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The Influence of Spike-Timing Dependent Plasticity on
Synaptic Connectivity of Coupled Inhibitory Neurons

Sem J. Geerts∗

June, 2019

Abstract

Inhibitory neurons exist throughout the brain, and many brain nuclei function
inhibitory on other nuclei as well, some involved in diseases such as Parkinson’s
disease. Investigating the coupling of these neurons might lead to new insight for
developing techniques such as deep brain stimulation further. The effect of spike-
timing-dependent plasticity (STDP) is studied on a leaky integrate-and-fire model to
characterise the final weight configurations. To simplify analysis, a sinusoidal-coupled
phase-difference model is investigated. The framework of STDP is reformulated as
phase-difference-dependent plasticity (PDDP) to study multiplicative learning rules.
Moreover, weight dynamics is analysed using phase averages. The aim is to study
the effect of two main parameters, the strength of additive noise and the difference
in intrinsic frequency on the synaptic connectivity. It is concluded that large noise
induces stable bidirectional coupling. Bistability of unidirectional coupling and weak
bidirectional coupling is observed in the phase-difference model. Moreover, increasing
the intrinsic frequency difference interchanges the type of unidirectional coupling for
small additive noise. Typically, in both models we observe decoupling of the neu-
rons to be unstable, therfore, neurons will never decouple but synchronise in firing
frequency. Stable firing patterns are only observed for large synaptic weight values
compared to detuning frequency.

Keywords: firing patterns, LIF, PDDP, phase-difference, STDP, weight stability

1 Introduction

The brain consists of many neurons, which can be coupled in several forms. We distinguish
both excitatory and inhibitory neurons. The former describes neurons that stimulate each
other to fire. When two excitatory neurons are coupled and one produces an action po-
tential, the other neuron will fire sooner. Inhibitory neurons show the opposite behaviour,
where neurons are inhibited by one another and reduce each other’s firing frequency.

Another characteristic of neurons is called plasticity, which enables humans to learn
[4]. Neurons are coupled with a certain coupling-strengths, which determine the amount of
influence one neuron has on another. These weights can change over time, and the amount
of influence (the coupling-strength) will change due to influence of the firing patters of
the neurons. Moreover, there are several ways neurons interact and are coupled, which
is called synaptic connectivity and is described by the values of synaptic weights. With
unidirectional coupling, we refer to the case where one neuron does influence the other, but
not conversely. In bidirectional coupling, both neurons can influence each other. When two
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neurons do not impact each other at all, it is called decoupling. The way coupling weights
change over time and are updated under the influence of different system characteristics is
called plasticity.

Spike-timing dependent plasticity (STDP) is a one specific type of plasticity that de-
scribes how the coupling of two neurons is affected by the neuron’s firing activity, it is
a fundamental adaptation mechanism which induces structural changes in synaptic con-
nectivity [3]. This is described by a certain learning rule, where the change of coupling
weights depends on the time difference between two firing spikes, resulting in an update
function at discrete time points. The influence of STDP on firing patterns and synaptic
connectivity of excitatory neurons has been investigated by [3], they modelled two cou-
pled neurons as noise-enhanced oscillators. Noise is essential in their research, as neuronal
behaviour is constantly under influence of natural fluctuations and external coupling with
other neurons. They have shown that for some parameter values, multi-stability of dif-
ferent coupling configurations (synaptic connectivity) is possible. Moreover, bidirectional
coupling was shown not to be possible in the noise-free situation, but this could be induced
by noise. Therefore, increased noise can synchronise neurons with different natural firing
frequencies. This is summarised in Figure 1. In this figure, ∆ω denotes the difference in
natural frequency, and µ the noise intensity. Red indicates stable unidirectional coupling,
blue indicates stable bidirectional coupling. Decoupling was stable for all parameter val-
ues. For large values of ∆ω, i.e. for significantly de-synchronised neurons, bidirectional
coupling cannot be achieved anymore.

Figure 1: Bifurcation diagram for excitatory neurons by Lücken et al. [3].

STDP can come in several forms, which depends on the type of neuron we are dealing
with, as well as the location within the brain [3, 5]. The main distinction that can be made
is the additive and multiplicative learning rule. In the former, weights are updated with
a given amount, irrespective of their initial values and only dependent on the spike-timing
difference, while in the latter, weights are updated with respect to their initial value as
well. Here the relative update is constant for the a given spike-timing difference [7, 8]. The
results obtained by [3] were found by using additive rules for excitatory neurons. We will
concern ourselves with multiplicative rules for inhibitory neurons.

Inhibitory neurons are present in almost every part of our central nerve system. One
brain region specifically is called the external globus pallidus (GPe), which is (almost) ex-
clusively inhibitory, and plays an important role in the reduction of symptoms of Parkin-
son’s disease using deep brain stimulation (DBS) [6, 11]. We will model two coupled
neurons in the GPe which forms a subset of an important system in the coupling with the
Subthalamic nucleus (STN), where DBS is applied which relieves some of the symptoms of
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Parkinson’s disease [10]. Modelling this part of these two brain cores will give more insight
in its working and potential efficiency of DBS.

This is done by first looking at a simple integrate-and-fire model for two coupled in-
hibitory neurons and determine the regular firing patterns and stable phase differences
of the spikes. We then implement STDP learning rules for inhibitory neurons and deter-
mine its influence on the firing patterns, weight dynamics and stability. Furthermore, we
will analyse a phase-difference model, where the framework of STDP will be re-written
to a phase-difference-dependent plasticity (PDDP), which simplifies analysis. In a noise-
induced system, stable phase differences and the stability of certain weight configurations
can be investigated. The goal is to find which model parameters induce stability of the
different types of synaptic connectivity, and what influence that has on firing patterns.

2 Leaky Integrate and Fire Model

The simplest model describing the dynamics of a spiking neuron is the so-called leaky
integrate-and-fire (LIF) model. The general differential equation is given by

C
dV

dt
= Vr − V + RI(t),

where C is the capacity of the membrane, Vr the resting potential and I(t) some external
input that is applied. This model is a differential equation where in the absence of input
I(t) we get that V (t) → Vr. The value of V is reset to a certain value VI = 0 when a
certain threshold Vθ is reached, which we take this value to be Vθ = 1. When V = Vθ, a
spike occurs. In general, Vr < Vθ, as the opposite would mean a constant natural firing of
a neuron, where we only want neurons to fire when the external input I(t) is large enough
to induce a spike.

2.1 Coupled neurons

In a system of two coupled neurons, the input I(t) depends on the firing of the other
neuron. Since the variables can be scaled, we choose C = 1 and let Ii(t) = RI(t) + Vr be
the sum of resting potential and external input, which yields the system of equations

dV1

dt
= −V1 + I1(t),

dV2

dt
= −V2 + I2(t).

(1)

The input Ij depends on the firing times of other neurons. For inhibitory neurons, we have
that when neuron i fires at time τi, the input of other neurons j 6= i gets updated with

Ij(t) → Ij(t) − Is,j(t− τi), (2)

where Is,j is the contribution coming from the spike of the action potential. The minus
sign ensures that an action potential in neuron i inhibits neuron j 6= i, characteristic for
inhibitory neurons. In this case we choose to take the α-function

Is,j(t) =

(
wj · %α2te−αt for t > 0,

0 otherwise,

where the value of wj determines the strength of the coupling of the firing of the neurons,
% determines the overall maximum strength of the influence, and the parameter α > 0
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determines the duration of the spike influence and ensure that the overall input integrated
over time is equal to wj%:Z ∞

−∞
Is,j(t)dt = −wj%αte

−αt ∞
0

+

Z ∞

0
wj%αe

−αtdt = −wj%e
−αt ∞

0
= wj%.

We choose to let the synaptic weights be bounded by 0 ≤ wj ≤ wmax = 1. In general,
we can write the input functions I1,2(t) as

I1(t) = I1 +
X
t>τ2,k

w1(τ2,k)%α
2(t− τ2,k)e

−α(t−τ2,k),

I2(t) = I2 +
X
t>τ1,k

w2(τ1,k)%α
2(t− τ1,k)e

−α(t−τ1,k),
(3)

where again τi,k denotes the k-th firing of neuron i. Note that the value of the weights
is variable over time, as will be discussed in Section 2.2. Moreover, the weight term is
dependent on the times of firing τi,k, rather than on the real time t. This is done as the α-
function behaves decreases fast between two spikes. Therefore, when weights are updated
again, the value of Is,i is practically zero. This choice drastically simplifies numerical
computations.

We choose to have I1, I2 > 1, such that, without the external input of the coupling
(% = 0), both neurons are always naturally firing with a natural frequency. This frequency
can be calculated, as the differential equation can be solved for % = 0. Both inputs are in
that case constant, i.e. Ii(t) = Ii for both neurons, solving yields(

V1(t) = I1 + (V1(0) − I1)e−t,

V2(t) = I2 + (V2(0) − I2)e−t.

A neuron fires when it reaches Vi(tθ) = Vθ first. This happens for

Vi(tθ) =Ii + (Vi(0) − Ii)e
−tθ = Vθ

→ tθ = ln

 
Ii − Vi(0)

Ii − Vθ

!
.

Since we fixed Vθ, the duration between two spikes can be calculated, which is equivalent
to tθ when Vi(0) = 0. We define the natural period Ti and maximal period T of the two
neurons to be equal to

Ti := ln

 
Ii

Ii − 1

!
, with T := max{T1, T2}. (4)

The natural firing frequency is then equal to Ωi := 2π/Ti.

2.2 Spike-Timing Dependent Plasticity

The synaptic weights wi are not constant over time but vary and can change due to
several influences. The way these weights behave and change over time is called plasticity.
We will introduce one form of plasticity for inhibitory neurons which will be extensively
investigated.

We will focus on spike-timing dependent plasticity (STDP), which implies that the
change of weights depends on the time of firing between the two respective neurons. This
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difference in firing is denoted as ∆t := tpost − tpre, where tpost and tpre are the times of
firing of the post-synaptic and pre-synaptic neurons respectively. From the perspective of
neuron 1, ∆t > 0 implies that neuron 2 just fired which gives extra input to neuron 1
(when w1 > 0). On the contrary, in the case of ∆t < 0, neuron 1 has just created an action
potential and inhibits neuron 2. An extra input is given to neuron 2 and tpre > tpost. Hence,
in general for two coupled neurons, when one neuron observes a spike-timing difference of
∆t, the other neuron observes a spike-timing difference of −∆t.

We can distinguish two types of STDP rules, additive and multiplicative [7, 8]. Both
are update functions of the weights dependent on this time difference ∆t. An update rule
of the additive type can be written in the form

wi → wi + δ∆wi(∆t), (5)

where δ denotes the weight update strength and ∆wi incorporates the ∆t dependence in
neuron i as a learning rule. In general, we choose the learning rules to be the same for
both neurons. A multiplicative STDP rule is written in the form

wi → wi · Γwi(∆t),

where Γwi denotes the learning rule of neuron i. Note that in the multiplicative rule, there
is no update strength δ involved. When it is desired to scale this function, this should be
done inside the learning rule Γwi .

Additive STDP rules are often used as scaling is done more easily due to the external
scaling parameter δ. The dynamics can then be directly influenced in the weight update
itself. However, in experimental studies that have tried measuring STDP rules of brain
neurons, multiplicative rules are often obtained. Therefore, for the remainder of this paper
we will solely focus on multiplicative STDP rules.

2.3 Learning Rules

In general, learning rules for multiplicative STDP can be written in the form

Γw(∆t) =


Γw+(∆t) for ∆t > 0,

Γw−(∆t) for ∆t < 0,

1 for ∆t = 0.

(6)

In excitatory neurons the largest updates are being done for small ∆t, while in in-
hibitory neurons, for ∆t near zero, very little change in synaptic strength is observed [1].
Therefore, the last case for ∆t = 0 is included as fixed rule in Equation 6. Using 78
neurons, Haas et al. have obtained the data that can be seen in Figure 2(a).

Fitting this data has resulted in the following learning rule

Γw(∆t) =


Γw−(∆t) = 1 + β− (∆t)10 eα−∆t/n, for ∆t < 0

Γw+(∆t) = 1 + β+ (∆t)10 eα+∆t/n, for ∆t > 0

1 for ∆t = 0,

[5] (7)

with β− = −2.60 · 10−7, β+ = 2.29 · 10−6 and α− = 0.94, α+ = −1.10. Here n is described
as the number required to induce the synaptic change per unit time [5], and is assumed to
be equal to 1. This parameter can be seen as the scaling parameter that is missing in the
general form of the multiplicative update rule, increasing n will decrease the update size.
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Figure 2: (a) Fitted data for inhibitory STDP learning rule [1]. (b) Multiplicative
learning rule for inhibitory neurons as general function of phase difference ϕ.

The original experiment performed by [1] had a maximum duration of T = 25 ms
between firings, as can be seen in Figure 2(a). Therefore, we use a natural spiking frequency
Ω := 2π/T = 2π/25 ms−1, which is necessary to scale other frequencies to the same learning
rule. The neurons of the LIF model do not necessarily have the same natural period T . To
accommodate for this fact, the spike-timing difference ∆t can also be written as a phase
difference ϕ ∈ (−2π, 2π) using the linear mapping F , where ϕ = F(∆t) := 2π∆t/T . This
only holds with the assumption that ∆t does not exceed the maximum period T , therefore
an alternating firing pattern is required. In this way, the learning rule in Equation 7 can
be generalised with Γw(ϕ/Ω), for all natural frequencies Ω with corresponding maximal
period T . This yields the function as in Figure 2(b), where the update Γw is plotted as a
function of phase difference.

2.4 Influence of STDP on Synaptic Connectivity

In this section, we look at the influence of spike-timing dependent plasticity on stable
weight configurations and eventual synaptic connectivity. We use the system of Equations
1 with input function Equation 3, with α = 2, as then coupling-spike will be smaller than
the natural period Ti.

A mostly alternating firing pattern (1-2-1-2-1- etc.) is desired, otherwise complete
suppression of one neuron would take place. To achieve this, the maximum coupling
influence is set to % = 0.3. Larger values (e.g. 0.4) will lead to de-synchronisation of the
firings, or complete suppression of neuron 1, see Figure 20 in Appendix A. Smaller values
(e.g. 0.15) will resemble decoupling, where the influence is so little that it can not be noticed
anymore and neurons simply follow their natural frequency, see Figure 21 in Appendix A.
For initial conditions we choose V1(0) = 0, V2(0) = 0.5, and w1(0) = w2(0) = 0.2 as
significantly larger values of the weights will result in immediate suppression of neuron 1
due to high a high value of the first input function.

Neuron 2 has initial input I2 = 1.40, while the input for neuron 1 is variable between
I1 ∈ [1.15, 1.40]. Both constant inputs are larger than 1 to induce constant firing in a
decoupled state. Smaller values for I1 will lead to complete suppression. Weights are
updated according to learning rule in Equation 7, with n = 1. To scale the learning
rule accordingly, the maximum period T of the natural firing frequencies is used as in
Equation 4. The phase difference can be written as ϕ = 2π∆t/T , and we use the update
Γw(25∆t/T ), to compensate for the shift in natural period from 25 ms to T ms in the
original learning rule.
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Figure 3: Example of membrane potential with α = 2, % = 0.3 for the last part of
a 350 ms run

Membrane potentials over time for both neurons can be seen in Figure 3, simulated
using the Euler method, with indicated firing times. The constant input for neuron 1 is
equal to I1 = 1.25, smaller than that of neuron 2, which results in a smaller frequency.
In approximation, the firing pattern is still alternating, something necessary for further
analysis.

In Figure 4, the weight values over time can be seen corresponding to the simulation
of Figure 3. Even though both weights start at 0.2, it can be seen that they both converge
to a stable pattern after 50 ms.

Figure 4: Example of weight values with α = 2, % = 0.3 for a 350 ms run. The
weight values are updated with every spike and clearly stabilise.

The difference in input ∆I := I2−I1 ∈ [0, 0.25] is used to induce a difference in natural
firing frequency, as seen in Figure 3. We determine the average value of the weights for
the last part of a long run (i.e. the final convergence as seen in Figure 4), and look at the
influence of the input difference ∆I. This can be seen in Figure 5.

Figure 5: Average weights after a long run as a function of input difference ∆I,
with % = 0.3, w1(0) = w2(0) = 0.2.

Note the three intervals for which unidirectional and weak bidirectional coupling is
stable. The intervals of types of synaptic connectivity separated by the values ∆I = 0.035
and ∆I = 0.125. These results show the dependency of the synaptic connectivity on the
natural frequency difference, induced by ∆I, and are highly dependent on other parameter
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values. Changing % as an immediate effect on the location of certain synaptic connectivity
ranges, as can be seen in Figure 22 in Appendix A.

2.4.1 Addition of Noise

The model previously presented is relatively simplified as it only models the interaction
of two neurons and eliminates all external natural perturbations. One important notion
is that the system is connected to many other neurons also influencing the change of
membrane potential via additional input. This is introduced using additional random
input in the form of additive noise with intensity σ and independent Wiener processes Wi.
The system of equations is equal to(

dV1 = (−V1 + I1(t)) dt + σdW1,

dV2 = (−V2 + I2(t)) dt + σdW2,

where the input Ii is still described by the neuron coupling in Equation 3. This is nu-
merically implemented using the Euler-Maruyama scheme as provided in Equation 21 in
Appendix B. Using the numerical simulation, the average (converging) value of the weights
can be obtained. This is done for the last 20% of the simulation, as an initial period to
achieve a stable state is necessary and a small initial condition should not be taken into
account. For simulations where σ 6= 0, six runs are performed, of which the average weight
values are used.

The initial weight conditions are chosen to be w1(0) = w2(0) = 0.2, as larger values
can again lead in complete suppression of neuron 2 from the beginning onward. No weight
updates will take place in these cases, therefore, larger initial values are neglected. The
noise intensity varies in the range of µ ∈ [0, 0.03], larger values will lead to chaotic and
decoupled behaviour, where the influence of noise greatly exceeds the influence of the
coupled input function in Equation 3.

Figure 6: Average weight values for the last 20% of a 350 ms run, with α = 2, % =
0.3, and indicated regions where (weak) unidirectional coupling is visible.

The results of these simulations can be seen in Figure 6. Note how the bottom row is
equal to the values that can be seen in Figure 5. We can distinguish certain areas in this
plot. For ∆I < 0.04, and small noise intensity, there is a strong unidirectional coupling,
with (w1, w2) ≈ (0, 1), also recognised in Figure 5. In the range 0.04 < ∆I < 0.12,
there appears to also exist unidirectional coupling, although not as strong with (w1, w2) ≈

8



(1, 0.4). For larger noise and larger ∆I, we have another region where weak unidirectional
coupling exists (w1, w2) ≈ (0.2, 0.9).

For larger values of noise, and for ∆I > 0.23, we observe that results become less clear
and distinct. In these cases, noise influences the natural firing pattern significantly, and
natural frequencies differ too much. In conclusion, it is clear that analysis of this system
is hard to perform and largely dependent on chosen model parameters. Results are highly
subject to noise and numerical simulations, as becomes clear from Figure 6. Therefore, we
will move to a phase difference model, which will be discussed in the next section.

3 Phase Model

A simple model for a pair of mutually coupled neurons will be analysed in this section.
We consider two phase oscillators ϑ1(t) and ϑ2(t) with natural firing frequencies of ω1 and
ω2. The coupling weights of the neurons are w1 and w2, where the first belongs to the
incoming action potential for neuron 1 as in Figure 7. The neurons have a certain natural
frequency, and the phase ϑi ∈ [0, 2π) describes the state the neuron is in and the moment
of the next firing. A neuron fires when its phase reaches ϑi → 2π, after which it is reset to
0. The model is then given by two ordinary differential equations as

dϑ1

dt
= ω1 + w1g(ϑ2 − ϑ1),

dϑ2

dt
= ω2 + w2g(ϑ1 − ϑ2).

Here g is a 2π-periodic function describing the interaction of the two neurons as a function
of the phase difference. The coupling is the same for both neurons even though ω1 6= ω2.
Natural fluctuations are introduced in the form of additive noise by an independent Wiener
processes W1 and W2, which act on the dynamics with intensity √

µ. The model is then
described by the following two stochastic differential equations(

dϑ1 = (ω1 + w1g(ϑ2 − ϑ1)) dt +
√
µdW1,

dϑ2 = (ω2 + w2g(ϑ1 − ϑ2)) dt +
√
µdW2.

This system can also be written as a single stochastic differential equation. We do this
by defining the phase difference of the two neurons ϕ(t) := ϑ2(t) − ϑ1(t). Note that this
phase difference is also restricted to the interval [0, 2π). The evolution of ϕ is given by the
stochastic differential equation

dϕ = (∆ω + w2g(−ϕ) − w1g(ϕ))dt +
p

2µdW. (8)

Here ∆ω = ω2 − ω1 > 0 is the difference of the intrinsic frequencies, and W = (W2 −
W1)/

√
2. Since W1 and W2 are independent random variables both normally distributed,

W (t) ∼ N(0, t) is again an independent Wiener process. We choose sinusoidal coupling
with g(ϕ) = sin(ϕ).

3.1 From STDP to phase-dependent plasticity

As mentioned in Section 2.2, the weights can change over time due to STDP, and are up-
dated according to a learning rule. The goal is to find which types of synaptic connectivity
are stable under the influence of noise µ and the intrinsic frequency difference ∆ω. The
STDP as stated in Section 2.2 could be implemented numerically, however, for analysis
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Figure 7: Schematic representation of two coupled neurons.

it turns out to be be easier to transform this discontinuous STDP (which only updates
at times a spike occurs), to a continuous learning rule that is dependent on a continuous
variable. We will transform this into a Phase-Difference-Dependent Plasticity (PDDP) [3].
In this case the change of weight ẇ is a function P of the phase difference ϕ, hence

ẇi = Pi(ϕ(t)) (9)

Lücken et. al. have transformed the additive STDP as in Equation 5 into a PDDP rule [3].
We concern ourselves with multiplicative STDP, and will construct this approximation of
the continuous PDDP rule for multiplicative STDP learning rules. The general form of a
multiplicative learning rule is used as in Equation 6.

To transform this time-difference dependent update function into a phase-continuous
approximation in PDDP form, we will look at what happens during a time interval dt on
average, and start with only looking at neuron 1 (ϑ1) with corresponding weight w1. With
Ω we denote the average spiking frequency, or the frequency of the locked state. Then
Ω/2π equals the average number of firings per unit time. When looking at the weight a
timestep dt further, we can write this as a function of the initial weight w1(t). During an
interval dt, the average number of spikes of neuron 1 is equal to dt · Ω/2π. Therefore, we
can write the weight at the next time step as

w1(t + dt) ≈ w1(t) · (Γw1)dtΩ/2π ,

where Γw1 is the true overall update of weight 1 between two firings of the postsynaptic
neuron of neuron 1. We need to determine the overall weight update Γw1 . The spikes of
neurons 1 and 2 are sketched in Figure 8. The red bars indicate the times neuron 1 fires,
the times t where ϑ(t) = 0. Similarly, the blue bars indicate a spike of neuron 2.

Figure 8: Schematic representation of the twofold weight update between two
spikes of ϑ1.

It is assumed that between two firings of the post-synaptic neuron 1 (red lines), the
presynaptic neuron 1 has also received an action potential, such that two updates occur,
with absolute spike-timing differences ∆t1 and ∆t2. This assumption is only valid for
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relative small detuning frequency ∆ω/Ω. Van Vreeswijk et. al. have shown that inhibition
causes synchronisation of firing patterns for some coupling mechanisms [9]. Therefore the
assumption of alternating firing patterns can be justified for small ∆ω. Now from the
perspective of neuron 1, the respective updates are Γw−(−∆t1) and Γw+(∆t2). Due to the
multiplicative nature of the STDP rule, these two updates should be multiplied to obtain
the overall weight update Γw1 happening between two postsynaptic spikes. Hence we get
the twofold update

w1(t + dt) ≈ w1(t) · Γw+(∆t2) · Γw−(−∆t1)
dtΩ/2π

.

However, as stated above, we require phase-dependency to obtain a weight differential
equation in the PDDP form of Equation 9. We proceed by using the average spiking
frequency Ω, and by first looking at ∆t2.

When the postsynaptic neuron 1 fires, i.e. ϑ1 = 0, we have that ϕ = ϑ2. Since Ω is the
frequency of the locked state, and thus also the frequency between two spikes of neuron
2, we have ∆t2 = ϑ2/Ω = ϕ/Ω. Since the time between two firings of the postsynaptic
membrane is equal to 2π/Ω, we get that ∆t1 = 2π/Ω−∆t2, resulting in−∆t1 = (ϕ−2π)/Ω.
Now that spike-timing differences can be approximated by the phase difference of the two
neurons, the STDP rule can be written as a PDDP rule. Using the definition of the
derivative, we derive an ordinary differential equation for the weight update.

dw1(t)

dt
≈ Ω

2π
ln Γw+

ϕ

Ω
+ ln Γw−

ϕ− 2π

Ω
w1(t).

The full derivation can be found in Equation 19 in Appendix B. The roles of ∆t1,2 are
interchanged for neuron 2, with w2(t+dt) ≈ w2(t) · Γw+(∆t1) · Γw−(−∆t2)

dtΩ/2π. Hence,
the PDDP transformation for w2 can be directly determined (see Equation 20 in Appendix
B). Overall, this results in the system of weight dynamics(

ẇ1(t) = w1(t)q(ϕ), for 0 ≤ w1 < wmax,

ẇ2(t) = w2(t)q(2π − ϕ), for 0 ≤ w2 < wmax,
(10)

where

q(ϕ) :=
Ω

2π
ln Γw+

ϕ

Ω
+ ln Γw−

ϕ− 2π

Ω
, for ϕ ∈ [0, 2π). (11)

Weights cannot exceed the maximum weight wmax, so the weight dynamics should be
limited on the boundaries. We do this by forcing hard bounds on the boundaries, where(

ẇ1(t) = min(w1(t)q(ϕ), 0), for w1 = wmax,

ẇ2(t) = min(w2(t)q(2π − ϕ), 0), for w2 = wmax.

Forcing hard bounds on the minimum wi = 0 is not necessary, as weights can only be zero
if and only if wi(0) = 0, as can be seen from Equation 10. With the value Ω = 2π/25
ms−1, we obtain the continuous phase update function as described in Equation 11 using
the learning rule from Equation 7, shown in Figure 9.
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Figure 9: Continuous weight update function for inhibitory neurons using PDDP.

3.2 Numerical Simulations

The phase model of Equation 8 with weight update functions as in Equations 10 and 11
is numerically implemented such that results can be analysed, which gives more insight in
the stability of weights. Simulations are run using the numerical scheme as provided in
Equation 22 in Appendix B.

Several model parameters determine the behaviour of the weights and phase difference,
which will quickly be discussed. Both stable and unstable phase differences are visible, but
the phase difference ϕ will quickly converge to a stable configuration around ϕ = 0 when
possible. Due to this fact, the phase difference is plotted on the interval [−π, π), which
makes visualisation of the periodic and stable phase difference more clear.

The weight evolution depends on several parameters. Firstly the weights’ initial values.
This is illustrated in Figure 10 with relatively little noise (µ = 0.01).

Figure 10: Numerical simulations with ∆ω = 0.1, µ = 0.01. Note the depen-
dency of weight- and phase difference dynamics on the initial conditions: (a) Initial
conditions w1(0) = w2(0) = 0.01. (b) Initial conditions w1(0) = w2(0) = 0.5.

From Figure 10 it appears that there are multiple stable weight configurations the
pair of weights can converge and stabilise into. These stable configurations can only be
reached form certain initial conditions. The value of the weights not only influences the
eventual stable phase difference ϕ∗, but also the size of the fluctuations, even though the
noise intensity remains the same. When the phase difference stabilises, neuronal firing is
synchronised and fixed (or oscillating due to noise) in a certain pattern.

The influence of larger values of noise is mostly trivial and can be seen in Figure 23
in Appendix A. A simulation with large ∆ω can be seen in Figure 11(b). Here, the phase
difference ϕ does not oscillate around a fixed value, but remains constantly increasing
(on average). In this case, an alternating firing pattern is not reached, as one neuron 1
(∆ω > 0) is always trailing behind. Therefore, for large values of ∆ω > 0, stable firing
patterns are never attained. In general, we can also conclude, that the weights converge
relatively slowly into a stable configuration, while the phase difference can remain unstable.
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Figure 11: Numerical simulations with µ = 0.01 and w1(0) = w2(0) = 0.01.
Note the dependency of weight- and phase difference dynamics on the value of the
difference in intrinsic frequency: (a) ∆ω = 0.5. (b) ∆ω = 1.25.

3.3 Phase Dynamics, Stability and Firing Patterns

For fixed weights and in the absence of noise (µ = 0), the governing differential equation
in Equation 8 can be solved analytically. Obtaining these solutions for fixed weights is a
valid approximation, as the dynamics of the phase difference is much faster than that of
the weights as seen in Section 3.2.

3.3.1 Stable Solution

Firstly, we look at the stable converging states that might exist for sinusoidal coupling,
where all initial conditions of ϕ will converge to. Let ν(ϕ) := dϕ/dt = ∆ω − w1 sin(ϕ) +
w2 sin(−ϕ) define this ordinary differential equation in the absence of noise. The critical
points are then found by finding the roots of ν(ϕ), which are equal to

ν(ϕ) = ∆ω − w1 sin(ϕ∗) + w2 sin(−ϕ∗) = 0

→ ϕ∗
1 = arcsin

∆ω

w1 + w2
, ϕ∗

2 = π − arcsin
∆ω

w1 + w2
.

These solutions only exists for (w1 + w2) ≥ ∆ω. For stability of these critical points
it is desired that ν 0(ϕ∗

i ) < 0, which only holds for ϕ∗ := ϕ∗
1. When noise is introduced

(µ > 0) and weights remain fixed, the phase difference ϕ will still converge to this stable
solution and fluctuate around it due to noise disturbances. Having a stable solution of the
phase difference implies having a stable firing pattern, where the difference in spike-times
remains fixed (ϑ2 − ϑ1 = ϕ∗); two coupled inhibitory neurons will synchronise.

3.3.2 Periodic Solution

When (w1 +w2) < ∆ω, no stable phase difference exists as the equation ν(ϕ) = 0 can not
be solved. However, a periodic solution does exist, which we will obtain for µ = 0. We do
this by solving our differential equation ν(ϕ) = ϕ0(t) on the interval [−π, π)1, i.e.

ϕ0(t) = ∆ω − (w1 + w2) sin(ϕ(t)), ϕ(0) = −π.

By separating variables and integrating, we get

−
2

√
∆ω2 − w2

arctan
∆ω − w tan(ϕ/2)√

∆ω2 − w2
= t + c1, (12)

1Solving on this interval simplifies analysis . Since we are dealing with phases, the range [−π, π) is
equivalent to the range [0, 2π)
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where w := w1 + w2. Rewriting yields the phase function

ϕ(t) = 2 arctan
1

∆ω

h
w − γ tan

γ

2
(c1 − t)))

i
, (13)

where γ :=
√

∆ω2 − w2. This turns out to be a periodic function, and we are interested in
the periodicity τ of the variable ϕ, such that ϕ(t + τ) = ϕ(t) (for later purposes mostly).
This is equivalent to finding τ with limt→τ ϕ(t) = π, since ϕ(0) = −π.

We first determine the value of integration constant c1. Substituting our initial value
in Equation 12 and taking the limit2 yields

c1 = lim
t↓0

t + c1 = lim
ϕ↓−π

−
2

γ
arctan

∆ω − w tan(ϕ/2)

γ
= −

π

γ
.

This approach can also be extended to find our value for τ , where we obtain

lim
t↑τ

t + c1 = lim
ϕ↑π

−
2

γ
arctan

∆ω − w tan(ϕ/2)

γ
=

π

γ
.

Hence, we get that the duration of one full cycle is equal to τ = 2π/γ. Again, this solution
is only in the absence of noise. For µ > 0 this solution is still an approximation and the
true value will fluctuate around this solution. Having a periodic solution implies that the
phase difference ϕ is constantly increasing on the interval [0, 2π). Therefore, ϑ2 constantly
increases faster than ϑ1, and the two neurons do not synchronise; neuron 1 is constantly
lagging behind.

3.4 Weight Dynamics and Stability

There is a mutual dependency of the phase difference ϕ and the weight values as described
by Equations 8 and 10. However, as stated before, in Section 3.2 it can be seen that the
evolution of the phase difference is much faster than that of the weights. Therefore, we can
determine the overall behaviour of the weights based on the time-averaged behaviour of
the phase difference. In this section we want to determine this phase-averaged behaviour
of synaptic weights so that stable weight configurations can be determined.

3.4.1 Phase-Averaged Weight Dynamics

Since we are dealing with noise-induced dynamics with stochastic differential equations
for the phase difference ϕ, and want to obtain phase-averaged weight dynamics, a phase
distribution is necessary. For this, we let ρ be the probability density function (pdf) of the
phase ϕ. The phase difference ϕ does converge to a stable distribution when this exists,
but will always continue to fluctuate around this value when noise is introduced. Again,
we are dealing with the stochastic differential equation

dϕ = ν(ϕ)dt +
p

2µdW.

Since W is an independent Wiener process, the probability density function ρ follows
the Fokker-Planck equation (FPE), which is the partial differential equation

dρ

dt
= − d

dϕ
(ν(ϕ)ρ) + µ

d2ρ

dϕ2
. (14)

2Since the inverse tangent (like in Equation 13) never truly reaches ±π/2, but only approaches it as
the inside goes to ±∞, we have to take the limit.
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We assume that the pdf converges to some stationary distribution ρs := limt→∞ ρ. As
the phase difference ϕ behaves much faster than the dynamics of the weights w, we can
approximate the weight dynamics using ρs, by taking the weighted average over the phase
difference interval with

ẇ1 = w1

Z 2π

0
q(ϕ)ρs(ϕ)dϕ,

ẇ2 = w2

Z 2π

0
q(2π − ϕ)ρs(ϕ)dϕ,

(15)

where the stationary pdf ρs is a function of ϕ, and depends on weights w1, w2, noise
intensity µ, and intrinsic frequency difference ∆ω. These last two values are chosen to be
constant and we use the 2π−periodic function g(ϕ) = sin(ϕ). Note that the weights now
are not dependent on the value of ϕ, as this is integrated out, but only dependent on its
distribution. By using the stationary pdf ρs, this function is independent of time.

3.4.2 Weight Dynamics without Noise

We will first describe the weight dynamics in the absence of noise, as all derivations can
be done analytically. Even though the use of a probability density function (as in the
Fokker-Planck equation) is not necessary in this case, it can still be used to describe the
dynamics.

a) In the case (w1 + w2) ≥ ∆ω, a stable solution for ϕ exists. The phase difference
will reach the stable state ϕ∗ relatively fast compared to the change of weights. Hence, we
assume that the phase difference will be precisely equal to this stable state. In that case,
ρs will be equal to the Dirac delta function

ρs(ϕ|w1, w2) = δ(ϕ− ϕ∗).

This results in our phase-averaged dynamics for the synaptic weights with

µ = 0 and (w1 + w2) ≥ ∆ω →


ẇ1 = w1q

 
arcsin

 
∆ω

w1 + w2

!!
,

ẇ2 = w2q

 
2π − arcsin

 
∆ω

w1 + w2

!!
.

b) In the case (w1 + w2) < ∆ω, no stable phase difference exists. However, we can
still characterise the dynamics of the weights, as the value of ϕ(t) is known by Equation
13. Therefore, the distribution ρ0 can be determined as well. This is done by observing
that the probability that the phase difference ϕ is below some value X is equal to

P(−π ≤ ϕ ≤ X) =
T (ϕ(t) = X)

τ
,

where T (ϕ(t) = X) ∈ [0, τ) denotes the time at which the phase difference is equal to the
value X ∈ [−π, π) for the first time. Hence, T is a function of X and actually the inverse
function of ϕ, this can be seen in Figure 12. Using Equation 12 we can directly obtain this
inverse function and

T (X) = ϕ−1(X) =
π

γ
−

2

γ
arctan

∆ω − w tan(X/2)

γ
.
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Hence, on the interval [−π, π), we have that

ρ0(ϕ) :=
d

dϕ
T (ϕ)/τ =

d

dϕ

1

2
− 1

π
arctan

∆ω − w tan(ϕ/2)

γ

=
w

2πγ cos2(ϕ/2)

1

((∆ω − w tan(ϕ/2))/γ)2 + 1
.

Due to the 2π-periodicity3 of the function ρ0, we have that ρ0(ϕ− 2π) = ρ0(ϕ) for all
ϕ. Hence, our system of equation can be written into its original form as in Equation 15,
meaning

µ = 0 and (w1 + w2) < ∆ω →


ẇ1 = w1

Z 2π

0
ρ0(ϕ)q(ϕ)dϕ,

ẇ2 = w2

Z 2π

0
ρ0(ϕ)q(2π − ϕ)dϕ.

Note in Figures 12(a-b) how steeper the function ϕ(t), the lower the probability is, as
the time duration of the phase difference existing in that specific interval is smaller.

Figure 12: w = 0.1,∆ω = 0.2 (a) Example of phase difference ϕ(t) with location
of T (X). (b) Steady state probability distribution function ρs on [−π, π).

3.4.3 Weight Nullclines

From numerical simulations it can be seen that phase difference stabilises if that value can
be attained. Since the stable phase difference ϕ∗ is known, we can look at the dynamics
of the weights to determine for which values these will be stationary. For w1, stability is
reached when

w1q(ϕ∗
1) = w1

1

2π
ln Γw+ (ϕ∗) + ln Γw− (ϕ∗ − 2π) = 0

→ ln 1 + β+ (ϕ∗)10 eα+ϕ∗
+ ln 1 + β− (ϕ∗)10 eα−(ϕ∗−2π) = 0 ∨ w1 = 0.

This equation cannot be solved analytically and should be determined numerically. We
use general parameter values as mentioned in Section 2.3. From Figure 9, three roots to
this equation are expected. We find

ϕ∗
1 ≈ 0.812149, ϕ∗

2 ≈ 3.122281, and ϕ∗
3 ≈ 5.410149,

3Originally we have obtained ρ0 on the interval [−π, π), but due to the cosine and tangent in the
function, it is periodic and also valid on the interval [0, 2π). Therefore, the weight dynamics can simply
be written as a single integral.
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to be the three roots of q(ϕ). To obtain the values of ϕ for which ẇ2 = 0, the roots of
q(2π−ϕ) are to be found, and are equal to 2π−ϕ∗

i , i = 1, 2, 3. Now from Section 3.3.1, we
know that the only stable state is equal to ϕ∗ = arcsin(∆ω/w). As ∆ω,w ≥ 0, we know
that ϕ∗ ∈ [0, π/2). Hence, this can only be ϕ∗

1 ∈ [0, π/2) for w1 and 2π − ϕ∗
3 ∈ [0, π/2) for

w1. Therefore, the nullclines are equal to the diagonal lines

µ = 0 →

(
ẇ1 = 0 ⇐⇒ [w1 = 0 ∨ w1 + w2 = ∆ω/ sin(ϕ∗

1) := ∆ω/ξ1] ,

ẇ2 = 0 ⇐⇒ [w2 = 0 ∨ w1 + w2 = ∆ω/ sin(2π − ϕ∗
3) := ∆ω/ξ2] ,

(16)

with the constants ξ1 ≈ 0.7258, ξ2 ≈ 0.7663.

3.4.4 Critical Points as Function of Intrinsic Frequency Difference

The phase-averaged weight evolution in the absence of noise is known in Q := [0, 1]× [0, 1]
(as wmax = 1), and phase portraits can be made to determine the stability of critical points
in Q. See Figure 13 for such an example, where ~w := (ẇ1, ẇ2) is the dynamic vector of unit
length. The dotted line in these figures represents the transition from unstable to stable
firing patterns, i.e. the line (w1 + w2) = ∆ω.

In this section, we illustrate how the locations of critical points move as a function of
intrinsic frequency difference ∆ω. As we are mainly interested in dealing with the direction
of the dynamics and not much in the size itself, only scaled dynamics are presented.

Figure 13: Phase portraits of the synaptic weights in the absence of noise (µ = 0)
with indicated nullclines and critical points (a) ∆ω = 0.5, (b) ∆ω = 1.0.

Small ∆ω
In Figure 13(a) the scaled dynamics of a relatively small intrinsic frequency difference can
be seen. The nullclines are important in locating the stable weight configurations and
synaptic connectivity. Note that everything above and on the right of these nullclines is
moving to the left and upwards respectively. In general, the opposite happens below and
on the left side of these lines. Eventually, all weights will converge to the stable point at
limt→∞(w1, w2)(t) = (0, 1) for (w1, w2)(0) ∈ (0, 1]×(0, 1] . However, w1 will never actually
truly reach 0 with these initial values however, due to the multiplicative update rule.
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We can classify three critical points on the boundary as well. When starting with
complete unidirectional coupling, bidirectional coupling can never be achieved. The three
critical points are all saddle points, and equal to the intersection of the nullclines with the
axes; (0,∆ω/ξ2), (∆ω/ξ1, 0), together with the origin (0, 0).

Increasing ∆ω
From Equation 16, it is known that increasing the value of ∆ω will linearly increase the
intersection of the nullclines with the axes. For a certain value of ∆ω, the nullclines will
move past (0, 1), see Figure 13(b) for such an example.

Two new stable points are created where weights can converge to. These stable con-
figurations are (1, 0) and (∆ω/ξ1 − 1, 1). The initial value of the weight configuration
determines the eventual stable configuration. Hitting the w1 = 1 axis below the indicated
saddle point implies convergence to (1, 0).

Figure 14: Phase portraits of the synaptic weights with indicated nullclines and
critical points with µ = 0. (a) ∆ω = 1

2(ξ1 + ξ2), (b) ∆ω = ξ1 + ξ2.

Transition case of ∆ω
The values of ∆ω for which the two nullclines are equal to w1+w2 = 1 are equal to ∆ω = ξ1

and ∆ω = ξ2. Between these values, the transition from Figure 13(a) to (b) occurs. A
situation in this interval is shown in Figure 14(a). In this transition case, no critical points
in the corners can be observed (except for the origin, which is always unstable).

Another transition case happens when ∆ω increases further. For ∆ω = ξ1 + ξ2, the
point (1, 1) becomes a stable. However, this point has a small range of convergence, as
most initial values will converge to (1, 0). This can be seen in Figure 14(b). For larger
values of the detuning frequency (∆ω > 2ξ2), the stable point at (1, 1) disappears, and all
weight configurations would simply converge to the only stable point (1, 0).

All in all, the location of the critical points is summarised in Table 1. Note that for
∆ω > 2, critical points are not specified. This is due to the fact that for these values of
the detuning frequency, a stable alternating firing pattern does not exist for any weight
configuration and critical points are not taken into account.
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Table 1: Overview of all critical points for different values of ∆ω.

Range of ∆ω Stable points Saddle points
(0, ξ1] (0, 1) (0, 0), (0,∆ω/ξ2), (∆ω/ξ1, 0)
(ξ1, ξ2] (∆ω/ξ1 − 1, 1) (0, 0), (0,∆ω/ξ2)
(ξ2, 2ξ1] (∆ω/ξ1 − 1, 1), (1, 0) (0, 0), (1,∆ω/ξ2 − 1)
[2ξ1, 2ξ2] (1, 1), (1, 0) (0, 0), (1,∆ω/ξ2 − 1)
(2ξ2, 2) (1, 0) (0, 0)

3.4.5 Numerical Scheme for Probability Distribution Function

The location of critical points under the influence of external natural perturbations is also
desired. When noise is introduced to the system, the stationary pdf ρs cannot be found
directly using the phase difference dynamics (as could be done for µ = 0. Since ρ follows
the FPE as stated in Equation 14, we can determine ρs by solving dρ/dt = 0. However,
since this derivation is quite extensive as shown by [3], we will solve the FPE numerically
under the assumption that it converges to a stationary distribution.

We will use the Euler-forward numerical scheme, where the interval [0, 2π) is divided
in n equally-spaced subintervals of size ∆ϕ := 2π/n, and use time step size dt. We use the
numerical scheme

ρj+1
i = ρji + dt

 
−
ν(ϕi+1)ρji+1 − ν(ϕi−1)ρji−1

4π/n
+ µ

ρji+1 − 2ρji + ρji−1

(2π/n)2

!
, (17)

for i = 1, 2, . . . n and j = 0, 1, 2, . . ., with ϕk = (k − 1/2) ∆ϕ for k = 0, 1, . . . n + 1. In our
numeric scheme we have that ρj+1

i ∝ 1 − dt 2µ
∆ϕ2 ρji . Hence, for stability and convergence

to ρs, it is desired that dt < ∆ϕ2/2µ. Since we are dealing with phases, we have that
ρ(2π) = ρ(0). Therefore, the numerical derivatives can be extended along the boundaries
as ρji+n = ρji for all i. This is visualised in Figure 15(a). Equation 17 then still holds on
and across the boundaries. The initial condition of the distribution is chosen to be uniform
with

ρ0
i =

1

2π
for i = 1, 2, . . . n, such that

nX
i=1

ρji∆ϕ = 1 for all j ≥ 0.

The numeric scheme is run until the absolute difference between j and j+1 is minimal,
as it is assumed we then have ρ ≈ ρs. We use the smallest N for which

nX
i=1

|ρNi − ρN−1
i | < ,

for some small > 0. The steady-state probability distribution ρs is then approximated
using the particle representation {ρNi }i=1,2,...n, and is equal to the summation of Dirac-delta
functions

ρs(ϕ) ≈
nX
i=1

ρNi δ(ϕ− ϕi). (18)

This function is still written as an approximation of the real distribution function as this
is a discretisation of the continuous function. When n,N → ∞ (or → 0 for the latter),
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Figure 15: (a) Visual representation of the phase discretisation over the boundary
ϕ = 0. (b) Examples of steady-state probability distribution function with n =
100, = 10−4 and w1 = w2 = 0.5. A larger intrinsic frequency differences shifts the
peak of the distribution, and more noise leads to a larger spread of the distribution.

this function will approach the true continuous stationary distribution. Two examples of
numerical solutions can be seen in Figure 15(b).

The stationary pdf can now be used to find the system of equations of the weights, by
substituting 18 in the integral of Equation 15. For the general phase-difference-dependent
update function q(ϕ), we thus get

µ > 0 →


ẇ1 = w1

nX
i=1

ρNi q(ϕi),

ẇ2 = w2

nX
i=1

ρNi q(2π − ϕi).

This numerical method can be applied to the complete domain Q. Again for w < ∆ω,
the phase difference does not converge to a stable state, regardless of the added noise.
Nevertheless, the probability density function can still be found numerically in this region.

3.5 Bifurcation Diagrams and Stable Synaptic Connectivity

As seen earlier in Section 3.4.4, the location of stable weight configurations depends on
parameter values, and can be determined in the absence of noise. However, when noise
is introduced to the system, the dynamics become even more complex. Therefore, this is
analysed numerically using a bisection method on the corners of Q. All in all, the locations
of stable points are summarised in Figures 16 and 17. These bifurcation diagrams only
show the behaviour for ∆ω ≤ 2, as for larger values, no stable phase difference solution
exists for all values of w1, w2, and the assumption of alternating firing pattern in invalid.
Critical lines are found by applying the bisection method, fixing ∆ω and interpolating µ
until an accurate approximation is found where either ẇ1 or ẇ2 is equal to zero on a corner
of the domain Q. On the axis µ = 0, the theoretical found values from Section 3.4.4 are
used. On one side of the critical lines, the weight configurations are unstable, while on the
other side they are stable. This depends on both values of ẇ1 or ẇ2. For instance, the
weight configuration (1, 1) is stable if and only if ẇ1 > 0 and ẇ2 > 0 at (1, 1).

Since nullclines are always diagonals where w1 + w2 is constant, the critical lines for
the diagonal w1 +w2 = 1 are shown (red), which applies for both corners (1, 0) and (0, 1).
It is interesting to note how for w1 + w2 = 2 (black) all lines scale linearly compared to
the red critical lines.
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Figure 16: Bifurcation diagrams with stability of the corners in the weight range.

Figure 17: Bifurcation diagrams with indicated stability on the axes in the weight
range.

From Equation 16 it became clear that the nullcline ẇ1 = 0 always lies above the
nullcline of w2 when µ = 0. This resulted in the critical points of the weight configurations
lying on the boundaries of Q. However, when noise is introduced, the order of these
nullclines can reverse. Therefore, since the weight dynamics is a continuous function of
the parameter values, there exist parameter values for which the nullclines are equal. This
implies there is a complete straight line w1 + w2 ∈ (0, 2), for which ẇ1 = ẇ2 = 0. On this
line, all weight configurations are stable. This turns out to be for the parameter values

C :=
∆ω

µ
= 0.16053,

and is shown with the dotted black line in both bifurcation diagrams. This line is the
intersection of the two critical lines for ẇ1 and ẇ2.

In Figure 17, the stability of three axes are shown. This implies that there is stability
on a single point (with exception of the corners) on the axis itself and not the full axis.
There are two critical lines for ẇ2 = 0 at the corners of Q, implying there is the possibility
to have two nullclines for w2, something that cannot be seen in the case µ = 0. Examples
of interesting weight dynamics are discussed in the next Section 3.5.1.
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3.5.1 Phase Portraits and Nullclines with Noise

For different parameter values phase portraits are shown for the coupling weights in Figure
18(a-d). These figures correspond to the letters (a-d) indicated in the bifurcation diagrams
(Figures 16 and 17).

Figure 18: Weight phase portraits with nullclines and critical points in four dif-
ferent locations as indicated in the bifurcation diagrams.

Nullclines have been indicated in the phase portraits. These are found by using the
bisection method, approximating roots of the derivatives at the places w1 = 0.05, 0.50, 0.95
while varying w2. This interval-halving method is performed 16 times to the interval to
[0, 1] to obtain an accuracy of 1.5 · 10−5. For a single nullcline, this only has to be done
for one value of w1 as nullclines always lie directly diagonal with slope −1 as mentioned
before. This is in general true for all odd coupling functions g, as in that case the function
ν(ϕ) always depends on the summation of weights w1 + w2. Consequently, the nullclines
of w1 and w2 consist of diagonals where the value of w1 + w2 is constant. As a result, if a
fixed point (w∗

1, w
∗
2) as found by the bisection method exists in Q, it leads to a nullcline of

fixed points corresponding to the straight line w1 + w2 = w∗
1 + w∗

2.
Critical points are indicated using the intersection of nullclines with boundaries of Q.

In Figure 18(a) we observe bistability of weight configurations in Q, both unidirectional
coupling (1, 0) and weak bidirectional coupling (0.4, 1) are stable. This is in line with both
bifurcation diagrams, as point (a) lies in both respective regions. Moreover, a third nullcline
has been added, creating another saddle point. Figure 18(b) and (d) shows stability on
the bottom and right axis respectively, something not possible for µ = 0.

In Figure 18(c) no nullclines are visible, even though ∆ω = 0.2 is relatively small. We
conclude that large values of noise results in stable bidirectional coupling of the neurons,
with a stable firing pattern.
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Figure 19: Phase portrait with five numerical simulations from different initial
conditions showing the stability inside Q, with µ = C∆ω. Since the magnitude of
the weight dynamics is very small around the nullclines, the influence of noise is
large and weight configurations will move around without stabilising into a single
configuration. It can be seen that the of ẇ1 is especially larger around the nullclines.

Figure 19 shows a critical phase portrait. Here, the diagonal nullcline through the
domain is entirely stable. Depending on the initial value, the weight configuration will
stabilise around this diagonal, or converge to the stable weight configuration (1, 0). Note
that a point on the top axis is still also a stable point, corresponding with the location
of this critical parameter value configuration in Figures 16 and 17. In- or decreasing µ
slightly will remove the mid-domain stability, but keep stability on the top axis and (1, 0).

3.6 Comparison with LIF

The phase difference model has been developed after the leaky integrate-and-fire model to
simplify analysis. The two should describe the same kind of weight stability. Therefore,
we will compare the results from Figure 6 and Figures 16 and 17. These results cannot be
compared directly and linearly. Firstly, the LIF model describes the membrane potentials
Vi that are influenced by input intensities Ii. A difference in input ∆I cannot be related
directly to difference in intrinsic frequency ∆ω. Note, however, that increasing ∆I is
similar to increasing ∆ω. Secondly, the noise intensity is equal to σ and √

µ respectively.
However, these can also not be scaled (also not quadratically), as a perturbation on the
membrane potential V is not directly the same as a perturbation on the phase difference.
Again, we note that increasing σ is equivalent to increasing µ.

From the LIF model, we concluded that for small difference in natural frequencies and
small additive noise, unidirectional coupling with (w1, w2) = (0, 1) is stable. The same can
be concluded for the phase model from Figure 16. Moreover, increasing the input intensity
difference resulted in a switch of the type of unidirectional coupling from (0, 1) → (1, 0).
This is also a result by Figures 16 and 17, where bistability exists with (1, 0) being stable.
A point on the top axis (·, 1) is also stable in the phase difference model, something that
can be recognised in the right hand side of Figure 5.
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4 Discussion

In the first part of the paper, we developed a leaky integrate-and-fire model with STDP for
inhibitory neurons. Since the LIF model is not able to reproduce all fundamental properties
of cortical spiking neurons, results might not be biophysically accuracte [2]. However, due
to the linearity, computational speed, and comparison with the phase-difference model, it
provides a decent framework for mathematical analysis. Results depend on many model
parameters, changing α, %,∆I, and initial conditions will directly influence the final states
of the weight configurations and firing patterns. Input parameters α and % are chosen
such that suppression is eliminated for a wide range of ∆I, but this coupling could be
unrealistically low. The possibility exists that the de-synchronisation induced by ∆I is
too large, and that smaller values with larger values for coupling intensity % should be
used. Moreover, it was expected that weight configurations would stabilise, irrespective of
initial weight conditions. However, for large initial weight values, immediate suppression
occurred. Results are therefore only interpreted for weak initial bidirectional coupling.

In the second part of the paper, a phase difference model is developed to approximate
the LIF model more generally. This model is less dependent on choice of parameter values,
as the dynamics of two neurons is described by a single stochastic differential equation.
This highly simplifies analysis, but also simplifies the extent to which results are applicable
to the initial LIF model. For instance, only the intrinsic frequency difference ∆ω = ω2−ω1

is used, irrespective of the original values. What could be seen in the LIF model is that
the dynamics is largely dependent on both I1 and I2 and not just the difference ∆I. It is
to be expected that the same applies to the frequency detuning ∆ω, however, analysis is
independent of the separate frequencies which could miss out on fundamental properties.

A new framework has been developed, such that PDDP can be used to study multi-
plicative learning rules, extending the framework of the scientific field. The fundamental
assumption of this transformation is the presence of an alternating firing pattern, which
can only be reached for small ∆ω/Ω. Since inhibition causes synchronization in coupled
neurons as shown by [9], this might be a valid assumption for a large range of parameter
values. On top of that, when determining the phase-averaged weight dynamics using the
Fokker-Planck equation, it is assumed that the coupling dynamics have to be slow enough
to render valid averaging of the FPE. From the LIF model it can be seen that this assump-
tion is generally valid. To ensure truly slower dynamics, larger values of n Could be used.
Under both assumptions, we have developed a technique that can be generally applied to
multiplicative STDP functions.

The PDDP model yields qualitatively equivalent results to the STDP model. However,
there are some features that might not be captured by the phase difference model, as the
firing pattern of two neurons is described by one stochastic differential equation. Again,
using only the difference in firing frequency ∆ω forms an example of this.

The phase difference model is developed to model coupled inhibitory neurons. However,
this inhibitory coupling does not come into play directly as coupling is described by the
periodic coupling function g, which does not use inhibition as directly as the LIF model.
Inhibition is mainly included in the choice of learning rule, which is specifically found for
inhibitory neurons. It is important to note that analysis is performed only for sinusoidal
coupling with g(ϕ) = sin(ϕ), but can be extended to other coupling functions as well. This
will change the stable firing phase difference ϕ∗ and might induce multi-stability of the
phase difference. The stationary pdf ρs will change in that case, which will change the
overall phase-averaged weight dynamics. Nullclines will remain straight lines with slope -1
for odd coupling functions (and 1 for even functions).
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Results of the LIF model show that both unidirectional coupling and bidirectional cou-
pling can be stable types of synaptic connectivity. Bistability of coupling configurations
was not found as suppression often occurred for large initial weight conditions. Large values
of additive noise resulted in chaotic weight behaviour, where weak bidirectional coupling
is often stable. Decoupling of the neurons was not observed and can be seen as unstable.
The phase difference model shows similar results as the LIF model, where unidirectional
coupling was stable for small difference in intrinsic frequency. Multi-stability of weight
configurations could be observed for a large range of parameter values, with unidirectional
and weak bidirectional coupling being the main stable types of synaptic connectivity. Sim-
ilar to findings from the LIF model, neuron decoupling is always unstable. For small ∆ω,
weight configurations will always converge to a state where the phase difference stabilises
and the neurons synchronise.

Future work can be done for investigating different coupling functions g, which can
demonstrate the connection between the LIF and phase difference more clearly. Moreover,
the mathematical connection between the variables σ, µ and ∆I,∆ω is important to relate
the two respective models directly. On top of that, the basin of attraction of stable weight
configurations could be explored, as bistability of weak bidirectional and unidirectional
coupling occurs for a large range of parameter values. The final state of the weight config-
uration can be predicted based on its initial condition, taking additive noise into account.
Lastly, only one learning rule is explored, while more learning rules for inhibitory neurons
are known as provided by [5], which could be explored further.

5 Conclusion

All in all, for small difference in natural firing frequency and low additive noise, the phase
difference model is a good representation of the leaky integrate-and-fire model. For large
values of ∆ω, the assumption of alternating firing pattern does not hold as a stable phase
difference does not exist, and strong conclusions cannot be drawn.

By switching from additive to multiplicative STDP, and by modifying the learning rule
to one applicable to inhibitory neurons, completely different dynamics appear compared to
the results shown by [3], where stability only appeared on the corners of Q and decoupling
was only stable. This indicates the complexity of the phase-difference model and the
potential for further research, using different learning rules and coupling functions.

For coupled inhibitory neurons with synaptic weights following STDP, multi-stability
is possible with unidirectional and bidirectional coupling, both weak and strong. Unidi-
rectional coupling is significantly more stable compared to strong bidirectional coupling,
as the basin of attraction is small for the latter in the case of bistability. Lastly, we have
shown that stability exists inside the domain Q when nullclines overlap. This implies that
due to natural perturbations, weight configurations can remain dynamic over time on this
line and synaptic connectivity remains dynamic.

We conclude that decoupling for inhibitory neurons is unstable and that weight con-
figurations will always converge to stable unidirectional or (weak) bidirectional coupling.
Since decoupling is unstable, the sum of weights will always be sufficiently large to induce
a synchronised firing pattern. A stable state on the bottom axis close to decoupling can
be achieved using very small ∆ω, and by introducing some additive noise, but this can
never be achieved in the absence of noise. True unidirectional coupling is stable for a large
range of values of external perturbations. For significantly large values (µ > 2), strong
bidirectional coupling is the only stable synaptic connectivity.
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A Appendix: Figures

Figure 20: Numerical simulations with % = 0.40 and w1(0) = w2(0) = 0.5. In this
part of the simulation synaptic weights are not significantly large (w1 ≈ 0.8, w2 ≈
0.65). However, due to the large value of connectivity strength %, neuron 2 is
completely suppressed.

Figure 21: Numerical simulations with % = 0.15 and w1(0) = w2(0) = 0.2. In this
part of the simulation synaptic weights are large (w1 ≈ w2 ≈ 0.95) and connectivity
should be significant. However, due to the low value of connectivity strength %, the
influence of the coupling is negligible. Membrane potentials simply follow their
natural frequency.

Figure 22: Average weights after a long run as a function of input difference ∆I,
with % = 0.2, w1(0) = 0.2, w2(0) = 0.8. Note the three intervals for which unidirec-
tional and bidirectional coupling is stable. The intervals of synaptic connectivity
are separated by the values ∆I = 0.095 and ∆I = 0.185.
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Figure 23: Numerical simulations with ∆ω = 0.5 and w1(0) = w2(0) = 0.5. Note
only the phase dynamics depends on the noise intensity, but also the final weight
configuration changes. (a) µ = 0.05. (b) µ = 0.2.

B Appendix: Equations

B.1 STDP to PDDP

The transformation from STDP to PDDP is obtained as follows

dw1(t)

dt
= lim

dt→0

w1(t + dt) − w1(t)

dt
= lim

dt→0

(Γw1)dtΩ/2π − 1 w1(t)

dt

≈ lim
dt→0

Γw+(∆t2) · Γw−(−∆t1)
Ω/2π dt

− 1

dt
w1(t)

(∗) = ln Γw+(∆t2) · Γw−(−∆t1)
Ω
2π w1(t)

=
Ω

2π
ln Γw+(∆t2 + ln Γw−(−∆t1) w1(t)

≈ Ω

2π
ln Γw+

ϕ

Ω
+ ln Γw−

ϕ− 2π

Ω
w1(t), (19)

where step (∗) is done by applying l’Hôpital’s rule. For neuron 2 the same analysis can be
performed, since the roles from the spike-timing differences is directly reversed with

w2(t + dt) ≈ w2(t) · Γw+(∆t1) · Γw−(−∆t2)
dtΩ/2π

.

28



Therefore,

dw2(t)

dt
= lim

dt→0

w2(t + dt) − w2(t)

dt

≈ lim
dt→0

Γw+(∆t1) · Γw−(−∆t2)
Ω/2π dt

− 1

dt
w2(t)

= ln Γw+(∆t1) · Γw−(−∆t2)
Ω
2π w2(t)

=
Ω

2π
ln Γw+(∆t1 + ln Γw−(−∆t2) w2(t)

≈ Ω

2π
ln Γw+

2π − ϕ

Ω
+ ln Γw− −ϕ

Ω
w2(t)

= q(2π − ϕ)w2(t) (20)

B.2 Numerical Schemes

Numerical Scheme for LIF model
Using Euler-Maruyama with timestep-size dt, k = 0, 1, 2, . . ., and tk := k · dt, we obtain
the numerical scheme(

V k+1
1 = V k

1 + dt −V k
1 + I1(tk) + σ

√
dtη1,

V k+1
2 = V k

2 + dt −V k
2 + I2(tk) + σ

√
dtη2,

where η1, η2 ∼ N(0, 1). (21)

Numerical Scheme for Phase Model
Using Euler-Maruyama with timestep-size dt, and k = 0, 1, 2, . . . we obtain the numerical
scheme

ϕk+1 = ϕk + dt ∆ω + wk2g(−ϕk) − wk2g(ϕk) + η
√

2µ · dt mod 2π

wk+1
1 = min wk1 + dt · wk1q(ϕk), 1 ,

wk+1
2 = min wk2 + dt · wk2q(2π − ϕk), 1 ,

(22)

where again, η ∼ N(0, 1). For the phase difference, mod 2π is required as ϕ ∈ [0, 2π).
Hard bounds on the weights are put by the minimum functions as wi ≤ wmax, weights
cannot exceed the maximum wmax = 1. Weights can also not exceed the minimum 0.
However, we cannot equal the weight to 0 when it does exceed as this limit, as this can
never truly happen. Therefore, if the weight value as in Equation 22 does come below 0,
the value is reset equal to half to its previous value:

if wk+1
i < 0 → wk+1

i = wki /2.
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