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ABSTRACT APERITIF

Food plays a central role in all of our lives, it affects our
health and even our mood. There are millions of differ-
ent (online) recipes to choose from, a lot of which haven’t
been vetted yet. This research aims to glean new insights
in which features drive the popularity of recipes by way
of network analysis, and use these insights to train a pre-
dictive model. While the best of a pair of similar recipes
can be determined with an accuracy of 90%, a more gen-
eral rating predicting proves to be a much tougher nut to
crack. We haven’t been able to accurately predict a gen-
eral rating for recipes, but we believe we can provide some
food for thought.
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1. INTRODUCTION HORS D’OEUVRE

There is a wealth of information on recipes and cooking
available online. Over the last few years even larger and
more complete, structured datasets have become available
for use in food recipe analysis.

A lot has been done to discover how we choose to eat
what we eat, but there is a lot more information to be
gained. Research by Ahn et. al [1] and Teng et al. [10]
show promising results in the use of networks for better
understanding food and recipes.
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A better understanding of food, recipes and what makes
them popular can aid not only recommender systems but
also authors, chefs or people who want to learn how to
cook. A few use cases could be predicting how well a recipe
would be received, recommending ingredients to omit, add
or replace, or optimizing the recipe for efficient use of in-
gredients the user has available in their home.

We will download a large set of recipes from online recipe
sharing sites, parse their ingredient lists and build net-
works showing the relations between different ingredients.
We will extract information about the structure of these
networks and use this to train machine learning models to
predict popularity measures for unrated recipes.

In a nutshell, this research attempts to find out which
features are the bread and butter when it comes to food
recipe popularity.

2. RESEARCH QUESTIONS LA CARTE

The research can be broadly summarized by the questions
below and is elaborated upon in sections 3 and 5.

RQ1. Which features are the most important factors in
recipe popularity?

RQ2. Can we predict the popularity of an unrated recipe?

RQ2.1 Can we identify the best of 2 similar recipes?

RQ2.2 Can we assign an overall popularity measure?

RQ2.3 How does this compare to related work?

3. BACKGROUND PLATS D’ACCOMPAGNEMENT

You are what you read; this section succinctly explains
some background about the proposed methodology.

3.1 Data and Format
The data will be scraped from Allrecipes1, the cream of
the crop when it comes to food recipe data. Allrecipes has
1https://www.allrecipes.com/
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a large community of active users that leave reviews and
upload recipes.

The data includes ingredient lines, reviews (score, user,
date, text), how many people made the recipe, tags (cui-
sine, course, occasion), images, cooking time, servings, de-
tailed nutritional information, preparation steps and the
author.

A SQLite2 database will be used to query the data. An
ERD of the data can be seen in figure 1.

Figure 1. Entity Relationship Diagram

3.2 Network Science
The field of Network Science studies complex networks
such as social networks, or in the case of this study, ingre-
dient networks. An example of an ingredient network can
be seen in figure 2, where two ingredients share an edge
if they occur together more than would be expected by
chance according to their pointwise mutual information.

A network science approach can, among other things, be
used for data mining and feature extraction for machine
learning methods. Teng et al. [10] used centrality mea-
sures and community structure from their networks to
build feature sets that had a much lower dimensionality
than a full ingredient list. This lower dimensionality ad-
dresses the sparsity problem of a full ingredient list, where
often only about 10 ingredients of a list of several thou-
sands are present in a single recipe.

Figure 2. Ingredient network by Teng et al. [10]

3.3 Machine Learning
The field of Machine Learning studies algorithms and mod-
els that can perform a specific task without using explicit

2https://www.sqlite.org/

instructions. Using the data from section 3.1 and the fea-
tures extracted from it one can train a model to predict
the popularity of a recipe.

Supervised machine learning is a subset of machine learn-
ing tasks where output functions are learned from labeled
training data. In the case of this study, the labels are re-
view scores and favorite counts. Supervised machine learn-
ing can be further divided into classification and regression
methods.

Classification methods, e.g. support-vector machines3, are
used for data with discrete labels such as which in a set
of two recipes is considered the best. Regression methods,
e.g. linear regression4, are used for continuous labels such
as an overall popularity score.

4. RELATED WORK AMUSE-BOUCHE

There has not been a lot of research in the domain of food
recipe recommendation specifically in recent years. There
are some papers with promising results however.

Networks
Ahn et al. [1] spiced things up by using networks of shared
flavor compounds in ingredients to investigate the food
pairing hypothesis5. They show how data-driven network
analysis can yield new insights into food science. Simas
et al. [9] recently used the same methods to investigate a
food-bridging hypothesis.

Regional cuisines
Jain et al. [8] investigated the food pairing (or lack thereof)
in regional cuisines in India. They find that the regional
cuisines follow a similar trend of negative food pairing and
that spices play a crucial role in this trend.
Zhu et al. [11] investigate the impact of climate and ge-
ographical proximity on the similarity of regional cuisines
in China. They find that geographical distance plays a
key factor in how regional cuisines are shaped over time.

User-centered
Freyne and Berkovsky [3], joined by Smith [4] a year later,
take a user-centered approach to recipe recommender sys-
tems. They surveyed users about their preferences on a set
of recipes and investigate which factors influence a user’s
rating.
Ge et al. [5] built an actual recommendation system demo
for Android. They take health factors into consideration
and allow users to adjust the relative importance of health
and taste.

The whole picture
In terms of related work, Teng et al. [10] take the cake.
They built two ingredient networks, one complement net-
work and one substitution network. The complement net-
work shows which ingredients tend to co-occur. The sub-
stitution network is a directed network generated by ana-
lyzing user reviews, it shows which ingredients tend to be
substituted by other ingredients. They have shown how
centrality and community features derived from the net-
work structure can significantly increase the accuracy of
their predictions as opposed to using a full ingredient list.

3https://en.wikipedia.org/wiki/Support-vector_
machine
4https://en.wikipedia.org/wiki/Linear_regression
5https://en.wikipedia.org/wiki/Foodpairing
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5. METHODS RECETTE

The proof is in the pudding; in this section we show our
methodology for answering the research questions.

5.1 Data Acquisition
Several recipe sites have been considered to use as the sub-
ject of this research, most notably allrecipes.com, yummly.com
and epicurious.com. These sites were chosen for their large
volume of recipes as well as their active communities in
both reviewing and uploading recipes. Yummly initially
seemed as the best option because they have over 2 mil-
lion recipes and 16 million active users. However, only the
first couple thousand recipes get a significant amount of
exposure resulting in less than 10.000 recipes that have
more than 5 reviews. Allrecipes and Epicurious have a
similar amount of recipes, around 60.000 vs 40.000, but
Allrecipes has significantly more reviews, 3.6 million vs
700.000. Combining the datasets of several sites would
result in the machine learning models learning to differ-
entiate the source of the recipe rather than the quality
(more on that in section 6). For this reason Allrecipes was
chosen as the data source.

58.305 recipes have been scraped from allrecipes.com along
with 3.591.506 reviews. The data includes nutritional in-
formation, serving size, cook time, tags such as course type
or dietary concerns, and preparation steps. The reviews
are a score from 1 to 5. An ERD of the data can be seen
in figure 1.

5.2 Preprocessing
The ingredients of the recipes are given as unstructured
ingredient lines, usually in the form of ”quantity unit com-
ment ingredient comment” e.g. ”1 cup chopped tomatoes,
as ripe as possible”. There is a lot of variation possible
though and it can be hard to differentiate between what
is an unnecessary descriptor or an important part of the
ingredient name. A melon for example is a completely dif-
ferent fruit from a bitter melon, but a red bell pepper can
safely be seen as more or less equivalent to a green bell
pepper.

The New York Times has published a dataset of roughly
180.000 ingredient lines that have been manually tagged
and the model they trained for tagging ingredient lines
with their quantity, unit, and ingredient [6]. Their ap-
proach uses Conditional Random Fields, which might be
overkill for this application since even though the input
is somewhat dependant (a different unit would result in
a different quantity if you want the total amount to stay
the same), that is not a relation that the model needs to
learn for this application. Inference might be faster with
e.g. an LSTM because of a more narrow search space, but
since the run time is still manageable for the amount of
data used in this research we have opted to stick with their
CRF approach. An example of the CRF output (converted
to JSON) can be seen in listing 1.

Listing 1. Ingredient Phrase Tagger Output
{

"qty": "5",

"unit": "cup"

"name": "all-purpose flour",

"other": ",",

"comment": "or more as needed",

"input": "5 cups all-purpose flour, or more

↪→ as needed",

}

The ingredients returned by the ingredient phrase tagger
are further preprocessed by stemming them using the Nat-
ural Language Toolkit’s6 PorterStemmer and by removing
certain common adjectives that don’t affect ingredient fla-
vor such as ’large’ or ’medium’.

5.3 Ingredient Networks
With the structured ingredient data in place it is time to
build the ingredient networks. To build the networks we
used the NetworkX7 Python library.

Cooccurence Network
We counted the cooccurrences of each ingredient and added
an edge between two ingredients when they occur together
in at least 0.0005% of all recipes, with the log of their
cooccurrence count as the edge weight. This results in a
network with 740 nodes and 10.391 edges. A couple of
different thresholds were tested, 0.0005% filtered out the
ingredients that were either too verbose (e.g. ”Dunkin’
Donuts® Caramel Coffee Cake Artificially Flavored K-
Cup® pod”) or misspelled, and didn’t impact the net-
work feature performance while increasing efficiency due
to fewer nodes and edges. This value will of course depend
on the size of your dataset.

5.3.1 Complement Network
The complement network is similar to the cooccurrence
network but its edges are based on the ingredients’ point-
wise mutual information (PMI). The PMI value for two
ingredients x and y is calculated as follows:

PMI(x, y) = log(
p(x, y)

p(x)p(y)
)

Where p(x, y) is the number of recipes where x and y occur
together divided by the total number of recipes, and p(z)
is the number of recipes containing ingredient z divided
by the total number of recipes.

The PMI tells us how ’important’ a connection between
two ingredients is. Onions, for example, have a high cooc-
currence rate with almost every other ingredient, but there
are no ingredients that onions cooccur with more often
than would be expected by chance. Therefore there is
not much information to be gained if onions are used in
a recipe. Saffron on the other hand does not occur fre-
quently, but when it does it is usually with spanish chorizo
and vice versa, giving that combination a high PMI value
(much to the chagrin of Valencian Paella chefs).

For visualization purposes the threshold of when to add
an edge between two ingredients was set at three times
the standard deviation above the mean of all PMI val-
ues. When using the networks to extract features for the
machine learning methods a threshold of one standard de-
viation above the mean had the best results. The weight
of the edges was set to the actual PMI value.

An example of the comlement network can be seen in figure
3, or by visiting the link at the end of this section. Clus-
ters are colored by the multilevel algorithm by Blondel et
al. [2]. Ingredients found in Indian, Thai, and Japanese
cuisines and cake ingredients and alcoholic drinks form the
5 most densely packed clusters.

5.4 Recipe Similarity and Node2vec
To answer RQ2.1 and to calculate some recipe similarity
measures we used the node2vec algorithm by Grover et
6https://www.nltk.org/
7https://networkx.github.io/

3

https://www.nltk.org/
https://networkx.github.io/


Figure 3. Complement Network
An example of the complement network with a PMI threshold

of mean+ 3 ∗ std, colored by cluster membership. Nodes
scaled by their occurrence count, edge width scaled by PMI,

isolates removed.

al.[7]. It maps network nodes to a low-dimensional space
of features that maximizes the likelihood of preserving
their neighborhoods by performing many random walks
originating from each node in the network. These em-
beddings can be converted for use in a Gensim word2vec
model8. This allows us to use all word2vec functions such
as doesnt match to find the odd ingredient in a list and
n similarity where you can input two lists of ingredients
and get a cosine similarity score between 0 and 1.

The algorithm has a return hyperparameter and an in-
out hyperparameter controlling the probability of the walk
backtracking and choosing nodes that are close to the pre-
vious node respectively. The algorithm has been run on
both networks with a return hyperparameter of 0.3 and
in-out hyperparameter of 0.7 and the following regular pa-
rameters: 128 dimensions, walk length of 50, 240 walks per
node. The algorithm takes the edge weights mentioned in
the network sections into account.
The chosen return and in-out parameters ensure that there
is an increased likelihood for the walks to backtrack as well
as choose a node further away from the previous node, en-
couraging the walk to explore different paths but not stray
too far from its origin.

The benefit of using node2vec as opposed to simply calcu-
lating the cosine similarity of the ingredient lists directly is
that even though the lists [’chicken breast’, ’canned toma-
toes’, ’thyme’] and [’chicken thigh’, ’vine tomatoes’, ’rose-
mary’] are very similar, their cosine similarity would be 0.
The node2vec algorithm results in a similarity of 0.68 on
these same lists.

5.5 Recipe Pairs
For comparison’s sake we used the same restrictions as
Teng et al. [10] to generate recipe pairs for the recipe pair
prediction task, with some important differences: We used
different methods to extract ingredient information and to
calculate recipe similarity, and their constraint that 50%
of users should have rated both recipes would result in
only 3 out of a possible 80 million combinations.

8https://radimrehurek.com/gensim/models/word2vec.
html

Figure 4. hyperparameters, as seen in [7]
The parameters return p, in-out q and search bias α

(dependant on p and q). The walk has transitioned from t to
v and is evaluating its next step.

The pairs were generated as follows. A recipe should have
at least 10 reviews by users that have reviewed at least 8
recipes in total. For all combinations of those recipes a
and b, consider those where:

• Cosine similarity of a and b is strictly higher than
0.5 (as calculated by the node2vec algorithm)

• It has at least 10 reviews by users that have reviewed
8 or more other recipes

• At least 5 of those reviews are by users that have
reviewed both recipe a and b

• Of those reviews, 75% of the scores for recipe a are
strictly higher than recipe b

• The total aggregated review score of recipe a is strictly
higher than recipe b

This results in 53.810 recipe pairs where it is safe to say
that the users collectively agree that recipe a is better than
recipe b.

5.6 Features
The features are a combination of recipe information, nu-
tritional information, network structure and a node2vec
similarity measure, as seen in table 2.

The basic recipe features are the servings, a boolean value
indicating if it has an image, the ingredient count, the
number of preparation steps, the cook time and the course
type (main, dessert, appetizer, etc.).

The nutritional information features are the amount of
calories, fat, carbs, protein, cholesterol and sodium in the
recipe.

The network features consist of aggregated degree, be-
tweenness, closeness, eigenvector and pagerank centrality
measures, the average degeneracy (core number), and clus-
ter membership as calculated by the Blondel et al. multi-
level algorithm [2].
The centrality measures and degeneracy are aggregated by
a dot product of a vector with the values for the measure
and a binary vector of ones and zeroes when the corre-
sponding ingredient is or is not present in the recipe.
The cluster membership is represented as a column for
each cluster with a value between 0 and 1 for the percent-
age of ingredients that belong to that cluster.
The node2vec similarity measure is the average similarity
of all combinations of the ingredients in the recipe.
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Table 1. Precicion, Recall, and F1-score
All Network and Nutrition Network and Basic Network Nutrition and Basic Nutrition Basic
0.90 0.89 0.87 0.89 0.84 0.82 0.72

Table 2. Features
Basic Nutrition Network
Servings Calories Degree centrality
Image Fat Closeness centrality
Ingredient count Carbs Betweenness centrality
Prep step count Protein Eigenvector centrality
Cook time Cholesterol Pagerank centrality
Course type Sodium Degeneracy

Cluster membership
Node2vec similarity

Machine Learning Methods
To avoid putting all our eggs into one basket these features
have been used to train multiple models including Ran-
dom Forest classifiers and regressors, SVMs, and k-nearest
neighbors and linear regression algorithms. All models
were trained using the Scikit Learn9 library. For the pair
classification the features of both recipes are passed to the
model with a 0 or a 1 indicating if recipe a or b is consid-
ered to be better. For the regression the features of one
recipe with its aggregated review score between 1 and 5 is
used to train the model.
The apple doesn’t fall far from the tree, just like the other
models don’t fall far from the random forest in terms of
accuracy. For that reason we have chosen to focus on the
Random Forest, since it is both very efficient and allows
us to evaluate the relative performance of all features.

We performed some hyperparameter tuning to determine
the best values for the prediction tasks, which were:
n estimators = 100, min samples leaf = 0.0005, max features
= 0.33 for the pair prediction and n estimators = 100,
max depth = 25, min samples leaf = 0.0005 for the re-
gression.
Over 90% of reviews rate a 4 or a 5. To tackle this imbal-
ance we have looked at oversampling the minority classes,
undersampling the overrepresented classes and assigning a
higher weight to minority classes.
For the general popularity measure we have also used the
pair prediction model. Two approaches have been at-
tempted:

• Splitting all recipes in groups where their review
scores round to 1, 2, 3, 4 and 5 and making pairs
of the recipe being tested together with the similar
recipes in the aforementioned classes. We then used
the verdict of the majority of these classes to deter-
mine which class the test recipe belongs to. If e.g.
90% of recipes in class 1 say the test recipe is better,
and only 40% of the recipes in class 2, decreasing for
each class, we would classify the test recipe as a 2.

• A tug-o-war where all similar recipes are sorted in a
list and for each recipe the position of the test recipe
is pushed forward or backward in the list based on
whether the model thinks that recipe is better or
worse. The push backwards or forwards is weighted
by the current distance to the recipe, where a recipe
scoring a 2 saying the test recipe is worse will have
a larger impact than a recipe scoring a 4 if the test

9https://scikit-learn.org/

recipe position is near the end of the list. We have
experimented with the starting position of the recipe
and the recipe pointers (alternatingly picking recipes
from the front and end of the list to compare, placing
the recipe in the middle at the start, etc.).

All experiments have been repeated on a subset of the data
where the recipes have been explicitly tagged as a main
course to see if this would impact the ingredient networks
and model accuracy.

Web App
To explore the ingredient complement network and node2vec
model we have cooked up a little web app which is avail-
able on https://food.frank-ruis.nl/viz/ until at least
a couple of weeks after the conference.

6. RESULTS PLAT PRINCIPAL

6.1 Pair Prediction
As mentioned in section 5, 53.810 pairs of recipes were
tagged with either a 0 or a 1 indicating which recipe is
considered to be better and evaluated in a 2/3 train, 1/3
test split. The model has been evaluated with all com-
binations of feature groups from table 2. The precision
and recall (and therefore also f1-score) are the same in
all instances and can be seen in table 1. An interesting
phenomenon is that the basic feature set improves the ac-
curacy by roughly 2% in all instances except when paired
with just the network features where they result in a 2%
reduction in accuracy. The combination of nutrition and
network features doesn’t improve compared to just using
the network features, but combining all 3 feature sets re-
sults in the best performance of 90%.

Feature importance
Because Random Forests are en ensemble of decision trees
it is possible to inspect the feature importance, which
scikit-learn implemented with the Gini Impurity approach.
The importance for the combined set can be seen in fig-
ure 5. The nutrition features rank the highest and con-
tribute 35.32% to the total importance, the basic features
contribute 14.11% and the ingredient networks contribute
the most at 50.57%. It quickly became apparent that the
cluster features were all sizzle and no steak. They were
very sparse with a high dimensionality (66 per recipe),
and more often than not reduced accuracy, so they were
excluded from the feature set.

Nutrition importance
The nutrition features can be seen in figure 6, including
the standard deviation of the importances reported by the
individual trees. Surprisingly, this is an almost complete
reversal of the nutrition importances found by Teng et al.
[10] on the same data set 8 years ago. While in their
findings fat scores the lowest closely followed by sodium,
they are the 2 most important features in our set.
Since high fat and sodium content are often seen as indi-
cators unhealthy food we explored the data and decision
tree paths for these features. The recipes in the ’better’ set
have 14.52% more fat and 19.82% more sodium than those
in the ’worse’ set, hinting at unhealthier recipes scoring
higher. On the other hand, following the decision paths in
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Figure 5. Feature importance
Feature importance breakdown for the combined set.

all trees in the forest and keeping track of the lower and
upper bounds for the fat and sodium values that are being
evaluated suggests it doesn’t matter which value is higher.
These upper and lower bounds tell us what the decision
tree knows about these values, e.g. the fat content for the
recipe classed as ’better’ is between 5 and 30 and that of
the worse recipe between 0 and 20. For fat about 47% of
the ’better’ recipes have a higher average lower and upper
bound, and 45% for sodium. The average lower bound of
fat for the better recipes is 9.20 and 9.21 for the worse
recipes. The upper bound is 13.93 and 13.92 respectively.
Similarly the values for sodium also fall within 0.1 of each
other. This indicates that the model does not see which
value is higher, but more how they relate to other features.

Figure 6. Nutrition importance
Feature importance breakdown for the nutrition set.

Network importance
A breakdown of the importance of the network features
can be seen in figure 7. These features have a strikingly
high variance. Since the Random Forest only considers a
third of all features per split this suggests that they per-
form better or worse based on what other features they
are paired with. The cooccurrence graph provides 53.88%
of the importance, the complement graph 46.12%. The

degeneracy and closeness centrality are the most influen-
tial features, followed by the cooccurrence network sim-
ilarity score as calculated by the node2vec algorithm in
third place.

Figure 7. Network importance
Feature importance breakdown for the network set.

6.2 Intermezzo
When looking at a scatter plot of the recipe review scores
and their increment id, as seen in figure 9, an interesting
correlation can be seen where the lower the increment id,
the lower the average score. The earliest 5000 recipes have
an average review score of 4.2 while the latest 5000 recipes
score a 4.5. Performing Welch’s t-test on a sliding window
of pairs of 5000 recipes over the entire recipe set results in 2
out of 8 instances with a p-value above 5% (0.08 and 0.70),
with the remaining p-values in the range [3.31× 10−26,
1× 10−4].

The first gap in the increment ids can be explained by the
fact that Allrecipes consisted of 38 separate websites with
each website hosting a different type of food recipes such as
cookies, chicken, cake, etc., which later migrated into All-
recipes. The other gaps can be explained by another site
redesign around 2006 and our webscraper crashing near
the end of one of the sitemaps, missing a couple recipes.

The earliest recorded review was placed in 1998, over 20
years ago. This plot shows how the user base and their
voting habits have changed over time, and highlights a
potential problem when attempting to use the aggregated
review score of a recipe as a ground truth for an overall
popularity measure.

6.3 General popularity
The general popularity approach is similar to the pair pre-
diction, but it looks at all recipes with more than 5 reviews
and does regression on their aggregated review score. The
most accurate in this case was again the combined fea-
ture set. Sadly, our methods were about as effective as
reading tea leaves. After extensive hyperparameter tun-
ing and feature engineering the highest attained accuracy
was an r2-score of 0.12 with a mean squared error that
is roughly 9% better than always guessing the mean of
all recipe scores. The learning curve for this and other
approaches can be seen in figure 8.

The model performed slightly better (r2 0.16) when includ-
ing the increment id, which prompted the investigation in
the previous section. To control for recipe age we grouped

6



Figure 8. Learning Curves

Figure 9. Review score vs Increment id
The older the recipe, the lower the average score. Some

guesses as to what may
explain the shift in score distribution are highlighted at the top.

the recipes in groups of 2 years, their age guessed by fol-
lowing the line as seen at the bottom of figure 10. This
did not result in an increase in accuracy, with the learning
curves flattening out indicating that it is not a case of too
little data.

The next approach attempted to use the pair prediction
model to determine the score of a recipe. The reasoning
was that a 90% chance at determining the best of two
similar recipes should allow us to compare a new, unseen
recipe with all similar known recipes and assign a score
based on these verdicts. This seemed promising in a few
cherry-picked examples but further testing resulted in an
accuracy worse than assigning a random number between
1 and 5, and a precision of 15% when treated as a classi-
fication method.

Controlling for dish type
The repeat experiments where only recipes tagged as ’Main
Dish’ were taken into consideration (mainly affecting the
ingredient network structure) did not yield hard results.
The accuracy was fairly similar in all instances, with the
learning curve (figure 8) suggesting that more data would
put it around the same performance as including the entire
set of recipes.

Figure 10. Time of first review vs Increment id

7. DISCUSSION DESSERT

The model can accurately predict user preference for two
similar recipes given that there is enough overlap in users
that have reviewed both recipes. The highest accuracy
model outperforms that of the related work by Teng et al.
[10] (90% vs 79%), though due to the time difference of 8
years between the data sets and not being able to repli-
cate their exact approach in generating the recipe pairs
this should be taken with a pinch of salt. Due to time
constraints we were not able to include a substitution net-
work which complemented their feature set well, so some
improvements may be had there.

The node2vec model is excellent at recognizing similar
recipes where a cosine similarity calculation on the ingre-
dient arrays would fail to see the connection. The cooc-
currence network similarity score was among the top per-
forming features. Anecdotal evidence suggests that the
node2vec model can perform the same function as the sub-
stitution network mentioned above, suggesting matching
and alternative ingredients when given a list of ingredi-
ents and determining the least fitting ingredient, but that
would require further investigation.

The aggregated review score on its own does not seem
to be an adequate ground truth for predicting a general
recipe rating, or the features that perform well on pair
prediction don’t necessarily translate to a general predic-
tion. The dataset is very imbalanced, with the vast ma-
jority of reviews rating either 4 or 5 stars, a phenomenon
which occurs on the Yummly and Epicurious datasets as
well, making it more difficult to train the model to detect
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the lower ratings. The pair prediction model has a much
stronger ground truth (a group of the same users collec-
tively agreeing), but falls flat when used in general since
it only works when we know for certain that one recipe is
significantly better than the other.

It seems a different approach is needed to tackle the predic-
tion of a general score. However, these features and meth-
ods could be very useful for determining a personal user-
centered preference through collaborative filtering, since
that is what the pair prediction model is effectively doing.

8. CONCLUSION DIGESTIF

We have shown how to build ingredient networks and use
them to extract features for use in machine learning meth-
ods. We have seen how users’ voting habits can change
drastically over time, and that we may have bitten off more
than we can chew with the general popularity measure pre-
diction task. The pair prediction might not be as useful
for cold-start recommendations as it first seemed, but it
could perform well in a more user-centered approach.

In the future we would investigate the use of these in-
gredient networks in a personalized recommendation sys-
tem, and experiment more with features extracted from
the node2vec model.
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