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Abstract
Detecting faults in systems is important, as the occurrence of faults may have drastic
consequences. In this paper, complications with respect to analytical model-based
fault detection algorithms using statistical techniques are investigated. Using a static
problem in combination with Monte Carlo simulations and analytical properties of
some test statistics, properties regarding hypothesis testing were investigated. More-
over, applying a Kalman filter based detection scheme in combination with discretised
stochastic differential equations, simulations were done for a DC motor. It followed
that there is a trade-off between the certainty that a fault is reliably detected, the
probability of a false alarm and the speed of detection. Moreover, complications such
as a dependency on both the sampling interval and the number of measurements per
sample occurred. The dynamical case has many more complications to deal with than
the static problem.

Keywords: Fault detection, FD, statistics, discretisation, dynamical systems, linear
systems, Kalman filter, DC motor

1 Introduction

To maintain the reliability, safety and efficiency of systems, faults in the system must be
detected. When a fault occurs, there can be several consequences. For instance, the system
can become less efficient or the quality of the product the system makes can be reduced.
In these cases, there are economic losses due to the fault. To reduce the total loss, it
is necessary to quickly detect that a fault occurred. Furthermore, a fault can result in a
complete breakdown of the process, which could have major consequences. If an important
machine in a company breaks down completely, the production process could come to a
halt, causing a significant loss of money. To prevent such a scenario, the fault should be
detected.
Undetected faults can have fatal consequences, for example, in Boeing airplanes. These
airplanes react to many signals via sensors. If a sensor breaks, this could have detrimental
consequences. For instance, if the height meter breaks and returns values that make an
airplane quickly react incorrectly, the plane could crash. In this case, it is of utmost
importance that the fault be detected as quickly as possible.
Sensors are not the only apparatus in an airplane that can break down. On 4 October 1992,
El Al Flight 1862 lost all its engines when departing from Schiphol Airport. Eventually, the
pilot lost control and the plane crashed into two flats in the Bijlmermeer neighbourhood
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of Amsterdam. Investigations showed that this incident, called ’Bijlmerramp’ (Bijlmer
disaster), could have been averted by rearranging the controller [1] [15].
This is not the only example of fatal consequences due to fault detection errors. American
Airline flight DC10 crashed at Chicago-O’Hare International Airport with 273 fatalities.
The pilot of the airplane only received an indication of a fault, 15 seconds before the
accident. Investigations showed that the crash could have been averted [1].
Another such tragedy is the Chernobyl disaster in 1986, where a large explosion occurred
in a nuclear power plant. The primary source of the Chernobyl disaster was the faulty
obsolete technology and the absence of a fault handling mechanism [1].
The preceding examples indicate the importance of quick fault detection. The complexity
of some systems, however, makes it hard to detect faults. Therefore, sophisticated fault de-
tection methods should be created. In this paper, complications of fault detection methods
were researched.

1.1 Literature review

According to Isermann [11], ’a fault is an unpermitted deviation of at least one character-
istic property (feature) of the system from the acceptable, usual, standard condition’. A
fault can occur as a result of internal or external sources. An example of an internal source
is overheating, and an example of an external source is humidity.
Faults are unsatisfactory and need to be repaired. Fault diagnosis plays an important role
in this process. As described by Ding [5], fault diagnosis consists of

• Fault detection: ’detection of the occurrence of faults in the functional units of the
process, which lead to undesired or intolerable behaviour of the whole system’

• Fault isolation: ’localisation (classification) of different faults’
• Fault analysis or fault identification: ’determination of the type, magnitude and

cause of the fault’

Fault detection is the first step in fault diagnosis. Fault detection includes two important
tasks: residual generation and residual evaluation. The residual generation procedure
creates signals that reflect the occurrence of faults. The residual evaluation procedure
evaluates the residual signal to decide whether or not a fault has occurred.
According to Frank [8], fault detection techniques can be divided into the signal-based,
analytical model-based and knowledge-based methods. In this paper, analytical model-
based methods are considered. This class of methods uses a quantitative mathematical
model to detect the occurrence of a fault. One such mathematical model is the dynamical
system model. There are many analytical model-based fault detection techniques that use
dynamical systems. Two general approaches are the parameter estimation technique and
the observer technique [11] [1] [17] [10] [9] [5]. The model-based fault detection techniques
are applied to many applications, such as robot manipulators [19] [3], aircraft [21] [2] and
DC motors [18]. Fault detection algorithms may employ statistical techniques [5] and use
a change in the statistical properties of the system to detect faults. Statistical techniques
are used in, for instance, robot manipulators [19] and nuclear power plants [14].

1.2 Scope

The research performed so far is mostly concerned with whether the occurrence of a fault
can be detected. Few books discuss why certain approaches fail to detect faults quickly.
Nevertheless, this is important. For instance, a certain algorithm might only work in some
situations. Investigating the properties and pinpointing the variables in the algorithm that
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determine whether the algorithm can be used in a particular application of fault detection,
can help determine whether the algorithm is suitable for that application or whether a
different algorithm should be chosen. Moreover, pinpointing the reasons why a certain
approach does not detect faults quickly, makes it possible to improve the algorithm (for
that application).
Within this framework, this paper investigates complications regarding fault detection
techniques that use the dynamical equation model and statistical techniques. The com-
plications were investigated via a static problem and a Kalman filter fault detection tech-
nique. This paper focusses on fault detection methods applied in linear systems, as most
researchers still use linear systems. For instance, linear systems can be used when the sys-
tem dynamics are fluctuating around an equilibrium. In addition, the dynamical equations
are often linearised around a trajectory. In this case, the deviations from the trajectory
are considered. As linear models are ubiquitous, they are a natural choice to research.

1.3 Outline

First, some general terminology is defined in Chapter 2. Instead of immediately investi-
gating linear models, a problem without dynamics is considered first in Chapter 3. Using
this static problem, performance properties of test statistics are discussed. Subsequently,
Chapter 4 introduces a linear model for a DC motor and describes a fault detection scheme
that applies a Kalman filter. Using this fault detection scheme, Chapter 5 treats general
complications regarding to the speed of a fault detection algorithm. Next, Chapter 6
discusses the results and Chapter 7 presents the conclusions.

2 Terminology

In this chapter, some standard terminology is introduced. Let x(i) denote measurement i.
The sample mean is defined by

X̄ =
1

n

nX
i=1

x(i).

In addition, the sample variance is defined by

S2 =
1

n− 1

nX
i=1

(x(i) − X̄)2.

Lastly, S2
µ is defined as

S2
µ =

1

n

nX
i=1

(x(i) − µ)2.

Besides these notations, some concepts need to be introduced. If a null hypothesis H0 and
an alternative hypothesis H1 are given, a type I error is the incorrect rejection of H0. In
other words, even though the null hypothesis H0 is true, it is rejected. A type II error
the incorrect acceptance of the null hypothesis. In other words, the null hypothesis H0 is
accepted even though the alternative hypothesis H1 is true. The power of a statistical test
is defined as the probability of correctly rejecting the null hypothesis. Hence, the power of
a test equals P (reject H0|H1 is true) = 1−P (accept H0|H1 is true) = 1−P (type II error).
Aside from statistical concepts and notations, faults can be classified as multiplicative
and additive faults. Assume some output signal Y (t) and some input variable U(t) are
present. If Y (t) = Yu(t) + f(t), f(t) is an additive fault. If Y (t) = (a + ∆a(t))U(t) =
Yu(t) + ∆a(t)U(t), ∆a(t) is a multiplicative fault. Additive faults may appear as offsets
in a sensor. Examples of multiplicative faults are parameter changes in a specific process
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[10].

3 Static problem

In this chapter, the following situation is treated. Assume measurements are performed
from a normal distribution with mean µ1 and variance σ2

1. In this situation, a fault occurs
when measurements are performed from a normally distributed random variable with mean
µ2 and σ2

2. In this situation, the following questions were formulated:

• What is the relationship between power and the probability of errors of the first
type? And does the power depend on the situation?

• Are comparisons based on power and fixed probability of errors of the first type fair?
If not, what is a good replacement? And what are the differences?

• Are some test statistics better than others?
• How is the speed of detection related to power?

3.1 Method

To answer these questions, simulations and analytical results were used. For simulation
purposes, normally distributed measurements were generated. Different measurements
from a specific distribution (either from N (µ1, σ

2
1) or from N (µ2, σ

2
2)) are independent.

The null hypothesis H0 applies when all measurements in the sample have been done
from the N (µ1, σ

2
1) distribution. The alternative hypothesis H1 applies when some of the

measurements in the sample have been drawn from the N (µ2, σ
2
2) distribution. These

hypotheses were tested using basic statistics that is introduced later. For this purpose,
samples were used, where n is defined as the number of measurements per sample. After a
hypothesis test, more measurements were generated. If n new measurements were found,
these new measurements formed a sample and were again used for hypothesis testing.
The used test statistics are Z = X̄−µ1

σ1/
√
n
, X2

n =
nS2

µ1

σ2
1
, T = X̄−µ1

S/
√
n
, X2

n−1 = (n−1)S2

σ2
1

and
b1X̄ + b2S

2
µ1 (called the summed test statistic). When no fault has occurred, the first

four test statistics have an N (0, 1), χ2
n, tn−1 and χ2

n−1 distribution, respectively [16]. The
distribution of the summed test statistic is determined numerically using Monte-Carlo
simulations. For our purposes, b1 = b2 = 1 was used. Furthermore, it was assumed that
it is not known whether the µ2 and σ2

2 are larger or smaller than µ1 and σ2
1, respectively.

As a consequence, two sides tests were used. If it was known that µ2 and σ2
2 are larger or

smaller than µ1 and σ2
1, respectively, a one sided test would have been preferred.

For the Z test statistic, the null hypothesis is rejected if Z > c or Z < −c. The parameter
c depends on the choice of the level of confidence. The power of Z equals

1 − P (−c ≤ Z ≤ c|H1) = 1 − P µ1 − c
σ1√
n
≤ X̄ ≤ µ1 + c

σ1√
n
|H1

The power can be calculated if all measurements in the batch are faulty since in this case,
X̄ ∼ N (µ2,

σ2
2
n ). If only k measurements in the batch are faulty, the situation is different.

It can be shown that X̄ = n−k
n X̄nf + k

nX̄f with X̄nf the average of the nonfaulty measure-

ments and X̄f the average of the faulty measurements. Using that X̄nf ∼ N (µ1,
σ2
1

n−k ) and

X̄nf ∼ N (µ2,
σ2
2
k ), it follows that

X̄ ∼ N (n− k)µ1 + kµ2

n
,
(n− k)σ2

1 + kσ2
2

n2
.
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For the test statistic X2
n−1, the power equals

1 − P (c1 ≤ X2
n−1 ≤ c2|H1) = 1 − P c1

σ2
1

σ2
2

≤ (n− 1)S2

σ2
2

≤ c2
σ2

1

σ2
2

|H1 .

When only faulty measurements are present in a batch, (n−1)S2

σ2
2

has an χ2
n−1 distribution.

As a consequence, the power can be calculated.
The preceding three facts were used in the analysis. When it is said that analytical results
for Z or X2

n−1 were used, this means that one of the preceding facts was used to perform
an analysis. Which fact was used is clear from the context.

3.2 The relation between power and errors of the first type and prop-
erties of the power

In this section, the relation between power and the probability of errors of the first type, is
investigated using analytical results and simulations. In addition, properties of the power
are discussed.

3.2.1 A comment regarding differences in test statistics

Before moving on to the relation between the power and the probability of type I errors,
a property of the test statistics is discussed. Assume that all measurements in a sample
are faulty measurements. The Z test statistic assumes the variance to be known, while
the T test statistic estimates the variance. Hence, if the variance changes and there are
sufficiently many measurements in a sample, the T test statistic approximates the variance
well and can not see the change in the variance. As a consequence, the test statistic T
can only detect changes in the mean. The Z test statistic does not adjust to the change
in the variance which implies that the Z test statistic could detect changes in both the
mean and the variance. Hence, if the variance changes, the power of the two test statistics
may differ. If the variance stays the same and the number of measurements per sample is
large enough, S estimates the variance very well and the Z and T test statistic most likely
behave approximately the same way.
Applying a similar story to X2

n and X2
n−1, if the mean changes, X2

n does not adapt to this
change and X2

n−1 does. As a consequence, X2
n can detect changes in both the mean and

the variance, while X2
n−1 can only detect changes in the variance. In this case, the power

of both test statistics may differ. If the mean does not change and the sample size is large
enough, X̄ approximates the mean well and X2

n−1 and X2
n behave approximately the same

way.

3.2.2 A change for all measurements in the sample

In this subsection, the relation between power and the probability of errors of the first type
is investigated for the case that faults are present in all the measurements of the sample.
The analytical results for the Z test statistic are presented in Figure 1.
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(a) (µ1, σ
2
1) = (1, 4) and (µ2, σ

2
2) =

(1.5, 6.25).
(b) (µ1, σ

2
1) = (1, 4) and (µ2, σ

2
2) = (1.3, 6.25)

.

Figure 1: The power of the test statistic Z as a function of the number of mea-
surements per sample for different probabilities of a type I error α. Two scenarios
are treated.

Figure 1 shows that the power increases as the number of measurements increases. In
addition, the larger the difference between µ1 and µ2, the faster the power converges to
1. Simulations showed that these properties of power hold for T and X2

n. The analytical
results for X2

n−1 showed the same behaviour as well.
While performing the simulations, another property of the Z and T test statistic was found.
It is known that the test statistics Z and T are designed to detect changes in the mean. For
these test statistics, the magnitude of the variance plays a role in the power as well. If the
variance is larger, the power is smaller for the same change of µ1 to µ2. This phenomenon
can be seen in Figure 13 in Appendix E. This figure is generated by using the analytical
results for the Z test statistic.
The reason for this phenomenon is simple. For instance, for Z, the null hypothesis is
rejected if X̄ lies outside (µ1 − c σ1√

n
, µ1 + c σ1√

n
). When a fault has occurred, X̄ is normally

distributed with mean µ2 and variance σ2
2
n . If σ1 is large, µ2 may lie inside this interval. In

this case, due to symmetry of the normal distribution, the probability is large that X̄ is
again in (µ1−c σ1√n , µ1 +c σ1√

n
). If µ2 lies outside the interval, a large σ2 can cause problems.

A large σ2 may cause X̄ to have a high probability to be in (µ1 − c σ1√
n
, µ1 + c σ1√

n
). In such

situations, the power is much lower. Replacing σ1 by S, the same conclusion is obtained
for T when n is sufficiently large.
Additionally, in Figure 13, the variance does not change after the fault. As mentioned in
Subsection 3.2.1, it is expected that the Z and T test statistics behave approximately the
same way in terms of power.

3.2.3 Trade-off

Figure 1 indicates a trade-off. Given a value of n either the probability of a type I error and
the power are increased or both are decreased. One possibility to decrease the probability of
a type I error and increase the power, is to increase n. This phenomenon is more accurately
represented in Figure 2 for the test statistic Z. For this figure, all measurements in the
samples are faulty. The corresponding analytical result for Z was used to generate the
figure.
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Figure 2: Probability of type I error against probability of type II error for different
values of n using the Z test statistic. The values (µ1, σ

2
1) = (1, 4) and (µ2, σ

2
2) =

(1.5, 6.25) were taken.

A high power and a low probability of a type I error is desired, however, not at all costs.
If too large an n is chosen, the detection of the fault will take a very long time. If a
measurements is performed every 0.1 seconds and a fault needs to be detected within 10
seconds, choosing an n larger than 100 is not desirable. In this sense, not only is there
a trade off between the power and the probability of a type I error, there is a trade-off
between certainty and detection speed as well.
Some types of faults need to be detected quickly. For instance, if a fault in an airplane
occurs, the airplane can crash if the fault is not detected quickly. For faults that have
to be detected quickly, n cannot be too large. Figure 2 shows that when faults have to
be detected quickly to prevent bad consequences a lower level of confidence is acceptable
to achieve a higher power. When faults do not have to be detected quickly and only
produce unacceptable consequences when present for a relatively long time, a higher level
of confidence and a lower power can be used, as well as a higher value for n.

3.2.4 A change for a part of the measurements in the sample

As in the previous subsection, the power is considered here. However, a different situation
is treated. A fault could be measurable only for a short time after the fault occurred. As a
consequence, only a small number of faulty measurements are available, and they need to
be used efficiently. With respect to this application, the results in this subsection assume
that only a fixed number of faults occur in a specific batch. For the analysis, samples with
at least 20 measurements were considered. The simulations for T , X2

n and X2
n−1 and the

analytical results for Z were obtained by assuming that only 20 faulty measurements are
present in each batch. Analytical results regarding the Z test statistic are presented in
Figure 3. Similar results hold for the other test statistics.
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(a) (µ1, σ
2
1) = (1, 2) and (µ2, σ

2
2) = (2, 2.5). (b) (µ1, σ

2
1) = (1, 4) and (µ2, σ

2
2) = (1.5, 4).

Figure 3: The power of the test statistic Z as a function of the number of mea-
surements per sample for different probabilities of a type I error α. Two scenarios
are treated.

Figure 3 shows that the bigger the fraction of measurements that are faulty, the higher the
power. In the simulations for T , X2

n and X2
n−1, almost all the outcomes resembled Figure

3. However, performing a simulation of a specific fault scenario for the X2
n−1 test statistic,

a different graph occurred. This scenario uses a 95% confidence level and is depicted in
Figure 4.

Figure 4: Power as a function of the number of measurements for the X2
n−1 test

statistic under a specific fault, using a confidence level of 95%.

The difference between Figures 3 and 4 is that at the start of Figure 4, the (estimated)
power increases instead of decreases. Although there are contrasts between Figures 3 and 4,
the two figures demonstrate that the power diminishes when the number of measurements
is significantly large. All in all, it can be concluded that for a constant deviation from
the normal value occurring only 20 consecutive measurements in only one specific batch,
it might be sensible to take the number of measurements per sample n equal to 20. If this
is not possible, one should take as many faulty measurements as possible. However, this
does not apply to every situation.
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Moreover, the trade-off between the probability of a type I error and the power is visible
in Figure 3. The larger the probability of a type I error, the smaller the power and vice
versa.

3.3 Confidence levels depending on the number of measurements per
batch

Comparisons between different values of n with a fixed confidence level not depending on
n, might not be fair. Assume that measurements are performed every 0.01 seconds, batches
are used with n measurements and a confidence level of α = 95% is used. For n = 10,
a false alarm occurs on average every 2 seconds. For n = 1000, a false alarm occurs on
average every 200 seconds. In this sense, the two tests are not comparable in a fair way. In
this section, a test is designed to ensure a fixed average number of false alarms in a given
time interval.
For now, an average of 1 false alarm every 120 seconds is used. Moreover, measurements are
performed every 0.1 seconds. The number of batches in 120 seconds is nb(n) = 120

0.1n = 1200
n .

The test statistic Y is chosen such that it only depends on the measurements in a specific
batch. Due to independent measurements, the batches are independent. As a consequence,
the values of Y of different batches are independent.
Let p(n) = P (Y ≤ c1(n) OR Y ≥ c2(n)|H0) be the probability of a type I error. As-
sume we have n batches numbered (1, 2, ...n). Here H0 is ’no fault occurred in batch
i and in batch j (j ∈ (1, 2, 3, ..., i − 1))’. The alternative hypothesis H1 is that the
null hypothesis H0 is false. The probability of rejecting the null hypothesis incorrectly
exactly i times is binomially distributed with number of trials nb(n) and probability
p(n). If we want only 1 false alarm in 120 seconds, nb(n) · p(n) = 1. In other words,
P (Y ≤ c1(n) OR Y ≥ c2(n)|H0) = p(n) = 1

nb
= n

1200 . Hence, given n, c1(n) and c2(n)
can be determined such that P (Y ≤ c1(n) OR Y ≥ c2(n)|H0) = n

1200 . In this way, a test
has been constructed such that on average 1 false alarm occurs in 120 seconds. When this
scheme is applied, it will be said that adaptive confidence levels are used. In this case,
both the probability of a type I and type II error (and the confidence intervals used to
determine them) depend on the number of measurements per sample n.

Using adaptive confidence levels, the power was investigated. To conduct the investigation,
it is assumed that measurements are performed every 0.1 seconds. For the case where only
20 faulty measurements are present in a specific batch, an adaptive confidence level is
used with an average of 1 false alarm every 120 seconds. For this scenario, the power
was investigated using analytical results and simulations. The analytical results for the
Z statistic are shown in Figure 5. This figure represents the power of the Z test statistic
when a batch contains n ≥ 20 measurements and where only 20 of the n measurements
are faulty.
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(a) Scenario 1. (b) Scenario 2.

Figure 5: The power of the Z test statistic when n measurements from a specific
batch are used and where only 20 out of the n measurements are faulty. Two
scenarios are treated.

The simulated results for the X2
n and the summed test statistic when (µ1, σ

2
1) = (1, 4) show

similar behaviour to Figure 5 in case of only an increase in the variance and an increase
in both the variance and the mean, respectively. The difference between Figures 3 and 5
is clear. Instead of tending to zero, the power starts to increase from a certain value of n.
This is due to the (adaptive) confidence level tending to zero as n tends to 1200.
If instead of once every 120 seconds, a false alarm occurs on average once every day, then
p(n) = 864000

n and the effect of the previously discussed phenomenon is limited. This de-
creases the probability of a type I error significantly. As mentioned in Section 3.2, this
means the power decreases significantly as well. As discussed in Subsection 3.2.3, the
choices made in this trade-off between these two quantities, depend on the application.
Furthermore, for the scenario where all the measurements in a batch are faulty, the con-
sequence of using the adaptive confidence level is easily seen. Due to the increase of the
probability of a type I error, the power increases more than when the probability of a type
I error is the same for every n.

3.4 Comparing test statistics

Using adaptive confidence levels, the test statistics were compared for the scenario, as
described in Subsection 3.2.2. Given that measurements were performed every 0.1 seconds,
the adaptive confidence level was chosen such that 1 false alarm occurred on average every
120 seconds. The results for the difference between the power of Z and T are presented in
Figure 20a in Appendix E. Some results for the difference in power between the summed
test statistic and the maximum power of Z andX2

n, are shown in Figure 20b in Appendix E.
Similar simulations were done for the comparison between X2

n and X2
n−1. The power of Z

andX2
n−1 was calculated using analytical results. The power of T , X2

n and the summed test
statistic was estimated using simulations. For some of these comparisons, it was assumed
that µ2 ≥ µ1 and σ2

2 ≥ σ2
1. These comparisons between Z and T and between X2

n and
X2
n−1 show that Z and X2

n are superior in terms of power (for the performed simulations).
There is only one situation in which Z and X2

n are comparable to T and X2
n−1, respectively.

For Z and T , this is when only the mean changes. On the other hand, for X2
n and X2

n−1,
this occurs when only σ2

1 changes. Nevertheless, when the variance decreases, the T test
statistic has higher power. Furthermore, using (µ1, σ

2
1) = (1, 4) and (µ2, σ

2
2) = (1.5, 3.0625)

together with simulations of X2
n and analytical results of X2

n−1, it followed that the X2
n−1
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test statistic outperforms X2
n in terms of power. Some explanations for the phenomena

seen, are given.
It can easily be shown that the statistics T and Z satisfy

T =
X̄ − µ2

S/
√
n

+
µ2 − µ1

S/
√
n
,

Z =
σ2

σ1

X̄ − µ2

σ2/
√
n

+
µ2 − µ1

σ2/
√
n

∼ N

 
µ2 − µ1

σ1/
√
n

,
σ2

σ1

2
!
.

(1)

It is expected that for sufficiently large n, S estimates σ2 very well. Combining this with
Equation (1), it is expected that Z and T behave approximately the same if σ2

2 = σ2
1. In

order to investigate whether this reasoning is correct, simulations and analytical results
with the same confidence levels for all n, were used. The 95%, 99% and 99.99% confidence
levels were used. Using simulations for T and using analytical results for Z with (µ1, σ

2
1) =

(1, 0.5) and (µ2, σ
2
2) = (1.5, 0.5), the power of the Z test statistic, in general, is higher

than the estimated power of the T test statistic for n = 10, 20, 30, ..., 90. When the T
test statistic had higher values, the differences were only very small and could be due to
estimation errors. It is not clear to us why Z is better than T in this scenario. It is
expected it has something to do with the skewness of the distribution of S. This could be
further investigated.
Now the situation σ2

2 > σ2
1 is treated. For the Z statistic the confidence interval is (−cz, cz)

and for T it is (−ct, ct). It is expected that X̄−µ2
S/
√
n

+ µ2−µ1
S/
√
n

is not significantly different from
X̄−µ2
σ2/
√
n

+ µ2−µ1
σ2/
√
n

as S approximates σ2. If σ2
2 > σ2

1,
σ2
σ1

> 1. Using equation (1), if

T = X̄−µ2
S/
√
n

+ µ2−µ1
S/
√
n

is not significantly different from X̄−µ2
σ2/
√
n

+ µ2−µ1
σ2/
√
n

, it is likely that Z
is larger in magnitude than T due to σ2

σ1
> 1. As the confidence intervals are symmetric

around zero, Z most likely has a higher probability than T to fall outside their respective
confidence intervals. As a consequence, Z most likely performs better than T . This may
be the reason why Z has a higher power than T when (µ1, σ

2
1) = (1, 4) and (µ2, σ

2
2) =

(1.5, 6.25).
On the other hand, if σ2

2 < σ2
1, the magnitude of Z is most likely closer to zero than T

as X̄−µ2
S/
√
n

+ µ2−µ1
S/
√
n

is expected to not be significantly different from X̄−µ2
σ2/
√
n

+ µ2−µ1
σ2/
√
n

and
σ2
σ1
< 1. This implies that it could be more likely for Z to fall in (−cz, cz) than T to fall in

(−ct, ct). As a consequence, T has a higher power than Z. This explains why T has higher
power than Z when (µ1, σ

2
1) = (1, 4) and (µ2, σ

2
2) = (1.5, 2.25).

Having treated the test statistics Z and T , the test statistics X2
n and X2

n−1 are treated.
Using nS2

µ1 =
Pn

i=1(Xi − µ1)2 with µ1 = µ2 + µ1 − µ2, it can easily be shown that

X2
n =

nS2
µ1

σ2
1

=
σ2

2

σ2
1

 
nS2

µ2

σ2
2

+
2n(µ2 − µ1)(X̄ − µ2) + n(µ2 − µ1)2

σ2
2

!
(2)

X2
n−1 =

(n− 1)S2

σ2
1

=
σ2

2

σ2
1

(n− 1)S2

σ2
2

. (3)

It is expected that X2
n and X2

n−1 behave approximately the same when µ2 = µ1 as then it

is conjectured that
nS2

µ2

σ2
2

≈ (n−1)S2

σ2
2

due to the fact that X̄ approximates µ2 very well and
the remainder term in Equation (2) is not present. Such intuition does not seem to apply
when comparing Z and T . Hence, it might not apply to X2

n and X2
n−1 either. However, we

have not found a counterexample. As a consequence, it is not certain whether the intuition
is false. This could be investigated more thoroughly.
If the values of

nS2
µ2

σ2
2

and (n−1)S2

σ2
2

are not significantly different, 2n(µ2−µ1)(X̄−µ2)+n(µ2−µ1)2

σ2
2

is

11



the main term that determines the difference in power. Given a σ2
1, σ2

2 and µ1, this term is
mainly governed by the choice of µ2. By suitably adjusting µ2, the magnitude of the term
can be influenced. Assume σ2

2 > σ2
1. When µ2 6= 0, 2n(µ2−µ1)(X̄−µ2)+n(µ2−µ1)2

σ2
2

is on average
larger than zero. Combining this with the increase in the variance, X2

n is more likely to fall
outside the right bound of the confidence interval than when only the variance changes.
The statistic X2

n−1 is not influenced by µ2. As a consequence, X2
n−1 most likely performs

worse than X2
n. This is most likely the reason that X2

n performed better for σ2
2 ≥ σ2

1

and µ2 ≥ µ1. If σ2
2 < σ2

1,
σ2
2

σ2
1

nS2
µ2

σ2
2

is more likely to exceed the left bound of the confidence

level than the right bound. By choosing µ2 appropriately, 2n(µ2−µ1)(X̄−µ2)+n(µ2−µ1)2

σ2
2

can be
given an average value such that it is more likely for X2

n to be inside the confidence interval.
As X2

n−1 is not influenced by µ2, X2
n−1 most likely performs better in this situation. It is

very probable that this occurred when (µ1, σ
2
1) = (1, 4) and (µ2, σ

2
2) = (1.5, 3.0625).

Regarding the summed test statistic, similar phenomena can be seen in Figure 20b in
Appendix E. A possible reason for the presence of one phenomenon is now discussed.
Assume that when a fault occurs, (µ1, σ

2
1) = (1, 4) changes to (µ2, σ

2
2) = (1.5, 2.32). In this

scenario, the graphs of the power of both Z and X2
n as functions of n were close together.

Figure 20b in Appendix E implies that the summed test statistic is the best in this scenario.
Additionally, it shows that when only the mean or only the variance increases, it is better
to just use Z or X2

n, respectively. Generalizing, it could be that when both the mean and
variance change in a certain manner such that the power of Z and X2

n are approximately
equal, the summation of the two test statistics has a higher power. In the scenario that
one has a considerably larger power, it may be better to use that particular test statistic.
Furthermore, the optimal coefficients b1 and b2 most likely depend on the changes in µ1

and σ1. When (µ1, σ
2
1) = (1, 4) changes to (µ2, σ

2
2) = (1.5, 2.32), the power of Z and X2

n are
deterministic. If µ1 would have changed more than 0.5 and σ1 less than 0.3, the power of
Z may increase and the power of X2

n may decrease. In this case, it may be more desirable
to put a higher weight on Z than in the case that µ1 increases with 0.5 and σ1 increases
by 0.3.

3.5 Speed of detection

In the previous sections, the only point of discussion is the power. However, the power
itself is not necessarily the most important quantity in fault detection. For the situation
described in Subsection 3.2.4, the power is sufficient. However, for the situation described
in Subsection 3.2.2 and using an adaptive confidence level, the time it takes until the fault
is detected is more important. The significance of the power is its relationship with this
time. For investigating the time it takes until the fault is detected, it was assumed that
an infinite number of batches containing only faulty measurements are available. These
batches were treated consecutively.
The number of batches needed to first reject the null hypothesis, is related to the speed of
detection. By our assumptions, the number of batches needed to reject the null hypothesis
for the first time Ns(n) is geometrically distributed with parameter equal to the power
pw(n, α) when n measurements are used and a confidence level of α is given. Hence, the
expected number of measurements needed to reject the null hypothesis for the first time
equals sd = n

pw(n,α) .
If measurements are performed every 0.1 seconds, this means that it takes on average 0.1sd
seconds to detect a specific fault. As a consequence, the smaller the sd, the smaller the
expected time until detection. Therefore, sd should be as small as possible. The variance
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of the time until detection is not really important. To see this, consider the case that the
probability of a type I error is designed such that 1 false alarm occurs on average every
120 seconds, measurements are done every 0.1 seconds and for some value of n, sd = 200.
Either many times a fault is detected with less than 200 measurements or not. If this does
occur a lot, everything is fine. If this does not occur a lot, the other values must be very
close to sd = 200 as else the average does not equal 200. Hence, the variance does not really
provide new interesting information. Values such as sd = 800 are not wanted. The reason
is that when no fault occurred, false alarms are already given every 1200 measurements.
This is not really an improvement and hence not really interesting to look at. From the
preceding considerations, it can be inferred that the variance is not really interesting to
consider.
Figure 6 presents sd for the Z test statistic in several fault scenarios and using an adaptive
confidence level such that 1 false alarm occurs on average every 120 seconds. The figure
was generated using the formula for sd in combination with the analytical results for Z.

Figure 6: For the Z test statistic, sd is plotted against the number of measure-
ments per sample n with an adaptive confidence level such that 1 false alarm occurs
on average every 120 seconds.

Depending on the fault situation, the graph in Figure 6 may turn out different. Figure 6
nicely illustrates the trade-off between the probability of a type I error, the power and the
speed of detection. First, the probability of a type I error is fixed for each n. This depends
on the choice in the trade-off between power and the probability of a type I error. As the
probability of a type I error is fixed, the power as a function of n is deterministic. The
power can be increased by choosing more measurements per sample. As Figure 6 shows,
this can be detrimental for the speed until detection. This is the trade-off between more
certainty to detect a fault against the speed it takes to detect the fault.

4 An application of fault detection to linear systems

Now that the static problem is discussed, a more complicated situation is treated. In this
chapter, a fault detection approach for linear dynamical systems is discussed. For this
discussion, some assumptions and a test system (a DC motor) are introduced.
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4.1 Simulation equations

In this subsection, the dynamical equations of the DC motor are introduced. Furthermore,
how faults, disturbances and (measurement) noise can be incorporated into linear models
is discussed. Subsequently, the discretisation of the resulting models is considered.

4.1.1 Differential equations DC motor

A model of the dynamics of the Direct Current motor is given by
İ
ω

=
−R
L −km

L
km
J −Dv

J

I
ω

+
1
L 0
0 − 1

J

U
Tl

, (4)

where I is the current in the motor, U is the input voltage to the motor, L is the self
inductance of the coil in the motor, R is the resistance in the coils, km is the motor
constant of the motor, J is the inertia of the rotor/load, Dv is a viscous friction coefficient
(due to the rotation of the rotor) and Tl is a load torque disturbance. For a derivation of
the equations, see Krishnan [13]. The output of the system is assumed to be

y = C
I
ω

(5)

for some matrix C of appropriate dimensions.

4.1.2 Modelling faults, disturbances and noise and discretising the continuous
model

The overarching topic of this paper is fault detection. Hence, the models need to in-
corporate faulty behaviour. Furthermore, systems are almost always subject to process
disturbance and (measurement) noise, so these phenomena need to be included in the
model as well. For our purposes, the effects described above can be included by adapting
the general linear system ẋ(t) = Ax(t) +Bu(t) to

ẋ(t) = (A+Af (t))x(t) + (B +Bf (t))u(t) + Eff1(t) + Eww(t)

= Ā(t)x(t) + B̄(t)u(t) + Eff1(t) + Eww(t)
(6)

and adapting the output y(t) = Cx(t) to
y(t) = Cx(t) + Fff2(t) + v(t). (7)

Here w and v are stochastic processes representing disturbances in the system and noise
in the sensor, respectively, Ef and Ff are some known matrices, the vectors f1 and f2 are
additive fault vectors, and the matrices Af and Bf represent multiplicative faults.
Instead of the continuous differential Equations (6) and (7), discrete (difference) equations
can be used. For the discretisation, let ∆t be the time between state values. Assume that
when x(k) is used, it means x(t) for t = k∆t. Replacing the derivative in ẋ(t) by the
estimate x(t+∆t)−x(t)

∆t and manipulating the resulting equation yields
x(k + 1) = Ād(k)x(k) + B̄d(k)u(k) + Ed,ff1(k) + Ed,ww(k)

y(k) = Cx(k) + Fff2(k) + v(k),
(8)

where the matrices are given by
Ād(k) = I+∆tA+∆tAf (k), B̄d = ∆tB+∆tBf (k), Ed,f = ∆tEf , Ed,w = ∆tEw. (9)

Equations (8) and (9) form a good approximation when ∆t is sufficiently small. A more
accurate approach can be used, however. A system ẋ(t) = Ā(t)x(t) + B̄(t)u(t) +Eff1(t) +
Ewη(t) is given with a stochastic process η(t) and piecewise continuous matrices Ā(t)
and B̄(t). Consider the integral version x(t) − x(0) =

R t
0 A(s)x(s)ds +

R t
0 B(s)u(s)ds +R t

0 Eff1(s)ds +
R t

0 Ewη(s)ds of the differential equation. If we let η(t) formally be the
derivative of a standard Brownian motion process {wt}, then the last term can be replaced
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by the Wiener integral
R t

0 Ewdwτ . The solution of the resulting equation is

x(t+ ∆t) = Φ(t+ ∆t, t)x(t) +

Z t+∆t

t
Φ(t+ ∆t, τ)B̄(τ)u(τ)dτ

+

Z t+∆t

t
Φ(t+ ∆t, τ)Eff1(τ)dτ +

Z t+∆t

t
Φ(t+ ∆t, τ)Ewdwτ ,

(10)

where the state transition matrix Φ(t, τ) satisfies
dΦ(t, τ)

dt
= Ā(t)Φ(t, τ)

Φ(τ, τ) = I.
In order to put Equation (10) into the form of Equation (8), the input is assumed to be
either constant or generated using the zero order hold principle. Defining f̄1(t) and w̄(t)
as

f̄1(t) =

Z t+∆t

t
Φ(t+ ∆t, τ)Eff1(τ)dτ

w̄(t) =

Z t+∆t

t
Φ(t+ ∆t, τ)Ewdwτ ,

(11)

Equation (10) can be rewritten to
x(k + 1) = Ād(k)x(k) + B̄d(k)u(k) + f̄1(k) + w̄(k)

y(k) = Cx(k) + Fff2(k) + v(k),
(12)

where the matrices are given by

Ād(k) = Φ((k + 1)∆t, k∆t), B̄d(k) =

Z (k+1)∆t

k∆t
Φ((k + 1)∆t, τ)B̄(τ)dτ. (13)

Under the given assumptions, the Wiener integral w̄(t) =
R t+∆t
t Φ(t + ∆t, τ)Ewdwτ is

normally distributed with mean the zero vector and variance equal to

Σ(t) =

Z t+∆t

t
Φ(t+ ∆t, τ)EwE

T
wΦ(t+ ∆t, τ)Tdτ. (14)

By changing the matrix Ew, the variance of the Brownian motion can be adjusted accord-
ingly. All these considerations follow from Davis [4].

4.2 Assumptions

Before the fault detection strategy is discussed, the assumptions the construction of the
approach is based on are considered.
First, the method used is applied to equations of the form of Equation (8). Second, the
disturbance vector w(k) and the noise vector v(k) are assumed to be white Gaussian
random vectors. Third, w(k) and v(k) are assumed to be independent. The initial state
x0 satisfies

• E[x0] = x̄0

• Cov[x0] = Σ0

• x0 is a Gaussian random vector.

The last assumption is that u(k) is deterministic. For instance, when u(k) is determined
via a feedback loop, it depends on the estimate of the state vector. Given this estimate,
u(k) can be calculated. If no additional noise is present in the actuator, the u(k) given
to the system equals the (known) calculated u(k). In this sense, u(k) can be viewed as
deterministic.
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4.3 A Kalman filter approach to fault detection

In this section, a Kalman filter is designed to perform fault detection under the assumptions
of Section 4.2. The test statistics of Chapter 3 are not used immediately because the
required conditions are not satisfied. If the output measurements y are used, the values of
y at different times are not independent. The test statistics in Chapter 3 use independent
measurements. As a consequence, the test statistics employed in that chapter cannot be
used immediately. Additionally, the test statistics use stationary random variables. As the
distribution of y is not stationary, y can not immediately be used.
These problems are resolved using a Kalman filter. The idea of using the Kalman filter is
taken from Ding [5]. By applying a Kalman filter, new information is generated. Using this
new information, a variable is generated that does satisfy the independence property. This
variable is not yet stationary. However, as the covariance matrix is known, this variable
can be made stationary. By combining the test statistics with the new variable, faults can
be detected. After some notation has been introduced, the Kalman filter based residual
generation and residual evaluation procedure is presented.
The first important variable with respect to the Kalman filter is the prediction of the next
state and is denoted by x̂(k + 1|k) = E[x(k + 1)|y(0), y(1), ..., y(k), u(0), ..., u(k)]. The
estimated output is given by ŷ(k + 1|k) = Cx̂(k + 1|k) + Du(k + 1). The error between
the estimate ŷ(k|k− 1) and the actual output y(k) is denoted by e(k) = y(k)− ŷ(k|k− 1).
The parameter ne is the number of entries in e. Let l = n ·ne and let Di be the covariance
matrix of e(i).
The models used for fault detection using a Kalman filter resemble Equation (8). Using
a Kalman filter on these equations, an estimate ŷ(k + 1|k) = Cx̂(k + 1|k) + Du(k + 1)
of y(k + 1) can be obtained before y(k + 1) is observed. After y(k + 1) is observed,
e(k + 1) = y(k + 1) − ŷ(k + 1|k) can be generated. To use e(k + 1) in combination with
statistical properties of the Kalman filter, it is assumed that Dk+1 is positive definite. It

follows from Appendix A that the positive definite square root D−1
i

1
2 of the positive

definite matrix Di is unique, X̄(k) = 1
n·ne

Pk+n−1
i=k

Pne
j=1( D−1

i

1
2 e(i))j ∼ N (0, 1

l ) and
S2(k) =

Pk+n−1
i=k e(i)TD−1

i e(i) ∼ χ2
l in the nonfaulty situation. The quantities X̄(k)

and S2(k) are equivalent to the test statistics Z and X2
n introduced in Section 3.1 with

measurements the entries of D−1
i

1
2 e(i) (i ∈ {k, k+ 1, ..., k+n−1}). Hence, with respect

to the entries of D−1
i

1
2 e(i) (i ∈ {k, k+1, ..., k+n−1}), the test statistic X̄(k) is designed

to detect changes in the mean and S2(k) is a test statistic designed to detect changes in
the variance.
Using models resembling Equation (8), the test statistics X̄(k) and S2(k) can be used in
combination with their statistical properties mentioned in the previous paragraph to test
the following hypothesis

• H0: no fault is present in the system (fi(s) = 0 (for i ∈ (1, 2)), Af (s) = 0 and
Bf (s) = 0 for s ∈ [0, t]).

• H1: a fault is present in the system (fi(s) (for either i = 1 or i = 2), Af (s) or Bf (s)
is nonzero for some s ∈ [0, t]).

Using two sided tests, the null hypothesis is either accepted or rejected. A two-sided test
was chosen over a one-sided test because what effect the faults in the system have on the
mean and the variance of the test statistics was not known. To perform the hypothesis
testing, samples were generated. The samples used for the hypothesis testing can be
generated by using either a sliding window or fully separated batches. To explain what a
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sliding window means, assume that k + n − 1 measurements have been performed. After
the (k+n− 1)th measurement, S2(k) and X̄(k) are used as test statistics. After one time
step, the (k+n)th measurement has been acquired. After this measurement, S2(k+1) and
X̄(k + 1) can be used as test statistics. If fully separated batches are used, S2(k + n) and
X̄(k + n) are used after S2(k) and X̄(k). In Appendix D, a discussion about the choice
for the sliding window or the fully separated batches approach is provided. In the rest of
this paper, the fully separated batches were used due to their simplicity in calculating false
alarm rates under the used assumptions.

5 Investigating complications Kalman filter based detection
algorithm

To investigate (speed) complications of the algorithm given in Section 4.3, simulations of a
DC motor were performed. To perform these simulations, the discretisations of Subsection
4.1.2 were used in combination with the dynamical equations in Subsection 4.1.1. When
simulations are described, which discretisation strategy is employed is stated.

5.1 Testing the algorithm

Before discussing the (speed) complications with respect to the algorithm, results are shown
that demonstrate that the algorithm works. For the simulations, the discretisation given by
Equations (8) and (9) was used in combination with ∆t = 0.001. Moreover, the parameters
as described in Tables 1 and 2 were used.

Table 1: Values of the parame-
ters for scenario 1.

Parameter Value Unit
R 0.5 Ohm
L 0.003 Henry
J 0.0167 kgm2

km 0.8 V/rad/sec
Dv 0.01 Nm/rad/sec
Tl 0 Nm

Table 2: Values of the parame-
ters for scenario 2.

Parameter Value Unit
R 0.5 Ohm
L 1 Henry
J 1 kgm2

km 0.5 V/rad/sec
Dv 0.01 Nm/rad/sec
Tl 0 Nm

Furthermore,
w(k) ∼ N (0, A1), v(k) ∼ N (0, A2), x0 ∼ N (0, A3), (15)

where 0 denotes the zero vector of appropriate dimensions and

C = 0 1 , A1 =
120 0
0 120

, A2 = 0.1, , A3 =
0.01 0

0 0.01
. (16)

The fault occurs at 7.5 seconds and the used input (unless otherwise mentioned) is given
by

u(t) =

(
6t if t < 0.1,

6 otherwise.
(17)

The time window in which the fault needs to be detected is 7.5 seconds and the level of
confidence was taken to be 99.99%. Additionally, a sample consists of 50 measurements.
Before presenting the results, some remarks are necessary. First, Tl was assumed to equal
zero. This seems odd, but it was assumed that the load torque disturbance Tl is present in
the second entry of the disturbance vector w(k). Inspecting Equation (4), this is justified
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as long as the inertia J is kept constant. Moreover, a high confidence level is necessary. If
a 95% confidence level had been chosen, on average 7.5

0.001·50 · 0.05 = 7.5 false alarms would
have occurred in the 7.5 seconds in which no fault occurred. This is not desirable. Lastly,
when a fault in the DC motor has critical consequences, the level of confidence should be
lower in order to detect the critical fault more quickly. When a fault is less critical, a
higher level of confidence can be used. This was discussed in Section 3.2.3 as well.

The results of the simulations are presented in Appendix C. Tables 3 and 4 summarise these
results. If Table 3 or 4 indicates that a fault is reliably detectable using the algorithm of
Section 4.3, the fault is almost always detected within 7.5 seconds by an alarm of X̄(k) or
S2(k). Moreover, the magnitude of the fault cannot be taken much smaller. If it is taken
much smaller, the probability to detect the change with X̄(k) or S2(k) within 7.5 seconds
decreases and the fault is not reliably detectable. Hence, the values in Tables 3 and 4 give
an order of magnitude for the faults that can be detected reliably using the algorithm from
Section 4.3.

Table 3: Results of the simulations of different faults when using the algorithm
from Section 4.3 and adopting the parameters of scenario 1 (see Table 1). A fault
is called (reliably) detectable if it has a high probability to be detected using the
algorithm of Section 4.3.

Fault description Changed to Detectable
Change in resistance R Rnew = 2.5R Yes
Change in inductance L Lnew = 7.5L Yes
Change in friction Dv D = 3Dv Yes
Actuator fault: a higher input u = 6 to u = 6.08 Yes
Actuator fault: a loss of effectiveness u = 6sin(πt) to u = 5.9sin(πt) Yes
Additional disturbance in system f1(k) ∼ [N (0, 10 · 120),N (0, 10 · 120)]T Yes
Additional disturbance in sensor f2(k) ∼ N (0, 0.05) Yes
Sensor bias f2(k) = 0.1 Yes

Table 4: Results of the simulations of different faults when using the algorithm
from Section 4.3 and adopting the parameters of scenario 2 (see Table 2). A fault
is called (reliably) detectable if it has a high probability to be detected using the
algorithm of Section 4.3.

Fault description Changed to Detectable
Change in resistance R Rnew = 100R No
Change in inductance L Lnew = 100L No
Change in friction Dv D = 50Dv Yes
Actuator fault: a higher input u = 6 to u = 11 Yes
Actuator fault: a loss of effectiveness u = 6sin(πt) to u = 0 No
Additional disturbance in system f1(k) ∼ [N (0, 4 · 120),N (0, 4 · 120)]T Yes
Additional disturbance in sensor f2(k) ∼ N (0, 0.05) Yes
Sensor bias f2(k) = 0.5 Yes

Table 3 shows that in principle, many faults can be detected. The system quickly achieves
a steady state, so identifying shortcomings is simple. However, the tests indicate that
many faults can be detected. This does not mean that the same faults can be detected in a
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different situation. To see whether the ability to detect certain faults relies on the situation,
Table 3 can be compared with Table 4. This comparison shows that the ability to detect a
specific kind of fault depends on the situation. Therefore, the complications with respect
to the algorithm depends on the situation. In addition, Table 4 shows that some large
changes cannot always be reliably detected using the fault detection algorithm. It could
be that the algorithm cannot detect these faults as the effect of the fault on the angular
velocity is small. In this case, detecting the fault is difficult and the failure of detecting the
fault is not because the algorithm is bad. To investigate whether the fault is difficult to
detect using the algorithm or that the faults are hard to detect in general, simulations were
performed. These simulations satisfied the same assumptions as the simulations used to
generate table 2. The simulations graphed the actual angular velocity in the faulty case. In
addition, they graphed the angular velocity as if no fault occurred. This angular velocity
is simulated by using the equations in the nonfaulty case in combination with exactly
the same disturbances and inputs as used in the faulty simulation. Graphs for a change
in the resistance, a change in the inductance and a loss of effectiveness in the actuator
can be found in Figures 14 up to and including 16 in Appendix E. In these simulations,
the faults were not detected. These figures show that there is a considerable difference
between the actual angular velocity and the angular velocity as if no fault occurred. As a
consequence, it is expected that the algorithm is bad in detecting the indicated faults and
another algorithm may detect the faults.

5.2 Complications when performing fault detection

In this section, some complications that might arise when performing fault detection are
discussed. These complications range from using a certain number of measurements per
sample to why certain faults cannot be detected using the designed algorithm.

5.2.1 Detecting a change in the variance using a test statistic for the mean

A simulation of the ’More stochastic disturbance in the system’ fault of Table 4 yields
the alarms given in Figure 21 in Appendix E. The assumptions under which Table 4 was
generated, were used in this simulation as well.
Figure 21 in Appendix E shows that the test statistic X̄(k) for the mean detects the
increase in the variance of the process disturbance. We expected the test statistic S2(k)
for the variance to detect an increase in the variance of the disturbance in the system,
but it did not. Nevertheless, Figure 21 is only one simulation, so this could have been a
coincidence. To investigate whether it is a coincidence, the probability of detecting the
fault within 7.5 seconds was estimated by performing 50 measurements. For X̄(k), the
estimate is 49

50 . For S
2(k), the estimate is 6

50 . Due to this big difference, X̄(k) is preferred
over S2(k) considering the ’More stochastic disturbance in the system’ fault of Table 4.
This is not what we initially expected.

5.2.2 Adapting to the fault and a related problem with sensor bias faults

The statistics X̄(k) and S2(k) depend on the number of measurements per sample n.
Increasing n yields more certainty and smaller confidence intervals. However, the system
may correct the fault. If the system quickly corrects the fault, the effect of the fault on
the residual signal is most likely very small as only some values of the residual signal are
affected by the fault. Additionally, observers and Kalman filters react to faults. When a
Kalman filter is applied, the estimate of the state is obtained by making a correction based
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on the measurements. This occurs via the equation x̂(k|k) = x̂(k|k − 1) + K(k)(y(k) −
Cx̂(k|k − 1) −Du(k)). Therefore, the Kalman filter might adapt to the fault. If the fault
occurs for the first time, the Kalman filter is not adapted to the fault. At that moment, the
behaviour of the residual signal may change due to the fault. Subsequently, the residual
signal might adapt to the fault.
For both the system and Kalman filters adapting to the fault, by selecting too large an n,
the effect of these small number of residual values indicating a fault is small due to the
considerations discussed in Section 3.3. As a consequence, the fault may not be detected.
In case of the Kalman based residual generator and a sensor fault, the residual signal
e(i) = y(i) − ŷ(i|i− 1) behaves as shown in Figure 7. The fault is only present for a short
time after the occurrence of the fault. As the input is given by Equation (17) and the
sensor can only have an influence on the system via the input, x(i) is not influenced by
the fault in the sensor. As a consequence, the Kalman filter quickly adapts to the fault.
When designing a fault detection algorithm, the designer needs to be cautious with such
scenarios.

Figure 7: The error function when a sensor bias of 2 starting at 7.5 seconds occurs.
For the simulation the assumptions used to obtain Table 4, were used.

5.2.3 Explaining the difficulty to detect a change in parameters

Table 4 shows that parameter changes were not detected reliably during the simulations.
Observers do not detect multiplicative faults well [10], but stating this does not explain
why they do not detect multiplicative faults well. For the algorithm from Section 4.3,
equations are used to explain why multiplicative faults are hard to detect.
Assume a system with no faults behaves according to the following discrete equations

x(i+ 1) = Ax(i) +Bu(i) + Eww(i), y(i) = Cx(i) + v(i),
where w(i) and v(i) are independent Gaussian random vectors. Let ex(i + 1) = x(i +
1) − x̂(i + 1|i). Furthermore, assume that at moment k, a parameter changes and causes
the matrices A and B to change to A + Af and B + Bf , respectively. Define ex,0(i +
1) = x0(i + 1) − x̂0(i + 1|i) as the part of ex(i + 1) that describes the part of ex(i + 1)
that acts according to the nonfaulty dynamics. For a better description of the variable
ex,0(i+ 1), see appendix B. If no fault occurs, ex(i+ 1) = ex,0(i+ 1). It can be shown that
ex(i + 1) = ex,0(i + 1) + ef (i + 1). The part ef (i + 1) is given by the following recursive
formula

ef (i+ 1) = A(I −AK(i+ 1)C)ef (i) +Afx(i+ 1) +Bfu(i+ 1) (18)
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where K(i+ 1) is the Kalman gain matrix. The initial conditions are given by
ef (k) = Afx(k) +Bfu(k). (19)

For the derivation, see Appendix B. For ease of notation, let Y = A(I −AK(i+ 1)C) and
c(i) = Afx(i) +Bfu(i). Then it can easily be shown that

ef (k + i) =
k+iX
j=k

Y k+i−jc(j). (20)

Using Equation (20), the detectability of parameter changes is discussed. Consider the
scenario where the parameters are given by Table 2 and Equations (15) to (17) apply.
Furthermore, the fault occurs at 7.5 seconds. By applying the discretisation method de-
scribed by Equations (8) and (9) on the nonfaulty DC motor equations in Equation (4),
the matrices were obtained that were used in Equations (18) to (20). The time steps in
the simulation were taken to be ∆t = 0.001. The simulations showed that the gain matrix
K(i + 1) achieved a steady state value before the 7.5 seconds passed. This steady state
value, the discretisised matrix of the A matrix given in Equation (4) and C = 0 1 were
used to calculate Y in Equation (20). For the described scenario

Y =
0.995 −0.0139
0.0005 0.9658

. (21)

Equations (20) and (21) were used to examine the inability to detect the faults in the
parameters. First, simulations were performed where the resistance value R changes to
100R at t = 7.5. Inspecting Equation (4), the change in R results in the discrete fault

matrix Af = ∆t
100
1 0
0 0

=
0.1 0
0 0

. The discrete fault matrix Bf = 0 with 0 the zero

matrix of appropriate dimensions. Using Equation (20) in combination with the previously
determined matrices, yields

ef (k + i) =
k+iX
j=k

Y k+i−jc(j) =
k+iX
j=k

Y k+i−jAfx(j) =
k+iX
j=k

Y k+i−j 0.1Ij
0

,

where Ij is the current at moment j. As only the angular velocity is measured, the fault
detection algorithm only sees

Cef (k + i) =

k+iX
j=k

CY k+i−j 0.1Ij
0

=

k+iX
j=k

Y k+i−j
21

· 0.1Ij , (22)

where Y k+i−j
21

is the element in position (2, 1) of the matrix Y k+i−j . Simulating the
faults yielded that the current I and Y k+i−j

21
are small. For results of the performed

simulations, see Figures 18 and 19 in Appendix E. It can be seen that the terms in Equation
(22) are small due to the small values of 0.1Ij and the small values of Y k+i−j . It is likely
that the sum in Equation (22) is small due to not enough terms being summed. As a
consequence, the change in the parameters is not seen in the residual vector. If more terms
are summed, the summay become larger and the fault can be detected later on. Simulations
with the scenario used in Table 4 were done to investigate this. The only difference with
the simulations used to obtain Table 4 is that instead of a 99.99% confidence level, a 99.9%
confidence level was used. The results are shown in Figures 8 and 9.
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(a) Alarms of the X̄(k) test statistic. (b) Alarms of the S2(k) test statistic.

Figure 8: The alarms given during a simulation of a fault in the resistance going
from R to 100R for the situation used in Table 4. Instead of a 99.99% confidence
level, a 99.9% confidence level was used.

Figure 9: The Cef for a simulation of a fault in the resistance going from R to
100R for the situation used in Table 4. Instead of a 99.99% confidence level, a
99.9% confidence level was used.

Figure 9 show that as time progresses, the sum in Equation (22) becomes larger. In
addition, by comparing Figures 8 and 9, the relation between Cef and detecting faults is
eminently clear. As expected, the larger the magnitude of Cef , the more alarms are given.
As a consequence, to not wait longer than 7.5 seconds to detect the fault, a change in
some properties might enlarge the sum and make the fault better detectable. When Ij
is larger in magnitude for a lot of j values, the sum is enlarged and the change in the
resistance is more likely to be detected. In a DC motor, if the voltage is increased, the
current increases. Hence, by choosing a higher input voltage, Ij is higher and the fault in
the resistance could be detected. Furthermore, for our case, the detection algorithm could
improve if Y is adapted such that (Y i)21 achieves a larger magnitude. As Y = A(I−AKC)
with K being the steady-state Kalman gain, Y can be adapted by choosing a different K.
Hence, choosing a suitable K can increase the performance of the algorithm. However, the
properties of the Kalman filter might not apply if the matrix K is changed, so care must
be taken.

22



5.2.4 Influence of the sampling interval

When performing fault detection, it is possible to choose the sampling interval. The
algorithm can be designed to obtain new measurements and calculate the Kalman filter
estimate every 0.001 seconds or every 0.1 seconds. If the Kalman estimate is only calculated
every 0.1 seconds, more uncertainty is present. As a consequence, the Kalman estimates
of x at time t are more precise if every 0.001 seconds measurements are done and Kalman
estimates are calculated.
However, this complicates the situation. Consider the scenario where measurements are
done every ∆t seconds and the batches are ts seconds long. If a fixed average number of
false alarms in a given time window is given, a certain confidence level is determined using
the procedure explained in Section 3.3. For different values of ∆t, the confidence level for
these batches remain the same due to the fact that ts remains the same. Depending on
the number of measurements in the batch, the confidence bounds do change. Furthermore,
different values of ∆t result in different behaviours of e(i) = C(x(i) − x̂(i|i − 1)) by the
earlier considerations. As the used test statistics depend on e(i), the behaviour of the test
statistics is different in both situations. Combining this with the different bounds makes
it hard to say something about the dependency on ∆t of the power without resorting to
simulations.
Consider the case that every 0.5 seconds a hypothesis test is done. Furthermore, the
confidence interval is determined such that 1 false alarm occurs on average every 120
seconds. As 240 hypothesis test are done in 120 seconds, the confidence level equals
α = 1 − 1

240 . It is assumed that the parameters in Table 1 are taken. Furthermore, the
fault occurs at 7.5 seconds. Moreover, the fault that occurs behaves as a sawtooth function
of 10 Hertz and is added to the input. Figure 17 in Appendix E shows 10 periods of this
function.
Simulations were done on this situation. For ∆t = 0.001, the discretisation described
by Equations (8) and (9) were utilized. Moreover, Equations (15) and (16) were used.
For ∆t = 0.1, Equations (11) up to and including (14) were used. In Equation (14),

Ew =
√

0.001A
1
2 =

√
0.001

√
120 0

0
√

120
with A1 given in Equation (16). In our case,

Ā = A and B̄ = B. As a consequence, Φ(t + ∆t,∆t) = eA∆t. In order to incorporate
the extra sawtooth input, in the formula for f̄1(t), let f1(τ) be the sawtooth function and
Ef = B. The noise in the sensor v(k) is distributed according to Equation (15). For both
simulations, u(t) = 6. The results are presented in Figures 10 up to and including 23.

(a) Simulations with ∆t = 0.001. (b) Simulations with ∆t = 0.1.

Figure 10: Plotting the angular velocity.
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(a) Simulations with ∆t = 0.001. (b) Simulations with ∆t = 0.1.

Figure 11: Kalman estimates belonging to Figure 10.

By comparing the figures in Figure 10, a difference is seen. The difference between the
figures is due to aliasing. The system adapts to an input quite quickly. As after t = 7.5
seconds u = 6 + f(t) with f(t) the sawtooth function, the system reacts to the sawtooth
rapidly. This can be seen when zooming into Figure 10. The big variance change is not
pure randomness. It is actually a sine of 10Hz with some additional noise components. If
this sine is sampled with 10 Hz, a constant signal appears as in Figure 10b. Furthermore,
by comparing Figures 10 and 11, the effect of the sampling interval on the residual signal
e(i) = C(x(i) − x̂(i|i − 1)), is obvious. For ∆t = 0.001 a change in the variance occurs,
while for ∆t = 0.1 the fault creates a change in the mean of the residual signal. As in
the ∆t = 0.001 case, there is only an increase in the variance of e(i), an increase in the
variance occurs in (D−1

i )
1
2 e(i) as (D−1

i )
1
2 has already reached steady state when the fault

occurred. In Section 3.4, it turned out that if only the variance changes, the X2
n test

statistic is preferred over the Z test statistic. As S2(k) is basically equivalent to X2
n and

X̄(k) is equivalent to Z (using the entries of (D−1
i )

1
2 e(i) as measurements), S2(k) should

in general perform better than X̄(k) when ∆t = 0.001. Applying a similar story to the
∆t = 0.1 case, where only the mean of (D−1

i )
1
2 e(i) is really changed, it is expected that

X̄(k) should perform better than S2(k). The alarms of the simulation depicted in Figures
10 and 11 are given in Figures 22 and 23 in Appendix E. Performing more simulations,
yielded the same patterns as in Figures 22 and 23. The figures show that if X̄(k) is used
with an interval width of ∆t = 0.1, the fault can be detected. On the other hand, when
∆t = 0.001 is used, the fault can not be detected. Similarly, when S2(k) is used as test
statistic, it is better to use ∆t = 0.001 instead of ∆t = 0.1. Furthermore, it can be
concluded, that in the ∆t = 0.001 case, in general, the power per batch is higher when
using the S2(k) test statistic. Similarly, in the ∆t = 0.1 case, generally the power per
batch is higher when using the X̄(k) test statistic.
In conclusion, if a specific test statistic is used (for instance X̄(k)) it might be sensible to
try and change ∆t as it might improve the power of the test statistic in a certain fault
scenario. In our case, if initially X̄(k) is taken and ∆t = 0.001, it might be better to
change ∆t to 0.1.

5.2.5 Increasing performance by suitable choice of n

In previous subsection, it is argued that given ∆t, the test statistic can be changed to
increase performance. Moreover, it is argued that given the test statistic, ∆t can be
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changed to increase performance. Guided by Sections 3.3 and 3.5, given a choice of ∆t, an
increase or a decrease in n might result in better performance.
The importance of suitably choosing n is investigated using the parameter fault as discussed
in Subsection 5.2.3. This is illustrated using Figures 8 and 9. First of all, Figure 9 indicates
a change of the mean over time. Furthermore, the variance does not seem to change a lot.
Guided by comments in Section 3.4, the X̄(k) test statistic most likely outperforms S2(k).
Figure 8 confirms this.
Moreover, inferences regarding the number of measurements per sample can be made as
well. In Section 3.3, it is mentioned that for a constant deviation from the normal value
occurring only nf consecutive measurements in only one specific batch, it is sensible to take
the number of measurements per sample n equal to nf . If this is not possible, one should
take as many faulty measurements as possible. These considerations can be combined with
Figure 9. This figure implies that in a particular simulation the faulty part Cef of the
residual signal Cex = C(ex,0 + ef ) (see Subsection 5.2.3) has a mean of 0.01 for t between
approximately 9 and 21 seconds. As a consequence, it might be more beneficial to increase
the number of measurements per sample such that more faulty measurement for t between
9 and 21 are present in some sample. In order to test this hypothesis, 50 measurements
per sample and 4000 measurements per sample are taken with ∆t = 0.001. Simulations
were done and the results are given in Figure 12. For the batches, a confidence level was
used such that on average 2.4 false alarms occur every 120 seconds. Moreover, the values
of Table 2 and Equations (15) up to and including (17) were used.

(a) Simulation results using 50 measurements
per sample.

(b) Simulation results using 4000 measure-
ments per sample.

Figure 12: 20 Simulations with new measurements every 0.001 seconds. The
height of the graph indicates the estimated probability to give an alarm in the time
interval [t, t+ 3.999] with t ∈ {0, 4, 8, 12, 16, 20, 24, 28}.

In order to compare Figures 12a and 12b, one remark about Figure 12a is in place. The
value for the interval [4, 7.999] is 0.15. If the interval [4, 7.5] is taken, the value is 0.15 as
well. As the fault occurred at 7.5 seconds, it is implied that all given alarms in [4, 7.999]
are false alarms. Taking this fact into account, a comparison can be made. It can be seen
from Figure 12 that the estimated probability to detect a fault in the relevant region of
t ≥ 7.5 is much larger when using 4000 measurements per sample instead of 50. Such a
big difference is not a coincidence. As a consequence, we believe our intuition was indeed
correct and increasing n yields better and faster detection in this scenario.
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6 Discussion

In this paper, several assumptions were made in order to perform the analysis. For instance,
in the dynamical case, it is assumed that the process disturbance and sensor noise are
independent white Gaussian random vectors. Furthermore, the initial state is assumed to
be a Gaussian random vector. Using these assumptions, properties of the Kalman filter
could be applied. In real life, these assumptions may not apply. Moreover, real sensor
noise has some form of memory. This is not incorporated into the models. Finally, in most
systems some sort of feedback control is applied. In the analysis, no feedback is used. It
is unknown if the complications treated in this paper transfer to the case where feedback
is used. Combining the preceding arguments, the treated complications might not apply
to real life systems. Additionally, the used system is a relatively simple system. As a
consequence, the problems discussed in the paper might not transfer over to more complex
systems. Finally, the static problem assumes normality of the samples for ease of analysis.
This might be inapplicable to fault detection problems as well.
Even though the made assumptions may not apply to real life applications, the obtained
results indicate what complications might arise in real situations. It is possible that the
complications arise. As a consequence, the complications can be kept in mind when design-
ing a fault detection algorithm. Furthermore, the obtained results using the assumptions
can give us useful understandings and knowledge about these possible complications that
might arise in real situations.

7 Conclusion

In this paper, several complications regarding fault detection are discussed. For some of
the problems, reasons for their presence are provided. The complications were investigated
using a static problem and a Kalman filter based fault detection algorithm.
Using the static problem, basic properties of the relation between hypothesis testing and
the speed of detection were investigated. It turned out that in some scenarios there is a
trade-off between the certainty to detect a fault and the probability that an incorrect fault
alarm is given. In addition, taking the speed of detection into consideration, yielded another
trade-off aspect. Additionally, some comments were made about adjustment of confidence
levels in order to compare the performance under different number of measurements per
sample. Furthermore, in case of a limited amount of faulty measurements, it turned out
that taking more measurements per sample does not necessarily improve the probability to
detect a fault. Moreover, some test statistics have been compared to each other. In different
situations, other statistics may flourish. Finally, a connection between the probability to
detect a fault and the time it takes to detect the fault, is made.
Using the static problem as basis, the dynamical case was treated. In the dynamical
case, everything becomes much more complicated. Using a Kalman based fault detection
algorithm, several complications were treated. For instance, it was argued that a fault
detection algorithm may adapt to the fault and that the fault only affects the algorithm
for a short amount of time. Using simulations, it was shown that this phenomenon occurred
when applying a Kalman filter to a sensor bias fault in a DC motor. Additionally, the effect
of a fault on the algorithm could be too small to detect the fault in a given time window.
For a parameter fault in a DC motor, it is explained why the effect on the algorithm is
too small. An increment of the Kalman gain is proposed in order to increase performance.
Another approach that might work is to apply a parameter estimation method as this is
more aimed at the parameters. These two approaches require further investigation. For
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the parameter fault, in order to increase the fault detection performance, an adjustment
of the number of measurements per sample is discussed. The general strategy employed
in this discussion, can be employed to other faults as well. Finally, it is found that the
sampling interval plays a role in the performance of a fault detection algorithm and should
be taken into account.
All in all, the dynamical case is much more complicated than the static case. When
designing a fault detection algorithm, the mentioned complications can possibly occur. As
a consequence, one should always keep the complications in mind when creating a fault
detection algorithm.

8 Recommendations future research

In this paper, additive process disturbance and additive sensor noise are discussed. Another
type of disturbance and noise, is multiplicative disturbance and noise. Definitely in the
process equations, multiplicative disturbance could be present. The complications arising
due to multiplicative noise could be investigated. Moreover, in treating the dynamical case,
the disturbance and noise vectors are assumed to be white Gaussian random vectors. If the
distributions are not white and not Gaussian, the situation becomes more difficult. The
new complications that arise in correlation with the extent of the existing complications
can be investigated.
Additionally, the reasons behind the occurrence of some complications, are not discussed.
In future research, more explanations may be given as well as more solutions to complica-
tions.
As indicated in the discussion (see Section 6), only relatively simple systems are treated.
More complex systems have a more rich structure and therefore may yield more complica-
tions. In the future, this can be investigated. As indicated in the discussion, the effect of
feedback is not discussed. According to Isermann [11], a control loop might compensate
the fault. This resembles the behaviour for a sensor bias as discussed in Section 5.2.2.
More anomalies might be present when considering feedback loops. It is interesting to
investigate such anomalies.
Feedback loops are not the only aspect that is left out of consideration. In every dynamical
system, modelling uncertainty is present. In case of much uncertainty, the performance of
the fault detection algorithm relies on the robustness of the algorithm. If the algorithm is
not robust, the performance of the algorithm is not that great. For further investigation,
a linear system with model uncertainty in the system matrices can be designed. For in-
vestigating how robust fault detection algorithms can be created, we have found a book
by Ding [5]. This book indicates that, for instance, Linear Matrix Inequality (LMI) tech-
niques can be used to create a robust fault detection algorithm. After creating the robust
fault detection scheme, complications regarding robust fault detection algorithms can be
investigated.
In the conclusion (see Section 7), two approaches to solve the bad performance in detecting
a change in the resistance in a DC motor are proposed. These methods require further
investigation. Additionally, other observer methods can be investigated as well. These
general observer methods may need to be made more sensitive to faults. The book by
Ding [5] discusses a transfer function approach to make observers more sensitive to faults.
This approach can be investigated and applied to the DC motor.
Another research topic is nonlinear systems. In this paper, the focus is on linear systems.
Nonlinear systems are different from linear systems. It could be that new complications
arise. Besides, due to the complexity of nonlinear systems, the solutions to the compli-
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cations may become harder to find. The PhD thesis of Abid [1] discusses observer based
fault detection approaches for nonlinear systems. Investigating some of these approaches
and using them, complications of nonlinear systems can be researched. Additionally, it can
be investigated how to deal with the complications.
Moreover, the paper only considers the scenario of one specific fault occurring and that the
performance of a fault detection algorithm is examined only with respect to that fault. In
systems, multiple faults may occur. In this sense, the performance of the fault detection
algorithm depends on whether it can detect all possible faults that can occur as well.
Designing an algorithm that can detect all possible faults in a system most likely yields
more complications. Investigating such complications can perhaps be done using a Banks
of Observers scheme [8].
Lastly, in the treatment of the dynamical case, residuals that were used are scalar valued.
Vector valued residuals exist as well. For instance, under our assumptions, the Hotelling
T 2 distribution could perhaps be used in combination with a vector valued residual. Using
this distribution, vector valued and scalar valued test statistics can be compared in terms
of their fault detection performance.
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A Proof distribution X̄(k) and S2(k)

Before discussing the proof, some remarks are in place. As the proof uses theory about
positive (semi) definite matrices, we refer the reader to Kern [7] for the utilized properties.
Furthermore, the model that is treated in this Appendix is described by

x(k + 1) = Akx(k) +Bku(k) +Gkw(k), y(k) = Ckx(k) +Dku(k) + v(k)
Moreover, the assumptions of Section 4.2 apply. That being said, the proof is now discussed.

By the assumptions and by definition of a Gaussian vector, it is easily verified that (x(k),
y0, y1, ..., yk−1| u0, u1, ..., uk−1) follows a Gaussian distribution. It is know that if (xa, xb)
follows a Gaussian distribution, (xa|xb) follows a Gaussian distribution as well [6]. From
this, it follows that (x(k)|y0, y1, ..., yk−1, u0, ..., uk−1) follows a Gaussian distribution. From
the properties of the Kalman filter, we know that the estimate of the Kalman filter satisfies
x̂(k + 1|k) = E[x(k + 1)|y0, y1, ..., y(k), u0, ..., u(k)]. Furthermore, under our assumptions
the Kalman filter puts out Σk+1|k = Cov(x(k+ 1)− x̂(k+ 1|k)|y0, y1, ..., y(k), u0, ..., u(k)).
Using the preceding properties, we obtain

x(k + 1) − x̂(k + 1|k)|y0, y1, ..., y(k), u0, ..., u(k) ∼ N (0,Σk+1|k)
It is given that y(k) = Ckx(k) + Dku(k) + v(k), where v(k) has covariance matrix Rk.
Furthermore, let ŷ(k|k−1) = Ckx̂(k|k−1)+Dku(k). If X ∼ N (µ,Σ) and b a deterministic
vector, AX + b ∼ N (Aµ+ b, AΣAT ). From Do [6], it is know the that sum of independent
Gaussians X ∼ N (µ1,Σ1) and Y ∼ N (µ2,Σ2) satisfies X + Y ∼ N (µ1 + µ2,Σ1 + Σ2).
Using these properties, the following relationship is found

e(k) = y(k) − ŷ(k|k − 1) ∼ N (0, CkΣk|k−1C
T
k +Rk) = N (0, Dk) (23)

Before continuing the proof part that deals with e(k), some properties of square roots
of matrices need to be addressed. A square root of a matrix X is a matrix A such that
A ·A = X. For the proof, it suffices to concentrate on symmetric positive definite matrices.
Assume Y is a (symmetric) positive definite matrix. As Y is a (symmetric) positive definite
matrix, there exists an invertible matrix Q such that D = QDQT where D is a diagonal
matrix and QQT = I (with I the identity matrix). As Y is positive definite, D must
have strictly positive entries on the diagonal. Therefore, the inverse of D exists and equals
D−1 = Diag( 1

D11
, 1
D22

, ..., 1
Dnn

). Using this information, a square root of Y −1 is found.
The matrix Y −1 exists and is positive definite as Y is assumed to be positive definite.
Let Y −1

1
2 = Q D−1

1
2 QT where D−1

1
2 = Diag( 1

D11

1
2 , 1

D22

1
2 , ..., 1

Dnn

1
2 ). Furthermore,

let D
1
2 = Diag(D11

1
2 , D22

1
2 , ..., Dnn

1
2 ). It can easily be verified that D

1
2 and D−1

1
2 are

square roots of D and D−1, respectively. Using QQT = QTQ = I, the given formulas for
the square roots and the formulas for the inverse matrices,

Y −1
1
2 Y = Q(D−1)

1
2QTQDQT = Q(D−1)

1
2DQT = QD

1
2QT

Using this, yields
Y −1

1
2 Y Y −1

1
2 = QD

1
2QT Y −1

1
2 = QD

1
2QTQ D−1

1
2 = QD

1
2 D−1

1
2 = QQT

= I
(24)

Furthermore, it is known that Y −1
1
2 = Q D−1

1
2 QT is positive definite as D−1

1
2

is a diagonal matrix with positive entries on the diagonal and Q Y −1
1
2 QT = D−1

1
2 .

As the positive definite square root of a positive definite matrix is unique [12], Y −1
1
2 =

Q D−1
1
2 QT is the unique positive definite square root of Y −1 and Y −1

1
2 Y Y −1

1
2 = I.

This result is utilized in the remainder of the proof. First, it is assumed that Dk =
CkΣk|k−1C

T
k + Rk is invertible. As covariance matrices are positive semi definite and

positive definite matrices are the invertible positive semi-definite matrices, this is equiv-
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alent to Dk being positive definite. Using elementary properties of the positive definite
covariance matrix Dk and the unique positive definite square root D−1

k

1
2 , we obtain

Cov( D−1
k

1
2 e(k)) = Cov( D−1

k

1
2 e(k), D−1

k

1
2 e(k)) = D−1

k

1
2 Cov(e(k), (e(k)) D−1

k

1
2 =

D−1
k

1
2 Dk D−1

k

1
2 . Using Equation (24) yields

Cov( D−1
k

1
2 e(k)) = I (25)

From Ribeiro [20], it is known that e(k) is white. In other words, e(k) has a mean of zero
and there is no correlation between e(i) and e(j) for i 6= j. Hence, Cov(e(i), e(j)) = 0 for
i 6= j. This yields

Cov( D−1
i

1
2 e(i), D−1

j

1
2
e(j) = D−1

i

1
2 Cov(e(i), (e(j) D−1

j

1
2

= 0 (26)

Let W = X Y
T . Calculating the covariance of W yields

Cov(W ) =
Cov(X) Cov(X, Y)

Cov(Y, X) Cov(Y)

Letting X = D−1
i

1
2 e(i) and Y = D−1

j

1
2
e(j) (i 6= j) and applying Equations (25) and

(26) yields

Cov([ D−1
i

1
2 e(i)), D−1

j

1
2
e(j)]T ) =

Cov( D−1
i

1
2 e(i)) 0

0 Cov( D−1
j

1
2
e(j))

 = I (27)

where I is the identity matrix of appropriate dimensions.

As e(i) and e(j) are Gaussian (see Equation (23)), so are D−1
i

1
2 e(i) and D−1

j

1
2
e(j).

It is known that the coordinates of a Gaussian vector X are independent if and only if
the covariance matrix Cov(X) is diagonal. As a consequence, by Equation (27), all the

entries of both D−1
i

1
2 e(i) and D−1

j

1
2
e(j) are independent with each other. In addition,

as D−1
i

1
2 e(i) is a Gaussian distribution with Cov( D−1

i

1
2 e(i)) = I and mean equal to

the zero vector, every entry of D−1
i

1
2 e(i) is a standard normal random variable. Recall

that a χ2
f with f degrees of freedom is given by

Pf
k=1 Z

2
k where Zk (k ∈ (1, 2, 3, ..., f)) are

independent standard Normal random variables. As the entries of D−1
i

1
2 e(i) are standard

Normal random variables that are independent with all other entries of D−1
i

1
2 e(i) and

all entries of D−1
j

1
2
e(i) for i 6= j, any sum of the squared entries is χ2 distributed. As

D−1
i

1
2 e(i)

T

D−1
i

1
2 e(i) = e(i)T ( D−1

i

1
2 )T D−1

i

1
2 e(i) = e(i)TD−1

i e(i) is equal to

the sum of the squares of the entries of D−1
i

1
2 e(i), it follows that

Pk+n−1
i=k e(i)TD−1

i e(i)

is a sum of the squares of the entries of D−1
i

1
2 e(i) for i = k up to and including i = k+n.

As all these entries are independent standard normal random variables, it follows thatPk+n−1
i=k e(i)TD−1

i e(i) follows a χ2
l distribution with l = n · ne the number of terms in the

sum.
Moreover, as the entries of D−1

i

1
2 e(i) are standard Normal random variables that are

independent with all other entries of D−1
i

1
2 e(i) and all entries of D−1

j

1
2
e(i) for i 6= j,

X̄(k) = 1
l

Pk+n−1
i=k

Pne
j=1( D−1

i

1
2 e(i))j ∼ N (0, 1

l ).
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B Proof of Equations (18) and (19)

Assume a system with no faults behaves according to the following discrete equations
x(i+ 1) = Ax(i) +Bu(i) + Eww(i), y(i) = Cx(i) + v(i)

where w(i) and v(i) are random vectors. Furthermore, assume that at moment k a pa-
rameter changes and causes the matrices A and B to change to A + Af and B + Bf ,
respectively. Using the discrete dynamics of the plant, it is obtained that

x(k + 1) = Ax(k) +Bu(k) + Eww(k) +Afx(k) +Bfu(k) = x0(k + 1) + f̄k (28)
Here x0(k + 1) indicates the value of x(k + 1) given u(k) and no fault occurred. Assume
x(i) = x0(i) + f̄i−1. Using this assumption and the discrete dynamics of the plant,

x(i+ 1) = Ax(i) +Bu(i) + Eww(i) +Afx(i) +Bfu(i)

= Ax0(i) +Bu(i) + Eww(i) +Afx(i) +Bfu(i) +Af̄i−1

= x0(i+ 1) + f̄i

(29)

Combining the recursions in Equation (28) and (29), the following formula for the f̄i
recursion can be obtained

f̄i+1 = Afx(i+ 1) +Bfu(i+ 1) +Af̄i

f̄k = Afx(k) +Bfu(k)
(30)

with f̄k the initial condition. Equation (30) can be used to write out the dynamics of the
Kalman estimates. Doing so, we obtain

x̂(k + 1|k + 1) = x̂(k + 1|k) +K(k + 1)(y(k + 1) − Cx̂(k + 1|k))

= x̂(k + 1|k) +K(k + 1)(C(x0(k + 1) + f̄k) − Cx̂(k + 1|k))

= x̂0(k + 1|k + 1) +K(k + 1)Cf̄k

(31)

where x̂0(k+1|k+1) is the Kalman estimate x̂(k+1|k+1) if no fault would have occurred.
Similarly, using Equation (31), we obtain

x̂(k + 2|k + 1) = Ax̂(k + 1|k + 1) +Bu(k + 1)

= Ax̂0(k + 1|k + 1) +Bu(k + 1) +AK(k + 1)Cf̄k

= x̂0(k + 2|k + 1) + f(k + 1)

with fk+1 = AK(k + 1)Cf̄k and x̂0(k + 2|k + 1) = Ax̂0(k + 1|k + 1) +Bu(k) the Kalman
estimate x̂(k+2|k+1) given that no fault in the dynamics would have occurred. It could be
that due to the fault the deterministic input u is changed. However, as it is deterministic
this does not matter. Given that this new input is chosen, the Kalman estimates are
calculated. In this sense, x̂0(k + 2|k + 1) and x̂0(k + 1|k + 1) are the Kalman estimates
according to the non faulty dynamics. In other words, they are the Kalman estimates if
the input can be adapted due to the fault, but the process is not adapted by the fault.
Assume that it is given that x̂(i+ 1|i) = x̂0(i+ 1|i) + fi with x̂0(i+ 1|i) defined as earlier.
Then following the same procedure, we obtain

x̂(i+ 1|i+ 1) = x̂(i+ 1|i) +K(i+ 1)(y(i+ 1) − Cx̂(i+ 1|i))
= x̂0(i+ 1|i) + fi

+K(i+ 1)(C(x0(i+ 1) + f̄i) − Cx̂0(i+ 1|i) − Cfi)

= x̂0(i+ 1|i+ 1) +K(i+ 1)C(f̄i − fi) + fi
Using this, we obtain

x̂(i+ 2|i+ 1) = Ax̂(i+ 1|i+ 1) +Bu(i+ 1)

= Ax̂0(i+ 1|i+ 1) +Bu(i+ 1) +AK(i+ 1)C(f̄i − fi) +Afi

= x̂0(i+ 2|i+ 1) + f(i+ 1)

with f(i + 1) = AK(i + 1)C(f̄i − fi) + Afi. Define ex(i) = x(i) − x̂(i|i − 1). Using
x̂(i + 1|i) = x̂0(i + 1|i) + fi and x(i + 1) = x0(i + 1) + f̄i, it is obtained that ex(i + 1) =
x0(i+ 1) − x̂0(i+ 1|i) + f̄i − fi = e0(i+ 1) + ef (i) where e0(i+ 1) is the error if no fault
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would have occurred (besides possible reconfiguration of the u). The recursive formulas
for fi and f̄i are given by

fi+1 = AK(i+ 1)C(f̄i − fi) +Afi
f̄i+1 = Afx(i+ 1) +Bfu(i+ 1) +Af̄i

with intializations
fk = 0
f̄k = Afx(k) +Bfu(k)

The initial condition for fk is chosen such that fk+1 = AK(k+ 1)Cf̄k. From these consid-
erations, it can be inferred that

ef (i+ 1) = f̄i+1 − fi+1

= Afx(i+ 1) +Bfu(i+ 1) +Af̄i − (AK(i+ 1)C(f̄i − fi) +Afi)

= A(I −AK(i+ 1)C)ef (i) +Afx(i+ 1) +Bfu(i+ 1)
Using the initial conditions f̄k and fk, the initial condition is given by

ef (k) = f̄k − fk = Afxk +Bfuk
where we have to keep in mind that at moment k a fault occurred. In case of the as-
sumptions in Section 4.2, e0(i) is still a white Gaussian random vector as it is based on a
deterministic input u and does not incorporate the faulty components. Hence, the distri-
bution of this quantity is still the same as when no fault occurs. The part ef (i) gives the
faulty part in the residual generator and can be used for analysis.

C Results simulations for different faults

Table 5: A description of the different fault types and assigning them a number

Fault type number Description fault
1 Increase in resistance R
2 Increase in inductance L
3 Increase in friction Dv

4 Actuator fault: a higher input
5 Actuator fault: a loss of effectiveness
6 More stochastic disturbance in system
7 More stochastic disturbance in sensor
8 Sensor bias

Table 6: Defining different faults in terms of the dynamical system

Fault type number Fault behaviour
1 R changes to Rnew
2 L changes to Lnew
3 Dv changes to Dnew

4 u jumps from u = 6 to u = unew
5 u jumps from 6 sinπt to s sinπt.
6 f1(k) in Equation (8) becomes

[N (0, 120s),N (0, 120s)]T ] distributed (s ∈ R)
7 f2(k) in Equation (8) becomes N (0, s) dis-

tributed (s ∈ R)
8 f2(k) = s (s ∈ R)
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Table 7: The magnitude of the treated faults for the situation as described in
Table 1. Furthermore, if Rnew = 2.25R, 6 out of 18 simulations yielded a detection
within 7.5 seconds by an alarm of X̄(k) or S2(k). This quantity estimates the
probability to detect the fault within 7.5 seconds. The description of the treated
faults is in Table 6.

Fault type number Treated faults Estimate probability of detection
1 Rnew ∈ [1.5R, 2.25R, 2.5R] [ 2

18 ,
6
18 ,

18
18 ]

2 Lnew ∈ [3L, 5L, 7L, 7.5L] [ 3
18 ,

9
18 ,

14
18 ,

24
24 ]

3 Dnew ∈ [2Dv, 2.5Dv, 3Dv] [ 9
18 ,

27
30 ,

30
30 ]

4 unew ∈ [6.02, 6.04, 6.08] [ 2
18 ,

6
18 ,

24
24 ]

5 s ∈ [5.9, 5.96] [18
18 ,

5
18 ]

6 s ∈ [3.5, 5, 7, 10] [ 4
18 ,

11
24 ,

18
24 ,

18
18 ]

7 s ∈ [0.02, 0.05] [ 4
18 ,

18
18 ]

8 s ∈ [0.05, 0.08, 0.1] [ 6
18 ,

16
18 ,

18
18 ]

Table 8: The magnitude of the treated faults for the situation as described in
Table 2. Furthermore, if Rnew = 100R, 0 out of 12 simulations yielded a detection
within 7.5 seconds by an alarm of X̄(k) or S2(k). This quantity estimates the
probability to detect the fault within 7.5 seconds. The description of the treated
faults is in Table 6.

Fault type number Treated faults Estimate probability of detection
1 Rnew ∈ [100R] [ 0

12 ]
2 Lnew ∈ [100L] [ 0

12 ]
3 Dnew ∈ [30Dv, 40Dv, 50Dv] [12

18 ,
27
30 ,

30
30 ]

4 unew ∈ [8.2, 10, 11] [ 5
18 ,

17
18 ,

18
18 ]

5 s ∈ [5, 2, 0] [ 0
18 ,

0
18 ,

1
18 ]

6 s ∈ [1.5, 2, 3, 3.5, 4] [ 8
24 ,

18
24 ,

34
42 ,

23
24 ,

24
24 ]

7 s ∈ [0.02, 0.05] [ 6
18 ,

18
18 ]

8 s ∈ [0.2, 0.3, 0.4, 0.5] [ 0
18 ,

7
18 ,

12
18 ,

18
18 ]

D Discussion sliding window and fully separated batch ap-
proach

The sliding window has an advantage over the method that uses fully separated batches.
Assume we have 100 measurements and we use hypothesis testing with batches containing
10 measurements. Assume that a fault occurs at measurement 37. The fault is present for
all later measurements as well. Furthermore, assume that the fault can be detected when
5 out of 10 measurements in a batch are faulty measurements. Using the method that
uses fully separated batches, the batch containing measurements 41 up to and including
50 is the first batch to detect the fault. Using a sliding window, the batch containing
measurements 33 up to and including 42 is the first batch that detects the fault. In this
way, sliding windows could detect faults earlier. Furthermore, the sliding window may have
an advantage when a fault is only seen a short amount of time. Assume that the fault is
only seen in measurements 38 up to and including 42. Using the sliding window, there is at
least one batch of 10 consecutive measurements that includes measurements 38 up to and
including 42. When using the fully separated batch method, a maximum of 3 of the 5 faulty
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measurements are taken into consideration in one of the batches. This could imply that the
sliding window is better able to detect these kind of faults. The preceding considerations
do not take into account the false alarm rate. Take the previous example. Assume that
the confidence level is taken to be α. The sliding window considers the batches of the fully
separated batch method. Besides these batches, it considers more batches. This implies
that on top of the false alarms related to the batches of the fully separated batch method,
the sliding window can produce false alarms due to the other batches it uses. Hence,
under the same chosen confidence level α, the number of false alarms are on average larger
when the sliding window is used than when the fully separated batch method is used. To
overcome this, the confidence level used when utilizing the sliding window, should be taken
higher than the confidence level used when using fully separated batches. Combining this
with the observations in Section 3.2.2, the power of batches considered in both the sliding
window approach as well as the fully separated batches approach, is lower in the case when
the sliding window is utilized. As a consequence, the power of a hypothesis test using
a specific batch is negatively influenced when using a sliding window instead of the fully
separated batches approach. Furthermore, it is harder to determine the false alarm rate of
the sliding window approach. For the fully separated batch method, this is an easy task.
This is one disadvantage of the sliding window approach. These are considerations one can
take into account when choosing to use the batch method or the sliding window method.

E Extra Figures

(a) (µ1, σ
2
1) = (1, 0.5) and (µ2, σ

2
2) =

(1.5, 0.5)
(b) (µ1, σ

2
1) = (1, 5) and (µ2, σ

2
2) = (1.5, 5)

Figure 13: The power of the test statistic Z as a function of the number of mea-
surements per sample for different probabilities of a type I error α. Two scenarios
are treated
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Figure 14: Actual angular velocity of a simulation when the resistance changes
from R to 100R. The assumptions as used to generate table 2 were used.

Figure 15: Actual angular velocity of a simulation when the inductance changes
from L to 100L. The assumptions as used to generate table 2 were used.
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Figure 16: Actual angular velocity of a simulation of the ’Actuator fault: a loss
of effectiveness’ fault of table 2. The assumptions as used to generate table 2 were
used.

Figure 17: 10 periods of the extra fault input used for the simulations in Section
5.2.4.
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(a) The distribution of the values of the an-
gular velocity ω for t > 7.5 seconds

(b) The distribution of the values of the cur-
rent I for t > 7.5 seconds

Figure 18: Distributions of the values of the angular velocity and the current for
t > 7.5 seconds when the resistance changes from R to 100R at t = 7.5 seconds.

Figure 19: The values of (Y i)21 for different values of i for the matrix Y given in
Equation (21)
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(a) Power Z minus the power of T for different
fault scenarios

(b) Power of the summed test statistic minus
the maximum of the power of Z and the power
of X2

n for different fault scenarios.

Figure 20: Comparing test statistics with (µ1, σ
2
1) = (1, 4). Measurements are

done every 0.1 seconds and an adaptive confidence level is chosen such that on
average 1 false alarm occurs every 120 seconds

(a) Alarms of the X̄(k) test statistic. (b) Alarms of the S2(k) test statistic.

Figure 21: The alarms given during a simulation of the ’More stochastic distur-
bance in the system’ fault given in Table 4.

39



(a) Alarms of the X̄(k) hypothesis test. (b) Alarms of the S2(k) hypothesis test.

Figure 22: Simulations with ∆t = 0.001.

(a) Alarms of the X̄(k) hypothesis test. (b) Alarms of the S2(k) hypothesis test.

Figure 23: Simulations with ∆t = 0.1.
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