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ABSTRACT

In the following, a simulation study was conducted in order to examine the effects of clustering

on the precision of the model parameter estimates. One assumes that estimates will appear to be

biased when disregarding part of the random effect structure. When taking clustering effects out

of the equation more information will be assumed than the data actually contains, which leads to

an overstatement of the precision and to false claims about statistical significance. The other way

around, an overestimation of the random effect  structure will imply non-existing correlations

between observations, which leads to an underestimation of the precision.  In order to test this

assumption, simulated data is used to examine the under- and overestimation of the precisions.

Furthermore, we are interested in the bias of standard error estimates of the fixed effects, when

mis-specifying the clustering effects. Statistical analysis of p-values and standard errors of the

intercepts and fixed effects in the Linear Mixed Effect Model and Linear Model showed that

failing to account for  clustering effects leads to extreme and biased outcomes which in turn will

lead to false conclusions.  Moreover, it was found that when dealing with negatively clustered

data, ANVOCA, LME and LM falsely proposed that there was no evidence for clustering. 

Keywords:  Clustering  effects,  Linear  Mixed  Models,  Model  fit,  simulation  study,
random intercept model 

1. Introduction 

Clustered designs play a major role in educational (Barcikowski, 1981) and clinical and

health research, especially in intervention-related studies, where individuals need to be assigned

to groups (Lee & Thompson, 2005) in order to test whether there is a difference in intervention
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or treatment effects (Galbraith, Daniel & Vissel, 2010). As they thereby build the foundation of

the majority of biological research it is of importance that research is conducted with appropriate

statistical  methods  of  analysis  in  order  to  produce  valid  and  robust  conclusions  (Galbraith,

Daniel & Vissel, 2010). A sampling design is regarded as clustered whenever it can be classified

into a number of distinct groups with having more than at least two levels, namely one individual

and one group level (Galbraith et al., 2010). This key feature gives the data the hierarchical, also

called multilevel  nature and assumes that within groups have more similarities  than between

groups, which implies correlated observations within a group (Galbraith et al., 2010). 

When analyzing  hierarchical  data  the  intra-class  correlation  (ICC) coefficient  plays  a

central  role  as  above  described  correlation,  also  called  similarity,  dependency  or  non-

independence within a group, is measured by the ICC (Pryseley et al., 2011; Galbraith et al.,

2010; Baldwin, Murray & Shadish, 2005). Hence, the ICC coefficient is the quantitative measure

of variance accounted for by clustering effects. Thus, the greater the ICC rate the stronger is the

design effect due to similarity within groups (Dorman, 2008). The ICC can be both positive and

negative as a common correlation (Kenny & Judd, 1986). According to Pryseley et al. (2011),

negative  correlations  can  be  interpreted  as  negative  within-unit  correlation  suggesting

dissimilarity within the cluster.  Further,  Pryseley and colleagues (2011) assume that negative

ICC values  arise as  a  result  of  unstable  variance  or  covariance  which  in  turn  is  hindering

convergence. This hampering can be decreased by increasing sample and cluster sizes. Hence

they  argued  that  small  sample  and  cluster  sizes  are  a  supporting  factor  of  negative  ICC.

Moreover,  it  is  suggested  that  this  negative  variance  component  is  rather  normal  for  linear

models with hierarchical data (Pryseley et al., 2011). Other researchers suggested that negative
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within-group  correlation  values  can  arise  from  compositional  or  non-random  sampling  as

dissimilar units might be sampled (Kenny & Judd, 1986; Wang, Yandell & Rutledge, 1992). 

Handling clustered data seems to pose an issue on researchers as the methods of handling

clustering are not well developed nor widely understood yet (Galbraith et al., 2010). Thus, when

encountering  clusters  researchers  have  assumed  that  the  observations  within  the  data  are

independent and thereby ignored the clustering effects and used the individual mean as the unit

of analysis (Galbraith et al., 2010; Barcikowski, 1981). Another approach applied by researchers

is to include the clustering effect as a factor in a regression model. However, this approach fails

to allow for a within-group cluster comparison as ANOVA is only able to represent information

from one treatment group. Therefore, the information is not sufficient to estimate both group and

fixed effects for the clusters (Galbraith et al., 2010). When negative ICC values were obtained,

Wang and colleagues (1991) showed that researchers tend to ignore these values altogether by

either setting the ICC to zero or simply not reporting the obtained values.

However, approaching clustered data in the afore-described manner poses several issues.

Ignoring  the  clustering  effect  when conducting  analysis  is  considered  incorrect  according to

Barcikowski (1981) as it will yield inappropriate outcomes of clustered data since the analysis of

significance is only executed on one level. In other words, when researchers choose one  level

over the other they run the risk of either losing statistical power when ignoring the individual

level, or putting the internal validity at stake by running the analysis solely on the individual

level (Barcikowski, 1981). When the clustering level is chosen as the unit of analysis, individual

differences are lost which results in the fact that the effect of individual variability cannot be

determined in a proper way. Moreover, the numbers of clusters are normally small within each

intervention condition, and with this limited sample thereby one runs the risk of only detecting
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large differences  and hence increasing the Type II error rate (Barcikowski,  1981).  The more

common way is to analyze for significance only on the individual level and ignoring clustering

effects of the data by using statistical techniques as the linear regression model or fixed effects of

variance models. These models treat all observations as independent from each other and solely

focus on individual  differences.  However,  it  is  crucial  to take into account  that by grouping

individuals together, even in randomized samples, individuals are influenced and will influence

each other and thereby creating a so-called class effect  (Barcikowski,  1981; Dorman,  2008).

Therefore, individuals who are being observed in clusters require for individual-level analysis to

take this clustering effect into account in order to maintain a nominal Type I error rate for the

fixed  effects  (Matuschek,  Kliegl,  Vasishth,  Baayen  &  Bates,  2017).  Furthermore,  ignoring

clustering effects can lead to over-precise estimates and too extreme p-values as the differences

between clusters are ignored (Lee & Thompson, 2005). 

 This paper will  focus on the latter  approach when clustering effects  are ignored and

analysis is carried out on the individual level. Therefore, the goal of this study is to investigate

possible consequences when clustering effects are ignored in nested data. More specifically, it is

aimed to examine to what extent bias in the model estimates like standard errors and p-values of

fixed effects and intercepts can occur when ignoring any clustering in the data. Furthermore,

focus will be laid on whether there is a difference in ignoring negative or positive within-cluster

correlations. Lastly, this study is going to test if there is sufficient evidence for clustering effects

when dealing with negative or positive clustering.
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2. Methods 

2.1 Models 

 In order to execute the aforementioned research goals of this paper, following models are

the focus of this simulation study. 

2.1.1 Linear Model (LM)  

yij=β 0+ β 1 x+εij     (1)

where y is the dependent variable for the unit i in cluster j, with i=1,... , n , the x  as the 

independent variable, β 0 is the intercept and β 1 x the slope of the regression line. 

2.1.2 Linear Mixed Effects Model (LME)  

yij=Xβ+Zu+εij   (2a)

    with β∼N (μ , σ )

(2b)

where y  is the outcome variable for the unit i in cluster j, X  is the matrix of the 

predictor variable, β  the column vector of the fixed-effects regression coefficients, Z is the

design matrix for the random effects with u as the vector and ε  is the error term 

accounting for the part of y  that is not explained by the rest of the model. In the simulation 

study the LME model consisted of a random intercept and a fixed effect of the independent 

variable, which will be referred to as Betaf. 
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2.2 Procedure 

    In this study, a Monte Carlo simulation was conducted.  The data were generated under

an LME model, which can generate data with observations in a cluster that are positively 

correlated. Data that had negatively correlated observations in a cluster were generated according

to a multivariate model with a covariance matrix displaying the dependence structure in a cluster.

In order to test the research goals, the parameters were re-estimated with lmer which accounts for

positive correlation and with lm in order to compare how the results change when the correlation 

in the data was ignored. 

2.3 Design 

A Monte Carlo simulation study consisting of one condition the strength of cluster 

dependence, with a= 20 clusters and n= 5 observations within clusters, running the simulation 

with 1000 replications, was executed. As one of the goals was to investigate whether there was a 

difference in ignoring positive or negative correlation, the simulation included 15 values of 

correlation ranging from -.19 to no correlation (.00) up to a positive correlation with the highest 

one being .20. As a large sample and cluster size can adjust and compensate for negative 

correlation (Pryseley et al., 2011) a relatively small cluster size was chosen of a= 20. 

Furthermore, the study aimed to investigate whether an incorrect random intercepts model had a 

negative influence on the other estimates within a statistical model. Therefore, p-values of 

intercept and fixed effects were computed within an LME and ANCOVA model in order to 

examine any biased pattern in the form of extreme p-values. The same was executed for the 

standard error in order to test whether Type I and II errors were increased as it was hypothesized.
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Lastly, the study's goal was to find sufficient evidence for clustering effects. Therefore, 

the p-value for testing the significance of clustering under ANVOCA and the ANOVA test under 

LME were computed. In order to check whether the LME or LM fits the data best, the Bayesian 

Information Criterion (BIC) was computed to choose the best fitting model, where the model 

with the smallest BIC value was preferred. Finally, the probability of a within-cluster correlation 

being larger than zero was computed for each value of correlation under a multivariate statistical 

model, as this multivariate model can include both negative and positive correlations and was 

expected to give appropriate results. 

3. Results 

As expected, both LM and LME as models of analysis produced biased estimates of the

measurement error variance (sigma) when true values of correlation were negative. As can be

seen in Table 1, sigma estimates for LME ranged from .826 to .995 and constantly increased with

higher correlation values. It was expected that the LME would yield better results for positive

correlations. LM cannot handle correlations and was expected to produce biased estimates for the

variance in case of correlated outcome data. However, with LM values between .901 and 1.091,

better  results  were  obtained  than  expected.  Moreover,  it  can  be  concluded  that  the  residual

variance  estimates  under LM did not suffice from positive correlations  in the data  since the

estimated  values  for  the  error  variance  ranged from 1.018 to  1.091 for  the  highest  positive

correlation.  In  accordance  with  beforehand  made  assumptions,  the  ANCOVA  is  able  to

appropriately  estimate  the error  variance  across  both negative  and positive  correlations  with

values being approximately or close to 1. 
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Moreover,  as  can  be  seen  in  Table  2  the  analysis  results  of  the  slope  and  intercept

estimates for LM, LME and ANCOVA show that  these estimates are affected by neither the

negative nor the positive correlations. The values for the fixed effect (Betaf) were close to the

true value of .1 and imply that the results were not biased. Furthermore, it becomes visible that

the values for all three models of analysis are quite similar when considering the estimates for

the fixed effects, once again confirming that changing the correlation did not have an influence

on the fixed effect estimates. 

Table 3 displays the p-values of the (Betaf) effect of the predictor variable and intercept

estimates. It can be seen that when testing for this intercept with a true value of 0 as the null

hypothesis the p-values for the intercept for the LM and LME display quite extreme ranges for

the intercept estimates for both negatively and positively correlated data. The highest negative

correlation yields a p-value of .842 and the highest positive correlation displays a value of .497

for the LME and .424 for the LM. From this, it can be inferred that the t-test is not appropriately

measuring statistical significance but is assuming more information than there actually is for the

positively correlated data and underestimates the information for negative correlations. Coming

to the results of the fixed effect, Betaf, it can be seen that both models produce similar values,

namely  being  around  .376  for  both  negative  and  positive  correlation.  Hence,  no  difference

between the models is to be seen once again which in turn is accounted by the non-differing

means of the fixed effect Betaf. This demonstrates that when the correlation is ignored, statistical

tests of significance will produce biased p-value results. 

When analyzing the values of the standard error of the fixed effect in LM and LME one

aspect strikes odd. When looking at Table 4 one sees that the measurement of standard errors for

the two models  are exactly the same for the slope effects (Betaf). This goes against expectations
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as  a  difference  was  expected.  One  would  expect  that  the  LME fits  better  for  the  positive

correlations than  LM. The results suggest, however, that there is no impact on the estimations of

the slope with varying positive correlations. Further, the standard errors of the intercept estimates

were computed and compared for LM and LME. Here, similar results can be observed. Both

models produced similar standard error estimates with values ranging from .091 to 0.109. It can

be seen that standard error estimates for both models become larger as true values of correlation

increase which is opposed to the expected assumption. 

Another goal of this study was to investigate whether we can find sufficient evidence for

clustering effects. In comparison to each other, the LM is always chosen over the LME model

which  suggests  that  the  BIC is  not  a  powerful  method for  detecting  evidence  of  a  positive

clustering in the data. The LM does account for any correlation in the data, yet the BIC suggests

that the LM is to be preferred and that there is, therefore, no evidence for clustering effects.

Concluding  from  that  it  means  that  the  BIC  is  not  measuring  sufficiently  the  support  for

clustering in the data. When looking at the p-values for ANCOVA and the LME it becomes clear

that these two methods as well fail to identify any clustering effects and falsely claim that there is

no sufficient evidence when using  a significance level of .05. The p-values for the negative

correlation are exactly 1.0 in both methods and become increasingly smaller for the positive ones

with .097 for the highest positive correlation in ANCOVA and .209 for the random intercept,

which is low. Lastly, it can be seen that the estimations under the multivariate model, which

incorporates both negative and positive correlation, seem to be sufficient. When considering the

probability  that  the  correlation  is  positive  under  the  multivariate  model,  P(tau>0),  i.e.,  the

probability of the correlation being greater than 0, we get a probability of 0 for the negative

correlation, which is in accordance with the assumption since a negative correlation is smaller
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than 0, it is not likely to yield larger probabilities. With increasing true values of correlation, the

probability as well rises suggesting that for a correlation of .20 the probability that the correlation

is  greater  than  0  equals  93.9% (.939)  and for  no  correlation  52.2% (.522).  Based on these

findings, it can be concluded that the multivariate model is the sufficient method of analysis in

this comparison that accounts for both negative and positive clustering and yields appropriate

evidence. 

4. Discussion 

The main purpose of this simulation study was to investigate the effects of clustering in

the  data  and  to  examine  its impact on  the  model  estimates  when  correlation  is  ignored.

Furthermore, it was aimed to test whether there was a difference in ignoring negative or positive

correlation  and  if  there  was  sufficient  evidence  for  clustering  effects.  For  these  goals,  a

simulation study was executed in RStudio with focus on standard error and p-value estimates for

the intercept and fixed effect and model comparison in order to investigate clustering effects. The

model comparison shows that leaving out correlation will result in false statistical outcomes as

the BIC always seem to favor the LM model, which does not account for any correlation, as the

preferred method of analysis over the LME. Moreover, ANCOVA and the random intercept of

the LME produced extreme p-values for both negative and positive correlation. The multivariate

model, however, yielded sufficient results and showed proper support for clustering in the data.

Further, results showed that both standard errors and p-values are biased and produce extreme

values with standard errors of the intercept being too low for positive correlations and too high

for negative ones. P-values of the intercept show that the statistical test of significance fails to

produce valid conclusions when clustering is not taken into account.  These findings are in line
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with  research  done  in  the  past.  Dorman's  (2008)  study  of  clustering  effects  in  classroom

environments illustrated that ignoring even moderate ICC values (i.e., .05 < ρ < .10), will lead to

inflated Type I error rates. Further, the study conducted by Galbraith and colleagues (2010) as

well demonstrate that correlation within clustered data needs to be taken into account in order to

avoid extreme p-values. 

When computing p-values and standard error estimates for the fixed effect in LME and

LM it becomes clear that the values do not differ from each other, which was probably caused by

the fact that the groups did not differ for the fixed effect but differed for the intercepts. For future

research, it might be interesting to also use random slopes in order to investigate how clustering

effects influence them. The current study does not take this into account which produced results

that do not differ and thereby suggest no impact as now. However, it is possible that the bias

cancel each other out, which can be an explanation for the values produced in this study. 

Another  remark for  future  research  is  to  create  more  conditions  in  order  to  compare

varying cluster and sample sizes, and more fixed effects. That way more insightful information

can be gained . 

Taking all  of the above-described results  into consideration,  it  can be concluded that

clustering effects do have an important effect on the model parameters and estimations. Leaving

them out will lead to bias, suggesting either statistical significance when there is none or the

other  way around.  It  is  thus  recommended to choose  appropriate  statistical  models,  like  the

multivariate  model,  that  can  account  for  both  negative  and  positive  correlation  and  thereby

produces more accurate results. As clustered data plays a major role in biological, health and

educational research, it is important to appropriately account for clustering effects as otherwise

false scientific outcomes will lead to wrong applications in real-life treatments and interventions.
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APPENDIX A  

 Table 1 

Sigma estimates 

Tau Values sigma estimate
LM

sigma estimate LME sigma estimate ANCOVA 

-0.19 0.9010   0.8260 0.9980

-0.17 0.9120 0.846 1

-0.15 0.9260 0.849 1.009

-0.13 0.9360 0.877 1.007

-0.11 0.9420 0.903 0.9990

-0.09 0.9530 0.917 1

-0.07 0.9610 0.933 0.9960

-0.05 0.9710 0.942 0.9940

-0.03 0.9830 0.955 0.9990

-0.01 0.9910 0.969 0.9960
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0.00 0.9970 0.981 0.9970

0.05          1.018 0.987 0.9960

0.10          1.044 0.992 1

0.15          1.064 0.991 0.9990

0.20          1.091 0.995 1.002

Table 2 

Beta F and Intercept  estimates 

Tau 
Values 

Beta F LM Beta F 
LME

Beta F 
ANCOVA 

Intercept 
LM

Intercept 
LME

Intercept 
ANCOVA

-0.19 0.0960 0.096 0.0950 - 01 - 01 -0.0020

-0.17 0.102 0.1020 0.101 0.0010 0.0020 0.0070

-0.15 0.103 0.103 0.1040 0.0010 0.0010 0.0040

-0.13 0.097 0 0.0970 0.097 - 0.0021 - 01 0.0050

-0.11 0.098 0 0.0980 0.098 -0.0030 0.0010 0.0030

-0.09 0.102 0.1020 0.102 -0.0030 0.0050 0.0010

-0.07 0.099 0 0.0990 0.1 0.0010 -0.0030 -0.025 0

-0.05 0.102  0 0.102 0.103 -0.0020 0.0010 0

-0.03 0.098 0 0.0980 0.0980 -0.000 0.0060 -0.015 0

-0.01 0.1 0.101 0.102 -0.0010 -0.0030 -0.013 0
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0.00 0.09900 0.0990 0.1 -0.0020 - 01 0.0020

0.05 0.1 0.1 0.0990 01 0.0020 -0.0040

0.10 0.103 0.104 0.104 -0.001 0 -0.0010 -0.010

0.15 0.101 0.1 0.098 -0.0020 0.0010 0.0020

0.20 0.10 0.1 0.099 0.0040 0.0040 -0.017 0

 

Table 3 

P-Values of Beta F and Intercept estimates

Tau Values Beta F p-value 
LM 

Beta F p- value 
LME 

Intercept 
p-value LM

intercept p-
value 
LME

-0.19           0.3760         0.3760 0.8420 0.8420 

-0.17 0.37 0.370 0.7440 0.7440

-0.15 0.3660 0.3660 0.6820 0.6820

-0.13 0.3530 0.3530 0.6190 0.6190

-0.11          0.367          0.3720 0.5970 0.5970

-0.09 0.3670 0.3670 0.5850 0.586

-0.07          0.3580         0.3570 0.5460 0.548

-0.05 0.35 0.350 0.53 0.535

-0.03  0.339 0         0.3390 0.5310 0.541

-0.01 0.337 0.3370 0.5220 0.538

0.00 0.37 0.3690 0.5170 0.535
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0.05 0.374 0 0.3690 0.5170 0.511

0.10 0.363 0.3560 0.4750 0.505

0.15 0.358 0.3470 0.4530 0.493

0.20 0.375 0.3540 0.4240 0.497

Table 4 

Standard Error of Beta F and Intercept estimates 

Tau Values SE Beta F LM SE Beta F LME SE Intercept LM SE Intercept
LME

-0.19 0.0910 0.0910 0.0910 0.0910

-0.17 0.0960 0.0960 0.0920 0.0920

-0.15 0.0970 0.0970 0.0930 0.0930

-0.13 0.0930 0.0930  0.0940 0.0940

-0.11 0.0940 0.0940  0.0970 0.0970

-0.09 0.0960 0.060  0.0960 0.0970

-0.07 0.0970 0.09370 0.0980 0.0990

-0.05 0.1030 0.1030 0.9900 0.1

-0.03 0.090 0.090  0.0980 0.1010

-0.01 0.1090 0.1090 0.0990 0.1040
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0.00 0.1210 0.120 0.1 0.1

0.05 0.0920 0.0910 0.1020 0.1060

0.10 0.1060 0.1040  0.1050 0.1130

0.15 0.1080 0.1040 0.1070 0.1220

0.20 0.1070  0.10600 0.1090 0.1310

Table 5

Evidence for clustering effects 

Tau
Values 

ANCOVA p-
value

LME p-
value

random
intercept

BIC LM BIC LME  P(tau>0) 

-0.19 1.0 1 274.122 278.7915 0

-0.17 1.0 1 276.565  282.3918 0

-0.15 0.9950 1 279.738  282.8716 0

-0.13 0.9730 1 281.829 286.436 0.0060

-0.11 0.9320 1 283.153  287.8727 0.0290

-0.09 0.8630 0.9920 285.38  289.4982 0.0880

-0.07 0.7860 0.9770 287.155  292.5436 0.160

-0.05 0.7030 0.9450 289.117  293.5946 0.2630

-0.03 0.6110 0.8990 291.703  296.1523 0.3640

-0.01 0.5440 0.8340 293.338  298.2549 0.4580

0.00 0.4840 0.7980 294.531  298.7387 0.5220

0.05 0.3060 0.6170 298.667  302.25 0.6960

0.10 0.2120 0.440 303.668  306.4986 0.8170
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0.15 0.1370 0.320 307.515  308.7636 0.8860

0.20 0.0970 0.2090 312.466  312.0494 0.9390


