
A Formal Proof of the Termination of Zielonka’s
Algorithm for Solving Parity Games

Remco Abraham
University of Twente

P.O. Box 217, 7500AE Enschede
The Netherlands

r.abraham@student.utwente.nl

ABSTRACT
It is currently unknown whether parity games can be
solved in polynomial time. Still, it is known that many
problems related to model-checking and synthesis can be
reduced to parity games. Algorithms that solve parity
games are therefore of great value.
One of the earliest algorithms invented for this purpose
is the algorithm proposed by Zielonka. Various pen and
paper proofs of its correctness have been provided, but
although parity games play an important role in many
machine-generated and machine verified proofs, Zielonka’s
algorithm has no machine-checked proof itself. As a start-
ing point for the formal proof of Zielonka’s algorithm,
this research will provide a formal proof for the termi-
nation of the algorithm using the formal theorem prover
Isabelle/HOL.

Keywords
Zielonka, Parity Games, Formal Proof, Termination

1. INTRODUCTION
Parity games have shown their importance in several fields
like model-checking [3] and controller synthesis [1] since
many problems in those fields can be reduced to par-
ity games. Many algorithms have been created that can
solve parity games, although none of them can solve parity
games in polynomial time [11]. One of the earliest algo-
rithms for solving parity games was invented by Zielonka
[13]. Still, Zielonka’s algorithm is one of the major algo-
rithms for solving parity games since it is relatively simple
yet turns out to be quick in practise [5]. It has also been
optimized multiple times [12, 7].
Although correctness and termination have been proven in
the past [13, 4], it was never done using a formal approach.
In this text, we define an informal proof as a proof writ-
ten in a natural language, and a formal proof as a proof
written in an artificial language that can be mechanically
verified for correctness. The main advantages of a for-
mal proof over an informal proof are that a formal proof
is much more reliable and that it is easier to verify by a
peer-reviewer [6]. Moreover, a formal proof for Zielonka’s
algorithm is especially useful because of its possible usage

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy oth-
erwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.
31st Twente Student Conference on IT July 5th, 2019, Enschede, The
Netherlands.
Copyright 2019, University of Twente, Faculty of Electrical Engineer-
ing, Mathematics and Computer Science.

in model-checking. Any parity game solving algorithm is
essentially a model-checker and Zielonka’s algorithm turns
out to be the best parity game solving algorithm in prac-
tice [5]. Providing a formal proof for Zielonka’s algorithm
using a formal theorem prover would, therefore, be a great
step towards model-checking in that theorem prover. It
could eventually enable formal model-checking of any al-
gorithm and is, therefore, a great addition to the field of
software verification.

Contributions. In this paper, a fundamental part of the
formal proof for Zielonka’s algorithm is given. Namely, we
describe a formal proof for the termination of Zielonka’s
algorithm. The full formal proof is given in Isabelle/HOL
[8] and available on https://doi.org/10.5281/zenodo.
3252437. The proof is constructed for an optimized ver-
sion of Zielonka’s algorithm as proposed by Lui et al. [7].
Afterwards, the proof is extended to also include an op-
timization proposed by Verver [12] and implemented by
van Dijk [11]. In conclusion, the research contributes the
following:

• A formal proof that Zielonka’s algorithm as proposed
by Lui et al. [7] terminates.

• A formal proof that Zielonka’s algorithm as imple-
mented by van Dijk [11] terminates.

2. BACKGROUND
In this section, the necessary background knowledge for
this research is given. The first section will explain the
definition of a parity game and the second section will
provide the full algorithm and explain it on a conceptual
level.

2.1 Parity Games
For the definition of a parity game, we adhere to the math-
ematical notation used by Obdrzálek [9], but we use a
slightly different definition to also consider finite plays. A
parity game G = (V,E, V0, λ) consists of a directed graph
G = (V,E) where V is the set of vertices and E ⊆ V × V
is the set of edges. Furthermore, it includes a so-called
parity function λ : V 7→ N, which maps the vertices of the
graph to some priority number.
A parity game is always played with two players, fre-
quently referred to as Even and Odd. We will use P0

and P1. Every node is either “owned” by P0 or by P1. Let
V0 (V1) denote the set of nodes owned by P0 (P1). Then
V = V0∪V1. For the definition of a Parity Game, knowing
V0 is sufficient since V1 = V \ V0.
The game starts at some initial vertex v. If v ∈ V0 then
P0 starts, otherwise (so when v ∈ V1) P1 starts. A move
is made by the player by moving a token along an edge

1

https://doi.org/10.5281/zenodo.3252437
https://doi.org/10.5281/zenodo.3252437

(v, w) ∈ E from v to some vertex w. After a move is made,
we check again whether the current vertex (w) is owned
by P0 or P1 to determine the player that makes the next
move. The game will end when there is no outgoing edge
from the current vertex (a finite play) or the game will go
on forever in the case no such vertex is ever reached (an
infinite play).
In the case of a finite play, the winner is determined by
the parity of the priority given by the parity function λ
of the final vertex vf . The winner of the game then is
Pλ(vf) mod 2.
More interesting is the case of an infinite play. In that
case the token is moved along an infinite path π = π1π2...
where ∀i > 0, (πi, πi+1) ∈ E. Not all vertices that oc-
cur in the path need to occur in the path infinitely of-
ten. Let Inf(π) = {v ∈ V | v occurs infinitely often in π}.
Then the winner of the game is the player with the parity
of the largest priority in Inf(π), which can be written as
Pmax{λ(v)|v∈Inf(π)} mod 2.
Finding a solution to a parity game entails finding for ev-
ery possible starting vertex, which player eventually wins
the game, and optionally also finding the strategy (which
edge to choose to pass the token along) that the play-
ers should adhere to for every vertex. The set of vertices
Wa ⊆ V is called a winning region for player a if player a
wins for every starting vertex in Wa. The next section ex-
plains the algorithm proposed by Zielonka [13] for finding
these winning regions.

2.2 Zielonka’s algorithm
Zielonka’s original algorithm [13] has frequently been op-
timized [7, 12]. Therefore, this research will use the opti-
mized version of Zielonka’s algorithm as implemented by
van Dijk [11] to provide the final formal proof. In this
section, if a is a player, we denote the other player by a.
Before providing the full algorithm, a few preliminaries
will be discussed.

2.2.1 Attractor
An attractor for player a on the graph G of game G for
the set of vertices U (which we call the attractor’s base)
is the set of vertices for which player a can force the token
into one of the vertices of U . We denote this attractor by
AttrGa (U). It can be computed iteratively by starting with
U and adding the vertices in Va that have an edge to some
vertex in U and adding the vertices in Va that only have
edges to vertices in U . More formally:

U0 = U

Ui+1 = Ui ∪ {v ∈ Va|∃(v, w) ∈ E : w ∈ Ui}
∪ {v ∈ Vā|∀(v, w) ∈ E : w ∈ Ui}

AttrGa (U) =

∞∪
i=0

Ui

At some point, since the graph is finite, AttrGa (U) con-
verges, which gives us the attractor on G of the vertices U
for player a.

2.2.2 Subgame
A subgame of a parity game G, is a parity game with some
of the vertices of the graph of G removed. A more formal
definition is given below.

Definition 1. Let G be a Parity Game and A be a set
of vertices, then G \ A is the subgame of G reduced by A,
with VG\A = VG \A and EG\A = EG \ (A×A)

2.2.3 Description of the algorithm
This section describes the algorithm as implemented by
van Dijk [11]. The algorithm can be found in Algorithm
1. The algorithm works by removing the currently winning

Algorithm 1 Zielonka’s algorithm with optimizations
1: function zielonka(G)
2: if G = ∅ then
3: return ∅, ∅
4: end if
5: a← max_p(G) mod 2
6: A← attr(G, a)
7: W0,W1 ← zielonka(G \A)

8: W
′
a ← AttrGa (Wa)

9: if W
′
a = Wa then

10: Wa ←Wa ∪A
11: else
12: W0,W1 ← zielonka(G \W

′
a)

13: Wa ←Wa ∪W
′
a

14: end if
15: return W0,W1

16: end function
17: function attr(G, a)
18: A← ∅
19: while max_p(G \A) mod 2 = a ∧A ̸= VG do
20: A← A∪AttrG\A

a (p_set(max_p(G \A),G \A))
21: end while
22: return A
23: end function

region A from the game and then recursively computing
the winning regions W0 and W1 for that subgame. It now
needs to be determined whether A should be part of the
winning region of a. To determine this, we compute the
attractor of a of Wa in G as W

′
a. If it turns out that this

attractor is equal to Wa, then we know that a could not at-
tract any vertices from A to its winning region Wa. Thus,
a can force the token from A into Wa instead. Therefore
A is added to the winning region of a.
In the case that a does manage to attract vertices from
A to its winning region, then a can force the token from
W

′
a into its winning region on the subgame without W

′
a,

because it is not possible for a to escape to A; A is already
an attractor for a. Therefore W

′
a can be added to the

winning region of a.
For more details about the algorithm, see Zielonka’s paper
[13], where the algorithm is proposed as a constructive
proof to prove the existence of solutions of parity games.
Further elaboration on the optimizations can be found in
Verver’s thesis [12] and the paper of Lui et al.[7].

2.2.4 ATTR function
The ATTR function used in Algorithm 1 implements the
optimization found by Verver [12]. It makes use of the two
helper functions max_p and p_set defined as follows:

max_p(G) = max{λ(v)|v ∈ VG}

p_set(p,G) = {v|v ∈ VG , λ(v) = p}

max_p(G) computes the maximal priority in the given
game G and p_set(p,G) gives the set of vertices of pri-
ority p in G.
Note that the definition of ATTR in Algorithm 1 does not
entirely match the algorithm in van Dijk’s paper. Line 19
of Algorithm 1 differs from van Dijk’s paper in that the

2

condition A ̸= VG has been added. During construction of
the formal proof of the termination of the ATTR function,
it was discovered that the original definition in van Dijk’s
paper did not terminate. The correction made here is
based on the description of the ATTR function by Verver
[12], which does not contain this error.
For the initial proof without Verver’s optimization, line 6
of Algorithm 1 will be replaced by:

A← AttrGa (p_set(max_p(G),G \A))

We will refer to this simplified version of the algorithm as
ZIELONKA_SIMP.

3. METHODOLOGY
The formal theorem prover Isabelle/HOL [8] is used to
provide a formal proof of the termination of Zielonka’s
algorithm. While there are many other formal theorem
provers, Isabelle/HOL was the most natural choice be-
cause Dittman has already formalized parity games in Is-
abelle/HOL. This formalization of parity games can be
found in the Archive of Formal Proofs [2]. We build upon
this formalization in order to give a formal proof of the
termination of Zielonka’s algorithm. A first attempt at
formalizing Zielonka’s algorithm with this approach has
already been made by Thijssen [10]. We extend upon his
formalization.
Informal proofs of the termination of Zielonka’s algo-
rithm [12, 9, 4] inspire the formal proof. The informal
proofs are studied in detail to identify small lemmas that
can be proven in Isabelle/HOL. Eventually, these lem-
mas are combined to form the proof of the termination
of Zielonka’s non-optimized algorithm. Afterwards, the
proof is extended to include the optimization by Verver as
discussed in subsection 2.2.

4. RESULTS
This section describes the formal proof constructed during
this research. First, an informal proof of the termination
of the algorithm will be presented. Then an outline of the
formal proof is presented. Finally, we provide an in-depth
explanation of the formal proof.

4.1 Informal Proof
Although, it is natural to prove termination of the algo-
rithm using induction on the number of vertices of the
game’s graph (see Friedmann [4] for an example), we prove
termination by induction on the recursive calls of the func-
tion instead. By constructing the proof using the number
of vertices in the recursive calls, we map the arguments of
the recursive calls to the natural numbers. Since we know
that if ∀i xi ∈ N, there is no infinite sequence x0, x1, x2...
such that xn < xn+1, and since the algorithm’s non-
recursive steps trivially terminate, proving that the num-
ber of vertices is strictly decreasing in each recursive call
is sufficient to prove termination of the algorithm. Termi-
nation proofs using this argument have great support in
Isabelle and it is therefore only natural to also provide the
informal proof using the same technique.
First, the proof for the termination of ZIELONKA_SIMP
is provided. Then the termination proof of ZIELONKA is
derived from the termination proof of ZIELONKA_SIMP.

Theorem 1. Let G be a Parity Game, then
ZIELONKA_SIMP(G) terminates

Proof. We prove termination by showing that in each
recursive call, the number of vertices in the game’s graph
is strictly decreasing.

Let a = max_p(G) mod 2 and let A =
AttrGa (p_set(max_p(G),G \ A). Obviously A ⊆ VG .
We also have that A ̸= ∅ since there is always a vertex
with maximal priority. We then have |VG\A| < |VG |, the
number of vertices in the subgame G reduced by A is
strictly smaller than the number of vertices in G.
Now let W0,W1 = ZIELONKA_SIMP(G \A) and Wa

′ =

AttrGa (Wa). We make a case distinction on the condition
of line 9 of Algorithm 1. Suppose W

′
a = Wa, then the

algorithm obviously terminates so we focus on the case
where W

′
a ̸= Wa. We again need to show that the number

of vertices in the recursive call is strictly decreasing. We
do that by showing that W

′
a ̸= ∅ and that there is at least

one vertex that is both in VG and in W
′
a. We prove both

conditions by contradiction.
Suppose Wa = ∅, then obviously W

′
a = ∅ but then Wa =

W
′
a which contradicts our previous supposition.

Next suppose ∄v(v ∈ VG ∧ v ∈ W
′
a). Then obviously the

attractor of W ′
a for a on G is just W ′

a, thus again Wa = W
′
a,

contradicting our supposition.
Now we have, similar to the first recursive call, |VG\W ′

a
| <

|VG |. Since we have now shown that both recursive calls
strictly decrease in the number of vertices and there is no
strictly decreasing infinite sequence of natural numbers,
we know this cannot continue indefinitely, thus we have
shown termination of the algorithm.

Next, we prove that ATTR terminates, that
ATTR(G, a) ⊆ VG and that ATTR(G, a) ̸= ∅ to
show that ZIELONKA terminates.

Lemma 1. Let G be a Parity Game and let a be a player,
then ATTR(G, a) terminates

Proof. In each iteration of the while loop, there must
be at least one vertex v of maximal priority in G\A. Only
if G \ A = ∅ this is not true, but that would violate the
while condition. Since v is not in A, at the end of the
iteration, v will be added to A. Thus it is guaranteed that
A grows in each iteration. Combined with the fact that
ATTR(G, a) terminates if A = VG , it can be concluded
that ATTR(G, a) terminates.

Theorem 2. Let G be a Parity Game, then
ZIELONKA(G) terminates.

Proof. Since ATTR(G, a) is just a repeated applica-
tion of Attr, it is trivial that ATTR(G, a) ⊆ VG . It is also
trivial to show that ATTR(G, a) ̸= ∅: Since a = max_p(G)
mod 2, ATTR(G, a) will do at least one iteration. In the
proof of Lemma 1, it was shown that each iteration in-
creases the size of A. Thus ATTR(G, a) ̸= ∅. Using
these facts in combination with Lemma 1, we again have
|VG\A| < |VG |. The rest of the proof is the same as for
Theorem 1.

4.2 Formal Proof
This section describes the formal proof of Zielonka’s algo-
rithm. First, the global outline of the proof is explained.
Subsequent sections then provide a more in depth expla-
nation of the formal proof. The formal proof itself can be
found on https://doi.org/10.5281/zenodo.3252437.

4.2.1 Global outline
Since ZIELONKA_SIMP and ZIELONKA are iden-
tical except for line 6, the formal proof is not given explic-
itly for either of these algorithms. Instead, a formal proof

3

https://doi.org/10.5281/zenodo.3252437

is given which uses a generalized version of line 6. In fact,
anything can be assigned to A in line 6 as long as it meets
the following requirements:

1. A ⊆ VG

2. A ̸= ∅

Note that these requirements do not guarantee the cor-
rectness of the algorithm, they only guarantee termina-
tion. If the proof is to be extended to a correctness proof,
additional requirements are most certainly necessary.
Additionally, since it is only possible to prove termination
under the condition that the input is valid (i.e. a parity
game with a finite amount of vertices is provided), the
algorithm used in the proof is modified slightly to check
its own inputs.
Second, it is proven that both AttrGa (p_set(max_p(G),G \
A)) and ATTR(G, a) meet the two requirements and can
thus be used as instances of the generalized termination
proof. Again, for ATTR, a modified algorithm is used to
allow for an unconditional termination proof.
Finally, the original version of the algorithm is formalized
and it is shown that the modified version discussed above is
identical to the original version under the assumption that
valid input is received. Since it is shown that both versions
are identical under normal conditions, and the modified
version is proven to terminate, the original version must
also terminate (given valid inputs), concluding our proof.

4.2.2 Utilities
To simplify the termination proof, some definitions and
abbreviations have been made. This section explains their
purpose, as they occur frequently in the formal proof.

Basic parity game definitions.
As the basis for the proof, the formalization of parity
games from the Archive of Formal Proofs [2] was used.
The following definitions (and their appurtenant theo-
rems) are used:

ParityGame defines a parity game.

Player defines a player in a parity game, which is either
even or odd.

ParityGame.subgame gives a subgame of a parity
game, given a subset of the game’s vertices.

ParityGame.attractor gives an attractor of a parity
game, given a subset of the game’s vertices and a
player.

The details of these definitions can be found in the Archive
of Formal Proofs [2].

Minimal priority.
min_prio is a definition used to determine the minimal
priority in a game. Although in literature, the parity of
the maximal priority is normally used, the ParityGame
definition actually uses minimal priority to refer to the
maximal priority. The confusion arises because the liter-
ature has no general consensus on whether the maximal
priority is 0 or whether the maximal priority is the highest
priority number in the game. In either way, it should still
be referred to as the maximal priority. Usage of the term
“minimal priority” is therefore technically wrong. How-
ever, to avoid confusion to the reader of the proof, it was

decided to use the same terminology as used in the formal-
ization of Parity Games as a trade-off between coherence
and terminological correctness.

Subgames.
In order to conveniently create a subgame of G without
some vertices, the definition removeVerts was created.
It uses the subgame definition of the Parity Game formal-
ization to create a subgame. It is frequently used in the
proof through its infix notation -⇩G.

Vertices of minimal priority.
The definition min_prios calculates the set of vertices
that correspond to the minimal priority of the game. It
reflects p_set(max_p(G \A),G \A)) of Algorithm 1.

Empty game.
An abbreviation isEmpty was made to indicate that a
game is empty (meaning that there are no vertices). This
improves the readability of the proof. This abbreviation is
automatically substituted by its definition during parsing
to avoid the need to manually unfold it.

Mapping priorities to players.
A priority trivially maps to a player through its parity.
The definition player converts a priority to a Player
through this mapping.

Player corresponding to minimal priority.
The abbreviation minP corresponds to line 5 of Algorithm
1. It determines the player corresponding to the minimal
priority of the game.

Winning set.
getW selects the winning set corresponding to the given
player out of the result of a call to Zielonka’s algorithm.
It matches Wa in Algorithm 1.

4.2.3 Definition
Zielonka’s algorithm has been formalized as can be seen
in Formalization 1. It starts with the definition of the
gen_attr locale. Locales are classes with certain proper-
ties. They allow us to provide a generalized proof by spec-
ifying that a fixed variable has certain properties, with-
out knowing the exact value beforehand. In this case,
the gen_attr locale fixes an identically named variable
gen_attr with the properties non_empty and in_v.
These properties match the properties discussed in sub-
subsection 4.2.1. non_empty and in_v assume that G is
a parity game and that the game has a finite amount of
vertices. Additionally, non_empty assumes that p is the
player with the minimal priority and that the parity game
is not empty.
The formalization of Zielonka’s algorithm is given within
the context of the gen_attr locale. The formal defini-
tion matches Algorithm 1, with a few exceptions. First
of all, notice how gen_attr is used on line 9 of Formal-
ization 1. This is what generalizes the definition to allow
its usage for both versions of Zielonka’s algorithm. Fur-
thermore, on line 8 we see that the formal definition has a
stronger condition than Algorithm 1. This is the adaption
to make the termination proof more simple. Later on, we
prove that this adaption does not affect the result of the
algorithm, nor does it affect termination (under normal
circumstances).

4

Formalization 1 Formalization of the generalized Zielonka’s algorithm with the strong condition
1: locale gen_attr =
2: fixes gen_attr :: "'a ParityGame ⇒ Player ⇒ 'a set"
3: assumes
4: non_empty: "ParityGame G ⟹ p = minP G ⟹ ¬ isEmpty G ∧ finite V⇘G⇙ ⟹ gen_attr G

p ≠ {}"
5: and in_v: "ParityGame G ⟹ finite V⇘G⇙ ⟹ gen_attr G x ⊆ V⇘G⇙"
6: begin
7: function Zielonka :: "'a ParityGame ⇒ 'a set × 'a set" where
8: "Zielonka G = (if (isEmpty G ∨ infinite V⇘G⇙ ∨ ¬ ParityGame G) then ({},{})
9: else let p = minP G; A = gen_attr G p; Z = (Zielonka (G -⇩G A)) in

10: (if (attr_stable G p** Z)
11: then (add_to_result p A Z)
12: else let att = ParityGame.attractor G (p**) (getW Z p**) in
13: (add_to_result (p**) att (Zielonka (G -⇩G att)))))"
14: by pat_completeness auto

Some definitions in Formalization 1 are still left unex-
plained. First of all, attr_stable is used to represent
line 8 and 9 of Algorithm 1. It calculates the attractor of
the winning set and checks whether the result is the same
as the original winning set and is defined as follows:
1: definition attr_stable :: "'a ParityGame

⇒ Player ⇒ 'a set × 'a set ⇒ bool"
2: where "attr_stable G p Z ≡ (Pari-

tyGame.attractor G p (getW Z p)) = getW
Z p"

add_to_result is a definition used in Formalization 1
that aids in the implementation of line 10 and 13 of Algo-
rithm 1. In the formalization, we need to explicitly state
that the other winning set remains unchanged. This is
done by taking the first and second element out of the
pair manually (using fst and snd respectively), and then
reconstructing the pair while only modifying one part of
it. The definition is given below.
1: definition add_to_result :: "Player ⇒

'a set ⇒ 'a set × 'a set ⇒ 'a set × 'a
set" where

2: "add_to_result p a Z = (if p = Even then
(((fst Z)∪a),snd Z) else (fst Z,((snd
Z)∪a)))"

4.2.4 Generalized termination proof
Since the condition on line 8 is stronger than in Algorithm
1, it is possible to prove that Formalization 1 terminates
for all possible inputs, independent on whether the inputs
are actually valid. This simplifies the proof because it
allows for an unconditional proof of termination, formally
written as termination Zielonka. The rest of this
section will explain this termination proof.
The termination proof starts by applying the relation tac-
tic using a measure function of the number of vertices in
G. This tactic implements a termination proof based on a
well-founded relation, which is what we implicitly used in
our informal proof (see subsection 4.1) as well. The mea-
sure function we provide is simply a function that returns
the number of vertices in the game. The tactic creates
three goals. We need to show that our measure function
is a well-founded relation and we need to show for both
recursive calls, that the measure function decreases. We
obviously have that our measure function is a well-founded
relation, so we continue with the other two goals. Through
the whole proof, we assume that the condition on line 8 of
Formalization 1 is false, since the case where the condition
is true trivially terminates.

The first recursive call is Zielonka (G -⇩G A). We prove
that the number of vertices in G -⇩G A is smaller than in
G by showing that A is not empty and A is a subset of the
vertices of G. Luckily, since A is our generic attractor, we
can use its assumptions to conclude that A is not empty
and that A is a subset of the vertices of G. The only step
left is to show that these assumptions also imply that the
cardinality of the set of vertices of G -⇩G A is smaller
than that of G. This is trivially true and was shown using
the lemma removeVerts_dec_cardinality, which is
a simple lemma saying that if we remove vertices from the
game, the cardinality of the game’s vertex set decreases.
The last recursive call (Zielonka (G -⇩G att)) is less
trivial. We use the same approach as before, showing that
att is both non-empty and a subset of the vertices of G.
Since att is an attractor, we only need to show that the
base of the attractor has these properties. In the proof,
we use W to indicate this attractor base.
To start, it is proven that W is not empty. We suppose that
W is empty and find a contradiction. We know that if W is
empty, its attractor must also be empty. But we also know
that W is not equal to its attractor since the recursive call
is done where the condition on line 10 of Formalization 1
is false, thus contradicting that W is empty.
Next, instead of proving that W is a subset of the vertices
of G, we prove the weaker but sufficient statement that
there is at least one vertex in W that is also in G. We again
construct a proof by contradiction. If we suppose that no
such vertex exists, then we know that the attractor of W
must equal W, again contradicting the condition on line 10
of Formalization 1.
Finally, we show again that both properties together imply
that G -⇩G att is smaller than G using the same lemma
as before. Now since both recursive calls strictly decrease
the number of vertices, we have proven that Zielonka
terminates.

4.2.5 ZIELONKA_SIMP terminates
To show that ZIELONKA_SIMP terminates, it is nec-
essary to show that AttrGa (p_set(max_p(G),G \ A)) is a
generic attractor. This is formally written as interpre-
tation classical: gen_attr "λ G p. Pari-
tyGame.attractor G p (min_prios G)" We do
so by proving the two assumptions of a genertic attractor,
namely that it is non-empty and that it is a subset of the
vertices of the game.
That the attractor is non-empty is shown using the lemma
attractor_nonempty_for_min_prio_player which

5

is a lemma that uses the fact that there is always a vertex
of minimal priority in a non-empty game and that an at-
tractor always contains its base to show that the attractor
of all vertices of minimal priority cannot be empty. The
attractor is also a subset of the vertices of the game since
the base (the vertices with minimal priority in the game)
is a subset of the game, which concludes the proof. We
can now use the rule classical.Zielonka.simps to
get the specific definition of ZIELONKA_SIMP. This rule
has no domain assumptions, thus it is guaranteed that all
inputs terminate.

4.2.6 ZIELONKA terminates
To show that ZIELONKA terminates, we use the same
approach as for ZIELONKA_SIMP. Before we can show
that ATTR is a generic attractor, we need to define it for-
mally. The formal definition can be found in Formaliza-
tion 2. Contrary to the definition of ATTR in Algorithm
1, the formalization of ATTR is tail-recursive. This is nec-
essary since Isabelle/HOL has no support for loops. Also,
this definition deviates from Algorithm 1 in the condition.
Like for Zielonka, this stronger condition was added to
allow for an unconditional termination proof.

ATTR terminates.
Since it is not immediately clear that this definition ter-
minates, a termination proof for it has to be constructed
before we can prove that attr is a generic attractor. This
proof uses a similar well-founded relation as used in the
generalized termination proof of Zielonka. Formally,
the statement interpretation verver: gen_attr
attr is what is proven.
Since in each recursive step, A increases in size, we prove
that the number of vertices in V⇘G⇙ - A strictly decreases.
To prove this, we use the fact that A is a strict subset of
attrStep G p A. This is true since the attractor of the
game without A for the set of vertices with minimal prior-
ity is not empty. We can now conclude that the number
of vertices in V⇘G⇙ - (attrStep G p A) is strictly
smaller than in V⇘G⇙ - A, thus attr terminates.

ATTR is a generic attractor.
Since the proof that ATTR is a generic attractor is quite
complex, it was decided to split the proof in two lemmas,
each corresponding to one of the properties of a generic
attractor. The lemmas can be found in Formalization
3. Both proofs use induction on the recursive calls of
attr_rec, and are split in two cases, where the cases
are that the condition in the definition of attr_rec is
true or false.
The non-emptiness proof’s induction hypothesis is that
the result of the recursive call is non-empty. Since the
case where the condition is true, attr_rec simply returns
the result of the recursive call, this case is simply true
because of the induction hypothesis. For the case that
the condition is false, attr_rec returns A so it needs to
be proven that A ≠ {}. We do so through a proof by
contradiction. If we assume A to be empty, then we know,
by definition of p, that p is the player of minimal priority
in the game G -⇩G A. We also have, since we assume the
game to not be empty, that the vertices of the game are not
a subset of A. Combining these facts with our assumptions
contradicts the fact that the condition is false. Thus A
must not be empty. Since we have now shown that both
possible paths in the definition of attr_rec results in
a non-empty outcome, we can conclude that attr_rec
(and therefore also attr) gives a non-empty result.

To prove that attr_rec is a subset of the game’s vertices,
we assume that the lemma holds for the recursive call.
Since we assume that A is a subset of the game’s vertices,
we only need to consider the case where the condition
in attr_rec is true. The induction hypothesis can prove
this case if we prove that the assumptions of the induction
hypothesis hold. Since G does not change in the recursive
call, it is obviously still a parity game. We therefore only
need to show that attrStep G p A is a subset of the
vertices of the game. In the proof, this is done using the
lemma attrStep_in_V, which is a lemma that shows
that if A is such a subset, then attrStep G p A is as well,
which is trivial considering the definition of attrStep.
Now that we have proven both lemmas, all that rests
to do is to (trivially) combine them. This for-
mally proves the following statement: interpretation
verver: gen_attr attr. We can now use the rule
verver.Zielonka.simps to get the specific definition
of ZIELONKA. This rule has no domain assumptions,
thus it is guaranteed that all inputs terminate.

4.2.7 Strong condition is unneccesary
Although the results of the previous section are already
useful on their own, it is better if we eliminate the strong
condition from the definition so that the formalization of
ZIELONKA actually matches Algorithm 1. To achieve
this, we give a new formalization Zielonka_real and
show that it equals Zielonka under the assumption that
the condition holds. Similarly, we give a new defini-
tion attr_rec_real that is equal to attr_rec if the
condition holds. The definitions for Zielonka_real
and attr_rec_real are the same as Formalization 1
and Formalization 2 respectively, except that infinite
V⇘G⇙ ∨ ¬ ParityGame G and ¬ (isEmpty G ∨ in-
finite V⇘G⇙ ∨ ¬ A ⊆ V⇘G⇙ ∨ ¬ ParityGame G)
have been removed from the respective conditions.
Under the assumption that the removed conditions hold,
we can now show that Zielonka_real equals Zielonla
and that attr_rec_real equals attr_rec. Although
it may appear that it makes no difference if we remove
the condition from the algorithm yet still assume it holds,
there is actually a difference. If we leave the condition
build into the algorithm, then the condition is re-evaluated
in every recursive call. If, however, we just assume the
condition to hold, we assume this only for the root call.
So we need to prove that if we assume the condition to
hold for the root call, it must also hold in its direct recur-
sive calls. Furthermore, the proof is slightly more complex
due to the way Isabelle handles partially terminating func-
tions.

Strong condition in Zielonka is unneccesary.
The lemma that shows that the strong condition
for Zielonka is unneccesary can be found in For-
malization 4. It is proven using induction on the
recursive calls of Zielonka. The induction hy-
pothesis is that Zielonka_real terminates (using
Zielonka_real_dom) and that it equals Zielonka. We
distinguish the cases where the game is empty and where
it is not. If the game is empty, then the lemma trivially
holds so we continue with the assumption that the game
is non-empty. In that case, we use the induction hypoth-
esis to show that each recursive call of Zielonka_real
terminates and that it is equal to Zielonka. For the first
recursive call (Zielonka_real (G -⇩G A)), we can
easily show that the assumptions of the lemma also imply
the assumptions of the induction hypothesis. After all, the

6

Formalization 2 Formalization of ATTR using strong condition
1: definition "attrStep G p A ≡ A ∪ ParityGame.attractor (G -⇩G A) p (min_prios (G -⇩G A))"
2: function attr_rec :: "'a ParityGame ⇒ Player ⇒ 'a set ⇒ 'a set" where
3: "attr_rec G p A = (if ¬ (V⇘G⇙ ⊆ A) ∧ ParityGame.winning_priority p (min_prio (G -⇩G A))
4: ∧ ¬ (isEmpty G ∨ infinite V⇘G⇙ ∨ ¬ A ⊆ V⇘G⇙ ∨ ¬ ParityGame G) then attr_rec G p (attrStep

G p A)
5: else A)" by pat_completeness auto
6: abbreviation attr :: "'a ParityGame ⇒ Player ⇒ 'a set"
7: where "attr G p ≡ attr_rec G p {}"

Formalization 3 Lemmas used to prove that ATTR is a generic attractor
1: lemma attr_rec_nonempty:
2: assumes "ParityGame G" "¬ isEmpty G ∧ finite V⇘G⇙" "p = (player (min_prio G mod 2))"
3: shows "attr_rec G p A ≠ "
4: lemma attr_rec_in_v:
5: assumes "ParityGame G" "A ⊆ V⇘G⇙"
6: shows "attr_rec G p A ⊆ V⇘G⇙"

Formalization 4 Lemma that shows that the strong con-
dition is unnecessary for Zielonka
1: lemma Zielonka_real_equals_Zielonka:
2: assumes "¬ (infinite V⇘G⇙ ∨ ¬ ParityGame

G)"
3: shows "Zielonka_real G = Zielonka G"

subgame of a finite parity game will remain a finite parity
game. We can, therefore, state that Zielonka_real (G
-⇩G A) terminates and that it equals Zielonka (G -⇩G
A). The same reasoning can also be applied to the next
recursive call (Zielonka_real (G -⇩G att)) to show
that it terminates and that it equals Zielonka (G -⇩G
att)
Under the assumption that the game is non-empty,
Zielonka_real could potentially terminate at two lo-
cations. Either attr_stable G p** Z is true and ter-
mination happens in the “then” part or it is false and
termination happens in the “else” part. In the first case,
there are no recursive calls anymore. add_to_result
trivially terminates so we use the domain introduction rule
of Zielonka_real to show that Zielonka_real ter-
minates. Since Zielonka_real (G -⇩G A) is called
prior to this, we need the fact that Zielonka_real
(G -⇩G A) terminates under the induction hypoth-
esis. In the other case, we additionally need that
Zielonka_real (G -⇩G att) also terminates. Again,
the domain introduction rule allows us to prove that also
in this case Zielonka_real terminates. Since all pos-
sible paths of Zielonka_real terminate, we know that
Zielonka_real terminates.
Using the fact that Zielonka_real terminates and that
the recursive calls of Zielonka_real can be substituted
by Zielonka, we can conclude that our lemma holds.

Strong condition in attr_rec is unnecessary.
Since attr_rec is a tail-recursive function, we can define
attr_rec_real using Isabelle’s partial_function
with tail-recursion. This omits the need for a termina-
tion proof. Termination is implicitly proven when proving
equality with attr_rec. We therefore only need to show
its equality with attr_rec using the lemma given in For-
malization 5. We do so using induction on attr_rec, as-
suming that the lemma holds for the recursive call. Since
we assume the lemma to hold for the recursive call, we

Formalization 5 Lemma that shows that the strong con-
dition is unnecessary for attr_rec
1: lemma attr_rec_real_equals_attr_rec:
2: assumes "¬ isEmpty G" "finite V⇘G⇙" "A

⊆ V⇘G⇙" "ParityGame G"
3: shows "attr_rec_real G p A = attr_rec

G p A"

can show that the recursive call is equivalent to a call to
attr_rec. All that needs to be done is to show that
the assumptions of the induction hypothesis hold when
the recursive call is reached. Since G does not change in
the recursive calls, this is trivial using the assumptions of
the lemma. The only assumption that cannot be directly
concluded from the assumptions of the lemma is that at-
trStep G p A ⊆ V⇘G⇙ but this is also trivially proven
using the other assumptions. Combining the fact that the
recursive call can be substituted by a call to attr_rec
with the fact that the condition in attr_rec_real is
equivalent to the condition in attr_rec under the cur-
rent assumptions, we can conclude that the lemma holds.
Finally, we show that attr_rec_real can be in-
terpreted as a generic attractor (interpretation
verver_real: gen_attr attr_real). This
is trivial as the assumptions used in the previous
lemma to show equality with attr_rec are also in
the assumptions of the generic attractor. We can
then use verver_real.Zielonka_real.psimps
in combination with the rule
verver_real.Zielonka_real_equals_Zielonka
to remove the domain predicate from the rule under the
right assumptions, giving us a terminating definition of
Zielonka’s algorithm.

5. CONCLUSION
Zielonka’s algorithm is used in practice in model-checking
because of its simplicity and great performance. Enabling
model-checking in a formal theorem prover would allow for
complex proofs for any algorithm in that formal theorem
prover. To reach this goal, the correctness of Zielonka’s
algorithm first needs to be proven formally. An essential
step towards formally proving the correctness of Zielonka’s
algorithm is proving termination of the algorithm. In this
paper, we have provided a formal proof of the termination
of the algorithm. The next step is to prove its correctness.
Afterwards, the correctness rule can be used for model-

7

checking by converting the model-checking problem to a
parity game.

6. ACKNOWLEDGEMENT
I would like to thank Sebastiaan Joosten for his extensive
guidance and feedback throughout this research and for
his great technical support for Isabelle. Furthermore, I
would like to thank the reviewers of the Software technol-
ogy and Formal methods track for their useful comments
and suggestions.

7. REFERENCES
[1] A. Arnold, A. Vincent, and I. Walukiewicz. Games

for synthesis of controllers with partial observation.
Theoretical Computer Science, 303(1):7 – 34, 2003.
Logic and Complexity in Computer Science.

[2] C. Dittmann. Positional determinacy of parity
games. Archive of Formal Proofs, Nov. 2015.
http://isa-afp.org/entries/Parity_Game.html,
Formal proof development.

[3] E. Emerson, C. S. Jutla, and A. Sistla. On model
checking for the µ-calculus and its fragments.
Theoretical Computer Science, 258(1):491 – 522,
2001.

[4] O. Friedmann. Recursive algorithm for parity games
requires exponential time. RAIRO-Theoretical
Informatics and Applications, 45(4):449–457, 2011.

[5] O. Friedmann and M. Lange. Solving parity games
in practice. In International Symposium on

Automated Technology for Verification and Analysis,
pages 182–196. Springer, 2009.

[6] J. Harrison. Formal proof - theory and practice.
Notices of the AMS, 55(11):1395–1406, 2008.

[7] Y. Liu, Z. Duan, and C. Tian. An Improved
Recursive Algorithm for Parity Games. In 2014
Theoretical Aspects of Software Engineering
Conference, pages 154–161, Sep. 2014.

[8] T. Nipkow, M. Wenzel, and L. C. Paulson.
Isabelle/HOL: A Proof Assistant for Higher-order
Logic. Springer-Verlag, Berlin, Heidelberg, 2002.

[9] J. Obdrzalek. Algorithmic analysis of parity games.
PhD thesis, University of Edinburgh, 2006.

[10] P. Thijssen. The begin of the Zielonka proof in
Isabelle. Capita Selecta thesis, University of Twente,
2019.

[11] T. van Dijk. Oink: An Implementation and
Evaluation of Modern Parity Game Solvers. In
D. Beyer and M. Huisman, editors, Tools and
Algorithms for the Construction and Analysis of
Systems, pages 291–308, Cham, 2018. Springer
International Publishing.

[12] M. Verver. Practical improvements to parity game
solving. Master’s thesis, University of Twente, 2013.

[13] W. Zielonka. Infinite games on finitely coloured
graphs with applications to automata on infinite
trees. Theoretical Computer Science, 200(1):135 –
183, 1998.

8

http://isa-afp.org/entries/Parity_Game.html

	Introduction
	background
	Parity Games
	Zielonka's algorithm
	Attractor
	Subgame
	Description of the algorithm
	ATTR function

	Methodology
	Results
	Informal Proof
	Formal Proof
	Global outline
	Utilities
	Definition
	Generalized termination proof
	ZIELONKA_SIMP terminates
	ZIELONKA terminates
	Strong condition is unneccesary

	Conclusion
	Acknowledgement
	References

