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Management summary 

Introduction 
This research is conducted at the Goudappel Group, where it is part of a project initiated by the 

municipality of Amsterdam. Amsterdam’s motivation for this project is to improve the performance 

of its waste collection planning. The waste collection of Amsterdam involves the collection of the 

waste generated by its 854 thousand inhabitants. The scope of this research is limited to the waste 

collected from underground containers, of which there are 12.000 scattered over Amsterdam.  

The goals of the municipality of Amsterdam are to reduce the total collection costs, distance driven, 

and improve the service level to its inhabitants. The current planning methodology, which is based on 

fixed, static schedules and emptying frequencies, is unsuitable for the stochastic and dynamic demand 

for waste collection. Accordingly, the main research question of this research is: in which way and to 

what degree can the waste collection planning of Amsterdam be improved by using dynamic 

scheduling algorithms?  

The main research question is answered by analyzing the characteristics of the waste collection system 

of Amsterdam, reviewing existing literature to find related problems, proposing a new solution 

approach based on the findings of the literature review, and evaluating its performance on the waste 

collection planning of Amsterdam to formulate recommendations for the municipality.  

Waste collection in Amsterdam 
The logistical chain that is set up in Amsterdam to collect its waste consists of four types of locations: 

(1) containers, used to collect waste, (2) wharfs, which function as a base for collection operations, 

and two types of disposal facilities where collection vehicles can dispose the waste they collected: (3) 

satellite facilities and (4) waste processing facilities.  

During the planning of the waste collection, decision makers should make two decisions: when to 

empty which container and how to combine these containers into vehicle routes. This problem most 

closely resembles the theoretical Inventory Routing Problem (IRP).  

Proposed solution approach 
To solve this problem, this thesis proposes a novel solution approach that consists of three phases 

that are executed on a rolling horizon: 

1. Container selection, where containers that are expected to be relevant within the pre-

determined planning horizon are selected. 

2. Day assignment, where the selected containers are assigned to days of the planning horizon. 

3. Route construction, where routes are constructed to collect all assigned containers. 

The main focus of this research on the second phase, where a novel method is proposed to consider 

both the time and space dimensions of the IRP. These dimensions are important to consider 

simultaneously, as decisions in one dimension influence and restrict the possible decisions in the other 

dimension. 

During the day assignment, it is decided which containers are emptied on which day. During this 

decision, both the timing and location of each container is considered. To do this, two new costs 

approximation measures are introduced: the cluster fitness approximation, related to the distance to 

other containers scheduled on the same day, and the timing penalty costs, related to the costs of 

emptying a container earlier or later than its expected optimal emptying day. The container is assigned 

to the day for which the sum of the two approximations is lowest. 
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Experiment results 
To evaluate the performance of the proposed solution approach, a simulation model is implemented 

that models the Zuidoost-district of Amsterdam. During the numerical experiments, the proposed 

solution approach is adjusted to suit the characteristics of Amsterdam Zuidoost using several 

experimental factors that influence planning decisions taken in the proposed solution approach. The 

numerical experiments show that considerable improvements are possible if a dynamic planning 

approach is adopted. Moreover, the experiments show the potential benefits of installing fill level 

sensors in containers. Figure 1 shows the possible range of performance without and with installing 

sensors, compared to the performance of the current planning methodology of Amsterdam. The 

results show that a travel distance reduction of 12% is possible without installing sensors, and 21% 

with sensors, without reducing the service level offered to Amsterdam’s inhabitants.  

Recommendations 
Based on the results of the experiments we formulate four recommendations for the municipality of 

Amsterdam: 

• Implement the proposed solution approach using one of the preferred configurations, 

• Implement sensors into all or part of all containers, 

• Improve the quality of data collection to enable better fill level predictions, 

• Initiate further research into the benefits of adding additional dynamicity. 

Discussion and further research 
We believe that this thesis introduces a novel solution approach to the IRP in the way the time and 

space dimensions are considered simultaneously. Moreover, the solution is generalizable and can be 

applied to waste collection problems of other cities and probably even other IRPs. Further research 

should be done to confirm these presumptions. Moreover, the cost approximation methods, i.e., the 

cluster fitness approximation method and timing penalty costs, should be subject to more research as 

these approximations are currently merely very rough approximations of the costs associated with 

decisions taken in the IRP. It is believed that more accurate approximations of these costs can 

considerably improve the solution quality of the proposed solution approach. 

Figure 1: Possible performance of the proposed solution approach compared to Amsterdam 
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List of definitions 
To prevent ambiguity we start by listing some definitions that are used throughout this thesis. 

Subsequently, a list of all abbreviations is given. 

Tour 
 

A tour is a sequential list of containers that are subsequently visited 
that starts at a wharf or disposal facility and ends at a disposal facility. 
 

Route: A route is a sequential list of tours that are subsequently executed by 
a vehicle. A route consists of one or multiple tours. 
 

Scheduling/schedule Scheduling encompasses the operational decisions that are taken to 
make the schedule. A schedule is a collection of routes, which 
vehicles should perform which routes, and when. 
 

Planning: Planning denotes decisions of a higher hierarchical level than 
scheduling and is used to comprise all decisions taken by the waste 
management department to plan the waste collection. 
 

Container/vehicle fill level The fill level of both containers and vehicles indicates the amount of 
waste that is deposited and is currently stored in said container or 
vehicle. The fill level is often displayed as a percentage of the total 
capacity of the container or vehicle. 
 

Container deposit rate: The container deposit rate indicates the speed at which waste is 
deposited in a container. Because the deposit rate is stochastic, it is 
represented as a statistical distribution.  
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Chapter 1 - Introduction 
This chapter introduces the research and the problem that initiates it. Firstly, we discuss relevant 

background information about the affiliated organizations and their connections to this research 

(Section 1.1). Secondly, the problem description is given, outlining the core problem this research aims 

to solve (Section 1.2). Thirdly, the research design is discussed in two sections: the research objectives 

and the research questions (respectively in Section 1.3 and 1.4). Lastly, the problem solving approach 

and thesis structure is outlined (Section 1.5). 

1.1 - Research context 
This research takes place at the Goudappel Group, a collaboration of companies that work together 

to offer their customers integral solutions to mobility issues. The offices of Goudappel Group are 

located in several cities across the Netherlands. This research is conducted from the headquarters, 

located in Deventer. The two most prominent parts of the Goudappel Group are Goudappel Coffeng 

and DAT.Mobility. The largest, Goudappel Coffeng, is mainly focused on consulting in mobility issues. 

Whereas DAT.Mobility supports Goudappel Coffeng, as well as its own customers, with data analysis 

and the development of ICT solutions. Both companies take part in this research. In the remainder of 

this report, the Goudappel Group is referred to as Goudappel. 

Recently, Goudappel started to expand, from their traditional position as advisors in mobility, into the 

field of logistics. The ambition is to combine their pre-existing knowledge and experience in traffic 

modeling with a transport planning application. The desired end result is a dynamic planning platform 

that is usable in a broad range of logistic applications and scenarios. This research is the first step 

towards developing this dynamic model. The first practical application to present itself to Goudappel 

is the waste collection planning of Amsterdam. Therefore, while this theoretical research is conducted 

at Goudappel, it is part of a practical project initiated by the municipality of Amsterdam to improve its 

waste collection planning.  

Amsterdam is the capital and the largest city of the Netherlands and has more than 854 thousand 

inhabitants (Municipality of Amsterdam, 2018b). The municipality of Amsterdam is responsible for the 

collection of all the waste produced in Amsterdam. Waste collection is one of the most complex and 

visible services offered by municipalities and involves large expenditures. In recent years, 

municipalities are therefore increasingly reconsidering their waste management due to costs and 

environmental concerns (Nuortio et al., 2006) (Jewel, 2017), as is now the case in Amsterdam. The 

problem of planning the collection of waste in Amsterdam is particularly complex because of the large 

number of densely packed containers and narrow, congested streets. Moreover, the addition of 

multiple satellite facilities, waste processors, and wharfs, which are elaborated upon in Section 2.2, 

complicates the planning problem. 

1.2 - Problem description 
Amsterdam’s main motivation for initiating the project is its ambition to improve the performance of 

its waste collection planning. The main targets of Amsterdam are to reduce the total cost of collection 

and to minimize the number of required vehicle movements. Concretely, the municipality wants to 

reduce the cost of waste collection from €43 million to €40 million per year (Municipality of 

Amsterdam, 2018c). The targets are motivated by three performance indicators on which the 

municipality of Amsterdam perceives itself to be underperforming: the costs of waste collection, the 

service to its inhabitants, and the emission of greenhouse gases. These targets are set for the entirety 

of Amsterdam’s private, so non-industrial, waste collection, consisting of: collection from waste 

containers, bulk collection, and manual collection (Municipality of Amsterdam, 2018c). However, this 
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research chooses to focus solely on the collection from waste containers, as this collection method is 

believed to have the highest potential for improvement. 

To find the core problem that causes the underperformance of the waste collection planning, a 

problem cluster is drawn, as described by Heerkens and van Winden (2012). This is used to analyze 

the surrounding problems and deduce their causal relationships. In the problem cluster, which can be 

found in Appendix 1, two main themes can be identified: the non-optimal timing of emptying 

containers and the inefficient collection routes. 

The first theme, the non-optimal emptying time of containers refers to containers being emptied 

either too early or too late. The main reason for this is the static nature of the planning methods used 

by Amsterdam. Containers are emptied with predetermined frequencies that do not consider an up-

to-date forecast. Because the schedule is made to effectively collect waste under all circumstances, 

the schedule and corresponding container emptying frequencies are determined to be as robust as 

possible. However, this causes inefficiencies as the content of containers is stochastic, changes over 

time, and is subject to the effects of seasonality. The combination of these factors and the static 

planning it can, for example, occur that a container is emptied when relatively empty because it is a 

less busy period of the year, or containers overflow because of an increase in residents in the 

neighborhood. Both these situations are undesirable as overfull containers inconvenience inhabitants 

and signify a bad service level, while containers that are emptied too early cause unnecessary vehicles 

kilometers and emissions. 

The second theme, the inefficiency of the routes between containers can be attributed to two factors: 

the decentral planning and a failure to respond to new incoming information, such as traffic data or 

calling inhabitants. Firstly, Amsterdam’s waste collection planning is decentralized, this means that 

each municipal district has the responsibility for its own waste collection. Consequently, containers 

are designated to the district in which they are located and planned in routes executed by that district, 

even though it could fit more efficiently in a route of another district. This causes detours and 

unnecessary additional driven kilometers. Secondly, the current routes do not consider predicted or 

real-time traffic data. Especially in densely populated areas such as Amsterdam, where traffic 

congestion is a recurring phenomenon, this data should be used to avoid such congestions. The 

inability to avoid traffic congestion threatens the feasibility of the schedule and causes additional CO2 

emissions.     

To summarize, the two main problem themes are caused by, in the first case, static scheduling, and in 

the second case, static routing. This static scheduling and routing policy, in combination with the 

changing waste collection setting in Amsterdam, causes the underperformance of the planning. As a 

result, the core problem is formulated as follows: 

 

 

Core problem: The current static collection schedules and routes are unsuitable for the stochastic, 

dynamic demand for waste collection. 
 

 

1.3 - Research objective 
The aim of this research is to solve the core problem as described in Section 1.2. Both Goudappel and 

Amsterdam agree that the development of a new dynamic planning platform for the collection of 

waste is the most suitable solution for this problem. Utilizing dynamic planning techniques allows 

individual containers to be scheduled separately based on the forecasts of their fill levels. This gives 
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the opportunity to improve the timing of emptying containers. Moreover, the new planning 

techniques can incorporate improvements on the other previous weakness as well, such as the 

inefficient routes and not considering traffic data. 

Because developing an entire planning platform is unrealistic in the time allotted for this research, the 

scope is limited to the collection of waste from waste containers. This collection method is chosen as 

it is highly influential for the total waste collection performance, easily separable from the other 

planning functions, and not subject to as many legislative restrictions. Moreover, the forecasting of 

container content is such a complex problem that it is considered largely outside the scope of this 

research. It is briefly discussed as an input variable for the planning, but a complete, thorough analysis 

of all the complexities involved is not conducted. Lastly, developing an interface and implementing 

the planning application are also omitted from the research scope. 

At the moment, neither Goudappel nor Amsterdam have the necessary experience or knowledge to 

develop the required planning methods. Therefore, the goal of this research is to identify and develop 

a planning methodology that improves upon the current waste collection planning in Amsterdam. 

More specifically, the new planning method should improve upon the current cost, emission, and 

service performance indicators. 

1.4 - Research questions 
From the previously described research objective we deduce the following research question: 

 

 

Main research question:  

In which way and to what degree can the waste collection planning of Amsterdam be improved by 

using dynamic scheduling algorithms? 
 

 

To answer the main research question, we formulate several research questions. These research 

questions are formulated below and are elaborated upon further in Section 1.5. 

Research question 1: What is the current state of the waste collection planning in Amsterdam? 
a. What are the characteristics of the waste collection system in Amsterdam? 

b. How is the collection of waste currently planned? 

c. What are the relevant performance indicators to evaluate the waste collection planning? 

d. What is the performance of the current waste collection planning in Amsterdam?  

Research question 2: What relevant routing problems and corresponding solution approaches 

are described in the literature? 
a. What types of existing routing problems most closely resemble the problem faced during the 

waste collection planning in Amsterdam? 

b. What types of solution approaches are described in literature to solve these types of 

problems? 

c. What techniques are applied in the literature to improve waste collection planning? 

d. How can the performance of different planning methodologies be tested and evaluated? 

e. How are the findings of this literature review applicable to the context of Amsterdam? 
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Research question 3: How can a novel planning methodology be designed for the waste 

collection in Amsterdam? 
a. Which decisions are to be taken to schedule the collection of waste in Amsterdam and which 

boundary conditions apply to those decisions? 

b. How can the decision process be decomposed into smaller decisions? 

Research question 4: How should the waste collection system of Amsterdam be modeled to 

allow for the evaluation of novel planning methodologies? 
a. In what scope and level of detail should the planning methodologies be tested? 

b. How should the appropriate values for the adjustable parameters of the proposed solution 

approach be established? 

Research question 5:  What is the expected outcome of the proposed planning methodology 

for the waste collection of Amsterdam? 
a. What are the effects of the defined adjustable parameters on the planning performance? 

b. How does the proposed solution approach deal with changing demand for waste collection? 

1.5 - Problem solving approach 
To solve the core problem and achieve the research objective, the research questions formulated in 

the previous section should be answered. This section outlines the problem solving approach that is 

adopted during this research to answer the main research question and in doing so gives an overview 

of the structure of this thesis.  

The first research question is answered in Chapter 2, which gives an overview of the current situation 

of Amsterdam’s waste collection system and its planning. To give this overview, the characteristics of 

the waste management system in Amsterdam are discussed, as well as the current planning 

methodology. Subsequently, relevant performance indicators are chosen with which to evaluate the 

current planning performance using data supplied by the municipality of Amsterdam. 

The second research question involves a review of the current literature relevant to the problem in 

Amsterdam. This literature review is given in Chapter 3 where we discuss literature on different 

routing problems, solution approaches, and waste collection planning. The applicability of the 

discussed literature to the context of Amsterdam is debated and finally, the contribution of this 

research to the current literature is discussed.  

Based on the previous literature review, the third research question asks how a new planning 

methodology can be designed for the waste collection of Amsterdam. Chapter 4 starts by defining the 

problem faced by Amsterdam and continues by formulating our proposed solution approach. Several 

tunable experimental parameters are identified and introduced. 

The fourth research question discusses how the proposed solution approach can be compared to the 

current planning methodology of Amsterdam. Moreover, how the effects of the experimental 

parameters can be evaluated. To answer this question, Chapter 5 describes the chosen modeling 

approach and the implemented model, including the chosen scope and level of detail. 

 In the fifth research question, we study the expected performance of the proposed solution approach 

and the effects of the tunable parameters using numerical experiments. These experiments are 

discussed in Chapter 6. Chapter 7 formulates the conclusions based on the results of the experiments 

and gives recommendations for the municipality of Amsterdam. Moreover, the research is discussed 

and recommendations are given for further research. 
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Chapter 2 - Current state of waste collection in Amsterdam 
This chapter describes the current state of the waste collection in Amsterdam in order to clarify the 

context in which the previously described problems occur. It starts by giving an introduction to some 

general characteristics of waste collection in Amsterdam (Section 2.1). After that, the logistical chain 

set up to handle the collection of waste (Section 2.2) and the available collection vehicle fleet (Section 

2.3) are discussed. Following that, the waste collection process is discussed briefly (Section 2.4), as 

well as the current planning methodologies applied by Amsterdam (Section 2.5). This chapter 

continues by formulating the relevant performance indicators (Section 2.6) and evaluating the 

performance of the current planning methodology (Section 2.7). Finally, the research questions 

pertaining to this chapter are answered in a summarizing conclusion of this chapter (Section 2.8).  

2.1 - Waste collection in Amsterdam 
The waste collection of Amsterdam is the responsibility of its municipality. Annually, it facilitates the 

collection of more than 304 thousand tons of waste, which is done by around 300 full-time employees 

(Municipality of Amsterdam, 2015). In accordance with the scope of this research, we focus on the 

collection of waste from the more than 12.000 waste containers scattered in Amsterdam, see Figure 

2. 

Amsterdam distinguishes six different types of waste, called waste fractions, that are collected and 

processed separately. Four of these waste fractions are wholly or partly collected in waste containers: 

household waste, glass, paper, and plastics. Household waste can also be described as residual or 

unsorted waste. On average, each inhabitant of Amsterdam dumps a total of 227 kilograms of waste 

in waste containers per year. 81% of that waste is thrown out as unsorted household waste. The 

remaining 19% is sorted into either the designated paper, glass, or plastics containers (Municipality of 

Amsterdam, 2015). Appendix 2 shows the distribution of the weight collected from containers per 

waste fraction, per year. 

Figure 2: Dispersion of waste containers per fraction over Amsterdam’s districts 
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2.2 - Logistical chain 
The logistical chain set up by Amsterdam to collect waste consists of four types of locations: waste 

containers, wharfs, and two types of disposal facilities: satellite facilities and waste processing 

facilities. Each location has its own functions (Municipality of Amsterdam, 2018c) and characteristics 

which are described in the following sections. 

2.2.1 - Waste containers 
Waste containers are used to collect and store waste. Inhabitants can throw away waste in the waste 

containers, in which it is then stored out-of-sight and without smell, improving the cityscape. The 

storage of containers can be located underground, as in the example in Figure 3, or above ground. 

Waste is collected from the containers, to ensure they do not overflow, by waste collection vehicles. 

Each container is dedicated to one waste fraction to enable the municipality to recycle the separate 

waste fractions. Containers have a limited waste storage capacity which is between 3m3 and 7m3. 

2.2.2 - Wharfs 
Wharfs are used as the base for all collection operations in a city district. Waste collection employees 

often have fixed designated wharfs where they start and end their working day. All waste collection 

routes also start and finish at a wharf. The wharfs then function as parking lots for all collection 

vehicles overnight. Because of the current decentralized way of planning, each of the seven districts 

has a wharf from which all waste of that district is collected. 

2.2.3 - Waste disposal facilities 
There are two types of locations where collection vehicles are able to dump their collected waste: 

satellite facilities and waste processing facilities. The difference between the two locations is that the 

satellite facility is only used to temporarily store waste, which is later transported to a waste processor 

to be processed. The waste processors are the end of the logistical chain for all collected waste in 

Figure 3: Emptying an underground waste container (photo credit: Palfinger.ag) 



Master thesis - Improving the waste collection planning of Amsterdam 

 

13 
 

Figure 2: Locations of wharfs, satellite facilities, and waste processors in Amsterdam 

Amsterdam, where the waste is separated and recycled or processed if possible. Whether to visit a 

satellite facility or waste processor is a planning decision. This decision is based on the proximity of 

the route to either of the disposal facilities.  

There are currently two satellite facilities with plans to build a third. The two existing satellite facilities 

have a combined capacity to store the waste load of 55 full collection vehicles. Moreover, there are 

four waste processing facilities, each of which is dedicated to processing waste from one waste 

fraction. 

2.2.4 - Geographical layout 
The locations of the wharfs, satellite facilities, and waste processing facilities are shown in Figure 4. 

Note that the satellite facility planned for construction is already included in this figure, see the 

northern-most satellite facility, as its construction starts in 2019. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.3 - Available collection vehicles 
This section describes the collection vehicles that are available for waste collection in Amsterdam. 

Waste collection vehicles have several characteristics that dictate how they can be utilized. The most 

notable are their compatible waste fraction, capacity, and the capability to unload waste at satellite 

facilities.  

The municipality of Amsterdam has a total of 122 waste collection vehicles at its disposal. More than 

half of these, 62, are used to collect waste from waste containers. The remaining vehicles are used for 

bulk and manual waste collection. Each vehicle is currently transfixed to one designated wharf, but 

this is not necessarily the case in the future.  
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Collection vehicles can be categorized as either dedicated or multipurpose vehicles. Dedicated 

collection vehicles are compatible with only one waste fraction, while multipurpose vehicles can be 

utilized to collect multiple different waste fractions. Multipurpose vehicles are not able to collect 

different waste fractions simultaneously, but only consecutively. To illustrate, a multipurpose 

collection vehicle can collect paper in the morning and household waste in the afternoon, as long as 

it is not on the same trip. Table 1 shows the number of available dedicated and multipurpose vehicles 

per waste fraction (Municipality of Amsterdam, 2018c). Note that multipurpose vehicles are counted 

for all waste fraction with which they are compatible. 
 

Table 1: Available waste collection vehicles 

Waste fraction 
Household 

waste 
Glass Paper Plastics Total 

Dedicated  35 1 2 4 42 

Multipurpose 12 18 20 0 20 

Total available for fraction 47 19 22 4 62 
 

 

Furthermore, collection vehicles have a limited capacity to store and transport waste. Most collection 

vehicles have a weight capacity between 8 and 10 tons of waste. Several collection vehicles are also 

equipped with a storage tank-switch system. This system enables collection vehicles to switch their 

full storage tank with an empty tank at one of the satellite facilities. Collection vehicles can then 

resume collection waste without visiting a waste processor.  

2.4 - Waste collection processes 
To gain a better understanding of the waste collection in Amsterdam this section describes the 

associated processes. This is done using business process modeling as it facilitates the understanding 

and analyzing of processes (Aguilar-Savén, 2004). The process flow chart is shown in Figure 5 

(Municipality of Amsterdam, 2018c). 

At the start of each working day, which are Monday to Friday, the waste collection routes start from 

the different wharfs. Each employee ordinarily works from the same wharf every day. The wharfs also 

serve as an overnight storage location for waste collection vehicles. A typical working day consists of 

8.5 hours, of which, after subtracting time for activities such as preparation and lunch, 6.25 hours are 

available to execute the planned collection routes.  

Figure 3: Process flow chart of a day of one waste collection vehicle in Amsterdam 
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During the execution of the collection routes, there is a decision moment every time a container is 

emptied. During this moment, it is considered if it is possible for the collection vehicle to continue 

according to the predetermined schedule. This decision is based on the fill level of the collection 

vehicle, if a capacity threshold is reached, the vehicle is considered too full to continue to empty 

another container. If that is the case, an online decision is taken to either dump the collection vehicles’ 

load at a satellite facility or waste processor. This online decision is necessary because the actual fill 

level of containers is uncertain and they may have higher fill levels than anticipated, resulting in 

infeasible routes.  

During the execution of the collection routes, there is a decision moment after each emptied 

container. The decision is based on the fill level of the vehicle; if the vehicle is too full to empty another 

container it should decide to empty its storage at either a waste processor or satellite facility. If the 

vehicle is not too full, the normal schedule can be followed which is either: collect waste from the next 

container or go to either the waste processor or satellite facility. A waste collection vehicle can, for 

example, have a higher fill level than anticipated because of higher fill levels of the collected waste 

containers. When an employee is finished with his/her collection route, the collection vehicle can be 

retired to the wharf and the working day is finished. Occasionally, the waste that is aggregated at the 

satellite facilities is transported to the corresponding waste processor.   

 

2.5 - Current planning 
The current schedules are static and fixed, this means that the same schedules are executed in a cyclic 

manner. Moreover, the routes between waste containers in these schedules are also rarely subject to 

changes (Municipality of Amsterdam, 2018c). The schedules are currently based on a predetermined 

emptying frequency per container, e.g., once per week, twice per week, once per two weeks. These 

frequencies are based on slightly exaggerated estimations of container deposit rates to ensure the 

frequencies can be used year-round. 

The static nature of the schedules means that planners are mostly occupied with the operational 

issues, such as adjusting the planning when containers are defect or when inhabitants complain about 

uncollected waste. Inhabitants are able to notify the municipality using a public notification portal. 

Amsterdam strives to handle all complaints within three days. In reality, this is managed for 80% of 

the complaints (Municipality of Amsterdam, 2016). Appendix 3 shows the five most common 

complaints and notifications concerning waste collection the municipality of Amsterdam received in 

2014 (Municipality of Amsterdam, 2015). When a complaint is made, an addition has to be made to 

the collection planning, this is currently done manually by Amsterdam’s planners. Next to the 

operational planning of the schedules, the planner is also responsible for the personnel and vehicle 

planning. 

Currently, district planners are increasingly trying to work together to improve the existing schedules. 

However, they are severely limited by the applications they have access to. Amsterdam does not have 

an integrated planning application, moreover, the districts do not have the same applications. 

Therefore, when they want to collaborate, they have to communicate their schedules and routes using 

Excel, Word, or physical maps. 
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2.6 - Choosing performance indicators 
This section starts by determining the key performance indicators (KPIs) on which the waste collection 

planning should be evaluated. These KPIs are chosen based on a combination of wishes from the 

municipality and suggestions from literature. Because multiple KPIs are identified, we also discuss how 

alternatives can be evaluated based on multiple, possibly conflicting, KPIs. 

2.6.1 - Choosing key performance indicators 
The three main targets for Amsterdam in their pursuit for an improved waste collection planning 

methodology are: to reduce the total costs and vehicle movements and to improve the service to its 

inhabitants (Municipality of Amsterdam, 2018c). In addition to these main KPIs, the municipality also 

formulates several secondary objectives: total CO2 emission, time spent collecting, average fill level of 

containers upon emptying, and fill level collection vehicles upon unloading. The three main KPIs are 

defined and quantified as follows: 

• Influenceable collection costs / ton of waste collected: consisting the sum of the vehicle, fuel, 

and wage costs;  

• Number of kilometers driven / ton of waste collected; 

• Service level: the percentage of waste that is collected on-time. 

2.6.2 - Multiple criteria decision making 
Evaluating alternatives given a set of criteria, or KPIs as named in this research, is defined by Stewart 

(1992) as Multiple Criteria Decision Making (MCDM). The aim of MCDM is to assist the decision maker 

to find the most desirable alternative and provide justification for that decision (Stewart, 1992).  

To evaluate different planning methodologies, we use the concept of Pareto optimality. Pareto 

optimality is used to evaluate alternatives in multiple papers on multi-objective general routing 

(Huang, Fery, Xue, & Wang, 2008), as well as waste collection routing (Xue & Cao, 2016) (Samanlioglu, 

2013). Due to the often conflicting natures of the objectives, oftentimes, no one solution is objectively 

better than all other solutions. Alternatives are called Pareto optimal if an improvement in one 

objective has to be at the expense of another objective (Huang et al., 2008). The set of all Pareto 

optimal points is called the Pareto curve or front, an example is shown in Figure 6. This front gives 

insight into the shape of the trade-off between the objectives and can be used during the decision 

making. 

Figure  4: Example of Pareto frontier (Di Somma, 2016) 
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To allow for a straightforward evaluation of alternatives and to reduce the number of Pareto optimal 

point to consider, we choose to select two criteria on which to evaluate all alternatives. More criteria 

would complicate the analysis and selection of promising alternatives, as two-dimensional 

visualization is then made impossible. The two KPIs used for the multi-objective decision making are 

the number of kilometers driven per ton of waste collected and the service level. These two criteria 

represent both sides of the most important trade-off: emptying early and often versus emptying late 

and infrequent. In the remainder of this thesis, the Pareto front is called the efficiency frontier. 

2.7 - Current performance 
This section discusses the performance of the current waste collection planning on both the primary 

and secondary KPIs identified by Amsterdam, with the exception of the service level. This KPI is 

excluded because the municipality currently does not have the ability to accurately measure it.  

Moreover, the municipality of Amsterdam has only gathered the performance of the planning of the 

household, paper, and glass waste fractions. Because the plastic fraction represents such a marginal 

part of the total collected waste, i.e., less than 1% (Municipality of Amsterdam, 2015), we presume 

that the other fractions give an accurate depiction of the current planning performance. The 

performance data relates to the waste container collection performance of 2017.  

2.7.1 - Influenceable collection costs 
The influenceable collection costs consist of four factors: the cost per vehicle, personnel costs, cost 

per kilometer, and satellite facility costs. The contribution of each cost factor is shown in Table 2 

(Municipality of Amsterdam, 2018a).  
 

Table 2: Influenceable costs incurred by Amsterdam in 2017 for the collection of household, paper, and glass from containers 

Cost factor Amount Costs % of costs 

Required number of collection vehicles 67 €              6.375.000 50,1% 

Hours spent collecting 137.152 €              5.486.090 43,1% 

Number of kilometres driven 940.735 €                 658.514 5,2 % 

Containers via satellite facilities 8.256 €                 643.930 5,1 % 

    

Influenceable collection costs - €            12.721.507 100 % 
 

The highest incurred costs are the fixed costs of the collection vehicles. On average maintaining and 

depreciating the vehicle fleet costs approximately €95.000 per vehicle, per year. The personnel cost, 

or the time spent collecting, is a close second in terms of impact on the total costs. In 2017, collection 

employees worked a total of 137.152 hours for an average cost to the municipality of €40. The latter 

two have a significantly less pronounced impact on the total costs, cumulatively around 10%, and are 

calculated using fuel costs of €0,70/km and satellite facility costs of €78/container. 

While most costs are incurred by the household waste fraction, 77%, this is also the most prevalent 

waste fraction. To fairly compare the cost-effectiveness of the waste fractions, we should take the 

amount of collected waste into account. This comparison is shown in Table 3, where the costs are 

shown from two perspectives: per ton of waste collected and volume of waste collected. This 

distinction is relevant because of the difference in density of different waste fractions. The densities 

are estimated as follows: household (100 kg/m3), paper (70 kg/m3), and glass (300 kg/m3) (Municipality 

of Amsterdam, 2018a). Table 3 shows that the collection of household waste is most cost-effective, as 

the cost per ton and per cubic meter collected are lower than average. At the same, presumably 
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caused by the respective densities of the waste fractions, the collecting cost per ton of paper and per 

cubic meter of glass are significantly higher than average. 
 

Table 3: Costs per ton and cubic meter of waste collected 

Waste fraction Household Paper Glass Average 

Cost per ton of waste € 55,15 € 120,29 € 55,79 € 60,79 

Cost per m3 of waste € 5,52 € 8,42 € 16,74 € 6,14 
 

 

2.7.2 - Average fill levels of containers and collection vehicles 
The fill level is the percentage of the total volume capacity that is filled with waste. The moments at 

which the container is emptied and the collection vehicle dumps its waste at a disposal facility are 

used to measure the average fill levels. Table 4 shows the fill levels of both containers and vehicles for 

the collection of different waste fractions, as well as the average fill levels.  
 

Table 4: Average fill levels of containers and vehicles upon emptying 

Waste fraction Household Paper Glass Average 

Average fill level of containers 39,3 % 39,6 % 20,3 % 38,1 % 

Average fill level of vehicles 79,1 % 74,0 % 75,4 % 77,9 % 
 

It can be seen that the average fill level of containers is especially low, as previously discussed in 

Chapter 1. Notably, the average fill level of glass containers is almost half that of the other waste 

fractions. This is caused by the fact that the fill level of containers is calculated based on weight. As 

the volume capacities for the average container are comparable, the high density of glass means that 

glass containers have a very high weight capacity. Therefore, while paper containers are emptied twice 

as much with a comparable amount of waste, the fill level of glass containers is approximately twice 

as low.   

2.8 - Conclusion 
This chapter gives an overview of the current state of waste collection and its planning in Amsterdam. 

In doing so, it answers research question 1: What is the current state of waste collection planning in 

Amsterdam?  

A distinctive characteristic of the waste collection logistical chain in Amsterdam is the presence of 

satellite facilities. Satellite facilities can be used to offload full collection vehicles, allowing them to 

collect more waste. The current collection planning is predominantly fixed and cyclic. Changes in the 

planning that do occur are caused by inhabitant complaints or defective equipment. To evaluate the 

current planning and to be able to compare it to new proposed planning methodologies, we formulate 

four KPIs by consulting the municipality and literature: influenceable collection costs, number of 

overfull containers, and the average fill levels of both containers and vehicles. Notably, by far the most 

costs are spent on the fixed costs of vehicles (47%) and the hourly wages of collectors (43%). Another 

noteworthy finding is the low average fill level at which containers are emptied (38%).  

The next chapter outlines a literature review which places Amsterdam’s problem in the existing 

literary theory and shows how similar problems are approached and solved in previous literature.   
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Chapter 3 - Literature review 
This chapter reviews the relevant literature to solve the knowledge problems formulated in the 

research questions. Firstly, an introduction to the basic concepts surrounding routing problems is 

given, together with two examples that closely resemble the situation in Amsterdam (Section 3.1). 

Secondly, different solution approaches to routing problems are examined to give an overview of the 

possible approaches (Section 3.2). Subsequently, the Inventory Routing Problem (IRP) is discussed 

more extensively (Section 3.3) as this is the routing problem that most closely resembles the situation 

in Amsterdam. After that, the literature specifically researching the improvement of waste collection 

planning is studied (Section 3.4). To be able to evaluate different planning methodologies, we study 

different modeling approaches that can be used to model the waste collection system of Amsterdam 

(Section 3.5). Finally, the findings of the literature review are summarized in a conclusion and the 

contribution of this thesis to the existing literature is noted (Section 3.7). 

3.1 - Introduction to routing problems 
This section aims to give a general introduction to several concepts surrounding routing problems and 

their practical applications. We start by discussing an important input factor to all routing problems: 

shortest path routing. After that, a general classification of routing problems is discussed with practical 

examples. Subsequently, two specific routing problems are introduced: the Vehicle Routing Problem 

(VRP) and Inventory Routing Problem (IRP). 

3.1.1 - Shortest path routing 
One of the prerequisites for solving routing problems is being able to compute the shortest path 

between all locations that are considered in the routing problem in question. Shortest path routing is 

used to generate cost matrices, often based on distance, time, or a combination of the two, between 

locations (Ticha et al., 2017). One of the leading uses of shortest path routing is in transportation, but 

it also has applications in artificial intelligence, operations research, and computer science (Tommiska 

& Skytta, 2001) (Huang, Wu, & Zhan, 2007), making it a popular research topic. 

A classic approach to solve the shortest path problem is Dijkstra’s algorithm (Dijkstra, 1959). However, 

since its publication in 1959, the performance of shortest path algorithms has improved drastically, 

leading to algorithms that are up to three million times faster than Dijkstra’s original algorithm (Delling 

et al., 2009). Other well-known algorithms include the A* search (Goldberg, Kaplan, & Werneck, 2006) 

and Bellman’s algorithm (Bellman, 1958). 

Traditionally, most literature focuses on a single-objective shortest path. However, Tarapata (2007) 

argues that in many practical applications, multicriteria shortest path problems are more suitable. This 

is also the case in Amsterdam, where the municipality prescribes three criteria of importance: costs, 

emission, and nuisance. 

3.1.2 - General types of routing problems 
Routing problems can be classified as either node- or arc routing problems (Pearn, Assad, & Golden, 

1987). This classification depends on where the demand is located in the underlying network. In node 

routing problems, the demand exists at the customers who are represented by nodes. In contrast, the 

demand in arc routing problems occurs on the arcs that can be traversed. The difference between arc 

routing and node routing is illustrated in Figure 7. 
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A commonplace example of a node routing problem is the Travelling Salesman Problem (TSP). The 

general TSP can be formulated as follows: A salesman wants to find the shortest route in which to visit 

all customers and return back home (Lenstra & Kan, 1975). A generalization of the TSP is the VRP, 

which was first introduced by Dantzig and Ramser (1959). The VRP is a combinatorial optimization 

problem that is used to determine the optimal route to deliver a given set of orders to a given set of 

customers from one or multiple depots (Kumar & Panneerselvam, 2012). The VRP is discussed further 

in the next section. 

Most research into arc routing problems is done on the specific case of the Capacitated Arc Routing 

Problem (CARP). This problem arises when streets have to be traversed, for example for maintenance, 

snow removal, or road gritting. Each road (i.e., arc) has to be serviced by exactly one vehicle and all 

vehicles have a limited capacity (Hertz, Laporte, & Mittaz, 2000). 

Despite the difference between node and arc routing problems, they are of the same complexity. As 

for each arc routing problem, there exists an equivalent node routing problem and vice versa (Oppen 

& Løkketangen, 2006). Nevertheless, research into solving node routing problems is much more 

prevalent. Because of this, there exist several problems for which the computational results of the 

node routing version outperform their arc routing counterparts, for example, the Capacitated VRP 

(Baldacci & Maniezzo, 2004). Therefore, especially transformation techniques from arc to node 

routing problems have gotten some attention in literature (Pearn, Assad, & Golden, 1987) (Baldacci & 

Maniezzo, 2004). 

Nevertheless, there are also instances where arc routing techniques are used in a node routing 

environment to reduce the problem size. Oppen and Løkketangen (2006) show that the problem size 

decreases and solution quality increases when customers are aggregated into clusters, represented 

by arcs. However, they also note that it is only applicable in specific cases where there are a high 

number of customers on so-called road segments, such as is the case with house-to-house waste 

collection or mail delivery. 

The problem faced in Amsterdam can be classified as a node routing problem. The demands occur at 

the containers which do not adhere to the required characteristics of arcs in an arc routing problem. 

Therefore, the remainder of this section focuses on two specific node routing problems that most 

closely resemble the situation in Amsterdam: the VRP and IRP. 

Figure 7: Node versus arc routing problems 
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3.1.3 - Vehicle Routing Problem 
The VRP was first introduced by Dantzig and Ramser (1959), who named it the “truck dispatching 

problem”. The VRP is a generalization of the TSP, which adds the condition that dictates specific 

deliveries to be made to specific locations (Dantzig & Ramser, 1959). The most general formulation of 

the VRP concerns itself with constructing optimal routes between one depot and a number of 

customers that have a known demand (Laporte, 1992).  

Since its inception in 1959, the VRP has become one of the most extensively studied combinatorial 

optimization problems (Cordeau et al., 2002). Due to this popularity, the original VRP has been 

extended by adding real-life characteristics to the problem (Braekers, Ramaekers, & van 

Nieuwenhuyse, 2016). However, most literature is limited to studying one additional characteristic at 

a time, disregarding that real-life cases should often adhere to a wide range of characteristics 

simultaneously (Braekers, Ramaekers, & van Nieuwenhuyse, 2016). Some variants with relevance to 

the problems faced in Amsterdam are listed and elaborated briefly below in Table 5. 

Table 5: Variants of the Vehicle Routing Problem (adapted from Braekers, Ramaekers, & van Nieuwenhuyse (2016)) 

Characteristics Description 

Capacitated In the capacitated VRP all vehicles have a limited capacity. This capacity 
is often expressed in weight, volume, or both simultaneously. 

Stochastic demand Instead of known, deterministic demand, the demand is unknown and 
stochastically distributed. 

Satellite facilities Satellite facilities allow vehicles to replenish their load during a route, 
without having to visit a depot location, enabling them to continue 
serving customers 

Multiple depots Instead of one depot from which customers can be serviced, a multi 
depot problem has multiple depots. 

Heterogeneous vehicles The general VRP has a homogeneous fleet which means that all vehicles 
are identical. The VRP with heterogeneous vehicles has different types 
of vehicles, each with its own characteristics. 

Time-dependent travel times Instead of fixed travel times between locations, the travel times are 
dependent on the time of the day. For example, to account for the 
increase in travel time during rush hours. 

Dynamic  In dynamic VRPs the information is revealed continuously and partially 
after the schedule has already been constructed. 

 

3.1.4 - Inventory Routing Problem 
The IRP is an important and one of the most challenging extensions of the VRP (Bertazzi, Savelsbergh, 

& Speranza, 2008). Its pioneering paper was written by Bell et al. (1983) who focus on the efficient 

distribution of industrial gases to customers. This is an early example of a common practical situation 

in which the IRP arises, vendor managed inventory (VMI) (Coelho, Cordeau, & Laporte, 2014). VMI is 

a modern supply chain strategy in which the supplier, or vendor, becomes responsible for the 

inventory management of its customers (Sari, 2007). This means that the supplier is able to schedule 

deliveries to its customers itself, instead of being directed by the customer’s order. This allows the 

supplier to potentially benefit from planning its deliveries in such a way that adjacent customers can 

be serviced together on the same day, saving travel costs. Accordingly, the objective of the IRP is to 

minimize the delivery costs, while ensuring no customer experiences stock-outs (Bard et al., 1998).  
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The IRP combines two theoretical fields: inventory management and routing. During the IRP, inventory 

management decisions are taken such as: when should we serve each customer and how much should 

we deliver each customer, simultaneous with routing decisions such as: how should the chosen 

customers be combined in vehicle routes (Coelho, Cordeau, & Laporte, 2014). This connotes that the 

decisions should be taken in two dimensions: the time and space dimensions. This creates an extra 

level of complexity in comparison to traditional routing problems, where the decision maker is only 

concerned with the space dimension.   

The integration of these decisions is important, as the results of one field influence the possibilities in 

the other. For example, timing decisions such as the inventory allocation dictates which customers are 

served on the same day, restricting the routing decision which is related to the space dimension of the 

IRP. The objective of the IRP is to minimize the delivery costs while ensuring no customer experiences 

stock-outs (Bard et al., 1998). A more general formulation of the IRP is given by Campbell et al. (1998): 

“The IRP is concerned with the repeated distribution of a single product from a single facility to a set 

of 𝑁 customers over a given planning horizon of length 𝑇, possibly infinity. […] The objective is to 

minimize the average distribution costs during the planning period without causing stockouts at any 

of the customers”. 

In addition to the earlier mentioned fields of inventory management and routing, Baita et al. (1998) 

introduce another aspect of the IRP: dynamicity. This refers to the dynamic framework in which the 

inventory and routing decisions are taken; decisions are taken at different times, where earlier 

decisions significantly impact later decisions (Baita et al., 1998). This is repeated by Moin and Salhi 

(2007), who describe the IRP as a medium-term problem, in contrast to the short-term character of 

the VRP. For example, the decision to postpone serving a customer may seem beneficial in the short 

term, but this customer cannot be postponed indefinitely. One of the most important challenges 

posed by the IRP is finding the optimal timing of deliveries considering both the time and space 

dimensions.  

From this, the similarity between the IRP and the waste collection planning of Amsterdam is clear. In 

Amsterdam, the municipality is responsible for determining the emptying time of each container, 

which are the customers in this analogy with the IRP. Moreover, the municipality objective is to 

minimize collection costs, while ensuring a high service level, identical to the objectives of a general 

IRP. Because containers are visited not to distribute something, as in the general IRP, but to collect 

something, the problem is known as the reverse IRP (Mes, Schutten, & Rivera, 2014). 

The IRP is an 𝑁𝑃-hard problem because it can be reduced to the classical VRP (Coelho, Cordeau, & 

Laporte, 2014). This means that there is no known algorithm that can solve the IRP in polynomial time, 

but only in nondeterministic polynomial time (Papadimitriou, 2003). This makes solving the problem 

to optimality computationally infeasible as the problem size increases (Woeginger, 2003).  

As mentioned earlier, Section 3.3 elaborates further on the IRP and its variants, but first, we introduce 

several general solution approaches for routing problems in the following section. 
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3.2 - Introduction to solution techniques 
Finding solutions for these types of routing problems has been the focus of an abundance of literature. 

This section aims to give a short overview of the possible techniques that are used. We use the 

classification of Coelho, Cordeau, and Laporte (2014) who classify solution techniques for the IRP into 

three categories: exact methods, heuristics, and metaheuristics.  

3.2.1 - Exact methods 
The aim of exact methods or algorithms is to solve the problem to proven optimality. However, as the 

IRP is 𝑁𝑃-hard this becomes infeasible even for fairly smaller instances. Nevertheless, exact 

techniques are occasionally used to solve at least parts of the IRP. Two techniques that are used more 

frequently are described by Woeginger (2003): dynamic programming and branch-and-bound 

algorithms.  

Dynamic programming involves dividing large complex problems into smaller subproblems that are 

more easily solvable. By using the solutions to these subproblems, dynamic programming is able to 

solve the larger, complete problem (Woeginger, 2003). 

A more commonly used exact approach in the IRP literature are branch-and-bound or branch-and-cut 

algorithms. Both approaches are based on search trees, where the solution space is partitioned into 

smaller subsets for which all feasible possibilities, represented by ‘branches’, are evaluated 

(Woeginger, 2003). The branches for which it can be proven that they cannot result in an optimal 

solution, even before the complete solution space is filled, can be ‘pruned’. This branch is then 

discarded and not explored further, reducing the computation time.  

3.2.2 - Heuristics  
Because solving a problem to optimality using exact methods is not always feasible, as is the case with 

the IRP, a lot of research focuses on approaching the optimum using approximation heuristics that 

result in acceptable solutions with less computation time (Nilsson, 2003). Blum and Roli (2003) 

distinguish two basic categories of heuristics: constructive methods and local search methods.  

Constructive methods are designed to create a feasible solution from scratch. They are typically fast, 

but also provide relatively poor solutions (Blum & Roli, 2003). Examples of construction heuristics used 

for routing problems are the: Nearest Neighbor, Greedy, and Christofides heuristics (Nilsson, 2003). 

Local search methods start with a feasible solution and attempt to iteratively improve that solution 

(Blum & Roli, 2003). These methods are called local search because the improvements are sought in 

‘neighboring’ solutions in the solution space. An example of such a heuristic for routing problems is 

the k-opt algorithm (Nilsson, 2003). 

3.2.3 - Metaheuristics 
Recently, an increasing amount of research is done into metaheuristics (Coelho, Cordeau, & Laporte, 

2014). Metaheuristics are high-level heuristics that ‘guide’ the search process to efficiently search the 

solution space for a near-optimal solution (Blum & Roli, 2003). An advantage of metaheuristics is that 

they do not get stuck in local optima, as can be the case with generic heuristics. Examples of these 

kinds of metaheuristics are: Greedy Randomized Adaptive Search Procedure (GRASP), Simulated 

Annealing, Tabu search, and Ant Colony Optimization (Blum & Roli, 2003). 
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3.3 - Inventory Routing Problems 
To systematically review the current literature on the IRP, a classification matrix is drafted. Using a 

classification matrix ensures that the literature review is performed in a concept-centric manner, i.e., 

structured around concepts instead of individual authors (Webster & Watson, 2002).  

Several classification schemes from existing literature reviews covering the IRP are studied to identify 

relevant concepts that can be used to characterize IRP papers. Moin and Salhi (2007) categorize papers 

according to the modeled time horizon: single period, multiperiod, and infinite models. Stochastic 

models are discussed separately as a relatively newer area of research. However, most reviews classify 

IRP papers based on their practical characteristics. Examples are the reviews of Baita et al. (1998), 

Andersson et al. (2010), Bertazzi and Speranza (2012), and Coelho, Cordeau, and Laporte (2014). A 

complete overview of their classification schemes can be found in Appendix 4. Based on the 

classification elements used in these papers in combination with relevant aspects relevant from the 

context of Amsterdam we formulate the following classification structure, see Table 6. 

Table 6:  Classification structure based on Baita et al. (1998), Andersson et al. (2010), Bertazzi and Speranza (2012), and 
Coelho, Cordeau, and Laporte (2014) 

Classification 
element 

Attribute Alternatives 

Structure Topology One-to-many Many-to-many Others 
 Number of items Single Multiple  
Time horizon - One period Multiperiod Infinite 
Demand - Deterministic Stochastic  
Fleet Composition Homogeneous Heterogeneous  
 Size One Multiple Infinite 

Solution approach - Various   

 

The first classification element, the problem structure, has two aspects: topology and number of 

items. The topology refers to the relationship between the number of depots and customers. We 

distinguish one-to-one, one-to-many, and many-to-many relationships. The second aspect of the 

problem structure is the number of items, e.g., different products or waste fractions, considered in 

the problem. Problems consider either one single product or multiple products. The next element is 

the time horizon that is considered in the problem. We categorize three different time horizons: one 

period, multiperiod, or infinite horizon models. Papers can also be classified according to the displayed 

demand characteristics, multiple characteristics are suggested, such as seasonality, et cetera. 

However, we choose to only consider the uncertainty of demand: deterministic or stochastic. Next, 

we differentiate papers according to the characteristics of the used fleet of vehicles. Vehicle fleets can 

be composed of one vehicle, multiple but limited, or an infinite number of vehicles. In the case of 

multiple vehicles, the fleet can be homogeneous or heterogeneous. In a homogeneous fleet, all 

vehicles are identical, while there are differences between vehicles in a heterogeneous fleet. The last 

classification element is the solution approach. This describes the approach that is used to solve the 

IRP. The last column of the concept matrix is reserved for further comments on aspects that do not 

immediately fit in the structure of the concept matrix, but are of note. The complete concept matrix 

is shown in Table 7. 
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Table 7: Classification matrix of the Inventory Routing Problem  

Paper1 
Problem structure Time 

horizon 
Demand 

Fleet 
Solution approach2 Additional notes 

Topology 
No. of 
items 

Composition Size 

[1] 
One-to-
many 

Single 
Single 
period 

Stochastic 
Homo-

geneous 
Multiple Decomposition and MIP 

Treat IRP as variant of 
VRP 

[2] 
One-to-
many 

Single 
Multi-
period 

Deterministic 
Homo-

geneous 
Multiple Various 

Comparison of 
computational 

algorithms 

[3] 
One-to-
many 

Single 
Multi-
period 

Stochastic 
Homo-

geneous 
Multiple 

Decomposition: (i) 
clustering, (ii) routing 

Rolling horizon, satellite 
facilities 

[4] 
One-to-

many 
Multiple 

Multi-
period 

Stochastic - One 
Bi-level iteration 

heuristic with IP and 
TSP 

Proof of lower bound 
calculations 

[5] 
One-to-
many 

Single 
Multi-
period 

Stochastic 
Homo-

geneous 
Multiple 

Dynamic programming 
approximation methods 

IRP as Markov decision 
process, direct 

deliveries 

[6] 
One-to-
many 

Single 
Multi-
period 

Deterministic 
Homo-

geneous 
Multiple 

Decomposition to (i) IP 
for high level plan and 

(ii) heuristics for 
detailed plan 

Rolling horizon, 
decomposition in the  

time dimension 

[7] 
One-to-
many 

Single 
Multi-
period 

Deterministic 
Homo-

geneous 
Multiple 

Decomposition to (i) 
Inventory Allocation, (ii) 

TSP, and (iii) VRP 

Variable lead times due 
to traffic congestion 

[8] ?-to-many Single 
Multi-
period 

Deterministic 
Homo-

geneous 
Infinite 

Hybrid heuristic 
combining Tabu search 

and SA 

Solution method tested 
using simulation, adds 

variable depot locations 

[9] 
One-to-
many 

Single 
Multi-
period 

Deterministic - One 
MILP relaxation, 
branch-and-cut 

algorithm 

First exact algorithm, 
based on valid 

inequalities 

[10] 
Many-to-

many 
Single 

Multi-
period 

Deterministic 
Homo-

geneous 
Multiple 

Integer Programming  
and local search 

heuristic 

Specific attention for 
problem size reduction 

[11] 
One-to-
many 

Single 
Multi-
period 

Deterministic - One 
ALNS algorithm and 

network flow algorithm 
IRP with transshipment 

[12] 
Many-to-

many 
Multiple 

Multi-
period 

Deterministic 
Homo-

geneous 
Multiple MILP model 

Tested on both 4 
randomly generated as 

1 real-life case 

[13] 
One-to-
many 

Multiple 
Multi-
period 

Deterministic 
Homo-

geneous 
Multiple 

Exact solution with 
branch-and-cut 

algorithm 

Feasible up to medium 
size instances of several 

problem classes 

[14] 
One-to-
many 

Single 
Infinite  
(cyclic) 

Deterministic 
Homo-

geneous 
Infinite ALNS algorithm Periodic IRP 

[15] 
One-to-
many 

Multiple 
Multi-
period 

Deterministic 
Homo-

geneous 
Multiple 

Three phase heuristic: 
(i) replenishment plan, 

(ii) sequencing, (iii) 
planning and routing 

with MILP 

Includes Lagrangian-
based heuristic in first 

phase  
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Table 7: Concept matrix of the Inventory Routing Problem (continued) 

Paper1 
Problem structure Time 

horizon 
Demand 

Fleet 
Solution approach2 Additional notes 

Topology 
No. of 
items 

Composition Size 

[16] 
One-to-
many 

Multiple 
Multi-
period 

Deterministic 
Homo-

geneous 
Infinite 

Hybrid GA based on 
decomposition to (i) 

allocation and (ii) 
routing 

Accounting for carbon 
emission regulations 

[17] 
One-to-
many 

Single 
Infinite  
(cyclic) 

Deterministic 
Homo-

geneous 
Multiple 

Decomposition to (i) 
routing and (ii) 

scheduling 

Proposes Vehicle 
Decrease Heuristic  

[18] 
One-to-
many 

Single 
Multi-
period 

Deterministic 
Hetero-
geneous 

Multiple 
Branch-and-cut 

algorithm 

Introduces green-IRP. 
Analyses impact of 

heterogeneous vehicles 

[19] 
One-to-
many 

Multiple 
Multi-
period 

Deterministic 
Homo-

geneous 
Multiple Hybrid RVND 

Case study with 
planned transshipment 

This 
thesis 

One-to-
many 

Single 
Multi-
period 

Stochastic 
Homo-

geneous 
Infinite 

Decomposition to (i) 
selection, (ii) day 
assignment, (iii) 

routing, see Chapter 4  

Satellite facilities, 
integrated decision on 

time and space 
dimension 

 

1  With: [1] Federgruen & Zipkin (1984) , [2] Dror, Ball, & Golden (1985), [3] Bard, Huang, Jaillet, & Dror (1998), [4] Qu, 
Bookbinder, & Iyogun (1999), [5] Kleywegt, Nori, & Savelsberg (2002), [6] Campbell & Savelsbergh (2004), [7] Chiou (2005), 
[8] Liu & Lin (2005), [9] Archetti, Bertazzi, Laporte, & Speranza (2007), [10] Savelsbergh & Song (2008), [11] Coelho, Cordeau, 
& Laporte (2012), [12] Ramkumar, Subramanian, Narendran, & Ganesh (2012), [13] Coelho & Laporte (2013), [14] Aksen, 
Kaya, Salman, & Tüncel (2014), [15] Cordeau, Laganà, Musmanno, & Vocaturo (2015), [16] Cheng, Qi, Wang, & Zhang (2016), 
[17] Chitsaz, Divsalar, & Vansteenwegen (2016), [18] Cheng, Yang, Qi, & Rousseau (2017), and [19] Peres, Repolho, Martinelli, 
& Monteiro (2017).  

2 MIP = Mixed Integer Programming, IP = Inventory Problem, SA = Simulated Annealing, MILP = Mixed Integer Linear 

Programming, ALNS = Adaptive Large Neighborhood Search, RVND = Randomized Variable Neighborhood Descent. 

3.3.1 - Problem structure 
The majority of reviewed IRP literature considers networks with a one-to-many topology supplying a 

single product. A one-to-many topology occurs in the case where a single, often central, facility or 

depot services a set of customers (Andersson et al., 2010). Savelsbergh and Song (2008) note that, 

even when multiple depots are considered, customers are almost always assigned to a single depot, 

decomposing the problem into multiple one-to-many problems. It is argued that, because of real-life 

complexities, such as insufficient production capacity at the supplier, this approach is not always 

feasible to solve real-life problems. To overcome the limitations presented by the regular one-to-many 

IRP, Savelsbergh and Song (2008) propose the IRP with continuous moves, IRP-CM, that allows for 

multi-day routes. A different type of topology is presented by the Combined Location Routing and 

Inventory Problem (CLRIP). In this problem class, the location of the depots are not given, but present 

additional decision variables. Liu & Lin (2005) propose a decomposition heuristic for the CLRIP that 

first solves the depot location-allocation problem and subsequently solves the IRP.  

An extension to the traditional topology, with depots and customers, is to add locations with other 

functionalities such as satellite facilities or by allowing transshipments. Bard et al. (1998) consider the 

IRP with satellite facilities (IRPSF). Satellite facilities function as additional depots, allowing vehicles to 

replenish their inventory during a route. Strategically located satellite facilities prevent necessary trips 

back to the central depot to restock, in turn effectively increasing vehicle capacity (Bard et al., 1988). 

Bard et al. (1998) propose a decomposition approach to solve the IRPSF that starts by selecting and 
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assigning customers to days and then solving the resulting VRP with satellite facilities (VRPSF) for all 

days. Several heuristics for the VRPSF are considered: a revised Clark & Wright (C&W) algorithm, a 

revised sweep algorithm, and a GRASP heuristic. The effectiveness of these solutions is tested on 

randomly generated problem instances, showing the C&W algorithm outperforming the other 

algorithms slightly (Bard et al., 1998). Coelho, Cordeau, and Laporte (2012) introduce the IRP with 

transshipment (IRPT), where products can be transported either from supplier to customer or from 

customer to customer. An ALNS heuristic, in combination with a network flow algorithm, is proposed 

to solve the IRPT (Coelho, Cordeau, & Laporte, 2012).  

While most literature considers the distribution of a single product, Coelho and Laporte (2012) and 

Cordeau et al. (2015) extend this to a multi-product, multi-vehicle IRP (MMIRP). Although both papers 

attempt to solve the same problem, widely different solution approaches are used. Coelho and 

Laporte (2013) devised a branch-and-cut algorithm to give the exact solution. Whereas Cordeau et al. 

(2015) take a three-step decomposition approach: (1) constructing delivery plans, (2) determining 

delivery sequences, and (3) a re-optimization phase that used a MILP model to improve the solution. 

Ramkumar et al. (2012) combine a many-to-many topology with multiple different products and 

propose a MILP for the problem. Their solution is tested on four randomly generated datasets and one 

real-life case study which resulted in a cost reduction of more than 7% to the total current costs. 

3.3.2 - Time horizon 
The modeled time horizon dictates over which period of time the problem is optimized. Single period 

models solely focus on minimizing the costs over one period, while multi-period models consider the 

costs over a longer horizon (Moin & Salhi, 2007). While single period models are less complex than 

their multi-period counterparts, they often offer worse solutions. This is caused by the short-term 

approaches’ tendency to postpone as many deliveries as possible, which is beneficial in the short term, 

but has negative effects on the long-term planning (Campbell et al., 1998) (Moin & Salhi, 2007). 

Because of this, contemporary literature has a clear inclination towards multi-period models. 

However, especially earlier contributions towards IRP literature still consider the single-period IRP, 

such as Federgruen and Zipkin (1984), one of the first papers to combine routing and inventory 

decisions. Federgruen and Zipkin (1984) attempt to minimize the combined transportation, holding, 

and shortage cost for one single period. Because just one period is considered, this problem can be 

seen as an extension of the VRP, which causes Federgruen and Zipkin (1984) to utilize many techniques 

also used in the VRP. The results of the combined approach were however much better than those 

acquired using regular VRP techniques: 6-7% cost reduction and 20% reduction of vehicles required 

(Federgruen & Zipkin, 1984). 

To prevent the model from postponing as many deliveries as possible, the long-term effects of short-

term decisions should be taken into account. One of the first approaches to do this was proposed by 

Dror, Ball, and Golden (1987), who introduced penalties and incentives to single-period models. Their 

approach models the multi-period IPR as consecutive single-period IRPs, in which additional cost 

factors are added to represent the expected future costs of decisions. These future costs account for, 

among others, the risk of postponing deliveries to almost stocked-out customers. Another way to 

model a multi-period IRP is to use a rolling horizon framework. For instance, Campbell and Savelsbergh 

(2004) implement a two-phase decomposition approach. During the first phase, a basic schedule is 

made for a longer 𝑘-day horizon, after which the second phase makes a complete planning for a 

shorter 𝑗-day horizon based on the results of the first phase. In this approach, the long-term costs are 

accounted for in the first phase, the long-term deliver schedule, and the short-term costs are 

minimized during the second phase, which mainly involves routing. 
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Another way to account for longer-term costs is to by using an infinite planning horizon. Models with 

infinite planning horizon often aim to minimize the long-run or mean average of all costs (Moin & 

Salhi, 2007). Moin and Salhi (2007) also note that infinite horizon models are often based on fixed-

partition policies. Fixed partition policies separate all customers into different customer sets. These 

sets are then served independently from each other at their collective optimal replenishment rate 

(Anily & Bramel, 2004). One of the problems with fixed-partitioning is that it does not easily allow for 

coordination between clusters where this may be beneficial. An example of fixed-partitioning is given 

by Chitsaz, Divsalar, and Vansteenwegen (2016), who assign customers to trips and then determine 

the optimal cycle time for each trip. This presents another variant of the IRP, the Cyclic Inventory 

Routing Problem (CIRP). Each partition is served with a constant replenishment interval, making the 

time horizon infinitely long. A slightly different approach is introduced by Aksen et al. (2014), who 

solve the IRP as a Periodic Inventory Routing Problem (PIRP), in which a predetermined planning 

repeats itself each time period, for example, weekly. 

3.3.3 - Demand characteristics 
An important modeling factor of the IRP are the demand characteristics of the customers. Because of 

the complexity inherent to the IRP, most papers only consider a deterministic demand pattern, where 

all demand is known beforehand. However, Moin & Salhi (2007) remark that, in reality, customer 

demand oftentimes has a stochastic nature. To capture this stochasticity, the stochastic IRP models 

customer demand using a predetermined probability distribution. 

Kleywegt, Nori, and Savelsbergh (2002) model the stochastic IRP as a Markov decision process. The 

current inventories at customers are defined in a state space. Transitions to other states are given by 

a Markov transition function which is governed by a known joint probability distribution of customer 

demands (Kleywegt, Nori, & Savelsbergh, 2002). As the number of states grows exponentially with the 

number of customers, Kleywegt, Nori, and Savelsbergh (2002) propose approximation methods to 

solve the Markov decision process. Qu, Bookbinder, and Iyogun (1999) choose to model customer 

demand in the form of a Brownian motion process. However, because they assume vehicle capacity 

to be infinite, this only affects the inventory management side of their problem decomposition.  

Research has also given attention to different distribution policies that can be used to replenish 

inventories. The most common are the order-up-to and the maximum level policies (Bertazzi & 

Speranza, 2012) (Coelho, Cordeau, & Laporte, 2012). A modified version of another alternative, the 

periodic review policy, is used by Qu, Bookbinder, and Iyogun (1999) to complement the cyclic nature 

of their IRP solution approach.  

3.3.4 - Vehicle fleet 
The available vehicle fleet dictates the number and characteristics of the vehicles that can be used to 

service customers in the IRP. We distinguish two important vehicle fleet characteristics: size and 

composition. Both characteristics affect the complexity of the IRP and the possible solution 

approaches. For example, Archetti et al. (2007) simplified the IRP to a single vehicle fleet, which 

enabled them to develop an exact branch-and-cut algorithm. However, they do note that in reality 

this simplification would often be infeasible. In cases where the number of vehicles is unrestricted the 

vehicle fleet is called infinite. Cheng et al. (2016) use an infinite fleet size to increase the flexibility to 

choose the required number of vehicles later. However, in most practical scenarios, a limited number 

of vehicles is often available. Therefore, most IRPs consider the case where multiple, but a limited 

amount of vehicles are available. 

An important distinction in multi-vehicle fleets is if they are homogeneous or heterogeneous. 

Homogeneous vehicle fleets consist of identical vehicle, while heterogeneous fleets have vehicles that 
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differ in, for example, capacity and functionalities. Almost all papers consider homogeneous vehicle 

fleets, but Cheng et al. (2017) consider a fleet composed of light-, medium-, and heavy-duty vehicles. 

Here, the heterogeneity stems from the different capacities of the vehicles. Using a branch-and-cut 

algorithm, Cheng et al. (2017) show that using such a heterogeneous fleet offer significant reductions 

in costs in comparison to homogeneous vehicle fleets of one of the three vehicle types. 

3.3.5 - Solution approaches 
Coelho, Cordeau, and Laporte (2014) identify two general solution approaches to the IRP, as also 

noted in Section 3.2: exact approach and (meta)heuristic approaches. However, Andersson et al. 

(2010) and Coelho, Cordeau, and Laporte (2014) both note that, because of the problem complexity, 

only small instances can be solved to optimality. Therefore, most solution approaches proposed in 

literature use heuristics, metaheuristics, or mathematical programming techniques which are ended 

before proven optimality (Andersson et al., 2010).  

The majority of exact methods proposed to solve the IRP are based on branch-and-cut approaches. 

Archetti et al. (2007) were the first to propose such an approach for the single-vehicle IRP. They 

proposed a mixed-integer programming model and derived a new set of valid inequalities 

strengthening the formulation of the linear relaxation. With this approach, Archetti et al. (2007) solve 

instances with up to 50 customers to optimality with a small time horizon of three periods. An 

extension on Archetti et al. (2007) is proposed by Coelho and Laporte (2013), who extend the branch-

and-cut algorithm to include the multi-product multi-vehicle IRP. While this increases the complexity 

of the problem, their proposed solution is able to solve larger problem instances to optimality than 

Archetti et al. (2007). However, this is at the expense of the required computation time which often 

exceeds 1 hour. An approach to limit the required computation time is to stipulate a maximum run 

time for the exact solution method. Although, even in papers using such methods, such as Cheng et 

al. (2017) and Ramkumar et al. (2012), the stipulated time limits are very high, respectively 1 and 8 

hours in these papers. Cheng et al. (2017) do not that their algorithm often finds satisfactory solutions 

within 5 minutes, but this is limited to problem instances of 20 customers.   

Due to the often large problem instances encountered in real-life, most proposed solution approaches 

are heuristics (Coelho, Cordeau, & Laporte, 2014). A high number of heuristic approaches are based 

on a certain decomposition approach which decomposes the problem into several smaller 

subproblems for which less complicated solution approaches can be applied. The decomposition 

method, however, varies from paper to paper. Moin and Salhi (2007) observe that most papers adopt 

an approach that decomposes the IRP into two separate problems: the inventory and travelling 

salesman problem. This approach can either be designed as (1) inventory-first, route-second, where 

the inventory management problem is solved first and the routes are based on the resulting customer 

clusters or (2) route-first, inventory-second, where routes are found first after which the IRP 

formulation is completed by, for example, using linear programming techniques (Moin & Salhi, 2007). 

Baita et al. (1998) identify a third recurring decomposition approach: decomposing over the time 

horizon. In this approach, a long-term IRP can, for example, be decomposed into multiple single period 

problems. More specific examples of decomposition approaches are the three step decomposition by 

Bard et al. (1998): customer selection, day assignment, and routing; Cordeau et al. (2015): constructing 

replenishment plans, sequencing, planning and routing; and the two phase algorithm of Chitsaz, 

Divsalar, and Vansteenwegen: routing and scheduling.   
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3.4 - Waste collection planning 
Because of the growing societal attention to sustainability and the realization that advances can be 

made in the efficiency of waste collection and management, it is a growing topic in literature (Beliën, 

de Boeck, & van Ackere, 2014). In this short literature review, we discuss the trend of current 

literature, several approaches to the problem of waste collection planning, and new technologies 

impacting the possibilities of waste collectors. 

Currently, a large portion of the literature focusses on the collection of residential, house-to-house 

collection that is best represented by arc routing problems (Beliën, de Boeck, & van Ackere, 2014). 

Moreover, the papers that do discuss the collection of larger containers, most approach the problem 

exclusively as a VRP, or as often called a Waste Collection Vehicle Routing Problem (WCVRP) (Beliën, 

de Boeck, & van Ackere, 2014) (Han & Ponce-Cueto, 2015). There are however also other approaches 

of which we discuss several below. 

The most common approach is to model the waste collection as a WCVRP. WCVRPs are concerned 

with finding the optimal route to collect waste from a set of containers. Collection vehicles leave the 

depot empty, collect waste from containers and unload their collected waste at a disposal facility the 

end of the route, or when necessary. At the end of the day, the collection vehicle returns to the depot 

(Benjamin & Beasley, 2010). This formulation implies that the set of containers that is to be collected 

is already known. To solve the WCVRP, a broad range of solution approaches is applied (Beliën, de 

Boeck, & van Ackere, 2014). Two examples are the use of Solomon’s insertion algorithm by Kim, Kim, 

and Sahoo (2006) and the application of different metaheuristics, such as Tabu search and variable 

neighborhood search by Benjamin and Beasley (2010), both of which are also commonly used in VRP 

literature.  

Two less common approaches are to model the waste collection process as a Team Orienteering 

Problem (TOP) or an IRP. Both these variants, unlike the WCVRP, include the decision of which 

containers should be emptied, albeit in widely different ways. In the TOP, each customer has an 

associated profit and routes are constructed to maximize the total profit, while complying with 

restrictions such as route length and duration (Ferreira et al., 2014). The profit associated with waste 

containers can then, for example, be a representation of its priority. Ferreira et al. (2014) developed 

a genetic algorithm to solve the TOP which was competitive on most benchmark instances. The IRP is 

already extensively discussed earlier in this chapter, as it is also the approach taken in this thesis. Mes 

et al. (2014) model the waste collection problem as a reverse-IRP and use a combination of optimal 

learning and simulation to tune their heuristic, which selects containers based on a must- and may-go 

classification.  

The increased attention to the improvement of waste collection and management is not limited to 

literature discussing routing problems. It is also discussed as part of another upcoming trend: smart 

cities (Medvedev et al., 2015). Medvedev et al. (2015) discuss the potential of using new 

advancements such as the Internet of Things to enable dynamic waste collection, supporting both the 

decision when containers should be emptied and what routes truck should follow.  

3.5 - Modeling approaches 
Before implementing a new planning methodology, the expected effects of the new methodology on 

the planning performance should be evaluated. This can be done by monitoring the system, the waste 

collection of Amsterdam, under different circumstances and comparing the differences. Law (2015) 

identifies three modeling approaches to study systems: physical models, analytical models, and 

simulation models.  
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Testing with physical models involves altering the real, physical system, or a scale model of the 

physical system, and evaluating the effects of the interventions directly (Law, 2015). A benefit of this 

modeling approach is that, because the real system is altered, the model’s validity is certain. However, 

altering the physical system is often infeasible as this is time-consuming, expensive, or dangerous. 

Analytical and simulation models are both examples of mathematical models. With mathematical 

models, it is not required to modify the actual system risking productivity loss or dangerous situations. 

Instead, a mathematical model represents the system in terms of quantitative and logical relationships 

between the system’s entities (Law, 2015). To test the effects of changes to the system, these 

relationships can then be altered to represent the interventions and the performance of the system 

before and after can be compared. Analytical models are better suitable to study more elementary 

systems, while simulation models are better equipped to deal with larger, complex systems (Law, 

2015). Because of the complexity of the waste collection environment and the added stochasticity of 

unpredictable waste deposit patterns, we therefore choose to model the waste collection system 

using a simulation modeling approach. Simulation is a common method to model the complexities of 

waste collection systems and is often used in literature (Mes, Schutten, & Rivera, 2014) (Johansson, 

2006) (Das & Bhattacharyya, 2015). 

3.6 - Conclusion 
This chapter gives a broad overview of the literature related to the waste collection problem faced by 

Amsterdam. The aim of this chapter is to answer research question 2: What relevant routing problems 

and corresponding solution approaches are described in literature?  To do this, literature is discussed 

to introduce the relevant routing problems and solution techniques. Moreover, an extended review is 

done on the literature directly related to the IRP, and approaches taken to specifically improve waste 

collection planning are discussed. This chapter is concluded by discussing the applicability of the 

literature to the problem of Amsterdam and noting the contribution of this thesis to the existing 

literature.   

3.6.1 - Applicability to research 
During the literature review, several different types of routing problems are identified and discussed. 

It is recognized that node routing, and more specifically the IRP, best resemble the waste collection 

planning problem faced by Amsterdam. This conclusion is drawn based on the geographical 

characteristics of containers, which indicate a node routing problem, and the identical decisions and 

objectives that are associated with both the IRP and the waste collection planning of Amsterdam. Mes 

et al. (2014) differentiate the application of IRP to waste collection planning from the general IRP. 

They argue that, in waste collection, as waste collected instead of distributed, we are facing the 

reverse IRP. However, they also note that solutions applied to the IRP are also applicable to the reverse 

IRP (Mes et al., 2014). Therefore, this thesis can still learn from approaches applied to the general IRP.  

Because of the wide range of applications and simplifications of real-life problems, there exists a great 

number of variants to the general IRP, as discussed in Section 3.3. The most important differentiation 

between the majority of literature and the problem faced by Amsterdam is the topology of the waste 

collection system. Where most IRPs are limited to a one-to-many topology, where one depot is used 

to serve multiple customers, the topology of Amsterdam is more complex. This is caused by the 

inclusion of four different locations types, all with different functions: containers, wharfs, satellite 

facilities, and waste processing facilities. However, even though the problems discussed are not 

identical, lessons can still be learned from approaches to similar problems. For example, about the 

applied decomposition approaches and heuristics.   
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The applicability of the literature discussing improvement in the waste collection planning is limited. 

Most papers apply the WCVRP, which neglects an important decision that has to be taken during the 

waste collection planning: the timing of emptying a container (Beliën, de Boeck, & van Ackere, 2014). 

Moreover, for our purposes, modeling the waste collection planning as a Team Orienteering Problem 

(TOP), as proposed by Ferreira et al. (2014), also seems unsuitable. This is the case because the 

objective of the TOP is to maximize profit every single day, which would imply that vehicles should 

always be used to maximal capacity. However, this would likely result in emptying containers more 

frequently than necessary. 

Next to research on literature directly related to waste collection planning, we also researched the 

different modeling approaches that are used to evaluate and compare different planning 

methodologies. Three options are identified: physical, analytical, and simulation models (Law, 2015), 

of which the latter seems best suited for the context of this thesis.  

3.6.2 - Contribution to existing literature 
The contribution of this thesis to the existing literature is twofold: (1) the adjusted situation and 

specific conditions in which the IRP is applied and (2) the novel approach to solve the IRP.  

The application of the IRP to the planning of waste collection is, as discussed earlier, limited. Most 

papers skip important decision steps in the planning of waste collection and others use different 

objectives. On the other side, literature discussing IRP is plentiful but lacks several critical 

characteristics that apply in Amsterdam, such as the complex topology.  

Moreover, the majority of IRP literature utilizes some kind of decomposition approach. While there is 

nothing inherently wrong with that, the decomposition typically disconnects the time and space 

dimensions. This shortcoming prevents the decision maker to fully benefit from the characteristics of 

the IRP, which is created by the interconnectedness of the timing and routing decision.  

The contribution of this thesis is to propose a novel solution approach that simultaneously considers 

the time and space dimension. Moreover, the solution approach is applied to a new situation, which 

is typically modeled using different theoretical problems, such as the WCVRP. The novel solution 

approach is elaborated in the following chapter, where it is also distinguished from other similar 

approaches.  
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Chapter 4 - Solution approach 
This aim of this chapter is to give an outline of the proposed solution approach. However, firstly, a 

short recapitulation of the problem is given to show how the IRP of Amsterdam is related to other 

IRPs and introduce the relevant notations (Section 4.1). After that, several terms that are introduced 

in the proposed solution approach are explained beforehand (Section 4.2). Subsequently, the main 

steps of the solution approach are described (Section 4.3). Finally, the chapter is ended with a 

summarizing conclusion about the discussed solution approach (Section 4.4). 

4.1 - Problem description 
The objective of the waste collection planning is to empty all waste containers in time (i.e., before 

they overflow), with as little resources (e.g., vehicles, fuel, personnel) as possible. To do this, two 

decisions should be made: (1) when to empty each container and (2) how are the chosen containers 

scheduled in vehicle routes. In contrast with the traditional IRP that delivers goods to replenish 

customers, waste collection involves the collection of waste from containers. This variation of the IRP 

is called the reverse IRP.  

In this problem, we have a set of containers 𝐶 and a set of locations 𝐿. 𝐿 is partitioned into four subsets 

representing a list of container locations 𝐿𝑐𝑜𝑛𝑡 = {𝑙1, … , 𝑙𝑛} and three sets for additional locations 

𝐿𝑤ℎ, 𝐿𝑤𝑝, and 𝐿𝑠𝑓, respectively for the wharf, waste processor, and satellite facility locations. 

Naturally, every container 𝑖 ∊ C corresponds with one container location in 𝐿𝑐𝑜𝑛𝑡. The cost of travelling 

between two locations, 𝑖 and 𝑗, are given for each pair of locations of 𝐿 and is denoted as 𝑐𝑖,𝑗. These 

costs are based on the Euclidean distances between two locations times a correction factor of 1,2 

prescribed for urban areas by Levinson and El-Geneidy (2009).  

Every day, the inhabitants of Amsterdam make deposits in the containers. As we work with discrete 

time intervals of one day, we assume that all waste deposits of the day are done at the end of the day, 

after the waste containers are emptied. The deposited amount per day is stochastic and we decided 

to model it using a Gamma distribution, given by 𝑑𝑖  ~ Gamma (k𝑖, θ𝑖), where 𝑘𝑖 and θ𝑖  respectively 

denote shape and scale parameters. The Gamma-distribution is chosen to model the waste deposits 

as it is commonly used for this purpose (Mes, Schutten, & Rivera, 2014) and the available data is 

insufficient to reliably test the fit of other statistical distributions. The daily deposits result in the build-

up of waste in each container at time 𝑡. Because the deposited amount of waste is stochastic, we 

differentiate between the expect amount of waste 𝑢̂𝑖,𝑡 and the actual amount of waste 𝑢𝑖,𝑡 in 

container 𝑖 at time 𝑡. All containers have a finite capacity to store waste 𝑤𝑖, which denotes the number 

of kilograms of waste that fits in container 𝑖. If a container overflows (i.e., if 𝑢𝑖,𝑡 > 𝑤𝑖), the municipality 

is notified and is obligated to empty the container the next day. Waste continues to be deposited at 

the overflowed container at the same rate as before. The amount of waste that exceeds the 

container’s capacity is denoted by the deposit overflow at time 𝑡, 𝑜𝑖,𝑡.  

Containers should be scheduled to be emptied and routes are constructed determining in which order 

the containers are emptied. A route 𝑟 ∊ 𝑅 is a list of containers that are visited sequentially. Each 

route starts at a wharf and ends with the combination of either a waste processor or satellite facility 

and finally a wharf. All waste is collected using a homogeneous vehicle fleet 𝑉, which is a simplification 

upon the actual situation in Amsterdam. Each route should have a designated vehicle to execute the 

route. Moreover, each vehicle has a finite capacity denoted by 𝑣𝑖. Vehicles can dispose of their waste 

load by visiting a waste processor or satellite facility, where the latter has an additional shipping 

penalty. The vehicle is then free to continue its route and empty more additional containers or return 

to a wharf. The scheduling decisions, i.e., which routes should be executed by which vehicles, are 

taken for each day 𝑡 of a finite planning horizon of length 𝑇.   
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4.2 - Definitions in solution approach 
This section introduces several new, less self-evident definitions that are used in the proposed solution 

approach and offers a short explanation. 
 

Acceptable Overflow Probability 𝐴𝑂𝑃 A general threshold value that specifies the 
acceptable probability that containers overflow.  
 

Desired Emptying Day 𝐷𝐸𝐷𝑖 The expected day before which the 𝐷𝐸𝐿𝑖 is 
reached. 
 

Timing Penalty costs 𝑇𝑃𝑖,𝑡 The additional costs of emptying container 𝑖 either 
too early or too late on day 𝑡.  
 

Cluster Fitness Approximation 
 

𝐶𝐹𝐴𝑖,𝑗 The expected costs of adding container 𝑖 to route 
or cluster 𝑗. 
 

Penalty Emptying too Late 𝑃𝐸𝑡𝐿𝑖,𝑡 The penalty for emptying container 𝑖 too late, at 
time 𝑡. 
 

Penalty Emptying too Early 𝑃𝐸𝑡𝐸𝑖,𝑡 The penalty for emptying container 𝑖 too early, at 
time 𝑡. 
 

Overflow Probability 𝑂𝑃𝑖,𝑡 The probability that the capacity of container 𝑖 is 
exceeded at time 𝑡.  
 

Single Container Route Costs 𝑆𝐶𝑅𝐶𝑖 A penalty measure that calculates the costs of 
making a route solely consisting of emptying 
container 𝑖, dumping the waste at the closest dump 
and returning to the wharf. 
 

Expected Interval Length 𝐸𝐼𝐿𝑖 The expected interval length between two visits of 
the container 𝑖. 

 

4.3 - Proposed solution approach 
This section presents the proposed solution approach which consists of three phases, as shown in 

Figure 8: container selection, day assignment, and route construction. The three phases are executed 

in a rolling planning horizon framework. This means that all phases are executed each day, while also 

considering the following days of the planning horizon in the decision-making process. An example is 

given in Figure 9, where a planning is made for a planning horizon of three days, but only the first day 

of the planning is executed. The entire planning is reconsidered again on the following day. Utilizing a 

rolling planning horizon enables us to evaluate the long-term consequences of decisions beyond the 

short-term impact on the current day. In doing so, the proposed solution approach is able to make 

decisions based on both time and space dimensions simultaneously. As only the first day of the 

planning is actually executed, Phase III only constructs routes for that particular day to save 

computation time. 

The input for the proposed solution approach is twofold: (1) the container characteristics, which 

include the container locations, fill speeds, and expected fill levels, and (2) the experimental factors. 

These experimental factors are parameters that are used to tune the planning heuristic. There are six 

experimental parameters which are introduced throughout this section whenever they become 
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relevant: Travel Costs Approximation (𝐶𝐹𝐴) method, penalty scaling factors, new cluster costs (𝑛𝑐𝑐), 

Acceptable Overflow Probability (𝐴𝑂𝑃), installed sensors, and the length of the planning horizon. The 

output is a set of routes, which indicate which containers should be emptied and in what sequence 

they should be emptied. The three phases of the solution approach are elaborated in more detail in 

the remainder of this section. 

Phase I: Container selection 
The first phase of the proposed solution approach selects the containers that are considered in the 

subsequent planning phases. Because the solution approach is intended to solve large problem 

instances, it can be beneficial to consider which containers to consider and which to temporarily 

ignore to improve the computation speed. To be able to select containers, a criterion should be 

formulated to decide which containers are deemed relevant and should be selected and which 

containers should be disregarded.  

For this purpose, previous researchers use customer classifications, such as must-, may-, and no-go 

customers based on delivery urgency (Mes, Schutten, & Rivera, 2014) or a categorization of customers 

into critical, impending, or balancing customers (Campbell & Savelsbergh, 2004). Another approach is 

proposed by Bard et al. (1998), for each customer they determine their optimal delivery day. If this 

day is within a pre-determined planning horizon, the customer is selected. The optimal delivery day is 

found by calculating the optimal replenishment interval between two visits by minimizing the total 

expected delivery costs, including the penalty costs occurred on customer stockout. In a companion 

paper to Bard et al. (1998), Jaillet et al. (2002) argue that there must exist an optimal policy that 

schedules the next customer visit after a constant optimal replenishment interval. This argument is 

based on the assumption that the demand follows a known stationary stochastic process, which we 

Figure 9: Example of a rolling planning horizon framework (Wang & Kopfer, 2015) 

Figure 8: Decomposition of proposed solution approach 
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also assume. Therefore, we are dealing with a renewal stochastic process. Each time a container is 

emptied marks a renewal point, at which the renewal process restarts. 

Our proposed solution approach uses a concept similar to that of Bard et al. (1998). However, instead 

of an optimal delivery day, we introduce a new variable: the desired emptying day (𝐷𝐸𝐷𝑖). If the 𝐷𝐸𝐷𝑖 

is within the planning horizon, container 𝑖 is considered relevant and is selected to be considered in 

the subsequent phases. Containers that are not selected are disregarded during the planning cycle of 

this day, they are eligible for selection again the next day. 

The 𝐷𝐸𝐷𝑖 is also used in the second phase of the proposed solution approach and serves to guide the 

timing decisions which determines on which day a container is emptied. Therefore, the 𝐷𝐸𝐷𝑖 should 

be determined in such a way that containers are not emptied too late, nor too early. If waste deposits 

are deterministic, this task would be trivial: the day before the container overflows would be the 

𝐷𝐸𝐷𝑖. However, because deposits are stochastic, using expected deposit volumes is insufficient. 

Therefore, we propose a more refined approach that uses a threshold: the acceptable overflow 

probability (𝐴𝑂𝑃). The 𝐴𝑂𝑃 is the risk, that the decision maker considers acceptable, that a container 

overflows before it is emptied. The 𝐷𝐸𝐷𝑖 can then be determined by finding the day before the 

overflow probability (𝑂𝑃𝑖,𝑡) exceeds the 𝐴𝑂𝑃. The fill level of a container after 𝑥 days can be modeled 

using the probability density function of the Gamma distribution, as can be seen in an example of a 

random container in Figure 10. 

By using the 𝐴𝑂𝑃 to determine the 𝐷𝐸𝐷𝑖, instead of more straightforward measures such as the 

expected day at which a container is full, we account for the stochasticity of the demand. Moreover, 

it gives the possibility for a conscious decision concerning the trade-off between emptying too late or 

too early. A risk averse approach, adopted by choosing a low 𝐴𝑂𝑃, will result in fewer overflowed 

containers. However, it also leads to many cases of containers being emptied too early with low fill 

levels. Choosing a high 𝐴𝑂𝑃 has the opposite effects. 

Figure 10: Probability density functions of fill level after 1, 2, or 3 days for a random container 
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Both, the 𝐴𝑂𝑃 and the length of the planning horizon, are used as parameters during the numerical 

experiments to study their effects and find appropriate values for both. Algorithm 1 shows the 

implementation of the container selection algorithm of Phase I. The result of the algorithm is a set of 

all selected containers which are used as input for the next phase.  

Algorithm 1: Container selection algorithm 

Algorithm 1:   Container selection algorithm 

Input:               set of all containers (C),  acceptable overflow probability (AOP),  length of planning horizon (T)  
Output:            set of selected containers (SC) 
Parameters:   desired emptying day (DEDi) 
 

0. Initialize, SC = ∅ 

1. For each container i in set C  

2. |          Calculate DEDi based on AOP and demand ~ Gamma (ki, θi) 

3. |          If  DEDi ≤ T then 

4. |          |          add Ci to SC 

5. |          End if 

6. End for 

7. Return  SC 
  

 
 

Phase II: Day assignment 
During the second phase of the proposed solution approach, all containers selected in Phase I are 

assigned to days in the planning horizon, which we call the day assignment. Once all containers are 

assigned to days, the routes can be constructed within each day, which is done in Phase III. The goal 

of this phase is to decide which containers should be emptied at what time, i.e., taking the timing 

decision. As discussed in Section 3.1.4, the timing decision should consider both time and space 

dimensions simultaneously because of the interconnectedness between the two dimensions. To do 

this, containers are combined that are both adjacent and have similar 𝐷𝐸𝐷𝑖’s. By considering both the 

location and timing aspects simultaneously, the time and space dimensions are considered in the 

decision simultaneously. 

The decomposition scheme of Bard et al. (1998) also contains a step in which customers are assigned 

to days of the planning horizon. Their day assignment is primarily based on the optimal delivery day, 

as explained in the previous section. However, customers are not necessarily scheduled on their 

optimal day. One of the goals of Bard et al. (1998) is to balance customers over the days of the planning 

horizon, therefore it may be necessary to move customers to other days. This is possible, however, as 

it is suboptimal, incurs a penalty costs, which Jaillet et al. (2002) introduce as the incremental costs. 

Bard et al. (1998) use a generalized assignment problem that balances the workload over the days of 

the planning horizon while also minimizing the total incremental costs. However, the day assignment 

of Bard et al. (1998), primarily based on the incremental costs, does not sufficiently account for the 

interconnectedness of the time and space dimensions. The incremental costs as introduced by Jaillet 

et al. (2002) are calculated for each customer independently. This means that the distances between 

customers are not considered during the day assignment, while this has serious implications on the 

resulting routing possibilities. 

The proposed solution approach attempts to make the day assignment considering both the time and 

space dimensions of the IRP. In this way, the timing decision can consider spatial aspects of the IRP, 

such as the locations of containers. This then enables us to make the decision to shift containers from 

their 𝐷𝐸𝐷𝑖 to other days where other adjacent containers are scheduled to accommodate more 
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efficient routes. The goal of this phase is to combine containers that are adjacent and have similar 

𝐷𝐸𝐷𝑖’s into clusters. Clusters are collections of, preferably nearby, containers. Each day of the 

planning horizon can contain multiple clusters, but a cluster is assigned to one specific day. All 

containers in a cluster are emptied on the day to which the cluster is assigned. 

Containers should be assigned to clusters which are both close or on their 𝐷𝐸𝐷𝑖 and contain adjacent 

containers. To judge which clusters is appropriate for each container, we introduce two variables, each 

accounting for one dimension of the IRP: the cluster fitness approximation (space) and timing penalty 

costs (time). To assign containers to clusters, we adopt an approach similar to the cheapest insertion 

heuristic commonly used in VRPs. Instead of inserting customers into routes, as is its function in the 

VRP, containers are inserted into clusters. The cheapest insertion for a container is found by iterating 

over all clusters and calculating the insertion costs (𝑖𝑐𝑖,𝑗) of each insertion option, as is shown in 

Equation 1. The calculation methods for both the cluster fitness approximation (𝐶𝐹𝐴𝑖,𝑗) and the 

timing penalty (𝑇𝑃𝑖,𝑡) are elaborated later this section. 

𝑖𝑐𝑖,𝑗 =  𝐶𝐹𝐴𝑖,𝑗 +  𝑇𝑃𝑖,𝑡 (1) 

 

In addition to the possibility of adding a container to an existing cluster, it is also possible to create a 

new cluster. New clusters can be created when the overall cheapest insertion exceeds a certain 

threshold parameter called the new cluster costs (𝑛𝑐𝑐). The 𝑛𝑐𝑐 is an experimental parameters which 

is studied during the numerical experiments of Chapter 6. When a new cluster is created, the initiating 

container is first added as the sole container and the cluster is assigned to the 𝐷𝐸𝐷𝑖 of that initial 

container.  

At the start of each planning cycle, Algorithm 2 creates three clusters on each day of the planning 

horizon. This is done to ensure that the seed container, i.e., the first container considered for insertion, 

is not always the first container for which a cluster is created. Without the free clusters on each day, 

a seed bias caused by far most clusters to be created on the first day of the planning horizon causing 

an imbalance in the planning.  

The exact implementation of the day assignment algorithm is shown in Algorithm 2. Similar to a 

cheapest insertion heuristic, all possible heuristics are evaluated and the cheapest is performed, 

restarting the procedure. Before evaluating an insertion, the feasibility is checked. Insertions can be 

deemed infeasible if clusters exceed the permitted waste load, which is based on the waste storage 

capacity of collection vehicles. Moreover, Algorithm 2 contains one supplementary algorithm that can 

be found in Appendix 5.  Algorithm 2.1 is used to schedule containers that overflowed the day before. 

As the emptying of these containers is mandatory, it is beneficial to take their locations into account 

when scheduling the remaining containers. The overflowed containers are clustered together if they 

are close enough and create a  new cluster if not. Step 3 of the algorithm is used to create and initialize 

three free clusters, this is discussed in more detail together with the costs for adding new clusters 

later this section. 

Because a lot of individual insertions are considered during the execution of this algorithm, calculating 

the costs of each insertion should be fast. Therefore, we introduce several cost approximation 

methods that are used to estimate the potential impact of decisions. There are two cost measures in 

Algorithm 2 that should be approximated: the 𝐶𝐹𝐴 and the timing penalty costs. The cost 

approximation methods for these cost measures are discussed in the following sections. 
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Algorithm 2: Day assignment algorithm 

Algorithm 2:   Day assignment algorithm 

Input:               set of selected containers (SC) and set of overflowed containers (OC)   
Output:            set of clusters (CL) 
Parameters:   set of unassigned containers (UC),  insertion costs of container i to cluster j (ici,j),  costs of creating a  
                           new cluster (ncc),  cheapest possible insertion for container i (CIi),  overall cheapest 
                           insertion (OCI). 
 

0. Initialize, UC = SC,  CL = ∅ 

1. Cluster overflowed containers of the previous day using Algorithm 2.1 (Appendix 5) 

2. Create and initialize three free clusters on each day of the planning horizon 

3. While  UC ≠ ∅  do 

4. |          re-initialize, OCI = 999 

5. |          For  each container i in UC 

6. |          |          For  each cluster j in CL  

7. |          |          |         check cluster restrictions 

8. |          |          |         calculate ici,j using Equation 1 

9. |          |          |         save cheapest ici,j 

10. |          |          End for 

11. |          |          CIi = min{cheapest ici,j ; ncc} 

12. |          |          If  CIi < OCI then 

13. |          |          |          OCI = CIi 

14. |          |          End if 

15. |          End for 

16. |          perform insertion associated with OCI 

17. |          remove inserted container from UC 

18. End while 

19. Return  CL 
  

 

Timing penalty costs approximation 

The timing penalty costs represent the additional costs that are incurred because a container is not 

emptied on its 𝐷𝐸𝐷𝑖. The timing penalty costs are divided into three components, as is shown in 

Equation 2: the penalty for emptying too late (𝑃𝐸𝑡𝐿𝑖,𝑡), on time, and too early (𝑃𝐸𝑡𝐸𝑖,𝑡). Both 

penalties are preceded by a penalty scaling factor (𝑓𝑡𝑙 and 𝑓𝑡𝑒), these factors are used during the 

numerical experiments to counter possible biases and evaluate the trade-off between emptying 

earlier or later. 

𝑇𝑃𝑖,𝑡 = {

𝑓𝑡𝑙 ∗ 𝑃𝐸𝑡𝐿𝑖,𝑡

0
𝑓𝑡𝑒 ∗ 𝑃𝐸𝑡𝐸𝑖,𝑡

    
   , 𝑡 > 𝐷𝐸𝐷𝑖  

, 𝑡 = 𝐷𝐸𝐷𝑖

, 𝑡 < 𝐷𝐸𝐷𝑖

 (2) 

 

Emptying a container later than its 𝐷𝐸𝐷𝑖 implies that the risk of overflowing for that container, 𝑂𝑃𝑖,𝑡, 

now exceeds the 𝐴𝑂𝑃. If a container overflows before it is emptied, the municipality is notified and 

obligated to empty that container the next day. Because we want to prevent this from happening 

more often than is considered acceptable as indicated by the AOP, the 𝑃𝐸𝑡𝐿𝑖,𝑡, as shown in Equation 

3, is based on how much the 𝐴𝑂𝑃 is exceeded in combination with the costs of individually emptying 

that container. The costs of individually emptying a container are denoted by the single container 

routing costs (𝑆𝐶𝑅𝐶𝑖), which is the worst possible scenario that would only occur if no other 

containers are emptied that day.  
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𝑃𝐸𝑡𝐿𝑖,𝑡 = [𝑂𝑃𝑖,𝑡 − 𝐴𝑂𝑃] ∗ 𝑆𝐶𝑅𝐶𝑖 (3) 

 

The 𝑂𝑃𝑖,𝑡, see Equation 4, is calculated using the cumulative distribution function, which calculates 

the probability that, at time 𝑡, the total waste volume in container 𝑖 exceeds its capacity. The 𝑆𝐶𝑅𝐶𝑖, 

see Equation 5, are based on an individual route from the wharf to the container, to either the waste 

processor or satellite facility, and back to the wharf. 

𝑂𝑃𝑖,𝑡 = 𝑃𝑟𝑜𝑏(𝑢𝑖,𝑡 > 𝑤𝑖) (4) 

𝑆𝐶𝑅𝐶𝑖 = 𝑐𝑤ℎ,𝑖 + min (𝑐𝑖,𝑤𝑝 + 𝑐𝑤𝑝,𝑤ℎ ;  𝑐𝑖,𝑠𝑓 + 𝑐𝑠𝑓,𝑤ℎ) (5) 
 

Contrastingly, there are also costs associated with emptying a container too early. These costs are 

mainly because the earlier a container is emptied, the more frequently it is emptied per time period. 

This is because of the renewal stochastic process described earlier. If a container is emptied earlier 

than necessary, the renewal stochastic process is also renewed earlier. As the optimal replenishment 

interval remains constant, this means that the container is emptied more often than under the optimal 

visiting policy. The 𝑃𝐸𝑡𝐸𝑖,𝑡, see Equation 6, is therefore based on the fraction of additional visits that 

are required within the expected interval length (𝐸𝐼𝐿𝑖). Where the 𝐸𝐼𝐿𝑖 is the time between two 

consecutive 𝐷𝐸𝐷𝑖′𝑠. The number of extra visits is then multiplied with the cluster fitness 

approximation costs (𝐶𝐹𝐴𝑖,𝑗) of emptying that container. The 𝐶𝐹𝐴𝑖,𝑗 are the costs incurred by adding 

container 𝑖 to route or cluster 𝑗. These cluster fitness costs are based on the chosen method of travel 

cost approximation which are elaborated in the next section.  

𝑃𝐸𝑡𝐸𝑖,𝑡 = (
𝐷𝐸𝐷𝑖 − 𝑡

𝐸𝐼𝐿𝑖
) ∗ 𝐶𝐹𝐴𝑖,𝑗 (6) 

 

Travel costs approximations 

Because of the desired speed of the calculations for the insertion costs, it is not desirable to solve the 

entire VRP or VRPSF to evaluate the travel costs for every possible insertion. However, we still want 

to estimate how good a container fits into a cluster. For this purpose, we formulate four 𝐶𝐹𝐴 methods 

that use different methods to estimate the fitness of containers to be added a certain cluster. The four 

methods are called: Cluster Centroid, Cluster Proximity, Cheapest Insertion, and Daganzo, named after 

a VRP distance approximation heuristic by Robusté, Daganzo, and Souleyrette (1990).  The methods 

are elaborated in Table 8 and tested during the numerical experiments in Chapter 6. 

Table 8: Description of the different Cluster Fitness Approximation (CFA) methods 

𝐶𝐹𝐴 method Description 

Cluster Centroid (𝐶𝐶) 
Measures the Euclidean distance between the candidate container and the 
cluster centroid. 

Cluster Proximity (𝐶𝑃) 
Measures the Euclidean distance between the candidate container and the 
closest container already assigned to the cluster. This distance is then doubled. 

Cheapest Insertion (𝐶𝐼) 

Measures the marginal costs of inserting the candidate container in a route 
between the two closest containers already assigned to the cluster, temporarily 
called 𝐴 and 𝐵. The marginal costs are calculated by comparing the routing 
costs of the route [𝐴 ⇾ B] with those of route [𝐴 ⇾ candidate ⇾ B]. 
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Daganzo approximation 

Calculates the marginal costs of adding the candidate container in a similar way 
as in the 𝐶𝐼 method. However, in this method, the routing costs are 
approximated using the VRP approximation of Robusté, Daganzo, and 
Souleyrette (1990) as given in Equation 7. 

 

𝑉𝑅𝑃 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑎𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑖𝑜𝑛 = [0.9 +
𝑘𝑁

𝐶2 ] ∗ √𝐴𝑁 (7*) 

 
* where k = area shape constant, N = number of customers, C = vehicle capacity, and A = area size 

Phase III: Route construction 
The third phase of the proposed solution approach converts the day assignment made in the previous 

phase to feasible routes. The result of the day assignment is a set of containers that are assigned to 

clusters within a day. However, as the clusters are of widely varying sizes, they are not suitable to 

construct routes with. Therefore, we consider the input of this phase as a set of containers. During 

this phase, routes are only constructed for the first day of the planning horizon, this is also the only 

day of the planning that is actually executed, as the entire algorithm will run again the next day as 

dictated by our rolling horizon framework.  

The resulting problem is a VRPSF, which we solve in four steps: (1) preprocessing the container set to 

make clusters suitable for tour construction using an adapted 𝑘-means algorithm, (2) applying a 

nearest insertion heuristic within each cluster to find a feasible sequencing, (3) string tours together 

into feasible routes, and (4) improve the current solution using a 2-opt algorithm. These four steps 

are elaborated further in the following sections.  

Preprocessing using a k-means algorithm 

The first step in our approach is to partition all containers in the container set into clusters that can 

be emptied in one tour. We define a tour as a routing sequence which the collection vehicle starts 

while empty and ends at a disposal facility, where it is once again emptied. Between this empty 

starting point and the end at the disposal facility, the tour consists of a sequence of containers that 

should be emptied. In contrast with a route, with starts and ends at a wharf, a collection vehicle can 

perform multiple tours per day. Moreover, a route consists of one or multiple tours. A cluster suitable 

for tour construction should therefore comply with the capacity restrictions of the collection vehicle.  

Because we want to minimize the number of detours and processing times at disposal facilities, we 

want to minimize the number of tours and consequently clusters. This is done using a 𝑘-means 

algorithm (Geetha, Poonthalir, & Vanathi, 2009), which function is to partition a set of containers into 

𝑘 clusters based on the shortest path to the cluster centroid and a known cluster capacity. The 

implementation of the algorithm can be found in Appendix 5. Before the 𝑘-means algorithm can be 

started, the number of desired clusters (𝑘) is determined using Equation 8. The algorithm then 

chooses 𝑘 starting points and assigns all containers to their closest cluster. However, as tours and thus 

clusters have a maximum capacity, this is done in order of priority which is determined using Equation 

9. The container with the highest priority gets assigned first, then the second highest, and so forth. If 

a container cannot be assigned to its closest cluster, for example due to capacity restrictions, its 

priority is recalculated using its second closest cluster, after which all remaining containers are 

reconsidered. After all containers are assigned, the centroids of all 𝑘 clusters is recalculated and the 

container assignment procedure is repeated. This is done iteratively for ten iterations.  
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𝑘 =  ⌈
𝑡𝑜𝑡𝑎𝑙 𝑙𝑜𝑎𝑑 𝑜𝑓 𝑎𝑙𝑙 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟𝑠

(1 − 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 𝑏𝑢𝑓𝑓𝑒𝑟) ∗ 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦
⌉ (8) 

𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦𝑖 =  
𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑓𝑖𝑙𝑙 𝑙𝑒𝑣𝑒𝑙 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑡𝑜 𝑐𝑙𝑜𝑠𝑒𝑠𝑡 𝑐𝑙𝑢𝑠𝑡𝑒𝑟
   (9) 

 

Tour construction using a nearest insertion heuristic 

After the first step, a number of clusters is created which are to be converted into tours during this 

step. This is done using a straightforward nearest insertion heuristic. Tours are constructed by starting 

from the wharf and performing the nearest insertion, which is evaluated by calculating the difference 

between the travel distance before and after adding a container to the tour. All possible insertions are 

considered and the cheapest is performed in an iterative manner until all containers are included in 

the tour. When all containers are added, a disposal facility is chosen. This decision is based on the 

travel costs between the last container, the disposal facility, and the wharf, and a satellite facility fee 

if the satellite facility is used. More information on the fee associated with using the satellite facility 

can be found in Appendix 6. The cost of both options are considered and the cheapest disposal facility 

is chosen. This procedure is performed for all clusters created during the previous step, resulting in a 

set of tours.  

Creating routes from tours 

As the tours created in the previous step are seldom long enough to fill an entire workday and it is 

undesirable to visit the wharf each time a new tour is started, this step attempts to combine tours to 

create complete routes. 

As we want to execute the planning using as little collection vehicles as possible, we attempt to 

minimize the number of routes. This is done by starting with an empty route and attempting to fill it 

with the longest tour. After the longest tour is added, the second longest tour is added, and so forth. 

When a tour cannot be added to a route anymore a new route is created. In this way, the number of 

routes and thus required collection vehicles is minimized.  

When all tours are assigned to routes, the tours should still be sequenced within the route. The tours 

are stripped of their wharf entries and are added to routes using a nearest insertion heuristic 

considering only the beginning and endpoints of each tour. This result in routes similar to those shown 

in Figure 11.  

Figure 11: Collection route with multiple disposal facilities (Kim, 
Kim, & Sahoo, 2006) 
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Applying a 2-opt improvement algorithm 

As a last step, when feasible routes are already constructed, the routes are improved using a 2-opt 

algorithm. The 2-opt algorithm starts by removing two edges from the route and reconnects the 

resulting paths with two different edges (Nilsson, 2003), as shown in Figure 12. This is called a 2-opt 

move, the move is only performed if the resulting route is shorter, otherwise the original edges are 

restored. 2-opt moves are attempted for each combination of edges until no improvement is possible 

anymore. The precise implementation can be found in Appendix 5. 

4.4 - Conclusion  
This chapter starts by describing the problem, after which a novel solution approach is proposed. In 

doing so, answering research question 3: How can a novel planning methodology be designed for the 

waste collection in Amsterdam? 

This chapter starts by giving a description of Amsterdam’s waste collection problem, including several 

notations which support the development and elaboration of the solution approach. From this 

formulation, two decisions become apparent: which container should be emptied at what time and 

what route to use to visit the chosen containers. Moreover, the circumstances surrounding the waste 

collection system of Amsterdam are elaborated. As noted in Chapter 3, the contribution of this thesis 

is to propose a novel solution approach that simultaneously considers the time and space dimensions 

of the IRP. 

The proposed solution approach consists of three phases: container selection, day assignment, and 

route construction. In the first phase, containers are selected that are considered relevant during the 

planning horizon. These containers are used as input for the subsequent phases, the other containers 

are ignored to reduce the computation time. The second phase assigns all containers to days of the 

planning horizon. This is done considering the effects of both the time and space dimensions of the 

IRP. Once it is clear which containers are to be emptied on which day, the third phase uses routing 

heuristics to construct final routes. During each phase, several experimental factors are described that 

are used to calibrate the proposed solution approach to the characteristics of Amsterdam. The effects 

of these factors are studied in the following chapter.  

Figure 12: A 2-opt move 
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Chapter 5 - Simulation model 
This chapter starts by describing the developed simulation model that is used to evaluate the different 

planning methodologies, while also discussing some simplifications and assumptions (Section 5.1). 

After that, the simulation model is verified and validated using several techniques (Section 5.2). 

Subsequently, the design of experiments is explained (Section 5.3) and the applied 

replication/deletion approach is elaborated (Section 5.4). Lastly, this chapter is concluded by 

answering the research questions associated with this chapter (Section 5.5). 

5.1 - Description of the simulation model 
This section describes the simulation model that is used to evaluate different planning methodologies 

and the effects of the experimental parameters that are listed in Section 5.3. Firstly, the situation 

which is subject to the simulation study is described in more detail, including the demarcation of the 

scope relative to the situation described in Chapter 2.  After that, the general structure of the 

simulation model is given. 

The purpose of the simulation model is to give insight into the effects of the experimental factors and 

evaluate different planning methodologies. This is done by mimicking the waste collection system of 

Amsterdam, changing certain aspects and noting the differences in the planning performance. To 

reduce the problem size, which improves computation speed and makes the effects of different 

planning decisions easier to comprehend, the scope of the simulation model is narrowed in two ways. 

Firstly, by only considering one waste fraction: household waste. As our proposed solution approach 

assumes a homogeneous fleet, the collection of different waste fractions can be seen as separate 

individual planning problems. The household waste fraction is chosen as it is the largest waste fraction, 

incurring the most costs. Secondly, the scope is narrowed geographically by selecting one district of 

Amsterdam to model. For this purpose, “Amsterdam Zuidoost” is chosen which is located in the 

southeast of Amsterdam. This district is chosen because of its secluded location in relation to the rest 

of Amsterdam’s districts and the presence of both a satellite facility and waste processor. It should be 

noted that the waste processor located in Amsterdam Zuidoost is, in reality, not used to process 

household waste. However, this simplification is made to keep the decision between using the waste 

processor or a satellite facility relevant. Otherwise, the routing problem faced in Phase III of the 

proposed solution would be reduced to a VRP instead of a VRPSF, which is the actual problem facing 

the municipality of Amsterdam. A full list of simplifications can be found in Appendix 6. 

The waste collection system as modeled in the simulation model consists of 353 underground 

containers that cumulatively collect an average of 11.274 tons of waste per year. The containers are 

scattered over an area the size of 21.7 km2, which also contains one wharf, one satellite facility, and 

one waste processor. A visual representation, including an example of a route, of Amsterdam Zuidoost 

and the previously mentioned locations can be found in Figure 13. 
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 The simulation model is developed as a discrete-event simulation (DES). This means that time in the 

simulation advances by jumping to the next scheduled event (Law, 2015). In the time between two 

events, the state of the system does not change. The structure of the simulation model can be seen 

in Figure 14. One of the most important aspects of DES is the event controller, which dictates the order 

in which events happen and is the backbone of the simulation. The event controller governs the 

actions of the two actors in system: the inhabitants of Amsterdam and the waste collection 

department. There are two events triggered by the event controller which change the state of the 

system: 

• The depositing of waste into containers by inhabitants, 

• The emptying of containers by the waste department.  

The simulation model has two types of input: general characteristics of the waste collection system 

and aspects relating to the planning methodologies, such as the experimental factors. The general 

characteristics of the system include the locations of components of the logistical chain, waste 

disposal rates, and available vehicles. The experimental factors influence the decision making 

processes at the waste department, as elaborated in Chapter 4. The output of the simulation model 

includes the previously discussed KPIs, as discussed in Chapter 2, with several additions such as the 

number of routes, vehicles used, total waste collected, and computation time. 

Figure 13: Visualization of routes 

Figure 14: Structure of simulation model 
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The simulation model is implemented using the Java programming language and does not contain any 

visualization. However, it does offer the functionality to output a plain text file that, using well-known 

text (WKT) formats, allowing users to export the planning to a geographical information system (GIS), 

such as QGIS or PostGIS. An example of the output is shown in Figure 13. 

5.2 - Verification and validation 
One of the challenges encountered while using mathematical modeling approaches, such as 

simulation, is to ensure that the model gives an accurate representation of reality. To confirm that this 

is the case, Law (2015) suggests using two techniques: verification and validation. Verification confirms 

that all desired aspects of the actual system are correctly translated into the computer program 

representing the simulation model. This should be done in the appropriate, chosen level of detail and 

according to a written list of assumptions (Law, 2015). During model validation, it is studied if the 

simulation model is an accurate representation of the actual system (Law, 2015). Because it is often 

necessary for simulation studies to make assumptions and use simplifications, simulation models only 

offer an approximation of the actual system. If a simulation model is an adequate approximation, it is 

useful during the decision-making process. To verify and validate the simulation model described in 

the previous section, several steps are taken as suggested by Law (2015): structured walkthroughs, 

quantitative component validation, and visual animation checks.  

Several structured walkthroughs are performed, each focusing on different aspects of the simulation 

model. A structured walkthrough encompasses the following the step-by-step progress of the 

simulation model through time, validating at each step if the correct actions are completed. This is 

done both for an entire day and by following a select group of containers over a longer period of time. 

From these walkthroughs, no irregularities are found and the simulation model behaves as intended. 

Quantitative validation is done on the waste deposits rates per container and overall waste generated. 

The input parameters for each individual container are, among other things, the statistical distribution 

modeling the amount of waste deposited in that container each day. From this statistical distribution, 

random numbers are used to generate random daily deposits. To validate the accuracy of this 

distribution, the actual observed mean and variance are compared with that of a large number of 

randomly generate deposits. Moreover, the entire waste generation of the district of Zuidoost for a 

year is compared to the amount generated during the simulation runs. Over three replications, the 

average waste generation during the simulation is 3.101 tons of waste, while the observed waste 

generation in the data collection period in Amsterdam was 3.089 tons, which is a difference of 0,4%. 

Moreover, in reality, the average standard deviation of the waste deposits per container is 97,7, 

compared to 96,9 in the simulation, a difference of 0,8%. These differences are deemed to be 

acceptably small. 

Lastly, visual checks are performed with the use of animation. The output of each phase of the solution 

approach is visualized on a map of Amsterdam and the choices of the heuristic are checked for 

consistency and correctness. The decisions taken by the heuristic comply with what is to be expected 

and decisions are made on a consistent and substantiated basis. 

5.3 - Design of experiments 
This section describes the design of experiments by listing the experimental factors and elaborating 

the approach of our factorial design. Each experimental factor is a controlled variable parameter 

within the planning heuristic which can take on several values. All experimental factors and their 

possible values are shown in Table 9. The aim of the numerical experiments is to study the effects of 

the separate factors, but also their interaction. However, to prevent an infeasible number of 

experiments, not all possible interactions are studied. We devise three experiments which combine 
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experimental factors that are expected to have a relevant interaction. This approach is similar to the 

one-factor-at-a-time (OFAT) approach described by Law (2015). However, unlike the OFAT approach, 

this approach does attempt to measure some parameter interaction. Table 9 shows which 

experimental factors are combined in the experiments which are described in the remainder of this 

section.  

Table 9: Experimental factors 

Factor # Exp. # Experimental factor Values 

1 1 Cluster fitness approximation method [CC ; CP ; CI; Daganzo] 

2 1 Penalty scaling factors [0.1 ; 0.5 ; 1 ; 5 ; 10] 

3 1 Costs of adding new clusters [0.25 ; 0.50 ; 0.75 ; 1 ; 1.5 ; 2] 

4 2 Acceptable overflow probability [0.10 ; 0.15 ; 0.20 ; 0.25] 

5 2 Sensors in containers [yes ; no] 

6 3 Length of planning horizon [1 ; 2 ; 3 ; 4] 

 

Experiment 1: Inventory routing 
The first experiment focusses on the general solution of the IRP, which consists of the decision when 

to empty each container and the subsequent routing decisions. These are mainly influenced by the 

𝐶𝐹𝐴 method, penalty scaling factors, and the costs of adding new clusters. These factors regulate the 

creation of clusters as described in Phases II and III of the proposed solution approach. Because all 

three factors influence the main components of the timing decision, some interaction between the 

factors is expected. 

The interaction between the 𝐶𝐹𝐴 method and the penalty scaling factors is especially important, as 

they represent or directly influence the two cost factors used during the timing decision: travel costs 

and timing penalty costs. Because the different 𝐶𝐹𝐴 methods use different ways to assess a 

container’s fitness to a cluster, it is not certain that that they give a fair assessment of the cost they 

are supposed to approximate. The penalty scaling factors are implemented to offset any potential 

tendencies the current measures might have. 

Experiment 2: Dealing with stochasticity 
The second experiment studies how the proposed solution should handle the stochasticity of the 

waste collection system. The primary source of stochasticity in the system is the uncertain amount of 

waste that is deposited daily. Two factors are related to this stochasticity: the 𝐴𝑂𝑃 and the potential 

implementation of sensors. 

While using sensors in containers, a lot of uncertainty is taken away from the decision-making process. 

This might enable other, more extreme, values of the 𝐴𝑂𝑃 to be feasible, potentially resulting in 

higher service levels than could be achieved without sensors.  

Experiment 3: Length of planning horizon 
The third experiment evaluates the trade-off between the solution quality and the required 

computation time. This is done by altering the length of the planning horizon used in Phase I of the 

proposed solution approach. The longer the planning horizon, the more information is considered by 

the planning heuristic, which is expected to result in a better solution quality. However, this comes at 

a cost, as considering more information slows down the heuristic, increasing the required 

computation time. 
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Standard settings for experiments 
As the three experiments are performed consecutively, standard settings for the planning 

methodology are required to use while the results of the impending experiments are still unknown. 

These standard settings are used for each experimental factor until experiments have offered better 

alternatives. The values of the standard settings are chosen based on a series of initial exploratory 

experiments and are given in Table 10. 

Table 10: Standard settings of the experimental factors 

Factor # Experimental factor Possible alternatives 

1 Travel costs approximation method Cluster Centroid 

2 Penalty scaling factors 1 

3 Costs of adding new clusters 0,75 

4 Acceptable overflow probability 0,20 

5 Sensors in containers No 

6 Length of planning horizon 3 
 

 

5.4 - Replication and deletion approach 
This section discusses the replication/deletion approach, as described by Law (2015), to ensure valid 

and reliable simulation results. The replication/deletion approach involves choosing a warm-up 

period, or deletion period, and an appropriate number of replications. 

Warm-up period 
Because the modeled system has no natural end or beginning for experiments, the simulation is called 

a nonterminating simulation. In a nonterminating simulation, the initial conditions can have an 

undesired influence on the performance of the system in the early stages, called the initialization bias 

(Law, 2015). For example, in our simulation, all containers start completely empty. In reality, this is an 

improbable state of the system. To make sure the initial conditions do not affect the performance 

measurements, it is necessary to wait until the system reaches its steady state before any collecting 

performance data. The steady state is the state in which the actual system continually operates and 

thus the state which we are interested in monitoring. The period until the system reaches its steady 

state is called the warm-up period. 

To determine an appropriate warm-up period, we use Welch’s graphical procedure as described in 

Law (2015). Welch’s procedure involves making 𝑛 independent replications, with a large enough 

number of observations 𝑚. For each observation, the average over all replications is calculated and 

converted into a moving average with window 𝑤. The warm-up period can then be identified by 

finding the period after which the moving average appears to converge. This procedure is fully 

executed in Appendix 7. From this analysis, we determine that a warm-up period of 25 days is 

appropriate. Therefore, we choose the run length of each replication to be 125 days, of which the first 

25 are disregarded.  

Number of replications 
Because the simulation model uses stochasticity, it is insufficient to perform one single replication of 

each experiment as this would have little statistical significance. Therefore, we should perform 

multiple independent replications and calculate the mean and confidence intervals of all performance 

measurements.  
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Because the simulation model contains stochasticity, it is insufficient to perform one single replication 

of each experiment. To obtain reliable simulation results, multiple replications should be performed. 

We use the sequential procedure proposed by Law (2015) to determine how many replications are 

required. The sequential procedure involves increasing the number of replications until Equation 10 

is satisfied, where 𝛿(𝑛, 𝛼) is the confidence interval half-length, 𝑋̅(𝑛) is the point estimate for 𝜇, and 

𝛾′ is the adjusted relative error. 

𝛿(𝑛, 𝛼)

|𝑋̅(𝑛)|
 ≤  𝛾′ (10) 

 

The complete calculations can be found in Appendix 7. From these calculations, we conclude that, 

with a confidence level 𝛼 = 0,05 and relative error 𝛾 = 0,05, three replications should be performed 

to attain statistically relevant results. 

5.5 – Conclusion 
This chapter describes the way the proposed solution approach is evaluated during the numerical 

experiments. The implemented simulation model is described, the design of experiments is discussed, 

and the applied replication deletion approach is elaborated. This chapter answers research question 

4: How should the waste collection system of Amsterdam be modeled to allow for the evaluation of 

novel planning methodologies.  

The proposed solution approach is tested using a simulation model of the waste collection system of 

the Zuidoost-district. Moreover, only containers of the household waste fraction are considered to 

simplify the model. This scope and level of detail is chosen as it is determined to be most suitable for 

the objectives of the simulation study. Using several verification and validation techniques as 

suggested by Law (2015), such as: structured walkthroughs, quantitative component analysis, and 

visual animation checks. All techniques show no irregularities or unexpected behavior, so the 

simulation model is accepted to be an accurate representation of the waste collection system of 

Amsterdam for our purposes. 

Three experiments are formulated to study the effects of the experimental factors. The experiments 

are designed in such a way that expected interactions between factors are also evaluated. The three 

experiments with their respective experimental factors are shown in Table 11. 

Table 11: Design of experiments 

Exp. # Experiment Experimental factors 

1 Inventory routing 
Cluster fitness approximation method, penalty scaling factors, 
costs of adding new clusters 

2 Dealing with stochasticity Acceptable overflow probability, sensors in containers 

3 Length of planning horizon Length of planning horizon 

 

The experiments are performed using a replication/deletion approach. This approach involves 

replicating the same experiment and using a warm-up period to only measure the performance in the 

system’s steady state. In this analysis, it is determined that each experiment should consist of three 

replications of which the first 25 days are the warm-up period to ensure statistically relevant results. 

The experiments are performed during the numerical experiments of the following chapter allowing 

the analysis of the effects of the different experimental factors.  
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Chapter 6 - Numerical experiments 
This chapter discusses the results of the numerical experiments described in the previous chapter. The 

experiments are conducted by simulating the performance of the waste collection planning of 

Amsterdam over a period of 100 days using the simulation model described in Chapter 5. The goal of 

the experiments is to find appropriate values for all experimental factors. Before discussing the 

numerical experiments, the hypothetical performance of Amsterdam’s current planning methodology 

is evaluated in our simulation model (Section 6.1). This is done to ensure a fair comparison and solves 

the problem of missing performance indicators such as the number of overflowed containers. The first 

experiment concerns the experimental factors influencing the day assignment and routing phases of 

the proposed solution approach (Section 6.2). The second experiment explores how the stochasticity 

of the waste collection environment in Amsterdam should be handled (Section 6.3). Subsequently, the 

third experiment examines the effects of the length of the planning horizon on the planning 

performance and computation time (Section 6.4). Finally, a conclusion is drawn based on the results 

of the numerical experiments (Section 6.5). 

6.1 - Current performance of Amsterdam 
To put the planning performance of the proposed solution approach into perspective, it is compared 

to the performance of Amsterdam’s current planning methodology. Unfortunately, there are several 

issues preventing a direct comparison between the two planning methodologies. The foremost issue 

is the lack of data availability of the planning performance of Amsterdam. The municipality does not 

gather information on one of the main KPIs: the service level. Another issue is a modification made in 

the simulation model in comparison to the real-life situation in Amsterdam: the ability of the waste 

processor to handle household waste. In reality, the waste processor in Zuidoost is solely compatible 

with the paper waste fraction, while in the simulation model we modify this to include household 

waste. This is done to increase the complexity of the problem as elaborated in Section 5.1 and 

Appendix 6. Because of these issues, the planning methodology of Amsterdam is mimicked in our 

simulation model and the resulting performance is used in the comparison to the proposed solution 

approach.  

The current planning methodology of Amsterdam is based on fixed emptying frequencies which 

indicate the time intervals between emptying the container. The exact implementation and method 

of determining the fixed emptying frequencies are elaborated in Appendix 8. Mimicking the planning 

performance of the current planning methodology of Amsterdam yields the following results: 2.14 

kilometers driven per collected ton of waste and a service level of 80.4%. 

6.2 - Inventory routing 
This section discusses the experiments in which the experimental factors that influence the day 

assignment and route construction phases of the proposed solution approach. The corresponding 

experimental factors are: the cluster fitness approximation (𝐶𝐹𝐴) method, penalty scaling factors, 

and costs of adding new clusters. Two experiments are devised to evaluate the effects of these three 

experimental factors on the planning performance. Firstly, the interaction between the chosen cluster 

fitness approximation method and the penalty scaling factors is studied to find appropriate scaling 

factors for each 𝐶𝐹𝐴 method (Section 6.2.1). Several promising configurations are selected and used 

in the second experiment where different costs for creating new clusters are evaluated (Section 6.2.2).  

6.2.1 - Experimental factors influencing the day assignment phase 
During the day assignment phase, containers are assigned to days of the planning horizon. This 

assignment is based on a trade-off between the expected increase in travel costs, influenced by the 

𝐶𝐹𝐴, and the timing costs, influenced by the penalty scaling factors (𝑓𝑡𝑙 and 𝑓𝑡𝑒). This trade-off causes 
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an interaction between these two experimental factors, which is why they should be studied together. 

The influence of the penalty scaling factors is twofold: (1) negating possible biases caused by over- or 

underestimating the travel costs of the 𝐶𝐹𝐴 and (2) influencing the timing decision by setting the ratio 

between penalizing lateness and earliness. 

To evaluate the interaction between the experimental factors, we evaluate the planning performance 

for each possible configuration of the experimental factors. The possible 𝐶𝐹𝐴 methods are: Daganzo, 

Cluster Proximity (𝐶𝑃), Cheapest Insertion (𝐶𝐼), and Cluster Centroid (𝐶𝐶). There are five possible 

levels for the penalty scaling factors: greatly reduced (0.1), reduced (0.5), normal (1), increased (5), 

and greatly increased (10). The results are shown in Table 12, where Dist shows the number of 

kilometers driven per ton of waste and SL denotes the service level. Results marked in boldface are 

identified as promising configuration which are elaborated further later this section.  

Table 12: Experimental results CFA methods and penalty scaling factors 

  
CFA method 

PEtL PEtE CC 
 

CP 
 

CI 
 

Daganzo 
  

Dist SL  Dist SL  Dist SL  Dist SL 

0.1 0.1 1,97 0,836 
 

1,95 0,836 
 

1,97 0,838 
 

1,98 0,835  
0.5 1,95 0,829 

 
1,94 0,833 

 
1,96 0,836 

 
1,96 0,830  

1 1,93 0,822 
 

1,92 0,826 
 

1,94 0,828 
 

1,96 0,825  
5 (1,86) (0,782) 

 
(1,87) (0,800) 

 
1,90 0,800 

 
1,89 0,798  

10 1,85 0,764 
 

1,86 0,780 
 

(1,85) (0,780) 
 

(1,86) (0,780) 

0.5 0.1 1,98 0,844 
 

2,01 0,846 
 

2,00 0,844 
 

2,00 0,846  
0.5 (1,95) (0,841) 

 
1,98 0,843 

 
1,98 0,844 

 
2,00 0,838  

1 1,94 0,834 
 

1,95 0,838 
 

1,96 0,838 
 

1,96 0,84  
5 1,89 0,794 

 
1,88 0,812 

 
1,90 0,811 

 
1,91 0,809  

10 1,88 0,774 
 

1,88 0,788 
 

1,88 0,789 
 

1,88 0,794 

1 0.1 2,00 0,847 
 

2,02 0,849 
 

2,04 0,846 
 

2,03 0,848  
0.5 1,96 0,843 

 
1,99 0,846 

 
1,98 0,843 

 
1,99 0,846  

1 1,96 0,837 
 

1,96 0,844 
 

1,96 0,839 
 

1,99 0,841  
5 1,91 0,798 

 
1,90 0,815 

 
1,89 0,814 

 
1,93 0,820  

10 1,89 0,778 
 

1,89 0,793 
 

1,89 0,795 
 

1,89 0,798 

5 0.1 (2,02) (0,852) 
 

(1,94) (0,833) 
 

(2,03) (0,855) 
 

(2,03) (0,853)  
0.5 2,00 0,847 

 
(2,01) (0,852) 

 
2,01 0,848 

 
2,03 0,850  

1 1,97 0,842 
 

2,01 0,849 
 

1,97 0,847 
 

2,00 0,847  
5 1,92 0,803 

 
1,92 0,820 

 
(1,92) (0,827) 

 
(1,92) (0,825)  

10 1,89 0,786 
 

1,91 0,799 
 

1,90 0,807 
 

1,91 0,807 

10 0.1 2,04 0,852 
 

2,05 0,854 
 

2,04 0,854 
 

2,04 0,852  
0.5 2,00 0,848 

 
2,02 0,852 

 
2,01 0,852 

 
2,03 0,848  

1 1,98 0,841 
 

1,99 0,851 
 

2,00 0,844 
 

2,00 0,847  
5 1,92 0,803 

 
1,92 0,824 

 
1,93 0,826 

 
1,93 0,827  

10 1,90 0,784 
 

1,90 0,798 
 

1,90 0,808 
 

1,92 0,809 

 

The results show that the penalty scaling factors have a greater impact on the planning performance 

than the chosen 𝐶𝐹𝐴 method. The differences caused by different 𝐶𝐹𝐴 methods is especially small in 

configurations that result in higher service levels, while it is somewhat more influential when service 

levels are lower, this is especially visible in the efficiency frontier shown in Figure 15. Notably, both 

the Daganzo and 𝐶𝐶 approximation methods are not able to make an efficient trade-off to reduce the 

distance driven per ton of waste, resulting in steeper declines of the service level than is seen in the 

other two 𝐶𝐹𝐴 methods.  
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As expected, penalty scaling configurations that incentivize earlier emptying (i.e., high 𝑓𝑡𝑙 and low 𝑓𝑡𝑒) 

result in higher numbers of emptied containers and lower fill levels of containers upon emptying. In 

turn, this causes more kilometers to be driven per ton of collected waste. On the other hand, this also 

causes containers to be emptied earlier, reducing the overflow risk and thus increasing the service 

level. Contrastingly, changing the penalty scaling ratio in favor of emptying later has the opposite 

effects: more postponed containers, less containers emptied, lower distance per ton of waste 

collected, and lower service levels. 

The greater influence of the 𝐶𝐹𝐴 method for configurations where postponing is penalized less (i.e., 

the upper left region of Figure 15) can be explained by the dominance of the penalty for emptying 

later. This timing penalty is deliberately more dominant than the penalty for emptying earlier, an 

example of this for a random container is shown in Appendix 9. Because of this dominance, it often 

overrules any potential improvement in travel distance that can be achieved by emptying later. 

Therefore, when the 𝑓𝑡𝑙 is maintained or even increased, such as in the bottom right of Figure 15, it 

preserves its dominance, diminishing the influence of the 𝐶𝐹𝐴. When the  𝑓𝑡𝑙 is reduced, as in the top 

left of Figure 15, the effect of the 𝐶𝐹𝐴 gains more significance in the timing decision, resulting in larger 

differences between the different 𝐶𝐹𝐴 methods. 

Conclusion and promising configurations 

From Figure 15, we can conclude that no 𝐶𝐹𝐴 method or penalty scaling configuration is clearly 

superior to another as the efficiency frontier consists of several different 𝐶𝐹𝐴 methods. However, 

there are certainly configurations that work well together to make an efficient trade-off between the 

distance per ton of collected waste and the service level. These are the configurations on or close to 

the efficiency frontier. 

Figure 15: Evaluating the interaction between CFA methods and penalty scaling factors using an efficiency frontier 
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Because it is not ruled out that the 𝐶𝐹𝐴 method and penalty scaling factors have further interactions 

with other experimental factors, we select multiple promising configurations to continue to the next 

experiments with. For each 𝐶𝐹𝐴 method, three penalty scaling configurations are chosen: 

• Low distance travelled, but also low service level, called LL for ‘low, low’; 

• High service level, but also high distance travelled, called HH for ‘high, high’; 

• An intermediate setting that balances both KPIs, called M for ‘medium’. 

The promising configurations are shown in boldface in Table 12 and are summarized in Table 13. 

Table 13: Defining promising configurations of Experiment 1 

𝐶𝐹𝐴 settings 𝑓𝑡𝑙  𝑓𝑡𝑒 Km / ton waste Service level 

Daganzo-HH 5 0,1 2,03 85,3 % 
Daganzo-M 5 5 1,92 82,5 % 
Daganzo-LL 0,1 10 1,86 78,0 % 

CP-HH 5 0,1 2,01 85,2 % 
CP-M 5 0,5 1,94 83,3 % 
CP-LL 0,1 5 1,87 80,0 % 

CI-HH 5 0,1 2,03 85,5 % 
CI-M 5 5 1,92 82,7 % 
CI-LL 0,1 10 1,85 78,0% 

CC-HH 5 0,1 2,02 85,2 % 
CC-M 0,5 0,5 1,95 84,1 % 
CC-LL 0,1 5 1,86 78,2 % 

 
Based on these first experiments, we can conclude that the relatively unmodified version of the 

proposed solution approach largely outperforms the current planning performance. Most 

configurations have a higher service level than the current performance of Amsterdam, which is 

80,4%. Moreover, the current distance driven per ton of collected waste is 2,14 kms, which is 

improved upon under each configuration of the proposed solution by 4-14%. 

6.2.2 - Evaluating different costs for creating new clusters 
This section studies the effect of the costs for creating new clusters, also known as the new cluster 

costs (𝑛𝑐𝑐), on the planning performance. The 𝑛𝑐𝑐 is expected to mainly influence the routing 

efficiency, as it influences the size and number of clusters that is created during the day assignment 

phase. If the 𝑛𝑐𝑐 is relatively low, more smaller clusters are created in favor of less larger clusters 

which would arise using a higher 𝑛𝑐𝑐. Six different levels of the 𝑛𝑐𝑐 are evaluated: 0.25, 0.50, 0.75, 

1, 1.5, and 2. The effect of these six levels is evaluated using all promising configurations as identified 

in Table 13. The results of the experiment can be seen in Table 14, where the promising configurations 

are once again marked in boldface. 

The results show that the 𝑛𝑐𝑐 affects both the distance travelled per ton of waste and the service 

level. However, it is not as influential as the penalty scaling factors discussed in the previous 

experiment (Section 6.2.1). The results of the trade-off between the distance and service level is still 

highly dependent on the chosen penalty scaling factors: LL, M, and HH. This can also clearly be seen 

in the efficiency frontier shown in Figure 17, where the different 𝐶𝐹𝐴 methods can be identified by 

color, while the different markers represent the penalty scaling settings: LL (denoted by starts), HH 

(denoted by triangles), and M (using spheres). 
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Table 14: Results of experiments studying the effects of different costs for creating new clusters 

  
Penalty scaling factor settings 

CFA 
method 

ncc Low, low 
 

Medium 
 

High, high 

  
Dist SL  Dist SL  Dist SL 

CC 0,25 1,85 0,764 
 

1,93 0,829 
 

1,99 0,842 

0,5 1,87 0,772 
 

1,96 0,841 
 

2,04 0,852  
0,75 1,86 0,782 

 
(1,95) (0,841) 

 
2,02 0,852  

1 1,86 0,792 
 

1,96 0,839 
 

2,03 0,851  
1,5 1,88 0,796 

 
1,96 0,839 

 
2,03 0,851  

2 1,90 0,803 
 

1,98 0,843 
 

2,05 0,853 

CP 0,25 1,85 0,771 
 

2,02 0,852 
 

1,94 0,832 

0,5 1,86 0,793 
 

2,01 0,851 
 

1,95 0,836  
0,75 (1,87) (0,800) 

 
(2,01) (0,852) 

 
1,94 0,833  

1 1,88 0,799 
 

2,01 0,852 
 

1,94 0,831  
1,5 1,89 0,801 

 
2,02 0,852 

 
1,95 0,832  

2 1,91 0,810 
 

2,05 0,854 
 

1,96 0,837 

CI 0,25 1,86 0,758 
 

1,91 0,783 
 

1,99 0,849 

0,5 1,91 0,768 
 

1,93 0,815 
 

2,04 0,855  
0,75 (1,85) (0,780) 

 
(1,92) (0,827) 

 
2,03 0,855  

1 1,86 0,787 
 

1,93 0,825 
 

2,05 0,854  
1,5 1,86 0,793 

 
1,93 0,830 

 
2,05 0,854  

2 1,89 0,793 
 

1,94 0,836 
 

(2,09) (0,859) 

Daganzo 0,25 1,87 0,758 
 

1,91 0,795 
 

2,03 0,848 

0,5 1,89 0,762 
 

1,92 0,822 
 

2,07 0,850  
0,75 1,86 0,780 

 
1,92 0,825 

 
2,03 0,853  

1 1,87 0,786 
 

1,93 0,824 
 

2,04 0,853  
1,5 1,88 0,792 

 
1,95 0,832 

 
2,04 0,851  

2 1,91 0,799 
 

1,96 0,835 
 

2,07 0,852 

 

The results shown in Table 14 show that, in general, low 𝑛𝑐𝑐’s result in less distance per ton of 

collected waste, but also in lower service levels. Higher 𝑛𝑐𝑐’s have the opposite effect: more distance 

travelled per ton of waste and higher service levels. The difference made by altering the 𝑛𝑐𝑐 is the 

way clusters are formed. With a low 𝑛𝑐𝑐, the proposed solution approach generally forms more 

clusters, which are also more container-dense than clusters created using higher values for the 𝑛𝑐𝑐. A 

generalized example of the created clusters under low and high 𝑛𝑐𝑐 is shown in Figure 16. 

 

 

 

Figure 16: Average clusters created under low and high costs for creating new clusters 
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The results of the experiments show that a higher number of container-dense clusters is better for the 

routing efficiency than clusters created with a higher 𝑛𝑐𝑐. This is caused by the flexibility allowed 

under a low 𝑛𝑐𝑐. As creating new clusters is easily permitted, because of the low associated costs, 

there is a high flexibility to create new clusters if the existing clusters are not sufficiently compatible. 

By adding more new clusters, new insertion possibilities present itself to all subsequent containers, 

strengthening the effect of the insertion flexibility. Contrastingly, if the 𝑛𝑐𝑐 is high, new clusters are 

almost never created and containers are forced into clusters with which they are not actually 

compatible. 

However, this increase in routing efficiency comes at a cost to the service level. This is caused by a 

side-effect of the lower 𝑛𝑐𝑐: as more clusters are created, they are all scheduled on the 𝐷𝐸𝐷 of the 

initializing container. Additionally, because of the flexibility to create new clusters easily if no 

compatible cluster can be found, the number of containers that is emptied on their 𝐷𝐸𝐷 increases. 

The result is that the lower the 𝑛𝑐𝑐, the more containers are scheduled on their 𝐷𝐸𝐷. This shift is 

largely at the expense of emptying containers earlier. Therefore, the average container is emptied 

somewhat earlier when the 𝑛𝑐𝑐 is high, which causes lower service levels. 

Conclusion and promising configurations 

As is shown in the results, lower values for the 𝑛𝑐𝑐 increase the routing efficiency, expressed by the 

distance driven per collected ton of waste, but also decreases the service level. The opposite is true 

for higher 𝑛𝑐𝑐’s. Figure 17 shows that most configurations on the efficiency frontier, i.e., the 

configurations that make the most efficient trade-off between the two KPIs, have a 𝑛𝑐𝑐 of 0,75. 

However, to allow for extreme prioritization of one of the KPIs, we once again select several promising 

configurations which are marked in boldface in Table 14.   

 

Figure 17: Evaluating different costs for creating new clusters using an efficiency frontier 
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6.3 - Dealing with stochasticity 
This section discusses the experiments in which we study how the stochasticity of the waste collection 

system of Amsterdam can best be dealt with. Section 4.3 introduced the 𝐴𝑂𝑃 threshold which is used 

to deal with the stochasticity of waste deposits. The first experiment evaluates the planning 

performance under different levels of this 𝐴𝑂𝑃 threshold (Section 6.3.1). Moreover, the possibility of 

adding sensors the underground containers to gain more information on their fill levels is explored 

and the potential effects are evaluated (Section 6.3.2). 

6.3.1 - Evaluating different acceptable overflow probabilities 
This section explores the effect of changing the 𝐴𝑂𝑃 threshold level. The 𝐴𝑂𝑃 is introduced as a 

measure to account for the stochasticity of waste deposits that is used during the day assignment 

phase of the proposed solution approach. It mainly affects the timing decision by determining the 

container’s 𝐷𝐸𝐷 and influencing the formula of the timing costs. Low 𝐴𝑂𝑃s would be preferred by 

decision makers that are risk averse, as it reduces the risk that is considered acceptable. The value of 

the 𝐴𝑂𝑃 threshold is differed between 10%, 15%, 20%, 25%, and 30% during the experiments. 

These different values for the 𝐴𝑂𝑃 are tested on all promising configurations as identified in the 

previous section in Table 14. The results of the experiments can be seen in Figure 18, where the 

different colors indicate the promising configuration and the different points of each color represent 

the planning performance of that configuration with different 𝐴𝑂𝑃 levels. 

The results show the importance of the 𝐴𝑂𝑃 to the trade-off between the service level and the 

distance driven per ton of waste. For each configuration, the difference in performance created by 

altering the 𝐴𝑂𝑃 threshold can be seen in Figure 18 spanning almost half the efficiency frontier. The 

large impact of the 𝐴𝑂𝑃 threshold on the performance is caused by its significant impact on the timing 

decision. The timing decision (i.e., emptying early, on time, or later) is largely based on a container’s 

Figure 18: Evaluating different AOP threshold levels using an efficiency frontier 
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𝐷𝐸𝐷, as this dictates when a container can be scheduled without incurring a timing penalty. While 

the previously studied experimental factors 𝑓𝑡𝑙 and 𝑓𝑡𝑒 mainly influenced the timing decision via the 

timing penalty costs. The 𝐴𝑂𝑃 directly impacts the container’s 𝐷𝐸𝐷, as well as the related 𝐸𝐼𝐿. The 

𝐷𝐸𝐷 is defined as the day before the probability of overflowing exceeds the chosen 𝐴𝑂𝑃 threshold 

level, while the 𝐸𝐼𝐿 is the expected interval between subsequent 𝐷𝐸𝐷’s. Therefore, changing the 𝐴𝑂𝑃 

causes the starting position of the timing decision to shift by the changing 𝐷𝐸𝐷. Moreover, the 

average length between emptying of a container is influenced through the 𝐸𝐼𝐿. The relevant trends 

that are observed when changing the 𝐴𝑂𝑃 can be seen in Table 15. 

Table 15: Trends when modifying the acceptable overflow probability 

𝐴𝑂𝑃 
Average number of 
emptied containers 

Average container 
fill level 

Average  
km / ton waste 

Average  
service level 

10 % 17.994 35,8 % 2,14 86,7 % 
15 % 16.225 40,0 % 2,05 85,0 % 
20 % 14.562 44,6 % 1,95 82,7 % 
25 % 13.362 48,5 % 1,90 80,1 % 
30 % 12.062 53,1 % 1,86 77,6 % 

 

As can be seen in Table 15, the average number of emptied containers is significantly influenced by 

the chosen 𝐴𝑂𝑃 threshold. This can be explained by the previously discussed influence of the 𝐴𝑂𝑃 on 

the container’s 𝐸𝐼𝐿’s. At an 𝐴𝑂𝑃 threshold of 10% the average 𝐸𝐼𝐿 of all containers is 3.9 days. 

Where, with an 𝐴𝑂𝑃 of 30%, this increases to an 𝐸𝐼𝐿 of 5.9 days, an increase of almost 50%. 

The difference in the number of times containers are emptied is also visible in the average container 

fill level. Because the underlying waste deposits remain the same, the average fill level of containers 

drops when containers are emptied more often. When containers are emptied more often, the risk of 

overflowing is reduced and as a result the service level increases. However, the excessive emptying of 

containers also increases the number of kilometers driven per collected ton of waste. 

6.3.2 - Sensors in containers 
As is evident from the average fill levels of containers upon emptying in Table 15, containers are often 

emptied too early. A large part of this is caused by the stochasticity of the waste deposits and the 

desire to achieve a high service level for the inhabitants. Several papers have discussed the utilization 

of sensors to deal with the stochasticity of waste deposits to achieve more efficient waste collection 

(Johansson, 2006) (Vicentini, et al., 2009) (Mes, 2012). Amsterdam currently has not installed any 

sensors in their waste containers, but is considering the possibility (Municipality of Amsterdam, 

2018c). To research the potential impact sensors would have on the waste collection planning 

performance of Amsterdam using the new proposed solution approach, we conduct new experiments 

where sensors are installed in each container. Before discussing the results, the exact implementation 

of the sensors in the simulation model and the implications for the proposed solution approach are 

elaborated briefly. 

Implementation of fill level sensors 

During normal operations of the waste collection system in Amsterdam, without sensors, the 

proposed solution approach uses the probability density function of container’s fill levels to determine 

when a container should be emptied. As the only time the actual fill level of a container is known is 

when it is emptied, the longer that moment has passed, the more uncertain the current fill level is. 

However, when fill level sensors are installed in each container, the actual current fill level is known 

during the construction of the planning. In the simulation model used to model the waste collection 
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system of Amsterdam, as described in Chapter 5, the planning is made each morning, the planning is 

carried out, and finally, the daily deposits are added to each waste container. Therefore, the decision 

to empty a container or postpone a container is still relevant as the container can overflow during the 

day if it is not emptied. Because of this, the same approach, in terms of using an 𝐴𝑂𝑃 and 𝐷𝐸𝐷’s, is 

taken to planning with the addition of sensors. The difference being that the actual fill levels are 

updated daily which enables the 𝐷𝐸𝐷 of each container to be reconsidered each day. For example, if 

a deposit on the first day is less than expected, the 𝐷𝐸𝐷 moved to later in accordance with the day it 

exceeds the 𝐴𝑂𝑃. 

Results of experiments 

The experiments are carried out using the promising configurations of Section 6.3.1. Sensors are 

implemented and the 𝐴𝑂𝑃 is differed between 5%, 10%, 15%, 20%, and 30%. Moreover, the results 

are compared with those achievable without installing any sensors. An excerpt of the results of the 

experiments can be found in Table 16, the complete table is shown in Appendix 10.  

Table 16: Excerpt of experiment results, full results can be found in Appendix 10 

   
Sensor information 

CFA 
method 

Penalty 
scaling 

AOP Without sensors 
 

With sensors 
 

∆ (%) 

   
Dist SL 

 
Dist SL 

 
Dist SL 

CC Medium 0,05 2,26 0,886  2,04 0,886  -9,8% +1,4% 

0,10 2,16 0,868  1,92 0,889  -11,3% +2,4%   
0,15 2,07 0,858  1,82 0,879  -11,8% +2,5%   
0,20 1,95 0,841  1,79 0,861  -8,2% +2,4%   
0,30 1,89 0,796 

 
1,73 0,835 

 
-8,3% +4,9% 

CP Medium 0,05 2,37 0,905  2,15 0,911  -9,4% +0,6% 

0,10 2,24 0,884  2,01 0,899  -10,6% +1,7%   
0,15 2,15 0,868  1,92 0,893  -11,0% +2,9% 

  0,20 2,01 0,852  1,83 0,878  -8,7% +3,0% 
  

0,30 1,90 0,803 
 

1,76 0,848 
 

-7,7% +5,6% 

CI Low, low 0,05 2,09 0,862  2,02 0,881  -3,4% +2,2% 

0,10 1,97 0,839  1,89 0,868  -4,2% +3,4% 
  0,15 1,88 0,815  1,81 0,856  -3,9% +5,1%   

0,20 1,85 0,780 
 

1,74 0,840 
 

-5,7% +7,7%   
0,30 1,75 0,724 

 
1,69 0,809 

 
-3,5% +11,7% 

 

The results show the significant improvement that can be achieved by installing fill level sensors in 

containers both in terms of the achievable service level and reduction of distance driven per ton of 

waste. The simultaneous improvement of both KPIs can be attributed to the added ability to recognize 

deposit trends for all individual containers supported by the sensors. By accounting for these trends, 

containers are less frequently emptied too early or too late.  

6.3.3 - Conclusion 
The results, as shown in Table 16, show the planning performance for different levels of the 𝐴𝑂𝑃 

threshold and what happens when fill level sensors are installed into all containers. Figure 19 

compares the achievable efficiency frontiers in a situation where there a no sensors to one where 

there are sensors. The improvement in performance is clear, on average the distance driven per ton 

of collected waste is reduced by 8%, while the service level simultaneously increases by 4%. This are 
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improvements on top of the previous improvements in comparison to the current planning 

methodology employed by the municipality of Amsterdam.  

6.4 - Planning horizon 
The third experiment studies the effect the length of the planning horizon has on the planning 

performance. In this experiment, we do not solely consider the KPIs as used during the previous 

experiments, but also the computation time as this is expected to be heavily dependent on the length 

of the planning horizon. The computation time is important to consider because it can be a restriction 

in implementing the planning heuristic in real-life, where unexpected changes may require a quick 

recalculation of the planning. Moreover, it is also important for the scalability of the heuristic to larger 

problem instances. Five configurations, as identified in the legend of Figure 20, are chosen from the 

efficiency frontier of the stochasticity experiments of Section 6.3.2. For these configurations, the  

length of the planning horizon is differed between 1, 2, 3, 4, and 5 days and the results are shown in 

Figure 20. The labels in Figure 20 signify the length of the planning horizon used. 

Adopting a longer planning horizon gives the heuristic more possibilities to schedule containers on 

different days than its 𝐷𝐸𝐷, which enables the search for more efficient routes. At the same time, the 

timing decision is still considered by the cost function of the timing costs, of which an example can be 

seen in Appendix 9, which penalizes emptying days farther away from the 𝐷𝐸𝐷 heavier. However, 

because of the additional possibilities that the heuristic can consider, the computation time also 

significantly increases.  

  

Figure 19: Evaluating the effect of installing sensors by comparing efficiency frontiers 
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The results show that the configurations react differently to changing planning horizons. The most 

distinct difference is between the configurations that penalize earliness (blue and grey) and those that 

penalize lateness heavier (orange, yellow, and blue).  

The former, configurations that penalize earliness heavier, are not affected as much by the length of 

the planning horizon. Only a planning horizon of just one day, which prohibits containers to be 

scheduled on a day other than their 𝐷𝐸𝐷, performs worse on both KPIs. This is caused by two effects: 

the heuristic is not able to find more efficient routes by switching containers between days and the 

regular bias towards emptying containers earlier is not allowed. This respectively causes the routes to 

be less efficient, resulting in more kilometers per ton of waste, and a lower service level. 

For the other three configurations, the length of the planning horizon has a greater impact on 

performance. These configurations have an inclination to schedule containers earlier which leads to a 

higher frequency of emptying containers. This results in high service levels, but also in longer distances 

travelled per ton of collected waste. However, when the planning horizon is reduced to one day, 

containers cannot be scheduled earlier, decreasing the number of emptied containers and distance 

per ton of waste. Although the distance per ton of waste increases with increasing the length of the 

planning horizon, the routing efficiency improves as is shown in Table 17. This shows that the increase 

in distance travelled is caused by the timing decision that shifts towards emptying earlier. 

Table 17: Routing efficiency measured using km per stop under different planning horizons 

Length of planning 
horizon (days) 

Km/emptied container 

1 0,43 
2 0,38 
3 0,36 
4 0,35 
5 0,35 

  

Figure 20: Evaluating different planning horizon lengths using an efficiency frontier 



Master thesis - Improving the waste collection planning of Amsterdam 

 

61 
 

Next to the performance on the KPIs, we also consider the differences in computation time. The 

computation time increases significantly as the length of the planning horizon increases as can be seen 

in Table 18.   

Table 18: Computation time under different planning horizons (using an Intel i5 processor) 

Length of planning 
horizon (days) 

Average computation time 
(seconds) 

1 34 
2 183 
3 467 
4 906 
5 1.478 

 

Conclusion 

Considering the performance of the different planning horizon lengths, using the efficiency frontier of 

Figure 20, a planning horizon of three days outperforms the other planning horizons. Moreover, using 

a planning horizon of three days has a routing efficiency close to the perceived best achievable, while 

still having a manageable computation time. For each of the configurations we choose to continue 

with a planning horizon of three days. 

6.5 - Conclusion 
This chapter shows the results of the numerical experiments conducted to evaluate the performance 

of the proposed solution approach and to study the effects of the experimental factors. The research 

question related to this chapter is: what is the expected outcome of the proposed planning 

methodology for the waste collection of Amsterdam?  

Six experimental factors are considered: 𝐶𝐹𝐴 method, penalty scaling factors, new cluster costs, 𝐴𝑂𝑃, 

implementing sensors, and the length of the planning horizon. An OFAT approach is adopted to find 

the configuration most suitable to the waste collection planning of Amsterdam. From the 

experiments, the following conclusions can be drawn on the effects of the experimental factors on the 

performance of the proposed solution approach: 

• The differences in planning performance caused by the four 𝐶𝐹𝐴 methods is minimal. 

• The penalty scaling factors directly affect the timing decision by influencing the costs of 

changing the emptying day of containers and therefore has a large impact on the trade-off 

between the distance driven and the service level. Penalizing postponement more causes 

higher service levels, but also increases the distance driven per ton of waste collected, the 

opposite is true for penalizing early emptying more excessively. 

• The costs for creating new clusters influences the routing efficiency and the decision on when 

to empty containers. Low costs for creating new clusters results in, on average, smaller 

cluster-dense containers which proves to improve the routing efficiency by reducing the 

distance driven per ton of waste collected. As a side-effect, the solution approach empties 

containers later, which results in a decrease in the service level. The opposite is true for high 

costs for creating new clusters. 

• The 𝐴𝑂𝑃 directly influences the timing decision by changing the desired emptying day and 

expected interval length between emptying the container. If a higher risk for overflowing is 

allowed, containers are emptied less, resulting in lower service levels, as well as less distance 

travelled per ton of waste.  
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• Installing sensors significantly improves the quality of solutions because of the increase of the 

quality of information used to make the planning. An average reduction of the distance 

travelled per ton of waste collected of 7,8% and a simultaneous increase of the service level 

by 3,9% can be achieved by installing sensors in the containers. 

• The effect of the planning horizon is most notable on the routing efficiency. Longer planning 

horizons give the heuristic more flexibility, resulting in less distance travelled per collected 

container, however, as the number of containers emptied rises, this decrease is negated and 

the impact on the distance travelled per ton of waste is undone. Longer planning horizons also 

cause longer computation times. A planning horizon of three days is judged to be most 

suitable.  

The previously discussed effects of the experimental parameters all influence the trade-off between 

the two KPIs: the distance driven per ton of waste and the service level offered to the inhabitants of 

Amsterdam. Different configurations of the experimental factors can be used to prioritize one of the 

two KPIs of the trade-off. Table 19 shows the extremes of prioritization of both KPIs and a more 

balanced trade-off. Moreover, the differences in planning performance to the current performance of 

Amsterdam is  noted. In table 19, Dist denotes the distance travelled per ton of collected waste and 

SL denotes the achieved service level. 

Table 19: Planning performance proposed solution approach with different priorities 

Prioritization trade-off Proposed solution 
approach 

 ∆ to performance of 
Amsterdam 

 
Dist SL 

 
Dist SL 

Prioritize distance 1,75 0,724  -18,2% -10,0% 

Balanced priorities 1,88 0,815  -12,1% +1,4% 

Prioritize service level 2,37 0,905  +10,7% +12,6% 
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Chapter 7 – Conclusion and recommendations 
This chapter summarizes the conclusions of this research and answers the main research question 

(Section 7.1). Moreover, several recommendations are listed for the municipality of Amsterdam 

(Section 7.2) and the discussion explores the applicability of this research to other problems and 

possibilities for further research (Section 7.3). 

7.1 - Conclusion 
This research started with the following core problem: the current static collection schedules and 

routes are unsuitable for the stochastic, dynamic demand for waste collection. Correspondingly, the 

objective of this research is to develop a dynamic planning methodology that is better suited to the 

characteristics of the waste collection in Amsterdam. This objective leads to the main research 

question: In which way and to what degree can the waste collection planning of Amsterdam be 

improved by using dynamic scheduling algorithms?  

To start to answer this question, the current state of the waste collection system and its planning is 

studied. The analysis of the current situation shows that: 

• Amsterdam’s waste collection system consists of containers, wharfs, satellite facilities, and 

waste processing facilities, each of which has its own characteristics. 

• The current schedules are static, fixed, and based on estimations of the required emptying 

frequency. 

• The most relevant performance indicators for evaluating the planning performance are the 

influenceable collection costs, number of kilometers driven, and the service level. 

Based on the exploration of the current situation and the problems faced in Amsterdam, a literature 

review is conducted to find relevant research papers. Several routing problems are discussed, of which 

the IRP is determined as the most suitable representation of the waste collection problem in 

Amsterdam. A lot of aspects from existing research are applicable to the problem of Amsterdam, but 

no paper covered all our requirements. Therefore, a new solution approach is proposed that consists 

of three phases that are executed in a rolling horizon framework: 

1. Container selection, where containers that are expected to be relevant within the pre-

determined planning horizon are selected. 

2. Day assignment, where the selected containers are assigned to days of the planning horizon. 

3. Route construction, where routes are constructed to collect all assigned containers. 

A simulation model is used to perform numerical experiments to evaluate the performance of the 

proposed solution approach in comparison to the current planning methodology of Amsterdam. 

Moreover, the possibility of installing sensors into all containers, to mitigate the stochasticity inherent 

to the demand for waste collection, is studied. The results of the numerical experiments, as shown in 

Figure 21, show that the planning performance can be improved considerably by using a more 

dynamic planning methodology. The results are shown on an efficiency frontier as there is a trade-off 

between the distance travelled and offered service level. Decision makers should decide which point 

on the efficiency frontier best suits their objectives. The results show that a travel distance reduction 

of 12% is possible without installing sensors, and 21% with sensors, without reducing the service 

level offered to Amsterdam’s inhabitants. 
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7.2 - Recommendations 
Based on the conclusions of this research, we formulate several recommendations to the municipality 

of Amsterdam in this section. Moreover, we identify some areas in which the municipality can 

continue research to keep improving its waste collection planning.  

Our first and foremost recommendation for the municipality of Amsterdam is to implement our 

proposed solution approach to plan its waste collection. More specifically, we recommend to use one 

of the configurations that lies on, or is at least close to, the efficiency frontier. The decision makers of 

Amsterdam should decide which of the efficient configurations best suits their objectives and use that 

configuration. The improvement of the proposed solution approach over the current planning 

methodology is not solely in the performance of the KPIs. The proposed solution approach also gives 

the possibility to consciously make decisions on planning aspects such as the acceptable risk of 

overflowing and the trade-off between the two conflicting KPIs: distance and service level.  

Moreover, the municipality is recommended to consider the implementation of sensors into all or part 

of its containers. The potential savings, as discussed in Chapter 6, are significant, but implementing 

sensors in all containers would also involve considerable investment from the municipality. It is not 

necessary to implement sensors in all containers to achieve improvements. It is also possible to make 

a selection of containers, for example, those with high variances in deposits, which to equip with 

sensors.  

If any investment into sensors is deemed too large, we recommend the municipality of Amsterdam to 

improve the quality of their data collection and analysis. With more data availability and more 

elaborate data analysis, it is expected that the fill level predictions of containers can improve 

considerably. This should include factors such as seasonality and expected growth of waste collection 

demand. The better the quality of the data, the better the quality of the fill level predictions and thus 

the planning performance.  

Figure 21: Possible performance of the proposed solution approach compared to Amsterdam 
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Our last recommendation to the municipality is to initiate further research into an aspect that is largely 

omitted from this research on account of the limited time: dynamic decisions during the day. The 

current proposed solution considers incoming information, such as the overflowing of containers, only 

at the end of the day. This information can also be processed during the day, immediately upon 

receiving the information. Another option for dynamic decision making is to account for real-time 

traffic information to reconsider the shortest path to containers or even to reconsider the day 

assignment of containers. The implementation and potential benefit of these measures deserve 

further research. 

To summarize, our recommendations to the municipality of Amsterdam are to: 

• Implement the proposed solution approach using one of the preferred configurations, 

• Implement sensors into the containers, 

• Improve the quality of data collection to enable better fill level predictions, 

• Initiate further research into the benefits of additional planning dynamicity. 

7.3 - Discussion 
During the discussion, we briefly discuss the applicability of the proposed solution approach to 

problems outside the environment its currently tested in (Section 7.3.1), the limitations of this 

research (Section 7.3.2), and give some recommendations on further research (Section 7.3.3). 

7.3.1 - Wider applicability of solution approach 
Currently, the proposed solution approach is solely implemented and tested in Amsterdam’s Zuidoost 

district. However, it is expected that its implementation to the entirety of Amsterdam is relatively 

trivial. The exact same data processing steps, for example, to find the parameters of the distributions 

of each container’s waste deposits, can be followed. The only additional difficulty is to extend the 

solution approach to decide from which wharf each route should start. 

Furthermore, the applicability of the proposed solution approach is not limited to the waste collection 

planning of Amsterdam. We expect that similar improvements are possible in other municipalities that 

are currently utilizing the same planning techniques as used in Amsterdam. Moreover, other IRP 

problems, not related to waste collection, may also benefit from applying our solution approach. The 

difference of the solution approach proposed in this thesis to existing IRP solution methods is the 

integrated way in which decisions regarding the time and space dimensions are made. However, 

further research should first be conducted before the benefit for other types of IRPs can be confirmed 

definitively.  

However, the generalizability of the solution approach is promising as it allows for calibration of 

various aspects in such a way that it can adjust to the characteristics of the problem to which it is 

applied. For example, it is expected that if the geographical dispersion of customers changes, the costs 

for creating new clusters should be adjusted accordingly. It is believed that the calibration approach 

such as followed in Chapter 6 can be applied for each new application. Because of this flexibility of the 

proposed solution approach, it is believed that it can be applied in a variety of settings. 
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7.3.2 - Limitations of research 
The foremost limitation of this research is the difficulty with which the performance of the proposed 

solution approach can be compared with that of the current planning of Amsterdam. This limitation is 

self-imposed, as one of the simplifications of the simulation model is to allow household waste 

vehicles to utilize both the satellite facility and the waste processor in the Zuidoost district. This made 

the problem more interesting and relevant, but also complicated the comparison with the actual 

situation, as this is not the case in reality. Moreover, the lack of available data on the current service 

level of Amsterdam further complicated comparison with reality, as this is one of the two most 

important KPIs. To solve this problem, the current planning methodology of Amsterdam is mimicked 

in the simulation model. However, this is only an approximation and does not fully capture all details 

of the planning and scheduling done in Amsterdam. Therefore, this research is not fully able to show 

the precise improvements made possible by the proposed solution approach. 

Moreover, the focus of this research is on a novel way of simultaneously considering both the time 

and space dimensions of the IRP. Therefore, the implemented routing and improvement heuristic 

remain relatively elementary. Implementing more elaborate routing and improvement heuristics is 

expected to further improve the solution quality. 

Another limitation is the limited contact with the municipality of Amsterdam during this research. This 

left some questions about the current planning methodology and prevented additional validation of 

the simulation model by subject experts, further complicating the comparison of the results of the 

experiments with the current planning performance. 

7.3.3 - Further research 
This thesis introduces a novel way of solving the IRP, while simultaneously considering the time and 

space dimensions of the IRP. This approach is based on approximations of the travel costs and costs 

of the timing of emptying a container, respectively represented by the cluster fitness approximation 

and timing penalty costs in our research. As these are merely rough approximations, it is an interesting 

topic of further research. Other approximation methods can be developed and researched, potentially 

better representing the costs of the associated decisions, improving the solution quality. 

Moreover, as already discussed in Section 7.3.1, the applicability of the proposed solution approach 

to a wider range of IRP applications should be researched to confirm that this approach is suitable as 

a standard solution approach for the IRP, or if it is only applicable to waste collection problems.  
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List of abbreviations 
An alphabetical list of all abbreviations used in this thesis is given below. 

ALNS Adaptive Large Neighborhood Search 

C&W Clark & Wright 

CARP Capacitated Arc Routing Problem 

CIRP Cyclic Inventory Routing Problem 

CLRIP Combined Location Routing and Inventory Problem 

CVRP Capacitated Vehicle Routing Problem 

DES Discrete-Event Simulation 

GIS Geographical Information System 

Goudappel 
Goudappel Group, a collaboration of companies, most notably Goudappel 
Coffeng and DAT.Mobility. 

IP Inventory Problem 

IRP Inventory Routing Problem 

IRPSF Inventory Routing Problem with Satellite Facilities 

IRPT Inventory Routing Problem with Transshipment 

IRP-CM Inventory Routing Problem with Continuous Moves 

KPI Key Performance Indicator 

MCDM Multiple Criteria Decision Making 

MILP Mixed Integer Linear Programming 

MMIRP Multi-Product Multi-Vehicle Inventory Routing Problem 

RVND Randomized Variable Neighborhood Descent 

SA Simulated Annealing 

TOP Team Orienteering Problem 

TSP Traveling Salesman Problem 

VMI Vendor Managed Inventory 

VRP Vehicle Routing Problem 

VRPSF Vehicle Routing Problem with Satellite Facilities 

WCVRP Waste Collection Vehicle Routing Problem 

WKT Well-Known Text 
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Appendix 1 - Problem cluster 
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Appendix 2 - Distribution of generated waste per waste fraction 
 

 

 

Appendix 3 - Waste collection related complaints in Amsterdam 
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Appendix 4 - Classification schemes from current literature reviews 
 

Authors (year) Classification on the topics of… 

Baita, Ukovich, Pesenti, & 
Favaretto (1998) 

Topology, number of items, type of demand, decision domain, 
constraints, costs, proposed solution approaches 

Moin & Salhi (2007) 
Single period, multiperiod, infinite horizon models, and 
stochastic demand patterns 

Andersson, Hoff, Christiansen, 
Hasle, & Løkketangen (2010) 

Time, demand, topology, routing, inventory, fleet composition, 
fleet size 

Bertazzi & Speranza (2012) 
Shipping times, planning horizon, structure of distribution 
policy, objective of policy, and decision space 

Coelho, Cordeau, & Laporte 
(2014) 

Time horizon, structure, routing, inventory policy, inventory 
decisions, fleet composition, and fleet size. 
(referencing Andersson et al. (2010)) 
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Appendix 5 - Supplementary algorithms 
 

Algorithm 2.1 - Cluster overflowed containers algorithm 
Algorithm that is used during the day assignment phase where the overflowed containers of yesterday 

are scheduled first.  

Algorithm 2.1: Cluster overflowed containers algorithm 

Algorithm 2.1:   Cluster overflowed containers algorithm 

Input:               set of overflowed containers yesterday (OC)  
Output:            set of clusters (CL) 
Parameters:   costs of adding container i to cluster j (acij), costs of creating a new cluster for container i (nci) 
 

0. Initialize, CL = ∅ 

1. While  OC ≠ ∅  do 

2. |          For  each container i in set OC 

3. |          |          For  all clusters j in set CL 

4. |          |          |          calculate acij 

5. |          |          |          remember cheapest acij 

6. |          End for 

7. |          If  cheapest acij < nci  then 

8. |          |          add container i to cluster j 

9. |          Else 

10. |          |          create new cluster with container i 

11. |          End if 

12. End while 

13. Return CL 
  

 

K-means algorithm 
Algorithm used to pre-process a list of container to make suitable clusters for route creation. 

Algorithm:   K-means algorithm 

Input:               set of containers (C), set of day-assignment clusters (DA-CL) 
Output:            set of pre-processed clusters (PP-CL) 
Parameters:   capacity vehicles, buffer vehicles, number of clusters (k), container-to-cluster priority 
 

0. k = total load / (vehicle capacity * (1 – vehicle buffer)) 

1. Find k starting points for clusters based on largest clusters in DA-CL 

2. For  10 iterations  do 

3. |          Calculate priority for each container to closest cluster using Equation 8 

4. |          While  unassigned containers ≠ 0  do 

5. |          |          Find container with highest priority 

6. |          |          If  possible to assign regarding cluster capacity  then 

7. |          |          |          Assign container to closest cluster 

8. |          |          Else if  not possible to assign container with highest priority  then 

9. |          |          |          Recalculate container priority with second closest cluster 

10. |          |          |          Return to step 4. 

11. |          |          End if 

12. |          End while 

13. |          Recalculate coordinates cluster centroids 

14. End for 

15. Return PP-CL 
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𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦𝑖 =  
𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑓𝑖𝑙𝑙 𝑙𝑒𝑣𝑒𝑙 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑡𝑜 𝑐𝑙𝑜𝑠𝑒𝑠𝑡 𝑐𝑙𝑢𝑠𝑡𝑒𝑟
   (9) 

 

2-opt algorithm 
Improvement algorithm that is used to improve the initially created routes. Note that route[i] means 

the i-th place in the routing sequence.  

 

Algorithm:   2-opt algorithm 

Input:               set of routes (R) 
Output:            set of routes (R) 
Parameters:   set of tours (T),  convergence, iterators i and j 
 

1. For  each route in R  do 

2. |          Create list of tours T by splitting routes into tours separated by disposal facilities 

3. |          For  each tour in T  do 

4. |          |          Convergence = false 

5. |          |          While  convergence = false  do 

6. |          |          |          Convergence = true 

7. |          |          |          For  i = begin tour  to  i <= end tour – 2  do 

8. |          |          |          |          For  j = i + 1  to  j <= end tour – 1  do 

9. |          |          |          |          |          Add route[begin tour] to route[i-1] to sequence 

10. |          |          |          |          |          Add route[i] to route[j] to sequence in reverse order 

11. |          |          |          |          |          Add route[j+1] to route[end tour] to sequence 

12. |          |          |          |          |          If  improvement to tour  then 

13. |          |          |          |          |          |          Keep changes 

14. |          |          |          |          |          |          Convergence = false 

15. |          |          |          |          |          If  no improvement  then 

16. |          |          |          |          |          |           Reverse changes 

17. |          |          |          |          |          End if 

18. |          |          |          |          End for 

19. |          |          |          End for 

20. |          |          End while 

21. |          End for 

22. End for 
  

 

  



Master thesis - Improving the waste collection planning of Amsterdam 

 

77 
 

Appendix 6 - Assumptions and simplifications simulation model 
This appendix lists the assumptions and simplifications made during the modeling of the simulation 

model of Amsterdam Zuidoost. In addition, the choice to change the functionality of the waste 

processing facility of Zuidoost is justified. 

Assumptions 
• Emptying time container = 3 minutes 

• Processing time disposal facilities = 15 minutes 

• Weight in kg per cubic meter of household waste = 100 kg 

• Vehicle capacity = 9.000 kg 

• Average vehicle speed = 15 km/h 

• Distances between locations are Euclidean distances * 1.2  (Levinson and El-Geneidy, 2009) 

• Container fill rates are modeled using a Gamma-distribution 

• Container fill rates do not change when a container is full 

• Unlimited extra deposits can be made to a container, even if full 

• Containers can only be emptied completely, partial emptying is impossible 

• A sufficient number of collection vehicles and operating personnel is always available 

• Collection vehicles can spend 6.25 hours on work related activities 

Simplifications 
• Only considering household waste 

• All vehicles are homogeneous 

• Waste is only deposited by inhabitants at the end of the day 

• Waste is only collected by the municipality at the start of the day 

• A vehicle buffer of 25% is implemented and resulting routes are assumed to always be 

feasible  

• Travel times between locations are deterministic and determined by the distance and the 

average speed 

• No lunch break is scheduled, even though the required time is subtracted from the total 

working time 

Changes of functionality waste processing facility 
In reality, the waste processing facility located in Amsterdam Zuidoost is dedicated to processing 

paper and is thus not compatible with the household waste fraction. Therefore, in reality, all 

household waste of Zuidoost is transported to the satellite facility, from where it is transported to the 

north of Amsterdam, where the household waste processor is located. However, we want to solve the 

IRPSF, as this is the problem faced by the Amsterdam. The IRPSF has the additional decision between 

disposing waste at a satellite facility or a waste processing facility, this choice would be trivial if no 

changes are made. Therefore, in the simulation model, we pretend that the waste processing facility 

is compatible with the household waste fraction. To make the decision between both disposal facilities 

relevant, we introduce a fee associated with using the satellite facility. This is realistic as the waste 

disposed at the satellite facility should still be transported, albeit by different, cheaper methods, to 

the waste processing facilities.  

The fee incurred for each container visiting the satellite facility is a penalty of 2.6 kilometers, which is  

based on the distance between the satellite facility and waste processing facility times a correction 

factor of 1.2 prescribed for urban areas by Levinson and El-Geneidy (2009). This fee keeps the decision 

between the two disposal facilities relevant.  
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Appendix 7 - Replication deletion approach calculations 
 

Warmup period 
Five replications are performed, each of sufficient length, in this case 50 days. Using windows of 5 and 

10 days, the Welch’s graphical procedure is applied as seen in the following figure. The chosen length 

of the warmup period is 25 days. 

 

Number of replications 
Using the sequential procedure of Law (2015) with an alpha and relative error of 0,05, the results are 

as follows, determining the required number of replications to be 3. 

 

 

 

 

  

noRepl TotDist Average StDev Tstatistic Delta Error Validation alpha 0,05

1 5677,90 5677,90 0 0 0 0 false relative error 0,05

2 5543,55 5610,73 95,00 12,7062 853,5348 0,152125 false

3 5585,48 5602,31 68,74 4,302653 170,7548 0,030479 true

4 5624,83 5607,94 57,24 3,182446 91,08587 0,016242 true

5 5643,29 5615,01 52,03 2,776445 64,60667 0,011506 true



Master thesis - Improving the waste collection planning of Amsterdam 

 

79 
 

Appendix 8 - Implementation of the Amsterdam’s current planning 

methodology 
 

This appendix discusses the implementation of Amsterdam’s current planning methodology in the 

simulation model. Amsterdam’s current planning methodology is based on fixed emptying 

frequencies. This means that the interval between emptying a container two subsequent times is 

constant. To mimic the current planning of Amsterdam, we should therefore know the emptying 

frequencies of each container. As this information is not available, we try to approximate them for 

each container. This is done by relating the emptying frequency to the average fill level upon emptying 

of a container. Equation 11 shows that the two variables are directly related, as the other parameters 

in the equation are constants. Therefore, if the average fill rate achieved in reality can be approached 

in the simulation model, the average emptying frequency is also approximated.  

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑒𝑚𝑝𝑡𝑦𝑖𝑛𝑔 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦/𝑤𝑒𝑒𝑘 =  
𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑤𝑎𝑠𝑡𝑒 𝑑𝑒𝑝𝑜𝑠𝑖𝑡𝑒𝑑/𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟/𝑤𝑒𝑒𝑘 

𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑓𝑖𝑙𝑙 𝑙𝑒𝑣𝑒𝑙 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟𝑠 ∗ #𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟𝑠
 (11) 

 

This is done using the technique also used in Section 4.3 to find the interval length between emptying, 

using the container fill speed characteristics and the 𝐴𝑂𝑃. As the container fill speed characteristics 

are given, the 𝐴𝑂𝑃 is altered until the average fill level of containers upon emptying under the current 

planning methodology is approximated by that of the simulation model. The current the average fill 

level of containers upon emptying in Amsterdam Zuidoost is 53%. Experiments show that using an 

𝐴𝑂𝑃 of 0,15 the average fill rate of containers upon emptying is 50%. 

Using this 𝐴𝑂𝑃, the constant interval between emptying a container twice is determined which is then 

used to schedule containers. The timing decision for each container is solely dependent on the 

emptying interval and the same routing heuristics are used to solve the VRPSF, meaning that all 

improvements upon the current performance are made during the day assignment phase of the 

proposed solution approach. 

Mimicking the planning methodology of Amsterdam in the implemented simulation model, while 

ensuring similar emptying frequencies for each container, we achieve the following results: 2,14 

kilometers driven per collected ton of waste and a service level of 80,4%. The municipality currently 

estimates that, for the collection of household waste in Amsterdam Zuidoost, it drives an average of 

2,1 kilometers per ton of waste, so the outcome of the simulation are expected to be realistic. 
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Appendix 9 - Cost function timing penalty costs 
This appendix shows an example of the timing penalty costs function for a random container with the 

following characteristics: 

• Shape (week) = 1.6 

• Scale (week) = 316.12 

• AOP = 0.25 

• SCRC = 6.9 

• CFA = 0.45 

• DED = 5 
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Appendix 10 - Full results of sensors experiment 
 

   
Sensor information 

CFA 
method 

Penalty 
scaling 

AOP Without sensors 
 

With sensors 
 

∆ (%) 

   
Dist SL 

 
Dist SL 

 
Dist SL 

CC Medium 0,05 2,26 0,886 
 

2,26 0,886 
 

-9,8% +1,4% 

0,10 2,16 0,868 
 

1,92 0,889 
 

-11,3% +2,4%   
0,15 2,07 0,858 

 
1,82 0,879 

 
-11,8% +2,5%   

0,20 1,95 0,841 
 

1,79 0,861 
 

-8,2% +2,4%   
0,30 1,89 0,796 

 
1,73 0,835 

 
-8,3% +4,9% 

CP Low, low 0,05 2,11 0,869 
 

2,02 0,885 
 

-4,2% +1,9% 

0,10 2,00 0,849 
 

1,90 0,877 
 

-4,7% +3,3% 
  

0,15 1,92 0,833 
 

1,82 0,870 
 

-5,6% +4,4%   
0,20 1,87 0,800 

 
1,78 0,851 

 
-4,8% +6,4% 

  
0,30 1,81 0,757 

 
1,72 0,824 

 
-4,8% +8,9% 

 

Medium 0,05 2,37 0,905 
 

2,15 0,911 
 

-9,4% +0,6%  
0,10 2,24 0,884 

 
2,01 0,899 

 
-10,6% +1,7%   

0,15 2,15 0,868 
 

1,92 0,893 
 

-11,0% +2,9%   
0,20 2,01 0,852 

 
1,83 0,878 

 
-8,7% +3,0%   

0,30 1,90 0,803 
 

1,76 0,848 
 

-7,7% +5,6% 

CI Low, low 0,05 2,09 0,862 
 

2,02 0,881 
 

-3,4% +2,2% 

0,10 1,97 0,839 
 

1,89 0,868 
 

-4,2% +3,4%   
0,15 1,88 0,815 

 
1,81 0,856 

 
-3,9% +5,1%   

0,20 1,85 0,780 
 

1,74 0,840 
 

-5,7% +7,7%   
0,30 1,75 0,724 

 
1,69 0,809 

 
-3,5% +11,7% 

 

Medium 0,05 2,36 0,900 
 

2,17 0,914 
 

-8,0% +1,6%  
0,10 2,18 0,873 

 
1,99 0,900 

 
-8,6% +3,0%   

0,15 2,06 0,855 
 

1,87 0,889 
 

-9,3% +3,9%   
0,20 1,92 0,827 

 
1,80 0,872 

 
-6,0% +5,5%   

0,30 1,83 0,758 
 

1,73 0,838 
 

-5,6% +10,5% 

 

High, high 0,05 2,37 0,904 
 

2,15 0,913 
 

-9,4% +0,9% 
 

0,10 2,28 0,885 
 

2,01 0,898 
 

-11,9% +1,5%   
0,15 2,19 0,870 

 
1,92 0,889 

 
-12,3% +2,3%   

0,20 2,09 0,859 
 

1,83 0,880 
 

-12,1% +2,4% 
  

0,30 1,95 0,820 
 

1,77 0,847 
 

-9,3% +3,2% 

 

 

 


