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ABSTRACT
Missing data is a serious problem in data science and in
other fields that rely on statistical inference. Improper
handling of missing data often leads to biased or invalid
conclusions. Given this risk, existing research compares
many techniques for the practical analysis of a dataset
with missing data, all of varying levels of quality. This
paper examines and documents the methodological flaws
that affect many of these studies, presenting a comparison
based on more realistic assumptions. Traditional statis-
tical techniques are compared to machine learning algo-
rithms, and the strengths and weaknesses of each category
are described based on the observed results, offering some
prescriptions for the right time to apply machine learning
to missing data problems.

Keywords
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1. INTRODUCTION
At its very core, data science is about drawing conclusions
about a population from a given sample (inference) or
making predictions (building predictive models) based on
datasets. Statistical inference, in particular, is a process
that is not unique to data science, but recurs throughout
a wide range of different disciplines, from education and
family studies to nursing and psychology, even impacting
genetics.

A frequent and often poorly understood problem in draw-
ing conclusions from datasets is that of missing data. Due
to a variety of causes such as measurement errors or par-
ticipant non-response, datasets in practical analysis often
have a number of missing data points. The researchers’
approach to handling these missing data points has the
potential to severely bias the results of the research, even
rendering them entirely invalid. Within data science itself,
improper handling of missing data interferes not only with
inference, but with predictive model building as well. An
algorithm trained on biased data will create biased results.
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This risk has motivated a significant amount of research
regarding the optimal way to handle missing data.

The techniques for handling missing data used in practical
analysis vary widely, from ad-hoc methods such as mean
substitution, to more sophisticated ones such as multi-
ple imputation and expectation maximization. Over the
years, there have been a wide variety of studies that com-
pare these techniques. The purpose of this paper is to
address the flaws of these comparative studies, and offer
a more realistic and practical comparison between these
techniques and machine learning algorithms, the latter of
which have rarely been considered in the missing data lit-
erature.

1.1 Research Questions
RQ1 What are the most frequently applied imputa-
tion methods in missing data handling?

RQ2 What prior work has been done with respect
to comparing imputation techniques, and how were
the comparisons carried out?

RQ2.1 What are the flaws in prior comparative
studies?

RQ3 How does the performance of traditional impu-
tation techniques compare to that of machine learn-
ing techniques applied for missing data imputation?

RQ3.1 Which missing data mechanism is most
relevant within practical data analysis?

1.2 Summary
The problem of missing data adversely affects the per-
formance of data science solutions. Similarly, it dam-
ages the scientific quality of empirical data-centric studies
in a wide variety of disciplines. Consequently, many re-
searchers of different fields have attempted to document
and compare the various techniques for handling missing
data (Section 3). Taken collectively, these works form a
multi-disciplinary methodology for missing data handling
in science.

Many of the aforementioned comparative works suffer from
a consistent pattern of methodological flaws and unreal-
istic assumptions, such as using only one dataset. These
flaws are explained and documented herein, paper by pa-
per (Section 3.1, Table 3).

A more realistic methodology for technique comparison
is designed (Section 4) in order to conduct an experi-
ment with more generalizable results. Moreover, machine
learning algorithms are also compared with the traditional
missing data handling techniques.

The resulting R-Squared and F1 scores for each method
are documented graphically (Section 5 and Appendix)
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Table 1. Complete age and height data matrix
Person Height (meters) Age

1 1.90m 18
2 1.75m 16
3 1.85m 23
4 1.93m 17

Table 2. Incomplete age and height data matrix
Person Height (meters) Age

1 1.90m N.A.
2 1.75m 16
3 1.85m 23
4 1.93m N.A.

and interpreted, explaining the most suitable dataset types
for machine learning imputation methods according to their
relative performance (Section 6).

2. BACKGROUND
A complete understanding of the research problem re-
quires some familiarity with missing data theory. This sec-
tion aims to introduce all immediately relevant concepts
in a concise way, while also providing a starting point for
further reading.

Firstly, it is necessary to establish a clear definition of how
data is generally structured in a practical analysis.

2.1 Data Matrices
A data matrix is defined as a set of observations (rows) and
a set of variables (columns). For each of these variables,
any given observation will have either a value representing
the realization of the variable (e.g. a value of 36 for an age
variable), or a missing value, denoted N.A. A data matrix
with at least one missing value is referred to as incomplete.

It is instructive to consider the notion of hypothetically
complete data, as outlined by Enders 2010 [5, p.9]. Sup-
pose there is a simple data matrix which records the age
and height of a number of individuals. An incomplete data
matrix arises, for example, when some of the individuals
refuse to provide their age (Table 2). The complete data
refers to the ages that would have been obtained had all
the participants agreed to provide them (Table 1).

Using this concept, one can view each incomplete data
matrix as a result generated from a complete data matrix
through some generative process. For instance, all par-
ticipants in the prior example had ages, but some chose
not to provide them – thus, the incomplete data matrix
was generated from the complete data matrix containing
all the participants’ actual ages. This generative process
is referred to as a missing data mechanism.

2.2 Missing Data Mechanisms
Literature in missing data theory recognizes three major
missing data mechanisms. The following are explanations
of these mechanisms using the perspective of generative
processes from a complete data matrix.

Useful notions, such as the diagrams and formal notation,
are adapted from Enders (2010) [5].

Let R be an auxiliary indicator variable that is encoded
to 1 when the value of a particular variable (in this case,
age) is missing, and 0 otherwise. Let φ denote a set of

parameters that govern the relationship between R and
the data. Furthermore, let Yobs refer to the observed parts
of the data, and Ymis to the missing parts of the data.

Using these notions, the following mechanisms can be de-
scribed formally.

2.2.1 Missing Completely at Random (MCAR)
An incomplete data matrix is said to follow the MCAR
mechanism if the missingness of each variable has no cor-
relation to the values of other variables or to its own real
value in the hypothetically complete data (e.g. people who
are taller don’t have a tendency to hide their age, and
people of older/younger ages aren’t systematically more
likely to hide their age). Essentially, a sufficient condition
for MCAR is if the observations with missing values are
picked at random from the complete data matrix, with
equal probability.

Formally, the distribution of MCAR data can be defined
as follows:

p(R|φ)

This is illustrated by Figure 1.

Figure 1. MCAR mechanism in a simple dataset
(? corresponds to variables not present in the
dataset)

An example of a generative process that takes a complete
data matrix and creates an MCAR incomplete data ma-
trix can be described in terms of a uniform probability
distribution. Consider the case in Table 1: If each obser-
vation has the same probability of having a missing age,
the resulting incomplete data matrix will be MCAR, since
this satisfies both prior conditions.

2.2.2 Missing at Random (MAR)
The MAR mechanism implies that the missingness of a
given variable is correlated to the values of at least one
other variable. For instance, if, in the prior example, par-
ticipants who are taller are less likely to report their age,
this would imply a MAR mechanism for the data.

Formally, the distribution of MAR data can be defined as
follows:

p(R|Yobs, φ)

This is illustrated by Figure 2.

The generative process for this would be similar to the pre-
vious, with non-uniform probabilities: a higher value for a
given participant’s height would imply a higher probability
that their age is missing.
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Figure 2. MAR mechanism in a simple dataset
(? corresponds to variables not present in the
dataset)

2.2.3 Missing Not at Random (MNAR)
MNAR implies that the probability of missingness of a
given variable’s value is correlated to that value (i.e. its
actual value in the hypothetically complete data). Con-
sidering the example from Table 1 once more, if older
participants are less likely to report their age, this would
imply a MNAR mechanism.

The MNAR mechanism can be formally defined thusly:

p(R|Yobs, Ymis, φ)

This is illustrated by Figure 3

Figure 3. MNAR mechanism in a simple dataset
(? corresponds to variables not present in the
dataset)

The generative process for MNAR data is similar to that
for MAR: a higher value for a given participant’s actual
age would imply a higher probability that this age is not
reported.

2.2.4 Practical Considerations
Practically speaking, MCAR does not arise frequently in
real datasets. MAR tends to be a safer assumption, with
some MNAR cases being convertible to MAR [5, p. 14-16].
This makes missing data handling methods that perform
well given a MAR mechanism quite useful. Consequently,
this also suggests that those which only perform well with
the MCAR mechanism are of limited use in practical anal-
ysis.

2.3 Further Reading
Enders 2010 [5] provides an excellent, in-depth treatment
of missing data theory along with traditional and mod-
ern missing data handling techniques and their efficacy.

Schafer & Graham (2002) [17] provide a more formal sta-
tistical coverage of the same, with some discussion regard-
ing techniques for MNAR data. Rubin (1976) [16] offers
a technical, theoretical foundation for missing data theory
and missing data analysis.

A precise description of the missing data handling meth-
ods is beyond the scope of this paper. Enders (2010) [5]
covers both modern (e.g. multiple imputation, maximum
likelihood) and ad-hoc (e.g. mean, median, mode) impu-
tation techniques.

3. RELATED WORK
There have been numerous papers in the domain of missing
data handling regarding the various techniques and their
efficacy. Schafer and Graham (2002) [17] identify bias,
variance, and mean square error of the estimated quantity
as performance criteria for these techniques. They also pri-
marily recommend the usage of multiple imputation and
maximum likelihood methods. Furthermore, as a prac-
tical consideration, they add that, according to Collins,
Schafer, & Kam (2001) [4], assumptions of MAR when the
data is actually MNAR often have only a minor impact in
practice.

Johnson and Young (2011) [9] concur that Multiple Im-
putation (MI) and Maximum Likelihood (ML) methods
are the primary choice for modern missing data analysis,
also citing a consensus in the literature ([1], [7] and [17])
regarding the superiority of MI and ML to alternatives.

In the context of a longitudinal study on stress, Musil et
al. (2002) [13] conduct a comparison of ad-hoc techniques
(e.g. listwise deletion, mean substitution) and the expec-
tation maximization (EM) technique, finding that EM is
superior.

Similarly, in the context of longitudinal studies in psychol-
ogy, Peeters et al. (2015) [15] conduct a comparison of
traditional ad-hoc techniques versus multiple imputation
using bias and the width of confidence intervals as perfor-
mance metrics, finding multiple imputation to be the most
effective method.

Schmitt (2015) [18] compares mean imputation, K-nearest
neighbors (KNN), and multiple imputation with some more
exotic techniques, such as fuzzy K-means. Methodologi-
cally, they use multiple datasets derived from practical
data collection, assuming a Missing Completely at Ran-
dom mechanism.

More recently, Duy Le (2018) [11] compares multiple im-
putation, KNN, EM imputation, and mean imputation on
two datasets. Likewise, this work assumes a Missing Com-
pletely at Random mechanism.

Based on these results, multiple imputation, expectation
maximization, and maximum likelihood can be identified
as the most common standard non-machine learning im-
putation techniques. Likewise, ad-hoc techniques such as
mean imputation are also commonly applied.

Overall, the literature contains a plethora of comparisons
of ad-hoc techniques with modern ones, but the subject of
comparing the performance of traditional techniques ver-
sus that of those based on machine learning has never been
thoroughly explored.

3.1 Other Comparative Works and Their Lim-
itations

Each comparative study mentioned herein suffers from at
least one of the following methodological limitations:
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1. The study uses purely randomized (simulated) data

• This creates an epistemic problem: it cannot be
guaranteed that the fully simulated data recre-
ates every relevant property of real data from
a practical domain. Thus, the techniques may
perform differently in a realistic situation.

2. The study uses only one dataset, or a few datasets
from the same source and domain

• This is once again an epistemic problem. It is
feasible that certain datasets originating from
certain domains have unique individual proper-
ties that make them materially different from
those in other domains, in a way that is signifi-
cant to the results of imputation techniques.

3. The study does not account for the size difference in
datasets

• This ignores an important aspect of performance:
how well certain techniques scale, in both accu-
racy and speed, with increasingly larger datasets.

4. The study does not consider machine learning tech-
niques for comparison versus traditional techniques

• It could be the case that, given enough data
with a strong enough predictive relation to the
missing values, machine learning techniques are
superior to traditional imputation.

5. The study assumes an unrealistic (i.e. Missing Com-
pletely at Random) missing data mechanism

• Most missing data patterns in practical analy-
sis conform to at least the Missing at Random
mechanism. Thus, such a comparison is not en-
tirely realistic given this assumption.

Table 3 lists notable comparative studies and their par-
ticular flaws.

Table 3. Flaws of Similar Comparative Studies
Paper F1 F2 F3 F4 F5

Schafer 2002 [17] 7 7 7 7
Musil 2002 [13] 7 7 7
Buhi 2008 [3] 7 7 7 7

Johnson 2011 [9] 7 7 7
Graham 2012 [6] 7 7 7
Peeters 2015 [15] 7 7 7
Schmitt 2015 [18] 7
Duy Le 2018 [11] 7 7 7

3.2 Techniques Compared
Table 4 describes which techniques this paper evaluates
that are also common in one or more similar works. It is
important to note that the techniques listed are not all of
the techniques assessed in the related works, but the ones
that are also assessed here.

4. METHODOLOGY
The experiment was carried out in the Python program-
ming language, within a Jupyter Notebook [10] environ-
ment. The Pandas library was used to easily represent and
work with data matrices, the impyute library was used for
traditional statistical imputation techniques, and scikit-
learn [14] was used to apply machine learning techniques.

Table 4. Techniques Examined in Similar Compar-
ative Studies

Paper Mean Median Mode EM MI
Schafer 2002 [17] 7 7
Musil 2002 [13] 7 7
Buhi 2008 [3] 7 7

Johnson 2011 [9] 7 7
Graham 2012 [6] 7 7
Peeters 2015 [15] 7
Schmitt 2015 [18] 7 7
Duy Le 2018 [11] 7 7 7

This Paper 7 7 7 7 7

4.1 Dataset Selection Criteria
For selecting datasets to use in the experiment, several
criteria were chosen:

• The size of the dataset file should be lower than 5
megabytes, since the traditional techniques are too
slow past this size

• Each dataset should have at least one numerical and
one categorical variable

• The data should not require expert knowledge to un-
derstand

• The dataset should be in CSV format for ease of use

• The dataset’s variables should be clearly named and
described

4.2 Selected Datasets
Based on the above criteria, several datasets of diverse
originating domains were selected, to account for the po-
tential differences in technique performance resulting from
the individual characteristics of each dataset. For a clearer
picture, the datasets were also selected so as to be of as-
cending size.

The following datasets were selected:

• Howell demographic data ([12], retrieved from https:

//github.com/rmcelreath/rethinking/blob/master/

data/Howell1.csv

• UCI heart disease data ([8], retrieved from https:

//www.kaggle.com/ronitf/heart-disease-uci

• 1985 to 2016 suicide rates (retrieved from https://

www.kaggle.com/russellyates88/suicide-rates-overview-

1985-to-2016)

• King County house sales (retrieved from https://

www.kaggle.com/harlfoxem/housesalesprediction)

To account for performance differences based on differing
variable types, one numerical and one categorical variable
was selected for separate testing from each dataset.

4.3 MAR Simulation
Using the idea of generative processes as outlined in the
background, two incomplete data matrices (having a nu-
merical variable and a categorical variable with missing
values, respectively) were generated using a MAR mecha-
nism from the complete matrix of each dataset. The de-
tailed process of generating a MAR incomplete data ma-
trix was conducted in the following steps:
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Firstly, since a MAR missing data mechanism is desired,
transitive MNAR relations should be avoided. To illus-
trate: Suppose that a given dataset contains an income,
weight, and height variable. Suppose furthermore that
the height variable is the target for simulating missingness,
and the values of the weight variable are used to determine
the probability that the corresponding values of the height
variable are missing. Since there is a strong positive corre-
lation between weight and height, then, transitively, there
will be a strong correlation between the value of height
and the probability that this value will be missing after
the simulation. This is the very definition of a MNAR
mechanism, hence, this situation is undesirable.

For this reason, a synthetic float-type variable was intro-
duced to the data matrix. Each row of the data matrix was
assigned a random (seed: ”thesis”) number drawn from a
standard normal distribution, corresponding to the real-
ization of the synthetic variable. Since this variable could
not be correlated with any of the existing variables in the
matrix, assigning it a positive correlation to the proba-
bility of missingness of the target variable will create a
MAR mechanism without incidentally creating a transi-
tive MNAR one, as well.

Heuristically, based on the number of observations in each
selected dataset, 1.2% and 15% were assigned as the min-
imum and maximum probabilities of missingness, respec-
tively. The maximum generated value of the synthetic
variable was tied to the maximum probability of missing-
ness, and the minimum generated value was tied to the
minimum probability of missingness.

Let Smax represent the maximum of the synthetic values,
Smin the minimum, Pmax the maximum probability of
missingness, and Pmin the minimum probability of miss-
ingness.

Viewing the probability of missingness as a linear func-
tion of the synthetic value, the following function with
unknown slope and intercept can be defined:

Pmiss(s) = a+ bs

where s represents a given synthetic value.

Taking the minimum and maximum probabilities along
with the minimum and maximum synthetic values as two
input-output pairs within this function, the slope and in-
tercept can be inferred by solving the following system of
equations:

Pmin = a+ bSmin

Pmax = a+ bSmax

Since both P and S min/max values are known, this is
a solvable system which gives the intercept and slope for
the desired function, which maps the generated synthetic
values to probabilities of missingness. Given this map-
ping, a corresponding probability was computed for each
synthetic value in a given data matrix row. A real num-
ber from 0 to 1 was drawn from a uniform distribution
for each of these probabilities, and the value of the target
variable was omitted if the drawn number was below the
probability.

4.4 Dataset Preprocessing
Each dataset’s variables were scaled using scikit-learn’s
StandardScaler object, to ensure that all machine learn-
ing algorithms run as smoothly and correctly as possible.

Categorical variables were encoded to integers using scikit-
learn’s LabelEncoder.

4.5 Train/Test Split
Since the experiment focused in part on applying machine
learning algorithms, the various datasets had to be split
into training data and test data. For each dataset, the
rows containing missing data served as the test set, and
all the remaining rows served as the training set. Since the
missingness was artificially generated, the actual values of
the missing data were kept to evaluate the predictions of
each algorithm.

4.6 Evaluated Techniques
On the traditional technique side, the mean, median, mode,
expectation maximization, and multiple imputation tech-
niques were applied. Random imputation, defined as sim-
ply picking a random value from the non-missing set, was
also used as a benchmark. Maximum Likelihood imputa-
tion was omitted from the experiment due to time con-
straints and lack of an already available implementation
in the Python language.

For categorical variables, the following machine learning
techniques were applied:

• Random Forest Classification

• Logistic Regression

• Perceptron Classification

• K-Nearest Neighbors Classification

For numerical variables, the following machine learning
techniques were applied:

• Random Forest Regression

• Linear Regression

• Bayesian Ridge Regression

• K-Nearest Neighbors Regression

4.7 Implementation & Evaluation
The traditional ad-hoc techniques were applied using the
impyute library. Multiple imputation was applied from the
fancyimpute library, specifically with the IterativeImputer
algorithm.

All methods applied to categorical variables were assessed
using scikit-learn’s classification report function, which com-
putes the precision and recall per category. All methods
applied to numerical variables were assessed using scikit-
learn’s r2 score (R-squared calculator) function.

These techniques were executed twice (once for categori-
cal, once for numerical) per dataset. The models were fit
to a training set (all the non-missing data) and evaluated
on a test set (all the missing data).

The resulting performance metrics were compiled into .txt
format reports on a per-dataset basis and saved to disk for
later analysis.

4.8 Adaptive Rounding
The Multiple Imputation and Expectation Maximization
techniques generate real (non-integer) numbers for both
numerical and categorical variables. Thus, their results
are useless without rounding in the categorical case.
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For this purpose, multiple rounding schemes can be used.
The first and most basic rounding scheme is naive round-
ing, which is essentially rounding to the nearest integer.

Enders (2010) cites multiple sources indicating that this
naive rounding scheme inadvertently results in biased con-
clusions, particularly for binary categorical variables. He
cites Bernaards (2007) [2], who proposes the following
adaptive rounding scheme:

Let µ̂UR be the mean of the imputed values (not yet
rounded). Then,

c = µ̂UR − φ−1(µ̂UR)
√
µ̂UR(1− µ̂UR)

where c is the threshold for rounding and φ represents
the standard normal density function. Then, iterating
through each imputed value, the following rule is applied:
If the value is above the threshold, it is encoded to 1.
Otherwise, it is encoded to 0.

Adaptive rounding is applied for each categorical variable
imputation with the Multiple Imputation and Expectation
Maximization techniques.

4.9 Hyperparameter Tuning
Both the Random Forest and K-nearest neighbors (KNN)
algorithms have a number of complex parameters which
impact their performance significantly. The optimal values
for these parameters depend on the dataset the algorithms
are being applied on – thus, these optimums must be esti-
mated on a per-dataset basis. This process is referred to
as hyperparameter tuning.

In the context of this experiment, hyperparameter tun-
ing is conducted via the RandomizedSearchCV algorithm
from scikit-learn, with 3-fold cross validation. The val-
ues used for the hyperparameter search algorithm for the
Random Forest and KNN algorithms are listed in tables
5 and 6, respectively.

Table 5. Random Forest Hyperparameter Values
Parameter Values

n estimators 5, 10, 20, 40, 60, 100
max features auto, sqrt

min samples split 2, 5, 10
min samples leaf 1, 2, 4

bootstrap True, False

Table 6. KNN Hyperparameter Values
Parameter Values

n neighbors All integers in [2, 12]
weights uniform, distance

algorithm auto, ball tree, kd tree, brute
leaf size 10, 20, 30, 40, 50, ..., 100

p 1, 2, 3, 4, 5

5. RESULTS
The performance scores of each technique are compared
graphically using color-coded bar plots (blue for tradi-
tional techniques, red for machine learning). Each indi-
vidual bar plot corresponds to technique performance on
a variable in a certain dataset.

The two most significant plots on any given dataset-variable
combination are displayed in Figure 4, illustrating the
contrast between the relative performance of machine learn-
ing classification techniques on the smallest (UCI) versus

the largest (suicide) dataset in the study. Likewise, the
comparatively poor increase of traditional technique per-
formance is also visible.

The full results are illustrated in the Appendix (Figure
5). Multiple imputation is omitted from the housing price
graph since its R-squared is negative (-4.9).

Figure 4. Classification on small vs. large dataset

5.1 Discussion
To begin with, it is clear that the machine learning tech-
niques tend to have a better relative performance within
classification than they do within regression. A possi-
ble explanation is that regression tends to be more diffi-
cult and requires more fine-grained hyperparameter tuning
than classification.

An interesting aspect to note is the superior performance
of traditional methods relative to machine learning algo-
rithms on the UCI heart disease dataset. This particular
dataset is the smallest in this study, with 303 observa-
tions. It is important to remember that the traditional
techniques used in this study do not have an underlying
model that must be fit to a given set of training data.
Thus, they are not penalized for not having enough train-
ing data, whereas the machine learning-based algorithms
are. It is quite likely that the traditional techniques are
superior in both result and ease of use when applied to
particularly small datasets, generally speaking.

In contrast, the superiority of machine learning algorithms
relative to the traditional methods is clearly visible in the
context of the suicide rate dataset imputation. This is
the largest dataset used in this study. This finding is con-
sistent with the previously proposed idea that traditional
techniques are superior on smaller datasets, but do not
scale as well on larger ones.

To further support this hypothesis, it is also notable that,
on datasets significantly larger than the suicide rate dataset,
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the traditional imputation techniques did not finish exe-
cution in a reasonable time. However, whether this is the
result of the particular implementation used herein or of
the underlying theory behind the techniques is a matter
for future study.

Another point of interest is the impressive (F1 of 0.99)
performance of all machine learning techniques along with
mode imputation and expectation maximization on the
housing dataset’s waterfront variable, in contrast to mul-
tiple imputation (F1 of 0.75). The variable in question
is highly skewed – evidently, few homes are on a water-
front. 21450 observations have this variable set to 0, and
only 163 have it set to 1. This explains the performance
metrics observed. Moreover, this suggests that multiple
imputation is not a good approach for highly skewed cat-
egorical variables.

Finally, it is important to address the performance of mul-
tiple imputation on the price variable of the housing dataset.
In this case, its R-Squared is negative (-4.90). Upon fur-
ther investigation, multiple imputation was found to gen-
erate some negative house prices, thus explaining the poor
score. Based on the reasonable performance of all other
techniques, this appears to be a flaw with the method, or
its implementation.

There are a few factors negatively influencing the general-
ity of the presented results:

• The MAR mechanism simulation is fairly naive, as
it involves generating an otherwise uncorrelated syn-
thetic variable

• Due to time constraints, the datasets are not as nu-
merous as they should be for a truly general study

• The selected datasets or their vertical partitions are
of fairly low dimensionality

• The author’s relative inexperience with applied ma-
chine learning is a significant factor in the machine
learning techniques’ performance

6. CONCLUSION
The most common state of the art imputation techniques
studied are multiple imputation, maximum likelihood im-
putation, and expectation maximization. Naive methods
such as mean imputation are also commonly used. (RQ1)

Many studies comparing these techniques have been car-
ried out in the context of various scientific disciplines. The
methodology of comparative studies within the field of
missing data imputation has a number of recurring flaws,
such as the use of only one dataset, the use of fully sim-
ulated data, or the assumption of an MCAR mechanism.
(RQ2 and RQ2.1).

These flaws can be addressed effectively through larger-
scale studies with more realistic assumptions. Specifically,
MAR mechanisms and real datasets do away with the
built-in assumptions of generality and randomness that do
not reflect reality (RQ3.1). Moreover, researchers would
do well to consider the power of machine learning algo-
rithms when comparing such techniques.

Given more realistic assumptions, the results of the com-
parison indicate that traditional techniques tend to be su-
perior on smaller datasets, whereas machine learning tech-
niques tend to scale better and outperform them as the
number of observations in the dataset increases. (RQ3)
This also makes sense in principle, since machine learning

models require training data, and tend to perform better
when there is more data. This need not be the case for
traditional imputation techniques.

Some limitations of these results are the low number of
datasets used, their simplicity, and the fairly naive MAR
simulation mechanism. These are experimental constraints
that can be relaxed in future studies to paint a better pic-
ture of the relative performance of traditional imputation
techniques versus machine learning models.

6.1 Future Work
There are numerous experimental constraints to relax in
order to achieve more generalizable results. For instance,
this study only compares the performance of techniques
on a dataset with MAR missingness. Some datasets have
a missingness pattern that fits the MCAR mechanism,
and some others have an irreducible MNAR mechanism.
Comparing these techniques on each possible missing data
mechanism for a variety of datasets would paint a much
clearer and more informative picture.

Furthermore, multiple libraries could be used in order to
account for the differences in technique performance that
result from implementation specifics.

On the dataset side, a wider range of dataset sizes and
more varied levels of dimensionality would further increase
the generality of derived results.

Moreover, this study has not taken into account a num-
ber of state of the art non-machine learning imputation
techniques, such as model based ones (e.g. FIML) and
Bayesian techniques.

Finally, since most imputation-related studies are con-
ducted with the social sciences in mind, there has been
little work done in exploring effective imputation in the
context of big data. This presents a promising avenue for
further research.
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Figure 5. Appendix (Result Graphs)
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