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ABSTRACT

Finger vein recognition is an emerging technique in bio-
metrics. Capture of sufficient vein detail from a well-
exposed image is crucial for its operation. We present a
novel finger-adaptive illumination control algorithm and
an exposure fusion based imaging procedure for finger
vein imaging on a prototype device. The novel approach
enables sub-second capturing of well-exposed images and
shows significant improvements in match scores.
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1. INTRODUCTION

Biometrics is the science of establishing the identity of an
individual based on the physical, chemical or behavioral
attributes of the person [6]. Fingerprint, face, and iris
recognition are currently widely used. Patterns of veins
beneath the skin on fingers can also be used for this pur-
pose. This mode of biometric recognition is characterised
by very low error rates, good spoofing resistance, and a
user convenience similar to that of fingerprint recognition
[15].

The Data Management and Biometrics (DMB) group at
the University of Twente has developed a prototype de-
vice! to further study finger vein recognition [14, 12]. The
accuracy of the authentication is heavily reliant on the
quality of the captured images and the visibility of vein
patterns therein. We present a novel finger-adaptive illu-
mination algorithm that does not require manual tuning
once calibrated per-device, and an approach to obtain bet-
ter vein images via exposure fusion. The novel methods
enable finger vein image capture in less than a second,
while being robust to finger thickness variations.

The paper starts with a brief background about the device,
issues regarding illumination and image capture, as well as
current solutions to the problems. We then condense the
issues that this research addresses into research questions.
Thereafter, we briefly present the state of the art on the

!see Figure 5 in Appendix B
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topic. We then present the main body of the research as
well as its evaluation using a preliminary study.

2. BACKGROUND

The device functions by illuminating a finger with infra-
red (IR) light with an array of IR LED’s and capturing an
image of the finger using a camera placed behind an IR fil-
ter. Each LED in the array can be individually controlled
via pulse width modulation (PWM), which is essentially
specifying a fraction of the time a given LED can stay on
in single clock cycle.

IR light at the wavelength used by the device can pen-
etrate skin, muscle, and bone tissue to different extents,
but is heavily absorbed by haemoglobin in blood vessels.
Hence, the blood vessels (hereinafter called veins for sim-
plicity) under the skin are visible in these captures as dark
lines. These captured images can then be compared with
those in a database of prior captures to authenticate.

As introduced before, vein visibility in images is crucial
for the comparison procedure. Illumination is critical to
obtain more vein visibility, by preventing the saturation of
the camera. Too much light can saturate the camera, and
too little will not be sufficient to penetrate the finger. The
level of illumination required differs both along a finger
and across fingers, due to differences in physiology. For
instance, joints cause very little NIR light loss compared
to bones.

A method was devised by Jin [7] to obtain uniform illumi-
nation along a finger, in order to solve this issue. However,
this algorithm is iterative, and does not always converge.
In addition, it may take in the order of seconds to termi-
nate, making it cumbersome to use. Even then, obtaining
perfectly uniform illumination appeared to be difficult.

Due to the aforementioned drawbacks, a novel approach
had been developed to increase the quality by obtaining
multiple images at different illumination levels and com-
bining them to form a High Dynamic Range (HDR) image
[5, 16]. However, the new HDR approach also has room for
improvement with respect to adaptive illumination in or-
der to be robust against finger thickness variations, as well
as the quality of the final image and acquisition time. The
illumination needs to be manually tuned per finger. The
HDR generation takes about 15 images per finger as in-
put, making the capturing and processing time high. The
long acquisition time also introduces motion blur due to
movements of the finger in this duration.

Thus, a combined approach which provides both finger-
adaptive illumination as well as obtains images in a time
efficient manner with sufficient quality is needed.



3. RESEARCH QUESTIONS

Accordingly, the research aims to address the following
research questions.

RQ1 How can a linear array of LEDs be controlled such
that the light passing through a finger placed under
them is as uniform along its length as possible as well
as of the right amount to prevent camera saturation,
without needing feedback iterations?

RQ2 How can an alternative finger vein imaging proce-
dure to that described by Humblot-Renaux [5] be
composed to incorporate an illumination control al-
gorithm that is described by RQ1 to form an imaging
pipeline that provides enhanced images with a fewer
number of captures?

RQ3 To what extent does the accuracy of finger vein im-
age comparison improve, with the solutions in RQ1
and RQ2, where accuracy is measured by the scores

of the maximum curvature method developed by Miura

et al [10]7

4. RELATED WORK
4.1 Adaptive Illumination

Related work is scarce for adaptive illumination of this na-
ture. Nonetheless, Jin’s work [7] establishes that it is in-
deed possible to control LEDs individually in order achieve
a more uniform illumination as opposed to controlling the
entire array as a whole. Another research by Chen et al.
[3] uses a method similar to that by Jin, however, this
algorithm too is iterative and is subject to the same limi-
tations.

Work by Debevec and Malik [4] on radiance map esti-
mation is also of relevance to this research. Their work
establishes that the camera’s output and actual radiance
in a scence are roughly logarithmic unless saturated. This
fact is also used by Chen et al. [3] in their algorithm and
is relevant to controlling illumination.

4.2 Improvement of Image Capture

Sa, Carvalho, and Velho [13] have compiled a collection of
general approaches to HDR image generation from LDR
images. They aim to estimate the camera’s intensity re-
sponse function, and thereby infer the actual radiance of
individual pixels in the captured image to accurately re-
construct a HDR image.

Vissers [16] and Humblot-Renaux [5] have seen success at
using an HDR approach to finger vein acquisition. The
work of Humblot-Renaux is the most recent. Humblot-
Renaux uses weighted sum of the LDR images, where the
weights are the background illumination levels of a region,
estimated by a mean filter. Further, Piciucco et al. [11]
have tried a similar approach to palm vein image acqui-
sition, and also analysed the performance of various tone
mapping functions.

An alternative approach to HDR imaging is to fuse well-
exposed regions of multiple exposures to obtain a globally
well-exposed image. Mertens et al. [9] provides a novel ap-
proach for this purpose for general purpose images. The
image is decomposed into a ‘pyramid’ structure based on
measures for contrast, saturation, and exposure, and then
fused together with a given weight for each of the three
factors. This approach avoids the need for a high dy-
namic range image and a tone mapping intermediate step
to generate high quality images.

Chen et al. [2] have presented a multiple image fusion
method for finger vein images and shows promising re-
sults. However, their approach fuses vertical ‘stripes’ of
multiple images together instead of a more general pyra-
mid decomposition approach, which is also robust against
vertical variations in exposure. Chen’s method also does
not take into account local contrast and saturation, while
that by Mertens does.

5. METHODOLOGY AND APPROACH

5.1 Adaptive illumination

The developed finger-adaptive feed-forward illumination
algorithm provides a ‘best effort’ level of uniform illumina-
tion. The high-level steps in the algorithm are as follows.

1. Initial calibration to estimate camera response pa-
rameters and light distribution of each LED.

2. Measurement of light loss along the finger using an
image captured at a constant, uniform, known illu-
mination level.

3. Illumination adjustment based on calibration and
measurement data.

Step 1 has to be carried out only once per device, unless its
structure or camera parameters change. In the reference
implementation, this is done at device startup. Steps 2 and
3 have to be carried out per finger (prior to capture). This
procedure could also be carried out once per finger and
stored together with its enrolled image for re-use during
authentication.

5.1.1 Model

We model a finger as a translucent medium which loses a
portion of NIR light falling on it (due to reflection, absorp-
tion and scattering) while letting the rest pass through.
The proportion of light passed through varies at different
points in the finger. Prior research shows that the global
variation of this proportion along the finger is primarily
along its length due to bone-joint structure, while local
variations are primarily due to blood vessels. Hence, we
simplify the finger as a thin line along which the propor-
tion of light loss varies, where the loss proportion is the
average of those at that horizontal position. The direc-
tions and coordinate system used are illustrated in Figure
6 of Appendix B.

The LED array is modelled as source of light of which
each LED is identical and has a light output that is di-
rectly proportional to its PWM fraction. This is reason-
able since PWM control simply controls the duration for
which the light stays on, and hence provides output pro-
portional to the fraction provided. The LED array is sim-
plified as a thin line aligned with the finger along which
luminous intensity can be varied. We also assume that the
incident light intensity at a certain position along the fin-
ger is strongly correlated with the light exiting the finger
at a position directly below, subject to loss.

We model the camera as a sensor of which the output at
a given position is proportional to integral incident light
intensity at the position over time, given that it is not
close to saturation. This model is based in the work by
Debevec and Malik. [4]

Now, if we can estimate
1. the parameters of the logarithmic function for cam-

era output which relates light intensity to camera
output,



2. the distribution of light output of each LED as inci-
dent on the finger, and

3. the proportion of light loss at each position along the
finger,

we can also, given a required uniform luminous intensity
along a finger,

4. use the finger loss proportions and determine the re-
quired distribution of luminous intensity along its
length to compensate for loss, and

5. estimate the required light intensities of the different
LEDs to approximate in the required compensatory
luminous intensity distribution at the top of the fin-
ger.

Thus, we now have a simplified model which we can use
to address RQ1.

5.1.2 Device calibration

In order to address steps 1 and 2 of the simplified model,
a calibration procedure is required. The proposed calibra-
tion procedure is as follows.

1. Insert a thin, uniform diffuser such as a piece of 80
gsm white paper covering the finger slot.
This ensures that the focused light output of the LEDs
are diffused sufficiently for the camera to capture.

2. Iterate linearly through PWM fractions of an LED
in the middle, starting from 0.125 and incrementing
in steps of 0.125, and capture these images.

We assume here that the light output from each LED
is approximately the same, and thus only one LED
is required.

3. Determine the average vertical gray levels within the

capture window for each horizontal position and de-
termine the maximum value for each capture.
This step is to fit the modelling of the LED array
as a thin, linear light source and detect a single peak
value that can be used to determine the logarithmic
relation.

4. Run logarithmic regression with PWM values as the
independent variable and gray levels as the depen-
dent variable. Store the constants a and b such that
gray_level = a + b - log(pwm). These values corre-
spond to the data required in step 1 of the refined
problem model.

5. Iterate through all LEDs at maximum PWM (1.0)
and determine the average vertical gray levels for
each horizontal position for each LED image. Add
these values to a matrix G where the i row contains
average gray level distribution of the *" LED. That
is, if I’ is the image W x H (i.e. an H x W matrix)
obtained with only the ¢*® LED on at a 1.0 PWM
fraction,

G = i)
! H
This step is to determine the light distributions due
to each LED in the array along the modelled line.

G—a
6. Transform G by L = e 5 element-wise. The values
in L are now those required in step 2 of the refined
problem model.

200 A

150 A

100 A

50 A

Average vertical gray level

T T T T
0 100 200 300 400
Horizontal position

Figure 1. Plots of average gray levels due to LEDs.
Each line corresponds to a row in G.

This step transforms the sensed levels by inverting
them using estimated the camera function to be able
to linearly combine light intensity distributions of the
LEDs to obtain the total incident light intensity at
the finger at different PWM fractions.

The transformed values L in are now directly proportional
to actual incident light intensities along the length of the
finger due to each LED.

5.1.3 Finger measurement
The next procedure addresses step 3 in the process.

1. Set PWM values to 1.0.

2. Take image of finger, crop, and apply finger mask?.
Let the masked image of the finger be M.

3. Transform each value v in the image by v/ = e T,
This step transforms the sensed gray levels by the
inverse of the estimated camera function to obtain
values that can be linearly manipulated.

4. Calculate the average gray values across the width
of the finger (for each position along its length), and
let this be a vector f. Formally, if H is the height of
the image and H Jf is the finger thickness at position
j along its length, then

£ - S M,
i= 7
Hj

This to fit the simplified linear model of the finger.

5. Take the column sum of L and let this be s. Divide
f by s element-wise to obtain the finger constants k.

Since the values in rows of L are directly proportional to
the light intensity distribution of the LEDs, its column
sum s is directly proportional to the total incident light
intensity distribution on the finger. Further, f contains
the light intensity distribution along the finger with losses.
Therefore, k = g now contains the constants of propor-
tionality which relate the light intensities obtained during
calibration and those observed via the finger with loss.

2will be outlined later in the text



5.1.4 Illumination adjustment

Having obtained the requisite data from device calibration
and finger measurement, we can now proceed to address
step 4 of the refined problem model.

1. If the desired uniform gray level along the finger is
u, determine the appropriate light distribution ¢’ to
compensate for loss by taking ¢’ = 1.0 x e . Here,
1.0 is a row vector of length W (image width) con-
taining the value 1.0.

2. Sanitize ¢’ to ¢’ obtain such that 0 < ¢ < s element-
wise.

s; s;<c}
ci=<c, 0<c;<s;
0 c;<0

This is since the luminous intensities can never ex-
ceed those at maz PWM of all LEDs.

What remains is step 5, the last and most significant step.
The goal here is to find the intensity fractions of each
LED such that the sum of their horizontal intensity dis-
tributions result in the desired horizontal light intensity
distribution.

We already have L, a matrix whose i row, L., consists
values directly proportional to the average luminous inten-
sity in the horizontal direction with only the i** LED on.
Thus, L;. contains the horizontal light intensity distribu-
tion at maximum intensity due to the *" LED. c is a row
vector with the desired horizontal light intensity distribu-
tion. The problem can be refined as finding a row vector
p such that

pxL=c (1)

where p; is the intensity fraction of the i*" LED. At first
glance, it may seem that determining a suitable (pseudo)
right inverse of L would provide a solution. However, the
range of values in p should be in the range [0, 1], and
no trivial generalized algorithm exists for such a problem.
Hence, we propose to solve the problem using a simplified
inverse multivariate regression algorithm which aims to
find the closest approximation for p. L and ¢ together
form the input to the regression algorithm.

We start with an initial approximation of p = 1.0. Since
p is an approximation, then the resulting horizontal light
distribution row vector v may not be equal to a. Formally,
this is:
pxL=v (2)
and
v—c=e#0 (3)

where e is the row vector of errors in the approximated
horizontal light distribution. Now the goal of the regres-
sion is to minimise e.

In order to determine the compensation be applied to each
value in p, it is necessary to find the contribution of each
value in p to those in e. For this purpose we define a
weight matrix W which satisfies the following relation:

exW=d (4)

where d a column vector equal in size to p, which gives
the error contribution from each LED. We obtain the W
as follows. Let the column sum of L be the row vector s.

sj = sum(L.j) (5)

First we normalize each column of L by diving each row
element-wise by s to obtain L.

Li*
S

Lix = (6)
Now each Lj; contains the fraction of light intensity con-
tribution from the *® LED to the j*" horizontal position.
We then scale each row in L’ by the ratio between the
original row’s maximum and the maximum of the original
matrix to obtain L”.
L;.)
L% = L), max(Li.) 7
o= L T (7)
This is so that the relative magnitude of the LEDs remain
constant despite the column normalisation. Finally, W is
constructed as L7 so as to fit the shape required for the
matrix multiplication in Equation 4.

Finally, we can adjust the error values in e by dividing
by s, so that the values obtained in d are roughly on the
same order of magnitude as the values in p. d can then
be used to adjust p by the following recurrence relation in
each iteration of the regression algorithm:

Px+1 = P — dg. (8)

The values of p can clamped to be in the range [0, 1] since
the LEDs can neither exceed the maximum intensity nor
have negative intensities.

This process is then carried out for a constant maximum
number of iterations (500 in reference implementation) or
until the change in p in an iteration is significantly low
(< 107 in reference implementation). The regression al-
gorithm is summarised as pseudo-code in Algorithm 1 in
Appendix A.

5.2 Improvement of imaging

The next portion of the research deals answering RQ2.
That is, how to obtain a high quality image that is suitable
for vein pattern extraction using the adaptive illumination
algorithm. We present an simpler alternative method to
obtain a high quality vein image without going through
the intermediate steps of high dynamic range imaging and
tone mapping, namely exposure fusion.

Our method uses the exposure fusion algorithm by Mertens
et al. [9] to compose an end-to-end illumination control,
imaging, and pattern extraction pipeline that requires no
manual adjustment beyond initial calibration. The algo-
rithm also takes local contrast into account in addition
to good exposure, which is of importance for vein images,
since improved local contrast usually leads to better vein
visibility. The pipeline is composed of the following high-
level steps:

1. Image capture
2. Finger normalization and segmentation
3. Exposure fusion

4. Pattern extraction

5.2.1 Image capture

The image capture process takes several images at differ-
ent constant, horizontally ‘uniform’ gray levels by making
use of the procedure outlined in Section 5.1 above. The
reference implementation uses four gray levels in the neigh-
bourhood of 130, [120, 140, 160, 180] which has a reason-
able level of brightness for human visual comparison while
avoiding over or under exposure.



Figure 2. The vein pattern extraction process.
From top to bottom: raw vein image, pattern ex-
tracted using the maximum curvature method, en-
hanced pattern

5.2.2 Finger normalization and segmentation
The finger images captured should then be normalized and
segmented to obtain a region of interest containing finger
veins for the pattern extraction process.

Our proposed method starts by detecting candidates for
finger edges using Canny edge detection [1]. The detected
edges are then ranked based on length and the longest
edges in the top and bottom half of the image are chosen
as the pair of finger edges. The edges are then extended to
reach the right and left edges of the image and combined
to form a finger contour. This contour is then used for
creating the finger mask. This method was found to be
more robust against non-finger artifacts in the image due
to reflections from parts of the imaging device than the
method proposed by Lee et al. [8].

We use the detected edges to determine a midline of the
finger by fitting a line to the average of the vertical posi-
tions of the two edges, for each horizontal position. The
normalisation process applies a transformation matrix de-
rived from the gradient and intercept of the midline in
order to compensate for the rotational and translational
deviations in finger position. The same is performed for
the derived mask to form a mask that matches the trans-
formed image.

The final step applies the mask to the image to provide a
normalized and segmented finger image.

5.2.3 Exposure fusion

The exposure fusion process receives the normalized multi-
exposure images and combines them using the the expo-
sure fusion algorithm described by Mertens et al. [9].
This algorithm merges images of multiple illumination lev-
els/exposures by considering the quality measures satura-
tion, contrast, and exposure. A weight can be assigned for
each quality measure. The final image is reconstructed by

fusing parts from all the images considering the weights
given to quality measures, so as to locally improve the
quality measures in the final image. Thus, the fused im-
age has better local contrast, exposure, and saturation.

In the reference implementation, equal weight is given to
the contrast and exposure parameters in the algorithm. In
order to avoid boundary effects due to the abrupt change
at finger egdes, the finger image is mirrored along the edges
detected during normalization and segmentation.

5.2.4 Pattern extraction

The pattern extraction procedure is the maximum curva-
ture method developed by Miura et al. [10]. The reference
implementation uses the implementation by Ton [14], with
a sigma value of 2.5. This stage of the reference implemen-
tation is in MATLAB, as opposed to Python, and is run
on an external device.

The extracted pattern is then refined by cropping to a
smaller region of interest of 450 x 200 and performing the
following morphological operations to remove noise arte-
facts and make the extracted pattern uniform.

e Dilation to bridge small gaps in veins.

e Skeletonization to extract structure of the vein pat-
tern.

e Area opening to remove small noise artefacts.

e Dilation to make vein thickness reasonably large rel-
ative to image size, so that small shifts do not affect
pattern matching.

The pattern thus obtained can be used in a pattern match-
ing algorithm to perform biometric authentication and
identification. Progress from a raw vein image to an en-
hanced image is shown in Figure 2.

6. EVALUATION

In order to address RQ3, we conducted a preliminary
quantitative evaluation. Due to time constraints, the eval-
uation was informal and limited to 42 finger vein images
acquired using the improved pipeline.

6.1 Evaluation criteria

The mated and non-mated scores® of the old and improved
setups, as determined by the maximum curvature [10] al-
gorithm of Miura et al are used to evaluate the perfor-
mance of the different methods.

It is important to note that the score from the maximum
curvature matching method is not a score of confidence,
but rather a low-level metric that represents how ‘match-
ing’ two given vein patterns are. A higher score indicates
a good match while a lower score indicates a bad match.
The threshold for determining a positive and a negative
match has to be experimentally established. This thresh-
old will differ from setup to setup. However, in a good
system, the mated scores and non-mated scores will be far
apart and clustered together, minimizing the possibility of
false acceptance and false rejection.

Thus, the following statistical criteria were devised and
used to evaluate the scores.

e Means of mated and non-mated scores: the former
should be higher and the latter should be lower.

3score of two images of the same finger and two different

fingers, respectively.



e Mean of differences between mated and non-mated
scores: higher differences are better.

e Standard deviations of mated and non-mated scores:
lower is better, since it implies that the scores of each
class are clustered together.

6.2 Experimental setup

The experiment was set up so as to evaluate the above
metrics for

e plain image chosen at same illumination for all fin-
gers such that the image was well-exposed for the
most number of fingers,

e old HDR imaging setup by Humblot-Renaux, and

e proposed image setup with Mertens’ exposure fusion.

For each setup, the performance of both adaptive illumi-
nation and static illumination were evaluated, with four
images captured at increasing illumination levels. The
multiple images are required for evaluating the HDR and
exposure fusion approaches. In the case of adaptive illumi-
nation, the illumination was derived from the gray levels
120, 140, 160, and 180. In the case of static illumination
the images were obtained at uniform PWM levels of 0.25,
0.50, 0.75, and 1.00.

Images of 42 distinct fingers were captured and used as
input data. The dataset was informally gathered and is
hence not publicly available. One half of the non-mated
scores is of the same finger in the opposite hand of the
same person, and the other half is of the same hand of a
different person. This was chosen since those non-mated
pairs showed the most similarity in shape and size, and
hence suitable to evaluate the non-mated scores.

6.3 Results

The histograms of the raw scores from each of the experi-
mental setups in Section 6.2 are given in Figure 4. The re-
sults of the different statistical metrics outlined in Section
6.1 are given in Table 1. Figure 3 illustrates the difference
in image quality with and without adaptive illumination.

While not the primary goal of this research, the pattern
enhancement procedure was also evaluated. The raw score
histograms for the evaluation of this can be found in Figure
7 (Appendix B).

The average time for the calibration procedure was 2 sec-
onds. The average time for the adaptive illumination ad-
justment was 20 milliseconds. These processes happened
on-device on a Raspberry Pi 3B+. The exposure fusion
process took 30 milliseconds on average. This was done
on a computer with a 2.7 GHz Intel Core i5 dual core
processor.

6.4 Discussion

Experimental results and their analysis from our evalua-
tion clearly show that both adaptive illumination as well
as the proposed exposure fusion method gives improved
results as opposed to static illumination.

The robustness of the adaptive illumination process is clearly
visible where the static illumination algorithm fails to pro-
vide a well-exposed image for the 6 thin fingers in the
dataset, resulting in a blank vein pattern. This can be seen
in the bars at 0 in the histograms. Simply using a plain
calibrated image alone is seen to make the imaging process
robust against such thickness variations, as illustrated by
Figure 3. Without adaptive illumination, the finger image

Figure 3. A thin finger before (top) and after (bot-
tom) application of adaptive illumination.

is heavily over-exposed. Further, the adaptive illumina-
tion algorithm does significantly better in terms of score
variations (measured by standard deviation).

In both static and adaptive illumination cases, the pro-
posed exposure fusion process significantly improves im-
age quality and score metrics. Compared to the other ap-
proaches, exposure fusion provides scores that are farther
apart and more clustered. In the case of static illumina-
tion, it manages to produce an image of sufficient quality
even in the thin fingers.

From the experiments, it is also evident that a combined
adaptive illumination and exposure fusion approach leads
to better quality than only one of them. That said, the
extent of improvement there is small. However, in the case
of the six thin female fingers in the dataset, the combined
approach is far superior.

The performance improvement from the combined approach
can be explained as follows: the adaptive illumination pro-
vides a “best-effort” set of consistent exposures for fusion,
and the exposure fusion combines the regions with locally
optimal levels of contrast and exposure. If only exposure
fusion is used, more images are needed, since of the four
images obtained, most of them will either be overexposed
(in the case of a thin finger) or underexposed (in the case
of a thick finger), leading to a poorer fused image. If only
adaptive illumination is used, regions with larger veins will
be brighter to compensate for the low average gray level,
leading to smaller veins being overexposed, leading to loss
of detail. A combined approach mitigates these two issues.

The extra pattern enhancement procedure outlined in Sec-
tion 5.2.4 also showed a significant improvement in scores
of all the methods evaluated. As seen in Figure 7 (Ap-
pendix B), applying pattern enhancement moves the two
score clusters further apart. This confirms the expectation
from visual examination, where it can be seen that addi-
tional noise and (false) thickness variations in veins have
been reduced.

7. RECOMMENDATIONS AND FUTURE
WORK

While the research shows promising results, a comprehen-
sive evaluation is needed to establish the statistical signif-
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Static Illumination

Adaptive Illumination

Old HDR

Plain Image

New Method

New Method

Old HDR Plain Image

49.31

51.09

Mean, Mated
Mean, Non-mated

Mean, Differences
Std. Dev., Mated
Std. Dev., Non-Mated

Table 1. Statistical measures of scores from different setups. Scale from bad to good is colour coded from
green to yellow to red, for clarity.



icance of the improvements.

Only 6 fingers from the set of 42 fingers were female, and
it is for those the combined approach made a significant
difference. Hence, it is important to explicitly use a di-
verse set of finger images to evaluate the robustness of the
algorithm.

The composed imaging pipeline proposed in the research
has several parameters that can be tuned, such as

e the optimal set of gray levels to use in the capture
of images using the adaptive illumination,

e the weights of the Mertens exposure fusion algorithm,

e the sigma value used for the vein pattern extraction,
etc.

These parameters were determined by trial and error in
the research, and may have room for improvement. A
more rigorous determination of these need to be done.

In addition to these, it is possible that adaptive illumina-
tion calibration alone is sufficient to obtain a good vein
image, thereby saving computation and acquisition time.
Based on our results, the plain image with adaptive illu-
mination alone does marginally worse than the combined
approach with exposure fusion. A more comprehensive
study can establish whether this is actually the case.

8. CONCLUSION

The research primarily addresses three research questions.
The first is regarding finger-adaptive illumination control,
for which we present a feedforward finger-adaptive illumi-
nation algorithm that is robust to finger variations and
operates in constant time. The presented solution is able
automatically adjust lighting in a constant time of 200 ms
instead of several seconds and effectively makes the image
acquisition process robust to finger thickness variations.

Using this illumination algorithm, a multiple exposure fu-
sion approach to finger vein imaging was composed. The
devised image pipeline requires minimal manual human in-
tervention or tuning for operation, as opposed to the cur-
rently available solutions. The combined solution answers
the second research question which requires an alternative
to the prior HDR approach, where the alternative also in-
tegrates illumination control. The alternative is able to
provide better results with only 25% of the previously re-
quired number of finger images.

The third research question is to evaluate the combined
approach. We evaluated the research work using the mated
and non-mated scores and performed a preliminary statis-
tical analysis on them. The developed algorithms were
found to improve pattern extraction and matching per-
formance, both separately and in combination. This was
reflected by marked decreases in standard deviations of the
mated and non-mated score clusters and also increases in
the mean difference between them, indicating better sep-
aration.

The results of the research provide a practically applicable
finger vein imaging pipeline in addition to opening up a
potential future areas of research.
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APPENDIX

A. ILLUMINATION REGRESSION ALGO-
RITHM

Algorithm 1 Illumination regression algorithm

procedure REGRESSION(L, ¢, iterations)
s < column_sum(L)
L’ « column_normalise(L)
L// — L/
for all ¢ € [0,row_count(L) Ai € Z) do
Li, «+ L}, x max(L;.)/max(L)
end for
W <« transpose(L")
count < 0
while count < iterations do
v px*xL
e+ v—c
e+ e/s
d+—exW
p=p—d
end while
return p
end procedure
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Figure 6. Coordinate system and directions used
in model.

Figure 5. The scanning device.
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Figure 7. Histograms of experimental scores. First and second columns contain scores from static and
adaptive illumination respectively. The rows are the scores of, in order: old HDR imaging approach by
Humblot-Renaux, old HDR imaging approach by Humblot-Renaux with pattern enhancement, selected
plain single image, selected plain single image with pattern enhancement, proposed new exposure fusion
method using the algorithm of Mertens et al., proposed new exposure fusion method using the algorithm
of Mertens et al. with pattern enhancement. The grey rows have scores of the methods immediately
above them, but with pattern enhancement.
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