
Evaluating the Scalability of MayBMS, a Probabilistic
Database Tool

Kevin Booijink
University of Twente

P.O. Box 217, 7500AE
The Netherlands

k.g.booijink@student.utwente.nl

ABSTRACT
This paper proposes to create a benchmark tool for mea-
suring and comparing the scalability of probabilistic data
tools. The benchmark includes a data generator, and can
be used to measure the execution time of several queries.
The validity of the benchmark will be tested by using it
on the MayBMS probabilistic data tool. Firstly, some
background is given on the subject of probabilistic data.
Then, the state of the art will be explained through related
work, and a short introduction on probabilistic data tools
is given. After that, the methodology will be explained in
detail, results will be displayed, and a conclusion will be
drawn from those results. The research in general is dis-
cussed, and finally, potential future work on the subject
of probabilistic data is proposed.

Keywords
Probabilistic data, uncertain data, benchmark, evaluation,
data generation, scalability, database tools

1. INTRODUCTION
Nowadays, most data is stored in large, neatly organized
databases. For a lot of projects, it could be very useful to
combine (integrate) multiple data sources together. This
means there is more data to use, and thus the results are
generally more reliable. Unfortunately, it could be the case
that 2 (or more) data sources disagree about the value of
a certain attribute. In cases like this, Probabilistic Data
Integration (PDI) [5] can be used so that all available data
can still be used.

Probabilistic data is data of which the value is uncertain.
For example, the value could be 32 with a probability of
45%, or 36 with a probability of 55%. The idea behind
this is that if numerous sources disagree about a value,
this data can still be integrated, and the disputed value is
stored as an uncertain value.

A few research prototypes for probabilistic database tech-
nology exist, such as MayBMS [3] and Trio [8], as well as
probabilistic logic tools such as ProbLog [2] and JudgeD
[6], which may also store and query probabilistic data. Un-
fortunately, due to time constraints and issues in getting
the other tools to work properly, this paper focuses purely

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy oth-
erwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.
31st Twente Student Conference on IT July 5th, 2019, Enschede, The
Netherlands.
Copyright 2019, University of Twente, Faculty of Electrical Engineer-
ing, Mathematics and Computer Science.

on the MayBMS tool.

2. PROBLEM STATEMENT
As data gets bigger in size, or the data gets more complex,
it might take longer for queries to be executed. There
is more data to be considered, after all. The extent of
this change in execution time is largely dependent on the
internal structure of the tool in question. Increasing the
amount of conditions a query needs to fulfill might also
increase the execution time. In this paper, the scalability
of a database tool will thus be referred to as ’the rate of
change in execution time of queries’.

Currently, there is no standard for evaluating and com-
paring probabilistic database tools for how quickly they
execute queries on data of increasing sizes. for their scala-
bility on data integration tasks. This research will attempt
to create such a standard, with the following research ques-
tions:

1. How can the scalability of probabilistic data tools be
measured?

(a) What variables contribute to scalability?

In order to answer these questions, this research provides
a benchmark for probabilistic data tools. The benchmark
will contain a data generator, capable of generating data
integration results of varying sizes. This data can then be
queried, and the execution times of these queries can be
measured. To validate the benchmark, the scalability of
probabilistic data tools can be compared and evaluated,
by measuring the execution time of queries multiple times
on data of varying sizes, and analyzing the results.

3. RELATED WORK
In Van Keulen[5], the process of PDI is divided in two
phases: (i) a quick, partial integration where certain data
quality problems are not solved, but instead represented as
uncertain data in probabilistic databases, and (ii) continu-
ous improvement by using the data (querying the database,
resulting in possible or approximate answers) and gather-
ing further evidence to improve data quality. It explains
the formal semantics of probabilistic databases are based
on possible worlds. In a direct quote from Van Keulen
[5]: ’Assuming a single table, let I be a set of tuples
(records) representing that table. A probabilistic database
is a discrete probability space PDB = (W,P), where W =
I1, I2, ..., In is a set of possible instances, called possible
worlds, and P : W [0, 1] is such that

∑
j=1..n P (Ij) = 1.’

In reality, stating all possible worlds is impossible, and
many different representation formalisms have been pro-
posed. (For a thorough overview, see Panse[4], Chapter
3)

1

Van Keulen later [7] expands on this by introducing ’a
generic probabilistic approach to combining grouping data
in which an evolving view on integration can be iteratively
refined.’ It introduces three different integration views for
possible worlds where grouping is involved, and gives ex-
amples for each: SRC, where each data source is a possi-
ble world; COMP, where a possible world is a combination
of independent components; and COLL, where a possible
world is a collision-free combination of groups. It per-
forms experiments regarding Mean Query Times, World
Set Descriptor size, and Number of World Set Descriptors
and Random Variable assignments, involving these differ-
ent integration views. The experiments in this research
will be loosely based on the timing methods used in those
experiments, but the integration views will not be used.

4. PROBABILISTIC DATABASE TOOLS
At the start of this research, four different probabilistic
data tools were considered for possible evaluation. These
are MayBMS [3], Trio [8], ProbLog [2] and JudgeD[6]. Un-
fortunately, due to time constraints and installation issues,
it was decided that this research is focused purely on the
MayBMS tool, and future work can be done for the other
tools. In this section, a short introduction on each of these
tools is provided.

MayBMS is a ’complete probabilistic database manage-
ment system that leverages robust relational database tech-
nology’. It is an extension of the Postgres server backend.
Therefore, it also has full support of all features of the
PostgreSQL 8.3.3, while stating it has essentially no per-
formance loss on PostgreSQL 8.3.3 functionality.

Trio is also a probabilistic database management system,
and is based on an extended relational model called ULDBs[1].
It also supports a SQL-based query langauage called TriQL.

ProbLog is a tool that combines logic programming with
uncertainty. It is a Python package, and its knowledge
base can be represented as Prolog/Datalog facts, CSV-
files, SQLite database tables, and through functions im-
plemented in the host environment.

JudgeD is a probabilistic datalog. A JudgeD program ’de-
fines a distribution over a set of traditional datalog pro-
grams by attaching logical sentences to clauses to implic-
itly specify traditional data programs’. It is implemented
as a proof-of-concept in python, and the implementation
allows connection to external data sources.

Unfortunately, some of these tools were rather difficult, if
not impossible, to install because of their age, and because
of these technical difficulties and time constraints, it was
decided to put the main focus on MayBMS, which did
manage to install correctly and works properly.

5. METHODOLOGY
The methodology for this project is split into two parts:
building the data generator, and evaluating the available
database tools using the generated data. Both of these
sections will be explained in further detail below.

This program is developed in the Python programming
language, as it is a versatile language and thus useful for
communicating/integrating with the various other tools
that are used. Most of the suggested probabilistic data
tools are also developed in Python.

5.1 Data Generator
In order to properly evaluate the scalability of probabilistic
database tools, a lot of data is needed. For this research,

a data generator will be made, so that experiments can be
run again with different (randomly) generated data. This
decreases the influence of the data itself in the query tests,
and thus increases the validity of our experiments, by mak-
ing sure the only independent variable is the probabilistic
database tool of choice.

The data model this benchmark uses resembles the data
set of [7]. It consists of a number of elements, and a num-
ber of groups these elements are divided into. For the
sake of this research, it does not matter by what criteria
these elements are divided. In this case, the uncertainty
comes from the integration of multiple data sources. Some
of these data sources may agree on the group an element
belongs to, while others have that element listed under
another group. It may even be possible that the element
is not present in that data source at all.

As this research is focused on the scalability of probabilis-
tic data tools, the data generator will need to be able to
generate data of varying sizes. In this version of the pro-
gram, this is done by input prompts. When the program is
started, the user is prompted to input the total number of
elements and the number of (possible) data sources. The
number of possible groups has been set to 15, as this value
only influences the amount of database entries, just as the
total number of elements. By having only one of these be
alterable, it is easier to control the (approximate) amount
of database entries that are created.

For each element, there is a set probability, changeable in
the source code, for each source to contain information on
that element. This results in a list of ’sources’ that contain
this element. For each of these sources, a random group is
selected for the element to be linked to. This selection is
random to prevent bias, and the way the data is assigned
is not in the scope of this research. The combination of
Element, Group, and Source is added to a list, and this
continues for every element. This list contains all the data
the probabilistic data tools will need, albeit not in a proper
structure yet.

5.2 Database Tool Evaluation
In order to measure the scalability, it was decided to focus
the research on variables that could influence the execution
time. These variables are as follows:

• Query Complexity

• Database size

Both of these were chosen because in theory they have the
highest chance of influencing execution times. Increasing
the size of the database makes it more difficult for the sys-
tem to collect the correct values, as there are simply more
entries to sort through. Increasing the complexity of the
queries gives more conditions for the system to consider,
possibly increasing the execution time of queries as well.

Due to all data tools working in (slightly) different ways,
it is unfortunately not possible to use the exact same eval-
uation system for every program. Fortunately, a lot of
communication between Python and the various tools can
be done using the Python subprocess module, which allows
users to control third party programs by parsing strings
as inputs. The timing of the queries is done by measuring
the execution times of these subprocess statements.

Since MayBMS is an extension of the Postgres back-end,
this research is only interested in the additions it has made.
In order to translate a regular database into a probabilis-
tic database in MayBMS, one needs to add the probabil-
ity of the occurrence as a column. The table can then be

2

converted for probabilistic use using a ’repair-key’ state-
ment. The user can then use this newly created table for
confidence queries, which are used to calculate probabili-
ties. Thus, the only queries this research is interested in is
these confidence queries, with the most common usage be-
ing P(Element x,Group y), indicating the probability that
Element x belongs to Group y, due to the simplicity of the
data model that is used. The complexity of the queries is
increased by asking for multiple conditions. (For example,
querying if Element x belongs to Group y AND if Element
a belongs to Group b.)

6. RESULTS
The execution time of one query is very small (in scale
of nanoseconds) and timing this small a time frame using
Python is tricky. Therefore, each query was executed 1000
times, and the total time for this execution was measured,
in order to gain more accurate results.

This research was focused on the database size and the
complexity of queries. For each batch of generated data,
10 randomly selected queries were timed for each level of
complexity. It was decided to do this for up to 20 levels of
complexity, which should be enough to notice any effect
the complexity might have on the execution time. This
means that for each batch of data, 200 timing results were
generated.

Due to the nature of the data generator, the data size
was not fixed, but heavily influenceable by the amount of
elements in the data. However, when reaching large sizes
of data (1.000.000+), MayBMS started reporting memory
issues, so the decision was made to cap the data size to
1.000.000 entries.

As CPU time was being measured, it was possible for other
processes to execute throughout the timing, making some
execution times longer than they actually were. Because
of this, strong outliers (values of 0.04 seconds or more)
were removed from the timing results.

In Figure 1, the average execution time is plotted against
query complexity. This graph mostly resembles a linear
progression, indicating that query complexity most likely
influences execution times on a linear scale.

In Figure 2, the average execution time is plotted against
the data size. There is no identifiable pattern here, other
than that the execution time seems to slightly increase for
higher data sizes.

For a tabular representation of the results, grouped by
data size and complexity, see Appendix A.

All timings were done on a Intel i5-7200U 2.50 GHz CPU.

7. CONCLUSION
As can be seen in Figure 1, the average execution time
seems to have a linear increase when the complexity is in-
creased, starting at 0.005 seconds at a complexity of 1, to
0.022 seconds at a complexity of 20. The progression is not
perfectly linear, and this is likely due to the randomness
for measuring timing. Other processes might have inter-
fered in the timing, or the CPU was running at a slightly
different frequency. The average increase per complex-
ity level is 9.339 ∗ 10−4 seconds (over 1000 queries), cal-
culated by measuring the increase/decrease between each
step, and calculating the average of those numbers.

When looking at the data size chart in Figure 2, there is no
identifiable pattern at all. The average execution time ap-
pears to peak at 250.000 database entries, making a large
jump. However, this can be just as easily accredited to

the random interference from other processes mentioned
before. It does appear, however, that the average execu-
tion time is slightly higher for larger databases, averaging
roughly 0.015 seconds on data over 200.000 entries, where
lower data sizes sit at around 0.01 seconds. A proper ex-
planation for this has not been found.

There is no visualization for the combination of both vari-
ables. However, the results indicate that neither variable
has influence on each other. For example, there was no
significant increase in the execution times of queries with
low complexity and low data size as opposed to queries
with high complexity and high data size, when compared
to the individual results. This indicates both variables are
independent from each other.

To conclude, the complexity of a query seems to affect its
execution time, by a scale of 9 ∗ 10−7 seconds per level
of complexity. Because of the irregularity of the results, it
cannot be determined if the data size has any influence on
the execution time, although smaller data sizes seem to be
slightly faster. The two variables appear to be completely
independent from each other.

8. DISCUSSION
This paper serves as a basis for probabilistic data bench-
marking. It provides methods for evaluating the scalabil-
ity of probabilistic data systems, and applies these meth-
ods to the MayBMS system. Unfortunately, there was not
enough time to extend this to other probabilistic data tools
as well. However, it should be possible for these methods
to be applied on other tools as well, and the results of this
research can be used for comparison. The paper provides
evidence that the complexity of a query has influence on
its execution time (at least, in the MayBMS tool), but it is
uncertain whether the size of the database also has influ-
ence on the execution time. Since the data and the queries
used were randomized, the complexity and the size of the
data are the only variables that could have influenced the
execution time. However, it could be possible that the
results that were found are not entirely correct.

Firstly, the CPU time is measured, which includes random
processes that are executed in between the queries. It
has been tried to keep this influence as small as possible
by having this program be the only one that is actively
running. However, there is no way to (temporarily) disable
the passive background processes.

Secondly, the program was not 100% stable. At times,
the MayBMS system reported errors while the program
was running. The results of runs where this happened
were discarded, but it does indicate the system is not fully
waterproof, which could also have influenced the timing.

Lastly, the timing results could be incomplete. Due to
uncertainty about exactly the subprocess module operates,
it could be possible that only the input is timed. The ideal
timing is to have both the input and the response timed
in one go. However, it is unproven if this is actually what
was being timed.

9. FUTURE WORK
There is a lot of work still to be done in the area of proba-
bilistic data tools and their evaluation. For example, this
research was focused on just the MayBMS tool, because
of the technical difficulties involved and the limited time
for research. In the future, the methods that were used
in this research could be applied for different probabilistic
data tools, to see if the scalability differs per tool.

3

Figure 1. Execution time of queries based on complexity

Figure 2. Execution time of queries based on data size

4

Furthermore, the database model used in this research was
rather simple. It might be worth replicating this research
with more complex database models, to see if the complex-
ity of the database itself has influence on the execution
time of queries. A more complex database also allows for
more variety in queries, something that was lacking with
this particular model.

What could also be worth looking into is building a stan-
dardized layout for evaluation, where only a small amount
of adjustment is required in order to make it work for dif-
ferent programs. Since this program was focused on only
one probabilistic data tool, it is unsure if this layout will
also work for different tools, although the layout is simple
enough that it will probably work.

Lastly, the stability of the current program can be in-
creased. Due to the limited time frame of this research, not
a lot of focus was put on stabilizing. For example, subjects
like error handling, exceptions, etc. are not present in the
tool, and most problem identification had to be done man-
ually. It would be great if this could be added, in order to
decrease the necessary human input for the program.

10. REFERENCES
[1] O. Benjelloun, A. D. Sarma, A. Halevy, and

J. Widom. Uldbs: Databases with uncertainty and
lineage. In Proceedings of the 32Nd International
Conference on Very Large Data Bases, VLDB ’06,
pages 953–964. VLDB Endowment, 2006.

[2] L. De Raedt, A. Kimmig, and H. Toivonen. Problog:
A probabilisic prolog and its application in link
discovery. In Proceedings of the 20th International
Join Conference on Artificial Intelligence (IJCAI-07),
pages 2462–2467, 2007.

[3] C. Koch. Maybms: A system for managing large
uncertain and probabilistic databases. In Managing
and Mining Uncertain Data. Chapter 6, Springer,
2008.

[4] F. Panse. Duplicate Detection in Probabilistic
Relational Databases. PhD thesis, University of
Hamburg, 2015.

[5] M. van Keulen. Probabilistic data integration. In
Encyclopedia of Big Data Technologies, pages 1–9,
Cham, 2018. Springer International Publishing.

[6] B. Wanders, M. van Keulen, and J. Flokstra. Judged:
a probabilistic datalog with dependencies. 2 2016.
Workshop on Declarative Learning Based
Programming, DeLBP 2016 ; Conference date:
13-02-2016 Through 13-02-2016.

[7] B. Wanders, M. van Keulen, and P. van der Vet.
Uncertain groupings: Probabilistic combination of
grouping data. In Proceedings of the 26th
International Conference on Database and Expert
Systems Applications, DEXA 2015, Lecture Notes in
Computer Science, pages 236–250. Springer, 9 2015.
10.1007/978-3-319-22849-5 17.

[8] J. Widom. Trio: A system for data, uncertainty, and
lineage. In Managing and Mining Uncertain Data.
Springer, 2008.

5

APPENDIX
A. FULL TABLE OF RESULTS

Data size Complexity | Average Execution Time |
29 1 0.0034655861
29 2 0.0038105437
29 3 0.0043084592
29 4 0.0049928619
29 5 0.0049170437
29 6 0.0065853836
29 7 0.0066099641
29 8 0.0063971595
29 9 0.0088321771
29 10 0.0075910696
29 11 0.0081230429
29 12 0.0081313498
29 13 0.0088708039
29 14 0.0141820415
29 15 0.0102466697
29 16 0.0106348982
29 17 0.0115287068
29 18 0.0154982119
29 19 0.0128984183
29 20 0.0211623365
32 1 0.0035591127
32 2 0.004607843
32 3 0.0046039539
32 4 0.0052277547
32 5 0.005071965
32 6 0.0066604089
32 7 0.0061725368
32 8 0.006699111
32 9 0.0099099056
32 10 0.0077791049
32 11 0.0085694944
32 12 0.0088009515
32 13 0.0096338185
32 14 0.0136662286
32 15 0.0108143246
32 16 0.0105124109
32 17 0.01102694
32 18 0.01157598
32 19 0.0117650345
32 20 0.0214137675
48 1 0.0036354
48 2 0.004702
48 3 0.0048787
48 4 0.0057308
48 5 0.00586
48 6 0.0072855
48 7 0.0063317
48 8 0.0080763
48 9 0.0109112
48 10 0.0082679
48 11 0.0085594
48 12 0.0090198
48 13 0.0101404
48 14 0.015341
48 15 0.0115066
48 16 0.0110647

Continued on next column

Continued from previous column

Data size Complexity | Average Execution Time |
48 17 0.0118004
48 18 0.0123696
48 19 0.0122446
48 20 0.0228794
50 1 0.0039208725
50 2 0.004001184
50 3 0.0046344623
50 4 0.0052085737
50 5 0.0056512113
50 6 0.0072018596
50 7 0.0062550381
50 8 0.0067906364
50 9 0.008581237
50 10 0.0079413511
50 11 0.008557223
50 12 0.0089451113
50 13 0.0095015142
50 14 0.0142586904
50 15 0.0109192917
50 16 0.0111455758
50 17 0.0110739867
50 18 0.011548983
50 19 0.0119788962
50 20 0.0206607584
52 1 0.0043312
52 2 0.0063668
52 3 0.00623745
52 4 0.00658845
52 5 0.0089099
52 6 0.0089576
52 7 0.01263415
52 8 0.01064395
52 9 0.0116718
52 10 0.01650995
52 11 0.00519605
52 12 0.0062751
52 13 0.0066231
52 14 0.006789
52 15 0.00911435
52 16 0.00899475
52 17 0.0118031
52 18 0.0104245
52 19 0.01160585
52 20 0.0174046
259 1 0.0045915
259 2 0.0055823
259 3 0.0045401
259 4 0.0079407
259 5 0.0074695
259 6 0.0093396
259 7 0.0085772
259 8 0.0095913
259 9 0.0120462
259 10 0.0099934
259 11 0.01256
259 12 0.0107636
259 13 0.0135829
259 14 0.0173189
259 15 0.010639

Continued on next column

6

Continued from previous column

Data size Complexity | Average Execution Time |
259 16 0.0157416
259 17 0.0141345
259 18 0.0160481
259 19 0.0156976
259 20 0.0271842
1229 1 0.0041375
1229 2 0.0047341
1229 3 0.0064352
1229 4 0.0068183
1229 5 0.0071763
1229 6 0.0094467
1229 7 0.0073483
1229 8 0.0087032
1229 9 0.0139239
1229 10 0.0109329
1229 11 0.0119867
1229 13 0.0125193
1229 14 0.0185021
1229 15 0.014541
1229 16 0.0127042
1229 17 0.0165207
1229 18 0.0146461
1229 19 0.0140554
1229 20 0.0259799
2573 1 0.0042478
2573 2 0.0048457
2573 3 0.0058301
2573 4 0.0072029
2573 5 0.0062792
2573 6 0.0095859
2573 7 0.0091995
2573 8 0.009687
2573 9 0.0122943
2573 10 0.0107391
2573 11 0.0105899
2573 12 0.015362
2573 13 0.0126991
2573 14 0.0170183
2573 15 0.0132298
2573 16 0.0132072
2573 17 0.0147358
2573 18 0.0162331
2573 19 0.0149208
2573 20 0.025575
25449 1 0.0046957
25449 2 0.0051455
25449 3 0.0054257
25449 4 0.006692
25449 5 0.0057239
25449 6 0.0089451
25449 7 0.0087357
25449 8 0.0107315
25449 9 0.0129706
25449 10 0.0106672
25449 11 0.0109464
25449 12 0.0104736
25449 13 0.0140068
25449 14 0.0187443
25449 15 0.0132876

Continued on next column

Continued from previous column

Data size Complexity | Average Execution Time |
25449 16 0.0154586
25449 17 0.0159229
25449 18 0.015668
25449 19 0.019346
25449 20 0.0268313
50565 1 0.0033791
50565 2 0.0039373
50565 3 0.0046275
50565 4 0.0055455
50565 5 0.0055902
50565 6 0.0066246
50565 7 0.006156
50565 8 0.0067634
50565 9 0.0092906
50565 10 0.007982
50565 11 0.0093081
50565 12 0.0095727
50565 14 0.0137609
50565 15 0.0105793
50565 16 0.0113629
50565 17 0.0114945
50565 18 0.011933
50565 19 0.0119397
50565 20 0.0202056
253423 1 0.0061134
253423 2 0.0075854
253423 3 0.0091407
253423 4 0.0089108
253423 5 0.0098249
253423 6 0.0105713
253423 7 0.0136325
253423 8 0.0126364
253423 9 0.0141915
253423 10 0.014517
253423 11 0.015392
253423 12 0.021658
253423 13 0.0158406
253423 14 0.0187465
253423 15 0.0205983
253423 16 0.0216967
253423 17 0.0249478
253423 18 0.0221377
253423 19 0.0333713
253423 20 0.0241635
506196 1 0.0049108
506196 2 0.0045898
506196 3 0.0053401
506196 4 0.0069493
506196 5 0.0102187
506196 6 0.0092784
506196 7 0.0093178
506196 8 0.0090318
506196 9 0.0104469
506196 10 0.0097809
506196 11 0.0142528
506196 12 0.0110455
506196 13 0.0120268
506196 14 0.0128965
506196 15 0.0145084

Continued on next column

7

Continued from previous column

Data size Complexity | Average Execution Time |
506196 16 0.026087
506196 17 0.0279514
506196 18 0.0416161
506196 19 0.0165284
506196 20 0.0163322
1013316 1 0.006012
1013316 2 0.0066978
1013316 3 0.0076635
1013316 4 0.0085192
1013316 5 0.0097272
1013316 6 0.0101377
1013316 7 0.0161742
1013316 8 0.0127238
1013316 9 0.0130299
1013316 10 0.0142476
1013316 11 0.0153028
1013316 12 0.0164683
1013316 13 0.0159388
1013316 14 0.0174093
1013316 15 0.0283916
1013316 16 0.0193554
1013316 17 0.0202652
1013316 18 0.0215618
1013316 19 0.0221473
1013316 20 0.0225507

Concluded

8

