes
and the data flows, but not the data stores and the description of the tools. There is,
for example, no flow to version control, and which tools use version control. The
actors are also missing, both the good and malicious ones. It will be considered
whether dataflow diagrams will be included in the thesis. After a quick rundown of
the planning and a conclusion, the evaluation ends.

54 Chapter 5 Results

Concrete points of action found from the evaluation

Now that the evaluation is summarized, the concrete points of action that were
found during the evaluation will be presented. These are:

1. Name approximately five Security Objectives, which clarify what the framework
aims to protect against

2. Add the threat of “Configuration Mistakes" to the framework and propose
controls for this threat

3. Talk to the Project manager and Agile Coach about past incidents

4. Modify the control for the threat “Running demanding queries" for the Log
Management Tool (Graylog) to stress its importance

5. Talk to the Project Manager and Agile coach about Selenium

6. Ask the person who gave the author access to the Production Line how LDAP
is integrated in the Production Line

7. Reconsider explicitly naming significant threats to individual tools in the threat
list for the individual tool, and not just in the global list

8. Add the control of “Ensure there is a baseline for Docker container security
and ensure it is followed" to the framework

9. Reconsider adding Ansible to the framework

10. Evaluate risk levels with experts

11. Send an e-mail to the Secure Development Coordinator and Ethical hacker
asking to validate that the threats and controls are accurate and sufficient

12. Send an e-mail to the Ethical Hacker to validate the responsibilities and process
the reply

13. Censor the paper such that it reaches security level 0

14. Consider adding dataflow diagrams

5.4 Framework version 2.0 55

Now that version 2 of the framework has been fully analyzed, version 3 of the frame-
work can be built. Section 5.5.1 described how these actions are implemented.

5.5 Version 3 of the framework

In this version of the framework, feedback that was given during the evaluation of
the second version of the framework will be implemented and the framework will
be converted to match the format of current baselines of the company. First, each
point of feedback will be addressed, and then, the framework will be converted.

5.5.1 Addressing feedback

In the following subsections, the feedback that was given during the evaluation
meeting for the second version of the framework will be addressed.

1. Name approximately five Security Objectives, which clarify what the
framework aims to protect against

In the evaluation meeting for the second version of the framework, the feedback was
given that it was necessary to identify approximately five Security Objectives, which
would describe what the framework aims to protect against. Three of such Security
Objectives were given as an example: Securing the source code such that it doesn’t
get stolen, securing the documentation such that it doesn’t get stolen and ensuring
the environment isn’t taken down. In this section, we will propose a couple more.

The first additional Security Objective is that the framework ensures that every
action in the environment is auditable: it is clear who did what at which time. This
is achieved by the controls in the “Repudiation" category.

The second additional Security Objective is that the framework prevents some human
errors from happening. It was seen from the past incidents meeting with the Design
Authority of Shared Services and in the evaluation meeting for the second version
of the framework that human errors are a significant threat to the security of the
Production Line. By giving the users a baseline to follow, some human errors can be
prevented.

The complete list of Security Objectives will therefore be:

56 Chapter 5 Results

• Ensuring the source code doesn’t get stolen

• Ensuring the documenation doesn’t get stolen

• Ensuring the environment isn’t taken down

• Ensuring every action in the environment is auditable

• Ensuring that the number of human errors is minimal

2. Add the threat of “Configuration Mistakes" to the framework and propose
controls for this threat

In the evaluation meeting for the second version of the framework, it was found that
configuration mistakes are a threat to several tools in the Production Line. Leaving
debug mode on in Jenkins could leave production credentials exposed in the logs,
for example.

The control that was identified for this threat during the meeting, is that the con-
figuration for each tool has to adhere to a Secure Configuration Baseline. It is not
within the scope of this research do develop such a Secure Configuration Baseline
for each tool, but adding a control for having and adhering to such a baseline is
within the scope. The threat of Configuration Mistakes is placed the best in the
category "Tampering", and therefore it will be added in the "Tampering" category in
the "Global" threats, with the previously named control.

3. Talk to the Project manager and Agile Coach about past incidents

This point of feedback was addressed by sending an e-mail to the Project Manager
and Agile Coach asking them whether they had any information regarding past
incidents. To summarize, this didn’t result in any useful information. After informing
my supervisor and the Secure Development Coordinator about this, the Secure
Development Coordinator suggested to contact an Agile Evangelist, and so I did.
They said that they have limited experience due to that they are only involved with
one contract, but that they might be able to help. They also recommended to contact
two other persons with more experience in the field. The phone call which was had
later was expected to be recorded. The author of this paper had two call recorders
running on their smartphone. Unfortunately, due to a policy change in the Google
Play Store, some call recorders seized to function, amongst which the two the author

5.5 Version 3 of the framework 57

was running. Therefore, the information about the call in the next paragraph comes
completely from memory. Normally, this would be put in an Appendix, but the
summary of the phone call that would be provided normally is equal to what would
be in the Appendix, so there is no point in doing so.

The Agile Evangelist mainly works with Microsoft products which are hosted on the
Azure cloud. Some threats were identified regarding CI/CD pipelines. The first was
not enforcing that passwords have to be changed on the first login, even though this
was required by policy. Another threat was that users used their own personal e-
mailaddresses (@hotmail.com) to gain access to the CI/CD environment. Later, this
was fixed to include corporate e-mailadresses. Even later, a cleanup happened, and
some people lost access to both accounts, preventing them from working. Another
threat is that you might say that you’re compliant, but you’re actually not. This is
very difficult to spot. Securing a CI/CD environment is very complex, since many,
many tools are added to the CI/CD pipeline, which each have to be secured in their
own way. This is especially the case with Java projects, for which nearly each build
step has their own tool. Another threat the Agile Evangelist mentioned is that at
some point they were able to push to production without the customer’s approval.

Although the phone call with the Agile Evangelist seemed like it might have resulted
in new threats, these threats were already present in the framework as part of a threat
group or outside of the scope of the framework. That passwords have to be changed
on the first login, falls under the threat of “Gaining access to another person’s
account". Personal e-mailaddresses are outside of the scope of this framework,
since the Managed Production Line only works with corporate accounts, and LDAP
Account Manager is synced to the Active Directory. The cleanup is not included for
the same reasons. Saying that you are compliant, but are actually not is something
that can be prevented by regularly checking the framework against the environment.
The fact that many tools can be added to the pipeline is true, but the scope was
limited to the tools in the Managed Production Line. The fact that they were able to
push to production falls under the threat group “Configuration mistakes".

The Agile Evangelist also suggested having a phone call with two people, Engagement
Manager 2 and Engagement Manager 3. Both people were e-mailed. Engagement
Manager 2 replied saying that they haven’t had incidents on their CI/CD environment,
which is the Managed Production Line. They also say that the Production Line was
made ISO27001 compliant. Since there was no response from Engagement Manager
3, a reminder was sent to them. After waiting several days, no response was received
and no further attempts to communicate were made.

58 Chapter 5 Results

Significant effort has been put into gaining information regarding past incidents,
which has not resulted in concrete new threats. We therefore believe we have learned
as much as we can from these past incidents and will not explore this further.

4. Modify the control for the threat “Running demanding queries" for the
Log Management Tool (Graylog) to stress its importance

Initially, the idea was that the threat “Running demanding queries" could only be
abused by developers. During the evaluation meeting, it became clear that attackers
could also abuse demanding queries to create a Denial of Service attack. Therefore,
the control for this threat was changed from “If this is expected to be a problem,
limit the time a query can run and how many queries a user can run at the same
time" to “Limit the time a query can run and how many queries a user can run at the
same time". This stresses the importance of the control more than the old version.

5. Talk to the Project Manager and Agile coach about Selenium

Although it was planned to talk to the Project Manager and Agile Coach about
Selenium, the topic came up in a meeting with the person who gave me access to the
Production Line. They were able to provide me with information that said that there
are remote WebDrivers available in the Production Line. These remote WebDrivers
can be connected to in the test code to run specific tests on. Example code to show
how this would work can be seen in figure 5.5. A new threat assessment for this tool
is required.

Fig. 5.5.: Example code showing how to use the Selenium WebDrivers

Literature research is performed to see which threats exist against Selenium Grid.
It is explicitly chosen to use Selenium Grid, since that is running in the Production
Line.

5.5 Version 3 of the framework 59

The first identified threat is that files on the server could be accessible from the
Selenium Webdriver [17]. By using file:\\URLs, it is possible to access OS files.
When the researcher reported this, the developers said that: “ChromeDriver is not
designed to be robust against attacks, and users shouldn’t rely on it as a security
boundary. Instead, the system should be configured so that malicious code can’t connect
to ChromeDriver. ChromeDriver helps this by only allowing local connections by default,
though when Selenium server is in use, non-local app can connect to ChromeDriver
through Selenium server. Users should limit connections to the Selenium server, e.g.,
by running the who system behind a firewall. ChromeDriver should never be run with
admin permissions, and should generally be run with a test account that only has the
necessary permissions." So the control to the threat of “A malicious user can open an
arbitrary file on the filesystem by abusing the tool" would be “Ensure the tool is ran
under a non-root account, with only the permissions that it needs". This threat and
the control is added to the framework under the category “Tampering".

More threats were identified in a Red Team exercise by Marcos Carro and their team
[4]. It was possible for them to obtain test parameters by subscribing a new node
to the Selenium Grid. It is also found that Remote Code Execution is possible on
grids running Google Chrome. This is part of Google Chrome and not Selenium. The
command line argument –renderer-cmd-prefix can be used for Google Chrome to run
a command before opening the browser. It was not possible to check whether the
Production Line was vulnerable to the Remote Code Execution in time, due to that
there was no direct connection possible between the Selenium WebDrivers and the
laptop of the author. It would be possible to test this by uploading a test script to the
Production Line and then running it, but it would take significant effort to get this to
work. In any case, the control for this threat remains the same as the control for the
previously identified threat, namely that “Ensure the tool is ran under a non-root
account, with only the permissions that it needs".

More literature research shows that Selenium was not built for security, and that
it should not be trusted in any case. The control “Ensure the tool is ran under a
non-root account, with only the permissions that it needs" stands. Therefore, all
threats related to this control will be put under the threat group of “Selenium was
not built for security". This will be adjusted in the framework. This will apply to all
risk levels, and Infra will be responsible for this.

60 Chapter 5 Results

6. Ask the person who gave the author access to the Production Line how
LDAP is integrated in the Production Line

This was done by sending this person a Skype message. They followed up with an
e-mail asking for a time to discuss this. A Skype meeting was planned to discuss
this. This person confirmed that LDAP Account Manager was synced to the Active
Directory and that the CORP identities were used throughout the production line.

In the second evaluation meeting, the topic of Information Disclosure in LDAP
Account Manager was discussed. Although the first name and last name are visible,
this information is available to employees of the company by other means, e.g.
through the Outlook Address Book. It is therefore not considered a threat, and no
controls will be proposed for this.

7. Reconsider explicitly naming significant threats to individual tools in the
threat list for the individual tool, and not just in the global list

Although it is understood why this is confusing, it is decided to not do this at this
time. The framework in its current version will be reformatted to look like existing
baselines of the company. Therefore, implementing this feedback would be a waste
of time.

8. Add the control of “Ensure there is a baseline for Docker container
security and ensure it is followed" to the framework

Since each tool of the Production Line is running in a Docker container, this control
should be placed in the Global sheet. A threat against which this control could work
is “Improper Docker container security". It is considered to be best fitting in the
“Tampering" category.

9. Reconsider adding Ansible to the framework

Because of an approaching deadline, and this tool not being critical, it was decided
to not further consider this tool, and to add it to Future work.

5.5 Version 3 of the framework 61

10. Evaluate risk levels with experts

A session was held with two experts to evaluate risk levels. We will call these experts
Ethical Hacker and Ethical Hacker 2. The purpose of this session was to have these
experts propose the risk levels of projects for which each control would have to be
applied. As explained previously, each project has a certain risk level based on CIAA
(Confidentiality, Integrity, Availability, Accessibility). An standalone non-sensitive
application would for example have risk level 1, and a military grade application
would have risk level 5. Risk levels are given on a scale of 1-5. The experts are asked
to determine for which risk levels a control must be applied. A control is likely to be
applicable to multiple risk levels. The experts were given a copy of the third version
of the framework without the risk levels filled in.

The initial idea was to sit together, and do this in a similar way to planning poker.
Everyone would have paper cards with all possible risk levels, but it was quickly
determined that this would not be feasible, as this would result in many cards.
Cards with the text 1, 2, 3, 1-3, 1-4, 1-5, 3-5 etcetera would all have to be printed.
Therefore, the solution was implemented to physically sit together, but to make a
Skype conversation. I would say the control, the experts would type out to which
risk level(s) they believed this control was applicable to, and then hit enter at the
same time. This was initially attempted, but after two controls it was found out that
this took too much time. The solution was that they would fill out the risk levels in
the spreadsheet separately from each other, and then e-mail them to me. If there
was a significant difference between the risk levels they determined (more than 2
risk levels difference), it would be discussed and adjustments would be made to
reflect this discussion. The average risk levels as found by the experts can be found
in the third version of the framework, as seen in [Appendix E].

Also, a control for the threat “Malicious update of third-party library" was found
during this meeting. The Ethical Hackers both agreed that the control of “Verify
hashes outside of the Production Line and only allow verified libraries to be added
to the environment" would be effective, with a risk level of 3, 4 and 5. This was
added to the framework.

62 Chapter 5 Results

11. Send an e-mail to the Secure Development Coordinator and Ethical
hacker asking to validate that the threats and controls are accurate and
sufficient

Both the Secure Development Coordinator and Ethical Hacker were e-mailed the
version of the framework as it stood before the risk level evaluation. They were
asked to give final feedback and answer these two questions:

• Do you believe the threat list is complete and accurate enough? Did I miss
anything essential in this list? Why/why not?

• Do you believe the controls against the threats that are current, accurate and
effective enough? Did I miss anything essential in this list? Why/why not?

The Secure Development Coordinator asked what the definition of complete and
accurate enough/effective enough was. The author answered by saying that this meant
that the Secure Development Coordinator would not be able to come up with major
things that the author forgot and that what is in the framework, is correct, and that
the controls are effective against the threats.

Based on this definition, the Secure Development coordinator came up with some
points of feedback. The first point was that the threat of “Malicious development has
direct access to repositories with source codes, binaries, testscripts, documentation,
images or business data circumventing the CI/CD products access control, stealing or
manipulating the content" has to be added to the “Information Disclosure" category
in the GLOBAL threats. This request is considered fair, and it was added. The control
that is proposed for this is “Ensure that direct access is restricted on a need-to-have
basis". The risk level that is proposed for this is 1, 2, 3, 4, 5, since this is applicable
to all projects. It was not possible for the author to determine who would be
responsible for this, so an e-mail was sent to the Ethical Hacker to ask this question.
The Ethical Hacker and Ethical Hacker 2 (from the Risk Level Analysis were also
asked to validate that this control would be applicable to projects with all risk levels.
They responded by saying that this was indeed the case.

The second point of feedback was that a control was proposed for the threat of
“Malicious update of third-party library" in the category “Tampering" for the Version
Control System (Gitlab), which previously had none. The Secure Development
Coordinator proposed the control of “Running a Software Composition Analysis
tool, like Black Duck. If needed, only install signed or certified libraries". In
the risk level evaluation, a similar control was proposed, namely “Verify hashes
outside of the Production Line and only allow verified libraries to be added to the

5.5 Version 3 of the framework 63

environment". These controls are merged to form the control “Verify hashes and run
a Software Composition Analysis tool against libraries outside of the Production Line
environment. Only install libraries verified by this tool.". The Ethical Hacker and
Ethical Hacker 2 were asked to propose risk levels for this control. They responded
by saying that risk levels 3, 4 and 5 were appropriate.

The third point of feedback was that for the threat “Developers being able to delete
other people’s branches" in the “Tampering" category for the Version Control System
(Gitlab) should be improved by taking into account that branches can also be non-
person specific, like feature and release branches, and that the master branch could
also be deleted. The control for this threat was originally to “Ensure that developers
can only delete their own branches". Following this feedback, it is proposed that
the threat is changed to “Developers being able to delete branches they are not
supposed to" and the control is changed to “Ensure that developers cannot delete
any branches they shouldn’t be able to delete". The risk level and responsibilities are
left unchanged.

The final point of feedback was that in the “Information Disclosure" category for the
“Version Control System (Gitlab)" the threat of “If Git is in the cloud, then Git admins
can get access to code" should be added. This point of feedback is captured in a
previously identified threat, namely “Projects visible to people who don’t need access
to them" in the “Information Disclosure" category for the Version Control System
(Gitlab) and will therefore not be considered.

The Ethical Hacker also came up with some points of feedback. The first point of
feedback is that for the control “Monthly checks that passwords are not logged" for
the threat “Gaining access to another person’s account" in the “Spoofing" category in
the “GLOBAL" threats, this should happen more often if sensitive data is involved.
The control is therefore changed to “Check that passwords are not logged at least
monthly. If sensitive data is involved, check this more often". The responsibilities
and risk levels remain unchanged.

The second point of feedback is that for the control “Use strong passphrases for
private keys" for the threat “Gaining access to another person’s account" in the “Spoof-
ing" category in the “GLOBAL" threats, this should include username/passwords as
well. The control is therefore changed to “Use strong passphrases for private keys
and usernames/passwords". The responsibilities and risk levels remain unchanged.

The third point of feedback is that for the control “Monitor for malicious network
traffic containing exploits" for the threat “Performing an exploit on a vulnerability
to gain access" in the “Spoofing" category in the “GLOBAL" threats, anomalies in
network traffic should also be monitored. Since an anomaly in network traffic could

64 Chapter 5 Results

for example be a bruteforce password attack, it is justified the control is changed to
“Monitor for malicious network traffic containing exploits and anomalies in network
traffic". The responsibilities and risk levels remain unchanged.

The fourth point of feedback is that for the control “Audit logging must be sufficient
enough such that in the case of an incident, the cause of the incident can be deter-
mined" for the threat “Improper audit log security/redundancy" in the “Repudiation"
category in the “GLOBAL" threats, the baseline for audit logging should be adhered
to. The author was not aware that such a baseline existed, and the control is changed
to “Ensure that the baseline for audit logging is followed". Since this baseline has its
own risk levels, this control applies to projects with all risk levels, e.g. all projects
with risk level 2 have to follow all controls in that baseline for projects with risk level
2. It is therefore justified to change the risk level for this control to 1, 2, 3, 4 and 5,
and validation of this is not required. The responsibilities remain unchanged.

The fifth point of feedback is that for the control “Scan each file in each build with an
anti-virus" for the threat “Upload a build with viruses" in the “Tampering" category
for the “Automation Server (Jenkins)", it should be changed to “Follow the anti-virus
baseline". This is considered fair and the control is thus changed. The risk level
for this control was already 1, 2, 3, 4 and 5, so it can remain unchanged. The
responsibilities remain unchanged as well.

The sixth point of feedback is not specific for a control, but more globally. It considers
the question of how all of this will be checked, and that it maybe should be monitored
that the baseline is enforced. The difficulty in this is that this baseline is a tool to
prevent and detect security vulnerabilities in CI/CD pipelines. How the tool is used,
is up to the user of the tool. It is therefore not considered to be in the scope of this
research to enforce a certain use of the tool. This point of feedback is dismissed.

The final point of feedback is that for the control “Ensure that permissions for projects
are given out on a need-to-have basis" for the threat “Projects visible to people who
don’t need access to them" in the “Information disclosure" category for the “Static
Code Analyzer (SonarQube), that the control should also include a need-to-see
basis, and not just need-to-have. The control is therefore changed to “Ensure that
permissions for projects are given out on a need-to-have and need-to-see basis". The
risk levels and responsibilities remain unchanged.

The updated versions were e-mailed to the Secure Development Coordinator and
the Ethical Hacker for their final points of feedback. The Secure Development
Coordinator replied that it was good enough to be converted to a baseline, and the
Ethical Hacker said that it was good enough as well. This validates the threats and
controls.

5.5 Version 3 of the framework 65

12. Send an e-mail to the Ethical Hacker to validate the responsibilities and
process the reply

This point of action was taken exactly as stated. Most responsibilities were validated,
but some were improved. Based on feedback received in the second research meeting
regarding configuration mistakes, improper Docker container security and the newly
identified threat against Selenium, new threats and controls were added. The Ethical
Hacker was asked to validate the responsibilities for the controls against these threats
separately, and they did so.

13. Censor the paper such that it can be published

This point of action was taken and the paper was censored accordingly.

14. Consider adding dataflow diagrams

It is not seen how adding dataflow diagrams adds a significant amount of value to
this research. It would also take significant amount of work to make these. This
point of feedback will not be implemented.

5.5.2 Version 3.0 alpha of the framework

Taking all the above points of feedback into consideration, the alpha version of
the third version of the framework was delivered. The original plan was the third
version of the framework would be in the form of a new baseline, but due to technical
limitations this was not possible in time for a set deadline and required further effort.
The third, alpha, version of the framework can be found in [Appendix E].

5.5.3 Converting the framework to match current baselines

The alpha version of the third version of the framework lays the foundation of the
actual third version of the framework. The third version of the framework consists
of a baseline. While converting the alpha version into the baseline, two problems
were encountered. Each problem and their solution will be discussed in this section.
After the problems and solutions are clear, the process of converting the baseline
will be discussed.

66 Chapter 5 Results

Sheet and macro protection

The template which I wanted to as a foundation for my baseline was protected. I
was not able to edit any cells or macros without knowing a password. I made an
attempt at removing this password using a Hex Editor, but that failed. I asked the
Secure Development Corodinator whether they could help me out with this. They
suggested that I planned a meeting with a Cybersecurity Consultant who would help
me out with this. The meeting happened after the delivery deadline for the baseline,
which is why it was not possible to deliver the baseline in time. The outcome of this
meeting was that the Cybersecurity Consultant sent me an unprotected version of
the sheet, which I was able to edit without problems.

Re-appearing protection

The Excel sheet has two buttons, one to fill the baseline, and one to empty the
baseline. Pressing any of these two buttons would re-enable the protection, there-
fore defeating the purpose of the unprotected sheet. After more e-mails with the
Cybersecurity Consultant, I was able to obtain the password to undo this protection.
With this password, I removed the re-appearing protection by editing the macros
responsible for this. Finally, I was able to create and deliver the baseline, albeit later
than planned.

Creating the baseline

After the problems were solved, the baseline was ready to be made. The format of
the baseline was similar to the format the framework was already in, but required
some modifications. It was also more focused on controls rather than threats.

The first modification consisted of an extra field. This was a “Control ID", which
is the unique identifier for the control. I decided it would be best to keep this in
line with the already existing baseline and give them names like “GLOBAL-8" and
“LOG-MANAGEMENT-TOOL-2", meaning the eighth control in the global category
of threats and the second control of the log management tool category of threats
respectively.

The second extra field was named “Control Group", which determined in which
group a certain control would belong. Since I already grouped threats according to

5.5 Version 3 of the framework 67

the STRIDE methodology previously, I decided it would be best to fill this field with
the STRIDE group that the control was meant for.

The third extra field was named “Name". This is the name of the control. In a couple
of words, this would describe what the control was all about. I decided to take a
look at existing names and base my names on that.

Fourthly, there was a “Description" field. I copied this pretty much one-to-one from
the existing framework. This worked in most cases, with some minor edits necessary
to make things more clear.

The fifth difference was an extra field named “Context". This would give some more
context about the meaning of the control. I filled this field with some information to
provide context to the reader.

The sixth difference was an extra field named “How to check". This is a field meant
for the auditor, which indicates how to check that a control is properly implemented.
I filled this field with exactly that information.

The seventh difference was that there were extra fields named “Compliant", “Applica-
bility", “Mandatory", “Same control" and “General". These were presumably used by
the macros to do some behind-the-scenes things. They were left unaltered, with the
value for “Compliant" always being “Compliant", the value for “Applicability" always
being “Always", the value for “Mandatory" always being “X", the value for “Same
Control" always being empty and the value for “General" always being “H".

The eighth difference was a field named “Prio", which indicated risk levels. This was
directly copied from the framework.

The baseline marks the end of three iterations of the Design Cycle. In the next
section, we will discuss these results.

68 Chapter 5 Results

6Discussion of Results

6.1 Implication

The objective of this research was to develop and validate a framework, that
aims at preventing and detecting security vulnerabilities in Continuous Integra-
tion/Continous Delivery pipelines. To make this happen, we firstly have determined
the scope of the research to be “Managed Production Line environments provided
by the company to customers" together with experts from the company. Then, we
proposed an initial version of the framework with threats and controls based on
several sources. Using feedback we gathered from an expert within the company,
the second version was delivered. In an evaluation meeting with two experts, more
feedback was collected. Together with the results of the risk level evaluation meeting
and validation on who is responsible for implementing each control, this resulted in
the third and final version of the framework. This version was validated by experts,
who said that the framework was ready to be adopted into the baselines. The new
framework has significant implications on the use of the managed Production Line
for the company, provided that it is used effectively.

6.1.1 Validity and reliability of the research

Throughout the research, it was continously kept in mind that each step of the
creation of the framework had to be validated. In this section, validity of each aspect
of the research will be discussed.

Thesis topic

The topic of the thesis is very industry-relevant. The author of this thesis judges
this based on the fact that the Ethical Hacker came to them with this topic before
they even signed a contract. Furthermore, the lack of published work also shows
that more research into this area was needed. Lastly, it was continuously stressed
in evaluations that the framework was important to the company, and that it is
definitely useful to them.

69

Research goal

The research goal was developed together with experts from the company over the
course of three interviews, which can be seen in section 3.1. This ensured that the
research was useful for the company.

Research method

The research method that was used for this research is Wieringa’s Design Science
Methodology [42]. This is a well-known research method which currently has 375
citations on Google Scholar. This Research Method was recommended to the author
by the Academic Supervisor and was applied successfully. Three cycles of the design
cycles were executed, each resulting in a new version of the framework. For each
version, feedback was requested and given, and in the final version, the threats,
controls, risk levels and responsibilities were all validated.

Author’s knowledge of tools and the company

Since the scope was limited to the Managed Production Line environments provided
by the company to customers, it was necessary to gain knowledge about this platform.
Since there was no time to become an expert on the platform, some time was invested
into building a sample project to get basic knowledge of how the Production Line
works. In case there was a lack of knowledge, experts on the particular subject within
the company would be asked to provide information. Extensive documentation was
also available.

The author was not very familiar with big companies like the company. At the time
of writing, the company has a significant number of employees. One of the goals
of performing this research at the company was to get a feel of what working for a
big company would be like. The author read through policies and other documents
to get relevant information for this research. In case of a lack of knowledge, the
author e-mailed, informally spoke or interviewed employees of the company to get
information. The author was positively surprised by how much these people are
willing to help and to make time for you if you need them to.

70 Chapter 6 Discussion of Results

Usefulness outside of the company

We believe that the framework can be used in similar CI/CD environments in other
organizations. It can be used as a checklist to check compliancy or as a check to see
whether basic security controls in CI/CD environments are implemented. It is very
unlikely that the framework will directly map to another CI/CD environment, since
there might be other tools in such an environment. In such case, an extension to
the framework might be needed to fulfill the organisation’s needs. It might also be
possible that the organization does not use a tool that is in the framework, in which
case the controls for that tool might have to be left out. In any case, it could serve as
a basis for a checklist for other environments.

Exploratory research

As I was told by my supervisor, not many research papers do exploratory research. I
had to find out what the company wanted from the framework and how CI/CD is
used within the company. Significant time was invested in having interviews with
experts and transcribing and summarizing them. This resulted in all knowledge
necessary to start building the framework in a way that is useful for the company.

Completeness of the framework

The framework is classified as a living document. This means that additions can be
and probably will be made at any time in the future. However, because the author
did three cycles of Wieringa’s Design Cycle [42] with expert reviews, we think that
the level of completeness is more than satisfactory. The subsections below explain
how this review process worked.

Threats

The threats were initially based on five sources: a paper, how some of the current
suppliers of CI/CD actively protect against threats, a webinar, past incidents and
research from my supervisor at another country. This resulted in feedback from the
Secure Development Coordinator that several major categories of threats were left
unidentified, namely:

6.1 Implication 71

• New threats identified in an interview with a student who used CI/CD in the
past

• Communication between the version control system and IDE

• Core threats related to insight, stealing or manipulating the developed software
in the Tampering and Information Disclosure categories

• Production-like data in tools

• Data sources in each tool (assets)

• Threats related to authentication for each tool

These threats were analyzed and added to the framework. An interview with a
student who used CI/CD in the past revealed some more threats as well. The second
version of the framework was delivered and evaluated. This resulted in more missing
threats to be added, namely those related to:

• The threat of “Configuration Mistakes" to the framework and propose controls
for this threat

• Talk to the Project manager and Agile Coach about past incidents

• Talk to the Project Manager and Agile coach about Selenium

• Ask the person who gave the author access to the Production Line how LDAP
is integrated in the Production Line

• Add the control of “Ensure there is a baseline for Docker container security
and ensure it is followed" to the framework

After all threats were e-mailed to the Secure Development Coordinator and Ethical
Hacker, they suggested some more changes, which can be found in section 5.5.1.
After these small adjustments were applied, they both stated that these threats would
be sufficient for further adoption in the baselines. This validates the threats.

72 Chapter 6 Discussion of Results

Controls

Controls were validated similar to threats. Each evaluation, feedback on controls
would also be implemented. The difference is that the sources on which the controls
are based, are different. These sources include policies of the company, a website
with a knowledge base on attack vectors and common sense.

The Secure Development Coordinator and Ethical Hacker were asked to validate
the controls at the same time as the threats, and they both confirmed that these
threats would be sufficient for further adoption in the baselines. This validates the
threats.

Risk levels

Risk levels for each control were initially proposed by the author. The Ethical Hacker
mentioned in the evaluation meeting for the second version of the framework that
this was not standard practice at the company and that this should be done in a
meeting with multiple experts. This was acknowledged by the researcher and such it
was done. Full details on this meeting can be found in section 5.5.1. This means
that the risk levels were evaluated in a way the company normally does this, and by
experts, thus validating the risk levels in the framework.

Responsibilities

Responsibilities of who must implement each control were initially proposed by
the researcher. The Ethical Hacker mentioned in the evaluation meeting for the
second version of the framework that they themselves could go over it and validate
or improve these responsibilities. This plan was followed and the responsibilities
were updated. This validates the responsibilities.

Limited number of experts

For validation purposes, one to three experts were involved. This could be a possible
threat to validity. However, we think this threat is minimal, because they were
seasoned professionals in their fields and knew how to reason critically about the
framework. The Ethical Hacker is an expert on the topic of threats, control etcetera.
The Secure Development Coordinator is an expert on the topic of frameworks. These

6.1 Implication 73

knowledge bases can be used perfectly together for an accurate validation of the
framework. Therefore, we see the opinion of these experts on validity of certain
aspects of the framework as valid.

6.1.2 Conclusion of validation

Each part of the framework and development thereof was validated by experts.
Therefore, we believe the framework is valid for use within the company within
the provided scope. No claims about validity of the framework can be made when
applied outside of the scope, although it might be applicable partly or entirely. If
it is desired to use the framework in a different scope, a new risk analysis must be
done. If new risks are found, controls must be identified for these risks, risk levels
must be assigned and it must be determined who is responsible.

6.2 Limitations of the Research

6.2.1 Scope

Early on, it was determined to limit the scope to Managed Production Line en-
vironments delivered by the company. This was done since they are predictable
and to ensure a high quality framework is delivered. This framework might be
partially applicable to Unmanaged Production Line environments or at other CI/CD
environments, but its effectiveness in those cases is currently unknown.

6.2.2 IDEs

After the feedback received on V1.0 of the framework, it was decided to exclude
IDEs from the framework. It was decided to include the communication between
the IDEs and the version control system, though. This framework is therefore not
completely applicable to IDEs.

74 Chapter 6 Discussion of Results

7Conclusion

7.1 Answers to research questions

The main research goal of this study was:

The goal of this research is to develop and validate a framework, that aims at pre-
venting and detecting security vulnerabilities in Continuous Integration/Continuous
Delivery pipelines in managed Production Line environments provided by the company
to customers.

In order to achieve this goal, Wieringa’s Design Science and Methodology was
applied. Various versions of the framework were delivered and feedback was
received and processed on each of these versions. With the final version of the
framework, we can answer the three research questions, which are the following:

1. What types of risks are companies using the managed Production Line exposed
to? Companies using the managed Production Line are exposed to risks. Several
threats to the Managed Production Line were identified. Using the STRIDE model
[13], the threats were categorized. Threats can belong in the category of Spoofing,
Tampering, Repudiation, Information Disclosure, Denial of Service and Elevation of
Privileges. Although these threats are not immediate risks, they could be exploited
to do damage in some form to the system or to the company. This means that there
is a risk of a threat happening. The full list of identified threats can be found in
[Appendix E]. These threats were validated by experts.

2. Which practices exist to mitigate each type of risk? For each of these threats,
controls were identified to mitigate each threat. The full list of controls per threats
can again be found in [Appendix E]. These controls were also validated by experts.

3. How should these risks be mitigated for each risk level? For each of the controls,
risk levels were assigned in a risk level evaluation meeting with two experts. Large
differences in proposed risk levels were discussed, small differences were averaged.
The full list of risk levels can again be found in [Appendix E].

75

Based on these research questions, the research goal was achieved by combining
these into a spreadsheet and validating each aspect of it. The result of this research is
a developed and validated framework that aims at preventing and detecting security
vulnerabilities in Continuous Integration/Continuous Delivery pipelines in managed
Production Line environments provided by the company to customers, which is
useful for the company.

7.2 Future work

There are multiple ways to extend this work. Below we describe them.

7.2.1 Future threats

The threat model as described in the paper was made in early-mid 2019. After the
publication of this paper, new threats might have emerged for which this threat
model has to be updated. It is impossible to predict these new threats, so it is very
important to make your own threat model and add new threats and controls.

7.2.2 IDEs

IDEs integrate closely with CI/CD pipelines. Code is uploaded to and updated from
version control systems for example. There might also be other features in IDEs
which interact with CI/CD pipelines. It might be interesting to extend this framework
or to create a new one which includes IDEs.

7.2.3 Secure Configuration Baseline

In the evaluation meeting for the second version of the framework, the group of
threats of “Configuration mistakes" was found. A concrete example of a threat would
be to leave Debug mode on in the Nexus Repository Manager, which would mean
that all credentials are logged and visible to everyone. A control for this threat would
be to create a Secure Configuration Baseline for each tool, containing controls for
each tool on ensuring that the configuration of the tool is secure.

7.2.4 Deployment tools like Ansible

It was stressed in both the first and second evaluation that securing Ansible is a very
important tool and that it has serious threats against it. Due to time and knowledge

76 Chapter 7 Conclusion

constraints, it was not possible to find threats and controls for this tool. Future
research could focus on identifying threats and controls regarding this tool.

7.3 Recommendations for the company

In this section, recommendations for the company are discussed. We will discuss
what the company can do with this framework that they couldn’t do before, discuss
in which situations the framework is applicable and not, and which expertise is
required to use the framework.

7.3.1 What can the company do with the new framework?

Previously, the company had no baseline that was applicable directly to Managed
Production Line instances. Their baselines were too generic, and it was too difficult
to see how to check each control in these instances. With the new framework, each
control is made and intended for these instances, making it trivial to check them. On
top of that, the new framework covers more threats and controls than their existing
baseline, which reduces risk and improves security.

7.3.2 Situations in which the framework is applicable

The scope of this framework was limited specifically to Managed Production Line
instances provided by the company. It is applicable in any circumstance where a
Managed Production Line environment is provided by the company, both by internal
development teams and when the Managed Production Line is offered as a service.
It is not directly applicable to other CI/CD environments, e.g. with tools other than
the ones that are in the Production Line by default. The framework could form a
basis for this, but a new threat model would have to be made, it must be checked
that the existing controls mitigate the risks associated with the threats in this model
sufficiently and if not, controls should be modified or added.

7.3.3 Required expertise

It is recommended that the person who uses this framework has some experience
with the Production Line and CI/CD in general. A cybersecurity background would
be preferred. If the person who uses this framework might not have either of these,
it is recommended to have a Subject Matter Expert at hand who can help answer
any questions the auditor might have.

7.3 Recommendations for the company 77

Bibliography

[1]Keith H Anderson, John L Kenyon, Benjamin R Hollis, Jill Edwards, and Brad Reid.
Continuous deployment system for software development. US Patent 8,677,315. 2014
(cit. on p. 1).

[2]Apache. Maven. https://maven.apache.org/. 2019 (cit. on p. 21).

[3]Len Bass, Ralph Holz, Paul Rimba, An Binh Tran, and Liming Zhu. „Securing a de-
ployment pipeline“. In: Proceedings of the Third International Workshop on Release
Engineering. IEEE Press. 2015, pp. 4–7 (cit. on pp. 2, 6, 22, 23).

[4]Marcos Carro. Attacking QA platforms: Selenium Grid. https://www.tarlogic.com/
en/blog/attacking-selenium-grid/. 2019 (cit. on p. 60).

[5]Lianping Chen. „Continuous delivery: Huge benefits, but challenges too“. In: IEEE
Software 32.2 (2015), pp. 50–54 (cit. on p. 1).

[6]Alistair Cockburn. Agile software development. Vol. 177. Addison-Wesley Boston, 2002
(cit. on pp. 5, 7).

[7]Maya Daneva and Chong Wang. „Security requirements engineering in the agile era:
How does it work in practice?“ In: 2018 IEEE 1st International Workshop on Quality
Requirements in Agile Projects (QuaRAP). IEEE. 2018, pp. 10–13 (cit. on p. 6).

[8]EU. Document 32016R0679 (GDPR). https://eur-lex.europa.eu/eli/reg/2016/
679/oj. 2016 (cit. on p. 45).

[9]Martin Fowler and Matthew Foemmel. „Continuous integration“. In: Thought-Works)
http://www. thoughtworks. com/Continuous Integration. pdf 122 (2006), p. 14 (cit. on
p. 5).

[10]Gitlab. DevSecOps with GitLab. https://about.gitlab.com/solutions/dev-sec-
ops/. 2019 (cit. on p. 24).

[11]Gitlab. Gitlab. https://gitlab.com. 2019 (cit. on pp. 21, 39).

[12]Graylog. Graylog. https://www.graylog.org/. 2019 (cit. on pp. 21, 39).

[13]Shawn Hernan, Scott Lambert, Tomasz Ostwald, and Adam Shostack. „Threat modeling-
uncover security design flaws using the stride approach“. In: MSDN Magazine-Louisville
(2006), pp. 68–75 (cit. on pp. 29, 31, 49, 75).

[14]Michael Hilton, Nicholas Nelson, Timothy Tunnell, Darko Marinov, and Danny Dig.
„Trade-Offs in Continuous Integration: Assurance, Security, and Flexibility“. In: (2017)
(cit. on p. 5).

79

https://maven.apache.org/
https://www.tarlogic.com/en/blog/attacking-selenium-grid/
https://www.tarlogic.com/en/blog/attacking-selenium-grid/
https://eur-lex.europa.eu/eli/reg/2016/679/oj
https://eur-lex.europa.eu/eli/reg/2016/679/oj
https://about.gitlab.com/solutions/dev-sec-ops/
https://about.gitlab.com/solutions/dev-sec-ops/
https://gitlab.com
https://www.graylog.org/

[15]Jez Humble and David Farley. Continuous delivery: reliable software releases through
build, test, and deployment automation. Pearson Education, 2010 (cit. on p. 5).

[16]Ramtin Jabbari, Nauman bin Ali, Kai Petersen, and Binish Tanveer. „What is devops?: A
systematic mapping study on definitions and practices“. In: Proceedings of the Scientific
Workshop Proceedings of XP2016. ACM. 2016, p. 12 (cit. on pp. 5, 7).

[17]Peter Jaric. Guest Blog: Don’t Leave your Grid Wide Open. https://labs.detectify.
com/2017/10/06/guest-blog-dont-leave-your-grid-wide-open/. 2017 (cit. on
p. 60).

[18]Jenkins. Jenkins. https://jenkins.io/. 2019 (cit. on pp. 21, 38).

[19]Jenkins. Securing Jenkins. https://wiki.jenkins.io/display/JENKINS/Securing+
Jenkins. 2019 (cit. on p. 25).

[20]Michael Koopman and Maya Daneva. Frameworks for Detecting and Preventing Secu-
rity Vulnerabilities in Continuous Integration/Continuous Delivery Pipelines and Their
Limitations: State of the Art. 2019 (cit. on pp. 2, 3, 15, 17).

[21]Grafana Labs. Grafana. https://grafana.com/. 2019 (cit. on pp. 21, 39).

[22]LDAPAccountManager. LDAP Account Manager. https://www.ldap-account-manager.
org/. 2019 (cit. on p. 21).

[23]Microsoft. What is Continuous Delivery? https://docs.microsoft.com/en-us/azure/
devops/learn/what-is-continuous-delivery. Accessed: 2018-11-22. 2017 (cit. on
p. 1).

[24]Microsoft. What is Continuous Integration? https://docs.microsoft.com/en-us/
azure/devops/learn/what-is-continuous-integration. Accessed: 2018-11-22.
2017 (cit. on p. 1).

[25]MITRE. MITRE ATT&CK™. https://attack.mitre.org/. 2019 (cit. on pp. 31, 32,
48).

[26]Oracle. Java. https://java.com/. 2019 (cit. on p. 21).

[27]M. Perry, S. Schoen, and H. Steiner. Reproducible Builds - YouTube. https://www.
youtube.com/watch?v=ilu6yMBGS6I. 2019 (cit. on p. 23).

[28]Ryan Quinn. DigitalOcean Currents: December 2017. https://blog.digitalocean.
com/currents-dec-2017/. (Accessed on 12/07/2018). 2017 (cit. on p. 2).

[29]Pilar Rodríguez, Alireza Haghighatkhah, Lucy Ellen Lwakatare, et al. „Continuous
deployment of software intensive products and services: A systematic mapping study“.
In: Journal of Systems and Software 123 (2017), pp. 263–291 (cit. on p. 6).

[30]Ravi Sandhu. „Transaction control expressions for separation of duties“. In: [Proceedings
1988] Fourth Aerospace Computer Security Applications. IEEE. 1988, pp. 282–286 (cit. on
p. 28).

[31]SeleniumHQ. Selenium. https://www.seleniumhq.org/. 2019 (cit. on pp. 21, 39).

[32]Mojtaba Shahin, Muhammad Ali Babar, and Liming Zhu. „Continuous integration,
delivery and deployment: a systematic review on approaches, tools, challenges and
practices“. In: IEEE Access 5 (2017), pp. 3909–3943 (cit. on p. 6).

80 Bibliography

https://labs.detectify.com/2017/10/06/guest-blog-dont-leave-your-grid-wide-open/
https://labs.detectify.com/2017/10/06/guest-blog-dont-leave-your-grid-wide-open/
https://jenkins.io/
https://wiki.jenkins.io/display/JENKINS/Securing+Jenkins
https://wiki.jenkins.io/display/JENKINS/Securing+Jenkins
https://grafana.com/
https://www.ldap-account-manager.org/
https://www.ldap-account-manager.org/
https://docs.microsoft.com/en-us/azure/devops/learn/what-is-continuous-delivery
https://docs.microsoft.com/en-us/azure/devops/learn/what-is-continuous-delivery
https://docs.microsoft.com/en-us/azure/devops/learn/what-is-continuous-integration
https://docs.microsoft.com/en-us/azure/devops/learn/what-is-continuous-integration
https://attack.mitre.org/
https://java.com/
https://www.youtube.com/watch?v=ilu6yMBGS6I
https://www.youtube.com/watch?v=ilu6yMBGS6I
https://blog.digitalocean.com/currents-dec-2017/
https://blog.digitalocean.com/currents-dec-2017/
https://www.seleniumhq.org/

[33]John Ferguson Smart. Jenkins: The Definitive Guide: Continuous Integration for the
Masses. " O’Reilly Media, Inc.", 2011 (cit. on p. 38).

[34]SonarQUBE. About SonarQUBE. https://www.sonarqube.org/about/. 2019 (cit. on
p. 39).

[35]SonarQUBE. SonarQUBE. https://www.sonarqube.org/. 2019 (cit. on p. 21).

[36]Sonatype. Nexus Repository Manager 3. https://help.sonatype.com/repomanager3.
2019 (cit. on p. 21).

[37]Splunk. Splunk. https://www.splunk.com. 2019 (cit. on p. 28).

[38]Spring. Spring. https://spring.io/. 2019 (cit. on p. 21).

[39]TrendMicro. Webinar: Securing Containers and your CI/CD pipeline without friction.
https://resources.trendmicro.com/2019- Q1- Europe- BeNeLux- BNX- WBN- 27-
03-SecuringContainersandyourCICDpipelinewithoutfriction_02TY-page.html.
2019 (cit. on p. 22).

[40]Faheem Ullah, Adam Johannes Raft, Mojtaba Shahin, Mansooreh Zahedi, and Muham-
mad Ali Babar. „Security Support in Continuous Deployment Pipeline“. In: arXiv preprint
arXiv:1703.04277 (2017) (cit. on pp. 1, 2, 7).

[41]Hugo Villamizar, Marcos Kalinowski, Marx Viana, and Daniel Méndez Fernández. „A
Systematic Mapping Study on Security in Agile Requirements Engineering“. In: 2018
44th Euromicro Conference on Software Engineering and Advanced Applications (SEAA).
IEEE. 2018, pp. 454–461 (cit. on p. 6).

[42]Roel J Wieringa. Design science methodology for information systems and software engi-
neering. Springer, 2014 (cit. on pp. 11, 17, 70, 71).

Bibliography 81

https://www.sonarqube.org/about/
https://www.sonarqube.org/
https://help.sonatype.com/repomanager3
https://www.splunk.com
https://spring.io/
https://resources.trendmicro.com/2019-Q1-Europe-BeNeLux-BNX-WBN-27-03-SecuringContainersandyourCICDpipelinewithoutfriction_02TY-page.html
https://resources.trendmicro.com/2019-Q1-Europe-BeNeLux-BNX-WBN-27-03-SecuringContainersandyourCICDpipelinewithoutfriction_02TY-page.html

List of Figures

2.1 The relationship between continous integation, delivery and deployment. 6

4.1 Visual representation of Wieringa’s Design Science Methodology 11
4.2 This research performed three iterations of the Design Cycle 13

5.1 Visualization of the risk analysis process 22
5.2 Visual representation of the first version of the framework 31
5.3 Visual representation of the second version of the framework 38
5.4 Whiteboard drawing of the visualization of the Production Line 54
5.5 Example code showing how to use the Selenium WebDrivers 59

83

ARaw threat list for framework V1.0

Current threats to CI/CD pipelines include:

1. A remote exploit on one of the components

2. An indirect exploit using a third-party repository

3. Attacks on the network links between components of the CI/CD pipelines

4. Untested code

5. Known security issues not getting resolved

6. No insight in which security issues are present

7. Container images with known vulnerabilities

8. Secrets in plainsight

9. Improper access control to the CI/CD environment

10. CSRF attacks on Jenkins

11. Unprotected master branch

12. Too many permissions given to tools interacting with Jenkins

13. Users with local access modifying JENKINS_HOME and other folders related
to the Production Line

14. Improperly configured Content-Security-Policy header

15. (Users exploiting Markup formatting)

16. Files containing viruses being uploaded to the repository

85

17. Unsigned container deployment

18. Compromised container host

19. Malicious network traffic

20. Compromised container platform (Docker, Kubernetes)

21. Vulnerability Management System (Central Monitoring of Vulnerabilities)

22. Developers best effort, not enough, different role as Product Owner

23. Docker container privileges

24. "Developer" account with root privileges

25. Key manager

26. Docker images run master process as root

27. Nexus artifacts need to be checked that they are signed

28. Compromised Jenkins/Slaves (monitoring)

29. Build privileges for build agents

30. Endpoint protection for container hosts

31. No insight in logs and statistics due to no centralized logging and statistics
collection tool

86 Chapter A Raw threat list for framework V1.0

BFramework v1.0

Due to technical reasons, the first page of the framework will be on the next page.

87

GLOBAL
TYPE THREAT CONTROL RISK LEVELS
Spoofing Gaining access to another person’s account Require strong passwords 1,2,3,4

Require random passwords of significant length which have to be stored in a password vault 5
Require multifactor authentication using a digital token (e.g. MobilePass, Google Authenticator) 3,4,5
Require strong authentication using a digital token and a physical token (e.g. smartcard) 5
Implement rate limiting on login attempts 1,2,3,4,5
Set account lockout policies after a certain number of failed login attempts 4,5
Apply the principle of least-privilege to account managers 3,4,5
Automatically monitor for passwords and secrets in config files 3,4,5
Monthly checks that passwords are not logged 2,3,4,5
Install anti-virus on machine of developers 1,2,3,4,5
Ensure HTTPS is used throughout the Production Line 1,2,3,4,5
Monitor the password policy for change 4,5
Use strong passphrases for private keys 1,2,3,4,5
Ensure passphrases for private keys are stored securely 1,2,3,4,5
Use one account for everything in the Production Line and turn off account services in individual tools (e.g. Jenkins) 1,2,3,4,5

Performing an exploit on a vulnerability to gain access Install security patches in the next release of the Production Line 1,2
Install security patches within a month of them becoming available 3
Install security patches within a week of them becoming available 4,5
Monitor for malicious network traffic containing exploits 3,4,5
Monitor the patch level of tools 4,5

Tampering Abuse of privileges Give users limited permissions by default and have admins with more privileges 1,2
Apply the principle of least-privilege to all accounts, on a role-by-role basis 3,4
Apply the principle of least-privilege to all account, on an account-by-account basis 5

Repudiation Improper audit log security/redundancy Audit logging must be enabled 1,2,3,4,5
It must be monitored that audit logging is enabled 3,4,5
Audit logs should be saved to multiple places and backed up, such that a hard drive failure or ransomware cannot make all audit logs inaccessible 3,4,5
Audit logging must be sufficient enough such that in the case of an incident, the cause of the incident can be determined 1,2,3,4,5
Individual tools have to write to individual logfiles and not have permissions to write to other log files 3,4,5

Information disclosure Version number visible Version number of tools must be hidden 3,4,5
Denial of Service Denying access for users Provide the right to edit permissions of persons to as little people as possible 2,3,4,5

Apply the "separation of duties" principle for editing permissions 4,5
Denying access to service Install anti-virus on host and guest machines 1,2,3,4,5

Do not run Docker containers with elevated privileges 1,2,3,4,5
Do not run the process of the tool as root 1,2,3,4,5
Limit the files and folders the tool has access to to the minimum needed 3,4,5
Ensure DDOS protection/mitigation is present 4,5

Elevation of Privilege Improper permission distribution Only give permissions out on a need-to-have basis 1,2,3,4,5
Ensure users can't give themselves more permissions 1,2,3,4,5
Ensure it is not possible to access the tool's database to give more permissions to a user 1,2,3,4,5

Jenkins
TYPE THREAT CONTROL RISK LEVELS
Tampering Upload a build with viruses Scan each file in each build with an anti-virus 2,3,4,5

Require an anti-virus scan before the container is signed and only deploy signed containers 4,5
Having vulnerabilities only visible at run-time Run OWASP ZAP or a similar vulnerability scanning tool periodically against pre-prod and prod environments 3,4,5
Deploying unsigned containers Only sign a container after it has passed all tests and checks, and only deploy signed containers 2,3,4,5
Using malicious network traffic (e.g. to exploit things) Scan for malicious network traffic on the host machine, the containers and between host and containers 3,4,5
Having a compromised container host (Docker, Kubernetes) Monitor for changes in files related to Docker/Kubernetes 2,3,4,5

Ensure that the running Docker/Kubernetes is called from the correct path 4,5
Information disclosure Projects visible to people who don't need access to them Ensure that when creating a new account, no projects are visible 1,2,3,4,5

Ensure that permissions for projects are given out on a need-to-have basis 2,3,4,5

SonarQUBE
TYPE THREAT CONTROL RISK LEVELS
Tampering Add/Modify/Remove checks performed on the code Only give out permissions to do this on a need-to-have basis 2,3,4,5
Information disclosure Exploitable vulnerabilities visible to malicious user Give permissions to show details of exploitable vulnerabilities only on a need-to-know basis 2,3,4,5

Projects visible to people who don't need access to them Ensure that when creating a new account, no projects are visible 1,2,3,4,5
Ensure that permissions for projects are given out on a need-to-have basis 2,3,4,5

Lam GLOBAL captures all threats on Lam
TYPE THREAT CONTROL RISK LEVELS

Selenium
TYPE THREAT CONTROL RISK LEVELS
Information disclosure Lot of configuration information visible Minimize the information shown 2,3,4,5

Only provide access to Selenium on a need-to-know basis 2,3,4,5

Graylog
TYPE THREAT CONTROL RISK LEVELS
Tampering Add/Modify/Remove streams, alerts, dashboards and/or sources Only give permissions out for Greylog features on a need-to-have basis 3,4,5
Denial of Service Running demanding queries If this is expected to be a problem, limit the time a query can run and how many queries a user can run at the same time 1,2,3,4,5

Nexus3
TYPE THREAT CONTROL RISK LEVELS
Tampering Uploading container images with known vulnerabilities Only accept uploads made by Jenkins 2,3,4,5

Sign container images after they have been scanned for viruses and only accept signed container images 3,4,5

Grafana
TYPE THREAT CONTROL RISK LEVELS
Information disclosure Metrics visible to people who don't need access to them Ensure that when creating a new account, no metrics are visible 1,2,3,4,5

Ensure that permissions for metrics are given out on a need-to-know basis 2,3,4,5

Gitlab
TYPE THREAT CONTROL RISK LEVELS
Spoofing Upload unsigned commit under someone else's name Users must authorize to push a commit 1,2,3,4,5

Commits have to be cryptographically signed by the author with GPG 4,5
Tampering Malicious update of third-party library ??? - What can you even do? ???

Uploading untested code to the repository Require that code is tested by developers 2,3,4,5
Require code reviews before changes can be pushed to master 3,4,5
Require that tests have ???% code coverage ???

Having dependencies with security vulnerabilities in your repository Require that newer versions of dependencies with security updates are installed within 1 month of it releasing 1,2
Require that newer versions of dependencies with security updates are installed within 1 week of it releasing 3,4
Require that newer versions of dependencies with security updates are installed in the next release of the application 5

Storing secrets in plaintext There must be a policy on storing secrets 1,2,3,4,5
It must be audited that this policy is followed on a monthly basis 3,4,5

Information disclosure Projects visible to people who don't need access to them Ensure that when creating a new account, no projects are visible 1,2,3,4,5
Ensure that permissions for projects are given out on a need-to-have basis 2,3,4,5

CRaw threat list for framework V2.0

Version 2.0 of the threat list adds the following threats to the existing threats:

• Spoofing user identity with a known username or e-mailaddress, but slightly
altered

• Less control on which libraries get added for the purpose of testing than for
other purposes, e.g. development

• Malicious builds not deleted after identifying them as malicious

• Unprotected master branch in version control

• Developers deleting other person’s branches in version control

• Shared accounts

• Source code disclosure

• Malicious version of tool getting added to the pipeline

• Man-In-The-Middle attack

• Jenkins: Secrets for production stored in a place where developers have access
to them

• Graylog: Logs from a production environment which developers have access to

• Grafana: Statistics and data coming from a production environment

• Tools relying on their own authentication methods instead of LDAP

97

DFramework v2.0

Due to technical reasons, the first page of the framework will be on the next page.

99

GLOBAL
TYPE THREAT CONTROL RISK LEVELS WHO IS RESPONSIBLE
Spoofing Gaining access to another person’s account Require strong passwords 1,2,3,4 Infra

Require random passwords of significant length which have to be stored in a password vault 5 Infra
Require multifactor authentication using a digital token (e.g. MobilePass, Google Authenticator) 3,4,5 Infra
Require strong authentication using a digital token and a physical token (e.g. smartcard) 5 Infra
Implement rate limiting on login attempts 1,2,3,4,5 Infra
Set account lockout policies after a certain number of failed login attempts 4,5 Infra
Apply the principle of least-privilege to account managers 3,4,5 Street owner
Automatically monitor for passwords and secrets in config files 3,4,5 Infra
Monthly checks that passwords are not logged 2,3,4,5 Developers
Install anti-virus on machine of developers 1,2,3,4,5 Infra
Ensure HTTPS is used throughout the Production Line 1,2,3,4,5
Monitor the password policy for change 4,5 Infra
Use strong passphrases for private keys 1,2,3,4,5 Developers
Ensure passphrases for private keys are stored securely 1,2,3,4,5 Infra/Developers
Use one account for everything in the Production Line and turn off account services in individual tools (e.g. Jenkins) 1,2,3,4,5 PLaaS dev team

Performing an exploit on a vulnerability to gain access Install security patches in the next release of the Production Line 1,2 PLaaS dev team
Install security patches within a month of them becoming available 3 PLaaS dev team
Install security patches within a week of them becoming available 4,5 PLaaS dev team
Monitor for malicious network traffic containing exploits 3,4,5 Infra
Monitor the patch level of tools 4,5 PLaaS dev team

Impersonating a user by creating a user with a slightly altered username or e-mailaddress Inform developers that this might happen 3,4,5 PLaaS dev team
Tampering Abuse of privileges Give users limited permissions by default and have admins with more privileges 1,2 PLaaS dev team

Apply the principle of least-privilege to all accounts, on a role-by-role basis 3,4 Account manager
Apply the principle of least-privilege to all account, on an account-by-account basis 5 Account manager

Malicious tool added to pipeline Validate signatures of downloads of tools added to the pipeline before installing them 4,5 Infra
Repudiation Improper audit log security/redundancy Audit logging must be enabled 1,2,3,4,5 Infra/Developers

It must be monitored that audit logging is enabled 3,4,5 Infra
Audit logs should be saved to multiple places and backed up, such that a hard drive failure or ransomware cannot make all audit logs inaccessible 3,4,5 Infra
Audit logging must be sufficient enough such that in the case of an incident, the cause of the incident can be determined 1,2,3,4,5 Infra/Developers
Individual tools have to write to individual logfiles and not have permissions to write to other log files 3,4,5 Infra

Shared accounts Each developer must have and use their own account 1,2,3,4,5 Account manager
Tools relying on their own authentication methods instead of LDAP Disable each tools own authentication method and enable LDAP sign-in, e.g. through a plugin. 2,3,4,5 PLaaS dev team

Information disclosure Version number visible Version number of tools must be hidden 3,4,5 PLaaS dev team
Man-In-The-Middle attack Ensure HTTPS is used throughout the Production Line 1,2,3,4,5 PLaaS dev team

Denial of Service Denying access for users Provide the right to edit permissions of persons to as little people as possible 2,3,4,5 Account manager
Apply the "separation of duties" principle for editing permissions 4,5 Account manager

Denying access to service Install anti-virus on host and guest machines 1,2,3,4,5 Infra/Developers
Do not run Docker containers with elevated privileges 1,2,3,4,5 Infra/Developers
Do not run the process of the tool as root 1,2,3,4,5 Infra/Developers
Limit the files and folders the tool has access to to the minimum needed 3,4,5 Infra/Developers
Ensure DDOS protection/mitigation is present 4,5 Infra

Elevation of Privilege Improper permission distribution Only give permissions out on a need-to-have basis 1,2,3,4,5 Account manager
Ensure users can't give themselves more permissions 1,2,3,4,5 Infra
Ensure it is not possible to access the tool's database to give more permissions to a user 1,2,3,4,5 Infra

Jenkins
TYPE THREAT CONTROL RISK LEVELS WHO IS RESPONSIBLE
Tampering Upload a build with viruses Scan each file in each build with an anti-virus 2,3,4,5 Infra

Require an anti-virus scan before the container is signed and only deploy signed containers 4,5 Infra
Having vulnerabilities only visible at run-time Run OWASP ZAP or a similar vulnerability scanning tool periodically against pre-prod and prod environments 3,4,5 Infra
Deploying unsigned containers Only sign a container after it has passed all tests and checks, and only deploy signed containers 2,3,4,5 Infra
Using malicious network traffic (e.g. to exploit things) Scan for malicious network traffic on the host machine, the containers and between host and containers 3,4,5 Infra
Having a compromised container host (Docker, Kubernetes) Monitor for changes in files related to Docker/Kubernetes 2,3,4,5 Infra

Ensure that the running Docker/Kubernetes is called from the correct path 4,5 Infra
Information disclosure Projects visible to people who don't need access to them Ensure that when creating a new account, no projects are visible 1,2,3,4,5 Account manager

Ensure that permissions for projects are given out on a need-to-have basis 2,3,4,5 Account manager
Secrets for production stored in a place where developers have access to them Ensure that secrets for production are stored in a place where developers don't have access to them 1,2,3,4,5 Developers/Infra

SonarQUBE
TYPE THREAT CONTROL RISK LEVELS WHO IS RESPONSIBLE
Tampering Add/Modify/Remove checks performed on the code Only give out permissions to do this on a need-to-have basis 2,3,4,5 Account manager
Information disclosure Exploitable vulnerabilities visible to malicious user Give permissions to show details of exploitable vulnerabilities only on a need-to-know basis 2,3,4,5 Account manager

Projects visible to people who don't need access to them Ensure that when creating a new account, no projects are visible 1,2,3,4,5 Infra
Ensure that permissions for projects are given out on a need-to-have basis 2,3,4,5 Account manager

Lam GLOBAL captures all threats on Lam
TYPE THREAT CONTROL RISK LEVELS WHO IS RESPONSIBLE

Selenium
TYPE THREAT CONTROL RISK LEVELS WHO IS RESPONSIBLE
Information disclosure Lot of configuration information visible Minimize the information shown 2,3,4,5 Infra

Only provide access to Selenium on a need-to-know basis 2,3,4,5 Account manager

Graylog
TYPE THREAT CONTROL RISK LEVELS WHO IS RESPONSIBLE
Tampering Add/Modify/Remove streams, alerts, dashboards and/or sources Only give permissions out for Greylog features on a need-to-have basis 3,4,5 Account manager
Information Disclosure Logs from a production environment which developers have access to Ensure production logs are only visible on a need-to-know basis 2,3,4,5 Developers/Infra
Denial of Service Running demanding queries If this is expected to be a problem, limit the time a query can run and how many queries a user can run at the same time 1,2,3,4,5 Infra

Nexus3
TYPE THREAT CONTROL RISK LEVELS WHO IS RESPONSIBLE
Tampering Uploading container images with known vulnerabilities Only accept uploads made by Jenkins 2,3,4,5 Infra

Sign container images after they have been scanned for viruses and only accept signed container images 3,4,5 Infra
Malicious builds not being deleted after identifying them as malicious Require malicious builds to be (automatically) deleted 1,2,3,4,5 Infra

Grafana
TYPE THREAT CONTROL RISK LEVELS WHO IS RESPONSIBLE
Information disclosure Metrics visible to people who don't need access to them Ensure that when creating a new account, no metrics are visible 1,2,3,4,5 Account manager

Ensure that permissions for metrics are given out on a need-to-know basis 2,3,4,5 Account manager
Statistics and data coming from a production environment Ensure that statistics and data coming from a production environment is visible on a need-to-know basis 2,3,4,5 Account manager

Gitlab
TYPE THREAT CONTROL RISK LEVELS WHO IS RESPONSIBLE
Spoofing Upload unsigned commit under someone else's name Users must authorize to push a commit 1,2,3,4,5 Infra

Commits have to be cryptographically signed by the author with GPG 4,5 Developers/Infra
Tampering Malicious update of third-party library ??? - What can you even do? ??? Developers/Infra

Uploading untested code to the repository / master branch Require that code is tested by developers 2,3,4,5 Developers
Require code reviews before changes can be pushed to master 2,3,4,5 Developers/Infra
Require that tests have ???% code coverage ??? Developers/Infra

Having dependencies with security vulnerabilities in your repository Require that newer versions of dependencies with security updates are installed within 1 month of it releasing 1,2 Developers
Require that newer versions of dependencies with security updates are installed within 1 week of it releasing 3,4 Developers
Require that newer versions of dependencies with security updates are installed in the next release of the application 5 Developers

Storing secrets in plaintext There must be a policy on storing secrets 1,2,3,4,5 PLaaS team/Developers/Infra
It must be audited that this policy is followed on a monthly basis 3,4,5 PLaaS team/Developers/Infra

Developers being able to delete other people's branches Ensure that developers can only delete their own branches 2,3,4,5 Infra
Information disclosure Projects visible to people who don't need access to them Ensure that when creating a new account, no projects are visible 1,2,3,4,5 Account manager

Ensure that permissions for projects are given out on a need-to-have basis 2,3,4,5 Account manager
Source code disclosure Ensure that every developer knows where code is allowed to be uploaded, e.g. by including this in every source code file 3,4,5 Developers/Infra

EFramework v3.alpha.1

Due to technical reasons, the first page of the framework will be on the next page.

109

GLOBAL
TYPE THREAT CONTROL RISK LEVELS WHO IS RESPONSIBLE
Spoofing Gaining access to another person’s account Require strong passwords 12345 Infra

Require random passwords of significant length which have to be stored in a password vault 2345 Infra
Require multifactor authentication using a digital token (e.g. MobilePass, Google Authenticator) 345 Infra
Require strong authentication using a digital token and a physical token (e.g. smartcard) 345 Infra
Implement rate limiting on login attempts 2345 Infra
Set account lockout policies after a certain number of failed login attempts 2345 Infra
Apply the principle of least-privilege to account managers 2345 Street owner
Automatically monitor for passwords and secrets in config files 345 Infra
Check that passwords are not logged at least monthly. If sensitive data is involved, check this more often 2345 Developers
Install anti-virus on machine of developers 12345 Infra/Application Owner
Monitor the password policy for change 12345 Infra
Use strong passphrases for private keys and usernames/passwords 12345 Developers
Ensure passphrases for private keys are stored securely 12345 Infra/Developers
Use one account for everything in the Production Line and turn off account services in individual tools (e.g. Jenkins) 345 PLaaS dev team

Performing an exploit on a vulnerability to gain access Install security patches in the next release of the Production Line 34 PLaaS dev team
Install security patches within a month of them becoming available 12 PLaaS dev team
Install security patches within a week of them becoming available 5 PLaaS dev team
Monitor for malicious network traffic containing exploits and anomalies in network traffic 12345 Infra
Monitor the patch level of tools 12345 PLaaS dev team

Impersonating a user by creating a user with a slightly altered username or e-mailaddress Inform developers that this might happen 12345 PLaaS dev team
Tampering Abuse of privileges Give users limited permissions by default and have admins with more privileges 12345 PLaaS dev team

Apply the principle of least-privilege to all accounts, on a role-by-role basis 12345 Account manager
Apply the principle of least-privilege to all account, on an account-by-account basis 12345 Account manager

Malicious tool added to pipeline Validate signatures of downloads of tools added to the pipeline before installing them 12345 Infra
Configuration mistakes Have and adhere to a Secure Configuration Baseline 12345 Infra/Developers
Improper Docker container security Ensure there is a baseline for Docker container security and ensure it is followed 12345 Infra/Developers

Repudiation Improper audit log security/redundancy Audit logging must be enabled 2345 Infra/Developers
It must be monitored that audit logging is enabled 2345 Infra
Audit logs should be saved to multiple places and backed up, such that a hard drive failure or ransomware cannot make all audit logs inaccessible 2345 Infra
Ensure that the baseline for audit logging is followed 12345 Infra/Developers
Individual tools have to write to individual logfiles and not have permissions to write to other log files 345 Infra

Shared accounts Each developer must have and use their own account 12345 Account manager
Tools relying on their own authentication methods instead of LDAP Disable each tools own authentication method and enable LDAP sign-in, e.g. through a plugin. 45 PLaaS dev team

Information disclosure Version number visible Version number of tools must be hidden 345 PLaaS dev team
Man-In-The-Middle attack Ensure HTTPS is used throughout the Production Line 12345 PLaaS dev team
Malicious development has direct access to repositories with source codes, binaries, testscripts, documentation, images or business data circumventing the CI/CD products access control, stealing or manipulating the content. Ensure that direct access is restricted on a need-to-have basis

Denial of Service Denying access for users Provide the right to edit permissions of persons to as little people as possible 345 Account manager
Apply the "separation of duties" principle for editing permissions 345 Account manager

Denying access to service Install anti-virus on host and guest machines 12345 Infra/Developers
Do not run Docker containers with elevated privileges 12345 Infra/Developers
Do not run the process of the tool as root 12345 Infra/Developers
Limit the files and folders the tool has access to to the minimum needed 345 Infra/Developers
Ensure DDOS protection/mitigation is present 345 Infra

Elevation of Privilege Improper permission distribution Only give permissions out on a need-to-have basis 12345 Account manager
Ensure users can't give themselves more permissions 2345 Infra
Ensure it is not possible to access the tool's database to give more permissions to a user 2345 Infra

Newly added
Validated
Changed and validated

Jenkins
TYPE THREAT CONTROL RISK LEVELS WHO IS RESPONSIBLE
Tampering Upload a build with viruses Follow the anti-virus baseline 12345 Infra

Require an anti-virus scan before the container is signed and only deploy signed containers 12345 Infra
Having vulnerabilities only visible at run-time Run OWASP ZAP or a similar vulnerability scanning tool periodically against pre-prod and prod environments 12345 Infra
Deploying unsigned containers Only sign a container after it has passed all tests and checks, and only deploy signed containers 2345 Infra
Using malicious network traffic (e.g. to exploit things) Scan for malicious network traffic on the host machine, the containers and between host and containers 2345 Infra
Having a compromised container host (Docker, Kubernetes) Monitor for changes in files related to Docker/Kubernetes 12345 Infra

Ensure that the running Docker/Kubernetes is called from the correct path 12345 Infra
Information disclosure Projects visible to people who don't need access to them Ensure that when creating a new account, no projects are visible 12345 Account manager

Ensure that permissions for projects are given out on a need-to-have basis 12345 Account manager
Secrets for production stored in a place where developers have access to them Ensure that secrets for production are stored in a place where developers don't have access to them 12345 Developers/Infra

SonarQUBE
TYPE THREAT CONTROL RISK LEVELS WHO IS RESPONSIBLE
Tampering Add/Modify/Remove checks performed on the code Only give out permissions to do this on a need-to-have basis 345 Account manager
Information disclosure Exploitable vulnerabilities visible to malicious user Give permissions to show details of exploitable vulnerabilities only on a need-to-know basis 345 Account manager

Projects visible to people who don't need access to them Ensure that when creating a new account, no projects are visible 2345 Infra
Ensure that permissions for projects are given out on a need-to-have and need-to-see basis 2345 Account manager

Lam GLOBAL captures all threats on Lam
TYPE THREAT CONTROL RISK LEVELS WHO IS RESPONSIBLE

Selenium
TYPE THREAT CONTROL RISK LEVELS WHO IS RESPONSIBLE
Tampering Selenium was not built for security Ensure the tool is ran under a non-root account, with only the permissions that it needs 12345 Infra
Information disclosure Lot of configuration information visible Minimize the information shown 345 Infra

Only provide access to Selenium on a need-to-know basis 12345 Account manager

Graylog
TYPE THREAT CONTROL RISK LEVELS WHO IS RESPONSIBLE
Tampering Add/Modify/Remove streams, alerts, dashboards and/or sources Only give permissions out for Greylog features on a need-to-have basis 12345 Account manager
Information Disclosure Logs from a production environment which developers have access to Ensure production logs are only visible on a need-to-know basis 12345 Developers/Infra
Denial of Service Running demanding queries Limit the time a query can run and how many queries a user can run at the same time 2345 Infra

Nexus3
TYPE THREAT CONTROL RISK LEVELS WHO IS RESPONSIBLE
Tampering Uploading container images with known vulnerabilities Only accept uploads made by Jenkins 2345 Infra

Sign container images after they have been scanned for viruses and only accept signed container images 2345 Infra
Malicious builds not being deleted after identifying them as malicious Require malicious builds to be (automatically) deleted 12345 Infra

Grafana
TYPE THREAT CONTROL RISK LEVELS WHO IS RESPONSIBLE
Information disclosure Metrics visible to people who don't need access to them Ensure that when creating a new account, no metrics are visible 12345 Account manager

Ensure that permissions for metrics are given out on a need-to-know basis 12345 Account manager
Statistics and data coming from a production environment Ensure that statistics and data coming from a production environment is visible on a need-to-know basis 12345 Account manager

Gitlab
TYPE THREAT CONTROL RISK LEVELS WHO IS RESPONSIBLE
Spoofing Upload unsigned commit under someone else's name Users must authorize to push a commit 12345 Developers/Infra

Commits have to be cryptographically signed by the author with GPG 345 Developers/Infra
Tampering Malicious update of third-party library Verify hashes outside of the Production Line and only allow verified libraries to be added to the environment

Uploading untested code to the repository / master branch Require that code is tested by developers 345 Developers/Testers
Require code reviews before changes can be pushed to master 345 Developers/Infra
Require that tests have ???% code coverage 345 Developers/Infra

Having dependencies with security vulnerabilities in your repository Require that newer versions of dependencies with security updates are installed within 1 month of it releasing 12345 Developers/AO
Require that newer versions of dependencies with security updates are installed within 1 week of it releasing 345 Developers/AO
Require that newer versions of dependencies with security updates are installed in the next release of the application 345 Developers/AO

Storing secrets in plaintext There must be a policy on storing secrets 2345 PLaaS team/Developers/Infra
It must be audited that this policy is followed on a monthly basis 2345 PLaaS team/Developers/Infra

Developers being able to delete branches they are not supposed to Ensure that developers cannot delete any branches they shouldn't be able to delete 12345 Infra/Developers
Information disclosure Projects visible to people who don't need access to them Ensure that when creating a new account, no projects are visible 12345 Account manager

Ensure that permissions for projects are given out on a need-to-have basis 12345 Account manager
Source code disclosure Ensure that every developer knows where code is allowed to be uploaded, e.g. by including this in every source code file 12345 Developers/Infra

119

	Cover
	Titlepage
	Abstract
	Acknowledgement
	1 Introduction
	1.1 Motivation and context for this research
	1.2 Thesis structure

	2 Related Work
	3 Research Goal
	3.1 Research Goal Formulation
	3.2 Research Questions

	4 Methods
	4.1 Research method
	4.2 Application of the Research Method

	5 Results
	5.1 Getting familiar with the Production Line
	5.1.1 Interviews with experts
	5.1.2 Sample project

	5.2 Risk analysis
	5.2.1 Sources for threat model

	5.3 Framework version 1.0
	5.3.1 Groups of threats
	5.3.2 Threat model, controls and risk levels V1.0
	5.3.3 Feedback on framework V1.0
	5.3.4 Conclusion and reflection on framework V1.0

	5.4 Framework version 2.0
	5.4.1 Clarification of ``Lam"
	5.4.2 Categorization of tool types
	5.4.3 Threat assessment
	5.4.4 Control identification, Risk level assessment, Adding who is responsible to each control and Grouping of controls
	5.4.5 Visualization of the DevOps street
	5.4.6 Evaluation of V2.0 of the framework

	5.5 Version 3 of the framework
	5.5.1 Addressing feedback
	5.5.2 Version 3.0 alpha of the framework
	5.5.3 Converting the framework to match current baselines

	6 Discussion of Results
	6.1 Implication
	6.1.1 Validity and reliability of the research
	6.1.2 Conclusion of validation

	6.2 Limitations of the Research
	6.2.1 Scope
	6.2.2 IDEs

	7 Conclusion
	7.1 Answers to research questions
	7.2 Future work
	7.2.1 Future threats
	7.2.2 IDEs
	7.2.3 Secure Configuration Baseline
	7.2.4 Deployment tools like Ansible

	7.3 Recommendations for the company
	7.3.1 What can the company do with the new framework?
	7.3.2 Situations in which the framework is applicable
	7.3.3 Required expertise

	Bibliography
	A Raw threat list for framework V1.0
	B Framework v1.0
	C Raw threat list for framework V2.0
	D Framework v2.0
	E Framework v3.alpha.1

