Automated DDoS Attack Fingerprinting by Mimicking the
Actions of a Network Operator

K.W. van Hove
University of Twente
P.O. Box 217, 7500AE Enschede
The Netherlands

k.w.vanhove@student.utwente.nl

ABSTRACT

A Distributed Denial of Service (DDoS) attack is an at-
tempt to overload a service. The main data a network op-
erator has access to during a DDoS attack is the network
traffic. An experienced operator would easily identify the
attack. To the best of our knowledge, no solutions are
based on the knowledge of the network operator. We will
propose a tool which we call the dissector that mimics the
steps taken by a network operator to identify the key char-
acteristics of an attack. These characteristics can be used
for, but are not limited to, mitigation purposes. These
key characteristics form a DDoS fingerprint. The results
of our research show >90% of attack traffic being covered
by the generated fingerprints, with next to no legitimate
traffic being detected as malicious, whilst running in linear
time.

Keywords

DDoS Attack, DDoS Mitigation, DDoS Attack Character-
isation, DDoS Attack Fingerprinting

1. INTRODUCTION

A Distributed Denial of Service (DDoS) attack is an at-
tempt to overload a service, thereby disrupting regular
traffic and making the service unavailable for its intended
use. Attacks range from a student wanting to sabotage
or delay an online exam to organised criminals holding an
online business ransom [3]. It has been estimated that the
monetary loss for Dutch companies from DDoS attacks
alone exceeded one billion euros in 2018 [3].

When a network operator takes notice of an attack, ei-
ther by using monitoring services or complaints about a
service interruption, they want to mitigate it as quickly
as possible. In order to do that, they need a summary
of the characteristics of the attack. A summary that tells
them what the attack is and where the attack is coming
from (for example, all DNS traffic over UDP, port 53 from
IP address z, y and z), in order for them to create rules
for their specific hardware or software that will block the
specific attack.

The main data a network operator has access to is the
network traffic — the packets coming in and out of the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy oth-
erwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

31°t Twente Student Conference on IT July Sth, 2019, Enschede, The
Netherlands.

Copyright 2019, University of Twente, Faculty of Electrical Engineer-
ing, Mathematics and Computer Science.

network. A network operator can already discern unusual
patterns by looking at the network traffic. Every DDoS
attack has an associated pattern, something that makes it
stand out from ordinary traffic. However, with the current
size of DDoS attacks, averaging 26.37 Gbps in the second
quartile of 2018 [17], manual pattern recognition becomes
infeasible in real time scenarios.

There have been several models for detecting traffic that
stands out from normal traffic [5] [6] [21]. However, these
methods are not suitable to deal with our scenario, as they
require a protocol change or cannot be used with existing
rule-based filtering hardware. While some papers describe
a characterisation method [6] [15] [25], those methods are
based on an active analysis of the current internet traffic,
instead of a previously defined characterisation, making
them unsuitable for a generic firewall rule.

The problem is thus that (1) none of the methods are
generic, they cannot be used for purposes other than mit-
igation; (2) none of the solutions use the expertise of the
network operator for automating the process. We do not
directly propose a new detection or mitigation method,
but rather a system that extracts key characteristics of a
DDoS attack, which can further be used for mitigation,
but also for other purposes such as attribution and corre-
lation.

This paper proposes an automated method of fingerprint-
ing DDoS attacks, by investigating the steps a network
operator would take to mitigate a DDoS attack. We iden-
tify six requirements for the proposed fingerprint genera-
tion system. The generated fingerprint should allow the
network operator to (1) use their existing hardware to mit-
igate the attack; (2) attribute the person responsible; (3)
reproduce the attack in an academic setting; (4) correlate
the attack with similar characteristics; (5) notify the own-
ers of the abused machines so that they can take action
and (6) give an insight in the global DDoS attack activ-
ity. To achieve these requirements, we define the following
three main research questions (RQ):

1. What is the state of art of DDoS attack characteri-
sation?

2. How can we generate a fingerprint that meets these
six requirements?

3. What is the performance of our generated fingerprint
in a real life scenario?

The further outline of this paper is as follows: Section 2
covers the current state of art when it comes to DDoS at-
tack characterisation. Section 3 covers the assumed avail-
able hardware. Section 4 covers our proposal for an alter-
native way to fingerprint DDoS attacks. Section 5 verifies

whether the design from section 4 meets the six identified
requirements. Section 6 evaluates the performance of the
design from section 4.

2. STATE OF ART

In this section we present an overview of current DDoS
characterisation and mitigation methods. In particular,
in this section we answer RQ1: “What is the state of art
of DDoS attack characterisation?”. The research can be
distinguished into two main categories: statistical traffic
analysis and anomaly detection. Both those categories
can be subdivided into solutions that can be applied by a
single institution, and solutions that require cooperation
of a large part of the network. Most methods focus on the
mitigation of DDoS attacks, where the characterisation is
a means to mitigate the attack. As our goal is broader than
just mitigation, we will focus on the characterisation part,
and judge its (1) comprehensiveness, (2) distinguishability,
(3) extraction time, and (4) general applicability.

Chonka et al. [6] describe a method based on chaos theory,
which looks at the regular packet flow and trains a neural
network to detect anomalies (mainly IP spoofing). Once
an anomaly is detected, it determines based on the Lya-
punov Equation whether this anomaly is probable to be
caused by normal traffic fluctuations, or that the anomaly
is likely to be caused by a DDoS attack. Saied et al. [19]
describe a similar method. The problem here is that the
result is not comprehensive or generally applicable. It may
work very well for mitigation, but for other purposes it is
not so well suited. We cannot point to specific features or
patterns and say “that is what caused the DDoS attack”,
making it unsuitable for, for example, correlation.

Li [15] describes a statistical model for identifying abnor-
mal variations of long-range dependent time series, using
statistical pattern recognition. Thapngam et al. [21] de-
scribe a statistical model for differentiating between a flash
crowd — a sudden peak in network traffic — and a DDoS
attack, by looking at packet features and their frequency,
and determining the likelihood of the packet belonging to
a genuine request. Yu et al. [24] describe a method based
on analysing the properties of large peak traffic flow dis-
tributions, and thereby determining whether traffic is le-
gitimate or belongs to a DDoS attack. The problem with
these statistical methods is that most of them require a
baseline measurement to function. This severely limits
their general applicability. Additionally, they do tend to
not function on regular firewalls and other rule-based net-
work filtering systems.

Snoeren et al. [20] describe a design where the trail of
an IP packet is delivered along with the packet, in or-
der to allow the recipient to determine the origin of the
packet. Ferguson et al. [10] employ a similar technique,
though instead of letting the recipient trace the packet
to the origin, they let every hop block traffic that was de-
tected to spoof its source IP address, by detecting whether
such traffic would pass through that node in the network.
Yaar et al. [23] propose a system called SIFF, where the
sender of the traffic is verified using a handshake, so that
a host under attack can selectively drop unverified traffic,
putting the burden of verification on the communicating
parties instead of on the nodes connecting them. These
methods are very comprehensive, distinguishable, are fast
to extract and are generally applicable. This would create
a great way to characterise DDoS attack if the protocols
were generally implemented. The problem is that they
require a change of how the internet currently works, as
protocols need to be changed. Such a substantial change is

difficult to accomplish, as can be seen by the effort taken
to get IPv6 supported at large scale, which after twenty
years has still not risen above 50% coverage [2]. The ben-
efit becomes a lot smaller if they are only implemented on
a small scale, as both legitimate and non-legitimate traffic
would decide not to implement it, which means we end up
at the same problem, only with a slightly smaller dataset.

Choi et al. [5] describe a detection and mitigation method
for HTTP traffic by defining normal user behaviour and
frequency, and blocking traffic that exceeds a certain thresh-
old, effectively applying rate limiting on all traffic. The
characterisation is very comprehensive, as it contains all
information of the HTTP traffic, is very distinguishable, as
only the packets that show “odd” behaviour are targeted,
and can be quickly extracted. The issue is that it re-
quires extensive knowledge of the system, and only works
for HTTP traffic. This makes it more difficult to apply
generally. Ioannidis et al. [14] describe a more gener-
alised variant; they describe mitigation method meant for
routers, where, when the routers detect congestion, they
will check aggregates (a filtering on certain properties, e.g.
“packets to destination D”, “TCP SYN packets”), then de-
termine the aggregates causing the congestion, and drop
them. They then push those filters upstream towards the
source of the traffic. The idea of using aggregates is gives a
comprehensive overview of the attack, the extraction time
is low and it is generally applicable. The problem lies in
finding the right aggregate. One way of finding such an
aggregate would be using a method proposed by Yuan et
al. [25]. They describe a method of characterising a DDoS
attack using deep learning, where machine learning detects
based on the features in the packet whether it belongs to a
DDoS attack or not. It is comprehensive, it is distinguish-
able, and it is generally applicable. However, the extrac-
tion time is relatively slow, due to the constant checking
each packet and consequently updating the model. It also
raises the question: Why would we not harness the knowl-
edge of the network operator, instead of letting machine
learning decide what the right course of action is?

This paper will propose a generic approach, that requires
no change in protocols or prior knowledge about the sys-
tem, that extracts a summary of the characteristics of the
attack that comprehensive, distinguishable, has a low ex-
traction time, and is generally applicable, and that can be
used for further purposes.

3. PRESUMED EXISTING HARDWARE

We have mentioned the ability to mitigate attacks using
common, regular hardware as one of the requirements, but
we have not yet defined what we consider to be common
hardware. Firewalls are the most common blocking hard-
ware, and Cisco, Fortinet, and Palo Alto are among the
most common firewall vendors found in businesses [13].
The thing that the firewalls that these vendors provide
have in common is that they are rule-based [7] [9] [1],
meaning that they take a set of rules (e.g. “Accept in-
coming TCP traffic from 1.1.1.0/24 to port 25” and “Re-
ject all”), and apply them top to bottom. If the incoming
packet matches a rule, it will be accepted/rejected based
on what the rule specifies. In this case, a TCP packet from
1.1.1.25 to port 25 would be accepted, because it matches
the first rule, and a packet from 2.2.2.16 would be rejected.
Generally, these systems also remember some for of state,
so that a packet as a response to an accepted packet will
also be accepted. A newer tool which is becoming increas-
ingly more common in larger networks is BGP FlowSpec
[12]. This system works by telling the upstream providers

to drop all traffic to a certain IP address based on certain
filtering rules. This is once again rule-based.

Whilst there are specific hardware solutions for DDoS mit-
igation [11] [16], they generally function as a black box,
making them unsuitable for other purposes than mitiga-
tion.

4. FINGERPRINT GENERATION ALGO-
RITHM

This section will describe the generation part of RQ2,
“How can we generate a fingerprint that meets these six
requirements?”. We will outline the steps our tool, which
we call the dissector®, follows to determine and extract
the characteristics of a DDoS attack. We assume that we
have a packet capture of the network traffic at the time of
the attack.

The first step a network operator takes is determining
what the target of the attack is, after all, they need to
know what is being attacked, before they can mitigate the
attack. This is done by looking at the destination IP ad-
dress of the traffic, where a large amount of packets per
second for a certain IP address indicates the attack target
(there are cases where this does not hold, for example in
the case of specific application layer attacks [18] or UDP
floods, but this will be able to detect the majority of vol-
umetric attacks and protocol attacks).

The second step is determining what the majority of the
traffic of that IP is, by taking the internet layer proto-
col. If it is IP, then we take the transport layer protocol
(e.g. UDP or TCP). Most attacks abuse a specific appli-
cation protocol, such as DNS or NTP, or generally flood
the server with UDP or TCP traffic [§].

The third step is figuring out what the most likely type of
the attack is. From the packets that are left, we take the
distribution of source ports and destination ports. Most
attacks have a source/destination port relation of one-to-
many, many-to-one or one-to-one. For example, in the case
of a DNS amplification attack, all traffic will come from
source port 53 and will go to a random destination port.
We determine the source or destination port that occurred
the most, so source port 53 in the example above. We then
filter based on that port we found.

The fourth step is to extract extra information from that
attack. From the traffic that is left, we extract extra in-
formation for that specific protocol. For example, in the
case of DNS amplification attack (UDP over port 53), we
extract the DNS query that was sent. In the case of NTP
flooding (UDP over port 123), we extract the request code.
In the case of a port number of 0, we actually have to do
with a UDP fragmentation attack, where the packets re-
ceived cannot be reassembled into a larger packet. In this
case we indicate that we have suffered from a fragmenta-
tion attack.

If this information is not available, for example in the case
of a TCP SYN flood, and we consider identifying the at-
tack as all TCP traffic to for example port 80 too crude,
we can filter based on the most frequent Time-To-Live
(TTL). In the case of a TCP SYN flood, the IP addresses
are spoofed, so we cannot rely on their frequency, but the
TTL for packets originating from the same server will most
likely be equal. Using this metric, we can make an accu-
rate filter for the spoofed traffic [22].

It is also possible for a server to be under an ICMP flood

"https://github.com/ddos-clearing-house/ddos_dissector

attack, where the attacker attempts to overwhelm a tar-
geted device with ICMP echo-request packets, causing the
target to become inaccessible to normal traffic [§]. In this
case, we can extract the ICMP type and code.

This list is by no means exhaustive — there are many
more details that can be extracted from other attack vec-
tors. We have chosen to focus on these examples due to
their popularity, and we could not include all types of
attack vectors due to time constraints, but many more
packet attributes can help us narrow down the attack vec-
tor.

‘We have now determined the destination IP, transport pro-
tocol, source/destination ports and application protocol.
We can thus now filter the traffic based on those attributes,
and extract the source IP addresses that were involved in
the attack. All this information combined (source IP ad-
dresses, destination ports, source ports, transport layer
protocol, application layer protocol and specific applica-
tion layer attributes) can be used to filter the traffic. We
call this summary of information a fingerprint. However,
DDoS attacks generally consist of multiple attack vectors,
like a simultaneous DNS amplification and TCP flooding
attack. We repeat the process for the remaining traffic,
until there are no attack vectors left. This is the case
when we can no longer see a peak in traffic from multi-
ple IP addresses on one vector. We can link these attacks
together using a unique key.

1
destination IP

.

2
transport protocol

ICMP
TCP/UDP
A
... 3
source/destination
TCP ports
lUDP/123 lUDP/SB lUDP/O
4 4 4

NTP reqcode DNS queries fragmentation

4

> TCPflags/TTL

3

L_»| ICMP code/type

Figure 1. Overview of the steps involved in gener-
ating a fingerprint for an attack vector

4.1 Fine-graining the approach

We have previously mentioned that the list of protocol-
specific characterisations shown in figure 1 is not exhaus-
tive. One may wonder whether this approach is viable
at all. Let us take a TCP SYN flood attack on port 80
of a web server as an example. The dissector determines
the protocol (TCP) and the destination port (80), and the
TCP flag (SYN). Whilst TCP packets to port 80 with a
SYN flag set indeed belong to the attack, a lot of non-
attack traffic also shares the same characteristics. We
cannot rely on the source IP addresses, as they can be
spoofed. In these moments, it is good to ask ourselves

what a network operator would do. In this case, a net-
work operator would turn to other packet attributes, such
as the TTL. If we notice that a lot of packets from differ-
ent ASes share the same TTL, we can reasonably assume
that something is wrong. Similarly, if we see a lot of traffic
from the same AS, but with very different TTLs, we can
also assume that something is wrong (with the exception
of anycast addresses). These are things that stand out.
Other aggregates as defined in Ioannidis et al. [14] are
also possible. Additionally, the attacker may use packets
of the same size. If we suddenly notice an unusual amount
of packets with length x, then that is suspicious, and may
be the basis of a characterisation for the attack. Similarly,
if an attacker uses random data, with random lengths, but
does not calculate the checksum properly, then the fact
that the checksum is invalid also characterises the attack.

Additionally, one may wonder why we can claim that most
attacks have a source-destination port relation of one-to-
one, one-to-many or many-to-one. Let us take the list
of most common non-application layer DDoS attacks pro-
vided by Cloudflare [8], and review them one by one:

e Memcached attack — This is an amplification attack,
so all traffic will originate from one port (11211);

e NTP amplification attack — This is also an ampli-
fication attack, so all traffic will originate from one
port (123);

e DNS amplification attack — This is again an ampli-
fication attack, so all traffic will originate from one
port (53);

e SSDP attack — This is a reflection attack, so all traffic
will originate from one port (1900);

e DNS flood — Here the attacker floods the DNS server,
so all traffic will have one port as destination (53);

e HTTP flood — Similarly to a DNS flood, the attacker
floods one destination port (80);

e SYN flood — This again floods one service with SYN
packets with spoofed IP addresses, trying to exhaust
the maximum number of connections. In order for
this to be effective, all traffic will have one destina-
tion port;

e UDP flood — Here the attacker floods the server with
UDP packets, and tries to overload the server trying
to handle them. Here is a case of an attack that can
be many-to-many, however, a firewall can be con-
figured to simply drop UDP packets that have an
unreachable destination port;

e ICMP flood — ICMP does not use TCP or UDP, and
has no port numbers;

As one can see, in most cases our assumption holds.

This approach starts to become troublesome is when there
are specific application layer attacks, for example by re-
questing a web page that takes a lot of processing power
to render. In these cases, our peak analysis may not yield
the correct result (as there may be relatively few packets
associated to the attack), and an approach as proposed by
Choi et al. [5] may yield better results.

S. FINGERPRINT APPLICATION

Now that we have designed an algorithm for generating
DDoS fingerprints, we need to verify whether it can also
satisfy the six conditions we set as part of RQ2.

The first condition, that the network operator is able to
use their existing hardware to mitigate the attack, is clearly
met, as from the fingerprint firewall rules can be derived.

The second condition, that we could attribute the attack
to the person responsible, is partially met. For that law
enforcement needs to be able to figure out where the at-
tacker is located. This is not something we can fully solve
technologically, but we can aid them by enriching the fin-
gerprint. For example, for every source IP address, we can
determine the AS number and country it belongs to. The
caveat is that this information can change over time, hence
we either need to collect that data at the moment of the
attack, or we need the start time of the attack, so we can
enrich it later with the right data from that time period.
This is information that can be added to the fingerprint
without any issue, which fulfils this requirement.

The third condition, that the attack can be reproduced in
an academic setting, is partially met. To fully meet that
requirement, we also need the packets per second, bits per
second and the duration of the attack. Then the attack can
be replicated using the filtering info from the fingerprint,
by creating packets that match the fingerprint, and firing
them at the same rate as the attack. These three statistics
can be easily obtained from a sample of the attack. Alter-
natively, and preferably, the capture of the attack can be
stored. Then it is possible to fully replay the attack in a
locked down setting, which fulfils this requirement.

The fourth condition, that we can correlate the attack with
other attacks with similar characteristics is met, because
our fingerprint is generic, and does not depend on the
network infrastructure or specifics of the application. We
can hence check the similarity between two fingerprints.

The fifth condition, notifying the owners of abused ma-
chines, and the sixth condition, giving an insight of global
DDoS attack activity, are not yet met, because they re-
quire a large dataset of DDoS fingerprints to function.

5.1 Fingerprint sharing and anonymisation
We have so far seen that the fifth and sixth requirement
are not met due to a lack of data. For these requirements
to be met, we need to incentivise sharing. However, the
packet capture may contain privacy sensitive data, and as
a result one may not be inclined to share their data.

For the packet capture of the attack, we can filter the
data using the attack vectors found, and then remove the
information we do not need. We do not need to keep the
destination IP of an attack, nor do we need to keep the
source and destination MAC addresses, so we can replace
this values with O-bytes. These details can give someone
else insight in the internal infrastructure, and can give an
attacker the upper hand. To alleviate these concerns, we
remove this information. This results in an anonymised
packet capture that can be shared without concerns. The
fingerprint itself, as defined in figure 3, does not contain
any data that could trace it back to the victim, so that
can be shared without problems as well.

Now that we have addressed the privacy concerns, we as-
sume that people are willing to share their anonymised
packet captures and fingerprints. We thus assume that we
have a large collection of fingerprints that we can use for
analysis. Now let us get back to the original six conditions.

INPUT -m state --state NEW -m udp -p udp --
sport 53 -d 192.168.1.1 -j REJECT

Figure 2. An example of a firewall rule based on
the fingerprint of figure 3 for Linux’ iptables

The fifth condition is now met. Our fingerprint also con-
tains the source IP addresses. Using those, the owner
of the machine can be located, and the local CERT/C-
SIRT team can be informed that their machines are being
abused. Alternatively, the CERT/CSIRT team could scan
the fingerprints for their IP ranges.

The sixth condition is now met as well. If a lot of these
attacks are collected in a central place, or shared among
others, they can be used to give an insight in the trends
of global DDoS attack activity, and they can be used to
analyse trends.

This means that the final fingerprint, as shown in figure 3,
meets all the six requirements we set, and is comprehen-
sive, distinguishable, and generic.

One of the most common use cases for this generic finger-
print will be creating firewall rules based on it. We have
already established the properties of the most common
firewalls in section 3, and this section will describe how
we can turn a fingerprint in a set of rules for a firewall.
Let us take the fingerprint for figure 3 as an example. It is
a DNS amplification attack originating from port 53. We
can create a rule that drops all packets matching UDP,
source port 53, where the state is new (as to not block
replies to DNS request from inside the network) and the
destination IP is the server being attacked. The same
method can be applied to all attack types. It is good to
notice that all filters we detected using the algorithm we
described in section 4 can be implemented in a common
firewall, as they only try to match certain fields. For exam-
ple, a TCP reset attack directed at port 80 can be filtered
by creating a rule that drops TCP traffic with a destina-
tion port of 80, the TCP reset flag set, and a specific TTL
or AS.

6. PERFORMANCE EVALUATION

6.1 Detection performance

Now that we have a way to characterise DDoS attacks,
and generate fingerprints based on those findings, we need
to verify how well they fare in real situation. We test that
using the following method:

e We take a packet capture where we know what pack-
ets belong to an attack, and what packets do not,
by combining known DDoS traffic provided by the
Masaryk University and a known good packet cap-
ture of a test machine running several services;

e We run the dissector on the packet capture;
e We then check whether it detected the right attack(s);

e We check how many attack packets are in the filtered
packet capture and how many good packets are in
the packet capture.

Our aim is to filter most bad (attack) traffic, while not
filtering the good (non-attack) traffic. We do this for the
three different types of attacks listed below. We define
positive traffic as traffic that was part of the attack. The

{
"src_ips": [
{
"CC”: IIUSII ,
"ip": "192.168.125.12",
"as": 12345
},
])
"dst_ports": [
1234,
4567,
])
"src_ports": [
53
],
"tl_protocol": "UDP",
"app_protocol": "DNS",
"key": "1d114fcbaccdd54b5a60d353087£88b6",
"avg_pps": 1000,
"avg_bps": 1000000,
"duration": 30.25,
"start_timestamp": 1419262727
}

Figure 3. An example of a DDoS fingerprint for
an attack vector

DDoS traffic dataset provided by Masaryk University con-
sists of 272 attack traces from actual DDoS attacks, which
were ordered from DDoS-as-a-Service providers. The traces
recorded all network traffic, one at a time for at most 300
seconds per attack. The server was hosting a dummy web-
page, and was not used for any other traffic [4].

We highlight the findings for four different attacks, and
analyse them in detail.

(1) DNS amplification attack

Bad traffic: IPSTR-DNS-5-01_2014-12-22_15_38 41
Good traffic: GOOD-01-2019-05-24-19_42_21

This is a DNS amplification attack aimed at port 80. It
uses open DNS resolvers to request DNS data, and lets
the resolver reply to the victim. This way, a single request
can cause a lot more data to be sent [8]. This sample has
191,416 packets, of which 185,576 belong to the attack.
Positive here means that it was detected as part of the
attack.

| Actual positive | Actual negative
98% (181,698) 0% (0)
2% (3,878) 100% (5,840)

We can see that for this example, the accuracy was rather
good. > 95% of the attack was able to be detected, with
0% of legitimate traffic being blocked.

(2) TCP SYN flood attack

Bad traffic: RAGE-ESSYN-S-02_2015-01-03-23-20_03
Good traffic: GOOD-01_2019-05-24-19_42_21

This is an attack with a single vector. It floods the victim
with TCP SYN packets, thereby trying to exhaust the
server’s resources. The server will try to respond to the
TCP SYN packets with a SYN ACK, but, because the
IP addresses are spoofed, they will never be received [8].
This sample has 469,256 packets, of which 463,416 belong
to the attack. Positive here means that it was detected as
part of the attack.

Detected positive
Detected negative

| Actual positive | Actual negative
99% (461,010) 0% (0)
1% (2,406) 100% (5,840)

We can see that for this example, the accuracy was again
rather good. > 95% of the attack was able to be detected,
with 0% of legitimate traffic being blocked. In this case
our TTL detection makes sure that only spoofed packets
are blocked, and that all other traffic can still reach its
destination.

(3) SSDP and DNS attack

Bad traffic: REST-RUDY-5-01_2014-12-29_16_08_-33
Good traffic: GOOD-02_2019-05-25_20_11_01

This is an attack with two vectors. One of them is a DNS
amplification attack, and the other is an SSDP attack. An
SSDP attack is an attack where UPnP devices are abused
to amplify UDP traffic [8]. In this case it asked devices to
send requests to port 80. This sample has 10,015 packets,
of which 6,371 belong to the attack. Positive here means
that it was detected as part of the attack.

Detected positive
Detected negative

| Actual positive | Actual negative
55% (3,525) 0% (0)
45% (2,846) 100% (3,644)

In this case, only the SSDP attack was detected — the DNS
attack was not discovered. Additionally, the filter that was
proposed was to block all UDP traffic to port 80. In the
test environment, this would not cause any issues, but in
real life it may. This can be solved by adding more fine-
grained detection methods for SSDP to the dissector. TTL
analysis cannot help in this case, as the packets are coming
from many amplifiers, and not from one attacker’s server.
However, a large part of the attack was still mitigated.

(4) NTP amplification attack

Bad traffic: DEST-NTP-5-02_2014-12-29_10-38_51

Good traffic: GOOD-03-2019-05-26_14_53-12

This is an attack with a single vector. It sends packets with
a spoofed IP address to a public NTP server, which then
sends a large amount of data to the victim’s IP address
[8]. This is similar to a DNS amplification attack. This
sample has 561,623 packets, of which 547,892 belong to
the attack. Positive here means that it was detected as
part of the attack.

Detected positive
Detected negative

| Actual negative
100% (545,567) | 25% (3,365)
0% (2,325) 75% (10,366)

We can see that in this case, nearly all malicious traffic
was detected. However, we also notice that 25% of good
traffic was filtered. The reason for this is that the good
traffic set contains a lot of HTTPS traffic (TCP on port
443) to a set of servers with similar TTLs, which is then
wrongly identified as an attack. This can be resolved by
increasing the threshold for HTTPS traffic to be detected
as part of the attack.

Other attacks

Here we give an overview of the performance of several
tests with other attack sets, as shown in table 1. The good
traffic that was used is GOOD-03-2019-05-26_14_53_12.
This set contains a lot of HT'TPS traffic as well, which is
sometimes detected as a TCP attack, which explains the
25% legitimate traffic being detected as an attack (just like
with the NTP attack mentioned above). This is something
that has to be resolved in the future by fine-tuning the
thresholds. Additionally, the filtering process sometimes
fails to filter on all detected attack vectors with DNS at-
tacks, causing negative values and values over 100% to
appear.

| Actual positive

Detected positive
Detected negative

i) 80 [.
3 °
S
Q
2
= 60 - y
2
E
=
5 40 - b
a
[}
£
et 20 - N
g
2
ge
Q
=
£ 0F |
K ! ! ! ! ! !
0 1 2 3 4 5
Attack size [packets] 10°

Figure 4. The size of the attack (in packets) plot-
ted against the extraction time per iteration (in
seconds)

However, apart from these inconsistencies, the overall re-
sults are rather promising, with a very low amount of false
positives and a large amount of actual positives.

6.2 Speed performance evaluation

We have also mentioned that we wish our characterisation
to be performant. We have taken a random sample of 26
attacks, and tested the extraction speed. Figure 4 shows
the speed per iteration (in seconds) plotted against the
size of the attack (in packets). Please note that if there
are multiple attack vectors, that there will be multiple
iteration, and hence the extraction time may be longer.
This increase will be constant.

As figure 4 shows, the dissector runs in a near-linear fash-
ion. During the measurement process, we observed that
the greatest speed bottleneck at the moment is the speed of
the hard drive. We noticed that our memory usage or CPU
usage rarely got above 50%, whilst the hard drive would of-
ten be working at 100%. A relatively small amount of time
was spent on the analysis part, and a significantly larger
amount of time was spent on writing the result to the disk.
We also noticed TCP attacks take significantly longer to
dissect than UDP packets, due to the TCP attack both fil-
tering on the top TCP flag and on the TTL, thereby hav-
ing to walk through all packets more often (which shows in
the large outlier visible in figure 4). We expect that signif-
icant performance improvements are possible by keeping
track of a count for all packet data from the start, thereby
only having to visit a packet once per iteration, instead
of going over each packet once per attribute; this change
would allow the dissector to run in true linear fashion.

7. CONCLUSION

This paper proposed an automated method of fingerprint-
ing DDoS attacks. We have looked at (1) the state of
art of DDoS attack characterisation, (2) the generation a
fingerprint that meets the six requirements (to mitigate,
attribute, reproduce and correlate the attack, notify the
owners of the machines used for the attack, and to create
an insight into global DDoS attack activity), and (3) the
performance of our generated fingerprint. We have con-
cluded that none of the current methods are (1) compre-
hensive, (2) distinguishable, (3) generally applicable, and
(4) have a low extraction time. We have designed a tool
which characterises a DDoS attack by mimicking the way

a network operator would analyse a DDoS attack. The
tool allows outputs a summary that can be used to cre-
ate firewall rules for hardware that is currently common.
This characterisation also meets the six requirements de-
scribed above, and is also comprehensive, distinguishable
and generally applicable. The performance measurements
show that it is also has a low extraction time and a high
accuracy. The main limitation is having to adjust the dis-
sector for every type of attack in order to filter on the
proper fields. This paper focused on DNS, NTP, ICMP
and TCP attacks, but we expect the same approach to
work for other kinds of attacks as well. We believe that
this contribution can significantly reduce the impact of
DDoS attacks in the future, as our DDoS fingerprint can
not only be used for mitigation, but also to aid other DDoS
research.

Future research would have to look into expanding the
data extraction for more application layer protocols, as
well as looking into a way to automatically do that for
previously unknown attack types. Additionally, research
is required to make sure that the amount of non-malicious
traffic being detected as malicious is reduced. Future re-
search should also look into setting up the framework for
the sharing of fingerprints for correlation and attribution.

References

[1] Palo Alto. PAN-OS® Administrator’s Guide. May
2019. URL: https://docs.paloaltonetworks.com/
documentation /80 /pan- os/pan-os (visited on
06/20/2019).

[2] APNIC. “IPv6 Capable Rate by country”. URL: https:

//stats.labs.apnic.net/ipv6 (visited on 05/01/2019).

[3] N. Boerman et al. The impact of DDoS attacks on
Dutch enterprises. Nov. 2018. URL: https://www.
nbip.nl/wp- content /uploads/2018/11/NBIP-

SIDN-DDoS-impact-report.pdf (visited on 05/01/2019).

[4] V. Bukaé. “Small scale denial of service attacks [on-
line]”. Doctoral theses, Dissertations. Masaryk Uni-
versity, Faculty of Informatics, Brno, 2015 [cit. 2019-
06-27].

[6] J. Choi et al. “A method of DDoS attack detection
using HTTP packet pattern and rule engine in cloud
computing environment”. In: Soft Computing 18.9
(2014), pp. 1697-1703.

[6] A. Chonka, J. Singh, and W. Zhou. “Chaos theory
based detection against network mimicking DDoS

attacks”. In: IEEE Communications Letters 13.9 (2009),

pp. 717-719.

[7] Cisco ASA 5500 Series Configuration Guide using
the CLI, 8.4 and 8.6 - Configuring Access Rules [Clisco
ASA 5500-X Series Firewalls]. Nov. 2018. URL: https:
//www.cisco.com/c/en/us/td/docs/security/
asa/asa84/configuration/guide/asa_84_cli_
config/access_rules.html (visited on 06/20/2019).

[8] Cloudflare. What Is a Distributed Denial-of-Service
(DDoS) Attack? URL: https://www.cloudflare.
com/ learning/ddos /what - is - a-ddos - attack/
(visited on 06/17/2019).

[9] Configuring a firewall policy. URL: https://help.
fortinet.com/fadc/4-8-0/0lh/Content/FortiADC/

handbook/firewall_policy.htm (visited on 06/20/2019).

[10] P. Ferguson and D. Senie. Network Ingress Filtering:
Defeating Denial of Service Attacks Which Employ
IP Source Address Spoofing. United States, 2000.

[11]

[12]

[14]

[15]

22]

23]

24]

Fortinet. FortiSandbox. URL: https://www.fortinet.
com/products/sandbox /fortisandbox . html (vis-
ited on 06/20,/2019).

N. Hinze et al. “On the Potential of BGP Flowspec
for DDoS Mitigation at Two Sources”. In: Proceed-
ings of the ACM SIGCOMM 2018 Conference on
Posters and Demos - SIGCOMM 18 (Aug. 2018),
pp. 57-59. DOL: 10.1145/3234200.3234209.

CTC Technologies Inc. 5 Top Firewall Providers for
2019. Jan. 2019. URL: https://wuw.ctctechnologies.
com/5-top-firewall-providers-for-2019/ (vis-
ited on 06/20,/2019).

J. Ioannidis and S.M. Bellovin. “Implementing push-
back: Router-based defense against DDoS attacks”.
In: Network and Distributed System Security Sym-
posium. 2002.

M. Li. “An approach to reliably identifying signs of
DDOS flood attacks based on LRD traffic pattern
recognition”. In: Computers € Security 23.7 (2004),
pp. 549-558. 1sSN: 0167-4048. DOI: https://doi.
org/10.1016/j.cose.2004.04.005.

NETSCOUT. Arbor Threat Mitigation System. URL:
https : / / www . netscout . com / product / arbor -
threat-mitigation-system (visited on 06/20/2019).
Nexusguard. DDoS Threats Report 2018 Q2. URL:
https://wuw.nexusguard . com/threat - report -
q2-2018 (visited on 05/01/2019).

S. Ranjan et al. “DDoS-Shield: DDoS-Resilient Schedul-
ing to Counter Application Layer Attacks”. In: IEEE/ACM
Transactions on Networking 17.1 (Feb. 2009), pp. 26—

39. 1sSN: 1063-6692. DOI: 10.1109/TNET . 2008.926503.

A. Saied, R. E. Overill, and T. Radzik. “Detection of
known and unknown DDoS attacks using Artificial
Neural Networks”. In: Neurocomputing 172 (2016),
pp- 385-393. 1SSN: 0925-2312. DOI: 10.1016/j .neucon.
2015.04.101.

A.C. Snoeren et al. “Single-packet IP traceback”. In:
IEEE/ACM Transactions on Networking (ToN) 10.6
(2002), pp. 721-734.

T. Thapngam et al. Discriminating DDoS attack traf-
fic from flash crowd through packet arrival patterns.
Apr. 2011, pp. 952-957. por: 10. 1109/ INFCOMW .
2011.5928950.

H. Wang, C. Jin, and K. G. Shin. “Defense Against
Spoofed IP Traffic Using Hop-count Filtering”. In:
IEEE/ACM Trans. Netw. 15.1 (Feb. 2007), pp. 40—
53. 1sSN: 1063-6692. DOI: 10.1109/TNET. 2006.890133.
URL: http://dx.doi.org/10.1109/TNET. 2006 .
890133.

A. Yaar, A. Perrig, and D. Song. “SIFF: A state-
less Internet flow filter to mitigate DDoS flooding
attacks”. In: IEEE Symposium on Security and Pri-
vacy, 2004. Proceedings. 2004. IEEE. 2004, pp. 130—
143.

S. Yu, W. Zhou, and R. Doss. “Information theory
based detection against network behavior mimicking
DDoS attacks”. In: IEEE Communications Letters
12.4 (Apr. 2008), pp. 318-321. 1ssN: 1089-7798. DOI:
10.1109/LCOMM. 2008.072049.

X. Yuan, C. Li, and X. Li. “DeepDefense: Identi-
fying DDoS Attack via Deep Learning”. In: 2017
IEEE International Conference on Smart Comput-
ing (SMARTCOMP). May 2017, pp. 1-8. DOIL: 10.
1109/SMARTCOMP. 2017 .7946998.

Table 1. An overview of the results of the dissector for several attacks

AP: Actual Positive DP: Detected Positive AN: Actual Negative DN: Detected Negative

AP/DP AP/DN AN/DN AN/DP
ANON-SSYN-S-01_2014-12-20_20_04_11 T1% (2763982) | 29% (1132264) | 75% (10366) | 25% (3365)
ANON-SSYN-S-02_2014-12-20_19_41_22 71% (2649501) | 29% (1072680) | 75% (10366) | 25% (3365)
BOOTIO-NTP-S-01_2015-03-26_15 99% (1919473) 1% (12241) 75% (10366) | 25% (3365)
BOOTIO-SSYN-S-01_2015-03-26_16 78% (968858) | 22% (272390) | 75% (10366) | 25% (3365)
BOOTIO-SSYN-S-02_2015-03-26_16 78% (2564576) | 22% (730043) | 75% (10366) | 25% (3365)
CONS-SSYN-S-01_2014-12-20_20_17_05 71% (2585531) | 29% (1038006) | 75% (10366) | 25% (3365)
CONS-SSYN-S-02_2014-12-22_15_29_38 71% (2485299) | 29% (997426) | 75% (10366) | 25% (3365)
DEST-ESSYN-S-02_2014-12-29_15_05_10 52% (18835) 48% (17178) | 100% (13725) | 0% (6)
DEST-NTP-S-02_2014-12-29_10_38_51 100% (545567) 0% (2325) 75% (10366) | 25% (3365)
HORNY-DNS-S-02_2015-04-07_20_31_25 145% (1738190) | -45% (-542114) | 100% (13668) | 0% (63)
HORNY-ESSYN-S-01_2015-04-07_18_16_10 90% (1130076) | 10% (119136) | 75% (10366) | 25% (3365)
HORNY-ESSYN-S-02_2015-04-07_21_06_06 90% (1133480) | 10% (121094) | 75% (10366) | 25% (3365)
HORNY-SYNACK-S-01.2015-04-07_18.27_15 | 90% (1153262) | 10% (123293) | 75% (10366) | 25% (3365)
HORNY-SYNACK-S-02_2015-04-07_21_17_56 | 91% (3071319) | 9% (314926) | 75% (10366) | 25% (3365)
HORNY-TCPFIN-S-01_2015-04-07_18_45_52 0% (0) 100% (30710) | 100% (13731) | 0% (0)

HORNY-TCPFIN-S-02_2015-04-07_21_29_07
HORNY-TCPFUCK-S-01_2015-04-07_17_27_30
HORNY-TCPPSH-S-01_2015-04-07_18_51_59
HORNY-TCPPSH-S-02_2015-04-07_21_34_57
HORNY-TCPRST-S-01_2015-04-07_18_32_45
HORNY-TCPSEQ-S-01_2015-04-07_17_39_13
IPSTR-DNS-S-01_2014-12-22_15_38_41
IPSTR-DNS-S-02_2014-12-25_15_31_46
IPSTR-SYN-S-01_2014-12-21_19_38_21
IPSTR-SYN-S-02_2014-12-21_20_25_15
KRYPT-DNS-S-01_2014-12-20_20_44_56
KRYPT-DNS-S-02_2014-12-21_21_12_12
KRYPT-ESSYN-S-01_2014-12-22_16_23_50
KRYPT-ESSYN-S-02_2014-12-23_23_08_06
KRYPT-SSYN-S-01_2014-12-20_20_51_41
KRYPT-SSYN-S-02.2014-12-21_21_04_11
KRYPT-XSYN-S-01_2015-01-05_22_45_51
KRYPT-XSYN-S-02_2015-01-06_23_51_17
QUANT-SSYN-S-01

QUANT-SSYN-S-02
RAGE-ESSYN-S-02_2015-01-03_23_20_03
REST-SSYN-S-01_2014-12-22_15_57_50
REST-SSYN-S-02_2014-12-23_23_21_20
REST-XSSYN-S-01_2014-12-22_16_09_59
REST-XSSYN-S-02_2014-12-23_23_34_46
TITAN-ESSYN-S-01_2014-12-22_22_33_09
VDOS-ESSYN-S-01_2014-12-25_13_30_25
VDOS-ESSYN-S-02_2014-12-25_17_30_40
VDOS-TCPACK-S-01_2014-12-25_13_44 11
VDOS-TCPACK-S-02_2014-12-25_17_46_09
VDOS-TCPFIN-S-01_2014-12-25_13_58_30
VDOS-TCPNO-S-01_2014-12-25_14_26_19
VDOS-TCPRST-S-01_2014-12-25_14_44_50
VDOS-TCPRST-S-02_2014-12-25_18_43_05
VDOS-XSYN-S-01_2014-12-25_15_02_42
VDOS-XSYN-S-02_2014-12-25_20_01_31

83% (2418354)
99% (182836)
0% (0)
83% (3215543)
83% (535771)
0% (0)
97% (180522)
95% (283823)
0% (0)

0% (0)
196% (1228245)
100% (582485)
98% (2447100)
97% (871654)
98% (2748668)
85% (2298640)
98% (2602289)
98% (3033486)
14% (122651)
28% (132545)
0% (0)
71% (2336473)
71% (2659402)
72% (2510449)
71% (2648000)
99% (429134)
98% (5244277)
99% (2822177)
0% (0)

0% (0)
100% (5254629)
100% (2709138)
100% (5413121)
100% (5013179)
98% (4707311)
98% (1813114)

17% (484980)
1% (2699)
100% (3158284)
17% (646757)
17% (109328)
100% (44428)
3% (5054)
5% (14879)
100% (4976616)
100% (5052824)
-96% (-603016)
0% (2388)

2% (58616)
3% (27041)
2% (61664)
15% (392280)
2% (58021)
2% (73789)
86% (777644)
72% (335932)
100% (463416)
29% (943109)
29% (1104569)
28% (985731)
29% (1098449)
1% (5551)
2% (87772)
1% (22766)
100% (2371551)
100% (1962625)
0% (2487)
0% (6214)
0% (3027)
0% (2469)
2% (105204)
2% (31437)

75% (10366)
75% (10366)
100% (13731)
75% (10366)
75% (10366)
100% (13731)
75% (10366)
75% (10366)
100% (13731)
100% (13731)
75% (10366)
75% (10366)
75% (10366)
75% (10366)
75% (10366)
75% (10366)
75% (10366)
75% (10366)
100% (13731)
100% (13731)
100% (13731)
75% (10366)
75% (10366)
75% (10366)
75% (10366)
75% (10366)
75% (10366)
75% (10366)
100% (13731)
100% (13731)
75% (10366)
75% (10366)
75% (10366)
75% (10366)
75% (10366)
75% (10366)

25% (3365)
25% (3365)
0% (0)
25% (3365)
25% (3365)
0% (0)
25% (3365)
25% (3365)
0% (0)
0% (0)
25% (3365)
25% (3365)
25% (3365)
25% (3365)
25% (3365)
25% (3365)
25% (3365)
25% (3365)
0% (0)
0% (0)
0% (0)
25% (3365)
25% (3365)
25% (3365)
25% (3365)
25% (3365)
25% (3365)
25% (3365)
0% (0)
0% (0)
25% (3365)
25% (3365)
25% (3365)
25% (3365)
25% (3365)

(3365)

25% (3365

