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Abstract

Loss given default (LGD) is one of the key parameters banks need in order to estimate expected

and unexpected losses. These losses are necessary for credit pricing and for the calculation of the

regulatory requirements regarding Basel III. Loss given cure (LGC) and loss given liquidation

(LGL) are the components used in the LGD model for retail mortgage portfolios of Rabobank.

In particular, this study focuses on the modelling of the LGL component. LGL depends on the

recovery cash flow data of defaulted loans. The main difficulty in modelling LGL is incorporating

the incomplete recovery cash flow data.

This study makes use of the statistical technique of survival analysis (SA) in order to solve

this main difficulty. It uses the modelling and validation choices from earlier studies that satisfy

regulatory requirements. The two used SA methods, the Cox Proportional Hazards model and

the Extended Cox model, examine the effects of risk drivers on the length of repayment of a

monetary unit.

With the models, Rabobank can estimate LGL for newly defaulted loans. At the same

time, Rabobank gets insight into what drives high LGL estimations and what drives low LGL

estimations. The models scored high on discriminatory power and calibration. Therefore, our

results show high potential of applying SA in the modelling of the LGL component, used in the

LGD model for retail mortgage portfolios.

Keywords— LGD Modelling, Retail Mortgage Portfolios, Survival Analysis, Cox Proportional

Hazards Model, Loss Given Default
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Executive summary

The goal of this study is to determine the potential of the application of survival time analysis

as an alternative to the state of the art loss given default (LGD) model for retail mortgage

portfolios of Rabobank. LGD is one of the key parameters banks need in order to estimate ex-

pected and unexpected losses. In general, there are two approaches to model LGD, a structural

and a non-structural approach. Rabobank uses a structural approach to estimate LGD and for

this purpose, it models two different scenarios for mortgages, a cure scenario, and a liquidation

scenario. For both scenarios, it models the probability of the scenario being realized and the

expected loss. This study focuses on the expected loss in the liquidation scenario, the loss given

liquidation (LGL) component of the LGD model.

Rabobank uses the recovery processes of resolved defaulted cases in the model estimation and

calibration for LGL. The regulator requires to incorporate incomplete recovery processes of

unresolved defaulted cases as well. However, this is more difficult since only a part of the

recovery process is known. Therefore, this study examines the application of survival time

analysis in the model estimation and calibration for LGL.

Data preparation

Survival analysis is a branch of statistics that models the time until an event happens. This

technique allows incorporating incomplete recovery processes as censored data. First, we need

to transform the original retail mortgage dataset of Rabobank in one suitable for survival

analysis methods. The original one contains information on the repayments of monetary units

of defaulted loans, as well as information on possible risk drivers (explanatory variables). The

main data preparations done in this study are the following.

• Transformation of cash flows

• Treatment of negative cash flows

• Censoring of events

Modelling choices

This study uses three different survival analysis methods. The first method examines the overall

survival of the retail mortgage data whether the other two examine the effects of explanatory

variables on the survival rate. The latter methods use a stepwise selection in order to choose

the variables. The three survival methods used are the following.

• Lifetime methods

• Cox Proportional Hazards model
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• Extended Cox model

Validation choices

This study uses two fundamental aspects to validate the models: discrimination and calibration.

Discrimination refers to the rank order of different estimations whereas calibration refers to the

accuracy of the estimations on average. The data are randomly split into an 80% training set

and a 20% test set in order to train, test and validate the models. The performance metrics

used are the following.

• Loss Capture Ratio (LCR) (Li et al., 2009)

• Spearman’s rank correlation coefficient (Zwillinger & Kokoska, 2000)

• Kendall’s rank correlation coefficient (PSU, 2019)

• Concordance index (C-index) (Harrel et al., 1982)

• Loss Shortfall (LS) (Li et al., 2009)

Results and conclusion

Our results suggest that the Cox Proportional Hazards model scores better on discriminatory

power than the Extended Cox model. However, based on calibration the Extended Cox model

scores better than the Cox Proportional Hazards model. Overall, the models scored very high on

discriminatory power and calibration in comparison with other credit portfolios of Rabobank.

Returning to the goal of this study, our results show high potential of applying survival anal-

ysis in the modelling of the LGL component, used in the LGD model for the retail mortgage

portfolios. This results in an alternative to the state of the art LGD model, Rabobank uses,

satisfying regulatory requirements. The outline of this study gives insight into the major data

preparations and modelling choices used in order to apply survival analysis methods in the

modelling of the LGL component.
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1 Introduction

1.1 Background

Loss given default (LGD) is one of the key parameters banks need in order to estimate expected

and unexpected credit losses. These losses are necessary for credit pricing and for the calculation

of the regulatory requirements regarding Basel III. Financial authorities determine which models

banks should use for these calculations. Currently, Rabobank uses an internal rating based

(IRB) approach for LGD estimations. With this approach, banks can use their internal rating

systems to determine credit risk (BCBS, 2017).

1.1.1 Rabobank

Rabobank Group is a cooperative international financial services provider. It offers services

in different sectors with a focus on retail banking, wholesale banking, and food & agriculture

internationally. The organization currently operates in 44 countries with currently 106 local

banks in the Netherlands. Rabobank provides a full range of financial services to over 7.6

million Dutch individuals (Rabobank, 2019).

1.1.2 Risk management framework

Rabobank maintains a risk management framework to identify, assess, manage, monitor and

report risks. Therefore, it develops models for various risk types. The models most widely

used are the ones developed for credit, market and operational risk (Rabobank, 2018). The

Group Credit Models (GCM) department is responsible for the design and maintenance of the

credit risk models. This group consists of ten different teams. One of these is the Mortgages and

Consumer Finance team which is responsible for the development of the LGD model constructed

for the calculation of the required capital for the retail mortgage portfolio.

1.1.3 Credit risk model framework

Credit risk within Rabobank is defined as: “the risk of the bank facing an economic loss because

the bank’s counterparties cannot fulfill their contractual obligations” (Rabobank, 2018). Credit

risk models quantify the risk related to a credit contract. The credit risk model framework used

within Rabobank consists of three different parts. First, the probability of default (PD) which

estimates the probability that a client will be unable to meet its debt obligations in the next

12 months. Second, the exposure at default (EAD) which represents the expected exposure at

the moment of default. Lastly, the loss given default (LGD) which estimates how much of the

exposure at default the bank could expect to lose.
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1.1.4 LGD model

In general, there are two approaches to model LGD, a structural and a non-structural approach.

A non-structural approach estimates LGD directly by relating observed historical losses and

recoveries with risk drivers of defaulted loans. A structural approach splits the model into

several components and for each component, a separate model is developed. The final model

combines the probabilities and outcomes of the components to estimate LGD.

Rabobank uses a structural approach to estimate LGD. It models two different scenarios for

defaulted mortgages, a cure scenario, and a liquidation scenario, in case of other portfolios

there could be more scenarios. Cure is the scenario where a defaulted facility (non-performing

portfolio) returns to a performing portfolio through the repayment of arrears and the completion

of a probation period. The liquidation scenario refers to the liquidation of the collateral, pledged

savings and a collection of other cash-flows.

Figure 1: Structure of Loss Given Default Model.

Figure 1 shows the structure of the LGD model. The probability of cure (Pcure) refers to the

probability of the cure scenario being realized. The loss given cure (LGC) refers to the expected

loss in that scenario. The probability of liquidation (1− Pcure) refers to the probability of the

liquidation scenario being realized. The loss given liquidation (LGL) refers to the expected loss

in that scenario. The indirect costs component is added on as an overall adjustment to the

LGD and is not estimated separately for cure and liquidation scenarios.

1.2 Research proposal

1.2.1 Problem statement

Loss given cure (LGC) and loss given liquidation (LGL) are the components used in the LGD

model for retail mortgage portfolios of Rabobank. The EBA/GL/2017/08 (2017) require that
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banks compute these loss components from cash flow data. This data consist of all (potential)

post-default cash flows. These cash flows should be discounted to the point of default because

of the time lag between default and recovery.

One difficulty with LGL is estimating the potential post-default cash flows. This must be done

for performing and non-performing portfolios. Performing portfolios might go into default some

time in the future and therefore, estimations on potential post-default cash flows need to be

made. Non-performing portfolios are currently in default but are not yet resolved (an unresolved

case). This means that not all defaults in the model development dataset are currently solved

in either a cure or a loss. Therefore, in order to estimate economic loss for unresolved cases,

estimations on potential future cash flows need to be made as well.

The recovery process of resolved cases is used in the model estimation and calibration for

LGL. Although the behavior and distribution of unresolved cases can be different from the

set of resolved cases, e.g., due to business cycles, the regulator requires to incorporate these

unresolved cases (incomplete recovery processes) as well (EBA/GL/2017/16, 2017a). This is

because excluding these unresolved cases from the dataset can cause a significant bias and

estimation error. Currently, these unresolved cases are included in the model with adjustments

to the scale parameters.

For credit pricing and for the calculation of the regulatory requirements regarding Basel III

it is important to have good and accurate estimations on potential post-default cash flows

for both performing and non-performing portfolios. The main difficulty in modelling LGL is

incorporating the incomplete recovery process of unresolved cases. Therefore, the main problem

statement is defined as follows: Incorporating unresolved cases in the model development and

calibration of LGL can be difficult.

Earlier studies showed the potential of the statistical technique of survival time analysis to

incorporate unresolved cases in the modelling of LGD. An advantage of this technique is that it

allows utilizing censored default data in order to make LGD estimations (Witzany et al., 2010,

Privara et al., 2013, Zhang & Thomas, 2012).

1.2.2 Research goal

The goal of this study is to determine the potential of applying survival time analysis techniques

in the LGD model estimation and calibration for retail mortgage portfolios. Survival analysis

(SA) is a branch of statistics that models the time until an event happens. The event can

be for example a recovery cash flow of a monetary unit, liquidation or cure. The time until

such an event happens is called survival time. The subjects in SA are the persons exposed to

the risk of the event. One strength of SA is that it can handle the censoring of observations.
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Censored observations concern subjects that have survived until a point in time but no further

information is available, which applies for unresolved cases. For the LGL component, the total

amount of EAD can be seen as the subjects in the study where the repayment of each monetary

unit of a defaulted loan can be seen as the event of interest and the survival time can then be

seen as the time to the repayment of each monetary unit.

1.2.3 Research questions

In order to reach the goal of this study, we formulate the following main research question and

sub-research questions.

Main research question: What is the potential of applying survival analysis methods for esti-

mating LGL and which metrics should be used to evaluate the performance of these methods?

Sub research questions:

• What is the current LGL model development procedure?

• What is survival analysis and its major advantage with respect to the modelling of LGL?

• Which modelling choices should be made when applying survival analysis in the LGL

model?

• How to include time-dependent variables, including recoveries realized so far, into the

modelling of LGL?

• Which metrics should be used to evaluate the performance of the LGL models?

1.2.4 Methodology

In order to reach the goal of this study, first, we explain the structure of the currently used

LGD model and workout method to obtain some understanding of the currently used methods

and modelling choices. Afterwards we discuss which modelling choices should be made when

applying survival analysis in the LGL model. Rabobank provides data on retail mortgage

portfolios and we need to transform this dataset in one suitable for survival analysis methods.

Next, we use survival regression in order to estimate LGL. Then, we use different tools and

performance metrics to measure the performances of the models. Eventually, the results give

some insights in the application of survival analysis as an alternative to the state of the art

LGD model satisfying regulatory requirements.
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2 Theory

As discussed earlier, loss given default (LGD) is the full economic loss in case of a default.

Rabobank expresses this as a percentage of the exposure at default (EAD). This means that

LGD is the difference between the EAD and the sum of all (potential) post-default cash flows.

The cash flows should be discounted to the point of default because of the time lag between

default and recovery. The bank estimates LGD at facility level, which is a credit obligation or

a set of credit obligations.

LGD estimations need to be made for performing and non-performing portfolios. Performing

portfolios might go into default some time in the future while non-performing ones are currently

in default and may enter cure or liquidation phase. LGD estimations for performing portfolios

need to be appropriate for an economic downturn while for non-performing ones it should reflect

the sum of expected loss under current economic circumstances and possible unexpected loss

that might occur within the recovery period.

Rabobank uses a structural approach to model LGD. A structural approach estimates LGD by

calculating and combining estimates of all possible resolution scenarios (e.g., cure, restructuring,

liquidation). Normally, a structural LGD model can have several components. Within these

components, Rabobank estimates the probability of a certain scenario and the expected loss

in that scenario. Figure 1 showed the structure of the LGD model for the retail mortgage

portfolio. It models two different scenarios, a cure scenario, and a liquidation scenario.

A facility is in default when at least one of the default triggers has occurred. This definition

of default is in line with the CRR requirements and the recent EBA Guidelines on Definition

of Default (EBA/GL/2017/16, 2017b). The facility in default is cured when arrears go to

zero, costs are fully repaid to the bank and customer passes the probation period. The facility

in default is regarded liquidated when the house is sold, a facility is then resolved when the

collateral has been sold and all the retail mortgage loans have been terminated. Up until the

moment the house is sold it is not possible to differentiate between cure or liquidation process,

there is no legal condition to state that a customer has entered irreversible liquidation phases.

In particular, this study focuses on the loss given liquidation (LGL) component and how to

estimate this component using cash flow data. Therefore, in the remainder of this chapter, we

explain the current LGL model development procedure.

2.1 Workout method

The loss rate (LR) is the observed loss expressed as a percentage of the EAD, it basically

describes the LGL as a percentage of the EAD. This means that the LR is the difference
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between the EAD and the sum of all (potential) post-default cash flows. For every default,

cash flows can occur within a certain workout period. This period lasts from the moment a

portfolio goes into default until the default is resolved. The cash flows obtained during the

workout period need to be discounted back to the Default Event Date (DED). The complement

of the LR is the recovery rate (RR) and it is used to define the observed recovery expressed as

a percentage of the EAD.

2.1.1 Loss rate

To determine the LR, all cash flows within the workout period should be taken into account.

An overview of the different types of cash flows will be given later. The cash flows should be

discounted to the point of default, the Default Event Date (DED), to define the economic loss

and obtain the LR. Figure 2 illustrates this process, here PV(CF1) represents the present value

at the DED of cash flow CF1, and PV(CF2) represents the present value at the DED of cash

flow CF2. The loss rate for every facility is defined as follows

LR = 1− 1

EAD

T∑
t=1

CFt
(1 + r)t−t0

(1)

where CFt is the cash flow at time t, r is the discount rate of the facility, t − t0 is the time

between default date t0 and cash flow date t and T is the total number of cash flows. Incoming

cash flows will decrease the eventual loss of a default, while outgoing cash flows increase the

amount that needs to be repaid by the client.

Figure 2: Discounted cash flows.
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2.1.2 Costs

Rabobank should also include costs in the LR estimations. Costs can be split into direct costs

and indirect costs. Direct costs are the fees and expenses paid to external parties while indirect

costs are made within the bank during the workout period. The bank includes direct costs

directly in the LR estimations and it includes indirect costs as an add on top of the LGD.

2.1.3 Discount factor

The regulator defines which discount factor should be used for calculating the present value

of the cash flows. Currently, this is the twelve-months Euribor +500 bps (EBA/GL/2017/16,

2017a).

2.2 LGL Model

Rabobank uses all possible types of cash flows available for retail mortgage portfolios in the

workout method to determine the LR and RR. Historical data are not available on a more

granular level than the following categories:

• Collateral (i.e., property) sale - This is normally based on the most recent collateral

valuation in combination with the expected market value changes.

• Pledged savings - The bank has a legal claim on the value of the savings in the account

of the defaulted client.

• NHG claim - If a client has an NHG claim then the bank can make a claim on the NHG

insurance.

• Insurance - These additional recoveries may come from other insurance policies.

• Other recoveries - Related to recoveries other than residential real estate objects and

savings.

• Regress recoveries - These cash flows are associated with ”unsecured” recoveries.

• Direct costs - These are the costs directly associated with the recovery process.

• Drawdowns - This refers to the revolving mortgage exposure increase during the closure

process due to additional drawings.

As with the just described workout method, these cash flows should be discounted to the point

of default to produce an economic LGL. Figure 3 visualizes this process.
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Figure 3: LGL calculation.

2.3 Unresolved cases

One problem in determining the LR, and RR, is that not all cases are resolved, but still these

unresolved cases should be taken into account. Therefore, unresolved cases in the historical

default dataset need specific treatment, otherwise they will bias the LR if they were left un-

treated. Currently, these unresolved cases are included in the dataset in the same way as the

other model parameters but with some adjustments to the scale parameters. However, earlier

studies showed the potential of the statistical technique of survival time analysis to incorporate

these unresolved cases (incomplete recovery processes) in the modelling of LGD (Witzany et

al., 2010, Privara et al., 2013, Zhang & Thomas, 2012).

2.4 Survival analysis

Survival analysis is a branch of statistics that models the time until an event occurs. In survival

analysis, the time until an event occurs is called the survival time, because it gives the time

that a subject has ’survived’ over a certain time period. An event in survival analysis is called

a failure, because the event of interest is usually the death of the subject or another negative

event. Survival analysis can be used in different fields, as for example in reliability analysis

in engineering, duration analysis in economics or event history analysis in sociology. Witzany

et al. (2010), Privara et al. (2013), Zhang & Thomas (2012) proposed to model the recovery

process of a defaulted loan as a survival process. The total amount of EAD can then be seen

as the subjects in the study where the repayment of each monetary unit of a defaulted loan

can be seen as the event of interest. The survival time can then be seen as the time to the

repayment of each monetary unit. Since the event of interest is a repayment of a monetary unit

the failure is, in this case, a positive event. In the next chapter, we explain survival analysis

and the modelling choices made in more detail.
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3 Modelling methodology

In this chapter, we introduce the concepts and statistical notations that are essential in order to

apply survival analysis to the modelling of LGL. First, we provide an introduction in recovery

rates and an explanation of the structure of the recovery data.

3.1 Recovery Rates

The bank makes a distinction between realized and expected recovery rates (RR) together with

the complementary loss rate (LR). It calculates the realized RR from historical data with the

workout method, as discussed in the previous chapter, while it estimates the expected RR for

performing and unresolved non-performing cases. The workout method looks at the net recovery

cash flows. These cash flows should be discounted to the moment of default with a discount

rate r of 12-months Euribor + 500 bps (EBA/GL/2017/16, 2017a). As discussed earlier, LR

and RR are expressed as a percentage of the exposure at default (EAD), where LR = 1−RR.

The recovery rate for every facility is defined as follows

RR =
1

EAD

T∑
t=1

CFt
(1 + r)t−t0

(2)

where CFt is the cash flow at time t, r is the discount rate of the facility, t − t0 is the time

between default date t0 and cash flow date t and T is the total number of cash flows. We assume

that the recovery rate can never be smaller than 0 or larger than 1 and therefore LR = 1−RR

should lie in the interval [0, 1].

Figure 4 illustrates the typical situation of recovery cash flow data (Privara et al., 2013). The

vertical axis represents the specific month a loan went into default while the horizontal axis

represents the months after default. Typically, there is a maximum number of months, tmax,

for which we can observe recoveries. Here tstart and tend denote the first observed default and

last observed default, while ta denotes an observed default in the middle of the study period.

Figure 4: Structure of recovery data.
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Area A in Figure 4 covers all cases where full information about the recovery process of defaulted

loans is available while area B covers all cases where only partial information is available, which

we refer to as unresolved cases. Excluding cases from area B in the estimation of LGL can

cause a significant bias and estimation errors. In addition, the regulator requires to include

these unresolved cases (EBA/GL/2017/16, 2017a). This structure of recovery data is pivotal to

understanding when making a decision about the modelling techniques for LGL. This is also the

reason we introduce survival analysis as a modelling technique for LGL. One of the advantages

of survival analysis is that it can include the partially available information from area B.

3.2 Negative cash flows

The RR should lie in the interval [0,1] because of one of the properties of the survival function,

0 ≤ S(t) ≤ 1. Therefore, negative cash flows must be adjusted. In our case, costs for example

are negative cash flows. Earlier studies showed different possibilities of adjusting these cash

flows. According to Privara et al. (2013), we should use the following formula for all cash flows

CFt = max(0, repaymentt − costst) (3)

where CFt, repaymentt and costst are the cash flow, repayment and costs at time t. Witzany

et al. (2010) suggest to omit negative cash flows and adjust the exposure at default to the

cumulative RR in case it exceeds the original EAD. The regulator does not allow to change the

EAD after the moment of default (EBA/GL/2017/16, 2017a). However, all recoveries, including

those related to fees capitalized after default, should be included in the calculation of economic

loss. Therefore, we adjust negative cash flows by including them into the denominator of the

LR, while discounted to the moment of default. The regulator requires to discount the negative

cash flows in the same way as the positive cash flows, with Euribor 12-months interest rate +

500 bps (EBA/GL/2017/16, 2017a).

3.3 Survival analysis

The basic principle of survival analysis is to model the time until an event happens. In our

case, the event of interest is a repayment of a monetary unit of a defaulted loan. The following

concepts can be found in any statistics book about survival analysis. For a review of survival

analysis see Kleinbaum & Klein (2005), Klein & Moeschberger (2003).

The basic principle is as follows. Let T be a non-negative random variable as an instant

of exit of a subject, in our case a repayment of a monetary unit of a defaulted loan. The

probability density function f(t) and the cumulative distribution function F (t) express the

statistical properties of that random variable. The survival function is the complement of the
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cumulative distribution function, S(t) = 1− F (t), and it represents the cumulative probability

of the subject still being alive until time t. In our case, this means that the subject in the study,

the exposure of the defaulted loan, is not (fully) repaid by the end of the study period. The

survival function is therefore a representation of the LR. The hazard rate is defined as follows

h(t) =
f(t)

S(t)
(4)

and it represents the rate at which the subjects are exiting exactly at t given survival until t. In

our case, this represents the rate at which repayments of monetary units are happening exactly

at t. The cumulative of the hazard rate is defined as follows

H(t) =

∫ t

0

h(u)du. (5)

The complement of the cumulative hazard function is called the survival function and is derived

as follows

S(t) = exp[−H(t)] = exp
[
−
∫ t

0

h(u)du
]
. (6)

These are the most general concepts of survival analysis methods. The most popular imple-

mentation is the Cox Proportional Hazards model.

3.3.1 Cox Proportional Hazards (PH) model

The Cox Proportional Hazards model can be used to model the effects of explanatory variables,

in our case risk factors, on the survival function and enables larger flexibility than other types of

models. The model gives an expression for the hazard at time t with a given set of explanatory

variables, denoted by X. The hazard function for the Cox Proportional Hazards model is

defined as follows

h(t,X) = h0(t) exp[

p∑
i=1

Xiβi] (7)

where h0(t) is the baseline hazard function, X = (X1, X2, ..., Xp) is a vector of the explanatory

variables and β = (β1, β2, ..., βp) is the vector we try to estimate. There is no ’error’ term in this

model as the randomness is implicit to the survival process. The baseline hazard function is

assumed to be non-negative, constant over time and independent on the explanatory variables.

The baseline hazard function is the hazard function obtained when all explanatory variables

are set to zero. In our case, it represents the rate at which repayments of monetary units are

happening, without the effects of risk drivers. At the same time, the exponential expression

shown here is only dependent on the explanatory variables and does not involve t. The survival

function for the Cox Proportional Hazards model is derived from the hazard function. This
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function represents the survival at time t for a subject with X explanatory variables. The

survival function for the Cox Proportional Hazards model is defined as follows

S(t,X) = S0(t)exp[
∑p

i=1Xiβi] (8)

where

S0(t) = exp
[
−
∫ t

0

h0(u)du
]
. (9)

Here S0(t) is the baseline survival function and also dependent on time only. However, it might

be interesting to include time-dependent explanatory variables. Therefore, the Cox Proportional

Hazards model can be extended. This means that the explanatory variables for a given subject

can change over time. The Extended Cox model that includes both time-dependent and time-

independent explanatory variables is defined as follows

h(t,X(t)) = h0(t) exp
[ p1∑
i=1

Xiβi +

p2∑
j=1

δjXj(t)
]

(10)

where X = (X1, X2, ..., Xp1) is a vector of the time-independent explanatory variables and

X = (X1, X2, ..., Xp2) is a vector of the time-dependent explanatory variables. The vector

δ = (δ1, δ2, ..., δp2) represents the overall effect on the survival time of the time-dependent

variables and is not time-dependent. An assumption of this model is that the variable Xj(t)

can change over time but the hazard model provides only one value of the coefficients for each

time-dependent variable in the model.

3.3.2 Partial likelihood

The estimation of β is done by maximum likelihood methods. The estimates are derived by

maximizing a likelihood function, L. The likelihood function is an expression which describes

the joint probability of obtaining the data actually observed on the subjects in the study as

a function of the unknown parameters in the model being considered. The estimation of β in

survival analysis is done by a partial likelihood. This is because the full likelihood function

only considers the probabilities for subjects that fail, and does not take the probabilities for

censored subjects into account. The advantage of the partial likelihood function in comparison

to the full likelihood function is that it can maximize the proportion depending on β alone.

Normally, the partial likelihood is written as the product of several likelihoods, one for each K

failure times. At the kth failure time, Lk denotes the likelihood of failing at this time, given

survival up to this time. The likelihood function, L, is defined as follows

L = L1 × L2 × L3 × ...× LK =

K∏
k=1

Lk (11)
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where Lk is the portion of L for the kth failure time. The partial likelihood function focuses

only on subjects who fail but the survival time information prior to censorship is used for those

subjects who are censored. This means that a person who is censored after the kth failure time

is still part of the risk set used to computed Lk. The censored subjects are in this way included

in the analysis.

In order to estimate β the likelihood function needs to be maximized. This is done by maximiz-

ing the partial derivatives of the natural log of L with respect to each parameter in the model.

In order to obtain this maximization of the natural log of L, the following equation should be

solved

∂lnL

∂βi
= 0 (12)

where i = 1, ..., p. Appendix A provides a more detailed and mathematical explanation of

survival analysis and likelihood methods.

3.4 Censoring

One of the main advantages of survival analysis is that it can handle censored data. Censored

data exist when information about the time until an event happens is only known for a certain

period of time, as is the case for unresolved defaults. There are different possible censoring

types: right censoring, left censoring and interval censoring. Right censoring deals with data

where the subject is still alive by the end of the study. Left censoring deals with data where the

subject has experienced the event of interest prior to the start of the study. Interval censoring

deals with data where the subject has experienced the event in some specific time interval. We

only use right censored data in the modelling of LGL. Figure 5a shows an example of right

censored and uncensored data in ordinary survival analysis (Klein & Moeschberger, 2003).

In the example the specific study period lasts from week 0 until week 12 and the subjects are

exposed to some events. Right censoring exists for subject B, C, D and E, since the subjects

are either still alive by the end of the study period or an event other than the one of interest

happened (in case of subject C and E). The event actually happened with subject A and F.

In case of LGL, censoring exists when (parts of) the loan still needs to be repaid. In our in-

default dataset we have resolved and unresolved cases, as discussed earlier an in-default case

is considered resolved when the collateral is sold. Censoring can happen in both cases. For

simplicity, see the example in Figure 5b. In the example, there are four different loans where

three are considered resolved (R1, R3 and R4) and one unresolved (U2).

For the resolved cases, loan 1 had a repayment of 80% and loan 4 had a repayment of 100%.

Loan 1 still had an amount of 20% and loan 3 still had an amount of 100% which was unpaid
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(a) Ordinary survival analysis. (b) Loss given liquidation.

Figure 5: Censored and uncensored data.

by the end of the study period, these parts are considered censored. When looking at the

unresolved case, there was one repayment on the loan of 30% but still, 70% of the loan was left

unpaid, with no more information available. The part that is still not repaid, in this case, the

70%, is considered censored. Thus, all parts that are unpaid by the end of the study period are

considered censored.

We need to transform the original dataset in one suitable for applying survival analysis methods.

Therefore, for every payment within the study period, t ≤ tmax, an observation with the weight

corresponding to the ratio to exposure at default should be included in the new dataset. Let a

be a default case where for every observation of a cash flow CFt(a) at time t a frequency weight

of d = CFt(a) should be put on the observation corresponding to the ratio to exposure at

default. This observation is labeled as not censored. A payment case can however be censored.

Therefore, we discuss the different possible censoring methods in the remainder of this section.

3.4.1 Censoring method - recovery rates

According to Witzany et al. (2010), Privara et al. (2013) a payment can be censored for one of

the following two reasons.

1. For a complete recovery process (resolved case) where the sum of payments is less than

the debt amount, the remainder part of the loan is considered the censored part. So for

a complete recovery process where
∑tend

t=1 CFt(a) < EAD(a) we include an observation

d = EAD(a) −
∑tend

t=1 CFt(a) which is censored at tmax. Basically, this means that

resolved cases will not receive any more payments in any foreseeable future. Therefore,

the observation is censored at tmax.
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2. In case of an incomplete recovery process (unresolved case) where the workout period lasts

longer than the study period tmax and the payments collected until that moment are less

than the EAD, the remainder part of the loan is considered the censored part. So for an

incomplete recovery process where
∑tend

t=1 CFt(a) < EAD(a) we include an observation

d = EAD(a)−
∑tend

t=1 CFt(a) which is censored at time tend. This means that the amount

of d has not been recovered until the last observation period for each unresolved case.

Therefore, the observation is censored at the last known date, tend.

3.4.2 Censoring method - recovery rates with categorization

Another idea by Privara et al. (2013) provides censoring of the data regarding a high-low

categorization. Within this method, the loans are seen as single entities. Repayments of

monetary units can therefore not be treated separately. The key principle regarding the high-

low Cox regression is setting a threshold recovery rate RRt. For each account where RR < RRt,

the recovery process is not finished and it is marked in the dataset as censored. The exit time

is set equal to the last study period tend. For all cases where RR > RRt, the recovery process

is finished and it is marked in the dataset as not censored. The exit time is then set at the

month where the minimum recovery rate RRt was achieved.

3.4.3 Censoring method - unresolved cases

Zhang & Thomas (2012) address another censoring method. They classify defaults as finished

(i.e. written off) or unfinished, which can be compared to resolved and unresolved cases.

Observations that are resolved are included in the dataset as uncensored while unresolved are

included as censored. The exit time is set equal to the realized RR (so far). Within this method,

the concept of time is treated differently than in the above-mentioned methods.

The study of Privara et al. (2013) compared the three proposed methods. Results showed that

the first method performed better than the latter two methods. Therefore, we use the first

censoring method in this study.

3.5 Explanatory variables

For Rabobank, it is interesting to examine the predicting power of different risk drivers to

the LGL estimates. The bank will then be able to act on the knowledge what drives high

LGL estimations and what drives low LGL estimations. The vectors X = (X1, X2, ..., Xp1)

and X = (X1, X2, ..., Xp2) in the Cox models indicate these risk drivers. In discussion with

Rabobank, we examine the following risk drivers. These are also the ones used in the current

cure and liquidation component of the LGD model.
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• Age - Mean age of all customers connected to the facility.

• Arrears - Total arrears relative to the exposure, also considered a change in total arrears

in last 3 and last 12 months.

• Collateral value - Market (estimated) value of collateral.

• Confidence level - Confidence level of the market value of the facility calculated by auto-

mated valuation method.

• Cured before - Indicates if facility went into default before.

• Entrepreneur indicator - Indicates if facility belongs to an ”ondernemer in privé”.

• First default trigger - Type of default trigger at the start of default.

• Insurance - Indicates if underlying loan parts are covered by ”Nationale Hypotheek

Garantie” (NHG).

• Loan to value - Percentage of the facility’s total exposure amount that is covered by the

collateral minus the preclaims.

• Months in probation - Number of months the facility is in probation period.

• Pledged savings amount - Total amount in a linked savings account, the bank has a legal

claim on the value of savings in a linked savings account.

• Pre-claim - Total amount of claims from other banks/institutions that have seniority on

the recovery from the collateral sale.

• Product type - Product type identifier.

• Time in default - Amount of months the facility is in default.

• Valuation type - Valuation method used - indexation, appraisal, automatic valuation

method.

3.6 Variable selection

When developing the LGL model one has to make a decision about which of the above risk

drivers to include in the model. There are two main methods for selecting the variables:

sequential methods and all-subset methods (Sauerbrei et al., 2007). The latter method is

based on fitting all possible models and choose the best model based on agreed criteria. The

first method is based on a sequence of tests and looks at whether a variable should be added

or removed from the current model. The adding or removing depends on the criteria for
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inclusion and normally includes a significance level of α = 0.05. The sequential methods are the

most popular variable selection methods and also the method we use in this study. Sequential

methods can use forward selection, backward selection or a combination of both.

The forward selection starts with no variables in the model and from here the most significant

variable is added to the model. This process is repeated until no improvements in the model

are exhibited. Backward selection, by contrast, starts with all variables and deleting the least

significant one. The model is tested by using a chosen model fit criterion and repeated until

no improvements in the model are exhibited. A combination of both (forward and backward)

test at each step which variable to be included or excluded (Sauerbrei et al., 2007). We use a

combination of both for the selection of risk drivers.

With a combination of both, all risk drivers were tested as explanatory variables to the de-

pendent variable, time to the event, in our case the time to repayment of a monetary unit of

a defaulted loan. All risk drivers that exceed the standard significance level of α = 0.05 were

added to the model where the most significant risk driver was added first. When no improve-

ments in the model are exhibited, the risk driver was removed from the model selection.

In survival analysis, the p-value of the variables is determined by the log-rank test (Kleinbaum

& Klein, 2005). The test is used for large samples to provide an overall comparison of the

different survival curves. Within this test, the null hypothesis states that there is no overall

difference between the survival curves. Under this null hypothesis, the log-rank statistic is

approximately chi-square with one degree of freedom. Let hi(0) be the hazard ratio of group i

at time t then

H0 : h1(t) = h2(t),

Ha : h1(t) = ch2(t), c 6= 1

Thus, the p-value of the variables is determined by from the tables of the chi-square distribution.

In case the p-value of the risk driver exceeds the significance level of α = 0.05 the risk driver is

added in the model.
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4 Test methodology

4.1 Data splitting

In order to test a model, one has to use a new dataset, other than the one used to develop the

model. Preferably, this dataset should be external, from a group with similar characteristics.

This data are often not available and therefore one can use internal data as well. A common

approach is splitting the original dataset into two parts: a training set and a test set (Altman

et al., 2009).

The training set can then be used for training the model on the data. Afterwards the test set

is used to test and evaluate the performance of the model. A negative side of splitting the data

is that the data for creating the model are reduced and the observations in the test set are not

contributing to the actual model, but only to the testing of the model. The number of samples

in the data determines the distribution of the train and test set.

In this study, the dataset originates from Rabobank. Since no other dataset is available, testing

with external data is not possible. Therefore, we use internal data for testing the model. The

data are randomly split into an 80% training set and a 20% test set.

As described in Chapter 2, LR estimations need to be made for performing and non-performing

portfolios. Therefore, we discuss the test methodology for both portfolios in more detail.

4.2 Testing of performing models

The test methodology for the performing models is different than for the non-performing models.

For performing models, estimations of the LR for time tmax should be made at time t0. The

values of the included risk drivers are the ones observed at the last June before t0. Figure 6a

shows a visualization of this method. The value of risk driver X1 varies over time until the last

June before t0. After that moment the risk driver stays constant and the model includes that

value in the LR estimation for time tmax made at time t0.

4.3 Testing of non-performing models

Testing of the non-performing models should be done as it is applied to real time data. There-

fore, estimations of the LR for time tmax should be made at a time trandom instead of t0. The

value of trandom is randomly chosen from a discrete uniform distribution between first moment

in default, t0, and last moment of default, tend, for every defaulted loan.

For the time-independent models, the values of the included risk drivers are the ones observed

at time t0. This means that, when estimations of the LR for time tmax are made at time



4. Test Methodology 19

trandom, the values of the included risk drivers are the ones observed at time t0. Figure 6b

shows a visualization of this method. The value of risk driver X1 varies over time until t0.

After that moment the risk driver stays constant and the model includes that value in the LR

estimation for time tmax made at time trandom.

For the time-dependent models, the values of the risk drivers change over time until the esti-

mation moment, trandom. This means that, when estimations of the LR for time tmax are made

at time trandom, the values of the included risk drivers are the ones observed at time trandom.

Figure 6c shows a visualization of this method.

(a) Performing model. (b) Non-performing time-independent model.

(c) Non-performing time-dependent model.

Figure 6: Test methodology.

4.3.1 Realized recoveries

Since estimations of the LR for time tmax are made at a time trandom, recoveries realized until

trandom should be included in the estimations as well. This can be done by splitting the survival

function in two parts and then combine both parts. The first part is the survival before trandom,

which can be observed from cash flow data. The second part is the survival after trandom, which

can be estimated with survival analysis methods.
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5 Validation methodology

Once a model has been developed, one has to validate it. The validation process should be

done periodically to monitor whether the model is still accurate. This is done by backtesting

the model and testing its components. There are two fundamental aspects to validate a model:

discrimination and calibration. Discrimination refers to the rank order of different estimations.

It represents the degree of how well the model is able to differentiate risk. Calibration refers

to the accuracy of the estimations on average. In our case, this means that the discriminatory

power reflects the ability to assign a correct rank order, while calibration reflects the accuracy

of the LGL estimations. In this chapter, we discuss the different tools and metrics used to

measure the discriminatory power and calibration.

5.1 Discriminatory power

5.1.1 Loss Capture Ratio

One approach of measuring the discriminatory power of the LGL model is the loss capture (LC)

ratio. Its usage is similar to the Gini coefficient. This approach uses three types of curves: the

model (rating) LC curve, the ideal (perfect) LC curve, and the random LC curve. Figure 7

shows an example of these curves (Li et al., 2009). The ideal curve represents the model that

has perfect discriminatory power, in our case, this means that all losses are ranked properly.

This curve can be constructed by sorting the highest realized LR to the lowest realized LR. It

then plots for each fraction the cumulative amount of LR as a percentage relative to the total

amount of LR. The rating curve is almost similar to the ideal curve except that the estimated

LR instead of realized LR are used for ranking. The random curve is a diagonal line through

the origin (0,0) and the point (1,1) and it represents the case where LR are randomly ranked.

From the curves, it is possible to determine the loss capture ratio. This ratio is derived from

the area enclosed by the random curve and the model curve (which is area B) divided by the

area enclosed by the random curve and the ideal curve (which is area A + B). The loss capture

ratio is defined as follows

LCR =
B

A + B
. (13)

The value of the LC ratio will lie between 0 and 1, where a value near 0 means that the model

has limited discriminatory power and the closer the value is to 1, the more it represents the dis-

criminatory power of the ideal model. Thus, the higher the LC ratio, the better discriminatory

power the model provides
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Figure 7: The loss capture curve.

5.1.2 Spearman’s rank correlation coefficient

Another approach is the Spearman’s rank correlation coefficient (or Spearman’s ρ). It measures

the monotonicity of the relation between two data sets. This means that it measures the

correlation between the rank order, instead of the correlation between the actual observations.

The Spearman’s rank correlation is a non-parametric test. This means that it does not make

any assumption on the underlying distributions of the variables (Zwillinger & Kokoska, 2000).

To understand the concept of Spearman’s rank correlation test suppose there are N pairs of

observations in two data sets, in our case N pairs of LR. The LR in each dataset should be

ranked separately from smallest to largest. Let un be the rank of the nth observation in the

first dataset, in our case this is the dataset with realized LR. Let vn then be the rank of the

nth observation in the second dataset, in our case this is the dataset with estimated LR. The

difference between the respective ranking of a pair is then determined as follows dn = un − vn.

This difference should be computed for all N pairs of LR. The Spearman’s rank correlation

coefficient is defined as follows

ρ = 1−
6
∑N
n=1 d

2
n

N(N2 − 1)
. (14)

Like other correlation coefficients, this value can vary between -1 and +1 with 0 implying no

correlation. In case of a perfect ranking for the realized and the estimated LR, the index score

is equal to 1. In case there is a perfect negative correlation this value will be equal to -1. Thus,

the closer the Spearman’s rank correlation coefficient is to 1, the better discriminator power it

provides (Zwillinger & Kokoska, 2000).
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5.1.3 Kendall’s rank correlation coefficient

Another approach is the Kendall’s rank correlation coefficient (or Kendall’s τ). This statistic

determines the number of concordant and discordant pairs of observations (PSU, 2019). A pair

is concordant if it is in the same order and discordant if it is in the reverse order. Consider

two data sets, the dataset with the estimated LR, LREST , and the dataset with the realized

LR, LRREA. Two pairs of observations (LRESTm , LRREAm ) and (LRESTr , LRREAr ) can take one

of the following orders.

1. LRESTm < LRESTr and LRREAm < LRREAr

2. LRESTm > LRESTr and LRREAm > LRREAr

3. LRESTm < LRESTr and LRREAm > LRREAr

4. LRESTm > LRESTr and LRREAm < LRREAr

Two pairs are concordant if they are in the same order, which means that the pairs satisfy

Statement 1 or 2. The pairs are discordant if they are in the reverse ordering, in this case the

pairs satisfy Statement 3 or 4. It can also happen that two observatories are tied, which means

LRESTm = LRESTr and/or LRREAm = LRREAr . The total number of pairs (M) decomposes of

five different quantities

M = P +Q+X0 + Y0 + (XY )0. (15)

Here, P represents the number of concordant pairs, Q represents the number of discordant

pairs, X0 represents the number of tied pairs for LREST only, Y0 represents the number of tied

pairs for LRREA only and (XY )0 represents the number of tied pairs for both LREST and

LRREA (PSU, 2019). Kendall’s rank correlation coefficient is defined as follows

τb =
P −Q√

(P +Q+X0)(P +Q+ Y0)
. (16)

Like Spearman’s ρ, this value can vary between -1 and +1 with 0 implying no correlation. In

case of a perfect ranking for the realized and the estimated LR, the index score is equal to 1.

In case there is a perfect negative correlation this value will be equal to -1. Thus, the closer

Kendall’s tau correlation coefficient is to 1, the better discriminator power it provides.

5.1.4 Concordance index

In survival analysis, the most commonly used metric of discrimination is the concordance prob-

ability. It represents a pairwise probability and the usage is equivalent to Kendall’s tau (Heller
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& Mo, 2016). The concordance probability is a more desirable metric to use than the earlier

described metrics, since it can take the actual timing of cash flows and censored observations

into account.

The concordance probability for two subjects, in our case two repayments of monetary units,

is P (RREST1 > RREST2 | t1 < t2). Here, RREST represents the estimated recovery rate and t

represents the timing repayment of a monetary unit. Since the RR is the complement of the

LR the concordance probability can also be written as P (LREST1 < LREST2 | t1 < t2). One of

the early estimates of the concordance is the C-index (Harrel et al., 1982). The formula for the

C-index, in case of LR estimations, is defined as follows

C-index =

∑S
s1=1

∑S
s2=1 I(ts1 < ts2)I(LRESTs1 < LRESTs2 )∑S

s1=1

∑S
s2=1 I(ts1 < ts2)

(17)

where S is the total number of cash flows, s1 is the first subject, s2 the second subject and I

denotes the indicator function. Like the loss capture ratio the value of the C-index can vary

between 0 and 1, where the higher the number of the C-index, the better discriminatory power

it provides.

5.2 Calibration

Besides measuring the discriminatory power of the model, another way of validating the model

is by examining the accuracy of the estimations obtained from the model. One way of doing

this is by calculating the loss shortfall (LS).

5.2.1 Loss Shortfall

The loss shortfall (LS) looks at how well the model estimations match the realized values on

exposure weighted average. This means that for all facilities in the portfolio the loss rate is

multiplied by the exposure at default for that specific facility (Li et al., 2009). The loss shortfall

is defined as follows

LS = 1−
∑F
f=1 EADf × Expected LRf∑F
f=1 EADf × Realized LRf

(18)

where f represents the specific facility and F is the total number of facilities in the portfolio.
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6 Results

The dataset used to build and test the LGL model contains information on two segments of

the retail mortgage portfolio of Rabobank. It contains information on the repayments of mon-

etary units of defaulted loans, as well as information on the possible risk drivers (explanatory

variables). The information is available for 27,185 defaulted loans and for many of these loans

the recovery process has not been completed (unresolved cases).

The workout method described in Section 2.1 determines the sum of the repayments of monetary

units. Based on this, Rabobank can obtain recovery rates (RR) and complementary loss rates

(LR). Negative cash flows are treated as described in Section 3.2. From the resolved cases 99%

was resolved within 80 months. Therefore the maximum workout period as described in Section

3.4.1, tmax, is set at 80 months.

In this chapter, we discuss the final model selection. First, we discuss the results from the

lifetime table in order to get some more insight into the overall survival of the retail mortgage

data. Then, we discuss the results of the Cox Proportional Hazards model and Extended Cox

model. The final selection of the variables will be given together with their parameter estimates.

Lastly, we evaluate the overall performance of the models with the validation methodology

described in Chapter 5.

6.1 Lifetime data

We transformed the original data into a lifetime data table in order to apply Cox regression

techniques. This transformation is done with the modelling methodology described in Chapter

3. The lifetime data table provides information, at each time interval, about the number of

cash flows that were paid back and censored. Each cash flow has a specific weight relative to

the exposure at default. Therefore, the total number of cash flows in each time interval is the

sum of the weights of these cash flows.

With this information, we estimated the survival in each time interval with the Kaplan-Meier

estimator. This estimator gives the probability of surviving past the previous failure time t− 1

multiplied by the conditional probability of surviving past time t, given that the subject has

survived to at least time t. Appendix A.3 explains the mathematical notation of the Kaplan-

Meier estimator. In our case, the survival represents the LR at each time interval. We also

calculated the probability of failure for each time interval. This probability of failure, also called

hazard rate, represents the rate at which subjectss are exiting exactly at t given survival until

t. In our case, this represents the rate at which repayments of monetary units are happening

at a certain time interval.
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Time Number Number Number Prob. of Failure Survival

at Risk Event Censored h(t) S(t)

1 27184 754 9904 xxxx xxxx

2 16525 3013 0 xxxx xxxx

3 13521 1292 0 xxxx xxxx

4 11467 548 0 xxxx xxxx

..

77 1794 8 0 xxxx xxxx

78 1786 9 0 xxxx xxxx

79 1777 10 0 xxxx xxxx

80 1767 6 1761 xxxx xxxx

Table 1: Lifetime table.

(a) Survival curve. (b) Hazard rate.

Figure 8: Lifetime table curves.

Table 1 shows the output of the lifetime data.1 As can be seen, at each time interval the

survival, and thus the LR, is estimated. The survival in the last time interval represents the

final LR. Based on the survival in each time interval one can plot a survival curve. This curve

represents the LR over time. Figure 8a shows a plot of this curve. Here the x-axis represents

the time in default and the y-axis represents the survival probability.2 The end value of this

plot represents the final LR estimate. Figure 8b shows a plot of the hazard rate, which is the

rate at which repayments of monetary units are happening exactly at t. It shows that most of

the repayments are occurring in the early time intervals.2

1Values of Prob. of failure and Survival removed due to confidentiality.
2Scales on y-axis removed due to confidentiality.
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6.2 Cox Proportional Hazards model

With the Cox Proportional Hazards regression, we tested the effects of explanatory variables

on the baseline survival curve. We developed four different Cox Proportional Hazards models

based on the two segments of the retail mortgage portfolio of Rabobank. For both segments, we

developed a performing model and a non-performing model. The performing model estimates

the LR in case a facility goes into default some time in the future. The non-performing model

estimates the final LR for facilities that are currently in default. In this section, we discuss

the process of the final model selection of one of the models in more detail. It should be noted

that we changed some of the variable names because we can not expose them to the public.

Appendix B shows the final model selection and parameter estimates of the other three models.

6.2.1 Stepwise variable selection

We used a stepwise selection method in order to build the models. This means that one adds the

most significant variable to the model first. This process repeats for all explanatory variables

that exceed the log-rank test with a standard significance level of α = 0.05. When no further

improvements in the model exhibit one removes the explanatory variable from the model.

Step Variable Added Variable Removed p-value

1 FirstDefaultTrigger < 0.00001

2 WeightNHG < 0.00001

3 LTV < 0.00001

4 Variable X Variable X < 0.00001

5 Variable Y < 0.00001

6 Variable D Variable D < 0.00001

7 Variable A < 0.00001

8 Variable G Variable G < 0.00001

9 Variable C Variable C 0.00047

Table 2: Stepwise variable selection.

Table 2 shows the results of the stepwise selection method. The first variable added in the

model was variable FirstDefaultTrigger followed by variable WeightNHG, LTV, Variable X,

Variable Y, Variable D, Variable A, Variable G and Variable C. The third column indicates the

variables that were removed from the model because there were no further improvements in the

model. The fourth column represents the significant level for each variable obtained from the

single variable analysis.
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6.2.2 Selected variable estimations

For each selected variable in the model, one can estimate a survival curve for different values

of the selected variable. As an example, consider the survival curves for different levels of the

variables FirstDefaultTrigger and WeightNHG in Figure 9.3 The final LR changes whenever a

different value of the variable is taken and all the other variables in the model are kept constant.

Appendix B shows an overview of the survival curves for different values of the selected variables.

(a) Variable FirstDefaultTrigger. (b) Variable WeightNHG.

Figure 9: Estimated survival curves for different values of selected variables.

Coefficient Standard p Hazard 95% Confidence

(b) Error Ratio Interval

FirstDefaultTrigger - 0.351 0.010 < 0.00001 0.703 - (0.373− 0.330)

WeightNHG 0.407 0.037 < 0.00001 1.503 (0.334− 0.480)

LTV - 1.251 0.073 < 0.00001 0.296 - (1.359− 1.072)

Variable A 0.405 0.070 < 0.00001 1.500 (0.267− 0.544)

Variable Y 0.152 0.041 0.00021 1.165 (0.071− 0.233)

Table 3: Selected variable estimations.

The final model includes the variables FirstDefaultTrigger, WeightNHG, LTV, Variable A and

Variable Y. Table 3 shows the estimated regression coefficients, together with their standard

errors. The significance level of each coefficient (p) is determined from the tables of the chi-

square distribution since, under the null hypothesis, the log-rank statistic is approximately

chi-square with one degree of freedom. From the estimated regression coefficient, one can

calculate the hazard ratio by taking the exponential of the estimated coefficient. The hazard

ratio represents the effect of each variable adjusted for the other variables in the model. For

3Scales on y-axis removed due to confidentiality.
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each estimated regression coefficient, one can obtain a confidence interval. Figure 10 shows the

95% confidence interval for each variable. This figure also shows that the variable LTV has

the highest predictive power for the LR. The value of the estimated regression coefficients is

obtained by maximum likelihood estimation.

Figure 10: 95% Confidence interval for estimated regression coefficients.

6.3 Extended Cox model

With the Extended Cox model, we tested the effects of time-dependent explanatory variables

on the baseline survival curve. We developed two different Extended Cox models based on the

same two segments of the retail mortgage portfolio as in the Cox Proportional Hazards models.

For both segments, we developed a non-performing model. It is not possible to develop a time-

dependent performing model because no information on future risk drivers is available. Within

these Extended Cox models, the explanatory variables can change over time. Therefore, the

final model selection will be different than the final model selection of the Cox Proportional

Hazards model. In this section, we discuss the process of the final model selection of one of the

models in more detail. Again, it should be noted that we changed some of the variable names

because we can not expose them to the public. Appendix B shows the final model selection of

the other model.

6.3.1 Stepwise time-dependent variable selection

As with the Cox Proportional Hazards model, we used a stepwise selection method in order to

build the models. Table 4 shows the results of the stepwise selection method. The first vari-

able added in the model was the variable FirstDefaultTrigger followed by variable WeightNHG,

LTV, Variable B, Variable X, Variable D, Variable Y, ArrearsChangeSinceMaxPast12Months

and ArrearsChangeSinceMaxPast3Months. The third column indicates the variables that were

removed from the model because there were no further improvements in the model. The fourth

column represents the significant level for each variable obtained from the single variable anal-

ysis.
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Step Variable Added Variable Removed p-value

1 FirstDefaultTrigger < 0.00001

2 WeightNHG < 0.00001

3 LTV < 0.00001

4 Variable B Variable B < 0.00001

5 Variable X Variable X < 0.00001

6 Variable D Variable D < 0.00001

7 Variable Y Variable Y < 0.00001

8 Variable G Variable G < 0.00001

9 Variable I Variable I 0.00311

10 Variable H Variable H 0.00585

Table 4: Stepwise time-dependent variable selection.

6.3.2 Selected time-dependent variable estimations

The final model includes the variables FirstDefaultTrigger, WeightNHG and LTV. Table 5

shows the estimated regression coefficients, together with their standard errors. As with the

Cox Proportional Hazards model, the significance level of each coefficient (p) is determined from

the tables of the chi-square distribution since under the null hypothesis, the log-rank statistic

is approximately chi-square with one degree of freedom. As with the Cox Proportional Hazards

model, the variable LTV has the highest predictive power for the LR.

Coefficient Standard p Hazard 95% Confidence

(b) Error Ratio Interval

FirstDefaultTrigger 0.055 0.013 0.00002 1.057 (0.029− 0.082)

LTV - 1.165 0.088 < 0.00001 0.311 - (1.338− 0.993)

WeightNHG 0.278 0.048 < 0.00001 1.320 (0.183− 0.373)

Table 5: Selected time-dependent variable estimations.

6.4 Model validation

In total, we developed 6 different models based on the two segments of the retail mortgage

portfolio of Rabobank. For both segments, we developed a performing, a non-performing time-

independent and a non-performing time-dependent model. When one includes time-dependent

variables, the final model changes slightly. There are two fundamental aspects to validate the
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models: discriminatory power and calibration. Discriminatory power measures the rank order

of the different estimations while calibration measures the accuracy of the estimations. In this

section, we discuss the performance measurements of the just described models.

Performance Time-independent Time-dependent

Metric variables variables

Discriminatory Power Loss Capture Ratio xxx % xxx %

Spearman’s rank xxx % xxx %

Kendall’s Tau xxx % xxx %

C-index xxx % xxx %

Calibration Loss Shortfall -xxx % -xxx %

Table 6: Performance measurements.

Table 6 shows the performance measurements.4 The discriminatory power of the Cox Propor-

tional Hazards model with time-independent variables is higher than the discriminatory power

of the Extended Cox model with time-dependent variables. This means that the Cox Propor-

tional Hazards model is better in differentiating risk, and assigning high losses to high realized

losses, than the Extended Cox model. However, the loss shortfall of the Extended Cox model is

closer to zero than the loss shortfall of the Cox Proportional Hazards model. This means that

the Extended Cox model gives more accurate predictions than the Cox Proportional Hazards

model. The minus sign in the loss shortfall metric means that the models are currently pre-

dicting higher losses than actually observed. This can also be seen in Figure 11, where more

observed LR are closer to zero than predicted LR.5

(a) Observed LR. (b) Predicted LR.

Figure 11: Loss rates.

4Performance measurements removed due to confidentiality.
5Scales on x-axis and y-axis removed due to confidentiality.
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7 Discussion

In this chapter, we discuss the methods and results of this study followed by some limitations

and suggestions for further research. First, we give an interpretation and explanation of the

results from Chapter 6.

The results from the lifetime data table and curves in Table 1 and Figure 8 show that the

overall survival decreases much faster in the beginning than towards the end. Also, the failure

rate, which represents the rate at which repayments of monetary units are happening in a

certain time interval, is much higher in the beginning than towards the end. These findings

suggest that the more time passes, the less likely it is that a customer will pay back the loan.

Since cash flows are discounted to the moment of default, the cash flows received later are less

valuable than the ones received earlier in the workout period. The overall survival in the last

time interval represents the final LR. This is the amount that Rabobank can expect to lose on

average on a defaulted loan.

Compared to the lifetime method, the Cox Proportional Hazards model used a regression

method in order to estimate the effects of explanatory variables on the baseline survival curve.

The significance level of sixteen variables was tested with a single variable analysis. Only nine

of them were included in the stepwise selection of the model. The estimated hazard ratios in

Table 3 explain how much effect a change of one variable has on the baseline survival curve

when keeping the values of the other variables constant. The variable LTV seems to have the

greatest hazard ratio, meaning that it has the highest predictive power for the LR.

The Extended Cox model used a regression method in order to estimate the effects of explana-

tory variables on the baseline survival curve as well. The method is almost similar to the Cox

Proportional Hazards model except that the values of the variables can change over time. As

with the Cox Proportional Hazards model, the significance level of sixteen different variables

was tested. Only ten of them were included in the stepwise selection of the model. Our results

show that the variables LTV, FirstDefaultTrigger and WeightNHG together are good predic-

tors for estimating the LR. These risk drivers are also good predictors in the LGL model of

Rabobank currently used.

We measured the performance of the models with different validation metrics. Our results

show that the Cox Proportional Hazards model has higher discriminatory power than the

Extended Cox model. This means that this model is better at differentiating risk. However,

the loss shortfall of the Extended Cox model is closer to zero than the loss shortfall of the

Cox Proportional Hazards model. This means that this model is better in making accurate

LR predictions than the Cox Proportional Hazards model. However, this comparison is not
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completely fair since we used different methods for testing. We explain this limitation in more

detail in the next section.

The minus sign in the loss shortfall means that the models are currently predicting higher losses

than actually observed. Figure 11 shows this observation as well. The left histogram shows the

loss rates of the resolved and unresolved cases at tend for every defaulted loan in the test dataset.

We expect the observed loss rates of the unresolved cases in this histogram to decrease in the

future. The right histogram shows the predicted loss rates of the resolved and unresolved cases

at tmax. This figure gives an interpretation of the distribution of the predicted and realized loss

rates of the test dataset. It should not be used as a comparison of the distributions, since the

factor of time is not taken into account.

In this study, we used a data splitting approach. This means that the data are randomly split

in an 80% train and 20% test set. When reusing the models, the data are split differently.

Therefore we calculated a confidence interval for the performance measurements.

The modelling choices made in this study were based on the earlier studies of Witzany et al.

(2010), Zhang & Thomas (2012), Privara et al. (2013) and adjusted in a way that satisfies the

regulatory requirements. However, earlier studies only examined the effects of time-independent

variables, whereas this study also examines the effects of time-dependent variables. Another

way of how this study contributes to the literature is by the usage of different validation metrics.

The study of Zhang & Thomas (2012) only looked at discriminatory power and goodness of

fit, while the studies of Witzany et al. (2010), Privara et al. (2013) did not even examine the

discriminatory power of the models. Therefore, this study contributes a new SA method applied

to recovery data, and new ways of validating the models, to the literature.

7.1 Limitations

One of the limitations of this study is the distribution of the cash flows of the retail mortgage

data. The cash flows are non-evenly distributed over time, where in most cases the most impor-

tant cash flow happens at the end of the default period. Therefore, our results do not include

recoveries realized so far in the non-performing model estimation, in the way we discussed in

Section 4.3. Appendix C shows a more detailed analysis of this limitation.

Another limitation of the retail mortgage data is the limited number of cash flows available for

unresolved cases. Incorporating these unresolved cases in the way we discussed in Section 3.4.1

led to high loss shortfalls. This means that our models were predicting much higher LR than

actually observed. Therefore, we tested the models with different workout periods and different

censoring times. After testing, we changed the timing of a censored event for unresolved cases,
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tend, from last known moment in default to the last known moment of an observed cash flow.

Afterwards our results showed better loss shortfalls.

The dataset used to build and test the LGL model contains information on two segments of the

retail mortgage portfolio of Rabobank. The information is available for 27,185 defaulted loans.

The amount of data available for one segment is five times bigger than the amount available

for the other segment. Whenever there are less data, it becomes harder to validate and test

the models. We expect that this limitation becomes less important in the future because more

data become available.

Another limitation of this study is the treatment of missing values of the risk drivers. We did

not completely cover this and therefore some results may be viewed with less confidence. We

treated missing values in the most common manner, by replacing them by the median. It might

be discussable what would be the best approach and more research needs to be done on this

topic.

7.2 Suggestions for further research

This study is primarily focused on survival analysis in the LGL component, used in the LGD

model for the retail mortgage portfolio. However, this technique could also be applied in other

components of the LGD model, as for example in the loss given cure component. The Cox

Proportional Hazards model and the Extended Cox model used in this study only consider one

event of interest, liquidation. However, survival analysis does allow to consider more events

of interest, this is called competing risk. With competing risk there are at least two events of

interest, but only one of such a failure type can actually occur (Kleinbaum & Klein, 2005). As

with the retail mortgage portfolio, there are also two events of interest, cure and liquidation. A

suggestion for further research would be to examine whether competing risk could be applied

for the two different scenarios of the retail mortgage portfolio.

We also suggest to examine alternative survival analysis methods. One of these methods is

survival analysis with competing risk, but there are more methods which could be examined,

such as for example the accelerated failure time model or the parametric regression models (e.g.

Weibull regression) (Kleinbaum & Klein, 2005). In order to get the best performing model for

recovery data, it would be worthy to compare alternative survival analysis methods.

This study only looked at the application of the best modelling choices from earlier studies

satisfying regulatory requirements. However, in Chapter 3 we mentioned alternative censoring

methods and treatments of negative cash flows. Another suggestion for further research would

be to examine whether these methods would result in models performing better. Also, we only
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examined the explanatory variables used in the current cure and liquidation model. In order

to improve the models, we could consider alternative explanatory variables.

The validation metrics used in this study are already different than the ones used in earlier

studies of Witzany et al. (2010), Zhang & Thomas (2012), Privara et al. (2013). However,

another suggestion for further research would be to examine alternative validation metrics.

Especially for the Cox Proportional Hazards model, there are a lot of different performance

metrics (Austin et al., 2017) which could be used.

Altogether, this study provides a strong foundation of the statistical technique of survival

analysis applied in the LGL component, used in the LGD model for retail mortgage portfolios.

In extension of this study, alternative techniques and modelling choices could be examined in

order to get the model performing best.
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8 Conclusion

In this study, we tried to answer the question whether the statistical technique of survival

analysis (SA) would be applicable in the modelling of the LGL component, used in the LGD

model for retail mortgage portfolios of Rabobank. Therefore, we examined the structure of

the recovery dataset of defaulted loans and how to transform it in order to apply SA methods.

This dataset contained information on the repayments of monetary units of defaulted loans.

We added an observation of every repayment of monetary unit with a weight corresponding to

the ratio to exposure at default into a new dataset in order to apply SA methods.

The reason we wanted to examine the application of SA in the LGL component, is the advan-

tage of being able to utilize censored default data in order to make LGL estimations. Rabobank

uses the recovery processes of resolved defaulted cases in the model estimation and calibration

for LGL. The regulator requires to incorporate incomplete recovery processes of unresolved de-

faulted cases as well. However, this is more difficult. Earlier studies from Witzany et al. (2010),

Zhang & Thomas (2012), Privara et al. (2013) showed the potential of SA for incorporating

these incomplete recovery processes. Therefore, we examined which modelling choices, used in

earlier studies, where suitable in order to apply SA in the modelling of the LGL component

and satisfy regulatory requirements.

We developed six models based on two different survival regression techniques, the Cox Propor-

tional Hazards regression and the Extended Cox regression. With these models, we can examine

the predicting power of different risk drivers to the LGL component. This gives insight into

what drivers high LGL estimations and what drives low LGL estimations. The Extended Cox

regression made it possible to include time-dependent risk drivers as well. We measured the

performance of the models based on two fundamental aspects: discriminatory power and cali-

bration.

Returning to the main research question, the models scored high on discriminatory power

and calibration. Therefore, the results show high potential of applying SA in the modelling

of the LGL component, used in the LGD model for retail mortgage portfolios. This results

in an alternative to the state of the art LGD model, Rabobank uses, satisfying regulatory

requirements.
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A Survival Analysis

The basic principle of survival analysis is to model the time until an event happens. In our

case, the event of interest is a repayment of a monetary unit of a defaulted loan. The following

concepts can be found in any statistics book about survival analysis. For a review of survival

analysis see Kleinbaum & Klein (2005), Klein & Moeschberger (2003).

A.1 Basic concepts

A.1.1 Cumulative Distribution Function

First, let T be a non-negative random variable. The cumulative distribution function, or CDF,

describes the probability that a random variable T will be less than or equal to a value t. In

case of survival time analysis, this distribution tells us the probability that the event of interest

will happen before time t and is sometimes referred to as the cumulative incidence. The CDF

of a random variable T is defined as follows

F (t) = P (T ≤ t) =

∫ t

0

f(t)dt. (19)

A.1.2 Survival function

In survival analysis, it is more useful to talk about the survival function. The survival function

describes the probability of an individual surviving beyond a time t and is defined as follows

S(t) = P (T > t) =

∫ ∞
t

f(t)dt. (20)

The survival function is a non-increasing right continuous function of t with S(0) = 1 and

lim
t→∞

S(t) = 0. In case of T being a continuous random variable, the survival function is

the complement of the cumulative distribution function. That is, S(t) = 1 − F (t), where

F (t) = P (T ≤ t). Since the survival function is the integral of the probability density function,

or PDF, f(t) and the complement of the cumulative distribution function the PDF, CDF and

survival function are related as follows

f(t) =
dF (t)

dt
= −dS(t)

dt
. (21)

A.1.3 Hazard function

The hazard function is fundamental in survival analysis. It describes the probability that the

event happens in an infinitely small step after time t conditional on having survived until time

t. It is also known as the hazard rate or failure rate. The hazard rate is defined as follows
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h(t) = lim
4t→0

P (t ≤ T < t+4t | T ≥ t)
4t

. (22)

The hazard rate must be non-negative. If T is a continuous random variable, then the hazard

rate is related to the survival function as follows

h(t) =
f(t)

S(t)
= − d

dt
logS(t). (23)

A.1.4 Cumulative hazard function

The cumulative for the hazard function is defined as follows

H(t) =

∫ t

0

h(u)du (24)

where the relationship between the survival function and the cumulative hazard function can

be derived as follows

H(t) =

∫ t

0

h(u)du =

∫ t

0

f(u)

S(u)
du =

∫ t

0

− d

du
logS(u)du = −logS(t). (25)

The survival function for continuous lifetimes related to the hazard rate function can then be

written as follows

S(t) = exp[−H(t)] = exp
[
−
∫ t

0

h(u)du
]
. (26)

As can be seen, the cumulative distribution function, the survival function and the hazard

function are all defined by the distribution of T.

A.2 Parametric and non-parametric methods

Within survival analysis, there are two main methods that can be used to model a distribution,

a non-parametric method and a parametric method. With parametric methods, the underlying

distribution assumes to follow a specific distribution, such as for example an exponential or

normal distribution. These parametric methods can be used for regression to estimate the

effects of explanatory variables. Non-parametric methods are not related to an underlying

distribution and are only used for simple standard tests. Next to parametric and non-parametric

methods a frequently used method within survival analysis is the semi-parametric method. This

method is called the Cox Proportional Hazards model and will be explained in the next section.

An advantage of a semi-parametric method is that is does, like parametric methods, handle

regression to estimate the effects of explanatory variables but it does not rely on a specific

underlying distribution. Semi-parametric methods are an attractive alternative for parametric

methods because they can directly relate the effects of explanatory variables on survival time

allowing an easier interpretation of the results.
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A.3 Kaplan-Meier estimator

Non-parametric methods are not related to an underlying distribution. Normally these non-

parametric methods are used for simple standard tests. The mostly used non-parametric method

is the Kaplan-Meier estimator, also known as the product limit estimator. The Kaplan-Meier

estimator is used to estimate the survival function from lifetime data. The formula for the

Kaplan-Meier estimator is defined as follows

ˆS(t) = Ŝ(t− 1)× P̂ (T > t | T ≥ t). (27)

This formula gives the probability of surviving past the previous failure time t − 1 multiplied

by the conditional probability of surviving past time t, given that the subject has survived

to at least time t. This formula can also be expressed as a product limit. This means that

for the survival probability Ŝ(t− 1), the product of all fractions that estimate the conditional

probabilities for failure can be taken.

A.4 Cox Proportional Hazards (PH) model

The Cox Proportional Hazards model can be used to model the effects of explanatory variables

on the survival function and enables larger flexibility than other types of models. The model

gives an expression for the hazard at time t with a given set of explanatory variables, denoted

by X. The Cox Proportional Hazards model is defined as follows

h(t,X) = h0(t) exp[

p∑
i=1

Xiβi] (28)

where h0(t) is called the baseline hazard function, X = (X1, X2, ..., Xp) is a vector of the

explanatory variables and β = (β1, β2, ..., βp) is the vector we try to estimate. There is no

’error’ term used in this model as the randomness is implicit to the survival process. The

baseline hazard function is assumed to be non-negative, constant over time and independent

on the explanatory variables. At the same time the exponential expression shown here is only

dependent on the explanatory variables and does not involve t. Therefore the Xs here are called

time-independent variables. Later time-dependent variables will be considered when looking

at the Extended Cox model. The survival function of the Cox Proportional Hazards model is

defined as follows

S(t,X) = S0(t)exp[
∑p

i=1Xiβi] (29)

where

S0(t) = exp
[
−
∫ t

0

h0(u)du
]
. (30)

Here S0(t) is the baseline survival function and also dependent on time only.
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A.4.1 Partial likelihood

Estimation of β is done by using the partial likelihood function. The advantage of the partial

likelihood function over the full likelihood function is that it can maximize the proportion

depending on β alone. Partial likelihood is only valid when there are no ties in the data. Ties

occur when two or more subjects experience the event at the same point in time. The data

used in the LGL model can contain tied events. For simplicity, first we explain the basic partial

likelihood function. Afterwards, we explain the adjustments to the basic function for dealing

with ties by using the Breslow or Efron approximations.

The likelihood function, L, is an expression which describes the joint probability of obtaining

the data actually observed on the subjects in the study as a function of the unknown parameters

in the model being considered. As described the estimation of the β coefficients is done by a

partial likelihood. This is because the likelihood function only considers the probabilities for

those subjects who fail, and does not take the probabilities for censored subjects into account.

The partial likelihood function can, however, take these probabilities into account. Normally,

the partial likelihood is written as the product of several likelihoods, one for each K failure

times. At the kth failure time, Lk denotes the likelihood of failing at this time, given survival

up to this time. The likelihood function, L, is defined as follows

L = L1 × L2 × L3 × ...× LK =

K∏
k=1

Lk (31)

where Lk = portion of L for the kth failure time. The partial likelihood function focuses only

on subjects who fail but the survival time information prior to censorship is used for those

subjects who are censored. This means that a person who is censored after the kth failure time

is still part of the risk set used to computed Lk. The censored subjects are in this way included

in the analysis.

Afterwards, the likelihood function needs to be maximized. This is done by maximizing the

partial derivatives of the natural log of L with respect to each parameter in the model. In order

to obtain this maximization of the natural log of L, the following equation should be solved

∂lnL

∂βi
= 0 (32)

where i = 1, ..., p.

A.4.2 Hazard ratio

In survival analysis, the effect of one coefficient can be measured with the hazard ratio (HR).

In general, the hazard ratio can be calculated by dividing the hazard rate for one individual
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with the hazard rate of a different individual. An estimation of the hazard ratio is defined as

follows

ĤR =
ĥ(t,X∗)

ĥ(t,X)
(33)

where X∗ denotes the set of predictors for one individual, and X denotes the set of predictors

for another individual. After substituting the Cox model formula into the numerator and

denominator of the hazard ratio, the hazard ratio is defined as follows

ĤR = exp
[ p∑
i=1

βi(X
∗
i −Xi)

]
. (34)

A.4.3 Breslow or Efron approximations

Earlier, when using the partial likelihood function, the assumption was made that there are no

tied observed survival times in the data. However, it is quite common that tied data exist in

survival analysis. Ties occur when two or more subjects experience the event at the same point

in time. Therefore, the partial likelihood function as described earlier needs to be reconsidered.

Breslow and Efron approximations could be used to adapt the partial likelihood function for

tied data.

When using the Breslow’s Approximation (1974) and assuming that there are dk tied survival

times at the kth failure time given the risk set R(t(k)), then the likelihood function Lk is defined

as follows

Lk ≈
exp(

∑
i∈Dk

Xiβi)[∑
i∈Rk

exp(Xiβi)
]dk (35)

where Dk is the event. The partial likelihood is then defined as follows

L =

D∏
k=1

Lk ≈
D∏
k=1

exp(
∑
i∈Dk

Xiβi)[∑
i∈Rk

exp(Xiβi)
]dk (36)

where D is the total number of events. The Breslow approximation is a good method if dk is

small and/or the number of clients at risk is large. The approximated partial likelihood should

then be very close to the exact partial likelihood. However, if these conditions do not hold then

the Efron approximation (1977) could better be used.

The partial likelihood of β given by the Efron approximation is defined as follows

L =

D∏
k=1

Lk ≈
D∏
k=1

exp(
∑
i∈Dk

Xiβi)∏dk
l=1

(∑
i∈Rk

exp(Xiβi)− l−1
dk

∑
i∈Dk

exp(Xiβi)
) . (37)
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A.5 Time-dependent variables

We can extend the Cox Proportional Hazards model to allow time-dependent variables as

predictors. Time-dependent variables are variables whose values for a given subject can change

over time. The Extended Cox model is defined as follows

h(t,X(t)) = h0(t) exp
[ p1∑
i=1

Xiβi +

p2∑
j=1

δjXj(t)
]

(38)

where X = (X1, X2, ..., Xp1) is a vector of the time-independent explanatory variables and

X = (X1, X2, ..., Xp2) is a vector of the time-dependent explanatory variables. The vector

δ = (δ1, δ2, ..., δp2) represents the overall effect on the survival time of the time-dependent

variables and is not time-dependent. An assumption of this model is that the variable Xj(t)

can change over time but the hazard model provides only one value of the coefficients for each

time-dependent variable in the model.

A.5.1 Hazard ratio for Extended Cox model

The estimation of the hazard ratio for the Extended Cox model is defined as follows

ĤR =
ĥ(t,X∗(t))

ĥ(t,X(t))
(39)

which can be rewritten as follows

ĤR = exp
[ p1∑
i=1

βi(X
∗
i −Xi) +

p2∑
j=1

δj [X
∗
j (t)−Xj(t)]

]
. (40)

Here the hazard ratio describes the ratio at a particular time t, for two sets of predictors at time

t. X∗(t) and X(t) are both a combined set of predictors containing both the time-dependent

and time-independent variables.
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B Model selection and parameter estimates

As discussed in Chapter 6, we developed four different Cox Proportional Hazards models and

two different Extended Cox models based on two segments of the retail mortgage portfolio of

Rabobank. For every segment, we developed two Cox Proportional Hazards models (performing

and non-performing model) and one Extended model (non-performing model). The final model

selection and parameter estimates of one Cox Proportional Hazards model and one Extended

Cox model were discussed in more detail in Chapter 6. The final model selection and parameters

estimates of the other four models can be found in this appendix. It should be noted that we

changed some of the variable names because we can not expose them to the public.

B.1 Cox Proportional Hazards model

Step Variable Added Variable Removed p-value

1 WeightNHG < 0.00001

2 LTV < 0.00001

3 Variable X Variable X < 0.00001

4 Variable D < 0.00001

5 Variable A < 0.00001

6 Variable G Variable G < 0.00001

7 Variable Y Variable Y < 0.00001

8 Variable C Variable C 0.00755

9 Variable J Variable J 0.03602

Table B.1: Stepwise variable selection - performing model segment 1.

Coefficient Standard p Hazard 95% Confidence

(b) Error Ratio Interval

WeightNHG 0.640 0.036 < 0.00001 1.898 (0.570− 0.711)

LTV - 1.093 0.062 < 0.00001 0.335 - (1.216− 0.970)

Variable D 0.076 0.014 < 0.00001 1.079 (0.048− 0.104)

Variable A 0.444 0.050 < 0.00001 1.559 (0.344− 0.544)

Table B.2: Selected variable estimations - performing model segment 1.
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Step Variable Added Variable Removed p-value

1 FirstDefaultTrigger < 0.00001

2 WeightNHG < 0.00001

3 Variable X < 0.00001

4 Variable G Variable G < 0.00001

5 Variable D Variable D < 0.00001

6 LTV < 0.00001

7 Variable Z Variable Z < 0.00001

8 Variable B < 0.00001

9 Variable C < 0.00001

10 Variable F Variable F < 0.00001

11 Variable A Variable A < 0.00001

12 Variable J Variable J 0.01358

13 Variable Y Variable Y 0.04239

Table B.3: Stepwise variable selection - non-performing model segment 2.

Coefficient Standard p Hazard 95% Confidence

(b) Error Ratio Interval

FirstDefaultTrigger - 0.266 0.005 < 0.00001 0.766 - (0.276− 0.255)

WeightNHG 0.438 0.017 < 0.00001 1.550 (0.403− 0.473)

LTV - 0.737 0.028 < 0.00001 0.478 - (0.793− 0.681)

Variable B - 4.265 1.405 0.00240 0.014 - (7.019− 1.511)

Variable C - 0.118 0.022 < 0.00001 0.888 - (0.163− 0.073)

Variable X 0.287 0.016 < 0.00001 1.333 (0.256− 0.319)

Table B.4: Selected variable estimations - non-performing model segment 2.
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Step Variable Added Variable Removed p-value

1 WeightNHG < 0.00001

2 Variable X < 0.00001

3 EverCuredBeofre Variable G < 0.00001

4 Variable D Variable D < 0.00001

5 Variable Z < 0.00001

6 LTV < 0.00001

7 Variable A < 0.00001

8 Variable F Variable F < 0.00001

9 Variable C Variable C < 0.00001

10 Variable B Variable B 0.01013

11 Variable Y 0.03426

Table B.5: Stepwise variable selection - performing model segment 2.

Coefficient Standard p Hazard 95% Confidence

(b) Error Ratio Interval

WeightNHG 0.613 0.018 < 0.00001 1.847 (0.577− 0.650)

Variable X 0.396 0.015 < 0.00001 1.487 (0.366− 0.426)

Variable Z 1.534 0.0123 < 0.00001 4.638 (1.292− 1.776)

LTV - 0.461 0.028 < 0.00001 0.630 - (0.516− 0.406)

Variable A 0.342 0.022 < 0.00001 1.408 (0.298− 0.386)

Variable Y 0.042 0.011 0.00033 1.043 (0.019− 0.065)

Table B.6: Selected variable estimations - performing model segment 2.
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B.2 Extended Cox model

Step Variable Added Variable Removed p-value

1 FirstDefaultTrigger < 0.00001

2 Variable E < 0.00001

3 WeightNHG < 0.00001

4 LTV < 0.00001

5 Variable A Variable A < 0.00001

6 Variable X < 0.00001

7 Variable D Variable D < 0.00001

8 Variable G Variable G < 0.00001

9 Variable H Variable H < 0.00001

10 Variable C Variable C < 0.00001

11 Variable Y Variable Y < 0.00001

12 Variable B Variable B < 0.00001

13 Variable I Variable I 0.00156

14 Variable F 0.00193

Table B.7: Stepwise variable selection - non-performing time-dependent model segment 2.

Coefficient Standard p Hazard 95% Confidence

(b) Error Ratio Interval

Variable F 0.000 0.000 0.00083 1.000 (0.000− 0.000)

Variable X 0.079 0.012 < 0.00001 1.082 (0.054− 0.104)

FirstDefaultTrigger 0.020 0.007 0.00292 1.021 (0.007− 0.034)

LTV - 0.552 0.028 < 0.00001 0.575 - (0.606− 0.497)

WeightNHG 0.421 0.027 < 0.00001 1.524 (0.368− 0.474)

Variable E 0.536 0.074 < 0.00001 1.709 (0.390− 0.682)

Table B.8: Selected variable estimations - non-performing time-dependent model segment 2.
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B.3 Survival curves

(a) Variable FirstDefaultTrigger. (b) Variable WeightNHG.

(c) Variable LTV. (d) Variable Variable A.

(e) Variable Variable Y.

Figure B.1: Estimated survival curves for different values of selected variables - non-performing

model segment 1.6

6Scales on y-axis removes due to confidentiality.
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(a) Variable LTV. (b) Variable Variable D.

(c) Variable Variable A. (d) Variable WeightNHG.

Figure B.2: Estimated survival curves for different values of selected variables - performing

model segment 1.7

7Scales on y-axis removes due to confidentiality.



50 Appendix - Model selection and parameter estimates

(a) Variable Variable X. (b) Variable FirstDefaultTrigger.

(c) Variable LTV. (d) Variable Variable C.

(e) Variable Variable B. (f) Variable WeightNHG.

Figure B.3: Estimated survival curves for different values of selected variables - non-performing

model segment 2.8

8Scales on y-axis removes due to confidentiality.
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(a) Variable Variable X. (b) Variable Variable Y.

(c) Variable LTV. (d) Variable Variable Z.

(e) Variable Variable A. (f) Variable WeightNHG.

Figure B.4: Estimated survival curves for different values of selected variables - performing

model segment 2.9

9Scales on y-axis removes due to confidentiality.
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C Inclusion of realized recoveries

One of our goals was to incorporate recoveries realized so far in the non-performing models.

However, our results show that it is not fair to incorporate recoveries realized so far in the

model estimation for mortgage portfolios specific. The results can be seen in Table C.1.10.

Approach LCR Spearman Kendall C-index LS

1: time-independent x1 x1 x1 x1 x1

1: time-dependent x2 x2 x2 x2 x2

2: time-independent x1 - 9.6 x1 - 9.3 x1 - 6.3 x1 + 4.3 x1 - 28.0

2: time-dependent x2 - 1.9 x2 - 5.8 x2 - 4.3 x2 + 28.5 x2 - 61.4

3: time-independent x1 + 10.6 x1 + 17.9 x1 + 25.6 x1 - 7.7 x1 + 9.3

3: time-dependent x2 + 24.3 x2 + 25.6 x2 + 34.7 x2 + 16.5 x2 - 10.9

Table C.1: Performance measurements incorporating recoveries realized so far.

Here, approach 1 represents the approach currently used. Approach 2 represents the approach

described in Section 4.3 and approach 3 is the same approach as 2 but, the value of trandom

is changed to a value randomly chosen between t0 and t80. As can be seen from the results,

including recoveries realized so far led to higher loss shortfalls. This is mainly caused by the

non-evenly distribution of the cash flow data, where the most important cash flow (sale of

collateral) happens at the end of the default period. Therefore, a lot of the LR observed at

time trandom are equal to 1, as can be seen in Figure C.1.11

(a) trandom between t0 and tend. (b) trandom between t0 and t80.

Figure C.1: Distribution of LR at time trandom.

10Performance measurements of first approach removed due to confidentiality.
11Scales on y-axis removed due to confidentiality.
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