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Abstract
We consider an inventory control problem of two companies facing Poisson demand

with a different rate, that review their inventory continuously and replenish it by
ordering different quantities. Our aim is to analytically identify conditions under
which joint ordering is advantageous for both companies. Numerical experiments
show that the optimal order quantities under joint ordering are lower than or equal to
those under independent ordering and that joint ordering is preferred to independent
ordering for two companies. In addition, we carry out a sensitivity analysis.

Keywords: Joint Replenishment Problem, non-identical companies, stochastic de-
mand, inventory model

1 Introduction

Companies that sell products need to have a stock in order to meet their demands, mean-
ing that their inventory needs to be replenished every now and then. Naturally, costs
are associated with this replenishment. When companies decide to jointly replenish their
inventories instead of independently order items, these companies can split the fixed pro-
curement cost and therefore save costs. The problem for companies of determining a policy
to replenish their inventory jointly is known as the Joint Replenishment Problem.

In this article we research the Joint Replenishment Problem. In particular, we study
two companies that each have to manage the inventory level of one specific item. We
consider the two companies to be non-identical, meaning that they face different demand
and they can order the item in different amounts. The inventories of the two companies
are reviewed continuously and they face Poisson demand. As soon as the inventory level of
one of the companies drops below a prescribed level, they both place an order to replenish
their inventories.

1.1 Literature Review

One of the initiators of research on the joint replenishment problem was Silver in 1965 [9].
Silver explored that the cost of joint ordering is always less than or equal to the cost of
independent ordering for two items. Since this paper, much research has been done on the
joint replenishment problem. Both the situations of deterministic and stochastic demand
are considered. The latter is known as the stochastic joint replenishment problem, which
we also do research on in this article.

For the stochastic joint replenishment problem two main policies have been researched
in the literature. These policies are described in a review paper by Khouja and Goyal [6].
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The first policy is the can-order policy, which can be seen as a continuous review policy.
This policy was introduced by Balintfy [3]. When the inventory level one of the items
drops below a certain level, the so-called reorder level, the inventory level of the other item
is evaluated as well. If this is below the so-called can-order level, orders for this item are
made as well. Both items will be ordered up to a fixed inventory level that may be different
for each item. Federgruen et al. [4] provided an algorithm for determining the optimal
can-order policy. Under the periodic review policy, every fixed period of time both items
are ordered up to a fixed inventory level.

Comparisons of the performance of these policies are made by Atkins and Iyogun [2],
who showed that periodic review policies outperform the can-order policy for increasing
fixed cost. The comparison of performance of policies is an extensively researched topic.
Much research is focused on extending and improving an existing policy and testing whether
it really outperforms earlier policies. Finding exact solutions for optimal policies is really
complex and results in large computational time. Özkaya et al. [7] came up with a new
policy that combines aspects of both the continuous review policies and the periodic review
policies and showed that this new policy outperformed existing policies. Furthermore,
Tanrikulu et al. [10] proposed a new policy that involves constant size orders whenever
the inventory level of one of the items drops below its reorder point. They also show that
this policy performs really well, especially in situations where backorder costs are high and
lead times are small. Other examples of policies that are researched in the literature are
those of Roushdy et al. [8] and Fung et al. [5].

In the literature that is mentioned above, the focus is mainly on introducing and
evaluating new policies for the stochastic joint replenishment problem. However, very few
papers investigate how well a new policy performs relative to the policy of independent
ordering. Timmer et al. [11] showed that for two companies having identical characteristics,
such as demand rate and holding costs, joint ordering under a continuous review policy
is better than individual ordering if the procurement cost is higher than a certain lower
bound, which is a function of the holding cost and the demand rate.

1.2 Scope

Problems that are addressed in this article involve the conditions under which joint ordering
is preferred to independent ordering of the items. As explained in the literature review,
this is already done for companies having identical characteristics. Our goal is to identify
similar conditions for companies having non-identical characteristics, such as demand and
order quantities. Other important problems that we address are the number of items that
is optimal to order for those non-identical companies and the amount of money that can
be saved under joint replenishment, relative to independent ordering. In addition we aim
to investigate how the parameters influence the optimal order quantities and costs.

1.3 Outline

We introduce our model in Section 2, including the used parameters and assumptions that
we make in our analysis. We continue in Sections 3 and 4 with an analytical analysis of the
cost structure of the situations of independent ordering and joint ordering, respectively,
for two companies. In Section 5 we report our results. First, we provide analytical results
in the form of theorems. Afterwards, the results of a numerical comparison are presented
and in Section 6 a sensitivity analysis is carried out. In Section 7 we discuss our results
and we conclude our research in Section 8.
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2 Model

We consider two companies having non-identical characteristics and denote the set of com-
panies by N = {1, 2}. We model the inventory control problem of a single product for the
companies in this set. Our model is based on the model by Timmer et al. [11]. Their paper
also includes an inventory model of a single item for multiple companies. In their paper,
results are gained in the case that the companies have identical characteristics. In our
problem, the companies do not have all characteristics identical to each other. Therefore,
we discuss the characteristics that are involved in our model. In addition, we need to make
assumptions concerning these characteristics.

The first characteristic of the two companies is the demand. For both companies,
the demand of the product is according to a Poisson process with rate λi for company i,
i ∈ N . These Poisson processes are independent of each other, and hence the demand of
the companies is different. Without loss of generality, we assume that the demand rate
of company 1 is smaller than the demand rate of company 2. Furthermore, we assume
that the demand rate of company 2 can be expressed as a multiple of the demand rate of
company 1. Therefore, we define

λ1 = λ, λ > 0 and λ2 = xλ, x ≥ 1.

In order to meet their demands, the companies have to replenish their inventories. The
order up-to level for the replenishment of the inventory, which is the second characteristic
we discuss, is denoted by Qi for company i, i ∈ N . In the case the companies order their
items independently, items are ordered up to a level of Qi items as soon as the inventory
reaches a certain level ri (i ∈ N), the reorder level. Hence, Qi − ri items are ordered for
company i, i ∈ N . We assume that the lead time, which is the time between placing an
order and the items being on stock, is zero time units and therefore, it is most optimal to
choose ri to be zero time units. Therefore, the order quantity becomes Qi, i ∈ N . The
order quantity is discrete and the reorder process is under continuous review. Since the
demand rate of company 1 is smaller than the demand rate of company 2, it is plausible to
consider the order quantity of company 1 to be smaller than the order quantity of company
2. If we assume otherwise, at least one of the inventories becomes out balance, since the
companies always order at the same time in case of joint ordering. Therefore, we define

Q1 = Q, Q ∈ N and Q2 = yQ, yQ ∈ N, y ≥ 1.

In the replenishment process of the inventory of the two companies there are also costs
involved, of which the structure is as follows. First, the companies have to pay a fixed
procurement cost A for every order that they place, which is independent of the order size.
If the companies place a joint order instead of ordering items separately, they can save
costs by splitting the procurement cost. After ordering the items, they will be on stock
until they are sold. The cost of keeping one item on stock for one time unit is the holding
cost and denoted by hi for i ∈ N . In our model, we assume the holding cost for both
companies to be the same, and hence we define

h1 = h2 = h, h > 0.

Furthermore, the inventory position of company i at time t is denoted by Zti . We
assume the inventory position to be discrete. In addition, we assume that backorders
cannot occur and therefore the inventory position is equal to the inventory level of the
company.
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3 Independent Ordering

In this section we consider the two companies introduced in Section 2 in the case that
they replenish their inventories independently from each other. Therefore, the inventory
level processes {Zti}i∈N are independent processes. Since these processes are independent,
we derive for each of the two companies an expression for the total costs per time unit
of replenishing their inventory. However, since the cost structure is the same for both
companies, we focus on determining the cost structure of company 1. This is the company
with demand rate λ and order quantity Q, as defined in the previous section. When we
arrive at an expression for the cost structure, we can modify this expression in order to
derive an expression for the costs for company 2.

In order to derive an expression for the costs, we model the inventory process as a
Markov Chain, which is shown in Figure 1. The state space of this process is S = {n | 1 ≤
n ≤ Q}. The transition probability from state n to n − 1 equals the probability of sell-
ing an item and therefore equals the demand rate. When there is only one item left in
the inventory, this last item is sold with probability λ and immediately the inventory is
replenished.

Q Q− 1 · · · 2 1

λ λ λ λ

λ

Figure 1: Markov Chain of the inventory process of company 1, having demand rate λ and
order quantity Q

Let πn be the stationary probability that the Markov Chain is in state n, for n =
1, 2, . . . , Q, meaning that the inventory consists of n items. For this Markov Chain, we can
formulate the following balance equations.

λπn+1 = λπn, n = 1, 2, . . . , Q− 1;

λπQ = λπ1.

Therefore, the equilibrium distribution is πn = 1
Q for n = 1, 2, . . . , Q.

Using this equilibrium distribution, Timmer et al. [11] derive an expression for the total
costs per time unit. From this, we obtain that in the situation of independent ordering the
total expected costs for company 1 per time unit equal

K ind
1 (Q) =

Aλ

Q
+

1

2
h(Q+ 1). (1)

As a consequence, we find a similar expression for the total costs per time unit for company
2, by substituting λx for the demand rate and yQ for the order quantity. Hence, we obtain

K ind
2 (yQ) =

Aλx

yQ
+

1

2
h(yQ+ 1). (2)

In these expressions the superscript ’ind’ indicates independent ordering.
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4 Joint Ordering

In this section we consider the two companies introduced in Section 2 in the case that they
jointly replenish their inventory. A joint order is placed as soon as one of the two companies
runs out of inventory. We can also model this situation as a Markov Chain. Here, the state
space is two-dimensional and represents the inventory level of both companies. Therefore,
the state space is given by S = {(n1, n2 | 1 ≤ n1 ≤ Q, 1 ≤ n2 ≤ yQ}. Since the Markov
Chain is more complicated than the one of the previous section due to the two-dimensional
state space, we first show the general structure in the middle of the Markov Chain. In
addition, we study the special case of the Markov Chain that includes the state (Q, yQ)
and the cases that involve either the state (n1, yQ) for n1 < Q or the state (Q,n2) for
n2 < yQ. We let π(n1, n2) denote the stationary probability that the Markov Chain is in
state (n1, n2) for n1 = 1, 2, . . . , Q and n2 = 1, 2, . . . , yQ.

The structure of the Markov Chain around a general state (n1, n2), where n1 < Q
and n2 < yQ, is given in Figure 2. The transition probability from state (n1, n2) (n1 =
1, 2, . . . , Q and n2 = 1, 2, . . . , yQ) to state (n1−1, n2) equals the probability that company
1 sells an item before company 2 does, and hence equals λ

λ+xλ .

(n1, n2)

(n1 + 1, n2) (n1, n2 + 1)

(n1 − 1, n2) (n1, n2 − 1)

· · · · · · · · ·

· · · · · · · · ·

λ
λ+xλ

λ
λ+xλ

xλ
λ+xλ

xλ
λ+xλ

λ
λ+xλ

xλ
λ+xλ

λ
λ+xλ

xλ
λ+xλ

λ
λ+xλ

xλ
λ+xλ

λ
λ+xλ

xλ
λ+xλ

Figure 2: The inventory process of two companies, company 1 having demand rate λ and
company 2 having demand rate xλ

For n1 = 1, 2, . . . , Q − 1 and n2 = 1, 2, . . . , yQ − 1 the balance equations for this Markov
Chain are given by

(λ+ xλ)π(n1, n2) = λπ(n1 + 1, n2) + xλπ(n1, n2 + 1). (3)

The part of the Markov Chain that involves the state (Q, yQ) is given in Figure 3.
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(Q, yQ)

(Q− 1, yQ) (Q, yQ− 1)

· · · · · · · · ·

(1, 1)· · ·(1, yQ) · · · (Q, 1)

λ
λ+xλ

xλ
λ+xλ

λ
λ+xλ

xλ
λ+xλ

λ
λ+xλ

xλ
λ+xλ

λ
λ+xλ

xλ
λ+xλ

λ
λ+xλ

xλ
λ+xλ

Figure 3: Part of the Markov Chain of the inventory process, involving the node (Q, yQ)
and all its in- and outgoing edges.

Around the state (Q, yQ), the outgoing arrows are similar to the previous Markov
Chain. However, the ingoing arrows are different. As soon as one company runs out of
stock, the stock of both companies is replenished up to the maximum number of items,
which is Q items for company 1 and yQ items for company 2. This is the case for states
where either n1 or n2 equals one, and thus for yQ states there is an arrow with probability
λ

λ+xλ to the state (Q, yQ) and for Q states there is an arrow with probability xλ
λ+xλ to

(Q, yQ). Hence, the balance equation corresponding to this part of the Markov Chain is
as follows:

(λ+ xλ)π(Q, yQ) = λ

yQX
n2=1

π(1, n2) + xλ

QX
n1=1

π(n1, 1). (4)

The parts of the Markov Chain that involve either the state (Q,n2), where n2 < yQ
or the state (n1, yQ), where n1 < Q are given in Figure 4. For simplicity of the figures,
we did not draw the ingoing edges of the states on top of the figures and the outgoing
edges for the states on the bottom of the figures. For these Markov Chains, the balance
equations are similar to each other and are given by

(λ+ xλ)π(n1, yQ) = λπ(n1 + 1, yQ), n1 = 1, 2, . . . Q− 1; (5)
(λ+ xλ)π(Q,n2) = xλπ(Q,n2 + 1), n2 = 1, 2, . . . , yQ− 1. (6)

In the paper of Timmer et al. [11] the equilibrium distribution, corresponding to the
balance equations in Equations (3), (4), (5) and (6) is determined. Before stating this
equilibrium distribution, we first define the generalized incomplete beta function to be
Iq(a, b) =

Pb−1
s=0

s+a−1
s qa(1− q)s[1]. We use this function because this expression occurs
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(n1 + 1, yQ)

(n1, yQ)

(n1 − 1, yQ) (n1, yQ− 1)

λ
λ+xλ

xλ
λ+xλ

λ
λ+xλ

(a) Part of the Markov Chain that involves
the state (n1, yQ), n1 < Q, and all its in- and
out-going edges.

(Q,n2 + 1)

(Q,n2)

(Q− 1, n2) (Q,n2 − 1)

xλ
λ+xλ

xλ
λ+xλ

xλ
λ+xλ

(b) Part of the Markov Chain that involves
the state (Q,n2), n2 < yQ, and all its in- and
outgoing edges.

Figure 4: Two parts of the Markov Chain of the inventory process.

several times in the equation of the equilibrium distribution. In the equilibrium distribution
we also use a normalizing constant which is given by

G(Q, yQ) =
yQ(1 + x)

x
I x

1+x
(yQ+ 1, Q) +Q(1 + x)I 1

1+x
(Q+ 1, yQ)

= Q(1 + x)
y

x
I x

1+x
(yQ+ 1, Q) + I 1

1+x
(Q+ 1, yQ) . (7)

Now that we defined the generalized incomplete beta function and the normalizing con-
stant, we can state the computed equilibrium distribution:

π(n1, n2) =
1

G(Q, yQ)

Q− n1 + yQ− n2

Q− n1

1

1 + x

Q−n1 x

1 + x

yQ−n2

. (8)

Using this equilibrium distribution we wish to derive an expression for the total joint
cost of replenishment for the two companies under cooperation. This cost is as follows.

Theorem 1. In case of cooperation, for two companies, having demand rates λ and xλ
and up-to order levels Q and yQ, respectively, and both having holding cost h per item per
time unit, the expected joint cost per time unit is given by

K(Q, yQ) =
1

2
h(yQ+ 1− xQ)

x− 1

x

+
Aλx/Q+ 1

2h
h
yQ(1 + x) + (1− x2)I 1

1+x
(Q+ 1, yQ)

i
y − y Q+yQ

Q
xyQ

(1+x)yQ+Q + (x− y)I 1
1+x

(Q+ 1, yQ)
. (9)

Proof. Using the equilibrium distribution in Equation (8), Timmer et al. derive an ex-
pression for the total joint cost, which we use as the basis of this proof. We modify this
expression to the case where the order quantity of company 1 equals Q, the order quantity
of company 2 equals yQ and the demand rates of company 1 and 2 are λ and xλ, respec-
tively. Let zi denote the difference between Qi and the current inventory level of company
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i, i ∈ N . With G(Q, yQ) defined as in Equation (7) the expression of the total joint cost is

K(Q, yQ) =
A(λ+ xλ)

G(Q, yQ)

+
yQ

G(Q, yQ)

Q−1X
z1=0

[h(Q− z1/2) + h(yQ+ 1)/2]
z1 + yQ

z1
pz1(1− p)yQ

+
Q

G(Q, yQ)

yQ−1X
z2=0

[h(Q+ 1)/2 + h(yQ− z2/2)]
z2 +Q

z2
pQ(1− p)z2 . (10)

In order to derive a convenient expression for the cost for investigating its behaviour, we
study this function in parts.

We start with rewriting the normalizing constant. The properties Iq(a, b) = 1 −
I1−q(b, a) and Iq(a, b) = Γ(a+b)

Γ(a+1)Γ(b)q
a(1 − q)b−1 + Iq(a + 1, b − 1) [1] of the generalized

incomplete beta function give us that

I x
1+x

(yQ+ 1, Q) = 1− Q+ yQ

Q

xyQ

(1 + x)Q+yQ
+ I 1

1+x
(Q+ 1, yQ) .

And therefore the normalizing constant can be written as

G(Q, yQ) = Q
1 + x

x
y − y Q+ yQ

Q

xyQ

(1 + x)Q+yQ
+ (x− y)I 1

1+x
(Q+ 1, yQ) .

For the further investigation of the changing expression for the costs we consider the three
terms of Equation (10) separately. We start with the term on the first line, which we call
K1(Q, yQ):

K1(Q, yQ) =
A(λ+ xλ)

G(Q, yQ)

=
Aλx/Q

y − y Q+yQ
Q

xyQ

(1+x)Q+yQ + (x− y)I 1
1+x

(Q+ 1, yQ)
. (11)

The term on the second line of Equation (10), which we call K2(Q, yQ) can be expressed
as

K2(Q, yQ) =

1
2hy

x
1+x

PQ−1
z=0 (2Q+ yQ− z + 1) z+yQ

z
xyQ

(1+x)z+yQ

y − y Q+yQ
Q

xyQ

(1+x)Q+yQ + (x− y)I 1
1+x

(Q+ 1, yQ)

Using the properties of the generalized incomplete beta function [1] and basic algebra, we
obtain

K2(Q, yQ) =
1

2
h

2Q+ (yQ+ 1) x−1
x I x

1+x
(yQ+ 1, Q) +Q Q+yQ

Q
xyQ

(1+x)yQ+Q

y − y Q+yQ
Q

xyQ

(1+x)yQ+Q + (x− y)I 1
1+x

(Q+ 1, yQ)
. (12)

If we perform similar operations on the third term of Equation (10), which we denote by
K3(Q, yQ), we can derive the following expression for this term

K3(Q, yQ) =
1

2
hx

[2yQ+ (Q+ 1)(1− x)] I 1
1+x

(Q+ 1, yQ) + yQ Q+yQ
Q

xyQ

(1+x)yQ+Q

y − y Q+yQ
Q

xyQ

(1+x)yQ+Q + (x− y)I 1
1+x

(Q+ 1, yQ)
.

(13)
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We see that the denominators of the three parts of the cost, in Equations (11), (12) and
(13), are the same and that the numerators of the second and the third part also show
similarities both with each other and with the denominator of all three expressions. In order
to give the second term and the third term the same structure, we rewrite the generalized
incomplete beta function of the second term, I x

1+x
(yQ+1, Q), to the form of this function

in both the third term and the denominator (I 1
1+x

(Q+ 1, yQ)) using the properties of the
generalized incomplete beta function. This yields

K2(Q, yQ) =
1

2
hy

2Q+ (yQ+ 1)x−1
x − 2Q+ (yQ+ 1)x−1

x I 1
1+x

(Q+ 1, yQ)

y − y Q+yQ
Q

xyQ

(1+x)yQ+Q + (x− y)I 1
1+x

(Q+ 1, yQ)

−
(2Q+ (yQ+ 1))x−1

x −Q
Q+yQ
Q

xyQ

(1+x)yQ+Q

y − y Q+yQ
Q

xyQ

(1+x)yQ+Q + (x− y)I 1
1+x

(Q+ 1, yQ)
.

Now that the denominators of the all three terms are the same and also the numerators
of the second and third term have the same structure, we add all three terms, resulting in
Equation (9).

5 Results

In this section, we first analytically determine under which conditions on the fixed pro-
curement cost joint ordering is preferred to independent ordering for the companies. We
do this for two specific cases. After presenting these analytical results, we numerically
determine the optimal order quantities. We continue with numerically comparing the total
costs under joint and independent ordering. We conclude this section by comparing our
numerical results to our analytical results.

5.1 Analytical comparison of the total costs

We start with the following lemma, which provides us useful insight on which we can base
our analytical results.

Lemma 1. When both companies order one item, joint ordering has the same cost as
independent ordering, for any difference in demand rate of the companies (so for all values
of x).

Proof. Since both companies order one item, we take y = Q = 1. We first determine the
cost of independent ordering, using Equations (1) and (2), yielding

K ind
1 (1) +K ind

2 (1) = Aλ(1 + x) + 2h. (14)

Furthermore, by Theorem 1 we find that the joint cost in this case is

K(1, 1) =
1

2
h(2− x)x− 1

x
+
Aλx+ 1

2h
h
1 + x+ (1− x2)I 1

1+x
(2, 1)

i
1− 2 x

(1+x)2
+ (x− 1)I 1

1+x
(2, 1)

.

The value of the generalized incomplete beta function that appears in the above expression
is 1

(1+x)2
. Now multiplying both the numerator and the denominator of the second term

in the expression by (1 + x)2 (and effectively thus multiplying by 1) yields

K(1, 1) = 2h+A(1 + x).
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Using basic algebra it can be shown that this expression equals the cost of independent
ordering, in Equation (14).

Since the costs of joint and independent ordering are equal to each other when both
companies order one item, a good strategy would be to order a quantity slightly above
this order quantity more frequently. This strategy is effective under the condition that
the procurement cost is low enough, because then replenishing the inventory is not really
expensive. This way, by ordering often a low amount of items, the companies can save on
holding costs. Since we assume that the order quantity can only be integer valued, this
strategy means that at least one of the two the companies should order 2 items per time
in order to gain benefits from joint ordering.

As mentioned, this strategy is effective for values of the procurement cost that are low
enough. However, the most obvious reason for ordering items jointly is to save on the fixed
procurement cost, because under joint ordering, the companies split this cost and only pay
part of it. But if it is too low, there is not much money to save. Therefore, our aim is to
determine a lower bound for this procurement cost in two different cases. In the first case,
both companies order two items. The condition on the procurement cost under which joint
ordering is preferable is stated in the following theorem.

Theorem 2. In the case that both companies order two items, joint ordering is preferred
to independent ordering if and only if A > h

λ
x2+1
x2+x

.

Proof. Both companies order two items, which means that we set Q = 2 and y = 1. Now
we determine a condition for the procurement cost such that the cost of joint ordering is
lower than that of independent ordering; in other words, for which values of A we have
K(2, 2) < K ind

1 (2) +K ind
2 (2). Using Equations (1) and (2), we obtain that the right-hand

side equals

K ind
1 (2) +K ind

2 (2) =
1

2
Aλ(1 + x) + 3h.

By Theorem 1 we have that the joint cost in this case is given by

K(2, 2) =
1

2
h(3− x)x− 1

x
+

1
2Aλx+ 1

2h
h
2(1 + x) + (1− x2)I 1

1+x
(3, 2)

i
1− 6 x2

(1+x)4
+ (x− 1)I 1

1+x
(3, 2)

.

The value of the generalized incomplete beta function in this expression is 1+4x
(1+x)4

. We

multiply the second term of the expression for the joint cost by (1+x)4

(1+x)4
and perform basic

algebra to the equation of the joint cost and arrive at the following expression:

K(2, 2) =
1

2
h
−x2 + 4x− 3

x
+

1
2Aλx(1 + x)4 + 1

2h 2x5 + 10x4 + 16x3 + 19x2 + 14x+ 3

x(x3 + 4x2 + 4x+ 1)
.

Now K(2, 2) < K ind
1 (2) +K ind

2 (2) yields A > h
λ
x2+1
x2+x

.

We know by Lemma 1 that with an order quantity of one item for both companies the
costs are equal. Therefore, we are looking for strategies that include order quantities that
are slightly higher than one item and thus also consider the case that one of the companies
orders one item and the other one two items. For this case, we again determine a lower
bound for the procurement cost. We let company 1, having demand rate λ, be the company
that orders one item and the other company be the one that orders two items. We have
this assumption because the latter company has a higher demand and hence is more likely
to order more items than the company having the lower demand rate.

10



Theorem 3. In the case that the company with demand rate λ orders one item and the
company with demand rate xλ orders two items, joint ordering is preferred to independent
ordering if and only if A > h

λx .

Proof. Company 1 orders one item and company 2 orders two items, which means that
we set Q = 1 and y = 2. Now we solve for which value of the procurement cost A the
cost of joint ordering is lower than that for independent ordering, meaning K(1, 2) <
K ind

1 (1) +K ind
2 (2). The cost of independent ordering is given by

K ind
1 (1) +K ind

2 (2) = Aλ 1 +
1

2
x +

5

2
h.

Furthermore, by Theorem 1, the cost of joint ordering is given by

K(1, 2) =
1

2
h(3− x)x− 1

x
+
Aλx+ 1

2h
h
2(1 + x) + (1− x2)I 1

1+x
(2, 2)

i
2− 6 x2

(1+x)3
+ (x− 2)I 1

1+x
(2, 2)

.

We obtain that the value of the generalized incomplete beta function in this equation
equals 1+3x

(1+x)3
. After multiplying the second term by (1+x)3

(1+x)3
and performing basic algebra

we derive that

K(1, 2) =
1

2
h
−x2 + 4x− 3

x
+
Aλx(1 + x)3 + 1

2h 2x4 + 5x3 + 11x2 + 11x+ 3

x(2x2 + 3x+ 1)
.

Now, K(1, 2) < K ind
1 (1) +K ind

2 (2) yields A > h
λx .

5.1.1 Cost per company

Now that we investigated under which conditions the total cost of joint ordering is lower
than the total cost of independent ordering of both companies together, it is a good question
whether it is for both companies equally desirable to order items jointly in these situations.
This question could be answered easily by arguing that, given that the total joint cost is
less than the sum of the costs of independent ordering, there is always a way of dividing
the procurement cost such that both companies pay at most as much for joint ordering as
for independent ordering.

5.2 Numerical comparison of the total costs under optimal order quan-
tities

In this subsection we compare the cost of joint and independent ordering to each other
under optimal order quantities. We do this numerically, since the obtained expressions
of the joint cost are too complex for analytical comparison with the cost of independent
ordering. For the numerical comparison we select our parameter values similar to the
values that are used in the article by Timmer et al. [11]. Each experiment is such that we
first fix the values of h, λ and x and then carry out the comparison for different values of
A. The exact choices of our parameters are in the following ranges.

• A ∈ {50, 100, 150, 200, 250}
• h ∈ {6, 10}
• λ ∈ {20, 40}
• x ∈ {2, 4}

Before we can execute this numerical comparison, we need to determine what the
optimal order quantities are for both joint and independent ordering.
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5.2.1 Optimal order quantities

We determine the optimal order quantities for both the situation of joint ordering and in-
dependent ordering. The order quantities of the two companies do not need to be the same.
Once we determined the optimal order quantities for both situations, we can determine
whether or not they differ and analyse the difference.

For the situation of independent ordering, we can calculate the optimal order quantities
using the formula that was for example given in the article by Timmer et al. [11]:

Qopt =

r
2Aλ

h
,

and if Qopt is not an integer, then it is rounded to the integer that results in the lowest
cost, because the cost function is a convex function in Q.

Figure 5: Joint cost for A = 50, h = 6, λ =
20 and x = 2.

For the determination of the optimal or-
der quantities under joint ordering we use the
convexity of the joint cost function. We do
not show the convexity in a mathematical
way. However, instead we provide a graph of
the joint cost function against the order quan-
tities of both companies in Figure 5. When
we plot the cost for other parameter choices,
the graph is similar. From this figure it be-
comes clear that we can consider the joint
cost function to be convex. The reason we do
this assumption is that we now can make use
of an important and useful property of con-
vex functions, namely that convex functions
have a unique minimizer. Due to this prop-
erty the optimization of the joint cost func-
tion becomes more efficient, as we now know that we have to search in directions of order
quantities that decrease the joint cost function the most. With directions we mean the
combinations of order quantities of the companies.

Using a Python program we can calculate the optimal order quantities in both the
situation of joint and independent ordering. For the exact implementation a request can
be made at the author1. As the standard situation we fix the parameters to be

• h = 6
• λ = 20
• x = 2.

We first determine the optimal order quantities for both companies in this situation for
different values of A, as specified before. Next, we change each of the three parameters
h, λ and x separately and again determine optimal order quantities for the specified values
of A. The results of the numerical calculations are shown in Table 1. Here, C1 denotes
company 1 and C2 denotes company 2.

We see that the optimal order quantities for both companies under joint ordering are
lower than the optimal order quantities under independent ordering for different values of
the procurement cost A. We also observe this if we change the parameters h, λ and x.

1f.a.boelens@student.utwente.nl
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Table 1: The optimal order quantities under joint and independent ordering for different
values of A, h, λ and x.

Optimal order quantity Q
Independent Joint

A C 1 C 2 C 1 C 2
50 18 25 12 21
100 25 36 17 30
150 31 44 21 37
200 36 51 24 43
250 40 57 26 47

(a) h = 6, λ = 20, x = 2.

Optimal order quantity Q
Independent Joint

A C 1 C 2 C 1 C 2
50 14 20 10 17
100 20 28 14 24
150 24 34 16 29
200 28 40 19 34
250 31 44 21 37

(b) h = 10, λ = 20, x = 2.

Optimal order quantity Q
Independent Joint

A C 1 C 2 C 1 C 2
50 25 36 17 30
100 36 51 24 43
150 44 63 29 53
200 51 73 33 60
250 57 81 37 68

(c) h = 6, λ = 40, x = 2.

Optimal order quantity Q
Independent Joint

A C 1 C 2 C 1 C 2
50 18 36 11 33
100 25 51 15 47
150 31 63 17 55
200 36 73 20 65
250 40 81 22 73

(d) h = 6, λ = 20, x = 4.

5.2.2 Comparison of the total cost

Now that we have determined the optimal order quantities for both companies under joint
and independent ordering, we can use these quantities to determine the total optimal cost
of joint and independent ordering. For the calculations we have the same parameter choices
as for the determination of the optimal order quantities. The results of these calculations
are shown in Table 2.

We see that the costs of joint ordering are lower than those of independent ordering for
the tested parameter choices. We also observe this if we change the parameters h, λ and
x.
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Table 2: The costs of joint and independent ordering for different values of A, h, λ and x.

Cost
Independent Joint

A C 1 C 2 Total Total
50 113 158 271 219
100 158 222 380 303
150 193 271 464 367
200 222 313 535 420
250 248 349 597 467

(a) h = 6, λ = 20, x = 2.

Cost
Independent Joint

A C 1 C 2 Total Total
50 146 205 351 289
100 205 288 493 398
150 250 351 601 481
200 288 405 693 550
250 321 452 774 611

(b) h = 10, λ = 20, x = 2.

Cost
Independent Joint

A C 1 C 2 Total Total
50 158 222 380 303
100 222 313 535 420
150 271 382 654 509
200 313 441 754 584
250 349 493 842 650

(c) h = 6, λ = 40, x = 2.

Cost
Independent Joint

A C 1 C 2 Total Total
50 113 222 335 276
100 158 313 471 382
150 193 382 575 463
200 222 441 663 532
250 248 493 741 592

(d) h = 6, λ = 20, x = 4.

5.3 Comparison of of analytical and numerical results

For our numerical results of the previous subsections we chose our parameters similar to
the parameters chosen by Timmer et al.[11]. However, when we look at analytical results,
we see that cooperation is beneficial for a value of A that is higher than A

λ multiplied
by a function of x. This function of x depends on the order quantities, for which we
considered two cases. For these results, see Section 5.1. These results where obtained
under the assumption that for a lower procurement cost, the optimal order quantities
decrease, because ordering more often less items becomes more attractive because of the
holding costs. Hence, we arrived at analytical results for the cases that both companies
order two items and that one company orders one item and the other company orders two
items, which are order quantities that are slightly above one item, for which the costs of
independent and joint ordering are equal. Both situations give another lower bound for
the procurement cost for which cooperation is beneficial.

In order to see whether our numerical results are consistent with our analytical results,
we investigate the behaviour of the total costs and the optimal order quantities for values
of A close to h

λ , since this value of A is the lower bound for identical companies for which
joint ordering is beneficial [11] and this fraction also appears in the lower bounds of A
that we obtained. In addition, we investigate the behaviour of the costs and the optimal
order quantities for values of A close to h

λx and h
λ
x2+1
x2+x

. The values of A that we chose in
Section 5.2 are significantly higher than these values, which caused that joint ordering was
beneficial in every situation that we investigated.

We first choose values of the parameters h, λ and x and then determine the optimal
order quantities and the costs for different values of A, according to the reasoning we
mentioned above. For this investigation we depict one specific situation. For this situation
we choose the following values for the parameters:
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• h = 200
• λ = 2
• x = 2.

Hence, we investigate the optimal order quantities and costs at least for values of A around
the following values:

• h
λ = 100

• h
λ
x2+1
x2+x

= 831
3

• h
λx = 50.

In addition, we include other values of A for which we investigate the costs and order
quantities. The results are in Table 3. All outcomes are rounded off to the closest integer.

Table 3: The optimal order quantities and costs for different values of A.

Optimal order quantity Q
Independent Joint

A C 1 C 2 C 1 C 2
10 1 1 1 1
20 1 1 1 1
30 1 1 1 1
49 1 1 1 1
50 1 1 1 1
51 1 1 1 2
83 1 1 1 2
84 1 1 1 2
90 1 1 1 2
99 1 1 1 2
100 1 2 1 2
101 1 2 1 2
110 1 2 2 2
150 1 2 2 2
200 2 2 2 3
250 2 3 2 3

(a) The optimal order quantities.

Cost
Independent Joint

A C 1 C 2 Total Total
10 220 240 460 460
20 240 280 520 520
30 260 320 580 580
49 298 396 694 694
50 300 400 700 700
51 302 404 706 704
83 366 532 898 819
84 368 536 904 822
90 380 560 940 844
99 398 596 994 876
100 400 500 900 880
101 402 502 904 884
110 420 520 940 915
150 500 600 1100 1014
200 500 700 1200 1113
250 550 733 1283 1203

(b) The costs.

Our first observation is that for values of A higher than 50, the optimal order quantity
of company 2 under joint ordering changes. This change causes that the optimal order
quantities under joint ordering become the same as the optimal order quantities that we
considered in Theorem 3. In addition, up to and including A = 50 the costs of joint
and independent ordering are equal, which can be explained by Lemma 1 since the optimal
order quantities for both companies for both independent and joint ordering equal one. For
higher values of A the costs of joint ordering are lower than those of independent ordering,
which also follows from Theorem 3. However, in this theorem, we considered the optimal
order quantities under independent ordering to be the same as those under joint ordering.
Now our numerical outcomes show that even for different order quantities between the
situation of independent and joint ordering, joint ordering is advantageous for values of A
higher than the value we found in Theorem 3. For higher values of A, the optimal order
quantities increase. When the optimal order quantities become 2 for both companies,
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the value of A is already higher than the lower bound that we determined in Theorem
2. Therefore, it is logical that also in the cases where the optimal order quantities are 2
for both companies joint ordering is beneficial. Our numerical results here show that for
higher values of A, associated with higher optimal order quantities, joint ordering remains
beneficial. This is also shown by our numerical results in Section 5.2, where relative high
values of A were chosen.

Different choices for h, λ and x give similar results. Namely, up to and including A = h
λx

the optimal order quantities are one for both companies under both independent and joint
ordering. In addition, the costs of joint and independent ordering are equal. The closest
value of A above h

λx results in an optimal order quantity of two items for company 2 under
joint ordering, while the rest of the optimal order quantities stay the same. Values of A
higher than this value result in lower costs for joint ordering than for independent ordering.
Furthermore, in the cases that the optimal order quantities are two for both companies,
as considered in Theorem 2, the value of A is significantly larger than h

λ
x2+1
x2+x

. Therefore,
under these order quantities, the lower bound of A for which joint ordering is beneficial is
always reached and therefore joint ordering is always beneficial under these optimal order
quantities. Additionally, no choice of parameters result in a situation where independent
ordering has lower costs than joint ordering. For decreasing A, the optimal order quan-
tities decrease until they reach a value of 1 and from this moment the costs of joint and
independent ordering are equal to each other.

6 Sensitivity Analysis

In this section, we investigate the effect of parameters on the optimal order quantities under
joint and independent ordering and on the extent to which joint ordering is advantageous.
In Section 5 we already showed the values of the optimal order quantities and the total costs
for specific values of the parameters. Now we investigate their influence on the optimal
order quantities and the costs by choosing the parameters from a significantly wider range.
The parameters that we consider in our sensitivity analysis are the fixed procurement cost
A, the holding cost h, the demand rate of the first company λ and the difference factor in
demand rate x. Before we can perform this analysis for each of the parameters, we have to
choose a basis situation of the parameters. All parameters except for the parameter that
we investigate have the value defined in the basis situation. We choose the parameters to
be:

• A = 50
• h = 6
• λ = 20
• x = 2.

For the investigation of the effect of the parameters, we use the following ranges of the
parameters:

• A ∈ {1, 2, . . . , 500}
• h ∈ {1, 2, . . . , 500}
• λ ∈ {1, 2, . . . , 100}
• x ∈ {1, 2, . . . , 20}.
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6.1 Optimal order quantities

First we investigate the influence of the parameters on the optimal order quantities for
both companies under both independent and joint ordering. The results of this investiga-
tion are in Figure 6. In the legends of these graphs the subscript of the Q indicates the
company and the superscript indicates whether the order quantity is from the situation of
independent or joint ordering.

(a) The relation between A and the optimal or-
der quantities.

(b) The relation between h and the optimal or-
der quantities.

(c) The relation between λ and the optimal or-
der quantities.

(d) The relation between x and the optimal or-
der quantities.

Figure 6: The optimal order quantities for different parameter choices.

We see that the order quantities for both companies increase as the fixed procurement
cost increases or the demand rate increases, in both the situation of independent and joint
ordering. On the other hand, the optimal order quantities for both companies decrease as
the holding cost increases, in both situations. For increasing x the effect on the optimal
order quantity of company 1 under both independent and joint ordering is very limited.
However, the optimal order quantity of company 2 increases as x increases, in both situa-
tions.
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6.2 Cost effectiveness

Now we investigate the influence of the parameters on the so-called cost effectiveness, which
indicates the advantage of joint ordering relative to independent ordering. We define the
cost effectiveness to be [11]

cost effectiveness =
cost joint ordering

cost independent ordering
.

The costs in this fraction are the total costs of ordering for both companies added and not
the costs per company. As long as the cost effectiveness is below 1, then the costs of joint
ordering are lower than those of ordering independently and hence it is more beneficial to
order jointly. According to the definition, a low value of cost effectiveness means that it is
more beneficial to order jointly than to order independently for the companies. The results
of the relation between the parameters and the cost effectiveness are in Figure 7.

(a) The relation between A and the cost effec-
tiveness.

(b) The relation between h and the cost effec-
tiveness.

(c) The relation between λ and the cost effec-
tiveness.

(d) The relation between x and the cost effec-
tiveness.

Figure 7: The cost effectiveness for different parameter choices.

We see that the cost effectiveness increases as the h and x increase. So for increasing
h and x it becomes less beneficial to order jointly for the companies. On the other hand,
the cost effectiveness decreases for increasing A and λ and hence becomes more beneficial.
Furthermore, we see that the cost effectiveness in all graphs remain below 1, which indi-
cates that joint ordering yields lower costs than independent ordering.
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7 Discussion

In this section, we comment on the obtained results that are presented in the previous
section. We start with discussing an important assumption that we made. Then we discuss
whether the results are consistent with earlier research and analyse whether our results are
how we could expect them to be. We start with our analytical results represented in
Section 5.1 and afterwards we discuss our numerical results on the costs under optimal
order quantities as presented in Section 5.2.

In our research we considered the holding cost of both companies to be the same. We
did this for simplicity and in order to derive analytical results. However, this assumption
is not really representative for a real situation. Nevertheless, the results we obtained using
the assumption can give us useful understandings and knowledge which can be applied to
real situations.

Our first analytical result, stated in Lemma 1, tells us that the costs of joint and inde-
pendent ordering are equal when both companies order one item. This result is comparable
to the result in the paper of Timmer et al. [11]. Our situation differs from their situation
in the sense that in our situation the companies can have different demand. However, we
found out that the difference in demand does not matter and that the same result as in
the situation with equal demand still holds.

In order to get the next two results, stated in Theorems 2 and 3, we based our reason-
ing about order quantities on the paper of Timmer et al. [11] and considered two cases
comparable to the case in this paper, where both companies order two items. In the men-
tioned paper the result was that for two identical companies joint ordering is preferred to
independent ordering if and only if A > h

λ . In other words, a lower bound was found for the
fixed procurement cost. In our situation we consider the companies to have different de-
mand rate and possibly to have different order quantities. In the cases that we considered
we fixed the difference in order quantity but still allowed the companies to have different
demand. Therefore we expected to find a similar lower bound for the fixed procurement
cost, where in addition x appears. So it is not unexpected that we obtained results in
the form A > h

λ multiplied by a function of x. Furthermore, when we substitute x = 1
in the lower bound that we obtained for the fixed procurement cost, we get the the lower
bound that was known for two companies having the same demand rate. Therefore, we
can conclude that these obtained results are consistent with both earlier research and our
expectations, that are also partly based on earlier research.

Now that we have discussed our analytical results, we continue with our numerical
results. Our first numerical result includes the optimal order quantities. As reported in
Section 5.2, the optimal order quantities under joint ordering are lower than those under
independent ordering, for all of our parameter choices. This result is not really surprising,
as under joint ordering the companies can split the fixed procurement cost. This gives the
companies an incentive to order more often, and less items per order in the case they order
jointly, which results in less items on stock and hence lower holding costs per time unit.
This reasoning can also be applied to the next result, namely that the cost of joint ordering
is lower than the cost of independent ordering for all of our parameter choices. That is, due
to the lower order size under joint ordering, the holding costs decrease when the companies
choose to order jointly. This way, the total costs for joint ordering are lower than those
for independent ordering. However, as we mentioned, splitting the fixed procurement cost
gives the companies incentive to order more often less items. Therefore, the companies
more often have to pay (part of) the fixed procurement cost. Nevertheless, this apparently
does not outweigh the cost savings per time unit of the holding costs, according to our
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results.
When we investigated the optimal order quantities and the costs around values of A

that coincide with the lower bounds that we found for A analytically, we expected that
we could find a combination of A, h, λ and x such that the costs of independent ordering
are lower than the costs of joint ordering. However, we do not find such a situation.
Nevertheless, we discover that the lower bound of A according to Theorem 3 indeed was
an important value in our numerical comparison of the costs. Up to including this value,
the optimal order quantities for both companies under both independent and joint ordering
are one and (in accordance with Lemma 1) the costs of independent and joint ordering
are equal. Values of A higher than the obtained lower bound resulted in an increase of
the order quantity of company 2 under joint ordering and even higher values of A cause
increases of the order quantities of both companies in both order situations. This result is
explainable in the sense that it is logical that first the optimal order quantity of company 2
increases, since this company faces a higher demand. As a consequence, the optimal order
quantities under joint ordering are the same as considered in Theorem 3. Therefore, it is
not surprising that joint ordering is beneficial in this situation, although the optimal order
quantities under independent ordering are still equal to one item for values of A slightly
higher than this value.

Our sensitivity analysis shows the influence of the parameters on the optimal order
quantities and the total costs. We start by discussing the results regarding the optimal
order quantities. When the fixed procurement cost A increases, then the companies have
to pay more money per order and hence this gives an incentive to order less often. Since
they still face the same demand, they have to order more items per order. Hence, this
relation is as we could have expected. If the holding cost increases, then it becomes more
expensive to have items on stock and therefore it is beneficial to order less items more
often so that the average number of items on stock is minimal. Therefore, it is logical that
the order quantities increase. Furthermore, if λ increases, the demand of both companies
increases and hence the companies have to order more items per time unit. Therefore, it
is logical that the optimal order quantities increase for increasing λ. Finally, increasing x
does not have a significant effect on the order quantity under joint ordering of company
1, which is logical because an increasing value of x means that company 2 faces a higher
demand. However, company 1 does not want to order more often, since they still face the
same demand. Therefore, it is as expected that the optimal order quantities of company 2
increase for increasing x.

Now we continue with discussing the sensitivity analysis on the cost effectiveness. When
A increases, the cost effectiveness becomes lower, meaning that joint ordering becomes more
beneficial. This can be explained by the reasoning that under joint ordering the compa-
nies can share this cost. And hence, when this fixed procurement cost is higher, they
relatively save more money by ordering jointly. When the holding cost increases, the cost
effectiveness also increases. The reason of this could be that the companies do not want
much items on stock and therefore they want to order less items per order, but order more
often. We observed in our numerical results that the difference in joint and independent
costs decreases for decreasing order size. Therefore, the cost effectiveness increases. We
also see that the graph of the relation between h and the cost effectiveness is not smooth.
This is due to the restriction that the order quantities need to be integer valued. When
λ increases, then the companies have to order more items per time unit. We also expect
the companies to order more often, especially in the case of joint ordering since the cost
per order is lower in this case. Under independent ordering companies also order more
often for higher demand, but not so much more as under joint ordering. In this case they
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have more incentive to order more items instead of ordering more often, which also causes
higher holding costs. Therefore, it is logical that the costs of joint ordering are lower than
those of independent ordering for higher λ. Finally, when x increases, then it becomes less
beneficial to order jointly. This can be explained by the fact that now the difference in
demand increases. Therefore, company 2 wants to order more often and/or more items.
Since company 1 keeps facing the same demand, it does not want to order more often.
Therefore, under joint ordering, company 2 has to order the same number of times and
hence more items per time. This results in more items on stock on average and hence
higher holding costs, while under independent ordering, company 2 could order less items
more often. In our sensitivity analysis we observe that for a large range of parameters, the
cost effectiveness never reaches the value of 1, meaning that joint ordering is beneficial in
all tested situations. This is in line with our other result of not being able to find a combi-
nation of parameters for which independent ordering is beneficial, which is explained above.

8 Conclusion

We analyse the cost structure of both independent and joint ordering for two companies
having different demand rate and order quantities. However, the two companies have
the same holding cost. Both companies face a Poisson demand and their inventories are
reviewed continuously. As soon as the inventory level drops below a prescribed level, an
order is placed. In particular, we study the costs in the situation in which the companies
place a joint order as soon as the inventory of one of the companies needs to be replenished,
resulting in an explicit expression.

We analytically identify when joint ordering is advantageous for two companies in two
specific cases, in the form of a lower bound on the fixed procurement cost, which needs
to be paid per order. Numerical experiments show that the optimal order quantities are
lower under joint ordering for a value of the fixed procurement cost that is higher than one
of the lower bounds we derived analytically. In addition, the costs of joint ordering are
lower than those for independent ordering. For values of the fixed procurement cost that
are smaller or equal to this lower bound, the optimal order quantities of both companies
under both joint and independent ordering are equal to one. In these cases, the costs of
joint and independent ordering are equal. Hence, from our experiments we observe that
the cost of independent ordering is not lower than that of joint ordering for a wide range of
parameter choices. Therefore, we can conclude that in general joint ordering is preferred
to independent ordering.

In further research the model can be extended to a model where the holding costs of
the companies may be different. However, this extension causes the expressions for the
total cost to become significantly more complex and therefore analytical comparison can
become too complicated. Nevertheless, a numerical comparison can still be executed on
situations including the mentioned extensions. Furthermore, in further research a situation
of three or more companies can be studied. And hence, similar research in the case of a
general number of companies can be done. Finally, an approach of dividing the joint costs
among the companies can be studied, with as aim to find a way such that joint ordering
is advantageous for both companies.
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