
A MACHINE LEARNING APPROACH

JULY 2019 | BSC THESIS CREATIVE TECHNOLOGY

JESPER PROVOOST

SHORT-TERM PREDICTION

AND VISUALIZATION OF

PARKING AREA STATES IN

REAL-TIME

SHORT-TERM PRED ICT ION AND V ISUAL I ZAT ION OF
PARK ING AREA STATES IN REAL-T IME : A MACH INE

LEARN ING APPROACH

A thesis submitted to the University of Twente in partial fulfillment
of the requirements for the degree of

Bachelor of Science in Creative Technology

Supervisors
University of Twente

dr. ir. M. van Keulen
dr. A. Kamilaris

DAT.mobility
ir. S.J. van der Drift
dr. ir. L.J.J. Wismans

by

Jesper C. Provoost
s1789198

July 2019

Abstract

Public road authorities and private mobility service providers need
information about the future traffic states to act pro-actively upon the
spatial and temporal dynamics of the urban road network. In this re-
search, a machine learning methodology for predicting influx, outflux
and occupancy rate of parking areas on a horizon of up to 60 minutes
has been developed using publicly available historic and real-time
data sources. Based on a thorough development, optimization and
selection process applied to a real-world case in the city of Arnhem,
the feed-forward neural network turns out to outperform the random
forest on all assessed performance measures, even though the differ-
ences are small and both are outperforming a naive (seasonal random
walk) model. Although the performance degrades with increasing
prediction horizon, the model shows an overall performance gain of
235% (considering all horizons up to 60 minutes ahead) in compari-
son with the naive model. Furthermore, it is shown that predicting
the in- and outflux is a far more difficult task which needs more train-
ing data than occupancy rate. At the same time, however, their respec-
tive performance is still 33 1

3 % and 25% better than a naive model and
is less sensitive for the prediction horizon. In addition, the research
demonstrates that real-time information of current occupancy rate is
the independent variable with the highest contribution to the perfor-
mance, although time, traffic flow and weather variables also deliver
a significant contribution. Also, it is shown that relatively little train-
ing data is needed to maintain satisfactory predictive performance.
This is a promising finding regarding the ease of implementing other
parking areas into the system, especially in cases where the availabil-
ity of data is substandard. During real-time deployment, the model
shows to perform 172% better than the naive model. As a result, it
can provide valuable information for pro-active traffic management
as well as mobility service providers.

Acknowledgements

I would like to express my sincere gratitude to my supervisor Mau-
rice van Keulen for his enthusiasm and knowledge which he has
shown during the execution of my research and writing processes.
His open and supportive attitude has stimulated me to tackle new
challenges within this research and to strive for academic excellence.

Secondly, I would like to thank Andreas Kamilaris for giving me all
the needed support during the initial formation of the assignment as
well as execution of the research. His encouragement, patience and
insightful feedback were incredibly important during the process of
establishing this thesis.

A special mention goes to Sander van der Drift, my main supervi-
sor at DAT.mobility. By providing fruitful feedback and inspiration,
Sander has been a large influence on this thesis. His openness, help-
fulness and dedication were an essential part of the pleasant work-
ing environment which I experienced at DAT.mobility. Moreover,
Sander’s personal approach helped me to quickly feel at home within
the organization. I could not have imagined having a better mentor
during this process.

Last, but certainly not least, this result would not have been pos-
sible without the support and commitment of Luc Wismans. In the
initial stages, his efforts have paved the way for a fantastic period at
DAT.mobility. I am grateful for the trust and autonomy which were
given to me during these phases, since it allowed me to fully engage
in the forming process of an assignment which suited myself and the
company optimally. During the execution phase, Luc knew exactly
how to further motivate me with insightful and in-depth feedback.
I thoroughly enjoyed our teamwork and (sometimes intense) discus-
sions, which have undoubtedly contributed to the determination and
pursuance of quality within my research.

CONTENTS

1 introduction 2

1.1 Motivation . 2

1.1.1 Problem statement 2

1.1.2 Status quo . 3

1.1.3 Introduction to DAT.mobility 4

1.1.4 Current limitations 5

1.2 Objectives . 5

1.3 Challenges . 6

1.4 Research questions . 7

1.5 Report outline . 8

2 theory and background 9

2.1 Introduction to machine learning 9

2.1.1 Types of learning 9

2.2 Literature study . 10

2.2.1 Relevant variables 10

2.2.2 Analysis of contemporary techniques 13

2.2.3 Performance evaluation 15

2.2.4 Conclusions . 17

2.3 Pre-selected techniques 18

2.3.1 Regression trees 18

2.3.2 Feed-forward neural networks 20

3 method 22

3.1 Structure and process . 22

3.1.1 Tools . 23

3.2 Data collection and exploration 24

3.2.1 Historical data 24

3.2.2 Real-time data . 26

3.3 Data preparation . 26

3.3.1 Cleaning the historical data 27

3.3.2 Establishing the final dataset 30

3.3.3 Splitting the dataset 32

3.4 Model development . 34

3.4.1 Feed-forward neural network 36

3.4.1.1 Architecture selection 36

3.4.1.2 Hyperparameter tuning 37

3.4.2 Random forest 38

3.4.2.1 Architecture selection 38

3.4.2.2 Hyperparameter tuning 39

3.5 Compiling and fitting final models 40

3.6 Inter-model comparative testing 40

v

Contents 1

3.6.1 Naive prediction benchmark 41

3.6.2 Quality of predictions 42

3.6.3 Efficiency of predictions 43

3.7 Real-time predictive system 44

3.7.1 System architecture design 44

3.7.2 Back-end . 45

3.7.2.1 Data retrieval 46

3.7.2.2 Generating predictions 48

3.7.2.3 Running the server 49

3.7.3 Front-end . 50

3.7.3.1 Context 51

3.7.3.2 Visualizations 51

3.7.3.3 Dashboard 53

3.7.4 Performance testing 53

3.8 Transferability of the system 54

3.8.1 Input variable dependency 54

3.8.2 Impact of limited training data 56

4 results and discussion 58

4.1 Feed-forward neural network 58

4.1.1 Architecture selection 58

4.1.2 Hyperparameter tuning 59

4.1.3 Candidate model 60

4.2 Random forest . 61

4.2.1 Architecture selection 61

4.2.2 Hyperparameter tuning 61

4.2.3 Candidate model 62

4.3 Inter-model comparative testing 63

4.3.1 Quality of predictions 63

4.3.2 Efficiency of predictions 66

4.3.3 Final model selection 66

4.4 Real-time system performance 68

4.5 Transferability of the system 69

4.5.1 Input variable dependency 69

4.5.2 Impact of limited training data 71

5 conclusions and recommendations 73

5.1 Conclusions . 73

5.2 Future research . 74

a sample of final dataset 79

b overview of visualizations 80

c overview of dashboard 82

1 INTRODUCT ION

The main objective of this thesis is to develop a method for predict-
ing and visualizing the influx, outflux and occupancy rate of park-
ing garages in real-time in order to enhance existing short-term pre-
diction methods regarding traffic conditions. Such a method could
contribute to the effectiveness and efficiency of traffic management
processes, aiming to increase societal benefits by alleviating contem-
porary parking and traffic problems. In addition, it could provide
authorities and policy-makers with fruitful insights about overall in-
fluence of parking on traffic networks.

This chapter will provide a brief introduction on contemporary
parking problems and their effect. Then, after identifying the limi-
tations of existing research and technologies, the objectives and chal-
lenges will be discussed. Subsequently, the research questions are
defined, followed by an outline of the contents of this thesis.

1.1 motivation

1.1.1 Problem statement

Finding an available parking space is often a difficult task, especially
in dense urban areas. This is understandable, considering that the
number of passenger cars in The Netherlands alone has grown 32%
since 2000 [1]. Due to ongoing population growth, vibrant economies
and urbanization, it is unlikely that this problem will solve itself soon.
Over the last decades, authorities have implemented public off-street
parking, such as garages and lots, as an effective measure in order
to keep up with the demand. Off-street facilities can generally offer
higher capacity while inducing lower stress on surrounding traffic
flows, as opposed to traditional on-street parking. However, these
facilities are usually distributed sparsely across a city and therefore
require drivers to search more proactively for a suitable parking loca-
tion [2]. Especially when a driver is unfamiliar in the area, or when
traffic is heavy, this process wastes time and fuel while inducing ad-
ditional traffic load on the surrounding road network [3].

Searching for a vacant parking space thus imposes a significant
burden on drivers and the wider economy, as valuable resources are
wasted in the process. According to research by INRIX [4], a leading

2

1.1 motivation 3

(a) Convential road-side system (b) State-of-the-art mobile system

Figure 1.1: Implementations of PGI systems

provider of traffic and navigation services, U.S. drivers spend an aver-
age of 17 hours searching for a parking spot every year. This amount
is even higher in the U.K. and Germany with 44 and 41 hours per
year, respectively. In Germany alone, INRIX estimates that the aver-
age driver wastes e 896 per year on the hunt for a parking space. This
aggregates to a yearly burden of e 40.4 billion on the German econ-
omy. Furthermore, a survey of 17,968 drivers from 30 cities shows
that 64% of participants experience stress while trying to find park-
ing [4]. Altogether, it is obvious that this problem has a large impact
on economy, society and quality of life.

1.1.2 Status quo

Traffic management applies measures to adjust the demand and ca-
pacity of the traffic network in time and space, such that ideal traffic
demands and supplies are satisfied. To battle contemporary parking
problems, as well as traffic problems altogether, traffic management
is a highly relevant instrument [5]. The advance of modern technolo-
gies, particularly in the form of intelligent transportation systems (ITS),
has supported authorities to execute their traffic management tasks
more effectively and efficiently [6]. Within this context, many appli-
cations of ITS are targeted at extrinsically managing traffic by control-
ling infrastructure and access thereof, e.g. using lane management
and signal control.

However, ITS is also used as a means to directly inform or influence
road users such that they make ’smarter’ use of traffic networks [6].
With regard to parking, a relevant example is the parking guidance and
information (PGI) system which supplies drivers with dynamic park-
ing information within controlled areas. There are multiple variations
of PGI systems, each with their own respective method of commu-
nicating and presenting information to drivers [7]. A conventional
implementation is a static sign which displays the current number
of available parking spaces (as illustrated in Figure 1.1a), but recent
developments have also led to the integration of dynamic parking

1.1 motivation 4

information in mobile apps and in-car infotainment systems (as il-
lustrated in Figure 1.1b) [5]. Overall, the relevance of ITS regarding
(parking-induced) traffic problems is two-fold:

1. Providing dynamic parking information to authorities and ser-
vice providers

• Generates better understanding of parking phenomena and
therefore the overall traffic situation

• Facilitates the extrinsic implementation of dynamic traffic
management measures

2. Refining and communicating this information directly to drivers

• Using state-of-the-art technology, such as integration in
navigation apps and in-car infotainment systems

• Enables operators to exert direct influence (i.e. via service
provider) within the vehicle

What these ITS applications have in common, is their dependence
on adequate and high-quality information. Producing and supply-
ing this information is a challenging task which requires knowledge,
dedication and expertise.

1.1.3 Introduction to DAT.mobility

DAT.mobility, part of the Goudappel Groep, is a Deventer-based com-
pany with expertise in IT solutions and data analysis in the field of
mobility. Its main customers are consultants, planners, policy makers,
transport operators and construction firms. Using extensive knowl-
edge about mobility, IT and traffic modelling, DAT.mobility is able
to generate the correct information to ensure that the optimal deci-
sions are made. Notably, the company has a long track record of
developing solutions for traffic prediction on the short and medium
term, aiming to provide stakeholders with more insights into traffic

Figure 1.2: Example of an existing short-term traffic prediction tool

1.2 objectives 5

situations. For instance, predictions are visualized in an online envi-
ronment and communicated to traffic management centers, in which
they can be beneficial for ITS applications and decision-making pro-
cesses. An example use case of such an application is shown in Fig-
ure 1.2. Overall, the mission of DAT.mobility is to make decisions
effective, reliable and insightful. This is done by combining expertise
and societal value with user-friendly solutions and advises.

1.1.4 Current limitations

Traffic management needs accurate and complete information on traf-
fic conditions, especially when non-regular traffic conditions occur
[8]. Until now, authorities have mostly depended on real-time or his-
toric data for these purposes. However, due to the highly dynamic
nature of traffic, current information could already become obsolete
within a matter of minutes. This, combined with prevailing latency
in data availability, limits the effectiveness of contemporary traffic
management measures.

Wismans et al. conclude that stakeholders, public road authorities
and private mobility service providers need information on and de-
rived from the current and predicted traffic states “to act upon the
daily urban system and its spatial and temporal dynamics” [8, p. 2].
A similar stance is taken by Vlahogianni et al. [9], who state that ac-
curate parking predictions may lead to better management of the sys-
tem by transport operators and thereby congestion mitigation due to
avoidance of queue formation. Moreover, predictions could be used
as instrument to timely inform drivers, such that the effectiveness of
their decisions is maximized upon arrival at their destination.

As mentioned in Section 1.1.3, DAT.mobility is developing short-
term prediction tools which aim to provide stakeholders with such
insights. A prevailing drawback, however, is the absence of parking
as input for their underlying predictive models, especially given the
high influence of parking areas on the surrounding road network.
Given the fact that 40% of traffic in urban areas is attributed to the
search for a parking space [10], it is obvious that parking state pre-
dictions will add substantial value to the existing tools and therefore
provide new opportunities for pro-active traffic management.

1.2 objectives

Section 1.1 affirms the need for a system which can reliably predict
the future state of off-street parking areas in real-time and communi-
cate this to stakeholders. Such a system would further enhance the
existing short-term traffic prediction tools of DAT.mobility. This, in
turn, would empower pro-active traffic management processes, such

1.3 challenges 6

that traffic flows can be anticipated and regulated in pursuance of
reducing congestion, time waste, stress and fuel exhaustion [9].

In order to provide a useful input for existing traffic models, the
in- and outflux (i.e. the number of cars which enter and leave within a
specified time unit) of the parking area are the most important vari-
ables to predict, considering that they best describe the induced loads
on the surrounding traffic network. The occupancy rate (%) of the
parking area, which is directly related to the in- and outflux, is of
secondary importance. It could mainly be helpful for operators and
service providers to directly inform drivers, e.g. in the form of a
PGI system (see Figure 1.1b) which would facilitate routes towards
parking areas with (expected) vacant spaces while possibly diverting
traffic from highly occupied parking areas.

The aim of this thesis is therefore to:

• Acquire and select input data features based on an extensive
assessment of their predictive power

• Determine the most suitable machine learning method among
multiple candidates to predict influx, outflux and occupancy
rate

• Compile, train and validate a machine learning model which
can accurately predict influx, outflux and occupancy rate based
on the defined input features

• Interactively visualize the real-time predictions in order to pro-
vide useful insights for stakeholders

• Develop a system architecture which can execute the prediction
and visualization processes continuously and autonomously us-
ing real-time data feeds

1.3 challenges

Before all objectives can be satisfied, there will be some hurdles to
overcome. First and foremost, it will be challenging to find a suitable
approach for handling time series data within the machine learning
domain. Errors and uncertainty will naturally grow when the predic-
tive time horizon becomes larger. It will be demanding to develop a
model which does not only predict the upcoming five minutes reli-
ably, but also the next 60 minutes. It is therefore crucial to minimize
further propagation of errors within the model itself.

Another challenge is missing and erroneous data, either in the train-
ing set or in the real-time data feed. For instance, when one of the
data feeds is malfunctioning, the system should be able to remain

1.4 research questions 7

operational without significant deviations in its output. Since a con-
tinuous stream of time series data is required, a method should be
found for the optimal imputation of data, such that the model’s pre-
dictive performance does not suffer.

Lastly, the scalability of the system is also a potential challenge.
At present, extensive and accessible databases containing historical
parking data are scarce [11]. Adding to this, machine learning models
perform best when trained to a distinct set of training data. It will
therefore be burdensome to make the resulting model perform well
on other garages and lots. Hence, this thesis should mainly focus
on developing a concrete methodology rather than developing a ’one-
size-fits-all’ model.

1.4 research questions

The main research question for this thesis can be defined as follows:

How can an accurate and efficient machine learning methodol-
ogy be developed for predicting and visualizing the influx, out-
flux and occupancy rate of parking areas in real-time on a hori-
zon of up to 60 minutes ahead?

In order to answer the above question, the following subquestions
should be answered first:

Which data features are most significant as input for the predic-
tive model?

Which machine learning techniques, among multiple candidates,
are most suitable to predict occupancy rate, influx and outflux?

Which configuration of model parameters, built upon the pre-
viously defined techniques, yields the best performance when
predicting occupancy, influx and outflux on a horizon of up to
60 minutes ahead?

What is a suitable system architecture for executing the predic-
tion processes continuously and autonomously using a real-time
data feed?

How can the output predictions be visualized, such that useful
insights are provided to stakeholders both in retrospective and
in real-time?

To what extent is the resulting system transferable towards other
parking areas?

1.5 report outline 8

1.5 report outline

This thesis consists of five chapters which will gradually build to-
wards answering the main research question. Chapter 2 contains
background information on machine learning and a careful assess-
ment of the specific techniques applied to the parking and traffic do-
mains. This will be done by means of a literature study. Subsequently,
the third chapter will elaborate on the practical implementation of the
system. Here a methodology for data collection and preparation will
be discussed, as well as a procedure for training and testing the re-
sulting model. Furthermore an overarching system architecture is de-
veloped. Chapter 4 will describe the realization of the core machine
learning model and the complete system, after which the test results
are presented and discussed. Here the scalability and transferability
of the solution are evaluated as well. Ultimately, chapter 5 concludes
the thesis by answering the research questions and defining future
work.

2 THEORY AND BACKGROUND

This chapter contains an assessment of existing machine learning
methodologies and their predictive power within the parking domain.
First of all, background information is provided about the field of ma-
chine learning. A comprehensive literature study is then performed
to analyze existing knowledge, aiming to identify relevant outcomes
as well as gaps and remaining problems which provide opportunities
for further research. Since the performance of a predictive model is
highly characterized by the input data it is fed [12], the first step of
the literature review is to define the relevant input variables based
on a study of existing research on parking prediction. Subsequently,
a complete analysis and pre-selection are performed of the available
machine learning techniques, followed by an assessment of metrics
for evaluating and comparing the models. Lastly, the pre-selected
techniques will be described and explained in more detail.

2.1 introduction to machine learning

Machine learning is an application of artificial intelligence where a
system autonomously learns from prior experience without the use
of predefined equations as a model. Training data is fed stepwise to
the machine, after which algorithms gradually build a mathematical
model which optimally fits this data. Using this model, the machine
can then produce predictions or decisions without being explicitly
programmed to complete the intended task. [13]

2.1.1 Types of learning

The domain of machine learning consists of supervised learning and un-
supervised learning. In supervised learning, the dependent variable is
present to guide the learning process, whereas in unsupervised learn-
ing there is no knowledge of the desired output since discovering
patterns is the main objective [12] . Supervised learning is therefore
the most optimal way to predict an accurate output based on future
input variables (which are defined in Section 2.2.1). In the context of
parking, this approach is thus desired.

Supervised learning problems can be further divided into classifi-
cation and regression problems. Classification is a technique for pre-

9

2.2 literature study 10

dicting discrete responses where the output is classified as one of the
qualitative targets. On the contrary, regression is used when the out-
put variable is quantitative, such as the influx, outflux and occupancy
rate which this research is focusing on [12]. Hence, it is indisputable
that a regression technique should be chosen in the context of predict-
ing parking occupancy rates.

2.2 literature study

The goal of the literature study is to identify relevant outcomes, gaps
and remaining problems in current knowledge and research about
parking prediction. It provides empirical insights into the input vari-
ables, machine learning techniques and validation methods, as well
as a comparative assessment of their relevance according to existing
research. This entails a pre-selection of machine learning techniques,
which are later assessed more thoroughly using empirical tests on the
relevant datasets. Altogether, the identified outcomes and shortcom-
ings are used as basis for the further course of this research.

2.2.1 Relevant variables

In the real world, there are many factors which influence parking be-
haviour. Within machine learning, these factors can be quantitatively
translated to input variables (or independent variables) which, based
on their respective values in time, ultimately determine the predicted
output (or dependent variable) of the model. According to Guyon and
Elisseeff [14], the predictive power of a model is highly dependent
on the chosen variables. Feature selection is therefore a crucial task,
not only to optimize performance, but also to provide a better under-
standing of the underlying processes. A selection of eleven articles
was therefore made to determine the most promising predictive vari-
ables. This being said, it should be noted that all selected articles
solely consider the occupancy rate as dependent variable in their re-
search. For the purposes of this research, this is acceptable since the
in- and outflux simply determine the change of occupancy rate, as
visible in the following equation. At time t, the change of the occu-
pancy rate Ot is determined by subtracting the outflux fout,t from the
influx fin,t:

∆Ot = Θ(fin,t − fout,t)

Parking flows are highly dynamic over time, and therefore tem-
poral variables are among the most prominent candidates in terms of
predictive ability. Chen et al. [15] demonstrate that seasonal variables,
such as time and date, lead to dramatically improved prediction ac-
curacy. This is supported by others, for instance by Badii, Nesi and

2.2 literature study 11

Article Variable
Time of day Weekday Temperature Rain Holiday Event Traffic flow Historic occupancy

Vlahogianni et al. [9] X X X X
Badii, Nesi and Paoli [16] X X X X X

Hampshire et al. [17] X X X X
Chen [18] X X X

Zheng, Rajasegarar and Leckie [19] X X X
Camero et al. [20] X X

Chen et al. [15] X X
Lijbers [21] X X X X X X

Monteiro and Ioannou [22] X X
Reinstadler et al. [23] X X X X X

Pflügler et al. [24] X X X X X X

Table 2.1: Matrix of independent variable utilization

Paoli [16] who regard time variables as the baseline for their model.
As a matter of fact, the variable time of day is mentioned unanimously
in almost every article, as visible in Table 2.1. This is comprehensible,
as the occupancy might rapidly increase during the morning during
rush hour, while staying low at night.

Another time-related variable is the weekday, i.e. ranging between
Monday until Sunday. Lijbers illustrates that “whether it is a work-
ing day or a non-working day (like in the weekend) might influence
occupancy”, and claims that the weekday variable would therefore en-
hance the model’s response to such phenomena [21, p. 21]. Most
articles support this stance, even though Hampshire et al. [17] and
Badii, Nesi and Paoli [16] suggest that the actual importance of this
variable is quite low. Overall, however, the weekday is mentioned in
almost every article and can therefore be regarded as a potentially
influential variable.

Additionally, historic occupancy is also regarded to be a strong pre-
dictor. Vlahogianni et al. demonstrate using genetic optimization
that “a lookback time window of 5 minutes in the past may be effi-
ciently used to predict parking occupancy (%) up to 30 steps in the
future with high accuracy” [9, p. 198]. Similarly, Zheng, Rajasegarar
and Leckie [19] argue that a 30% performance gain can be achieved
by including several steps from the past, in addition to just the time of
day and weekday variables. Badii, Nesi and Paoli [16], as well as Mon-
teiro and Ioannou [22], suggest a similar effect. On the contrary, some
of the other articles do not endorse the historic occupancy as input vari-
able. The reason for this seems to be that these articles do not use a
data source which supplies measurement points up to the last minute.
For instance, Reinstadler et al. [23] define their research as a ’data-
mining problem’, which entails that their data points are independent
and unordered over time, unlike time series data. Considering that
multiple authorities and municipalities disclose complete historical
time series data as well as a real-time feed [25], it can be concluded
that inclusion of the historic occupancy variable is both feasible and
potentially beneficial for upcoming research.

2.2 literature study 12

Other variables which are often cited in research are related to
weather. In the majority of relevant articles, a weather variable such
as temperature or rain is used as input of the model. Reinstadler
et al. [23] argue that, because weather data has a high weight in
their resulting model, these variables are very important for the ac-
curacy of predictions. Nevertheless, Chen et al. [15] challenge this
by stating that weather conditions such as rain and fog have little im-
pact on parking occupancy. Their statement was based on analysis
of daily parking patterns in the city of Dublin. However, Badii, Nesi
and Paoli [16] demonstrate that the importance of temperature and
rainfall varies significantly per distinct parking location. It can there-
fore be argued that the statement by Chen et al. does not hold firm
ground. Overall, one can conclude that the temperature and rain vari-
ables are important to consider, even though it is uncertain whether
they will actually increase the predictive performance of the model.

The variables event, holiday and traffic intensity could supposedly
provide a useful addition to the model. Even though Pfügler et al.
[24] claim that they are of secondary importance for modeling park-
ing flows, they mention that “traffic information is an important fac-
tor for the availability of parking spaces” [24, p. 364]. This stance is
supported by Badii, Nesi and Paoli [16], who however remark that
the traffic flow variable is only relevant when sensors are located on
streets leading to the parking garage, and when measurement data
is “available for the previous hour with respect to the time of pre-
diction” [16, p. 8]. On the premise that relevant and comprehensive
data streams from nearby sensors are available both in real-time and
historically, traffic flow should definitely be considered as input vari-
able for the model. Last-mentioned is also applicable to event and
holiday since a majority of articles mention these variables. For in-
stance, Reinstadler et al. [23] state that external attributes like events
and holidays are extremely important since they influence parking
occupancy. Chen et al. [15] support this by demonstrating how the
predictive error and standard deviation spike during the Christmas
holidays.

All in all, it has become evident that time variables, namely time
of day and weekday, are the most prominent predictors for a machine
learning model on parking occupancy. The historic occupancy, pro-
vided that a lookback window is feasible with the given data feed,
is also a very important predictor. Secondary to this, the variables
temperature, rain, holiday and event could increase predictive power
because of their supposed relationship with traffic flows, and conse-
quently also parking flows. Lastly, it remains uncertain whether traffic
flow variables are good predictors for parking models, even though
this seems to be mainly related to a lack of research and reliable data
sources. Hence, there is still a clear opportunity for these variables to
be successfully applied onto the predictive model.

2.2 literature study 13

2.2.2 Analysis of contemporary techniques

In Section 2.1, supervised regression was determined to be the most
suitable type of machine learning for predicting parking states. State-
of-the-art machine learning provides many such techniques. In order
to determine the optimal technique, it is best to assess the possibilities
in order of their computational complexity and ease of implementa-
tion. Stolfi, Alba and Yao [26] performed tests using six predictive
techniques on parking data from the city of Birmingham. Out of
these techniques, which were selected based on their simplicity and
ease of use, they observed that polynomial regression and time series pre-
diction (illustrated in Figure 2.1b and 2.1d, respectively) provide the
best results. Camero et al. [20] acknowledge this, but remark that
there are more sophisticated techniques which can help to enhance
the predictive accuracy.

In particular, regression trees (see Figure 2.1c) allow for higher model
complexity while remaining accessible and flexible. Reinstadler et al.
[23] claim that this technique generates better predictions than the
ones mentioned by Stolfi, Alba and Yao. The authors argue that re-
gression trees are “more flexible and often also more powerful” than
time series techniques such as ARMA and ARIMA [23, p. 6]. This
follows from the fact that time series forecasting techniques only con-
sider the temporal seasonality patterns in the parking occupancy data
[23]. As a result, they are unable to cover the eight variables which

(a) Linear regression (b) Polynomial regression (c) Regression tree

(d) Time series forecasting (e) Feed-forward neural network (f) Recurrent neural network

Figure 2.1: Illustration of machine learning techniques

2.2 literature study 14

were proposed in Section 2.2.1. The positive attitude of Reinstadler
et al. regarding regression trees is shared by Hampshire et al. [17].
Based on analysis of four machine learning techniques, the authors
conclude that the performance of the regression tree “is superior to
the other measures” [17, p. 296]. According to the authors, this is
caused by the fact that ordinary linear regression and time series
techniques assume that all features are independent. A regression
tree, on the other hand, is able to expand the tree branches such
that any correlation can be handled properly. Notably in the case of
parking, where input variables are often correlated, regression trees
prosper [17].

Additionally, neural networks appear to produce promising results.
Hampshire et al. [17] performed an analysis on two types of feed-
forward neural networks (illustrated in Figure 2.1e), both of which proved
to be more successful than ’ordinary’ linear regression. The authors
suggest that a hybrid of neural networks and regression provides a
robust prediction platform. The use of neural networks is further
supported by Pfügler et al. who state that “neural networks are
particularly suitable for predicting events where little or nothing is
known about the underlying relationships and features of the events,
but enough training data or observation values are available” [24,
p. 367]. Furthermore, the authors argue that neural networks enable
continuous learning where the model can be consistently retrained,
in case that a real-time data feed is available. A preliminary explo-
ration of possible data sources shows that real-time feeds are avail-
able for the previously defined variables, which definitely advocates
for the use of neural networks. Yet, Snellen [11] highlights that neu-
ral networks are inconvenient due to their ’black-box’ concept which
prevents stakeholders from knowing the effect and influence of each
variable. Furthermore, the author maintains that neural networks
are often unacceptable for real-time predictions due to their computa-
tional complexity. While research by Badii, Nesi and Paoli [16] indeed
confirms that training times are longer than regular regression meth-
ods, it proves that the actual time to make a prediction is only 0.0031

seconds, which is even less than the 0.0052 seconds it takes for a lin-
ear regression model. For a real-time application, prediction times are
far more meaningful than training times, predominantly since there
is no need to retrain the model very frequently. [16] Overall, despite
some shortcomings, neural networks seem to be a very promising
technique in the context of parking occupancy prediction.

One should add that there are more variations of neural networks.
Previously mentioned articles mostly used traditional feed-forward neu-
ral networks, i.e. networks where nodes do not form a cycle. There is
also a variant of neural networks where nodes can form cycles and
hence contain feedback loops. This is called a recurrent neural network,
of which an example is illustrated in Figure 2.1f. Connor and Atlas

2.2 literature study 15

state that for some processes “feedback allows recurrent networks to
achieve better predictions than can be made with a feed-forward net-
work with a finite number of inputs” [27, p. 301]. Recurrent networks
are able to interpret sequences of inputs which rely on each other for
context. For instance, the parking occupancy of one minute ago re-
lies also on the occupancy of the occupancy two minutes ago, and so
forth [27]. Li, Li and Zhang [28] acknowledge this and demonstrate
that LSTM (a specific kind of recurrent neural network) outperforms
a regular neural network on prediction of available parking spaces.
The authors however remark that prediction times are significantly
longer than traditional feed-forward neural networks, which forms a
bottleneck for a real-time predictive application.

In conclusion, it has become apparent that time series forecast-
ing techniques are unsuitable for the input variables defined in Sec-
tion 2.2.1. Traditional linear and polynomial regression techniques
are feasible, but are regarded as being lightweight compared to other,
more sophisticated methods. On the contrary, regression trees are
positively regarded by multiple authors because of their transparency
as well as their ability to perceive correlations between variables. Neu-
ral networks have the potential to perform even better, even though
they lack in their ability to provide transparent insights about the in-
ternal structure due to their black-box concept. Feed-forward neural
networks seem to outperform recurrent neural networks in term of
prediction speed, which makes them more suitable for a real-time pre-
dictive system. All in all, regression trees come forward as the safest
choice in terms of predictive power and explainability to stakeholders,
with feed-forward neural networks being another crucial technique to
examine because of their additional performance boost and ability to
continuously retrain the model.

2.2.3 Performance evaluation

In order to validate machine learning models and compare their pre-
dictive performance, a standardized evaluation metric should be de-
fined. According to Caruana and Niculescu-Mizil [29], many of the
available metrics are unsuitable for comparison across multiple datasets.
This is especially caused by the fact that the range 0 to p of their values
depends on the used dataset. On top of that, for some metrics lower
values indicate better performance, while higher values are better for
others. The authors therefore define a normalized scale with range
[0,1] as a means “to permit averaging across metrics and problems”
[29, p. 3].

The coefficient of determination, or R2, is a popular metric for assess-
ing predictive models. It indicates the strength of the relationship
between the model and the dependent variable, and has a range of
[0,1]. Kvalseth points out that many data analysts utilize R2 to assess

2.2 literature study 16

the “goodness of fit of the models” [30, p. 281]. In the context of
parking occupancy prediction, it is mentioned by both Zheng et al.
[19] and Badii, Nesi and Paoli [16]. However, while being a useful
metric in itself, Kvalseth argues that it is often misused [30]. Will-
mott [31] acknowledges this and demonstrates that the R2 score of a
model is often unrelated to the actual size of the error between the
predicted and actual value. Additionally, Pelánek [32] argues that it
can be interpreted differently for different regression techniques. It is
therefore difficult for stakeholders to compare multiple models and
techniques using R2. Willmott eventually concludes that a conven-
tional error metric, such as the mean absolute percentage error (MAPE),
would provide better insight into the actual performance of a model
[31]. Badii, Nesi and Paoli [16] take a similar stance but challenge the
notion that MAPE, which is normalized and thus ranges from 0 to 1,
is suitable for the parking domain. The authors namely state that this
metric has the disadvantage of becoming infinity or undefined when
the parking occupancy approaches zero.

This problem can be solved by applying the mean absolute scaled
error (MASE). The MASE, which is obtained by dividing the tested
model’s mean absolute error by that of an arbitrary naive model. Like
MAPE, it is also independent of the scale of the data but will never
encounter the problem of zero division [16]. Hyndman endorses this,
and even argues that MASE should become “the standard metric for
comparing forecast accuracy across multiple time series” [33, p. 43].
In contrast to the simpler mean absolute error and mean squared error
metrics, Hyndman demonstrates that MASE is suitable even when
the data exhibit a trend or a seasonal pattern. Since parking occu-
pancy is characterized by several seasonal patterns, as reasoned in
Section 2.2.1, MASE arguably suits best in this context [33].

MASE =
MAE

MAEnaive
where MAE is defined as:

MAE =
1
n

n

∑
j=1
|ypred,j − yactual,j|

Because of its scale-invariant nature, it should be noted that MASE
is a more demanding metric for stakeholders (e.g. road operators
and traffic controllers) to understand and communicate than the more
common mean absolute error (MAE) and mean squared error (MSE) [33],
the latter of which penalizes large errors more than small errors.
Besides, MASE is more computationally expensive than its simpler
counterparts MAE and MSE. Arguably, MASE is only beneficial when
comparing model performances with each other and with a naive
model, and less when validating a model itself during the training
phase [16]. A balanced combination of these metrics would therefore
be optimal: MAE and MSE would then be used to provide a tangible
and intelligible performance measure for stakeholders, such that they

2.2 literature study 17

are able to understand how good or bad the model predicts in which
situation. Also, MSE is used as the essential loss function during the
training process of the individual models. Given the resulting mod-
els, MASE would then be useful to observe how the models perform
against a naive model, and therefore provides stakeholders with a
strong insight into the actual added value of the model. Also, it
opens the possibility to empirically compare the performance of the
influx, outflux and occupancy rate models, respectively.

Overall, a combination should therefore be used of MAE and MSE
as during the training and validation phase, and MASE during the
inter-model comparative testing phase.

MSE =
1
n

n

∑
j=1

(ypred,j − yactual,j)
2

2.2.4 Conclusions

Selecting and validating a powerful model is crucial in order to accu-
rately predict the influx, outflux and occupancy rate of parking areas
in real-time. The goal of this literature review was to determine the
relevant input variables, choose the most suitable machine learning
technique to accommodate these variables and finally select a fair and
reliable metric to assess the resulting models.

Using a systematic review of relevant sources, it was determined
that temporal variables were the most important for modeling the
parking occupancy, together with a lookback window of historic oc-
cupancies. The weather and event variables are of secondary impor-
tance. Even though the influence of traffic flow has not been thor-
oughly researched yet, preliminary results are sufficiently promising
to regard it as a tertiary variable. Overall, it is recommended to se-
quentially add these variables to the model and evaluate their effect
on the metric (defined in Section 2.2.3) in their order of potential im-
portance.

With the chosen input variables in mind, the next step was to as-
sess multiple machine learning techniques based on their predictive
power, computational complexity and suitability with the aforemen-
tioned variables. Because of their potential predictive performance in
the parking domain, as well as their capability to operate in a real-
time environment, both neural networks and regression trees were
found to be solid machine learning techniques for building the pre-
dictive model. A conclusive testing procedure will be carried out
to make a final decision on which technique performs best on the
available datasets corresponding to the defined input and output vari-
ables.

Finally, a balanced combination between several metrics was deter-
mined to be the most suitable method to train, validate and compare

2.3 pre-selected techniques 18

the neural networks and regression trees. The mean squared error pro-
vides a computationally efficient way to validate and optimize the
model to maximize its performance on the training set. Moreover,
together with the mean absolute error, it provides a comprehensible
and precise way for stakeholders to understand the model’s actual
errors on a natural unambiguous scale. After compiling and train-
ing multiple models, i.e. several mutations of neural networks and
regression trees, MASE can be used to empirically compare their pre-
dictive performance. Especially regarding its tolerance towards tem-
poral data containing trends and seasonalities, as well as its suitability
for model comparison across multiple datasets, MASE is arguably the
most suitable metric for inter-model comparative testing. Addition-
ally, it provides a practicable insight into a model’s performance with
reference to a naive model, which is especially advantageous to find
out whether the model actually possesses any added value.

A critical limitation of contemporary research in the machine learn-
ing domain is its highly fragmented nature: many different data
sources and parameters are utilized to assess models, input variables
and validation metrics. Directly comparing methodologies on a quan-
titative basis is therefore a challenging task which, in turn, compli-
cates the decision-making process. This literature review has there-
fore attempted to perform a comprehensive and objective selection
of methodologies based on their factual suitability within the specific
context. A careful process of training, validating and testing the re-
sulting methodologies with the relevant datasets is recommended in
order to precisely and definitively examine which one is most rele-
vant within this specific context.

2.3 pre-selected techniques

2.3.1 Regression trees

Decision trees, which are generally applied to classification problems
(see Section 2.1.1), utilize a tree structure to recursively classify in-
put variables to a fixed set of output variables [13]. Upon training
a decision tree model, the dataset is split into smaller and smaller
subsets while an associated tree structure is incrementally built at the
same time. As illustrated in Figure 2.2, the resulting tree contains
three types of nodes, all of which have their own function within the
model:

• A single root node, which has one or more outgoing branches
and no incoming branches. This node corresponds to the strongest
input variable of the model.

2.3 pre-selected techniques 19

Figure 2.2: Illustration of a decision tree structure [34]

• Decision nodes which are fed by one incoming branch and one
or more outgoing branches.

• Terminal nodes (or leaves) are fed by a single incoming branch
and have no outgoing branches. They terminate the tree struc-
ture, and therefore represent a classification (or decision).

Essentially, these nodes perform logical operations on the incoming
branch and guide it to another node based on a set of criteria which
were defined during the training phase of the model. The predictive
ability of a decision tree model is therefore highly characterized by
the complexity of these criteria and relations between nodes. Overall,
the strength of this technique is its ability to model complex relation-
ships using fundamental logic rules.

Regression trees are a variant of conventional decision trees, with
the obvious difference of being applicable to regression problems. In-
stead of classifying an outcome to a predefined set of categorical vari-
ables, regression trees output a numerical continuous value, e.g. the
influx, outflux or occupancy rate of a parking area. When training a
regression tree, every input variable (i.e. independent variable) is re-
cursively partitioned based on minimization of the error between the
predicted value and the actual value in the training set. New data can
be filtered and lands into one of the leaf nodes which corresponds to
a numerical value. This makes it possible to generate predictions.

Nevertheless, it should be noted that classification and regression
trees are known to suffer from bias and variance. Generally speak-
ing, simple trees will result in a large bias, while complex trees result
in large variance (i.e. overfitting). Ensemble methods combine multi-
ple trees in pursuance of increased robustness and better predictive
performance. They are implemented in the form of bagging and boost-
ing, which both produce new subsets of the training data by random
sampling with replacement. Subsequently, each collection of subset
data is used to train their respective decision trees, which results in
an ensemble of models. Bagging techniques are used to make the
resulting model less prone to individual trees overfitting the training

2.3 pre-selected techniques 20

data. A widely used implementation is random forest, which takes
one extra step as opposed to regular bagging techniques: in addition
to randomly selecting subsets of data, it also takes the random selec-
tion of features to grow trees. Its prediction is given based on the
aggregation of predictions from all trees in the model. The main ad-
vantage of random forests is the potentially high performance while
maintaining relative ease of implementation, especially since the tun-
ing of hyperparameters is fairly easy. Generally speaking, finding
the optimal balance between the number of trees in the model and
decent computational performance is the most important aspect of
hyperparameter tuning. Above all, random forests generally provide
good scalability and suitability to a wide range of machine learning
problems. [12] [13]

2.3.2 Feed-forward neural networks

An artificial neural network (ANN) is a computational model which
is inspired by the way a human brain processes information. This
technique has proved to be successful across many applications of
machine learning, including regression problems [12].

The fundamental unit in a neural network is a neuron, often called
a node. It receives an input from one or multiple other neurons, or
from an external data source. Each input has an associated weight,
which is assigned based on its relative importance to other inputs.
Subsequently, in order to produce an output value, an activation
function is applied to the given inputs. Additionally, a bias input
contributes a constant value to the function, which may be critical for
successful learning. Frequently used activation functions are ReLU,
Softmax, Sigmoid and Tanh.

The feed-forward neural network (FFNN) is the conventional type of
neural networks. As visible in Figure 2.3, it contains multiple neurons
which are arranged in layers. The specific property of feed-forward
neural networks is that the connections between neurons do not form
a cycle. Hence, information can only flow in forward direction. Neu-
rons from adjacent layers have connections between them (each with

Figure 2.3: Illustration of a FFNN structure [35]

2.3 pre-selected techniques 21

an associated weight), such that the outputs from one layer of neurons
serve as inputs for the next layer. A feed-forward neural network can
consist of three types of neurons:

• The first layer consists of input neurons, which feed the data
from external sources to the rest of the model. No computation
is performed in any of these nodes - they only pass the given
information to the hidden nodes in the next layer.

• Hidden neurons are not directly linked to the outside world.
Their function is to transfer information from the input layer to-
wards the output layer. A network can contain multiple hidden
layers.

• Output neurons are located in the last layer, i.e. the output layer
of the network. They are responsible for the final computations,
as well as the transfer of the information to the outside world.

Feed-forward neural networks are very useful to overcome the prob-
lem of non-linearity in some machine learning problems. In combina-
tion with their flexible structure, i.e. the ability of adding or removing
neurons and hidden layers to the model, this makes them applicable
and scalable to a wide range of tasks. By the same token, the output
layer can contain an arbitrary number of neurons, which makes this
technique suitable for multi-output predictions. This is particularly
useful when predicting time series, where each predictive horizon
(i.e. 1 minute ahead, 5 minutes ahead, 10 minutes ahead and so on)
can be represented by its own output node. It it therefore obvious
that feed-forward neural networks are theoretically very suitable to
the task of predicting flows and occupancy rates of parking areas on
a horizon of up to 60 minutes. [12] [36]

3 METHOD

To reach the goal of this thesis, i.e. developing and implementing
a methodology to predict the influx, outflux and occupancy rate of
parking areas, the project is divided into multiple phases. Together
these phases and corresponding steps form the method for further
execution of this research.

3.1 structure and process

The main structure of the method can be described using the follow-
ing phases and their corresponding substeps:

• Collecting the relevant data from external sources

– Preliminary exploration of the datasets

– Specifying the definitive input and output features as es-
tablished in Section 2.2.1

– Selecting and describing the historical and real-time data
sources

• Preparing and pre-processing the data before feeding it to the
candidate models as training, validation and testing data

– Translation of data attributes to their corresponding input
and output features

– Partitioning the datasets in training, validation and testing
subsets

• Training and validating the candidate models

– Determining and optimizing the structure of the models

– Model optimization using hyperparameter tuning

– Development of final models using the optimal configura-
tions

• Inter-model comparative testing before selecting the definitive
model to implement into the predictive system

– Defining a naive model for benchmarking purposes

– Comparing both candidate models using the benchmark
metric and selecting the one which performs best

22

3.1 structure and process 23

• Visualization of real-time measurements and predictions

– Ideation oriented towards prospective stakeholders

– Creation of the visualizations derived from ideas defined
during the prior step

• Implementing a comprehensive predictive system in practice

– Designing a suitable system architecture for predicting and
visualizing in real-time

– Realization of a prototype and evaluating the quality of
predictions over time

– Assessing the transferability of the system towards other
parking areas

3.1.1 Tools

In order to execute this research thoroughly, multiple software tools
were used. The Python programming language, with its extensive
range of libraries for data science and machine learning, provides a
solid basis for this purpose. All used libraries are open-source and
come with extensive documentation as well as an active user base.

The Python libraries Pandas and Numpy were used to process and
prepare the datasets, and Seaborn and Matplotlib were used to visual-
ize the data during the exploration and measurement phases, respec-
tively.

Additionally, the Scikit-learn and Keras libraries were utilized to
build, train and test the machine learning models. Scikit-learn pro-
vides a wide range of ’traditional’ machine learning algorithms as
well as tools for training and testing. It therefore provided the nec-
essary interface to implement the random forest model. Keras is a
high-level library which facilitates deep learning, i.e. it can be used
to construct, train and validate multiple types of neural networks, in-
cluding feed-forward neural networks. The library provides a large
number of frameworks and hyperparameters which can be tuned to
maximize model performance. The feed-forward neural network was
therefore implemented using Keras.

To store and process the incoming data of the real-time predictive
application, the server was equipped with an SQLite database which
could be accessed using the designated Sqlite3 library for Python. To
deploy a web server and stream predictions in real-time, a combina-
tion of the Flask and SocketIO libraries was utilized. The JavaScript-
based libraries MetricsGraphics.js and Chart.js were used to visualize
the predictions for end users.

3.2 data collection and exploration 24

Independent variables Dependent variables
Weekday Rainfall Occupancy rate
Time Preced. occupancy rate Influx
Air temperature Traffic flow Outflux

Table 3.1: Overview of independent and dependent variables

3.2 data collection and exploration

The relevant independent and dependent variables for the proposed
model were previously deducted and defined in Section 2.2.1. To
provide a definitive overview, these variables are listed in Table 3.1.
In order to develop and operate a functional predictive model, both
historical and real-time data sources should be available and opera-
tional. Based on the concept that the newly created model should
learn from the situations of the past, historical data sources serve as
the basis to develop and tune the model (i.e. training, validating and
testing). This historical dataset should comprise a vast number of
entries which contain a value for each independent and dependent
variable. Such a dataset can therefore be established using data fusion,
which is “the process of integrating multiple data sources to produce
more consistent, accurate, and useful information than that provided
by any individual data source” [37]. Subsequently, to actually make
predictions with the resulting model, real-time data sources should
be accessible in order to provide actual values to the input of the
model.

3.2.1 Historical data

Within the historical dataset, time and weekday are key variables
which are connected to every other variable. To illustrate, the oc-
cupancy rate, traffic flows and air temperature are all characterized
by a certain timestamp. These temporal variables can therefore be re-
garded as interconnecting variables which bound the other variables
together to form entries in the dataset. As a result, the time and
weekday variables are not collected from individual data sources, but
are rather composed by collecting the historical data for the other
variables.

Parking data is inevitably the most crucial data source within this
research, given the fact that the intended model aims to predict the
three parking variables occupancy rate, influx and outflux. Unfortu-
nately, historical open data sources for parking areas are still scarce
today [38]. The decision was finally made to collect the parking trans-
action data from the Open Parkeerdata portal of the Municipality of
Arnhem [39], which arguably provided the most extensive historical
database of parking transactions while also maintaining a real-time
feed (which will be further explained in Section 3.2.2). Using the

3.2 data collection and exploration 25

(a) Measurement locations (marked purple) (b) Placement near
highway exit

Figure 3.1: Selection of locations for traffic flow data source

transaction entries, the dataset enables us to derive the three depen-
dent variables and the preceding occupancy rates. The data source
provides transaction data of the Centraal, Musis and Rozet parking
garages in Arnhem, The Netherlands. Hence, the scope of the data
collection (and therefore the research as a whole) becomes the city of
Arnhem. In total, 233 MB of parking transaction data was retrieved
from this source, ranging from August 2017 until April 2019.

Traffic data was gathered from the Nationale Databank Wegverkeers-
gegevens (NDW) using its Dexter [40] platform. In total, eleven mea-
surement locations were selected, all of which are part of the MoniCa
loop detection system operated by Rijkswaterstaat. All locations can be
distinguished by their own identifier (formatted as RWS01 MONICA ...).
As visible in Figure 3.1, the sensors are located on the orbital high-
ways and freeways around Arnhem - specifically on highway exits
and access roads. Hence, they measure traffic driving towards the
city center (where the garages are located), such that the data gives an
adequate indication of the intensity of incoming traffic. Overall, after
considering the availability and validity of the measurement sensors,
15.96 GB of traffic flow data was retrieved from NDW Dexter, ranging
from November 2017 until April 2019.

To gather weather data, the open databases of the Dutch meteo-
rological institute KNMI [41] were utilized. Using a web service, the
hourly data of several variables can be queried. The measurements of
the Deelen weather station were chosen because of its close proxim-
ity (i.e. 10 km) to the city center of Arnhem. The KNMI data source
provided the possibility to obtain the air temperature at 1.5 meter
height (measured in 0.1 °C) and rainfall (a binary variable denoting
whether rain has fallen in the past hour) variables. The hourly data
from August 2017 until April 2019 were downloaded locally.

3.3 data preparation 26

3.2.2 Real-time data

In order for the models to make predictions, values for all indepen-
dent variables should be fed to the model. For instance, to predict the
occupancy rate, the model expects an input consisting of the current
weekday, time, temperature, rainfall, traffic flows and the preceding
occupancy rates. This is where real-time data comes into play.

To provide the model with inputs of preceding occupancy rates,
a real-time feed of relevant parking data is crucial. Based on the
approach taken in Section 3.2.1, an essential task is thus to obtain a
live feed of data from the parking areas in Arnhem. The Open Data
Portaal [42] of the Municipality of Arnhem provides a section with
dynamic parking data of all parking areas, including the aforemen-
tioned Centraal, Musis and Rozet garages. The data, which can be
fetched in JSON format, is dynamically updated every 11 minutes
and 20 seconds. After retrieving the JSON file, the occupancy rate is
derived from the values of the vacantSpaces (the real-time number
of free spaces in the garage) and parkingCapacity (the total num-
ber of parking spaces in the garage) attributes. Unfortunately, the
absolute values for influx and outflux cannot be retrieved from this
data source. This limits the knowledge and memory of the model to
merely the preceding occupancy rates.

Similar to the historic traffic data, the real-time traffic flow data
was also retrieved from the NDW. However, since the Dexter plat-
form is only meant for exploring and exporting historical data, the
Open Data Service [43] by NDW was used for this purpose. This plat-
form provides a set of files which are updated in real-time. The
trafficspeeds.xml.gz file, which is a compressed XML file, con-
tains the current speeds and flows of the MoniCa and MoniBas loop
detection sensors in The Netherlands, including the measurements
locations which were previously defined in Section 3.2.1.

In contrast to the historical data source, the KNMI unfortunately
does not provide an accessible API for real-time weather data. For
this reason, real-time temperature and rainfall data was obtained
from the Weerlive API [44]. This third party also obtains its data from
the KNMI, but distributes it as an API in JSON format which makes
it more accessible and convenient to process. It was assured that mea-
surements from same weather station were used. After obtaining an
API key and specifying the location (i.e. Deelen), data was retrieved
in real-time in a ten minute interval.

3.3 data preparation

As described in Section 3.2, historical and real-time data sources were
queried to obtain reliable input streams for every input variable. All

3.3 data preparation 27

Weather
data

Traffic
data

Parking
data

Historical source data

Cleaning dataset

Cleaning dataset

Cleaning dataset

Parking
data

Traffic
data

Weather
data

Merge datasets on
mutual timestamp

Add cyclic time features
(hour, minute, weekday)

Intermediate (cleaned) datasets

Total data

Final (combined) dataset

Compose lookback
windows

Figure 3.2: Process of cleaning and processing the historical data

sources have their own file format and data structure, and therefore
the data should be refined before being supplied to the training, val-
idation and testing processes. As a consequence, the decision was
made to clean and process all incoming datasets, and combine the
relevant data features into one file called totalData.csv. The .csv

(comma separated file) format was chosen because of its interpretabil-
ity, low time-space complexity and convenience in the Pandas library.
First of all, the source data files are imported and appended to a Pan-
das DataFrame (the main multi-dimensional data structure in Pan-
das), after which they are cleaned. Cleaning here entails: the removal
of obsolete columns from the dataset, deleting erroneous rows, filling
missing values and transforming the structure of the data. The result-
ing .csv files of the cleaned parking, traffic and weather datasets are
then merged based on their mutual timestamp column, after which
this column is converted into three other columns hour, minute and
weekday. A comprehensive overview of the process is shown in Fig-
ure 3.2.

3.3.1 Cleaning the historical data

The raw parking transaction data were retrieved as multiple files -
one for each month. As a result, 21 files were used, spanning from
August 2017 until April 2019. Using a Python script, these differ-
ent files were all appended to a Pandas DataFrame df. Then, based
on the fact that the Centraal garage (with a capacity of 1050 parking
spaces) is the largest of the three aforementioned parking areas, only
the transaction data from this garage was extracted. After this, the
obsolete columns garage nm (i.e. since all of its values now equal
’Centraal’), card type nm and pay parking dt were dropped from the
dataset, such that only the incoming and outgoing timestamps re-
mained. Every row thus denotes the parking movement of a partic-
ular vehicle, characterized by the in and out timestamps. Hence, all

3.3 data preparation 28

Select only the Centraal garage

df = df[df['garage_nm'] == "Centraal"]

Drop unimportant columns and rows

df = df.drop(columns=['garage_nm', 'card_type_nm', 'pay_parking_dt'])

df.columns = ['in', 'out']

Merge the in- and outflux

df = df.melt(value_vars=['in', 'out'], value_name='timestamp',

var_name='flux')

Using crosstab, list in- and outflux in separate columns

df = pd.crosstab(pd.to_datetime(df['timestamp']), df.flux)

Resample the in- and outflux for the desired time interval

df = df.resample('T').sum()

Save output as a combined csv file

df.to_csv('fullParkingData.csv')

Listing 1: Cleaning process of parking data

rows with one or more NaN values were dropped in order to exclude
incomplete parking movements (e.g. a car which enters the garage
but never leaves would be regarded as invalid). The reason why a
whole row is deleted in this case is to guarantee the stability of oc-
cupancy rates: since the occupancy rate is based on the cumulative
sum of influx and outflux, incomplete rows (when not compensated
for by another incomplete parking movement in opposite direction)
could destabilize the occupancy rate over time. Keeping only the com-
plete rows, which thus have both an in and out timestamp, will thus
assure the stability between both ends of the dataset. Subsequently,
the DataFrame was reshaped using the melt method, resulting in a
separate timestamp column and a flux column which denotes the
direction of the parking movement at that specific time. The influx
and outflux quantities were then derived using the crosstab method,
after which they were resampled on a minute basis. The resulting
dataset, which hence contains the influx and outflux quantities per
minute, was saved as fullParkingData.csv. The simplified Python
code is shown in Listing 1.

Similar to the parking transaction data, the traffic flow data was
combined from multiple .csv files into a single DataFrame. Unlike
the parking data, every row in the dataset represents one measure-
ment with a fixed interval of one minute. The data consisted of many
obsolete columns with erroneous values, which had to be handled
first. The column dataError is of Boolean type and denotes whether
a measurement is valid or invalid. Therefore, the avgVehicleFlow

(which denotes the traffic flow) was set to NaN where dataError ==

True, such that these erroneous measurements could later be filled

3.3 data preparation 29

Set erroneous values to NaN, to interpolate missing series

df.loc[df['dataError'] == 1, 'avgVehicleFlow'] = np.nan

Filter the rows with only the number of passenger cars

df = df[df['index'] == "1001A"]

Select only the total traffic intensity and the required columns

df = df[['measurementSiteReference', 'periodStart', 'avgVehicleFlow']]

df.columns = ['location', 'timestamp', 'flow']

Make a separate column for every measurement location

df = df.pivot_table(index='timestamp', columns='location', values='flow')

Apply filtering on the signal

B, A = signal.butter(2, 0.05)

df = signal.filtfilt(B, A, df)

Save output as a combined csv file

df.to_csv('fullTrafficData.csv')

Listing 2: Cleaning process of traffic flow data

by interpolation. Subsequently, only the measurements concerning
passenger cars had to be selected. Since the NDW documentation
[40] specifies that vehicles shorter than 5.6 meters are characterized
by index == 1001A, this was used to query the dataset. After that,
the relevant columns periodStart, measurementSiteReference and
avgVehicleFlow were kept while the other (obsolete) columns were
dropped from the DataFrame. Pivoting was then applied to assign a
separate column to every measurement location. Since traffic flows
are sensitive to randomness and high variance, smoothing was ap-
plied. For this purpose, a 2nd order low-pass Butterworth filter
(with a cutoff frequency of 0.05) was applied. This method was se-
lected in favour of a regular rolling mean, mainly since the rolling
mean introduces a lag which will be problematic when real-time
data sources are used. Ultimately, the resulting dataset was saved
as fullTrafficData.csv. The simplified Python code of the full pro-
cess is shown in Listing 2.

Relatively speaking, the historical dataset from KNMI required less
complex operations. Firstly, as visible the hourly data was loaded into
a Pandas DataFrame from a single comprehensive .txt file. As a con-
sequence of the formatting of the file, some empty and undefined
rows had to be removed from the dataset. Afterwards, the timestamp

column was converted into a Pandas datetime type which makes it
possible to perform temporal operations (e.g. interpolating, extrap-
olating and resampling) on the data. Equivalent to the parking and
traffic datasets, the weather data is then also resampled on a minute
basis. Since the dataset was originally provided in an hourly resolu-
tion, the forward-fill method (propagating the last valid observation
forward) was used to fill the missing values which emerged after up-

3.3 data preparation 30

Remove all redundant entries in the txt file

df.dropna(inplace=True)

Convert the hour and minute columns to the valid Pandas timestamp unit

df[0] = df[1].astype(int).map(str) + df[2].astype(int).map(str)

df[0] = pd.to_datetime(df[0], format='%Y%m%d%H')

Rename columns for more overview

df.columns = ['timestamp', 'temp', 'rain']

Upsample by forward-filling values between hours

df = df.resample('T').fillna("ffill")

Save output as a combined csv file

df.to_csv('fullWeatherData.csv')

Listing 3: Cleaning process of weather data

sampling. The simplified Python code of the process is shown in
Listing 3.

3.3.2 Establishing the final dataset

The three resulting datasets fullParkingData.csv, fullTrafficData.csv
and fullWeatherData.csv were imported into three Pandas DataFrame
structures, respectively. With df parking as the base dataset, the
columns of the other two DataFrames were appended using the merge
operation. All datasets consisted of a mutual timestamp column
(with %Y-%M-%D HH:MM format) which was used as the pivot to
perform this operation.

def to_cyclic_time(date):

hour, minute = date.strftime("%H").astype(int),

date.strftime("%M").astype(int)

frac_time = hour + minute/60.0

x, y = np.sin(2. * np.pi * frac_time/24.),

np.cos(2. * np.pi * frac_time/24.)

z = date.weekday

return x, y, z

Listing 4: Function to convert a timestamp to three (cyclic) attributes

Because temporal variables are cyclic (for instance, days and hours
are recurring patterns), engineering the optimal time features requires
some extra attention. The conventional method to express time would
be to assign a decimal number from 0 to 24 (for instance, 20:30 would
be expressed as 20.5) to every timestamp. However, this encoding
would suggest that there exists a maximum difference between 23:59

and 00:00 (i.e. 23.98 - 0 = 23.98), even though the actual difference

3.3 data preparation 31

is just one minute. A solution was found by modelling the hour and
minute as two separate input variables, which can be interpreted as
the x- and y-component of a unit circle (or the hour and minute hand
of a clock). The position is determined using trigonometric functions,
i.e. a sine for the hour component and a cosine for the minute com-
ponent. This will make it easier for the predictive model to evolve
an understanding of the cyclic patterns and seasonalities within the
dependent variables. Based on the timestamp, the weekday was deter-
mined and converted to an ordinal encoding to make it interpretable
for the model. The conversion into cyclic time and weekday features
was implemented in practice using the to cyclic time method, as
visible in Listing 4. This function is then called from the main Python
script, of which a simplified version is displayed in Listing 5.

Merge the two datasets on the intensity data

df = pd.merge(df_intensity, df_parking, how='inner').fillna(0)

df = pd.merge(df, df_weather, how='inner')

Compute occupancy from cumulative sum of in- and outflux

df['occup'] = (df['in'] - df['out']).cumsum()

Normalize the occupancy

scaler = MinMaxScaler(feature_range=(0, 100))

df['occup'] = scaler.fit_transform(df[['occup']])

Resample to a custom time interval

df = df.resample('T').last()

Convert timestamp to cyclic temporal features

df['hour'], df['min'], df['weekday'] = to_cyclic_time(df.index)

Listing 5: Process of merging and refining the final dataset

After merging the datasets and engineering the temporal features,
the occupancy rate was computed and appended to the dataset. The
cumulative sum of the difference between influx (the in column) and
outflux (the out column) was used to compute the number of occu-
pied parking spaces, after which the result was assigned to a new
column occup. Based on the total capacity of the Centraal garage (i.e.
1050 parking spaces), a MinMaxScaler was then applied to convert
these values into a percentage.

A lookback window was composed to provide the model with
knowledge about the recent past. Concerning the occupancy rate,
this was achieved by shifting the occup column by a multiple of 11

units (since the real-time occupancy is updated every eleven minutes)
and creating new columns with the shifted values. A window of
60 minutes was chosen, which therefore results in five new time-
shifted columns. Concerning the traffic flows, a similar approach
was taken: for every measurement location (i.e. starting with the
RWS01 MONICA 00D00C12BC0A10200005 column) a lookback window

3.3 data preparation 32

of 30 minutes was created, based on the knowledge that all locations
are (in the worst case) 15-30 minutes driving from the Centraal garage.
By applying a 10-minute rolling sum on every traffic flow column,
three aggregated time windows (i.e. 0-10 minutes ago, 10-20 minutes
ago and 20-30 minutes ago) were established for every measurement
location. This way, randomness and high variance of the real-time
traffic measurements will have significantly less impact on the quality
of prediction results. The lookback windows were realized according
to Listing 6, and a comprehensive list of resulting variables is visible
in Appendix A.

Process all the traffic data here

for column in df.columns['RWS01_MONICA_00D00C12BC0A10200005':]:

df[column] = df[column].rolling(10).sum()

for x in np.arange(0, 30, 10):

df[x + "-" + x+10 + "_" + column] = df[column].shift(x)

Add previous occupancy rates to the dataset

for x in np.arange(0, 60, 11):

df['occup_prev' + str(x)] = df['occup'].shift(x)

Listing 6: Creating lookback windows for traffic flow and occupancy rate

To be completely certain that there are no duplicate entries, the dataset
was once again resampled on a minute basis. The total dataset, which
now contains 40 columns relating to all independent and dependent
variables, was then saved as totalData.csv. The size of the result-
ing file is 123 MB, which is substantially smaller than the initial files
originating from the data sources. This shows the impact of cleaning
and restructuring the data. A sample of the final dataset is listed in
Appendix A.

Note: the mutations of the dependent variables (i.e. the horizons to
be predicted) have not yet been added to the final dataset. To retain
maximum flexibility with these columns during the model develop-
ment process, they were added just before feeding the training data
to the models (as described in Section 3.4).

3.3.3 Splitting the dataset

To develop a predictive model, the total dataset should be divided
into multiple subsets. This is a fundamental practice within machine
learning - not just to develop the predictive model, but also to assess
its performance and apply statistical reasoning [13]. In total, three
subsets can be distinguished:

3.3 data preparation 33

• The training set is used by the model to learn patterns from the
data. It yields a preliminary model which makes near-expected
predictions.

• A validation set is used to understand behaviour of the pre-
liminary model and its generalizability on a previously unseen
dataset. The validation set is therefore used to assess the effect
of structure changes and hyperparameter tuning.

• The testing set is kept separate from the model until until the
very end, in pursuance of obtaining a completely unbiased es-
timate of model performance. It provides a solid indication of
the model performance in a real-world scenario.

The partitioning of the datasets is arbitrary, but literature provides
some guidelines. In general, it is recommended to have a sufficiently
large training set, such that the model possesses enough data to learn
from. Train-test divisions of 75%/25% and 80%/20% are commonly
used, depending on the size of the total dataset. The initial training
set is then again partitioned into an actual training set and a valida-
tion set. Usually, test and validation sets are kept small in relation to
the training set. [12] [13] [36] Note that cross-validation would not be
effective within the context of this research, given the sequential na-
ture of the input data (i.e. time series). Moreover, it would arguably
be more effective to maintain the chronological order of data, such
that the model’s sensitivity to seasonal patterns will become more
evident during the validation and testing phase.

Ultimately, given the fact that our dataset is considerably large, the
total set was divided into 80% training data and 20% test data. The
training subset was then again partitioned into 90% training data and
10% validation data (as visible in Figure 3.3). Considering that the
total dataset contains 756,500 entries, the end result is a training set
of 80% * 90% * 756500 = 544,680 entries, a validation set of 80% *

10% * 756,500 = 60,520 entries and a test set of 20% * 756500 =

151,300 entries.

Training
80%

Testing
20%

Training
90%

Validation
10%

Figure 3.3: Partitioning of datasets for model development

3.4 model development 34

Resulting
architectures

80%

20%

Full
dataset

Training
data

Test data

Model
architecture
selection

FFNN

RF

Inter-model
comparative
testing

Intra-model performance evaluation

Training
data

Intra-model performance evaluation

90%

10%

Hyperparameter
tuning

Optimized models

Inter-model performance evaluation

?
Final model

Hyperparameter
tuning

Validation
data

Figure 3.4: Complete process of model development and selection

3.4 model development

After having composed and partitioned the final dataset, the process
of training, validating and testing the models can commence. In this
chapter, a systematic method is described which will be used to de-
velop and optimize the two eventual models (i.e. both the feed-forward
neural network and the random forest). The overall process (which is vi-
sualized in Figure 3.4) can be subdivided into three phases:

1. During model architecture selection, a systematic search is ap-
plied to establish the optimal internal architecture for both model
types. This is achieved by repeatedly evaluating the model per-
formance on the validation set. This phase results in two pre-
liminary models.

2. Both models are then optimized during hyperparameter tun-
ing. Relevant parameters of both model types are systemati-
cally tweaked, followed by repeated evaluation of the model
performance on the validation set. This results in two candi-
date models, i.e. a feed-forward neural network and a random
forest.

3. In the inter-model comparative testing phase, the candidate
models of both types are assessed using the test set against a
naive model. The methodology behind this phase is further
described in Section 3.6.

The selection and optimization processes were executed using Scikit-
learn and Keras. First, after initializing the training set into a DataFrame
df, all predictive horizons of the dependent variables were added.
This was done by shifting the in, out and occup columns in forward
direction in steps of five minutes, after which the results were as-
signed to new columns corresponding to each output variable and
the timeshift. The reason why the mutations of the dependent vari-
ables are added after creating the final dataset (and not before) is be-
cause it allows for more flexibility: before feeding the data to the
model, additional data processing can be applied on the in/outflux

3.4 model development 35

Create 60 min. horizon + 30 min. buffer

for x in np.arange(5, 90, 5):

df['occup' + str(x)] = df['occup'].shift(-x)

df['in' + str(x)] = df['in'].shift(-x)

df['out' + str(x)] = df['out'].shift(-x)

The subset of all input/independent variables is formed here

X = df['weekday', 'hour', 'min', 'temp', 'rain', 'occup_prev',

'occup_prev11', ..., '20_RWS01_MONICA_01D14503D400D0050009']

The subset of all output/dependent variables is formed here

y_inout = df['in5', 'in10', ..., 'in90', 'out5', 'out10', ... 'out90']

y_occup = df['occup5', 'occup10', ... 'occup90']

Listing 7: Preparation of input set X and output sets y

and occupancy models individually. Even though the goal of this
thesis is to predict up to 60 minutes ahead, the actual horizon was
extended to 90 minutes in order to establish a buffer. Since the real-
time occupancy of the Centraal garage is disclosed every 11 minutes,
the 30-minute buffer assures that the real-time predictive system is
always able to predict for 60 minutes ahead - even in the worst case
where the last occupancy rate was received 10 minutes ago. Lastly, a
common subset X was formed to accommodate all independent vari-
ables. Since in/outflux and occupancy rate are modeled separately,
two subsets y inout and y occup were formed to accommodate the
dependent variables. The implementation is visible in Listing 7.

To systematically find the optimal configuration for both model
types, subsets of the relevant parameter spaces were defined. Subse-
quently, all possible combinations of those subsets were tested suc-
cessively by compiling, training and validating a new model. The
performance could then be compared between all parameter config-
urations. This process is called a grid search [13]. Listing 8 and List-
ing 9 shows an example of how both model types were built, com-
piled and fitted to the training set using the aforementioned Python
libraries. The dashed lines indicate the places where parameters were
defined. All FFNN configurations were trained under the same cir-
cumstances: for 200 epochs, using Adam as optimization algorithm.
A ModelCheckpoint was used to save (i.e. create a checkpoint of) the
model only when its performance had improved after an epoch, such
that the best performing model is preserved after training. In Sec-
tion 3.4.1.2, more will be explained about epochs and optimization
strategies.

Since the training process of machine learning models is a time-
consuming and computationally demanding task, it was determined
that the first two phases were only focused on predicting the occu-
pancy rate. Since the occupancy rate is directly determined by the in-
and outflux (as explained in Section 2.2.1), the relative performance

3.4 model development 36

Build and fit FFNN using Keras

ffnn_model = Sequential()

Adding new hidden layers determines the model architecture

ffnn_model.add(Dense(...., activation='relu'))

....

mc = ModelCheckpoint('best_ffnn_model.h5', monitor='val_loss',

mode='min', save_best_only=True, verbose=1)

ffnn_model.compile(loss='mse',)

ffnn_model.fit(X, y_occup, validation_split=0.10,

epochs=200, verbose=2, callbacks=[mc])

Listing 8: Building a new FFNN occupancy model using Keras

Build and fit the random forest using Scikit-learn

rf_model = RandomForestRegressor(....)

rf_model.fit(X, y_occup)

Listing 9: Building a new RF occupancy model using Scikit-learn

of the occupancy model is arguably a strong indicator for the per-
formance of the in- and outflux model. As a consequence, the in-
and outflux models were only developed after the first two phases
(i.e. just before inter-model comparative testing) using the selected
architectures and parameters.

3.4.1 Feed-forward neural network

3.4.1.1 Architecture selection

The model architecture of a feed-forward neural network was selected
using two parameters: the number of nodes and the number of hidden
layers. According to Goodfellow, Bengio and Courville [36], “the di-
mensionality of hidden layers determines the width of the model”. In
similar fashion, the depth of the model is determined by the number
of hidden layers. Together, these parameters determine the internal
structure of the model and therefore have fundamental impact on its
functioning and performance.

A 2D grid search was executed to find the optimal combination of
the aforementioned parameters. For the number of nodes n in the
network, a range from 10 to 100 was chosen, equally spaced by an
interval of 10. This approach was mainly based on the commonly
applied rule-of-thumb which specifies that the number of nodes in
the hidden layers should be “between the input layer size and the
output layer size” [45].

For the number of hidden layers m, a range of 1 to 10 was chosen.
The nodes are divided equally across the hidden layers. In case of a

3.4 model development 37

remainder after evenly distributing the neurons, the remaining neu-
rons are added to the first hidden layer (i.e. after the input layer),
based on the fact that the input layer of size 40 is significantly larger
than the output layer of size 18. To illustrate, a configuration with
n = 50 and m = 4 would result in the following composition (obvi-
ously excluding the input and output layer):

[14, 12, 12, 12]

The grid search can be regarded as a matrix, where every combi-
nation of n nodes distributed across m layers is used to develop a
unique mutation of the feed-forward neural network. Afterwards,
the loss Ln,m (on the validation set) of every mutation is examined
and compared in order to determine the optimal configuration. As
previously explained in Section 2.2.3, the mean squared error was used
as loss function. A representation of the parameter grid can be seen
in Figure 3.5.

hidden layers
1 2 3 . . . 10


10 L10,1 L10,2 L10,3 . . . L10,10 #

neurons

20 L20,1 L20,2 L20,3 . . . L20,10

30 L30,1 L30,2 L30,3 . . . L30,10
...

...
. . .

...
100 L100,1 L100,2 L100,3 . . . L100,10

Figure 3.5: Matrix of grid search for FFNN architecture

3.4.1.2 Hyperparameter tuning

After having determined the optimal composition of hidden layers,
the next phase is to perform hyperparameter tuning. In their book
Deep learning, Goodfellow, Bengio and Courville state that “the learn-
ing rate is perhaps the most important hyperparameter. If you have
time to tune only one hyperparameter, tune the learning rate.” [36]
The learning rate α was therefore chosen as the main hyperparameter
to optimize during this phase. Once again, a grid search was exe-
cuted to find the optimal value of α. The corresponding grid, which
ranges from 0.01 to 0.00001 on a logarithmic scale, is defined as:

α = [0.01, 0.001, 0.0001, 0.00001]

Gradient descent is the most conventional optimization strategy for
neural networks: to find the minimum loss, the weights of the net-
work are updated against the slope (or gradient) of the loss function
at the current point [36]. Adam, the optimization algorithm which was

3.4 model development 38

used to train the models in Keras (see Listing 8), is also based on this
principle. Its main goal is to decrease the loss (which, in this context,
is the mean squared error) with regard to the validation set, since this
provides the best indication of whether underfitting or overfitting has
taken place. The learning rate determines the size of the steps which
are taken when ‘descending the slope’. If the learning rate is too high,
it will be more difficult to find the global minimum and the model
might not converge at all. On the other hand, if the learning rate
is too low, it will take very long for the model to converge [13]. A
balance must therefore be established.

Hence, the number of epochs is also a crucial factor. An epoch is a sin-
gle step in the training process of the neural network: it means that
the whole training set has been passed through the network once and
that the weights have been updated accordingly. The optimal learn-
ing rate was found by plotting the validation loss of each learning
rate α (from the parameter grid) against the number of epochs. In
case the α is too high, the validation loss decreases quickly during
the first epochs, but the improvement then stagnates (i.e. the global
minimum loss is never found) or even worsens. When the α is too
low, the validation loss will decrease steadily but extremely slowly.
The optimal α is therefore characterized by a steady and enduring de-
crease of the validation loss, which is neither too slow nor too abrupt.

3.4.2 Random forest

3.4.2.1 Architecture selection

Considering architecture and structural properties, random forests re-
quire a different approach than feed-forward neural networks. Ran-
dom forests are rather simple to optimize, since there are relatively
little parameters to modify. The main parameter which determines
the architecture of the model is the number of trees. Generally speak-
ing, maximizing the number of trees means that the predictive power
is maximized as well [13]. However, the improvement decreases as
the number of trees increases, i.e. at a certain point the benefit in
predictive power from incorporating more trees will be lower than
the cost in computing time for learning these additional trees, which
poses a potential threat to a real-time system. A 1D grid search was
therefore executed to find the optimal balance between the number
of trees and computational complexity.

trees
1 5 10 15 20 25 50 100 150 200

[]L1 L5 L10 L15 L20 L25 L50 L100 L150 L200

Figure 3.6: Array of grid search for RF architecture

3.4 model development 39

As visible in Figure 3.6, a range between 1 and 200 was chosen for the
number of trees n. Gradually increased spacing was used between the
amounts, mainly since the loss will initially decrease quickly before
reaching an equilibrium (i.e. asymptotic behaviour). The optimum
is then located at the point where almost no improvement is taking
place anymore. Again, the mean squared error was used as loss func-
tion Ln.

3.4.2.2 Hyperparameter tuning

After the optimal number of trees in the random forest has been iden-
tified, there are other hyperparameters of interest which could lead to
an increase of performance. According to Koehrsen, the maximum tree
depth (which sets a limit for the depth of each tree in the forest) and
maximum features (the number of features to consider when looking
for the best split) are two of the most important hyperparameters [46].
The tree depth determines the flexibility of the model: a deeper tree
can fit more complicated functions. However, additional flexibility
can also lead to overfitting. By evaluating the loss on the validation
set, an optimal balance can be found. A 2D grid search provided an
accurate and thorough method to optimize both parameters. For the
max. features the Scikit-learn library provides a fixed set of options
which generally satisfy the optimization needs: the number of features
(i.e. the 40 independent variable columns), the square root of this num-
ber as well as the log base 2 of this number. For the max. depth of the
trees, a range of 1 to 30 was chosen.

max. features
f eatures

√
f eatures log2(# f eatures)


1 L1,n L1,sqrt L1,log2 m

ax.depth

2 L2,n L2,sqrt L2,log2
3 L3,n L3,sqrt L3,log2
...

...
...

...
30 L30,n L30,sqrt L30,log2

Figure 3.7: Grid search matrix for RF hyperparameter tuning

The grid search can be regarded as a matrix, where all combinations
of max. depth d and max. features f are used to build and val-
idate a model, after which the loss Ld, f (i.e. from the epoch with
the lowest MSE on the validation set) of the corresponding configura-
tion is evaluated. The overall parameter grid is visible in Figure 3.7.
Ultimately, the combination with the lowest Ld, f is selected as the
optimal hyperparameter configuration. Together with the previously
selected model architecture, i.e. the optimal number of trees (see
Section 3.4.2.1, this results in the final RF model which is ready to
compete against the final FFNN model.

3.5 compiling and fitting final models 40

3.5 compiling and fitting final models

After the optimization phase, the final models were compiled and
trained definitively using the identified configurations. Along with
the occupancy rate models, this entails that the in- and outflux mod-
els were now also developed. For the final round, the feed-forward
neural network was trained under different circumstances: a training
duration of 2000 epochs was chosen instead of 200. In combination
with a ModelCheckpoint, a larger number of epochs facilitates a fur-
ther decrease of validation loss.

Ultimately, the final versions of the models were saved as the follow-
ing files:

• final ffnn occup.h5 (the FFNN model which predicts the oc-
cupancy rate)

• final ffnn inout.h5 (the FFNN model which predicts the in-
flux and outflux)

• final rf occup.pckl (the RF model which predicts the occu-
pancy rate)

• final rf inout.pckl (the RF model which predicts the influx
and outflux)

Note that different file formats are used - this is because Keras exports
models as Hierarchical Data Format (.h5) while Scikit-learn uses the
pickle (.pckl) format by default.

3.6 inter-model comparative testing

Now that the final candidate models were developed and exported,
their performance should be assessed and compared. In order to
decide upon the optimal model for the predictive system, both the
quality and efficiency of predictions were assessed. As explained in
Section 3.3.3, the test set was kept separate from the training and
validation datasets (both of which were previously used to develop
the individual models). Hence it provides a completely unbiased
estimation of how the models perform. Regarding the actual perfor-
mance assessment, the literature study in Section 2.2 has shown that
a combination of mean squared error (MSE), mean absolute error (MAE)
and mean absolute scaled error (MASE) would provide the best insights.
MSE and MAE provide a comprehensible and precise way of under-
standing the magnitude and distribution of the model’s errors using
a natural, unambiguous scale. MASE compares the model’s MAE to
that of a naive benchmark model, which makes it robust to scaling
differences. This accommodates the comparison between in/outflux

3.6 inter-model comparative testing 41

and occupancy rate models. Moreover, it demonstrates the added
value of each model with regard to a naive model.

3.6.1 Naive prediction benchmark

In order to use MASE, a naive benchmark model must be defined
first. According to Gilliland, a naive model should be “simple to cal-
culate” and easily implementable such that no computational power
is needed whatsoever [47]. Two commonly used naive models are the
random walk and the seasonal random walk:

• The random walk model uses the last known observation to pre-
dict the future values. To illustrate, the last known occupancy
rate from the Centraal garage will be used as prediction for 5

minutes ahead, and also 90 minutes ahead.

• The seasonal random walk model incorporates seasonal and
temporal patterns in order to make predictions. For instance,
the influx from one year ago would be used to predict the influx
for the upcoming minute.

Considering that this thesis aims to predict for a multitude of hori-
zons simultaneously (i.e. a multi-output approach, ranging from 5

to 90 minutes ahead), the seasonal random walk was chosen as the
most suitable naive model. In case of the ‘regular’ random walk, the
same value would namely be predicted for every horizon. As a result,
the accuracy of the 1-minute-ahead prediction would likely be excel-
lent, but performance would drop drastically as soon as the horizon
moves further away. With this in mind, the seasonal random walk
was regarded to be a more suitable benchmark model.

Mo.

Tu.

We.

Th.

Fr.

Sa.

0:00 4:00 8:00 12:00 16:00 20:00 0:00
Time of day

Su.

Figure 3.8: Daily and weekly patterns of the occupancy rate

An important consideration for the seasonal random walk is choos-
ing a suitable seasonality. Parking data is obviously sensitive to tem-
poral patterns: for instance during morning rush hour, the influx

3.6 inter-model comparative testing 42

tends to be very high when compared to other times of day. Sim-
ilarly, the influx tends to increase dramatically during the morning
rush hour. In Figure 3.8, the occupancy rate during a regular week
(from 22-10-2018 until 28-10-2018) is visualized. Not only daily sea-
sonalities (like the ones described earlier) are clearly visible, but also
weekly seasonalities such as the difference between weekdays and
weekend. All things considered, a period of 7 days (= 10.080 min-
utes) was chosen to be the most suitable seasonality since it covers
both the daily and weekly patterns of the dependent variables. The
selected benchmark model is therefore a seasonal random walk which
uses the historical data of 10.075 minutes ago till 9.990 minutes ago
as predictions from 5 to 90 minutes ahead.

3.6.2 Quality of predictions

Regarding the quality of predictions, both feed-forward neural net-
work and random forest were assessed using the test set. After feed-
ing the independent variables of the test set to the input of both mod-
els, the corresponding output predictions were generated and stored
in a DataFrame y predict. By comparing them to the actual values
y true of the dependent variables, the metrics MAE, MSE and MASE
were computed. Scikit-learn contains several built-in functions which
can be used to implement these metrics. The code snippet in List-
ing 10 shows abstractly how this was done.

from sklearn.metrics import mean_absolute_error, mean_squared_error

mse = mean_squared_error(y_true, y_predict)

mae = mean_absolute_error(y_true, y_predict)

mase = mae / mean_absolute_error(y_true, y_naive)

Listing 10: Obtaining test metrics for both model types

The assessment of predictive quality was commenced by a listing
of the MSE, MAE and MASE values per candidate model for every
dependent variable. Accordingly, three tables (influx, outflux and
occupancy rate) with two columns (FFNN and RF) and three rows
(MSE, MAE and MASE) were created. Before performing a more detailed
assessment of errors, the tables provide a comprehensive understand-
ing of the overall performance.

MASE was previously defined as the principal metric for inter-
model comparison. Hence, the MASE of the influx, outflux and occu-
pancy rate models was visualized using Matplotlib. This resulted in a
three-fold line plot with the predictive horizon (i.e. a range of 0 to 90

minutes ahead) on the x-axis and the MASE on the y-axis. By defini-
tion of the MASE metric, the naive model always satisfies MASE = 1.
Therefore a dashed horizontal line was placed on each subplot at

3.6 inter-model comparative testing 43

y = 1, such that the predictive performance of the influx, outflux and
occupancy can be visually compared with that of the naive model.
Instinctively, the candidate model with the lowest values of MASE
is the best. This visualization provides an efficient method to assess
the performance of the FFNN and RF models on all three dependent
variables at the same time. Also, it shows the development of MASE
as soon as the predictive horizon moves further away - which is a
meaningful aspect to take into consideration. For instance, a model
which initially makes many mistakes but starts to perform robustly
after 30 minutes might be preferable above a model which predicts
perfectly for the first 15 minutes but then suddenly weakens.

In order to obtain more insight into the distribution of the indi-
vidual errors from which the MASE was computed, a violin plot was
created. A violin plot is similar to a conventional box plot, but has the
additional benefit of displaying a rotated density plot on both sides.
This way, specific characteristics in the distribution of the errors can
be perceived and interpreted. For instance, a model with many out-
liers but a relatively low MASE might be regarded as inferior to a
model with a higher MASE and a compact distribution of errors. In
order to compare the influx, outflux and occupancy rate, all individ-
ual absolute errors were scaled using the MAE of the naive model.
Note that the mean of these individual error components is therefore
synonymous to the MASE.

With regard to the quality of predictions, the tables and plots facil-
itate the final decision between both candidate models.

3.6.3 Efficiency of predictions

For a system which aims to produce a consistent stream of predictions
in real-time, it is crucial to consider the predictive efficiency. In order
to compare the efficiency of both model types, the prediction time (in
seconds) was measured. Obviously, the lower the prediction time,
the higher the efficiency. After recording the start time using the
time function in Python, the predictions were made using the test
set (i.e. X test) as input. As soon as the output predictions were
established, the end time was recorded as well. The prediction time
was then calculated by subtracting the start time from the end time.
This process (as abstractly displayed in Listing 11) was executed 100

times per model in order to establish an adequate sample size.

start = time.time()

model.predict(X_test)

end = time.time()

Listing 11: Measuring prediction times of a model

3.7 real-time predictive system 44

After the prediction times were collected for all models, the mean
was computed for both the feed-forward neural network and the ran-
dom forest. The resulting numbers were then compared in order to
discover which model type is most efficient.

3.7 real-time predictive system

Even though the optimal machine learning model has been devel-
oped and tested in conformity with Section 3.4, the main goal is to
implement this model into a comprehensive system which can con-
tinuously generate predictions based on a real-time data feed.

3.7.1 System architecture design

Designing an appropriate system architecture requires a careful pro-
cess where all elements of the chain are taken into account: gath-
ering the data, generating predictions, evaluating the predictive per-
formance and communicating information to end users. Figure 3.9
shows the architecture design which was ultimately selected.

First and foremost, the machine learning model (i.e. the central
element of the system) should be provided relevant data to satisfy
all its input variables. This can be translated to the data collection
component of the system architecture, in which the three real-time
data sources (as identified in Section 3.2.2) are queried on a recurring
basis. In the same process, the input data are shaped and prepared,
after which they can be saved into a database of input data. This
database is a part of the comprehensive system database.

Every minute, the machine learning model retrieves the recent in-
put data from the database and uses this to generate a set of pre-

Dashboard monitoring
environment

External sources

Municipality of Arnhem
Open Parking Data

NDW Open Data Service

WeerLive

Input data Predictions

Database

Machine learning
model

Errors
Data retrieval

Web server

Client 1

Client 2

Client 3

Query

Information retrieval

Data collection

Prediction

Communication

Predictive system

Figure 3.9: Resulting system architecture

3.7 real-time predictive system 45

dictions for the upcoming 60 minutes. These are then fed back to a
database which stores all predictions that the model has generated
over time. Together, these processes belong to the prediction compo-
nent of the system, and are thus responsible for the core predictive
functionality of the system.

As soon as a batch of input data is received, the errors can be com-
puted for all predictive horizons by comparing the incoming occu-
pancy rate with the predictions of the past hour. Hence, this process
utilizes both the input database and the prediction database, and fi-
nally saves the errors into another database. This results in a self-
sustaining collection of errors per predictive horizon, from which the
system performance can be evaluated.

A web server forms the link between the system core and the end
user. Hence, it belongs to the communication component of the system
architecture. After establishing a connection with a client, the server
will push the real-time data to the client as soon as a new prediction is
available. This process ensures that the client receives the information
in real-time, without any delay. The dashboard application runs in
the web browser of the client. Hence, this is the front-end of the system
where the incoming data stream from the server is actually visualized
and displayed to the end user.

3.7.2 Back-end

The core functionality of the system revolves around gathering real-
time data and predicting the influx, outflux and occupancy rate with
this input data. The corresponding processes are invisible to the end
user, and can therefore be regarded as the back-end of the system.

The Python multiprocessing library was used to run all processes
simultaneously from one Python program. This program is called
mainProcess.py. All processes have access to the SQLite database
which is stored locally on the system machine as database.sqlite.
Six tables (as visible in Table 3.2) were added to store all relevant in-
coming data and the output predictions for every timestep ahead. A
reference table was added with the average occupancy rate per week-
day and time of day. This facilitates comparison of the real-time pre-
dictions with the historical averages of the same point in time.

Table Columns
occup time, occup, err 5, err 10, err 15, ..., err 60
weather time, temp, rain
traffic time, RWS01 MONICA 00D00C12BC0A10200005, ...
pred inoutflux time, pred in 10, pred in 20, ..., pred in 60, pred out 10, pred out 20, ..., pred out 60
pred occup time, pred 5, pred 10, pred 15, ..., pred 60
reference time, weekday, occup

Table 3.2: Composition of system database

3.7 real-time predictive system 46

3.7.2.1 Data retrieval

The input data was retrieved in real-time using three separate pro-
cesses, i.e. for the occupancy rate, weather data and traffic data, re-
spectively. This approach was mainly chosen to maintain a higher
computational efficiency, but also to make the system less susceptible
to a malfunction caused by a single data source (e.g. a connection er-
ror). In this case, the other processes would continue to run without
being impaired or delayed. All processes implement a while(True)

loop combined with a time.sleep() function in order to retrieve the
data repeatedly on the desired interval.

In the first place, an important process is the retrieval of real-time
occupancy rate data. This process is named get occupancy() and
is continuously executed with an interval of 60 seconds in order to
keep measurement delays as low as possible. As mentioned in Sec-
tion 3.2.2, the data is queried in JSON format from the parking data
portal of the Municipality of Arnhem [42]. Using the requests li-
brary, the response from the URL is loaded, after which the page is
interpreted as a JSON file and parsed to a Python dict structure. The
supplier distributes the data in a specific format, and therefore the
relevant information should be filtered from the original JSON struc-
ture. Hence, the parkingCapacity and vacantSpaces values were used to
compute the current occupancy rate, and the lastUpdated value was
used to record the time at which the current measurement was taken.
Using the retrieved occupancy rate (i.e. occup), the errors are then
computed. This is done using the compute errors() function which
compares every prediction of the past 60 minutes to the current occu-
pancy measurement. By taking the absolute value of the differences
between the real-time feed and the predictions, the error magnitude
can be obtained for every predictive horizon. The timestamp, current
measurement and all errors are then added to the occup table using an
INSERT query. When not enough predictions have been made in the
past hour (e.g. when the system has just been started), the errors are
filled with NaN values. A simplified version of the get occupancy()

process code is visible in Listing 12.

response = requests.get("http://opd.it-t.nl/Data/parkingdata/v1/arnhem/...")

data = json.loads(response.text)['parkingFacilityDynamicInformation']

['facilityActualStatus']

occup = (data['parkingCapacity'] - data['vacantSpaces'])

/ data['parkingCapacity'] * 100

errors = compute_errors(occup)

c.execute("INSERT INTO occup VALUES (?,?,?,?,?,?,?,?,?,?,?,?,?,?)",

[data['lastUpdated'], occup] + errors)

Listing 12: Retrieval of real-time occupancy rate

3.7 real-time predictive system 47

A similar method was used to retrieve the weather data in real-
time. This functionality was implemented using the get weather()

process. The weather data is provided by Weerlive in JSON format
[44]. Only the temp and rain values are of interest in this case, so only
these two values are queried and inserted into the weather table of
the database. Since the weather conditions are less prone to rapid
changes, the process is executed once every 15 minutes to relieve
computational complexity.

Lastly, the traffic data is retrieved using the get traffic process.
This process is executed every minute, based on the fact that the traf-
fic data is fed to the model using a rolling mean. Since traffic flows
are characterized by high variance (as explained in Section 3.3.2), a
larger number of samples is beneficial to the consistency of these in-
puts. The traffic data is retrieved from the NDW Open Data portal
[43] in a compressed XML file. Hence, the GZip library is used to
decompress the file first, after which the resulting XML file is parsed
into the more practicable dict format using the xmltodict library.
The structure of the data is fairly complicated, which results in a
large number of selections which have to be performed before the
raw traffic flow integer can be obtained. Using a double for-loop, the
traffic flow amounts are assigned to the corresponding measurement
locations. The process is concluded by an INSERT query such that the
current timestamp and traffic flows are appended to the traffic table
of the database. A simplified version of the process code is visible in
Listing 13.

with gzip.GzipFile(fileobj=f) as xml_file:

data = xmltodict.parse(xml_file)

data = data['SOAP:Envelope']['SOAP:Body']['d2LogicalModel']

['payloadPublication']

meas = {

'RWS01_MONICA_00D00C12BC0A10200005': 0,

'RWS01_MONICA_00D00C15003210200009': 0,

....

}

for element in data['siteMeasurements']:

for location in meas:

if element['measurementSiteReference']['@id'] == location:

meas[location] = element['measuredValue'][0]['basicData']

['vehicleFlow']['vehicleFlowRate']

break

c.execute("INSERT INTO traffic VALUES (?,?,?,?,?,?,?,?,?,?,?)",

[t_now] + list(meas.values()))

Listing 13: Retrieval of real-time traffic flows

3.7 real-time predictive system 48

3.7.2.2 Generating predictions

The predict() process is used to generate influx, outflux and occu-
pancy rate predictions in real-time. Both the in/outflux model and
the occupancy rate model are first loaded into memory, either from a
h5 or pckl file (depending on the chosen model type of Section 3.6).
Subsequently, all input data has to be collected and processed before
it can be fed to the models. This is done according to the following
steps:

1. Loading the last five occupancy rate measurements from the oc-
cup table, which together compose the lookback window which
is used as a direct input for the models.

2. Loading the traffic data from the traffic table, and applying a
rolling mean with a window of 10 minutes, after which every
tenth value is selected. This results in an consistent represen-
tation of the traffic flows at each location for 0-10 minutes ago,
10-20 minutes ago and 20-30 minutes ago. The resulting array of
values maps one-to-one to the traffic flow inputs of the models.

3. Selecting the last known temperature and rain values from the
weather table. These values also map one-to-one to the weather
inputs of both models.

4. The time and weekday values are computed by obtaining the
time of the last occupancy rate measurement and feeding this
to the to cyclic time() function (as described in Listing 4).

5. All input data are fed to the model, after which the model will
deliver an output of raw predictions for a horizon of 90 minutes.

Since there is a delay of maximally 11 minutes for obtaining a fresh
and up-to-date set of predictions (i.e. the interval at which new occu-
pancy rate predictions become available), the 30-minute buffer can be
used to maintain a steady stream of predictions. In order to adapt the
raw predictions to the current horizon of 60 minutes ahead, the set
of predictions is first resampled and interpolated on a minute-basis.
Polynomial interpolation (of the 2nd order) was used to fit a realistic
and smooth curve through the sample points. The result is a contin-
uous series of predictions, from which a 60-minute subset (starting
at the current timestamp) can be selected. Then, by selecting every
5th element of the resulting series, the actual predictions for the up-
coming hour are obtained. Ultimately, these are inserted into the
pred inoutflux and pred occup tables, respectively. The code snippet of
Listing 14 shows the interpolation and selection steps with regard to
the occupancy rate.

3.7 real-time predictive system 49

future_range = pd.date_range(t_last, periods=19, freq='5T', closed='right')

df_occup = pd.DataFrame({'occup': y_occup}).set_index(future_range)

df_occup = df_occup.resample('T').mean().interpolate(method='polynomial',

order=2).loc[t_now + 5:t_now + 65][::5]

c.execute('INSERT INTO pred_occup VALUES (?,?,?,?,?,?,?,?,?,?,?,?,?)',

[t_now] + df_occup['occup'].tolist())

Listing 14: Interpolating and selecting predictions for upcoming hour

3.7.2.3 Running the server

As explained in Section 3.7.1, the server has the task of communi-
cating predictions to the end users. It therefore serves as the bridge
between the back-end and front-end of the system. The server is
established using the Flask library using the serverHandler() pro-
cess. Also, since new predictions are generated every minute, it is
important that the users of the front-end application can observe
the changes as they occur. The SocketIO library provides a way to
achieve real-time bi-directional communication between clients and
the server.

For every client that connects to the server (i.e. a user who tries to
open the application using the web browser), a new thread is started.
This thread then executes a few steps in order to load the relevant
data and emit it to the client’s browser. These steps can be described
as follows:

1. Loading the last batch of predictions from the pred occup and
pred inout tables of the central database.

2. Prepare and/or enrich the predictions for communication to-
wards client

a) Regarding the occupancy rate, the historical measurements
of the past hour (obtained from the occup table) are ap-
pended to the predictions. The combined array is then
resampled and interpolated (i.e. polynomial interpolation
of the 2nd order) to obtain an equally spaced range of oc-
cupancy rates. This enriches the prediction data, such that
the end user will obtain a comprehensive overview of the
overall development of the occupancy rate over time.

b) Regarding the in- and outflux, the predictions (which are
output by the model as a combined array) are split in half
such that the influx and outflux are kept separate. Also,
besides communicating the full arrays of influx and outflux
predictions, the flows are also aggregated for the full 60

minutes ahead. This gives the end user a quick impression
of the magnitude and direction of the flows.

3.7 real-time predictive system 50

3. Computing the error metrics for all predictive horizons from
the individual error values in the occup table. The decision was
made to compute the MAE (i.e. taking the mean of all indi-
vidual errors) as well as the MSE (i.e. squaring the individual
errors and then taking the mean) for every predictive horizon.
This enables the end user to identify patterns, developments
and anomalies in system performance.

4. Computing a set of summary statistics using the occup table
which facilitates an at-a-glance overview of system performance.
The MAE was chosen to be the main metric, since its natural
scale makes it easier to understand for end users. In addition,
dividing the naive model’s MAE by that of the system will tell
how many times ‘better’ the system performs than the previ-
ously defined naive model. Note that this this metric essentially
identical to the inverse of the MASE, but will appeal more to the
imagination and comprehension of the end users.

Having obtained all relevant data and metrics, the next step is to
realize the communication of this data towards the front-end applica-
tion. Multiple socket.emit() calls are executed to to produce events
which can be perceived by the JavaScript in the client’s browser. An
emit contains the data which should be communicated from the server
to client, or vice versa. In total, two emit events are created: the first
one contains the set of new predictions. The decision was made to
group all predictions in one event, mainly to increase the efficiency
of communication: after all, the predictions are generated using the
same interval of one minute. The second emit event contains the error
values, as well as the summary metrics. An abstract representation of
how the data is emitted is visible in Listing 15.

socket.emit('new_pred', [pred_occ, pred_in, pred_out, aggregated_inout],

namespace='/predict')

socket.emit('new_metrics', [errors, summary], namespace='/predict')

Listing 15: Emitting the relevant data to the client

3.7.3 Front-end

The back-end processes enable the system to produce predictions and
communicate them via a web server. However, raw predictions will
not make a lot of sense to the stakeholders which this system is aimed
at. For the system to communicate important insights effectively to
those stakeholders, good visualizations of the system outputs are
thus essential. According to Knaflic, visualizing and communicating
data “is key to turning it into information that can be used to drive
better decision making” [48].

3.7 real-time predictive system 51

3.7.3.1 Context

Earlier in Section 1.1, the potential users of the system were identified.
They can be defined as follows:

• Public road authorities, who would use the predictive system
to enhance their information supplies and empower better decision-
making within their traffic management centers

• Private mobility service providers, who aim to use the predic-
tions in their own service which is then provided to the end
users (e.g. drivers of vehicles)

Especially the public road authorities (i.e. road operators, planners
and traffic management) would benefit from visualizing the predic-
tions, considering that they would use the system as an instrument
to enforce dynamic traffic management measures. As opposed to the
private mobility service providers, who will mainly acquire and con-
textualize the data before propagating it to their customers, they can
therefore be regarded as the main target group for visualization and
communication of the predictions.

There are several essential aspects of information which are needed
by traffic management centers to facilitate efficient decision-making.
First, the actual predictions should be communicated clearly and
within their respective context. For instance, when sudden changes
in occupancy rate, influx or outflux are predicted, the visualizations
should clearly communicate this, such that reliable and rational de-
cisions can be made on short notice. It is therefore crucial that the
predictions are not displayed independently, but that the changes
and developments are visualized over time. Preferably, the histori-
cal measurements and predictions are fused into a continuous time
series. This will provide a complete context of time, which is crucial
for traffic management to anticipate on the dynamic behaviour of the
parking flows.

To ensure the transparency of the system, information about the
system’s performance should also be clearly communicated to the
stakeholders. Such performance metrics (e.g. the aggregation and
distribution of the absolute or squared errors) can provide an indi-
cation of how good the model predicts, and also shows whether the
current performance is better or worse than usual. Therefore it can
be used as a measure for reliability and stability: another useful in-
strument for facilitating well-grounded decisions.

3.7.3.2 Visualizations

First of all, a dashboard gauge was implemented to give stakehold-
ers an instant overview of the current occupancy of the garage. This
was done using the JustGage library, which provides the functionality
of creating and customizing a gauge and updating it dynamically. A

3.7 real-time predictive system 52

range of 0 to 100% was chosen since the gauge displays the percent-
age of occupancy in the garage. By making the gauge color-coded,
i.e. a scale from green to red corresponding to the occupancy rate,
the users of the dashboard can immediately observe the current situ-
ation in the garage. The gauge therefore provides a clear context and
facilitates the interpretation of the other visualizations.

To visualize the occupancy rate over time (including the predic-
tions), a line graph was created. This was done using the Metrics-
graphics library since it provided the necessary tools to dynamically
visualize time series. By placing a marker at the current point in time
(annotated with ’now’) and modifying the line style and area color in
the CSS stylesheet, the predictions can be clearly distinguished from
the historical observations.

In contrast to the continuous nature of the occupancy rate time se-
ries, the in- and outflux are discrete (i.e. divided in 10-minute aggre-
gation windows) which makes a line graph unsuitable. As a result, a
bar chart was chosen for visualizing both the influx and outflux, with
every bar representing one time window of 10 minutes. This results
in six bars representing the predictions for up to 60 minutes ahead.
The chart was realized using the ChartJS library, which facilitates user
interaction with the graph (e.g. using a tooltip). A button was added
such that the user can interactively switch between the influx or out-
flux. To obtain a single overview of the expected distribution of the
influx and outflux in the upcoming hour (i.e. aggregation over 60

minutes), a pie chart was added. A tooltip was incorporated such
that users can read the exact values of the flows when hovering over
the chart.

The system performance metrics were visualized using a grouped
bar chart, where every predictive horizon (in steps of 5 minutes) is
represented by a group of bars. Each group consists of two bars:
the left bar represents the mean error of the last 24 hours, while the
right bar represents the mean error of all time. Again, this chart
was created using the ChartJS library. An interactive toggle enables
users to switch between the mean squared error (MSE) and the mean
absolute error (MAE), which thus updates the magnitude of the bars.
Ultimately, an overview of summary metrics was also added using
multiple boxes which were stylized with a suitable icon. The metrics
which were implemented are: the MAE of the past day, the MAE of
all time and the factor by which the selected model performs better
than the naive model. The latter metric is dynamically computed by
dividing the MAE of the naive model by that of the selected model.

Note: a complete overview of the visualizations can be found in Ap-
pendix B.

3.7 real-time predictive system 53

(a) ‘Parking monitoring’ page

(b) ‘Performance analytics’ page

Figure 3.10: Dashboard monitoring environment

3.7.3.3 Dashboard

To communicate all the aforementioned information to the relevant
stakeholders, the visualizations should be presented in a clear and
insightful way. Stephen Few argues that a dashboard is a “unique and
powerful means” to achieve this. A dashboard provides at-a-glance
views of several metrics and indicators regarding information which
is relevant to a particular objective [49]. The visualizations which
were described in Section 3.7.3.2 were thus jointly implemented into
a dashboard, which enables the stakeholders to obtain meaningful
insights to support their traffic management tasks.

The SB Admin template, which utilizes the Bootstrap framework,
was used as a structural basis for developing the dashboard moni-
toring environment. The visualizations were divided into two pages:
‘Parking monitoring’ and ‘Performance analytics’. An overview
of the resulting application is visible in Figure 3.10. Moreover, an en-
larged version of these screen recordings can be found in Appendix C.

Having developed the dashboard, the missing link from the core
system output to the end user is now established. This concludes the
development of the comprehensive system.

3.7.4 Performance testing

Even though the standalone machine learning model has already
been tested thoroughly in Section 3.6, it is also crucial to assess the
performance of the overall real-time system. Since the system will
be continuously exposed to unseen data, this provides insights about
how the system performs when it is implemented in a real-world
scenario.

3.8 transferability of the system 54

As previously mentioned in Section 3.7.2, the system computes the
errors dynamically by comparing a newly received measurement to
the predictions of the past hour. The absolute error values are saved
in the occup table of the system database. The system’s predictive
performance was therefore assessed by letting the system run (and
thus generate predictions) continuously for seven consecutive days.
Considering that measurements become available every 11 minutes
and that a week consists of 10,080 minutes, this leads to a sample
size of 10080/11 = 916 error values per predictive horizon (from 5

up to 60 minutes ahead), and thus 916 · 12 = 10996 error values in
total. This provides a sufficiently large basis to determine the overall
performance, as well as a breakdown of performance per predictive
horizon.

To facilitate direct comparison with the errors of the standalone
model on the test set, the overall system performance is assessed us-
ing the MAE, MSE and MASE metrics. The former two can directly
be computed from the individual errors in the occup table, but the
MASE needs the MAE of the naive model on top of this. In order to
relieve the system from extra computational complexity, the decision
was made to adopt the same MAE as derived when assessing the per-
formance of the naive model on the test set. Besides a comprehensive
overview of the three metrics, a detailed breakdown of the MASE per
predictive horizon is also provided. This is done by computing the
MASE for every predictive horizon (i.e. each column of the occup ta-
ble). According to Section 3.6, the same has already been done for
the standalone machine learning model. Hence, they are combined
into a line graph which facilitates an insight of how well the system
performs in a dynamic real-time situation, compared to a static test
on a historical dataset.

3.8 transferability of the system

So far, the research has been focused specifically on the Centraal
garage in Arnhem, The Netherlands. On the long term, however,
the objective of the system is unquestionably to accommodate other
parking areas as well. Transferability and expansion of the system is
therefore an important topic.

3.8.1 Input variable dependency

Whether other parking areas can successfully be added to the system
is arguably influenced by the kinds of data which are supplied. For
instance, when a parking area does not disclose a real-time feed of
its occupancy rate, the resulting model would likely perform worse
since it does not have any knowledge about the past hour. An insight

3.8 transferability of the system 55

into input variable dependencies therefore provides a clear indication
of the flexibility with which new parking areas can be added to the
system.

To test the importance of input variables, a feature elimination strat-
egy was used. This technique entails that variables are categorically
removed from the input dataset. For every variable (or category of
variables) that is removed, a model is trained with the remaining in-
put columns. The performance of this model is then assessed using
the MSE on the test set, after which this value is subtracted from the
MSE of the reference model (i.e. the model without any eliminated
features). This is how the increase of MSE is derived. Ranking these
results therefore gives a reliable indication of the feature importance
within the model.

Since some input variables are interrelated (e.g. the lookback win-
dows), it was a logical choice to categorize them such that they could
be eliminated collectively. During the test, all identified categories
were then separately eliminated, such that only a single category of
variables was absent during every test round. This facilitates the as-
sessment of a particular category’s importance. Note that the order
of elimination is irrelevant since it would not alter the outcome of the
test.

The following variable categories were ultimately identified:

• Weekday

• Both time of day variables, i.e. the hour and minute components

• Rain

• Temperature

• The five previous occupancy rate variables, i.e. the complete
lookback window of the past hour

• All mutations of the traffic flow variables, i.e. for all locations
and lookback timesteps

The MSE increase values, which were measured after individually
eliminating the above variable categories, thus provided a ranking of
the most influential variables of the model. By weighing this against
the availability and accessibility of data sources for these variables,
conclusions were drawn about the potential transferability of the sys-
tem. For instance, if the rain variable would hypothetically have a
large importance on the model while a corresponding data source is
unavailable (either historically or in real-time) for most parking areas,
the transferability would be at risk.

3.8 transferability of the system 56

3.8.2 Impact of limited training data

Not only the kinds of data, but also the amount of training data is
a crucial factor regarding the transferability of a machine learning
system. As mentioned in Section 3.2.1, the Centraal garage was cho-
sen because the municipality of Arnhem is currently the only Dutch
provider of such extensive historical datasets in combination with a
real-time feed. It should be mentioned, however, that there is a sig-
nificant number of parking areas which disclose a real-time data feed
only [38]. An opportunity would therefore be to dynamically collect
data, such that an independent historical dataset is gradually devel-
oped for each parking area. However, machine learning models need
a large amount of training data to learn from [13], so collecting an
appropriate amount of data will be very time-consuming. In order to
satisfy certain time and resource constraints, it is therefore crucial to
know how much training data is actually needed to obtain a decently
performing model.

This was tested by recursively dividing the training set into halves,
and training a new in/outflux and occupancy rate model every time
based on the resulting subset. To illustrate, after every round of the
test, half of the training set remains as input for the next round. The
data was not shuffled to maintain the natural order of the time se-
ries. Hence, the oldest half is removed from the set, while the most
recent half remains for the next round. Given the fact that the origi-
nal training set contains 544,680 samples (approx. 1 year of data), the
first subset will contain 272,340 samples (i.e. the last 6 months), the
second subset will contain 136,170 samples (i.e. the last 3 months), et
cetera. The loss Ln of the resulting model (i.e. the MASE correspond-
ing to fraction n of the original training set) was measured using the
test set. In total, this was done 15 times, as visible in the parame-
ter grid of Figure 3.11. The model configuration was kept constant
throughout the test.

Fraction of original training set
1 1

2
1
4

1
8 . . . 1

32768
[]L1 L0.51 L0.52 L0.53 . . . L0.515

Figure 3.11: Parameter grid of training subsets

After gathering the test results for every subset, a line graph was
made of the MASE against the size of the training set. A logarith-
mic scale was chosen for the x-axis (i.e. to denote the training set
size) since the fractions are all powers of 0.5. The MASE = 1 guide-
line was then again used to assess at which point the performance
becomes unacceptable (i.e. where the model performs worse than
the naive model). The corresponding training set size was then com-
puted by multiplying the fraction with the total number of samples,

3.8 transferability of the system 57

i.e. 544,680. The outcome therefore gives an indication of the amount
of data which is needed to develop both the in/outflux and the occu-
pancy rate model with acceptable performance.

4 RESULTS AND D ISCUSS ION

Using the previously defined research methods, the results were gen-
erated and collected. This entails the results of development and
tuning of the models, as well as the twofold testing and comparison
results, followed by the outcome of the final predictive application.

4.1 feed-forward neural network

4.1.1 Architecture selection

The 2D grid search was executed according to the previously defined
methodology of Section 3.4.1.1. The total running time of the test
was approximately 1 day and 20 hours. The MSE observations Ln,m

corresponding to all configurations of the (n, m) grid were visualized
using a heatmap. The results are visible in Figure 4.1.

1 2 3 4 5 6 7 8 9 10
Number of hidden layers

10
20

30
40

50
60

70
80

90
10

0
Nu

m
be

r o
f n

eu
ro

ns

17.9 18.3 34.2 33.9 34.7 33.8 34.3 34.3 34.4 34.2

21.6 15.6 18.8 30.3 34.9 34.1 33.9 34.4 32.5 34.2

15.8 16.7 14.4 18.4 17.6 32.7 29.7 34.0 32.7 34.1

19.2 13.9 14.0 12.4 15.0 14.7 18.8 33.3 16.5 31.8

16.7 19.0 15.4 13.1 14.9 15.9 14.6 17.3 18.6 16.7

18.6 17.6 15.8 15.1 13.5 15.6 17.4 15.9 16.7 17.7

15.4 14.5 15.2 17.4 11.8 13.2 14.3 16.2 14.6 13.6

14.7 15.7 13.7 12.6 12.5 14.9 14.7 14.9 15.9 34.0

19.2 14.8 11.8 11.5 13.0 14.8 14.2 13.8 15.6 13.8

15.3 20.7 17.4 14.4 18.2 14.7 15.6 17.2 18.0 19.0

12

16

20

24

28

32
M

ea
n

sq
ua

re
d

er
ro

r (
M

SE
)

Figure 4.1: Results of the FFNN architecture selection test

The worst performance (highest loss) can be observed in the bottom-
right part of the heatmap. This can be attributed to the fact that a
relatively low number of neurons is spread across a high number of
layers. As a result, some layers contain only one or two neurons,
which leads to underfitting.

58

4.1 feed-forward neural network 59

The ‘sweet spot’ in terms of performance is located around the top-
left and middle-left areas of the heatmap. This suggests that the feed-
forward neural network performs best when a high number of neu-
rons is divided between a relatively small number of hidden layers.
The minimum MSE was observed at configuration (90, 4), i.e. with
90 neurons spread across 4 hidden layers. Hence, the optimal model
architecture (i.e. the composition of hidden layers in sequential order)
can be schematically represented as follows:

[24, 22, 22, 22]

4.1.2 Hyperparameter tuning

The underlying structure of the FFNN has now been definitively es-
tablished. Using this architecture as basis, it is therefore time to op-
timize the hyperparameters. The test, which aims to find the opti-
mal learning rate, was executed according to the previously defined
methodology of Section 3.4.1.2. The total running time of the test
was approximately 1 hour and 45 minutes. For all learning rates α,
the progression of MSE over time (i.e. the number of epochs) was
visualized using a line graph. The results are as visible in Figure 4.2.

0 25 50 75 100 125 150 175 200
Epoch

0

10

20

30

40

50

60

70

M
ea

n
sq

ua
re

d
er

ro
r (

M
SE

)

 = 0.01
 = 0.001
 = 0.0001
 = 0.00001

Figure 4.2: Results of the FFNN hyperparameter tuning test

The graph clearly shows that the learning rates lead to significant
differences in the progression of the validation loss. As expected,
higher learning rates initially show a rapid decrease of MSE, but then
stagnate and show unbalanced behaviour. Evidently, the learning rate
α = 0.01 is too high: even though the loss is initially relatively low
(compared to the other curves), it shows large oscillations and fluctu-
ations and very little convergence. This suggests that the step size of

4.1 feed-forward neural network 60

the gradient descent is too high, which makes it impossible to find the
minimum loss. The lower learning rates, on the contrary, demonstrate
a stable decrease but converge too slowly. Notably, the learning rate
α = 0.00001 results in a very durable and reliable decrease of MSE,
even though it is still relatively high after 200 epochs. According to
the previously defined criteria, the learning rate α = 0.0001 provides
an optimal balance: after 200 epochs, the corresponding loss is the
lowest (compared to the other configuration) and is still descending
at a substantial pace. Out of all learning rates, it therefore provides
the best step size in order to descend to the lowest possible validation
loss within the boundaries of temporal and computational complexity.
A learning rate of 0.0001(= 10−4) was therefore definitively selected
for the final feed-forward neural network.

4.1.3 Candidate model

Based on the optimized parameters which were derived in the previ-
ous sections, the feed-forward neural network was definitively trained
according to the methodology of Section 3.5. The result is a neural
network with a [24, 22, 22, 22] architecture (i.e. 90 neurons and 4 hid-
den layers) which was trained over the course of 2000 epochs at a
learning rate of 0.0001. To prevent overfitting, a model checkpoint
was applied to save the model at the epoch where the lowest valida-
tion loss was measured.

Architecture:
[24,22,22,22]

of epochs:
2000

Learning rate:
0.0001

Occupancy rate In- & outflux

MSE 8.53334735 48.79440842

MAE 1.89815388 4.47198785

Final validation scores

final_ffnn_occup.h5 final_ffnn_inout.h5

Feed-forward neural network

Figure 4.3: Schematic overview of the resulting FFNN

In addition to the occupancy rate model, the in/outflux model was
now also developed using these parameters. An overview of both
models, their mutual configuration as well as their respective valida-
tion scores can be seen in Figure 4.3.

4.2 random forest 61

4.2 random forest

4.2.1 Architecture selection

After having found the optimal architecture and hyperparameters of
the feed-forward neural network, a similar process is now applied
onto the random forest. Regarding the selection of the optimal ar-
chitecture, the grid search was executed according to the previously
defined methodology of Section 3.4.2.1. The total running time of
the test was approximately 1 hour and 9 minutes. The MSE observa-
tions Ln corresponding to all configurations of the n (number of trees)
grid were visualized using a line graph. The results are visible in
Figure 4.4.

0 25 50 75 100 125 150 175 200
Number of trees

12

14

16

18

20

M
ea

n
sq

ua
re

d
er

ro
r (

M
SE

)

Figure 4.4: Results of the RF architecture selection test

The results suggest that the validation loss is subject to exponential
decay as soon as the number of trees n increases. Initially, when there
is only one tree in the ensemble, the random forest can essentially be
regarded as an ordinary decision tree. The real power of the random
forest becomes evident when the number of trees grows larger than
1. Around n = 50, the MSE seems to reach a plateau state. A higher
number of trees would thus be ineffective: no significant performance
gain will occur anymore, even though the computational complexity
will rise dramatically. Therefore, 50 trees were definitively chosen as
the optimal number of trees for the random forest model.

4.2.2 Hyperparameter tuning

Having found the ideal number of trees, it is time to tune the hyper-
parameters of the random forest. Hence, a grid search was executed

4.2 random forest 62

according to the previously defined methodology of Section 3.4.2.2.
The total running time of the test was 10,455 seconds (approximately
2 hours and 55 minutes). The MSE observations Ld, f corresponding to
all configurations of the (d, f) grid were visualized using a multiple-
line graph. Every setting of the maximum features f is therefore
represented by its own line. The results are visible in Figure 4.5.

0 5 10 15 20 25 30
Maximum depth of tree

0

50

100

150

200

250
M

ea
n

sq
ua

re
d

er
ro

r (
M

SE
)

max_features = n_features
max_features = log2(n_features)
max_features = sqrt(n_features)

Figure 4.5: Results of the RF hyperparameter tuning test

From the results, it becomes clear that the three configurations of
f roughly follow the same trend in relation to the maximum depth
d. Nonetheless, in case of f = n f eatures, the validation loss clearly
decreases faster and reaches the plateau state at a significantly lower
value of d. This is the preferred option, since the maximum depth
should be rather small in order to minimize the computational com-
plexity (i.e. training and prediction times). Using this configuration,
the minimum MSE is already reached at a maximum depth of 12, af-
ter which no further performance gain takes place anymore. A hyper-
parameter configuration where f = n f eatures and d = 12 is therefore
arguably the optimal balance.

4.2.3 Candidate model

Based on the optimized parameters which were derived in the previ-
ous sections, the random forest was definitively trained according to
the methodology of Section 3.5. The result is a random forest consist-
ing of 50 trees, each with a maximum depth of 12 and a maximum
features per split which is equal to the number of features of the
training set.

4.3 inter-model comparative testing 63

Random forest

of trees:
50

Max. depth:
12

Max. features:
of input features

Occupancy rate In- & outflux

MSE 8.35599859 48.79440842

MAE 1.816111146 4.47198785

Final validation scores

final_rf_occup.pckl final_rf_inout.pckl

Figure 4.6: Schematic overview of the resulting RF

In addition to the occupancy rate model, the in/outflux model was
now also developed using these parameters. An overview of both
models, their mutual configuration as well as their respective valida-
tion scores can be seen in Figure 4.6.

4.3 inter-model comparative testing

4.3.1 Quality of predictions

In order to determine the model with the best predictive performance,
the test set was supplied to the two candidate models, after which the
MSE, MAE and MASE metrics were computed. Before analyzing the
characteristics and distribution of the MASE for different predictive
horizons, the metrics are first presented in the form of a compre-
hensive table. The red and green color-codings denote whether the
random forest or the feed-forward neural network performed better
(i.e. which one had the lowest error). The resulting tables are visible
in Figure 4.7.

FFNN RF

MSE 35.12385 37.86854

MAE 3.85855 3.89326

MASE 0.79100 0.79812

FFNN RF

MSE 34.02645 36.04549

MAE 3.93467 3.99512

MASE 0.74247 0.75387

FFNN RF

MSE 6.37295 7.30700

MAE 1.65064 1.74443

MASE 0.38478 0.40664

Occupancy rateInflux Outflux

Figure 4.7: Comprehensive overview of inter-model test results

Even though the differences are not very large, the results demon-
strate that the feed-forward neural network outperforms the random
forest in every aspect. Concerning both the occupancy rate and the

4.3 inter-model comparative testing 64

0 20 40 60 80
0.0

0.2

0.4

0.6

0.8

1.0
M

ea
n

ab
so

lu
te

 sc
al

ed
 e

rro
r (

M
AS

E)

Buffer

Influx

0 20 40 60 80
Predictive horizon (min.)

Buffer

Outflux

0 20 40 60 80

Buffer

Occupancy
FFNN
RF
Naive

Figure 4.8: Results of MASE against the predictive horizon

in/outflux models, the FFNN predicts with lower errors (as acknowl-
edged by all three metrics) and can therefore be regarded as the
stronger model configuration. For a more precise insight into model
performance with regard to the predictive horizon, the three-fold line
graph is established in Figure 4.8.

First and foremost, the results show that every model predicts sig-
nificantly better than the naive benchmark. In particular, the occu-
pancy rate models (both the FFNN and the RF) perform exception-
ally well: across all horizons, the corresponding MASE is around
0.38 (see Figure 4.7) which suggests that the performance is 2.6 times
better than the naive model. This amounts to a performance gain of
160%. When considering only 60 minutes ahead (i.e. disregarding the
buffer), the performance gain is even higher at 235%. Regarding the
influx and outflux models, the overall MASE is between 0.75 and 0.8,
so both models predict 1 1

3 to 1 1
4 times more accurately than the naive

model. This amounts to a performance gain between 33 1
3 % and 25%.

As the summarized overview of metrics already suggested, the
MASE plots confirm that the FFNN outperforms the RF. However,
it is interesting to see that the differences become smaller as soon as
the predictive horizon increases. In fact, in case of the outflux, the RF
starts to to outperform the FFNN after predicting approximately 65

minutes or further ahead. A similar phenomenon occurs at the influx,
where the RF starts to perform better after 85 minutes. However, both
cases belong to the buffer area and are therefore less relevant than the
first 60 minutes - which is where the FFNN performs significantly
better.

4.3 inter-model comparative testing 65

Other insights can also be gained from the results. Notably, pre-
dicting occupancy rates is more reliable than predicting the influx
and outflux, as indicated by the fact that the MASE of the former is
significantly lower. This can obviously be explained by the fact that
the lookback window does not contain particular information about
the influx and outflux: only the preceding occupancy rates are fed to
the model. The occupancy rate models can therefore directly base
their predictions on these inputs. The influx and outflux models do
not possess this advantage, even though the interrelations between
the preceding occupancy rates do provide some indication of the re-
spective flows. Besides, the difference in performance can also be
explained by the fact that the occupancy rate is a continuous vari-
able with low variance, as opposed to the influx and outflux - both
of which are discrete (aggregated per 10 minutes) and are known to
suffer from high fluctuations (see Section 3.4).

It is also remarkable that the performance of influx and outflux
predictions remains relatively consistent, regardless of the predictive
horizon. Hypothetically speaking, the MASE would increase when
predicting further away from the t = 0 point, given the fact that uncer-
tainty increases when looking further into the future, and associated
difficulty in that case to outperform the naive model. The reason why
this is not applicable to the influx and outflux might be similar to the
previous case: since the influx and outflux do not possess knowledge
about their exact state before t = 0, the overall performance is worse
even though it stays consistent over time. Even though the outflux ex-
periences a small decrease of performance, it is clearly not as evident
as with the occupancy rate models.

Even though the differences are not large (approximately 0.05 on
average), another interesting observation is the fact that the influx
models perform better than the outflux models. This could be ex-
plained by the fact that the traffic flow variables are less relevant to
the outflux than to the influx. After all, the traffic flows facing in-
wards to the city center cannot be directly related to the outflux. The
same goes for the traffic flows facing outwards: they only become
relevant as soon as the vehicles have already left the garage.

From the violin plot in Figure 4.9 (see Section 3.6.2 for an expla-
nation about this plotting technique), some additional insights about
inter-model performance can be gained. Overall, the center of grav-
ity of every distribution is located under the MASE = 1 line, which
shows that all models predominantly predict better than the naive
model. Yet, the distributions of influx and outflux errors contain more
irregularities than the distribution of occupancy rate error (which is
very smooth and compact). This is also visible by the magnitude of
the outliers. Also, the distributions are more skewed towards a higher
MASE (above 1), which makes it evident that a significant number of
in- and outflux predictions are worse than those of the naive model.

4.3 inter-model comparative testing 66

Influx Outflux Occupancy

0

2

4

6

8

10

M
ea

n
ab

so
lu

te
 sc

al
ed

 e
rro

r (
M

AS
E)

Model
Feed-forward neural network
Random forest

Figure 4.9: Violin plot of error distributions for both model types

In contrast, almost none of the occupancy rate predictions are worse
than those of the naive model. These conclusions correspond to the
observations which were previously made using Figure 4.8.

An interesting observation is the relatively high magnitude of out-
liers in the outflux distribution in comparison to the influx distribu-
tion. Similar to the conclusions drawn before, a plausible explanation
for this is that the influx models have an advantage since the traffic
flow inputs are directly related to its output predictions.

4.3.2 Efficiency of predictions

The models were also compared by their prediction time, which gives
an indication of the efficiency of each model type. After 100 measure-
ments, the mean prediction time of the feed-forward neural network
(both the in/outflux and occupancy rate models) was determined
to be 1.57 seconds. Using an identical approach, the mean predic-
tion time of the random forest was determined to be slightly lower,
i.e. 1.32 seconds. These results demonstrate that the random forest
is slightly more time-efficient than the feed-forward neural network.
Yet, the differences are not very large (only a fraction of a second) and
it is therefore unlikely that the difference would be noticeable within
the real-time predictive system. Presumably, the small differences in
prediction time are caused by the relatively high number of paths
which must be traversed through all 90 nodes in the neural network,
as compared to the 50 trees of the random forest.

4.3.3 Final model selection

The previously discussed results demonstrate that the feed-forward
neural networks outperforms the random forests in terms of MSE,
MAE and MASE scores on the test set. However, the inter-model

4.3 inter-model comparative testing 67

differences are relatively small. In terms of predictive efficiency, the
random forest performs slightly better. Again, however, the differ-
ence is very small (i.e. only a quarter of a second).

Overall, the results therefore do not yet provide a unanimous an-
swer to which model configuration is best. A comparison of the argu-
ments for using both configurations could therefore produce a clearer
outcome. With the findings of the literature study (see Section 2.2) in
mind, the benefits of both configurations can be defined as:

FFNN

• Higher quality of predic-
tions (lower errors)

• More flexibility regarding
model optimization

• Ability of dynamic retrain-
ing when new data is avail-
able

RF

• Higher predictive efficiency
(lower prediction times)

• Model optimization is less
time-consuming

Rationally speaking, the additional benefits of the FFNN seem to out-
weigh those of the RF. Especially the option of dynamic retraining is
a convenient functionality for a real-time system where new data is
received on a frequent basis. Additionally, the FFNN has a multitude
of other hyperparameters which can be tuned to optimize the quality
and efficiency of predictions. The random forest is simpler to tune,
but cannot offer the same flexibility. Overall, the feed-forward neural
network can therefore be considered as the most suitable model type
for predicting the influx, outflux and occupancy rate.

Consequently, the final ffnn occup.h5 and final ffnn inout.h5

models were adopted in the real-time predictive application. A schematic
overview of the definitive configuration, as well as a summary of the
final testing scores is visible in Figure 4.10.

Architecture:
[24,22,22,22]

of epochs:
2000

Learning rate:
0.0001

Influx Outflux Occupancy rate

MSE 34.02645 35.12385 6.37295

MAE 3.93467 3.85855 1.65064

MASE 0.74247 0.79100 0.38478

Final testing scores

?
Final model

Feed-forward neural network

Figure 4.10: Schematic overview of the definitive configuration

4.4 real-time system performance 68

4.4 real-time system performance

After developing the comprehensive system according to the method-
ology of Section 3.7, it operated continuously for one week in order
to dynamically gather error magnitudes. The resulting errors (i.e. for
all predictive horizons) were then used to compute the MAE, MSE
and MASE values for the overall system. Figure 4.11 shows the com-
parison between the performance of the real-time system and the pre-
viously found testing results of the FFNN on the test set (denoted
as reference). Note that the reference metrics are lower than the ones
previously listed in Figure 4.10. This is caused by the fact that the
predictive horizon is limited to only 60 minutes (i.e. since the buffer
is used up by the real-time predictions), which logically lowers the
error magnitudes.

Real-time system Reference

MSE 8.57667 3.70145

MAE 1.87249 1.27988

MASE 0.36789 0.29835

Figure 4.11: Overview of real-time system performance

The results show that the system predicts significantly worse in real-
time than the standalone FFNN did on the historical test set. Notably,
the MSE has doubled and the MASE has increased by almost 0.1. A
likely cause for this difference would be the significant delay of in-
coming occupancy rate measurements (i.e. 11 minutes). In the worst
case, the system does therefore not possess any information about
the last 11 minutes, and will therefore have to use a large part of the
buffer. This increases the uncertainty of predictions, and hence the
magnitude of errors. When testing the standalone FFNN model, this
problem did not occur since the definite occupancy rate of the last
minute was always present as a direct input for the model. This issue
highlights the importance of a reliable and frequent (preferably up-to-
the-minute) input feed. It should be noted, however, that the current
real-time system still delivers predictions with a very high quality:
the MASE is 0.36789, which amounts to a performance gain of 172%
with regard to the naive model. Even though the quality of predic-
tions are thus slightly sacrificed by the real-time implementation, the
performance is still excellent altogether.

Besides an overview of the overall performance errors, a break-
down of the MASE per predictive horizon facilitates a more detailed
comparison between the predictive quality of the real-time system,
the standalone model and the naive model. The results are visible in
Figure 4.12.

4.5 transferability of the system 69

5 10 15 20 25 30 35 40 45 50 55 60
Predictive horizon (min. ahead)

0.0

0.2

0.4

0.6

0.8

1.0

M
ea

n
ab

so
lu

te
 sc

al
ed

 e
rro

r (
M

AS
E)

Real-time system
Reference
Naive

Figure 4.12: Comparison of error magnitude for every predictive horizon

The results show that the MASE of the real-time system is consis-
tently (approx. 0.1) higher than the MASE of the standalone model
on the test set. This supports the concept that the quality of all pre-
dictions is sacrificed by the delay of incoming occupancy rate mea-
surements. Another interesting observation is that the MASE of the
real-time system shows a ‘rougher’ pattern than the reference. This
could be caused by the fact that a relatively low sample size was used
(i.e. only 7 days) when compared to several months of historical data
for the reference test. Once the system is kept running for a longer
period, it is therefore expected that the line will smooth out. Overall,
however, the MASE of the real-time system still seems to follow the
same upward trend as the reference MASE, which is logical consider-
ing that the uncertainty grows when the system predicts further away
from t = 0. Altogether, it can be concluded that the real-time system
performs slightly worse across all horizons (i.e. up to 60 minutes
ahead), but that the overall quality of predictions is still outstanding.

4.5 transferability of the system

4.5.1 Input variable dependency

Using the feature elimination strategy as described in Section 3.8.1, the
significance of every input variable was obtained. This provides in-
sights into the reliance of the models upon the availability and ac-
cessibility of certain data sources. The results are visualized using a
horizontal bar chart, as visible in Figure 4.13.

The high influence of the previous occupancy rate variables im-
mediately stands out from the results: when the complete lookback
window was eliminated from the model, the MSE increased by no

4.5 transferability of the system 70

0 5 10 15 20 25
Feature importance (incr. of MSE)

Traffic

Prev. occupancy

Temperature

Rain

Time of day

Weekday

Figure 4.13: Overview of feature importance within the model

less than 28. This is a 340% increase from the initial MSE of 6.37. The
results therefore suggest that the driving force behind the model is
its knowledge about the past hour. Hence, the real-time component
is essential for the predictive quality of the system, even though the
current availability of real-time data feeds about the occupancy rate
is limited. For a considerable share of the parking areas this would
imply that the full potential of the predictive system cannot be un-
locked. Unless the availability of real-time parking data will increase
in the upcoming years, this can be regarded as a limitation of the
transferability.

The traffic flow variables also seem to have a significant importance
for the model: the MSE increases by almost 5 after eliminating these
variables. This, however, is less threatening for the transferability of
the system since the traffic flow data is published by the NDW for
the majority of highways in The Netherlands. The availability of the
data, both historically and in real-time, is therefore satisfactory which
makes it feasible to implement these variables when modelling other
parking areas. The same is applicable for the rain and temperature
variables, both of which can be obtained for every weather station
from multiple data sources (e.g. KNMI and Weerlive).

Together, the weekday and time variables also provide a meaning-
ful input to the model. Both are independent of any external real-time
data source since all other variables are time-based and therefore char-
acterized by a mutual timestamp (i.e. the data are time series). Hence,
they can be derived easily from the existing data sources or from the
system clock. The availability of the weekday and time variables is
therefore guaranteed, irrespective of the parking area. As a result,
they will neither limit nor restrain the transferability of the system.

4.5 transferability of the system 71

4.5.2 Impact of limited training data

In order to determine how much training data can be compromised
to maintain an acceptable level of performance, the testing procedure
of Section 3.8.2 was applied on the final FFNN configuration. The
resulting line graph, which is visible in Figure 4.14, shows the MASE
of both in/outflux and occupancy rate models against the training set
size. The MASE = 1 line is added to determine the point at which
the models start to perform worse than the naive model.

0.51 0.53 0.55 0.57 0.59 0.511 0.513 0.515

Size of training set (proportion of original)

0

2

4

6

8

M
ea

n
ab

so
lu

te
 sc

al
ed

 e
rro

r (
M

AS
E)

Original training set:
 544680 samples

Minimum subset:
 16 samples

Occupancy rate model
In/outflux model
Naive

Figure 4.14: Plot of MASE against amount of training data

The results demonstrate that the MASE increases significantly when
the amount of training data is reduced. In the worst case (when the
training set has been halved 15 times), the MASE is around 8, which
suggests that the models perform eight times worse than the naive
model. This is unsurprising, given the fact that only 0.515 · 544680 =

16 samples (i.e. a quarter of an hour) are left in this case. Overall, the
results confirm the traditional proposition that more training data
implies a better performing machine learning model.

Up until the sixth halving of the training set, the occupancy rate
model performs better than the naive model. This corresponds to
0.56 · 544680 = 8510 training samples. It can therefore be concluded
that approximately 8,510 minutes (i.e. almost 6 days) of data are min-
imally needed to develop an FFNN which performs better than the
naive model. Given that the weekly pattern was identified as an im-
portant seasonality of the parking data (as explained in Section 3.6.1),
this is a logical outcome.

The in-/outflux model clearly needs more training data to perform
at a satisfactory level: after already three halvings the model is outper-
formed by the naive model. This corresponds to 0.53 · 544680 = 68085

4.5 transferability of the system 72

training samples. Hence, it can be concluded that 68,085 minutes (ap-
proximately one and a half month) of data are minimally needed to
develop an adequately performing FFNN for the in- and outflux. The
fact that this number is relatively large might be related to the high
variance of the in- and outflux variables. As a result, more training
data will be needed for the model to generalize at an acceptable level.

Overall, the results demonstrate that a significant amount of train-
ing data can be compromised while maintaining a satisfactory level
of performance. Only 1.5 months of data is necessary to develop a set
of models which predicts the influx, outflux and occupancy rates bet-
ter than the naive model. This is a promising finding regarding the
ease of implementing other parking areas into the system, especially
in cases where the availability of data is substandard. Therefore, the
results are promising for the transferability and potential scalability
of the system. Still, however, it should be mentioned that optimal
results are obtained with higher volumes of data: the goal should
therefore always be to collect as much data as possible with the given
time and resources.

5 CONCLUS IONS AND
RECOMMENDAT IONS

5.1 conclusions

The aim of this thesis was to find the optimal methodology for pre-
dicting the influx, outflux and occupancy rate of parking areas on
a horizon of up to 60 minutes ahead. From an in-depth study of
existing literature, a combination of time, weather, traffic flows and
occupancy rates of the past hour was determined to be an optimal
range of independent variables for a predictive model. In addition,
it was concluded that random forest and feed-forward neural network
are the foremost machine learning techniques for predicting parking
area states on the short-term. Both techniques were implemented in a
real-world case in the city of Arnhem, The Netherlands, resulting in
two fully optimized candidate models which can predict the future
states of a large garage in the city center. The available historic and
real-time data feeds served as a constraint for the methodology. An
extensive inter-model comparative testing process has demonstrated
that a feed-forward neural network with a hidden layer composition
of [24, 22, 22, 22] and a learning rate α of 0.0001 outperforms its op-
ponent (the optimized random forest) in terms of predictive quality
and potential flexibility, although the differences are small and both
are outperforming naive models. Notably, when predicting the oc-
cupancy rate, the resulting feed-forward neural network achieves a
performance gain of 235% over the naive model (considering only
the horizons up to 60 minutes, hence disregarding the buffer).

When predicting influx and outflux, the performance gain is less
obvious but still significant, i.e. 33 1

3 % and 25% respectively. The
test results therefore prove that predicting the in- and outflux is a far
more difficult task which requires more training data than occupancy
rate. This likely relates to the differences in data variance and lacking
real-time data feed for in- and outflux. Yet, it should be mentioned
that the performance of predicting in- and outflux turns out to be less
sensitive to the predictive horizon.

When deployed in a real-time system, the model has also proved
to outperform the naive model by a large margin of 172%. Also, the
MAE shows that the system is able to predict the occupancy rate
with an average error of only 1.87. This once again demonstrates that
the system generates exceptionally accurate predictions, and that it

73

5.2 future research 74

is able to provide valuable information for pro-active traffic manage-
ment as well as mobility service providers.

With regard to the transferability of the system, some limitations
were identified, yet the overall results seem promising. The high im-
portance of the occupancy rate lookback window suggests that the
availability of real-time parking data is crucial for the system to per-
form optimally. Before a new parking area can be added to the sys-
tem, it must first be ensured that historical and real-time data feeds
regarding the specific parking area are fully available and operational.
Since the majority of parking operators do not yet disclose this data,
this can be regarded as a limitation to the transferability. However,
there is an upward trend visible in availability of parking data (both
historically and in real-time), and therefore it is expected that the
potential for expansion will grow over time. Additionally, the re-
sults have demonstrated that a relatively small amount of training
data is needed to maintain satisfactory performance. Regarding the
occupancy rate, only six days of data are needed to achieve better
performance than the naive model. For the in-/outflux, significantly
more training data (i.e. one and a half month) is required, but still
this is significantly less than the original training set of approx. one
year. This is highly promising regarding the ease of implementing
other parking areas into the system, especially in cases where the
availability of data is substandard.

5.2 future research

Further research will focus on extending the system deployment to-
wards other parking areas, improving the in- and outflux predictions,
performing anomaly detection, and integrating the model with traf-
fic state prediction models in order to empower complete predictions
of urban traffic states. As mentioned before, it is expected that more
and more parking areas can be incorporated into the system over time.
This emphasizes the relevance of researching structural and compu-
tational complexities that are associated with scaling up the system.
Also, considering the growing availability of real-time urban traffic
flows (e.g. via connected traffic light controllers) it is expected that
the quality of in- and outflux predictions can be improved. In addi-
tion, there are opportunities for extending the models with a measure
for reliability based on further analyzing the error patterns. To illus-
trate, anomaly detection and data imputation could enhance the accu-
racy and reliability of the system. A dynamic retraining process can
also be implemented to make the system robust to long-term trends
and seasonalities. Finally, the application of the system to support
pro-active traffic management will be further researched to assess the
actual value of predictions for traffic management purposes.

B IBL IOGRAPHY

[1] CBS. Aantal personenauto’s neemt verder
toe. [Online]. Available: https://
www.cbs.nl/nl-nl/maatschappij/verkeer-en-vervoer/
transport-en-mobiliteit/infra-vervoermiddelen/
vervoermiddelen/categorie-vervoermiddelen/personenauto-s

[2] S. Biswas, S. Chandra, and I. Ghosh, “Effects of on-street parking
in urban context: A critical review,” Transportation in Developing
Economies, vol. 3, no. 1, pp. 1–14, Apr 2017.

[3] D. Shoup, “Cruising for parking,” Transport Policy, vol. 36, no. 6,
pp. 479–486, Feb 2006.

[4] G. Cookson and B. Pishue, The Impact of Parking Pain in the US,
UK and Germany. INRIX Research, Jul 2017.

[5] Z. Sándor and C. Csiszar, “Role of integrated parking informa-
tion system in traffic management,” Periodica Polytechnica Civil
Engineering, vol. 59, Apr 2015.

[6] CIVITAS, Intelligent Transport Systems and traffic management in
urban areas, 2015.

[7] T. van de Zande, Parkeerverwijssystemen. Radboud Universiteit,
2013.

[8] L. Wismans, L. Suijs, L. Brederode, H. Palm, and P. van Beek,
“State estimation, short term prediction and virtual patrolling
providing a consistent and common picture for traffic manage-
ment and service providers,” in 25th ITS World Congress, Sep
2018.

[9] E. Vlahogianni, K. Kepaptsoglou, V. Tsetsos, and M. Karlaftis, “A
real-time parking prediction system for smart cities,” Journal of
Intelligent Transportation Systems, vol. 20, no. 2, pp. 192–204, Apr
2015.

[10] T. Giuffrè, S. M. Siniscalchi, and G. Tesoriere, “A novel architec-
ture of parking management for smart cities,” Procedia - Social
and Behavioral Sciences, vol. 53, pp. 16–28, Oct 2012.

[11] L. Snellen, Een instrument voor het voorspellen van de bezettings-
graad van parkeergarages. University of Twente, 2019.

75

https://www.cbs.nl/nl-nl/maatschappij/verkeer-en-vervoer/transport-en-mobiliteit/infra-vervoermiddelen/vervoermiddelen/categorie-vervoermiddelen/personenauto-s
https://www.cbs.nl/nl-nl/maatschappij/verkeer-en-vervoer/transport-en-mobiliteit/infra-vervoermiddelen/vervoermiddelen/categorie-vervoermiddelen/personenauto-s
https://www.cbs.nl/nl-nl/maatschappij/verkeer-en-vervoer/transport-en-mobiliteit/infra-vervoermiddelen/vervoermiddelen/categorie-vervoermiddelen/personenauto-s
https://www.cbs.nl/nl-nl/maatschappij/verkeer-en-vervoer/transport-en-mobiliteit/infra-vervoermiddelen/vervoermiddelen/categorie-vervoermiddelen/personenauto-s

Bibliography 76

[12] T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statis-
tical Learning, ser. Springer Series in Statistics. New York, NY,
USA: Springer New York Inc., 2001.

[13] J. D. Kelleher, B. M. Namee, and A. D’Arcy, Fundamentals of Ma-
chine Learning for Predictive Data Analytics: Algorithms, Worked Ex-
amples, and Case Studies. The MIT Press, 2015.

[14] I. Guyon and A. Elisseeff, “An introduction to variable and fea-
ture selection,” Journal of Machine Learning Research, vol. 3, pp.
1157–1182, Mar 2003.

[15] B. Chen, F. Pinelli, M. Sinn, A. Botea, and F. Calabrese, “Un-
certainty in urban mobility: Predicting waiting times for shared
bicycles and parking lots,” in 16th International IEEE Conference
on Intelligent Transportation Systems (ITSC 2013), Oct 2013, pp. 53–
58.

[16] C. Badii, P. Nesi, and I. Paoli, “Predicting available parking slots
on critical and regular services by exploiting a range of open
data,” IEEE Access, vol. 6, pp. 44 059–44 071, Aug 2018.

[17] R. Hampshire, T. Fabusuyi, V. Hill, and K. Sasanuma, “Decision
analytics for parking availability in downtown pittsburgh,” In-
terfaces, vol. 44, no. 3, pp. 286–299, Jun 2014.

[18] X. Chen, Parking occupancy prediction and pattern analysis. Stan-
ford University, 2014.

[19] Y. Zheng, S. Rajasegarar, and C. Leckie, “Parking availability
prediction for sensor-enabled car parks in smart cities,” in 2015
IEEE Tenth International Conference on Intelligent Sensors, Sensor
Networks and Information Processing (ISSNIP), Apr 2015, pp. 1–6.

[20] A. Camero, J. Toutouh, D. H. Stolfi, and E. Alba, “Evolutionary
deep learning for car park occupancy prediction in smart cities,”
in Learning and Intelligent Optimization, R. Battiti, M. Brunato,
I. Kotsireas, and P. M. Pardalos, Eds. Springer International
Publishing, 2019, pp. 386–401.

[21] J. Lijbers, Predicting parking lot occupancy using Prediction Instru-
ment Development for Complex Domains. University of Twente,
2016.

[22] F. V. Monteiro and P. Ioannou, “On-street parking prediction us-
ing real-time data,” in 21st International Conference on Intelligent
Transportation Systems (ITSC), Apr 2018, pp. 2478–2483.

[23] M. Reinstadler, M. Braunhofer, M. Elahi, and F. Ricci, “Predicting
parking lots occupancy in Bolzano,” Dec 2013.

Bibliography 77

[24] C. Pflügler, T. Köhn, M. Schreieck, M. Wiesche, and H. Krcmar,
“Predicting the availability of parking spaces with publicly avail-
able data,” in GI-Jahrestagung, 2016.

[25] E. Jansen, “Wat de huidige open parkeerdata
de markt oplevert.” Parkeer24, Mar 2015. [On-
line]. Available: https://www.parkeer24.nl/nieuws/160315/
wat-de-huidige-open-parkeerdata-de-markt-oplevert

[26] D. H. Stolfi, E. Alba, and X. Yao, “Predicting Car Park Occupancy
Rates in Smart Cities,” in Smart Cities: Second International Confer-
ence, Smart-CT 2017, Málaga, Spain, June 14-16, 2017, Proceedings,
E. Alba, F. Chicano, and G. Luque, Eds. Cham: Springer Inter-
national Publishing, 2017, pp. 107–117.

[27] J. Connor and L. Atlas, “Recurrent neural networks and time se-
ries prediction,” in IJCNN-91-Seattle International Joint Conference
on Neural Networks, vol. 1, July 1991, pp. 301–306.

[28] J. Li, J. Li, and H. Zhang, “Deep learning based parking pre-
diction on cloud platform,” in 4th International Conference on Big
Data Computing and Communications (BIGCOM), Aug 2018, pp.
132–137.

[29] R. Caruana and A. Niculescu-Mizil, “An empirical comparison
of supervised learning algorithms using different performance
metrics,” 2019.

[30] T. O. Kvalseth, “Cautionary note about r2,” The American Statisti-
cian, vol. 39, no. 4, pp. 279–285, 1985.

[31] C. J. Willmott, “Some comments on the evaluation of model per-
formance,” Bulletin of the American Meteorological Society, vol. 63,
no. 11, pp. 1309–1313, 1982.

[32] R. Pelánek, “A brief overview of metrics for evaluation of stu-
dent models,” in EDM, 2014.

[33] R. Hyndman, “Another look at forecast accuracy metrics for in-
termittent demand,” Foresight: The International Journal of Applied
Forecasting, no. 4, pp. 43–46, 2006.

[34] MEDIUM.com. Decision Tree Algorithm
With Hands On Example. [Online]. Avail-
able: https://medium.com/datadriveninvestor/
decision-tree-algorithm-with-hands-on-example-e6c2afb40d38

[35] University of Tennessee. Feedforward Neural Network. [Online].
Available: http://web.utk.edu/∼wfeng1/spark/fnn.html

[36] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT
Press, 2016, http://www.deeplearningbook.org.

https://www.parkeer24.nl/nieuws/160315/wat-de-huidige-open-parkeerdata-de-markt-oplevert
https://www.parkeer24.nl/nieuws/160315/wat-de-huidige-open-parkeerdata-de-markt-oplevert
https://medium.com/datadriveninvestor/decision-tree-algorithm-with-hands-on-example-e6c2afb40d38
https://medium.com/datadriveninvestor/decision-tree-algorithm-with-hands-on-example-e6c2afb40d38
http://web.utk.edu/~wfeng1/spark/fnn.html
http://www.deeplearningbook.org

Bibliography 78

[37] M. Haghighat, M. Abdel-Mottaleb, and W. Alhalabi, “Discrimi-
nant correlation analysis: Real-time feature level fusion for mul-
timodal biometric recognition,” IEEE Transactions on Information
Forensics and Security, vol. 11, no. 9, pp. 1984–1996, Sep. 2016.

[38] OpenParking, Data availability of facilities, https://openparking.
nl/.

[39] Gemeente Arnhem Open Data. Transactiedata - Parkeergarages.
[Online]. Available: https://parkeerdata.nl/opendata/arnhem/

[40] NDW Dexter. Data exploration and exporter. [Online]. Available:
https://dexter.ndwcloud.nu/

[41] KNMI. Uurgegevens van het weer in Nederland. [Online].
Available: https://projects.knmi.nl/klimatologie/uurgegevens/
selectie.cgi

[42] Gemeente Arnhem Open Data. Dynamische parkeerdata. [On-
line]. Available: http://opendata.arnhem.nl/datasets/Arnhem::
dynamische-parkeerdata

[43] NDW. Open data. [Online]. Available: http://opendata.ndw.
nu/

[44] Weerlive. KNMI Weer API. [Online]. Available: http://weerlive.
nl/delen.php

[45] S. Karsoliya, “Approximating number of hidden layer neurons
in multiple hidden layer bpnn architecture,” in International Jour-
nal of Engineering Trends and Technology, vol. 3, no. 6, Jan 2012.

[46] W. Koehrsen, “Hyperparameter tuning the random forest in
python,” Towards Data Science, Jan 2018.

[47] M. Gilliland, Which Naive Model to Use? SAS Institute,
2011, https://blogs.sas.com/content/forecasting/2011/04/26/
which-naive-model-to-use/.

[48] C. Knaflic, Storytelling with Data: A Data Visualization Guide for
Business Professionals. Wiley, 2015.

[49] S. Few, Information Dashboard Design: Displaying Data for At-a-
glance Monitoring. Analytics Press, 2013.

https://openparking.nl/
https://openparking.nl/
https://parkeerdata.nl/opendata/arnhem/
https://dexter.ndwcloud.nu/
https://projects.knmi.nl/klimatologie/uurgegevens/selectie.cgi
https://projects.knmi.nl/klimatologie/uurgegevens/selectie.cgi
http://opendata.arnhem.nl/datasets/Arnhem::dynamische-parkeerdata
http://opendata.arnhem.nl/datasets/Arnhem::dynamische-parkeerdata
http://opendata.ndw.nu/
http://opendata.ndw.nu/
http://weerlive.nl/delen.php
http://weerlive.nl/delen.php
https://blogs.sas.com/content/forecasting/2011/04/26/which-naive-model-to-use/
https://blogs.sas.com/content/forecasting/2011/04/26/which-naive-model-to-use/

A SAMPLE OF F INAL DATASET

Note that this sample only displays two entries of the totalData.csv

file. The actual dataset contains 756,635 entries, taking up 123 MB of
memory space.

Feature Timestamp

2017-11-23 15:46:00 2017-11-23 15:47:00

occup 77.13207547169812 77.0327706057597

occup prev 78.94736842105263 78.64945382323734

occup prev11 79.74180734856007 79.84111221449852

occup prev22 81.0327706057597 80.53624627606753

occup prev33 83.0188679245283 82.52234359483614

occup prev44 85.10427010923534 85.00496524329692

occup prev55 88.0327706057223 88.53624627606432

in 5 2

out 3 3

weekday 3 3

hour -0.8338858220671681 -0.8362861558477592

min -0.5519369853120584 -0.5482932295199142

temp 107.0 107.0

rain 1.0 1.0

0-10 RWS01 MONICA 00D00C12BC0A10200005 348.0 360.0

10-20 RWS01 MONICA 00D00C12BC0A10200005 348.0 354.0

20-30 RWS01 MONICA 00D00C12BC0A10200005 438.0 432.0

0-10 RWS01 MONICA 00D00C15003210200009 690.0 672.0

10-20 RWS01 MONICA 00D00C15003210200009 570.0 642.0

20-30 RWS01 MONICA 00D00C15003210200009 726.0 696.0

0-10 RWS01 MONICA 00D03218D42800200007 168.0 168.0

10-20 RWS01 MONICA 00D03218D42800200007 228.0 216.0

20-30 RWS01 MONICA 00D03218D42800200007 252.0 234.0

0-10 RWS01 MONICA 00D03218D80010200005 564.0 588.0

10-20 RWS01 MONICA 00D03218D80010200005 498.0 450.0

20-30 RWS01 MONICA 00D03218D80010200005 600.0 654.0

0-10 RWS01 MONICA 01D145026032D007000B 924.0 966.0

10-20 RWS01 MONICA 01D145026032D007000B 990.0 996.0

20-30 RWS01 MONICA 01D145026032D007000B 972.0 972.0

0-10 RWS01 MONICA 01D14502B000D007000B 972.0 990.0

10-20 RWS01 MONICA 01D14502B000D007000B 1080.0 1062.0

20-30 RWS01 MONICA 01D14502B000D007000B 1200.0 1164.0

0-10 RWS01 MONICA 01D14502F400D007000B 948.0 942.0

10-20 RWS01 MONICA 01D14502F400D007000B 930.0 936.0

20-30 RWS01 MONICA 01D14502F400D007000B 1050.0 1092.0

0-10 RWS01 MONICA 01D145032C00D007000B 1284.0 1278.0

10-20 RWS01 MONICA 01D145032C00D007000B 1350.0 1338.0

20-30 RWS01 MONICA 01D145032C00D007000B 1440.0 1476.0

0-10 RWS01 MONICA 01D145038000D0050009 1320.0 1248.0

10-20 RWS01 MONICA 01D145038000D0050009 1296.0 1326.0

20-30 RWS01 MONICA 01D145038000D0050009 1350.0 1380.0

0-10 RWS01 MONICA 01D14503D400D0050009 1266.0 1308.0

10-20 RWS01 MONICA 01D14503D400D0050009 1200.0 1164.0

20-30 RWS01 MONICA 01D14503D400D0050009 1290.0 1272.0

79

B OVERV IEW OF V ISUAL I ZAT IONS

Figure B.1: Gauge denoting the real-time occupancy rate

Figure B.2: Line graph showing the occupancy rate predictions

Figure B.3: Bar chart showing influx/outflux predictions

80

overview of visualizations 81

(a) Default state (b) Hovered state (tooltip)

Figure B.4: Pie chart showing in/outflux proportion for coming hour

Figure B.5: Grouped bar chart showing magnitude of errors

Figure B.6: Summary statistics on model performance

C OVERV IEW OF DASHBOARD

Figure C.1: Screen recording of the ‘Parking monitoring’ page

Figure C.2: Screen recording of the ‘Performance analytics’ page

82

	1 Introduction
	1.1 Motivation
	1.1.1 Problem statement
	1.1.2 Status quo
	1.1.3 Introduction to DAT.mobility
	1.1.4 Current limitations

	1.2 Objectives
	1.3 Challenges
	1.4 Research questions
	1.5 Report outline

	2 Theory and background
	2.1 Introduction to machine learning
	2.1.1 Types of learning

	2.2 Literature study
	2.2.1 Relevant variables
	2.2.2 Analysis of contemporary techniques
	2.2.3 Performance evaluation
	2.2.4 Conclusions

	2.3 Pre-selected techniques
	2.3.1 Regression trees
	2.3.2 Feed-forward neural networks

	3 Method
	3.1 Structure and process
	3.1.1 Tools

	3.2 Data collection and exploration
	3.2.1 Historical data
	3.2.2 Real-time data

	3.3 Data preparation
	3.3.1 Cleaning the historical data
	3.3.2 Establishing the final dataset
	3.3.3 Splitting the dataset

	3.4 Model development
	3.4.1 Feed-forward neural network
	3.4.1.1 Architecture selection
	3.4.1.2 Hyperparameter tuning

	3.4.2 Random forest
	3.4.2.1 Architecture selection
	3.4.2.2 Hyperparameter tuning

	3.5 Compiling and fitting final models
	3.6 Inter-model comparative testing
	3.6.1 Naive prediction benchmark
	3.6.2 Quality of predictions
	3.6.3 Efficiency of predictions

	3.7 Real-time predictive system
	3.7.1 System architecture design
	3.7.2 Back-end
	3.7.2.1 Data retrieval
	3.7.2.2 Generating predictions
	3.7.2.3 Running the server

	3.7.3 Front-end
	3.7.3.1 Context
	3.7.3.2 Visualizations
	3.7.3.3 Dashboard

	3.7.4 Performance testing

	3.8 Transferability of the system
	3.8.1 Input variable dependency
	3.8.2 Impact of limited training data

	4 Results and discussion
	4.1 Feed-forward neural network
	4.1.1 Architecture selection
	4.1.2 Hyperparameter tuning
	4.1.3 Candidate model

	4.2 Random forest
	4.2.1 Architecture selection
	4.2.2 Hyperparameter tuning
	4.2.3 Candidate model

	4.3 Inter-model comparative testing
	4.3.1 Quality of predictions
	4.3.2 Efficiency of predictions
	4.3.3 Final model selection

	4.4 Real-time system performance
	4.5 Transferability of the system
	4.5.1 Input variable dependency
	4.5.2 Impact of limited training data

	5 Conclusions and recommendations
	5.1 Conclusions
	5.2 Future research

	A Sample of final dataset
	B Overview of visualizations
	C Overview of dashboard

