
BSc Thesis Applied Mathematics

Nonlinear convex optimisation
problems in the smart grid

Jarco Slager

Supervisors: Ir. M. H. H. Schoot Uiterkamp and Prof. Dr. J.L.
Hurink

June, 2019

Department of Applied Mathematics
Faculty of Electrical Engineering,
Mathematics and Computer Science

Nonlinear convex optimisatoin problems in the smart grid

Jarco Slager ∗

June, 2019

Abstract

The energy that is generated for our society is shifting from fossil fuels to renewable en-
ergy sources (i.e. wind and solar power). Due to the dependence on the sun and wind,
power cannot always be generated when needed. To tackle this problem, smart grids
have been introduced, in which we are able to store energy in and receive energy from
smart appliances in the energy system. In order to distribute the energy efficiently, we
formulate this distribution problem as a mathematical optimisation problem with the
objective to minimise for example the power loss. These optimisation problems are
nonlinear and convex and therefore solved via the primal-dual interior-point method
(IPM). Even though this method is efficient, the algorithm will be run on embedded
systems with low computational power. Therefore a gain in efficiency is desired.

We discuss two models that arise in the smart grid, and show that the problem
structure can be exploited to improve the computational complexity of the IPM algo-
rithm. For both models, the time consuming step in the algorithm has been reduced
from a worst-case time complexity of O(n3) to O(n). Numerical tests for one of the
models confirms this gain in efficiency in practice.

Keywords: interior-point method, smart grid, resource allocation problem, EV charg-
ing problem

1 Introduction

Our society is moving towards an energy system that contains more and more renewable
energy sources, for instance wind and solar power. In the conventional way of power pro-
duction (e.g. generating power in coal-fired plants), the energy supply can be adjusted
relatively adequately to the energy demand. However, the energy supply of renewable
energy sources is not that smoothly adjustable to the energy demand. Solar power can
only be generated when the sun is shining, and wind power only when there is wind to
put wind turbines in motion. Hence, this change in power production impacts our energy
distribution system [15].

Currently, our society operates with a centralised energy management system, which means
that the power is generated in power plants. However, there is a shift towards a decen-
tralised energy management system, in which the power is generated locally, at a con-
sumer’s home. This leads to the concept of a smart grid. In a smart grid, smart appliances
such as electrical vehicles (EVs) are included in the energy system. Here, these appliances
should be able to use/store energy when much power is being produced. On the other
hand, when power is required by for example consumers, these appliances should be able

∗Email: j.slager@student.utwente.nl

1

to provide (a part of) their stored energy back to the system. In this new energy sys-
tem, the power should be distributed in a clever way, with the objective to minimise, for
example, the power loss. To solve this problem, it is often formulated and solved as a
mathematical optimisation problem.

The optimisation problems that arise in this context are resource allocation problems. In
a resource allocation problem, limited resources must be allocated among several activities
[16]. This is also a description of the so-called EV charging problem, in which energy has
to be allocated to the battery of the EV, subject to some constraints. The optimisation
problems that emerge in these situations are usually convex and nonlinear. Therefore,
nonlinear optimisation methods are used to compute the solutions to these problems, for
instance the barrier method or the primal-dual interior-point method (IPM) [1]. These
existing methods have been proven to be fast and efficient. However, for the application
in smart grids, the algorithms are required to run on embedded systems with low com-
putational power. Therefore we desire any gain in efficiency. The primal-dual IPM is a
general algorithm to solve nonlinear and convex optimisation problems, and therefore does
not exploit any specific problem structure. Thus, in this paper we aim to analyse the
most time-consuming steps in the primal-dual IPM algorithm and investigate whether the
specific problem structure of the smart grid-related problems can be exploited to speed up
these steps.

In this paper, we formulate two EV charging problems which are solved with the primal-
dual IPM. Whereas in the standard primal-dual IPM algorithm a search direction is com-
puted by solving a system of linear equations which has a worst-case time complexity of
O(n3), we analytically derive an explicit formula for finding this search direction that takes
only O(n) time to evaluate for both of the EV charging problems. Numerical results for
one of these problems confirm the analytic results, with a reduction in computation time
of approximately 97, 1% compared to the original primal-dual IPM algorithm.

The remainder of this paper is organised as follows. In Section 2 we in particular discuss
other research that tries to find efficient methods for solving resource allocation problems.
In Section 3 we explain the mathematical models that we study in this paper. In Section
4 we discuss several aspects of the primal-dual IPM. Based on this, we use the problem
structure of the models to derive an expression for the search direction that can be evaluated
in O(n) time in Section 5. In Section 6 we state the numerical results, on which we comment
briefly in Section 7. Finally, we end with concluding remarks and future work in Section
8.

2 Related work

The fundamental work for this research is that of Van der Klauw [15]. This paper explains
the two specific problems that arise in decentralised energy management (those of the EV-
charging problems). It provides a recursive algorithm to solve resource allocation problems
that have cumulative bounds (see the constraints of the CRA problem, Section 3.2). Since
this is a general solution method, specific forms of objective functions (quadratic) have not
been exploited for improving computational complexity.

Due to the nature of the EV-charging problem, the objective functions are quadratic and
separable (this will be dealt with in Section 3). Research on resource allocation problems

2

with quadratic objective functions has been done, in which efficient algorithms were de-
veloped that have a linear worst-time complexity [2][13][14]. In the work of Robinson [13],
they approach the problem by looking at the geometric interpretation that the optimal
value x∗ can be seen as an orthogonal projection of the origin onto an intersection of hy-
perplanes and hyperspaces that arise from the constraints. A different approach is taken
by Stefanov [14], in which the author relies on the Karush-Kuhn-Tucker (KKT) conditions
for optimality (see Section 4). Even though we restrict ourselves to the use of primal-dual
IPMs, these papers show that there are other ways to solve the EV-charing problem.

The first IPM that was able to compete with the simplex method in linear programming
was developped by Karmarkar in 1984 [8]. They can now also be used in nonlinear pro-
gramming problems. Since Karmarkar’s work in 1984, IPMs have been developed further,
and their applications and performance have been growing ever since [17]. Since an IPM
is an iterative algorithm in which the number of iterations needed to solve the problem
depends very little on the problem dimension, it is in particular very suitable for large
scale problems [4]. The most prevalent IPM is the primal-dual IPM. It is often more ef-
ficient than the barrier method (a different IPM), and regarding quadratic programming,
its performance is superior to that of the barrier method, as stated in the book of Boyd
and Vandenberghe [1]. For both the barrier IPM as the primal-dual IPM, an algorithm
can be found in the book of Boyd and Vandenberghe.

Besides the models for the EV-charging problem stated by Van der Klauw [15], other mod-
els for this problem have been developed and solved by IPMs. The work in [5] tries to
minimise the total cost of all EVs that charge and discharge during the day. Instead of
optimising the situation for one EV, they optimise over all vehicles that arrive and depart
during a single day. In this paper, the structure that might be present in the problem is
not utilised, and the standard primal-dual IPM from Boyd and Vandenberghe [1] is used
to solve the optimisation problem.

In general, the approach for modelling the allocation of energy from renewable energy
sources to EVs in the smart grid is based on the goal of reducing energy loss in the system.
Another view is taken in the research of Jin [7]. They look at a customer’s perspective
of the problem, creating a queueing model for the scheduling problem. This is a different
approach than what is commonly done and thus requires a different solution method. They
use Lyapunov optimisation, which is an optimisation technique used in queueing networks
[11]. This is a completely different approach to deal with smart grid-related optimisation
problems, but it does create additional opportunities for computations in the smart grid.

3 Background information - Model(s)

In this section, we discuss the optimisation problems that are studied in the paper of Van
der Klauw [15]. Two problems are considered which are explained in Section 3.1 and Sec-
tion 3.2, respectively. We first provide the context of the problem. Since we are dealing
with a problem in electrical networks, we discuss quantities of energy. For the purpose of
applications, the unit of the amount of energy is chosen to be kWh.

We consider the case in which an EV arrives at a certain point in time in an electrical
system. The total time that the EV is in the system is divided into n intervals. For
i ∈ J = {1, 2, . . . , n}, let xi denote the amount of energy to be provided to the EV in

3

interval i. We assume that, due to practical constraints of the EV, this quantity xi can be
at most ui (e.g. the maximum charging rate in interval i).

Furthermore, we associate a cost function fi(xi) with each interval i, which depends
on the desired amount of energy in interval i, i.e. it depends on xi. From practice, we
can assume that the functions fi are convex, for example linear or quadratic [15]. In this
paper, we assume the cost functions to be of the form fi(xi) = 1

2x
2
i − cixi with ci ∈ R. Let

x ∈ Rn and c ∈ Rn with components xi and ci respectively, for i ∈ J . Now, we are able to
formulate the objective function

f(x) =
n∑
i=1

fi(xi) =
1

2
xTx− cTx. (1)

We note that the result could be generalised to the case where fi(xi) = 1
2aix

2
i − cixi, with

ai > 0, i ∈ J . However, to maintain rentability of this paper, we assume that ai = 1, i ∈ J .

Now we will specify the details of two versions of the EV charging problem.

3.1 The SRA model

The first EV-charing model is the simple resource allocation (SRA) model. Suppose the
battery of the EV has capacity C. Upon departure of the EV from the smart grid, i.e.
after n intervals, the battery is required to be fully charged. In addition, no energy can be
taken from the battery, i.e. xi is non-negative for each interval i. The objective function
for the SRA model is given by Equation (1). Thus, the SRA model corresponds to the
following minimisation problem:

min
x
f(x) =

1

2
xTx− cTx (SRA)

s.t.
n∑
i=1

xi = C

0 ≤ xi ≤ ui, i ∈ J.

3.2 The CRA model

The second model for the EV charging problem is the cumulative resource allocation (CRA)
model. In general, the battery of the EV is able to store more than the required amount
of energy for the next travel, which makes room for the EV to supply energy to the smart
grid, commonly known as V2G (vehicle-to-grid) [9]. Therefore, the xi’s are allowed to
attain negative values in this model. The sum of the xi’s over the first j intervals has
to be at least Bj (the cumulative demand of energy up to interval j) and at most Cj
(the storage capacity of the battery, minus the cumulative demand up to inverval j). The
objective function remains as in Equation (1). This allows us to write the CRA model as
the following minimsation problem:

4

min
x
f(x) =

1

2
xTx− cTx

s.t. Bj ≤
j∑
i=1

xi ≤ Cj , j ∈ J

li ≤ xi ≤ ui, i ∈ J,

where li is maximum amount of energy that can be delivered to the energy network in
interval i. We note that we can shift every xi such that we attain the form of xi ≥ 0. After
finding a solution to this shifted problem, the inverse transformation should be applied to
obtain the real solution. Thus, for the analysis we restrict ourselves to the transformed
problem given in problem (CRA):

min
x
f(x) =

1

2
xTx− cTx (CRA)

s.t. Bj ≤
j∑
i=1

xi ≤ Cj , j ∈ J

0 ≤ xi ≤ ui, i ∈ J.

4 Methods

In this section, we will how the problems given in Section 3 can be solved. In Section
4.1 and 4.2 we state the KKT and the perturbed KKT conditions respectively, which are
needed for the understanding of the primal-dual IPM given in Section 4.3.

4.1 The general KKT conditions

In order to solve the an optimisation problem with IPMs, the KKT conditions are exploited
(see for example the barrier method [1]). The KKT conditions are necessary for optimal
solutions in nonlinear programming and are based on properties of primal and dual prob-
lems. Consider the following general problem for some vector x ∈ Rn, a general matrix
A ∈ Rp×n and convex functions f : Rn → R and gi(x) : Rn → R with i ∈ {1, 2, . . . , k}:

min
x

f(x) (GP)

s.t. gi(x) ≤ 0, i ∈ {1, 2, ..., k}
Ax = b.

Suppose that (λ, v) are the dual variables that correspond to the dual problem of problem
(GP), with λ ∈ Rk and v ∈ Rp. Then the KKT conditions for problem (GP) are given by
the four following points:

1. Stationarity: ∇f(x) +
∑k

i=1 λi∇gi(x) +AT v = 0.

2. Complementary slackness: λigi(x) = 0 ∀i.

3. Primal feasibility: gi(x) ≤ 0 and Ax− b = 0 ∀i.

5

4. Dual feasibility: λi ≥ 0 ∀i.

These conditions are both necessary and sufficient for optimal primal and dual variables
since the functions are convex [1]. More precisely, let x∗, λ∗ and v∗ be the primal and dual
optimal variables, respectively. Then the four KKT conditions hold if and only if x = x∗,
λ = λ∗ and v = v∗.

4.2 The KKT Conditions for Primal-Dual IPMs

The primal-dual IPM is used for solving the optimisation problems in the smart grid. In
Section 4.1 we discussed the KKT conditions that are applied in the barrier method. For
the primal-dual IPM are changed slightly. We consider the problem (GP), for which the
perturbed KKT conditions are given as follows:

1. Stationarity: ∇f(x) +
∑k

i=1 λi∇gi(x) +AT v = 0.

2. Complementary slackness: λigi(x) = −1
t ∀i and some t > 0.

3. Primal feasibility: gi(x) ≤ 0 and Ax− b = 0 ∀i.

4. Dual feasibility: λi ≥ 0 ∀i.

The perturbed KKT conditions are very similar to those posed in Section 4.1, however the
second condition, the complementary slackness, has been modified slightly. It now states
that λigi(x) is not necessarily equal to zero, but some (small) value −1

t . The minus sign
comes from the fact that the primal-dual IPM maintains strict feasibility; this implies that
for all i we have gi(x) < 0 and λi > 0 and hence their product is negative. The primal-dual
IPM considers the equations in the first three modified KKT conditions and tries to find
a solution iteratively such that those hold. In each iteration, the value of t is increased
and we note that as t → ∞, the perturbed KKT conditions resemble the normal KKT
conditions more and more. The strict feasibility of the problem is enforced by using a line
search algorithm. More explanation on this topic is given in Section 4.3.

4.3 The Primal-Dual IPM

Now that the perturbed KKT conditions have been obtained in Section 4.2, we will set up
the system that the primal-dual IPM tries to solve. First, we define the following notation:

g(x) =


g1(x)
g2(x)
...

gk(x)

 , Dg(x) =


∇g1(x)T

∇g2(x)T

...
∇gk(x)T

 . (2)

Using the notation in Equation (2), we can express the first three perturbed KKT condi-
tions by defining rt(x, λ, v) = 0, or

rt(x, λ, v) =

∇f(x) +Dg(x)Tλ+AT v
−diag(λ)g(x)− 1

t1k
Ax− b

 =

rdual
rcent
rprim

 = 0, (3)

with t > 0 and 1k = [1, 1, · · · , 1]T ∈ Rk and we let 1 = 1n. We call rt the residual vector,
in which the three components denote the so-called dual, central and primal residual. In

6

the case that x, λ and v satisfy rt(x, λ, v) = 0 (and gi(x) < 0, λi > 0), then x = x∗(t),
λ = λ∗(t) and v = v∗(t) are optimal [1]. The strict inequalities for gi(x) and λi hold since
the primal-dual IPM works with strictly feasible solutions. Since in general Equation (3)
yields a nonlinear system that we would like to solve, we first apply a (local) linearisation
as an approximation.

Suppose that rt(x, λ, v) = 0, for t fixed, at the point (x, λ, v) such that gi(x) < 0 and
λi > 0 ∀i. Let y = (x, λ, v) and ∆y = (∆x,∆λ,∆v) denote the current point and the
Newton step (or the search/descent direction), respectively. Hence we obtain the following
local linearisation of rt at the point (x, λ, v):

rt(y + ∆y) ≈ rt(y) +Drt(y)∆y = 0.

This can be rewritten by using the variables x, λ and v and by bringing rt(x, λ, v) to the
other side to arrive at

∇2f(x) +
∑k

i=1 λi∇2gi(x) Dg(x)T AT

−diag(λ)Dg(x) −diag(g(x)) 0
A 0 0

∆x
∆λ
∆v

 = −

rdual
rcent
rprim

 . (4)

The system in Equation (4) can be solved for the primal-dual search direction given by
(∆xpd,∆λpd,∆vpd). This search direction is computed in each iteration of the primal-dual
IPM, which has a worst-case time complexity O(n3) since a system of linear equations is
solved. In iteration j, suppose we are at the point (x(j), λ(j), v(j)). The algorithm updates
the current point to the point (x(j+1), λ(j+1), v(j+1)) in the direction given by the search
direction. However, the search direction does not take the strict primal and dual feasibility
into account. Therefore, this search direction might cause one of the constraints to be
violated and hence a maximum step size has to be introduced that gives a restriction on
the distance that can be moved into the search direction.

As an illustration, consider the case for λ. Starting with λ strictly feasible (as required
in the primal-dual IPM), all the entries λi are strictly positive. In the case that for some
i ≤ n we have ∆λi < 0 and |∆λi| ≥ |λi|, the λi will not be strictly feasible in the next
iteration. Therefore, the step size s is introduced, which determines how far can be moved
into the search direction by maintaining the strict feasibility for the problem. We note
that s ≤ 1 since we move at most one complete step into the search direction.

5 Analytic Results

In this section, we will set up the Equations (3) and (4) for the SRA and CRA problem
in the Sections 5.1 and 5.2 respectively. In addition, we will use these equations to find
explicit formulas for the search direction.

5.1 The SRA problem

We start with the SRA problem. Let J = {1, 2, . . . , n}. We rewrite the SRA problem to
match the form in Equations (3) and (4) as follows:

7

f(x) =
1

2
xTx− cTx,

A = 1T ,

b = C,

gi(x) =

{
xi − ui if i ∈ J,
−xi if i ∈ {n+ 1, n+ 2, . . . , 2n}.

With this information, we can construct the residual rt(x, λ, v) and set it equal to zero (as
in Equation (3))

rt(x, λ, v) =

 x− c+DgTλ+ 1v
−diag(λ)g(x)− 1

t12n

1Tx− C

 =

rdual
rcent
rprim

 = 0. (5)

Now that we have found the expression for the residuals, we will continue by setting up
the system in Equation (4). We first derive expressions for ∇2f(x), ∇2gi(x) and Dg(x):

∇2f(x) = I, (6)

∇2gi(x) = 0, (7)

Dg(x) =

[
I
−I

]
. (8)

Combining these results with the system of Equation (5), we obtain:


I Dg(x)T 1

−diag(λ)

[
I
−I

]
−diag(g(x)) 0

1T 0 0


∆x

∆λ
∆v

 = −

rdual
rcent
rprim

 . (9)

The matrix in the linear system of Equation (9) has a rich structure, i.e. a structure that
possibly can be exploited. Using row operations, we can derive an explicit solution for the
primal-dual search direction ∆y. For convenience, in most cases we write Dg(x) instead of[
I
−I

]
. Moreover, we write gi instead of gi(x). Finally, we introduce the following notation

Λ1 = diag([λ1, λ2, · · · , λn]),

Λ2 = diag([λn+1, λn+2, · · · , λ2n]),

G1 = diag([g1, g2, · · · , gn]),

G2 = diag([gn+1, gn+2, · · · , g2n]),

P =

[
Λ1 −G1 −Λ1

−Λ2 Λ2 −G2

]
,

ρ = −n+ 1TDg(x)TP−1

[
Λ1

−Λ2

]
1.

8

More explanation on this notation can be found in Appendix A. Let rdual, rcent and rprim
be denoted by r1, r2 and r3 respectively. After performing row operations on the system
in Equation (9), we obtain a closed form expression for ∆y:

∆x
∆λ
∆v

 =


−r1 −Dg(x)TP−1(−r2 −

[
Λ1

−Λ2

]
r1)− (1−Dg(x)TP−1

[
Λ1

−Λ2

]
1)∆v

P−1(−r2 −
[

Λ1

−Λ2

]
r1)− P−1

[
Λ1

−Λ2

]
1∆v

(−r3 + 1T r1 + 1TDg(x)TP−1(−r2 −
[

Λ1

−Λ2

]
r1))/ρ

 .
(10)

The derivation for this formula can be found in Appendix A. The term (−r3 + 1T r1 +

1TDg(x)TP−1(−r2 −
[

Λ1

−Λ2

]
r1))/ρ turns out to be present in all three components ∆x,

∆λ and ∆v of the search direction. This allows us to compute this value and use it in
all three expressions to save computational time. We note that P is a partitioned matrix,
consisting of only diagonal matrices. Therefore, an analytic solution can be obtained for
its inverse, which is given in Appendix A.

The computations that are time consuming in Equation (10) and the formula for ρ are
multiplications of matrices with matrices or matrices with vectors. Since the matrices are
either diagonal, consist of diagonal matrices or even consist of identity matrices, this search
direction can be computed with a computational complexity of O(n).

5.2 The CRA problem

In this section, we set up the Equations (3) and (4) given in Section 4.3 for the problem
given in Section 3.2. We obtain the following form for our problem:

f(x) =
1

2
xTx− cTx

gi(x) =


xi − ui if i ∈ J
−xi if i ∈ {n+ 1, n+ 2, . . . , 2n}∑i−n

k=1 xk − Ck if i ∈ {2n+ 1, n+ 2, . . . , 3n}
−
∑i−2n

k=1 xk +Bk if i ∈ {3n+ 1, 2n+ 2, . . . , 4n}.

Now we can set up the residual function which we call Rt(x, λ). Note that the dual
variable v is not present, since this problem does not have equality constraints. We obtain
the following equation:

Rt(x, λ) =

[
Ix− c+Dg(x)Tλ
−diag(λ)g(x)− 1

t14n

]
=

[
Rdual
Rcent

]
= 0.

The next step is solving this nonlinear system by taking a Newton step in the direction
of (∆x,∆λ). Since f(x) is defined as in Section 5.1 and gi(x) is linear in x, the values of
∇2f(x) and ∇2gi(x) given by Equations (6) and (7), respectively. However, the Jacobian

9

matrix Dg(x) has a different form. To derive this form, we define the matrix L ∈ Rn×n to
be the lower triangular matrix such that Lij = 1 for i ≥ j and Lij = 0 for i < j. It can be
verified that

Dg(x) =


I
−I
L
−L

 ,
and we note that Dg(x) is a 4n× n matrix.

We obtain the following system of equations after linearisation:

[
I Dg(x)T

−diag(λ)Dg(x) −diag(g(x))

] [
∆x
∆λ

]
= −

[
Rdual
Rcent

]
. (11)

In order to give a compact formula for the search direction (∆x,∆λ), we introduce some
notation. We define the following diagonal matrices:

Λ1 = diag([λ1, λ2, · · · , λn])

Λ2 = diag([λn+1, λn+2, · · · , λ2n])

Λ3 = diag([λ2n+1, λ2n+2, · · · , λ3n])

Λ4 = diag([λ3n+1, λ3n+2, · · · , λ4n])

G1 = diag([g1, g2, · · · , gn])

G2 = diag([gn+1, gn+2, · · · , g2n])

G3 = diag([g2n+1, g2n+2, · · · , g3n])

G4 = diag([g3n+1, g3n+2, · · · , g4n]).

Lastly, we define the matrix N :

N =


Λ1 −G1 −Λ1 Λ1L

T Λ1L
T

−Λ2 Λ2 −G2 Λ2L
T −Λ2L

T

−Λ3L Λ3L Λ3LL
T −G3 −Λ3LL

T

Λ4L −Λ4L −Λ4LL
T Λ4LL

T −G4

 . (12)

With these additions to our notation, the expression for the search direction, i.e. the
solution to the system in Equation (11), is as follows:

[
∆x
∆λ

]
=

[
−Rdual −Dg(x)TN−1(−Rcent − diag(λ)Dg(x)Rdual)

N−1(−Rcent − diag(λ)Dg(x)Rdual)

]
. (13)

The derivation of Equation (13) can be found in Appendix B. Similar to the observation
made in Section 5.1, we note that the expression for N−1(−Rcent − diag(λ)Dg(x)Rdual) is
present in the expression for both ∆x and ∆λ. This allows us to pre-compute this value
and save computational time.

Similar to the case in Section 5.1, the matrix multiplications are the time consuming
operations in Equation (13). Computing N−1w for any vector w ∈ Rn can be done in
a complexity of O(n) (see Appendix C). Therefore, the explicit formula for the search
direction (∆x,∆λ) has a worst-case complexity of O(n).

10

6 Numerical results of the SRA problem

In this section, we focus on numerical experiments for the SRA problem. We first give a
pseudo-code for the primal-dual IPM. Afterwards, we will investigate whether the formula
for the search direction given in Equation (10) reduces the computation time of the algo-
rithm in the case where the parameters originate from the real-world problem. Finally, we
compare the computation time of the IPM with the explicit solution (the explicit method)
for the search direction with the computation time of the IPM with the standard solver
for the search direction (the standard method) when we increase the scale of the problem.

6.1 Pseudo-code for the primal-dual IPM

In this section, we provide and explain the pseudo-code for the primal-dual IPM. In Algo-
rithm 1 , we state the pseudo-code:

Algorithm 1: Pseudo-code for the primal-dual IPM.
Start with a strict feasible point x(0) with gi(x(0)) < 0, λ(0)i > 0 ∀i and v(0).
Initialise the surrogate duality gap η(0) = −g(x(0))Tλ(0). Set µ > 1.
Then for each j = 1, 2, . . . :
while η(j) > εgap or (||rprim||22 + ||rdual||22)

1
2 > εfeas do

Compute t = µk
η(j−1)

Determine the search direction (∆x,∆λ,∆v)
Determine the step size s
Update x(j) = x(j−1) + s∆x, λ(j) = λ(j−1) + s∆λ and v(j) = v(j−1) + s∆v
Determine η(j) = −g(x(j))Tλ(j).

end

Hence an interior-point should be computed for the initialisation. The surrogate duality
gap η gives an indication of how far away the current solution is from the optimum. The
factor µ ensures that the value of t increases such that the perturbed KKT conditions
given in Section 4.2 will converge to the standard KKT conditions given in Section 4.1.
The values εgap > 0 and εfeas > 0 are the desired degree of accuracy with regard to the
optimality and feasibility respectively. Note that the value of k is the number of inequality
constraints, hence in our problem k = 2n.

The iteration procedure for the standard method and for the explicit method are almost
identical. The only difference in the implementation is that for the standard method, the
search direction (∆x,∆λ,∆v) will be determined by solving the system of linear equations
in Equation (4) by using a standard solver, whereas in the explicit method, the explicit
formula for the search direction from Equation (10) will be utilised. Both of these methods
have been implemented in Matlab, for which we conduct numerical experiments in Sections
6.2 and 6.3. The Matlab code is available and access can be requested from the author or
supervisors.

6.2 Results with real-world data

In this section, we execute an experiment to compare the computation time of the two
different methods for finding the search direction (∆x,∆λ,∆v). We conduct 10,000 in-
stances and measure the time that is needed for the IPM to solve them. More precisely, we
compare the running time for the case where we solve the system of Equation (4) directly
(thus via the standard method) and the case where we compute the search direction using

11

Equation (10) (via the explicit method).

The parameters that we use in this experiment follow from the real-world problem. There-
fore, we assume that the number of time intervals is 100, i.e. n = 100. The capacity of
the battery of an EV ranges from approximately 30 kWh [12] to 100 kWh. We therefore
assume in this experiment that the capacity is 50, i.e. C = 50. Furthermore, the maxi-
mum charging rate does not change per time interval and is ui = 1, i = 1, 2, . . . , n. The
vector c that appears in the objective function is chosen randomly according to a uniform
distribution for each instance, where its entries lie in the interval (−500, 500). Finally,
we choose εgap = εfeas = 10−6 to ensure that we obtain a reasonable solution and that
numerical problems do not occur.

The initialisation of the problem is as follows. The initial value for x is chosen such that
the amount of energy is equally distributed over all intervals. The initial value of v is
chosen to be zero. For all 10,000 instances, the same initial values of x and v are used,
whereas the initial value of λ is chosen randomly according to a uniform distribution for
each instance, where its entries lie in the interval (0, 1). Hence each instance is different in
the sense that the initial value for λ is chosen randomly (and feasible) and that the vector
c is chosen randomly as well according to the distribution that has been stated in the last
paragraph. The result of this experiment is given in Table 1:

Table 1: The results of 10,000 instances with time in seconds.

Solving with
the standard method

Solving with
the explicit method

Average time per instance 0.08604 0.002474
Minimum time for an instance 0.05379 0.001558
Maximum time for an instance 0.44169 0.011204

Both methods yield the same optimal solution. From Table 1 we see that the algorithm
with the explicit formula performs better in the sense that in all three categories (aver-
age, minimum and maximum time per for an instance) it has a lower computation time.
The most significant category is the average time per instance. This has been reduced
to 0.002474

0.08604 · 100% ≈ 2.88% of the original computation time. Furthermore, we note that
the highest running time of the explicit method is lower than the minimum running time
of the standard method, which implies that the explicit method has been faster than the
standard method for every instance. These results confirm the improvement in time com-
plexity compared to the original method.

6.3 Results of scaling experiment

In this section, we investigate what the consequences are for the computation time when
we increase the number of time intervals. We let n ∈ {2, 10, 100, 200, 400, 600, 800, 1000}
and we use the same parameters as in Section 6.2. We take the first value of n to be 2
such that a search direction can still be computed. In order to maintain feasibility of the
problem, we let C = 1 for n = 2 and n = 10, for the other two problems C is defined as
in Section 6.2. Furthermore, we reduce the number of instances from 10,000 to 10, since
the running time for the standard method increases drastically as n grows large. Using
the values of n between n = 2 to n = 1000, we can plot the average computation time per

12

instance of the standard method and the explicit method, which can be seen in Figure 1
and 2, respectively. Due to the steep increase in computation time, we do not consider
values of n above 1000.

Figure 1: The average running time
in seconds of the standard method for
a different number of intervals.

Figure 2: The average running time
in seconds of the explicit method for
a different number of intervals.

We note that in Figure 1, the graph of the computation time for the standard method
becomes steeper and steeper as we increase n, which seems to behave as a quadratic or
cubic function. This will be commented on in Section 7. In Figure 2 on the other hand, the
computation time increases at approximately a constant rate. In Section 4.3 and 5.1 we
stated that the computational complexity of the search direction of the standard method
and the explicit method are O(n3) and O(n), respectively. We conclude that the results of
this experiment are in line with the analytical results that the computational complexity
can be reduced to O(n).

7 Discussion

The results of the scaling experiment in Section 6.3 show how the average computation
time increases as n increases for both the standard method as the explicit method. We
have not verified that the graphs in Figure 1 and 2 are in accordance with their respective
computational complexities, O(n3) and O(n). For example, it could be that the graph in
Figure 1 does not behave like a cubic function due to the fact that the system of linear
equations in Equation (4) is sparse and therefore, Matlab is able to find a solution in less
that O(n3) time. Furthermore, we have conducted this experiment with only 10 instances
due to the high computation time for the standard method. For further investigation
whether these graphs match with their computational complexities, the number of instances
should be increased and a curve fitting tool should be applied.

8 Conclusion

In the conclusion, we first state the analytic achievements that have been developed in
Section 5. Secondly, we state what the results (see Section 6) and consequences are of
those achievements. Finally, we conclude with ideas for future work that emerge from this

13

research.

For both EV charging problems that we studied in this paper, we derived formulas for the
search direction that is computed in the primal-dual IPM. This has reduced the compu-
tational complexity of the time consuming step in the primal-dual IPM from O(n3) to O(n).

In order to verify the gain in efficiency in practice, we conducted a numerical study for
one of the EV charging problems. The results of the numerical experiments show that the
computation time can be reduced 2.88% of the original computation time required when
the search direction is found by a standard solver for systems of linear equations. Further-
more, we have looked into the behaviour of the computation time of the standard method
and the explicit method as we increase the number of intervals that an EV is present in
the electrical system. The results of these experiments are in accordance with the analytic
results of the worst-case computation time.

From these results, we can conclude that the structure of the smart grid-related problems
can be used to reduce the computational complexity of the primal-dual IPM. The conse-
quences are that the solution method of these problems can be run on systems with lower
computational power and that therefore the shift towards decentralised energy manage-
ment is more feasible.

There are several ideas for further research in this field. The numerical results have given
us an idea of the practical improvements that can be achieved when exploiting the problem
structure. Further research should execute a similar experiment for the second EV charging
problem, using the formula for the search direction given in this research. Furthermore, the
analytic results for both of the EV charging problems can possibly be generalised for other
resource allocation problems with this structure, for example where the constants in front
of the quadratic terms in the objective function are arbitrary, strictly positive constants.

9 Acknowledgements

This paper has been written under the supervision of Ir. M. H. H. Schoot Uiterkamp and
Prof. Dr. J.L. Hurink. The author would like to thank them for their guidance and advice.

References

[1] S. Boyd and L. Vandenberghe. Convex optimization. Cambridge University Press,
2004.

[2] P. Brucker. An O(n) algorithm for quadratic knapsack problems. Operations Research
Letters, 3(3):163–166, 1984.

[3] M.E.A. El-Mikkawy. On the inverse of a general tridiagonal matrix. Applied Mathe-
matics and Computation, 150(3):669–679, 2004.

[4] J. Gondzio. Interior point methods 25 years later. European Journal of Operational
Research, 218(3):587–601, 2012.

[5] Y. He, B. Venkatesh, and L. Guan. Optimal scheduling for charging and discharging
of electric vehicles. IEEE Transactions on Smart Grid, 3(3):1095–1105, 2012.

14

[6] H.V. Henderson and S.R. Searle. On deriving the inverse of a sum of matrices. SIAM
Review, 23(1):53–60, 1981.

[7] C. Jin, J. Tang, and P. Ghosh. Optimizing electric vehicle charging: A customer’s
perspective. IEEE Transactions on Vehicular Technology, 62(7):2919–2927, 2013.

[8] N. Karmarkar. A new polynomial-time algorithm for linear programming. In Proceed-
ings of the sixteenth annual ACM symposium on Theory of computing, pages 302–311.
ACM, 1984.

[9] W. Kempton and J. Tomić. Vehicle-to-grid power fundamentals: Calculating capacity
and net revenue. Journal of power sources, 144(1):268–279, 2005.

[10] R.K. Mallik. The inverse of a tridiagonal matrix. Linear Algebra and its Applications,
325(1-3):109–139, 2001.

[11] M.J. Neely. Stochastic network optimization with application to communication and
queueing systems. Synthesis Lectures on Communication Networks, 3(1):1–211, 2010.

[12] K. Qian, C. Zhou, M. Allan, and Y. Yuan. Modeling of load demand due to ev battery
charging in distribution systems. IEEE transactions on power systems, 26(2):802–810,
2010.

[13] A.G. Robinson, N. Jiang, and C. S. Lerme. On the continuous quadratic knapsack
problem. Mathematical Programming, 55(1):99–108, 1992.

[14] S.M. Stefanov. Convex quadratic minimization subject to a linear constraint and box
constraints. Applied Mathematics Research Express, 2004(1):17–42, 2004.

[15] T. van der Klauw, M.E.T. Gerards, and J.L. Hurink. Resource allocation problems in
decentralized energy management. OR Spectrum, 39(3):749–773, 2017.

[16] W.L. Winston. Operations Research: Applications and Algorithms. Brooks/Cole,
2004.

[17] M. Wright. The interior-point revolution in optimization: history, recent develop-
ments, and lasting consequences. Bulletin of the American mathematical society,
42(1):39–56, 2005.

15

A Derivation of explicit search direction for SRA

The system that we start with is the following (also given in Equation (9)):


I Dg(x)T 1

−diag(λ)

[
I
−I

]
−diag(g(x)) 0

1T 0 0


∆x

∆λ
∆v

 = −

rdual
rcent
rprim


For simplicity, let rdual, rcent and rprim be denoted by r1, r2 and r3 respectively. Let

Λ1 = diag([λ1, λ2, · · · , λn]),

Λ2 = diag([λn+1, λn+2, · · · , λ2n]),

G1 = diag([g1, g2, · · · , gn]),

G2 = diag([gn+1, gn+2, · · · , g2n]).

With this notation and Gaussian elimination we make the following steps:


I Dg(x)T 1 −r1

−
[

Λ1

−Λ2

]
−diag(g(x)) 0 −r2

1T 0 0 −r3



∼


I Dg(x)T 1 −r1

0 −diag(g(x)) +

[
Λ1

−Λ2

]
Dg(x)T

[
Λ1

−Λ2

]
1 −r2 −

[
Λ1

−Λ2

]
r1

1T 0 0 −r3



∼


I Dg(x)T 1 −r1

0

[
Λ1 −Λ1

−Λ2 Λ2

]
− diag(g(x))

[
Λ1

−Λ2

]
1 −r2 −

[
Λ1

−Λ2

]
r1

0 −1TDg(x)T −n −r3 + 1T r1

 . (14)

Note that in this last step we used that −1T1 = −n. Furthermore, we introduce the
following matrix, which is equal to the entry in the second row in the second column of
Equation (14):

P =

[
Λ1 −G1 −Λ1

−Λ2 Λ2 −G2

]
.

We can multiply the second row in Equation (14) by P−1 to create a 2n × 2n identity
matrix on the second entry of this row. This identity matrix will be denoted as I2n in
order to avoid confusion with I, which denotes the n × n identity matrix. Furthermore,
since P has matrices as entries (and is hence called a block or partitioned matrix), its
inverse can be computed using the following formula:

16

[
A B
C D

]−1

=

[
A−1 +A−1B(D − CA−1B)−1CA−1 A−1B(D − CA−1B)−1

(D − CA−1B)−1CA−1 (D − CA−1B)−1

]
.

In order to write down the inverse of P efficiently, we introduce the vector φ ∈ Rn with
entries

φi = (λi − gi)(λi+n − gi+n)− λiλi+n = −λigi+n − λi+ngi + gigi+n,

for i ∈ J = {1, 2, . . . , n}. Furthermore, we introduce the four vectors ψ(k) ∈ Rn, k =
1, 2, 3, 4. For i ∈ J , the entries of these vectors are

ψ
(1)
i =

(λi+n − gi+n)

φi
(15)

ψ
(2)
i =

λi
φi

(16)

ψ
(3)
i =

λi+n
φi

(17)

ψ
(4)
i =

(λi − gi)
φi

. (18)

It can be verified that P−1 can be written as

P−1 =

[
diag(ψ(1)) diag(ψ(2))

diag(ψ(3)) diag(ψ(4))

]
.

This inverse exists if and only if the entries of the diagonal matrices are nonzero and if
φi 6= 0 ∀i ∈ J . Since λi > 0 and gi < 0 ∀i = 1, 2, . . . , 2n (due to strict feasibility), we note
that the numerators of the vectors in Equations (15) - (18) only have nonzero entries. For
the same reason, φi > 0 ∀i = 1, 2, . . . , n. Hence the strict feasibility of the problem ensure
that the inverse of P exists.

In the rest of the derivation of the explicit formula for the SRA problem, we maintain the
use of P−1 for simplicity. We let I2n denote the 2n×2n identity matrix. We continue with
Equation (14):


I Dg(x)T 1 −r1

0 I2n P−1

[
Λ1

−Λ2

]
1 P−1(−r2 −

[
Λ1

−Λ2

]
r1)

0 −1TDg(x)T −n −r3 + 1T r1



∼


I 0 1−Dg(x)TP−1

[
Λ1

−Λ2

]
1 −r1 −Dg(x)TP−1(−r2 −

[
Λ1

−Λ2

]
r1)

0 I2n P−1

[
Λ1

−Λ2

]
1 P−1(−r2 −

[
Λ1

−Λ2

]
r1)

0 −1TDg(x)T −n −r3 + 1T r1



17

∼


I 0 1−Dg(x)TP−1

[
Λ1

−Λ2

]
1 −r1 −Dg(x)TP−1(−r2 −

[
Λ1

−Λ2

]
r1)

0 I2n P−1

[
Λ1

−Λ2

]
1 P−1(−r2 −

[
Λ1

−Λ2

]
r1)

0 0 −n+ 1TDg(x)TP−1

[
Λ1

−Λ2

]
1 −r3 + 1T r1 + 1TDg(x)TP−1(−r2 −

[
Λ1

−Λ2

]
r1)

 .
(19)

For simplicity, we define ρ := −n+ 1TDg(x)TP−1

[
Λ1

−Λ2

]
1. If we divide the third row in

Equation (19) by ρ, the last column of this row gives an expression for ∆v:

∆v = (−r3 + 1T r1 + 1TDg(x)TP−1(−r2 −
[

Λ1

−Λ2

]
r1))/ρ. (20)

With this notation, we conduct the final steps of the derivation


I 0 1−Dg(x)TP−1

[
Λ1

−Λ2

]
1 −r1 −Dg(x)TP−1(−r2 −

[
Λ1

−Λ2

]
r1)

0 I2n P−1

[
Λ1

−Λ2

]
1 P−1(−r2 −

[
Λ1

−Λ2

]
r1)

0 0 1 ∆v



∼


I 0 0 −r1 −Dg(x)TP−1(−r2 −

[
Λ1

−Λ2

]
r1)− (1−Dg(x)TP−1

[
Λ1

−Λ2

]
1)∆v

0 I2n P−1

[
Λ1

−Λ2

]
1 P−1(−r2 −

[
Λ1

−Λ2

]
r1)

0 0 1 ∆v



∼


I 0 0 −r1 −Dg(x)TP−1(−r2 −

[
Λ1

−Λ2

]
r1)− (1−Dg(x)TP−1

[
Λ1

−Λ2

]
1)∆v

0 I2n 0 P−1(−r2 −
[

Λ1

−Λ2

]
r1)− P−1

[
Λ1

−Λ2

]
1∆v

0 0 1 ∆v

 .

This is equivalent to the expression in Equation (10) in Section 5.1, where ∆v is given by
Equation (20):

∆x
∆λ
∆v

 =


−r1 −Dg(x)TP−1(−r2 −

[
Λ1

−Λ2

]
r1)− (1−Dg(x)TP−1

[
Λ1

−Λ2

]
1)∆v

P−1(−r2 −
[

Λ1

−Λ2

]
r1)− P−1

[
Λ1

−Λ2

]
1∆v

(−r3 + 1T r1 + 1TDg(x)TP−1(−r2 −
[

Λ1

−Λ2

]
r1))/ρ

 .

18

B Derivation of explicit search direction for CRA

In this appendix, we derive Equation (13) in Section 5.2. We let Rdual = R1 and Rcent = R2

and start with the following equation:

[
I Dg(x)T

−diag(λ)Dg(x) −diag(g(x))

] [
∆x
∆λ

]
= −

[
Rdual
Rcent

]
Similar to the approach in Appendix A, we use Gaussian elimination to solve this system.
A first step yields

[
I Dg(x)T −R1

0 −diag(g(x)) + diag(λ)Dg(x)Dg(x)T −R2 − diag(λ)Dg(x)R1

]
. (21)

For the next step, we will use the matrix N which is defined in Equation (12). We derive
that N = −diag(g(x)) + diag(λ)Dg(x)Dg(x)T :

N =


Λ1 −G1 −Λ1 Λ1L

T Λ1L
T

−Λ2 Λ2 −G2 Λ2L
T −Λ2L

T

−Λ3L Λ3L Λ3LL
T −G3 −Λ3LL

T

Λ4L −Λ4L −Λ4LL
T Λ4LL

T −G4



=


Λ1 −Λ1 Λ1L

T Λ1L
T

−Λ2 Λ2 Λ2L
T −Λ2L

T

−Λ3L Λ3L Λ3LL
T −Λ3LL

T

Λ4L −Λ4L −Λ4LL
T Λ4LL

T

−

G1 0 0 0
0 G2 0 0
0 0 G3 0
0 0 0 G4



=


Λ1 0 0 0
0 Λ2 0
0 0 Λ3 0
0 0 0 Λ4



I −I −LT LT

−I I LT −LT
−L L LLT −LLT
L −L −LLT LLT

−

G1 0 0 0
0 G2 0 0
0 0 G3 0
0 0 0 G4



=


Λ1 0 0 0
0 Λ2 0
0 0 Λ3 0
0 0 0 Λ4



I
−I
−L
L

 [I −I −LT LT
]
−


G1 0 0 0
0 G2 0 0
0 0 G3 0
0 0 0 G4


= diag(λ)Dg(x)Dg(x)T − diag(g(x)).

Now the system in Equation (21) can be written more compactly and we continue the
process of Gaussian elimination:

[
I Dg(x)T −R1

0 N −R2 − diag(λ)Dg(x)R1

]

∼
[
I Dg(x)T −R1

0 I N−1(−R2 − diag(λ)Dg(x)R1)

]

∼
[
I 0 −R1 −Dg(x)TN−1(−R2 − diag(λ)Dg(x)R1)
0 I N−1(−R2 − diag(λ)Dg(x)R1)

]
.

19

From this follows Equation (13) in Section 5.2:

[
∆x
∆λ

]
=

[
−Rdual −Dg(x)TN−1(−Rcent − diag(λ)Dg(x)Rdual)

N−1(−Rcent − diag(λ)Dg(x)Rdual)

]
.

C Computing N−1w for any vector w

In the explicit formula for the search direction of the CRA problem in the primal-dual IPM
(see Equation (13)), we encountered the matrix N . In Appendix B we derived that

N = diag(λ)Dg(x)Dg(x)T − diag(g(x)). (22)

In order to find its inverse, we apply the Woodbury Matrix Identity [6], since we are dealing
with a sum of matrices. The Woodbury Matrix Identity is given by

(A+ UCV)−1 = A−1 −A−1U(C−1 + V A−1U)−1V A−1,

where A, U , C and V denote matrices of appropriate sizes with A and C invertible. We
transform Equation (22) slightly to obtain the desired form

diag(λ)−1N = −diag(λ)−1diag(g(x)) +Dg(x)Dg(x)T .

Our goal is to find N−1 and we do so by applying the Woodbury Matrix Identity, where
A = −diag(λ)−1diag(g(x)), U = Dg(x), C = I and V = Dg(x)T . Let θ denote the vector
with θi = λi

gi(x)
for i = 1, 2, . . . , 4n. We obtain

(diag(λ)−1N)−1 =− diag(θ)− diag(θ)Dg(x)

· (I −Dg(x)Tdiag(θ)Dg(x))−1Dg(x)Tdiag(θ).

This equation contains another inverse, (I −Dg(x)Tdiag(θ)Dg(x))−1, and in order to find
this inverse we define the following matrices:

B = I −Dg(x)Tdiag(θ)Dg(x),

Ω(1) = diag([
λ1
g1(x)

,
λ2
g2(x)

, . . . ,
λn
gn

]),

Ω(2) = diag([
λn+1

gn+1(x)
,
λn+2

gn+2(x)
, . . . ,

λ2n
g2n

]),

Ω(3) = diag([
λ2n+1

g2n+1(x)
,
λ2n+2

g2n+2(x)
, . . . ,

λ3n
g3n

]),

Ω(4) = diag([
λ3n+1

g3n+1(x)
,
λ3n+2

g3n+2(x)
, . . . ,

λ4n
g4n

]).

Since we are interested in the inverse of B, we expand the formula for B as follows:

20

B = I −Dg(x)Tdiag(θ)Dg(x)

= I −
[
I −I −LT LT

] 
Ω(1) 0 0 0

0 Ω(2) 0 0

0 0 Ω(3) 0

0 0 0 Ω(4)



I
−I
−L
L



= I −
[
I −I −LT LT

] 
Ω(1)

−Ω(2)

−Ω(3)L

Ω(4)L


= I − (Ω(1) + Ω(2) + LTΩ(3)L+ LTΩ(4)L)

= I − Ω(1) − Ω(2) − LT (Ω(3) + Ω(4))L.

It can be verified that

L−1 =


1 0 0 · · · 0
−1 1 0 · · · 0
0 −1 1 · · · 0
...

.
...

0 · · · · · · −1 1

 ,
i.e. the inverse of L is a lower bidiagonal matrix and we also note that (LT)−1 = (L−1)T .
Therefore, we write

(LT)−1BL−1 = (LT)−1(I − Ω(1) − Ω(2))L−1 − Ω(3) − Ω(4). (23)

It can be verified that the right hand side of Equation (23) is a tridiagonal matrix. Several
linear-time algorithms exist to solve systems involving such matrices [3][10]. Define T =
(LT)−1(I − Ω(1) − Ω(2))L−1 − Ω(3) − Ω(4). Then we derive

(LT)−1BL−1 = T

((LT)−1BL−1) = T−1

LB−1LT = T−1

B−1 = L−1T−1(LT)−1.

Finally, we can derive the inverse of N :

(diag(λ)−1N)−1 = −diag(θ)− diag(θ)Dg(x)B−1Dg(x)Tdiag(θ)

N−1diag(λ) = −diag(θ)− diag(θ)Dg(x)B−1Dg(x)Tdiag(θ).

If we let γ denote the vector with entries γi = 1
gi(x)

for i = 1, 2, . . . , 4n, we obtain

N−1 = −diag(γ)− diag(θ)Dg(x)L−1T−1(LT)−1Dg(x)Tdiag(γ). (24)

We note that for any vector w ∈ Rn, the productN−1w can be computed with a complexity
of O(n) by using the approaches in [3] or [10]. This can be used in the computation of the
search direction for the CRA problem given in Equation (13).

21

	Introduction
	Related work
	Background information - Model(s)
	The SRA model
	The CRA model

	Methods
	The general KKT conditions
	The KKT Conditions for Primal-Dual IPMs
	The Primal-Dual IPM

	Analytic Results
	The SRA problem
	The CRA problem

	Numerical results of the SRA problem
	Pseudo-code for the primal-dual IPM
	Results with real-world data
	Results of scaling experiment

	Discussion
	Conclusion
	Acknowledgements
	Derivation of explicit search direction for SRA
	Derivation of explicit search direction for CRA
	Computing N-1w for any vector w

