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Abstract

Topological insulators are relatively recently discovered phases of quantum matter
which have exotic electronic properties that have attracted an enormous amount of
theoretical and experimental interest in the field of condensed matter physics. They
are characterized by being electronically insulating in the bulk, while hosting topo-
logically protected surface or edge states, where the electrons behave like massless
particles. The presence of a topological insulator phase is encoded in a topological
invariant taking values in Z2, referred to as the Z2-index. We compute the Z2-index of
bismuth selenide (Bi2Se3) using two different methods. Subsequently, the presence of
surface states in Bi2Se3 is investigated using the method of surface Green’s functions.
The results confirm that this material is a topological insulator. The relation between
the Z2-index and the existence of surface states is described by a result called the
bulk-boundary correspondence, and a proof of this result is reviewed.
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1 Introduction

One of the main themes of condensed matter physics is the classification of matter around
us into phases of matter and the phase transitions that separate these different phases.
For a long time, phases of matter have been understood in terms of certain symmetries of
systems that drastically change when a phase transition occurs. Most people are familiar
with the basic classification into solids, liquids and gases. Solid materials can be further
classified based on their electronic properties, such as whether a given solid can conduct
electricity or not. This property subdivides solids into conductors and insulators, but this
is not the full story. It turns out that there is a different type of phase of matter that is
not based on symmetry, but on topology.

Topology is the branch of mathematics that studies the structure of spaces. As topolo-
gists we are mainly interested in whether two given spaces are equivalent from a topological
view or not, where this equivalence intuitively means that one can deform one space contin-
uously into the other space. Such spaces are said to be homeomorphic. The main approach
to study the topological structure of spaces is by assigning properties that are preserved
when a space is continuously deformed. Such properties are called topological invariants,
and an enormous range of topological invariants are known, in fact infinitely many. An
intuitive example is the number of holes of a surface, while a more elaborate example is
the number of inequivalent ways in which one can tie a loop in a space, which is encoded
in a property called the fundamental group.

Because space is the place in which physics happens, it is natural to expect that topol-
ogy would play some role in physical theories. And indeed, many areas of physics, mainly
within high-energy physics, fundamentally rely, although somewhat implicitly, on the no-
tion of topology. Examples are general relativity, theoretical particle physics and string
theory. It is however only relatively recent that the use of topology has emerged in con-
densed matter physics as well. It turns out that one can meaningfully assign topological
invariants to physical systems in the same way as one does for topological spaces. The topo-
logical invariant of a system defines its phase, and this type of phase of matter is called
a topological phase. The invariant can only change if the system undergoes a so-called
topological phase transition. The discovery of topological phases was quite revolutionary,
and in fact the 2016 Nobel prize in physics has been awarded to Thouless, Haldane and
Kosterlitz for their discovery of topological phases of matter [2], [4].

One of these topological phases is the topological insulator. This type of topological
phase of quantum matter has been theoretically predicted and experimentally observed
over the past thirty years, and the emergence of topological insulators has attracted an
enormous amount of interest from both experimental and theoretical physicists [3], [4],
[14]–[16]. Solid materials in a topological insulator phase are characterized by being elec-
tronically insulating in the bulk of the material, whereas they admit a flow of current over
the surface. The electronic states that carry this current are topologically protected, in the
sense that a topological phase transition is required to remove their existence. This means
that the presence of these special surface states are robust against disorder and defects in
the material structure, which makes them highly interesting for applications.
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A specific type of topological insulator, namely the time-reversal symmetric topological
insulator, is the main topic of this thesis. These topological insulators are characterized by
a topological invariant that takes values in Z2, and as such this invariant is usually referred
to as the Z2-index. Because Z2 has two elements, this type of topological insulator distin-
guishes between two phases, sometimes called the trivial phase and the topological phase.
The computation of the Z2-index for a real material, namely bismuth selenide (Bi2Se3), is
one aspect of this work.

Before the Z2-index of a given material can be computed one needs to have a descrip-
tion of the electronic structure of the material. Fortunately, topological insulators can be
understood within the framework of single-particle quantum mechanics. We will model
the electronic structure of bismuth selenide using the tight-binding method, which we will
review in section 2. This section also contains a review of crystal structures, band theory,
and the representation of symmetries in tight-binding models.

In section 3 the relevant theory of time-reversal symmetric topological insulators is
discussed. We give a physical explanation of the meaning of the Z2-index from a surface
perspective and from a bulk perspective, and consider two methods of its computation.
The first method, due to Fu and Kane [11], is relatively simple but restricted to materials
with inversion symmetry. The second method, due to Soluyanov and Vanderbilt [18], is
more general but also more technical to implement. We also discuss a simple tight-binding
model of a topological insulator to illustrate these concepts, called the Bernevig-Hughes-
Zhang model [9], [22].

We then construct a tight-binding model for Bi2Se3, from which we calculate the cor-
responding band structure. This is done in section 4. The band structure is then used
to compute the Z2-index of this material by applying the two methods mentioned above,
showing that it is a topological insulator.

As we discussed, a non-zero Z2-index indicates the existence of topologically protected
surface or edge states. In section 5 we show that the systems considered in the preceding
sections indeed host topologically protected surface states. We do this by considering a
semi-infinite lattice and calculating the associated density of states at the surface using
the formalism of surface Green’s functions, following [8] and [23].

The fact that a topological invariant which is computed purely from a bulk system,
which in principle has no surface, has implications for phenomena that take place at the
surface of a material is a non-trivial fact. The theorem that provides the link between the
bulk and the boundary of a system is known as the bulk-boundary correspondence. From
a mathematical point of view this is a deep result, and most proofs rely on K-theory and
related tools [24]. K-theory is a theory in which topological invariants of spaces are studied
in terms of vector bundles. It is from a mathematical point of view a natural tool to study
topological insulators, as they are closely related to the topology of vector bundles. We
will however not take this approach in this thesis. In section 6 we review a more concrete
proof due to Graf and Porta [19] in the context of tight-binding models of two-dimensional
systems. The full proof of this bulk-boundary correspondence is quite lengthy, so only the
main steps of the proof are outlined.
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Because quantum mechanics forms the foundation of our study of topological insula-
tors, we give a brief review of quantum mechanics in appendix A. The reader who is not
familiar with quantum mechanics is recommended to read this appendix before proceeding
with section 2.

Before we begin, it should be remarked that topological insulators form a vast subject
with many interesting aspects and different points of view (theoretical, experimental and
mathematical). It is also a challenging topic which requires a considerable amount of
background material. This text is intended for both physicists and mathematicians, and
hence no prior knowledge of condensed matter physics is assumed. To keep the thesis
moderate in size, many topics that naturally belong to a general discussion of topological
insulators did not get a place in this text. Some examples of such aspects are Berry phases,
the quantum Hall effect, Chern insulators and the Chern index, the quantum spin Hall
effect, the role of the Dirac equation and the mathematical bulk-boundary correspondence
formulated in terms of K-theory.
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2 Band Theory and the Tight-Binding Method

In this section we review the theory that will form the basis of our discussion of topological
insulators. We begin by briefly discussing lattices and crystal structures. We then discuss
two versions of an important result for periodic quantum systems called Bloch’s theorem,
which exploits the translational symmetry of the Hamiltonian to reduce the full problem to
a collection of simpler problems. Then we introduce an important model for the electronic
structure of crystalline solids, known as the tight-binding method. As a foundation for the
later sections we also pay attention to the representation of symmetries in tight-binding
models. We conclude with a discussion of what it means for two quantum system to be
topologically equivalent based on the notion of adiabatic continuity. For the reader who is
familiar with these notions it suffices to scan this section.

2.1 Crystal Structures and Translational Invariance

Many solid materials are crystalline in nature, which means that their constituent atoms
are ordered in regular and repeating patterns at the microscopic scale. These patterns are
often arranged periodically, and hence form a so-called crystal structure. If one wants to
describe a sample of a crystalline solid of macroscopic size, it is a powerful idealization to
assume that this crystal extends infinitely far in all directions so that the system acquires
a certain translational symmetry. Macroscopic samples typically consist of 1020 − 1024

atoms, which means that for an electron in the bulk of the sample, this is a very good
approximation. On the other hand, if one is interested in effects taking place at the edge
of the sample, one has to take a different approach. The electronic structure inside the bulk
and at the boundary are not entirely unrelated however, as there is an important theorem
for topological insulators known as the bulk-boundary correspondence. This result roughly
states that the Z2-index determines the phenomena that take place at the surface, and it
is discussed further in section 3. We begin by introducing a mathematical description of
crystal lattices. For a more detailed description we refer to [5], [25].

We consider a d-dimensional crystal1 to be a discrete subset C ⊂ Rd which is invariant
under the action of a group B consisting of translations by vectors lying on a certain lattice
known as the Bravais lattice. Points on the crystal C are called sites, and typically these
sites correspond to the locations of atoms. By definition, the Bravais lattice has the form

B = v1Z⊕ · · · ⊕ vdZ ⊂ Rd,

where v1, . . . ,vd are d linearly independent vectors in Rd. By this notation we mean that
vectors on the Bravais lattice are linear combinations of v1, . . . ,vd with integral coefficients,
so they are of the form

R = n1v1 + . . .+ ndvd,

for integers n1, . . . , nd ∈ Z. The vectors v1, . . . ,vd are called primitive vectors. As is
usually done in condensed matter physics, we will interchangeably use the term Bravais
lattice to refer to the group of translations as well as the underlying set of points in space.
An example of a two-dimensional Bravais lattice is shown in figure 1.

1We write d for generality, but for our purposes we are interested only in d = 1, 2, 3.
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Because of the translational invariance of the crystal, its structure is fully specified by
giving the locations of sites of the crystal around one of the Bravais lattice sites. A region
of space around a Bravais lattice site which tessellates all space when translated by the
elements of B is known as a primitive unit cell. Hence, a full description of a crystal C
consists of a Bravais lattice together with a specification of the sites in a primitive unit
cell. This is illustrated in figure 1, which shows the crystal structure of graphene, a two-
dimensional material.

Figure 1: Crystal structure of graphene. The primitive vectors v1 and v2 span a possible
Bravais lattice for this crystal structure. The shaded region indicates a primitive unit cell.
Black and white dots indicate the inequivalent sites of the atoms, where equivalent means
that the sites are related by a Bravais lattice vector. Adapted from [19].

Instead of taking an infinite lattice, it is customary to consider a finite lattice with
Born-von Karman periodic boundary conditions imposed [22]. Physically, this corresponds
to taking a finite system and attaching the opposite endpoints of the lattice, so that for
instance a chain of atoms becomes a ring of atoms, and a sheet of atoms takes the form of a
torus. Using these boundary conditions, one does not have to deal with non-normalizable
states. The physical argument for accepting these boundary conditions is that the bulk
properties of a system should not depend on which boundary conditions are chosen at
the edge [5]. Mathematically, one could say that the underlying Bravais lattice of such a
system is a direct sum of finite cyclic groups, or

B = v1ZN1 ⊕ · · · ⊕ vdZNd ,

where Ni is the number of lattice sites in the ith direction for i = 1, . . . , d. In this way,
N =

∏d
i=1Ni is the number of unit cells in the crystal. This description is more conve-

nient because instead of integrals one can deal with finite sums when working with Fourier
transforms. It is no longer natural to embed such a finite Bravais lattice in Rd, and instead
one embeds it in a box with periodic boundary conditions, or equivalently a d-dimensional
torus, which we denote by Td.

For a given infinite Bravais lattice B =
⊕d

i=1 viZ ⊂ Rd, a central concept that can be
defined is the so-called reciprocal lattice or dual lattice B∗, given by all vectors G ∈ Rd
for which

G ·R ∈ 2πZ, for any R ∈ B.
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The reciprocal lattice can be constructed directly from the primitive lattice vectors v1, . . . ,vd
by taking the dual basis w1, . . . ,wd to these vectors, which satisfy

wi · vj = 2πδij ,

with δij the Kronecker delta. The reciprocal lattice is then given by

B∗ = w1Z⊕ · · · ⊕wdZ.

For the three-dimensional case, the dual basis vectors w1,w2,w3 can be obtained directly
using

w1 = 2π
v2 × v3

v1 · (v2 × v3)
,

w2 = 2π
v3 × v1

v1 · (v2 × v3)
,

w3 = 2π
v1 × v2

v1 · (v2 × v3)
.

The reciprocal lattice is defined similarly for a finite lattice B =
⊕d

i=1 viZNi ⊂ T d.

We now turn to an important result for periodic systems called Bloch’s theorem. We
first state the version for continuous systems, where the states are wavefunctions. For
points R ∈ B, we denote the translation operator by the vector R by TR, which acts on
functions f in L2(Rd,C) or L2(Td,C) by

TRf(r) = f(r−R).

We remark that we treat the coordinates on the torus as periodic coordinates in Rd.

Theorem [Bloch, continuous version]. Consider a quantum system modelled on the
Hilbert space L2(Td,C) with a Hamiltonian H satisfying the translational invariance con-
dition

H = TRHT−R (1)

for any R in a Bravais lattice B. Then H and each TR can be simultaneously diagonalized,
and the common eigenfunctions can be chosen to be Bloch waves, which are functions of
the form

ψn,k(r) = eik·run,k(r), (2)

where k ∈ Rd is called the crystal momentum and un,k is a periodic function with the
periodicity of the Bravais lattice.

Here n is an index labelling the eigenstates for a given k, referred to as the band index.
Typically, the condition of equation (1) arises from a periodic potential, which is the case
for crystals. Another way to state the defining property of a Bloch wave is

TRψn,k(r) = ψn,k(r−R) = e−ik·Rψn,k(r).

From this condition we see that if G ∈ B∗ is a reciprocal lattice vector, then

e−i(k+G)·R = e−ik·R,
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so Bloch waves with crystal momenta that differ by a reciprocal lattice vector essentially
describe the same Bloch wave. Thus, we can identify the crystal momenta k and k + G
for all G ∈ B∗. Under this identification, we thus only consider k in the quotient space
Rd/B∗. From basic topology we know that this quotient is a d-dimensional torus. We
denote it by

B = Rd/B∗

and call it the Brillouin zone2. For each k ∈ B, we can focus on the part of the wavefunction
that is periodic on the Bravais lattice, cf. equation (2). These functions are eigenfunctions
of the so-called Bloch Hamiltonian, defined by

H(k) = e−ik·rHeik·r,

which acts on the Hilbert space consisting of B-periodic functions on the crystal. We
denote the spectra of the Bloch Hamiltonians by

{εn(k)}n∈J = σ(H(k)),

where J is some indexing set. The energy eigenvalues {εn(k)} are the essence of the de-
scription of the electronic structure of solids. If one plots the eigenvalue branches {εn(k)},
which depend continuously on k, as a function of k in the Brillouin zone B for a given
material, one obtains a graph called the band structure of that material. In order to visu-
alize the band structure of higher-dimensional crystals, it is customary to plot the energies
{εn(k)} for k along a prescribed path in the Brillouin zone, where the choice of path de-
pends on the crystal structure of the material. An example of a band structure is shown
in figure 2.

Figure 2: (a) Band structure of Bi2Se3. Here Γ, Z, F and L are convential names for points
of high symmetry in the Brillouin zone, whose coordinates are (0, 0, 0),

(
1
2 ,

1
2 ,

1
2

)
,
(
1
2 ,

1
2 , 0
)

and
(
1
2 , 0, 0

)
respectively, in the dual basisw1,w2,w3. The Brillouin zone and the positions

of these high-symmetry points is shown in (b). The band structure is shifted so that the
Fermi level lies at 0 eV. This material has a band gap. From Zhang et al. [15].

Band structures hold the key to determining the basis electronic conduction properties
of materials, such as whether a material is an insulator, a conductor or a semi-conductor.
This can be qualitatively understood in a picture of non-interacting electrons as follows.

2We remark that in solid state physics, the Brillouin zone is constructed in a slightly different but
equivalent way. This more traditional Brillouin zone is formed by constructing the so-called Wigner-Seitz
cell of the reciprocal lattice B∗. We will use this formulation later.
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If one considers the electrons in the material to be added one by one, each electron will
occupy the eigenstate with the lowest available energy. Because electrons are fermions, each
single-particle state admits only one electron. As soon as all electrons have been added,
the highest energy among the occupied eigenstates is called the Fermi level εF. Suppose
that the Fermi level lies inside a so-called band gap, which is an interval of energies ∆ with

εn(k) /∈ ∆

for any n and k. Such a band gap separates occupied bands from from unoccupied bands.
In this case there are no low-energy excitations, as it requires a threshold of energy to
promote electrons into conducting states. Such materials are called insulators. If there is
no band gap, the material is a conductor, and if the band gap is sufficiently small, one
calls the material a semi-conductor. This formalism is called band theory. We remark that
although band theory successfully captures the basic properties of the electronic structure
of solids, it is far from the full story, as band theory assumes that there are no interactions
between electrons. Fortunately, as we will see in later sections, the topological phases of
matter that we are concerning ourselves with in this thesis can also be understood from
the viewpoint of band theory [16].

2.2 The Tight-Binding Method

Here we introduce an important approach to obtain the band structure of solids, known
as the tight-binding method. In the exposition that we give here we follow Ashcroft and
Mermin [5]. In tight-binding models we view the atoms that constitute a crystal as weakly
interacting. As an extreme case, we can think of the atoms in the crystal having a sep-
aration that is much larger than the spatial extent of the relevant orbital wavefunctions
of the individual atoms, so that the electronic eigenstates are localized at the crystal sites
and states localized at different sites have essentially zero overlap. The perspective then
changes, and quantum states become complex linear combinations of atomic orbitals lo-
calized on the atomic sites of the crystal, rather than wavefunctions defined on Rd or Td.
In the tight-binding method it is then assumed that the separation of the atoms in the
crystal is such that the Hamiltonian only couples orbitals on atomic sites that are close to
each other, so that other couplings can be neglected.

More generally, the Hilbert space of a tight-binding model is of the form3 `2(B)⊗CN ,
where B is a Bravais lattice and we view CN as a Hilbert space encoding any internal
structure of the Bravais lattice sites. These internal degrees of freedom describe the dif-
ferent atoms in the unit cell, the orbitals of each atom, and spin. The matrix elements of
a tight-binding Hamiltonian arise from the coupling of orbitals on atomic sites near each
other. One typically assumes that only the nearest-neighbour matrix elements are non-
zero. Written in the notation of second quantization as in equation (31), the terms of the
Hamiltonian have the interpretation of the electrons hopping from one lattice site to the
other. For this reason, these matrix elements are called hopping amplitudes. The hopping
amplitudes can be obtained from first principles using the knowledge of the orbitals of the
atoms under consideration.

3`2(B) is the space of complex square-summable sequences on B, or equivalently the space of complex
square-integrable functions on B with respect to the counting measure, up to functions that integrate to
zero.
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A generic tight-binding Hamiltonian has the form

HTB =
∑
〈i,j〉

tijc
†
icj (3)

where i and j are indices encoding the lattice site as well as one of the basis elements of
the internal Hilbert space CN . It assumed that the internal space comes with a given or-
thonormal basis. The notation 〈i, j〉 means that the summation runs over all neighbouring
pairs of Bravais lattice sites, where the precise definition of neighbouring pairs depends on
the model at hand. Equation (3) is written in the notation of second quantization, and as
we discuss in appendix A this expression is equivalent to

HTB =
∑
〈i,j〉

tij |i〉 〈j| (4)

for a single-particle system. We will use both notations in what follows, because depending
on the context one of the notations can be preferred over the other.

For the Hilbert space `2(B) we denote the standard orthonormal basis by{
|m〉 : m ∈ B

}
,

where the |m〉 are normalized states supported on the Bravais lattice site m. In the lattice
version of Bloch’s theorem we will need a discrete version of plane waves. For tight-binding
models on a finite lattice with N unit cells we introduce discrete plane waves, which are
states in `2(B) of the form

|k〉 =
1√
N

∑
m∈B

eik·m |m〉 ,

where k lies in the Brillouin zone B. We are now in a position to introduce the lattice
version of Bloch’s theorem, whose formulation is slightly different than that of the more
traditional continuous version of the theorem.

Theorem [Bloch, lattice version]. Consider a quantum system modelled on the Hilbert
space `2(B) ⊗ CN where B is a Bravais lattice, with a Hamiltonian H satisfying the
translational invariance condition

TRHT−R = H

for any R in B. Then H and each TR can be simultaneously diagonalized, and the common
eigenstates |ψ〉 can be chosen to be Bloch waves, which are states of the form

|ψn(k)〉 = |k〉 ⊗ |un(k)〉 , (5)

where k ∈ B, |k〉 ∈ `2(B) and |un(k)〉 ∈ CN .
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An important remark regarding the Brillouin zone that also applies to the previous
subsection is that for a finite lattice with periodic boundary conditions, not every value of
k ∈ B is allowed. If v1, . . . ,vd denote the primitive lattice vectors, then Bloch’s theorem
together with the fact that Niwi ≡ 0 implies that

|k〉 = TNivi |k〉 = eik·Nivi |k〉 ⇒ k ·Nivi ∈ 2πZ, for each i = 1, . . . , d.

Physically, this means that the plane waves have to match the periodicity of the lattice.
We will call all k for which the above holds the discrete Brillouin zone, which is thus given
by

B′ =

{
n1

N1
w1 + . . .+

nd
Nd

wd : ni = 1, . . . Ni

}
.

Hence, there are N plane waves for a crystal with N unit cells. From the identity
N∑
m=1

e2πi(k−k′)m/N = N δkk′ , k, k′ ∈ Z

it follows that〈
k′
∣∣k〉 =

1

N
∑
m′∈B

∑
m∈B

e−ik
′·m′+ik·m 〈m′∣∣m〉 =

1

N
∑
m∈B

ei(k−k
′)·m = δkk′ .

Hence, the plane waves |k〉 for k ∈ B′ form an orthonormal basis of `2(B).

The states |un(k)〉 appearing in Bloch’s theorem are now elements of the N -dimensional
internal Hilbert space CN , and they satisfy

H(k) |un(k)〉 = εn(k) |un(k)〉 ,

where εn(k) are the energy eigenvalues and H(k) is the Bloch Hamiltonian, which for
lattice models takes the form [22]

H(k) = 〈k|H |k〉 .

The total Hamiltonian can be reconstructed from the Bloch Hamiltonian via

H =
∑
k∈B′

|k〉 〈k| ⊗H(k). (6)

We now make a small digression into some of the mathematical ideas related to the con-
structions of this section. Although the discrete Brillouin zone B′ has finitely many
k−points, one recovers the full Brillouin zone B in the limit of an infinite crystal. In this
way, one can view the system as consisting of an ensemble of Hamiltonians and Hilbert
spaces

{(
H(k),CN

)}
k∈B labelled by points k on a torus. Mathematically, this structure is

a vector bundle whose base space is the smooth manifold B and whose fibers are copies of
CN . This vector bundle is trivial, because it can be simply written as B×CN . Therefore,
this bundle has no interesting topological properties. However, each H(k) has its own
set of eigenstates {|un(k)〉}Nn=1, of which those with an energy eigenvalue below the Fermi
level εF are occupied by the electrons. The number of occupied states NF does not depend
on k if there is a band gap. We denote the occupied states by {|un(k)〉}NF

n=1. The vector
subbundle of B×CN whose fibers are the NF-dimensional Hilbert spaces spanned by the
occupied states {|un(k)〉}NF

n=1 is, in general, a non-trivial bundle, meaning that it cannot be
expressed as a product of two spaces. Intuitively, this means that the fibers of this bundle
are twisted. This bundle is sometimes called the Bloch bundle, and from a mathematical
point of view, the topology of this bundle gives rise to non-trivial topological phases of
matter. The Z2-index, to be discussed in section 3, is a topological invariant of this bundle.
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2.3 Symmetries in Tight-Binding Models

Here we review how symmetries are represented in quantum mechanics, and in particular
symmetries of systems modelled on a lattice such as tight-binding models. The symme-
tries that we treat here are fundamental for the type of topological insulator that we will
consider in later sections. In this treatment we follow [22]. An important result regarding
symmetry in quantum mechanics is Wigner’s theorem, which states that symmetries of a
quantum mechanical system are represented by unitary or antiunitary operators on the
underlying Hilbert space. For our purposes we will need symmetries of both types.

Recall that a unitary operator U : H → H satisfies

〈ψ|U †U |φ〉 = 〈ψ|φ〉 for all |ψ〉 , |φ〉 ∈ H,

whereas an antiunitary operator A : H → H is characterized by

〈ψ|A†A |φ〉 = 〈ψ|φ〉∗ for all |ψ〉 , |φ〉 ∈ H.

The first symmetry that we discuss is inversion symmetry, also known as parity symmetry.
For systems modelled on Rd, inversion about the origin is defined by the map

Rd → Rd

r 7→ −r.

The restriction of this operation to a Bravais lattice gives the inversion operation for a
lattice model. It is represented by a unitary operator P : H → H which is involutive,
so that P 2 = 1. With P defined in this way, a Hamiltonian H : H → H is said to be
inversion-symmetric if

PHP−1 = H. (7)

When working with tight-binding models, one usually works with vectors of the form
|k〉 ⊗ |u〉, where |u〉 is an element of the internal Hilbert space CN . The action of P on
such a state should send |k〉 to |−k〉, but the action on the internal Hilbert space may be
non-trivial depending on what the internal structure is. In general, one writes

P |k〉 ⊗ |u〉 = |−k〉 ⊗ π |u〉 ,

where π is a unitary operator acting on CN . If there are different atoms in the unit cell,
it may be the case that π permutes the sites of different atoms. If orbitals with non-zero
angular momentum are included, then these are affected as well. However, the spin degree
of freedom is always unaffected by inversion since spin is an intrinsic property without
reference to real space. In most cases, the presence of inversion symmetry depends only on
the symmetry properties of the crystal. For Bloch Hamiltonians, the inversion-symmetry
condition of equation (7) takes the form

πH(k)π = H(−k).

An important remark to which we will refer later is that the inversion of the Brillouin zone
in d spatial dimensions k 7→ −k has 2d fixed points, namely those points in the Brillouin
zone for which every coordinate is either 0 or 1

2 in the basis of reciprocal lattice vectors.
These points are called the time-reversal invariant momenta, and they are denoted by
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Γi ∈ B, where i = 1, . . . , 2d. These points satisfy4 Γi = −Γi, and at these points the
inversion-symmetry condition takes the form

πH(Γi)π = H(Γi),

from which one can see that H(Γi) and π commute. It follows that eigenstates |un(Γi)〉
of the Hamiltonian at the time-reversal invariant momenta can be chosen to have a well-
defined parity eigenvalue:

π |un(Γi)〉 = ξn(Γi) |un(Γi)〉 ,

where the involutivity of π forces ξn(Γi) = ±1. Later we will see that the parity eigenvalues
ξn(Γi) at the time-reversal invariant momenta play a key role in determining whether a
material is a topological insulator or not.

We now discuss time-reversal symmetry. In contrast to most symmetries in quan-
tum mechanics, time-reversal is represented by a antiunitary operator. The action of
time-reversal is to invert the arrow of time, meaning that quantities based on a temporal
derivative such as momentum change their sign, whereas quantities such as position remain
invariant. In the simple case where there is no internal structure present, time-reversal is
represented by a complex conjugation operatorK, which conjugates everything to its right.
For example, if the Hilbert space consists of wavefunctions on Rd, we have

Kψ(r) = ψ(r)K.

Note that K2 = 1. The reason that complex conjugation represents time-reversal is the
Schrödinger equation in real-space for a particle with no internal degrees of freedom,

i~∂tψ(r, t) = Hψ(r, t).

The conjugated wavefunction ψ(r, t) satisfies the conjugated Schrödinger equation

−i~∂tψ(r, t) = H ψ(r, t),

where H = KHK. Since the left-hand side carrying the temporal derivative has changed
sign after the conjugation, replacing operators and wavefunctions by their conjugate has
the effect of time-reversal.

The usage of an operator of this type is quite subtle, because its definition depends
on which basis is used. We define it on the real-space basis. In this way, K captures the
properties that we expect of a time-reversal operator, since we have

KxjK
−1 = xj , KpjK

−1 = −pj ,

where xj and pj are the position and momentum operator in the jth direction, respectively.
The latter equation follows from the fact that the momentum operator pj is represented
by −i∂j in the real-space basis. If the particle that we describe has an internal structure
such as spin, the definition of the time-reversal operator has to be extended to the internal
Hilbert space. For our discussion of topological insulators, we will be interested in electrons,
which have spin-1

2 . In this case, the internal Hilbert space is SpC{|↑〉 , |↓〉} ∼= C2, where

4This equality is to be understood as an equality of coordinates on the torus, in the same way that
eiπ = e−iπ on the circle. Equivalently, it can be understood to hold modulo B∗.
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SpC denotes the complex span and |↑〉 and |↓〉 denote the conventional spin eigenstates
along the z-direction, which we identify with the column vectors[

1
0

]
,

[
0
1

]
,

respectively. Since spin is an intrinsic form of angular momentum, it should change sign
under time-reversal. Hence, we require a time-reversal operator τ acting on the internal
Hilbert space that changes the sign of the spin matrices, so

τσjτ
−1 = −σj

for j = x, y, z. An operator that satisfies this condition is

τ = exp
(
iπσy/2

)
K = −iσyK, (8)

which has the matrix representation[
0 −1
1 0

]
K,

and usually one chooses this operator to represent time-reversal on the spin-degree of free-
dom. Note that this operator also has the property τ2 = −1. At first glance this might
seem incorrect for a time-reversal operator, as one may expect that inverting the arrow
of time twice should leave a system invariant. However, the fact that the time-reversal
operator squares to −1 is in fact a fundamental property of fermions. The reason is that
spinors, the mathematical objects describing spin, behave non-trivially when rotated by
2π-rotation: their sign changes. The operator defined in equation (8) is precisely a rotation
by an angle of π in the space of spinors, so that the square of the time-reversal operator
corresponds to a 2π-rotation.

The time-reversal operator for the total system is then taken to be Θ = (1⊗−iσy)K,
where 1 is the identity on the space of wavefunctions. It inherits the fundamental property
that Θ2 = −1. It is customary to denote this operator simply by Θ = −iσyK, where it is
implicitly understood that σy acts only on the spin degree of freedom of the electrons. As
with the parity operator, a Hamiltonian H is said to be time-reversal symmetric if

ΘHΘ−1 = H (9)

for an appropriate time-reversal operator Θ, usually based on the one mentioned above.
For a tight-binding model on a finite periodic lattice with plane waves of the form

|k〉 =
1√
N

∑
m∈B

eik·m |m〉

we see that complex conjugation yields K |k〉 = |−k〉. Therefore, time-reversal symmetry
of the total Hamiltonian implies that

H = ΘHΘ−1 =
∑
k∈B′

|−k〉 〈−k| ⊗ τH(k)τ † =
∑
k∈B′

|k〉 〈k| ⊗ τH(−k)τ †,

and since

H =
∑
k∈B′

|k〉 〈k| ⊗H(k),

15



it follows that the time-reversal symmetry condition for the Bloch Hamiltonian H(k) is
given by

H(k) = τH(−k)τ †.

At the time-reversal invariant momenta Γi, this condition becomes

H(Γi) = τH(Γi)τ
†,

which explains their name. This leads to an essential property of time-reversal operators
that satisfy Θ2 = −1 called Kramers degeneracy, explained by a result called the Kramers
theorem [22].

Theorem [Kramers]. Consider a quantum system with the same setup as above described
by a time-reversal symmetric Hamiltonian H, with a time-reversal operator Θ satisfying
Θ2 = −1. Then if |k〉 ⊗ |un(k)〉 is an eigenstate of the Hamiltonian H, the time-reversed
state

Θ |k〉 ⊗ |un(k)〉 = |−k〉 ⊗ τ |un(k)〉

is also an eigenstate of H with the same energy eigenvalue, and this eigenstate is orthogo-
nal to |k〉 ⊗ |un(k)〉. Hence, each eigenstate of H is at least doubly degenerate.

The implications of the Kramers theorem for the time-reversal invariant momenta Γi
are even stronger. Since time-reversal maps Γi onto Γi, each eigenstate |un(Γi)〉 of the
Bloch Hamiltonian H(Γi) is at least doubly denegerate in the internal Hilbert space CN .
These pairs of eigenstates related by time-reversal are called Kramers pairs. As we will see
in the next sections, this property is essential for topological insulators, and we will refer
to this result many times.

2.4 Topological Equivalence of Lattice Hamiltonians

In the introduction we mentioned that one can assign topological invariants to quantum
systems that cannot change if one continuously changes the Hamiltonian of the system,
unless the system undergoes a topological phase transition. For this to make sense, we
need to establish a notion of continuous deformation for a quantum system. In general, if
we have a space H of Hamiltonians acting on a lattice system in which it makes sense to
continuously deform a Hamiltonian5, two Hamiltonians that both have a band gap at the
Fermi level are said to be adiabatically connected if there exists a continuous path in H
that links the two Hamiltonians, such that the band gap does not close on this path. In
more physical words, two Hamiltonians are adiabatically connected if we can slowly change
one into the other without closing the band gap. In the case that there is an important
symmetry present, such as time-reversal symmetry, we restrict the notion of adiabatic
continuity to include only deformations of the Hamiltonian that preserve this symmetry.
In such cases, the topological properties of the Hamiltonian are said to be protected by that
symmetry. For a given lattice model, this topological equivalence defines an equivalence
relation on the corresponding set of gapped lattice Hamiltonians, and these equivalence
classes can be assigned well-defined topological invariants. In this way, the topological
invariants can only change if the system undergoes a topological phase transition, which
necessarily implies that the band gap closes.

5Usually H is a subset of the space of bounded linear operators on the considered Hilbert space, which
has a topology induced by the norm.
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3 Time-Reversal Symmetric Topological Insulators

In this section we introduce the principles of topological insulators. We study a specific
class of topological insulators, namely those that are symmetric under time-reversal. The
first topological insulators that were discovered theoretically, called Chern insulators, were
of a different type. Specifically, Chern insulators require that time-reversal symmetry is
broken due to the presence of an external magnetic field or magnetic order. In contrast,
time-reversal symmetric topological insulators can exist without external magnetic fields,
making them more intrinsic. Instead, time-reversal symmetric topological insulators arise
from spin-orbit coupling.

The time-reversal symmetric topological insulator is characterized by a topological
invariant that takes values in Z2, which we will call the Z2-index. We begin this section by
discussing the implications of this index for the phenomena at the surface of a topological
insulator, and we describe the special properties that emerge. We then move back to the
bulk, and review the origin of the Z2-index in terms of the bulk band structure due to Fu,
Kane and Mele [7], [10]. After that we introduce two methods to compute the Z2-index,
which are implemented numerically in section 4. We conclude by discussing a simple two-
dimensional model to illustrate time-reversal symmetric topological insulators, called the
Bernevig-Hughes-Zhang model.

3.1 Qualitative Description of the Z2-index

Following the basic classification of electronic phases into insulators and conductors of the
previous section, a topological insulator belongs to the class of insulators, meaning that
the bulk band structure has a band gap at the Fermi level separating the occupied bands
from the conducting bands. A topological insulator distinguishes itself from an ordinary
insulator by the following remarkable property: at the surface of the material the band
gap closes, and gapless states emerge. In other words, a charge-carrying current can flow
only on the surface of the material.

What makes these surface states special is that they are topologically protected, mean-
ing that no adiabatic deformation of the Hamiltonian that respects time-reversal symmetry
can destroy their existence. Another interesting aspect of these gapless surface states is
that the dispersion near the points where the energy bands corresponding to surface states
cross the Fermi level, called Dirac points, is linear, which means that the electrons at
the surface can be phenomenologically described by the Dirac equation. The Dirac equa-
tion is characterized by a Hamiltonian with a linear dependence on momentum, and it
is known for describing relativistic massless fermions. In other words, electrons in these
states behave as if they have no mass. The spin of these gapless surface states is locked
at a right-angle to their momentum, a phenomenon called spin-momentum locking. For
this reason, surface states travelling in opposite directions have orthogonal spins, which
strongly suppresses backscattering. In two-dimensional samples this has strong implica-
tions: the electrons in the edge states propagate around the sample essentially without
reflection. For three-dimensional samples this results in a reduced resistivity. The spin-
momentum locking also implies that the electrons do not only transport charge, but they
also transport spin. This makes topological insulators interesting for the field of spintronics.
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The topological nature of the surface or edge states is characterized by the number
of surface or edge states there are present. We illustrate this for a two-dimensional time-
reversal symmetric topological insulator with one direction of translational invariance and
one direction of finite length, thus having two edges [22]. Figure 3 shows a possible band
structure for such a setup. Edge states can be present in ordinary insulators, but adiabatic
deformations can remove them. Specifically, an adiabatic deformation of the Hamiltonian
that does not close the bulk band gap can only change the number of edge states at a
given energy in the band gap in multiples of four, as demonstrated in figure 3. Meanwhile,
due to Kramers degeneracy, the edge states come in pairs of two states. This means that
if the number of Kramers pairs of edge states is odd, then under any adiabatic change of
the Hamiltonian that preserves time-reversal symmetry there must always remain at least
one pair of edge states. Hence, it is the parity of the number of pairs of edge states that
characterizes the topological phase of the material.

Figure 3: Band structure of a two-dimensional topological insulator with translational
invariance along one direction and two edges, described by a wavenumber k in the one-
dimensional Brillouin zone circle. Due to time-reversal symmetry, the spectrum is sym-
metric under k 7→ −k. Continuous (dashed) lines show edge states travelling to the right
(left). From (a) to (d) it is demonstrated that the number of edge states can only change
in multiples of four. (a) Six edge state branches cross the Fermi level, corresponding to
three Kramers pairs of edge states. (b) A small perturbation can turn the crossing edge
state branches into avoided crossings. (c)-(d) The avoided crossings can be lifted above
the Fermi level, reducing the number of edge states by four in the process. One pair of
Kramers edge states remains, and this pair cannot be removed. Adapted from [22].
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If N(ε) is the number of edge states at a given energy ε in the bulk band gap, then we
can set6

ν =
N(ε)

2
mod 2. (10)

The number ν ∈ Z2 is the Z2-index that we have been referring to. In view of the discussion
of the preceding paragraph, a time-reversal symmetric topological insulator is character-
ized by ν = 1. As a matter of fact, the Z2-index ν is purely defined in terms of a bulk
Hamiltonian describing a system without edges, but it is the bulk-boundary correspon-
dence that connects the bulk index ν with the parity of the number of pairs of edge states,
hence making equation (10) valid.

This idea can be generalized to three dimensions [12]. In the three-dimensional case,
the analogue of a one-dimensional branch crossing the Fermi level is a cone that lies inside
the bulk band gap. This cone is called a Dirac cone, and in a three-dimensional topological
insulator the Dirac cone is topologically protected by time-reversal symmetry. For a three-
dimensional bulk system one can define four topological invariants ν1, ν2, ν3 and ν. The
νi are referred to as weak Z2-indices. The phase characterized by these weak indices is
not robust against disorder, but the fourth index ν, called the strong index, characterizes
a topological insulator in the sense that we have described above. In this case one could,
through the bulk-boundary correspondence, interpret ν as the parity of the number of
surface Dirac cones. The next subsection is devoted to the formulation of ν.

3.2 The Z2-index from the Bulk

In this subsection we give a brief overview of the formulation of the Z2-index ν in terms of
the electronic structure of the bulk. The proper formulation is quite involved and lengthy,
and hence we refer to [7], [10] for the details. As we mentioned earlier, the Z2-index arises
from non-trivial topological properties of the Bloch bundle, which has the Brillouin zone
torus B as its base and fibers given by the subspaces of CN spanned by the occupied
eigenstates.

Following [10], we introduce the expression of the Z2-index in terms of so-called Wannier
functions. Wannier functions are wavefunctions construced from Bloch states that have
the property of being localized in a chosen unit cell. We first consider a one-dimensional
crystal B = ZN with N unit cells with periodic boundary conditions described by a Bloch
Hamiltonian depending periodically on time t, satisfying

H(t) = H(t+ T ),

H(−t) = ΘH(t)Θ−1,

where T is the time period of the Hamiltonian and Θ is the time-reversal operator. We
consider a system with N internal degrees of freedom and NF occupied bands. In a cycle
t ∈ [0, T ), there are two times, t = 0 and t = T/2, where the Hamiltonian is time-reversal
symmetric. The eigenstates of the Hamiltonian are expressed in terms of Bloch states as

|ψn(k)〉 =
1√
N
eikx |un(k)〉 ,

6This number is ill-defined for energies at which the eigenvalue crossings are not simple, meaning that
the derivative of the eigenvalue branch ε(k) vanishes. The energies at which this occurs form a set of
measure zero [22], and are thus ignored.
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where k lies in the Brillouin zoneB, which is a circle for this one-dimensional system. There
is a certain freedom in how one chooses the eigenstates |un(k)〉 as a function of k, since
states that differ by a phase factor describe the same state. Typically, one demands that
the states |un(k)〉 vary smoothly as k is varied, and one calls this choice of states a smooth
gauge. Given the states |un(k)〉, a Wannier function with band index n ∈ {1, . . . , NF}
centered at the unit cell positioned at R ∈ B is defined by

|R,n〉 =
1

2π

∮
B
dke−ik(R−r) |un(k)〉 .

As we mentioned before, the state |R,n〉 is a superposition of Bloch states that has the
property of being localized at R. These functions are not uniquely defined for a given
Hamiltonian, but depend on the chosen gauge of the eigenstates |un(k)〉. In fact, in order
to define Wannier functions the |un(k)〉 are not required to be eigenstates of the Bloch
Hamiltonian, as long as they span the subspace of occupied eigenstates. In this case,
a choice of gauge means a choice of unitary rotation of the eigenstates as k and t are
varied. In this case one says that the gauge group is U(NF), the group of NF×NF unitary
matrices. It can be shown that the charge polarization Pρ of the crystal, defined in terms
of the position expectation values of the Wannier functions of the occupied bands, can be
expressed as

Pρ =

NF∑
n=1

〈0, n|x |0, n〉 =
1

2π

∮
B
dkA(k), (11)

where x is the position operator. Since the square of the absolute value of the Wannier func-
tions represent a distribution of charge, the position expectation values 〈0, n|x |0, n〉 =: xn
are called the Wannier charge centers. The object A(k) is the so-called Berry connection,7

defined by

A(k) = i

NF∑
n=1

〈un(k)| ∂k |un(k)〉 .

For a crystal with translational invariance, the charge polarization only makes sense up
to a lattice vector, and hence the expression for Pρ can be taken modulo multiples of the
lattice constant. In this way, it is defined on a circle. If the Hamiltonian is time-reversal
symmetric, the states |un(k)〉 for n = 1, . . . , N can be grouped into Kramers pairs of states
that are related by time-reversal, and written as

∣∣uI
n(k)

〉
,
∣∣uII
n (k)

〉
for n = 1, . . . , N/2. Fu

and Kane proposed to write this polarization as sum of two terms [10],

Pρ = P I + P II,

where the separate terms, called partial polarizations, are the charge polarizations corre-
sponding to the states

∣∣uI
n(k)

〉
and

∣∣uII
n (k)

〉
respectively, defined by

P I =
1

2π

∮
B
dkAI(k), P II =

1

2π

∮
B
dkAII(k),

7For the reader who is familiar with the terminology of differential geometry, the Berry connection is
a connection in the sense of parallel transport on a principal fiber bundle. The corresponding Lie group
in this case is U(NF), which encodes the unitary rotation of the states in the Bloch bundle as they are
transported over the Brillouin zone.
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where AI(k) and AII(k) are the Berry connections

AI(k) = i

NF/2∑
n=1

〈
uI
n(k)

∣∣ ∂k ∣∣uI
n(k)

〉
, AII(k) = i

NF/2∑
n=1

〈
uII
n (k)

∣∣ ∂k ∣∣uII
n (k)

〉
.

Fu and Kane then proposed the concept of time-reversal polarization, denoted by Pθ and
defined by the difference in the partial polarizations,

Pθ = P I − P II.

The time-reversal polarization encodes the difference in charge polarization of the Kramers
pairs of eigenstates. Since the time-dependent Bloch Hamiltonian H(t) that we are con-
sidering has time-reversal symmetry at t = 0 and T/2 in a cycle 0 ≤ t < T , there are two
points in a cycle where the system has a well-defined time-reversal polarization. Under the
assumption that the eigenstates |un(k, t)〉 evolve smoothly for t ∈ [0, T/2], corresponding
to a smooth choice of gauge, the difference in time-reversal polarization

ν = Pθ(T/2)− Pθ(0) mod 2 (12)

was shown to be a topological invariant of the HamiltonianH(t) with values in Z2. If a two-
dimensional system is considered and (k, t) is replaced by (kx, ky) in the above discussion8,
then this ν is the definition of the Z2-index of a two-dimensional topological insulator.
One way to think about this invariant is that the Wannier charge centers at t = 0 and
t = T/2 come in pairs due to Kramers degeneracy, but during the half-cycle t ∈ [0, T/2]
they may flow over the circle and reconnect in a non-trivial way. For instance, they may
switch partners in the sense that the Kramers pairs at t = 0 are no longer the same pairs
as those at t = T/2. Using equation (12) as a starting point, Fu and Kane derived the
expression

(−1)ν =
∏
i

√
det(w(Γi))

Pf(w(Γi))
, (13)

as a formula to compute the Z2-index, where the product runs over the two-dimensional
time-reversal invariant momenta Γi, Pf is the Pfaffian of an antisymmetric matrix, and w
is the matrix whose matrix elements are defined by

wmn(k) = 〈um(−k)|Θ |un(k)〉 ,

where we assume a continuous gauge of the eigenstates |un(k)〉 for k ∈ B. The Pfaffian of
an antisymmetric matrix A satisfies(

Pf(A)
)2

= det(A),

and since w(k) is antisymmetric at the Γi, equation (13) is well-defined. The fact that
a continuous gauge is required in equation (13) makes it notoriously difficult to compute
the Z2-index from this expression. Fortunately, simpler methods have been developed to
compute it, which we will review in the next subsections.

8The replacement of time t by ky and vice versa is common in discussions of this type, because it allows
us to consider different interpretations of a process. It is called dimensional extension and dimensional
reduction [22].
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3.3 Fu-Kane Method - Parity at Time-Reversal Invariant Momenta

A while after Fu and Kane introduced equation (13) as a way to compute the Z2-index of
a given system, they derived a simplification of equation (13) for crystals with inversion
symmetry [11]. As we remarked in section 2, if the Bloch Hamiltonians H(k) are invariant
under inversion symmetry represented by an operator π, then the states |un(Γi))〉 at the
time-reversal invariant momenta have a well-defined parity ξn(Γi) ∈ {−1, 1}. Due to
presence of Kramers degeneracy, we can consider the NF occupied states at Γi to consist
of NF/2 Kramers pairs. Because parity and time-reversal commute, the two states in a
Kramers pair have the same parity eigenvalue, so it makes sense to speak of the parity of
a Kramers pair. Fu and Kane have shown that the factors in equation (13) involving the
matrices w(k) can be expressed in terms of the parity eigenvalues of Kramers pairs at the
time-reversal invariant momenta, and hence that the Z2-index ν can be expressed as

(−1)ν =
∏
i

∏
n

ξn(Γi), (14)

where i runs over the 2d time-reversal invariant momenta and n runs over theNF/2 Kramers
pairs. This expression is very simple compared to the original expression, and it is straight-
forward to implement numerically, mainly because it does not require a smooth gauge over
the full Brillouin zone. A smooth gauge is not required because the parity eigenvalues
are gauge invariant. All one needs is a band structure with the corresponding eigenstates,
which can be obtained using a tight-binding model, and the matrix representation of the
inversion operator π. The simplicity of this method comes at the price of the restricted
class of materials to which it can be applied, as it can only be applied to crystals with
inversion symmetry.

3.4 Soluyanov-Vanderbilt Method - Wannier Charge Centers

An alternative method to compute the result of equation (12) was introduced by Soluyanov
and Vanderbilt [18]. This method stays close to the original formulation in terms of Wan-
nier charge centers, and in principle the method works for any crystal, without restrictions
such as inversion symmetry. The major advantage of this method is that it does not re-
quire the manual construction of a smooth gauge over the whole Brillouin zone. Instead, a
numerical procedure is used to automatically construct such a gauge. From this gauge, the
Wannier charge centers xn are computed using a discrete version of the Berry connection.
We already remarked that the Z2-index can be thought of as a number that encodes the
the way in which the Wannier charge centers flow over the circle as a function of t, and
in particular whether they reconnect in a non-trivial way after half a cycle. By non-trivial
we mean, for instance, that a pair of Wannier charge centers may split and flow in op-
posite directions over the circle, so that they reconnect with opposite winding numbers.
The method to be discussed in this subsection is able to detect this non-trivial behaviour
numerically. Some of the details of this method are complicated, so we refer to [18] for a
detailed explanation.

In the Soluyanov-Vanderbilt method, the Wannier charge centers are obtained from
an object called the Wilson loop. Let us assume that the states |un(k, t)〉 vary smoothly
as one varies k over the Brillouin zone circle. Starting at a given k, we can traverse the
Brillouin zone, varying each |un(k, t)〉 in the process, until we arrive at the same k again.
The states |un(k, t)〉 at the end of the cycle are then not necessarily identical to the states
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we started with. The Wilson loop is then defined to be the unitary rotation that relates
the two sets of states at the start and at the end of a Brillouin zone cycle9. The first step
of the numerical algorithm is to construct the Wilson loop. For the numerical implentation
we have to discretize the Brillouin zone and the time period by choosing an appropriate
number of gridpoints, which we denote by Nk and Nt respectively. For the discretization
we set

ki =
i− 1

Nk − 1
, i = 1, . . . , Nk, tj =

j − 1

Nt − 1
, i = 1, . . . , Nt,

where we assume for the moment that the period of the Brillouin zone and the time cycle
is 1 without loss of generality. One then diagonalizes the Bloch Hamiltonian on each
(ki, tj) to obtain the eigenstates of the filled bands. This results in a discrete ensemble of
eigenstates{

|un(ki, tj)〉 : i = 1, . . . , Nk, j = 1, . . . , Nt, n = 1, . . . , NF
}
,

where n is the band index and NF is the number of occupied bands. At this point, the
states of adjacent k−points are in principle unrelated. For this method, a smooth gauge is
required for half of the time-cycle of the Hamiltonian. To obtain such a gauge numerically,
we have to apply a U(NF)-gauge transformation to the states at each gridpoint so that the
states of adjacent gridpoints are as close together as possible. In [18] it is shown that the
required gauge can be obtained by maximally localizing the Wannier functions, and that
this gauge can be enforced numerically as follows. For each time tj , one considers adjacent
k-gridpoints and defines overlap matrices M i,i+1 by

M i,i+1
mn = 〈um(ki, tj)|un(ki+1, tj)〉 .

Vanderbilt and Marzari have shown that the maximally localized Wannier function gauge
requires each of the overlap matrices to be Hermitian [6]. For each i there is a unique
gauge transformation that can be applied to the eigenstates at ki+1 to achieve this, which
can be found by the singular value decomposition of M i,i+1. We write

M i,i+1 = V ΣW †,

where V and W are unitary and Σ is a diagonal matrix containing the singular values of
M i,i+1. If one rotates the states as

|un(ki+1, tj)〉 7→WV † |un(ki+1, tj)〉 ,

then the new overlap matrix M i,i+1 is Hermitian. If this is done for each i, the result will
be that the states at k = 0 and k = 1 are related by a unitary rotation Λ:

|un(k1, tj)〉 = Λ |un(kNk , tj)〉 .

The matrix Λ is the Wilson loop, and it can be constructed by taking products of the
overlap matrices. As we mentioned earlier, it is analogous to the integral of the Berry con-
nection over a closed loop in the Brillouin zone. The eigenvalues λn,j = e−2πixn,j of Λ are
complex numbers of unit modulus, and it can be shown that the numbers xn,j ∈ [−1/2, 1/2)

9In the case that we are only changing one state as a function of k, the states at the endpoints of the
cycle are related by a phase factor called the Berry phase. This Berry phase is the integral of the Berry
connection along a closed loop, as in equation (11). For this reason, the Wilson loop is also called the
non-abelian Berry phase, referring to the fact that the gauge group U(NF) is non-abelian.
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are the Wannier charge centers at time tj [22].

As we have seen, in [11] it was shown that the Z2-index is related to the motion of the
Wannier charge centers during a half a time-cycle of the Hamiltonian. For a small number
of bands and with a high time-resolution this motion can be inspected visually, but as soon
as one deals with systems with many bands it can be difficult to decide when two Wannier
charge center flows cross.

A numerically stable approach to extract this information was proposed in [18]. Instead
of focusing on each Wannier charge center xn,j individually, the largest gap between the
charge centers is is tracked, denoted by zj . If the time resolution is sufficiently high, the
zj take the form of a sequence of path segments with a number of discontinuities. The
Z2-index is encoded in the number of Wannier charge centers that are crossed in these
discontinuous jumps. It was shown that if ∆j denotes the number of charge centers xn,j+1

between zj and zj+1, then the Z2-index is given by

ν =
∑
j

∆j mod 2, (15)

where the sum runs over the j corresponding to half a time-cycle. A simple and robust
method to obtain the ∆j proposed by Soluyanov and Vanderbilt is to consider the sign
of the directed area of the triangle spanned by zj , zj+1, and xn,j+1. If φ1, φ2 and φ3 are
angles on the unit circle, then the directed area of the triangle defined by these angles can
be expressed as

g(φ1, φ2, φ3) = sin(φ2 − φ1) + sin(φ3 − φ2) + sin(φ1 − φ3).

In this way, it was shown that the ∆j can be found by

(−1)∆j =

NF∏
n=1

sgn
(
g(zj , zj+1, xn,j+1)

)
.

The steps outlined above can be turned into a computational scheme that turns a Bloch
Hamiltonian directly into the Z2-index. In the next subsection we will apply this method
to a simple model for a topological insulator to illustrate the features of the Wannier charge
centers. Later in section 4 we will also apply the method to a realistic three-dimensional
system. Since the discussion above assumes a two-dimensional systems, a generalization
to three-dimensions is needed first. This is relatively straightforward and will be discussed
in section 4.

3.5 The Bernevig-Hughes-Zhang Model

In this subsection we introduce a simple tight-binding model for a two-dimensional time-
reversal symmetric topological insulator first introduced by Bernevig, Hughes and Zhang
(BHZ) [9], [22]. The BHZ model originates from a theoretical study of the quantum spin
Hall effect in HgTe quantum wells, which were the first experimentally realized topolog-
ical insulators. This model has only four bands, which makes it an appropriate model
to illustrate the basic principles of time-reversal symmetric topological insulators. After
we have introduced it, we will compute its Z2-index for two different parameter values us-
ing the Soluyvanov-Vanderbilt method. We will also investigate the associated edge states.
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The BHZ model is defined on a two-dimensional square lattice with four states per unit
cell. These states are a combination of two orbital states and two spin states. Choosing
these four states as a basis, the BHZ model is defined [22] via the matrix Bloch Hamiltonian
given by

HBHZ(kx, ky) = s0 ⊗
[
(u+ cos kx + cos ky)σz + sin kyσy

]
+ sz ⊗ sin kxσx + sx ⊗ C.

Here u is a real parameter that has the interpretation of an on-site potential, and C is
a coupling operator between the two spinors. We set C = 0.3σy, as in [22]. The σj and
sj are Pauli matrices, where the σj act on the spin degree of freedom of and the sj act on
the orbital degree of freedom. The matrix s0 denotes the 2 × 2 identity matrix. For this
choice of coupling C, this model has time-reversal symmetry represented by the operator

Θ = −i(s0 ⊗ σy)K,

which is of the same form as the one we encountered in section 2. The parameter u can
be adjusted, and different topological phases are known to occur for different values. In
particular, it is known that the band gap of the BHZ model closes near u = 2, u = −2
and u = 0, indicating possible topological phase transitions. We study the BHZ model at
u = −1.2 and u = −2.8, so the corresponding Hamiltonians are not adiabatically connected
due to the closure of the band gap near u = −2. Figure 4 shows the band structures for
these two values, and figure 5 shows the band gap as a function of u ∈ [−2.8, −1.2].

Figure 4: Band structures of the BHZ model for different values of u, with u = −1.2 in
(a) and u = −2.8 in (b). Both band structures have a band gap around ε = 0. Note that
kx, ky and ε are dimensionless in the BHZ model.

Figure 5: Band gap of the BHZ model for u between u = −2.8 and u = −1.2. The band
gap closes near u = −2. This indicates a possible topological phase transition.
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The BHZ model has time-reversal symmetry, so we can implement the Soluyanov-
Vanderbilt method outlined in the previous subsection to compute the Z2-index. The
computations have been done using matlab. Figure 6 shows the resulting Wannier charge
center flows during one time-cycle of the Hamiltonian. For u = −2.8, one sees that that the
Wannier charge centers slightly move as a function of t, but they reconnect in the same way
as they started. In contrast, for u = −1.2 the charge centers separate and wind around the
circle in opposite directions, reconnecting in a non-trivial way. In relation to equation (12),
one can also see that for u = −1.2 the charge centers give rise to a different time-reversal
polarization at t = 0 and t = 1/2. The computation returns that the Z2-index is ν = 0
for the case u = −2.8 and ν = 1 for the case u = −1.2. Therefore, these different choices
of parameters correspond to different topological phases, separated by a topological phase
transition accompanying the closure of the band gap. More specifically, the BHZ model
with u = −1.2 is a time-reversal symmetric topological insulator, and therefore it should
host topologically protected edge states. The edge states will be investigated in section 5.

Figure 6: Wannier charge center (WCC) flow as a function of time during one time cycle
for the BHZ model. The blue and green lines show the WCCs, and the red dots show
the center of the largest gap between the WCCs (zj). Note that the coordinates on the
vertical axis are angular, so 0.5 ≡ −0.5. (a) WCC flow for BHZ model with u = −2.8. The
WCCs do not move non-trivially over the circle, and the numerical scheme returns ν = 0
for the Z2-index, corresponding to a trivial insulator. (b) WCC flow for BHZ model with
u = −1.2. The WCCs wind around the circle in opposite directions, and the numerical
scheme returns ν = 1 due to the discontinuous jump in the red line, corresponding to a
topological insulator.
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4 Topological Insulator in Bi2Se3

In this section we investigate the existence of a topological insulator in a real material,
namely bismuth selenide (Bi2Se3). Both theoretically and experimentally, this material
is known to be three-dimensional time-reversal symmetric topological insulators [14], [15].
The topologically non-trivial band structure of this material arises from relatively strong
spin-orbit coupling, which causes a band inversion at the Γ point. In this section we
present a computation of the band structures of Bi2Se3 compounds and we compute its
Z2-index. Because the crystal structure of this material have inversion symmetry, this
computation can be done using the Fu-Kane method discussed in the previous section. To
demonstrate that this computation could have been done without the presence of inversion
symmetry, we also apply the Soluyanov-Vanderbilt method to arrive at the same result. For
the computation of the bulk band structure we use a Slater-Koster tight-binding method,
following Pertsova and Canali [21] for the tight-binding Hamiltonian, Zhang et al. [15] for
the crystal structure and Kobayashi [17] for the tight-binding parameters.

4.1 Crystal Structure of Bi2Se3

Bi2Se3 has a crystal structure with a rhombohedral unit cell containing five atoms, as shown
in figure 7. The structure consists of five-atom layers of triangular lattice planes extending
in the x- and y-direction, called quintuple layers, which are stacked in the z-direction.

Figure 7: Crystal structure of Bi2Se3 with primitve lattice vectors v1,v2,v3 spanning
the Bravais lattice. Se atoms at inequivalent positions are labelled by Se1 and Se2. Left:
rhombohedral unit cell, showing our convention for the labels of the atomic sites in the
unit cell. Right: full crystal structure in the neighbourhood of a unit cell. A quintuple
layer (QL) is indicated. Adapted from Zhang et al. [15].

Figure 7 also shows our convention for labelling the atoms in the unit cell. The crys-
tal has inversion symmetry centered at any of the Se2 atoms, meaning that the crystal
structure remains invariant under the parity operation r 7→ −r if one of the Se2 sites is
placed at the origin. By looking at the crystal structure in figure 7, one sees that the parity

27



operation induces a permutation on the atomic sites in the unit cell given by

(1, 2, 3, 4, 5) 7→ (1, 3, 2, 5, 4).

In other words, Se2 sites are mapped onto themselves, and the different Se1 and Bi sites
in the unit cell switch places. We will refer to this permutation later when we construct
the parity operator acting on the internal Hilbert space of our tight-binding model.

4.2 Slater-Koster Tight-Binding Hamiltonian

Following [21], we use a Slater-Koster tight-binding method with three p-orbitals [1]. This
means that we assume that each of the five atoms in the unit cell admits three electronic
orbital states, namely px, py and pz. We include spin, so the electron has a spin degree
of freedom which takes values in the two-dimensional Hilbert space spanned by |↑〉 and
|↓〉, where the arrows ↑ and ↓ are conventional labels for the spin eigenstates along the
z-direction. Combining these internal degrees of freedom, the internal Hilbert space of this
system has the form

H = SpC
{
|1〉 , . . . , |5〉

}
⊗SpC

{
|px〉 , |py〉 , |pz〉

}
⊗SpC

{
|↑〉 , |↓〉

} ∼= C5⊗C3⊗C2 ∼= C30, (16)

where SpC denotes the complex span. Here |1〉 , . . . , |5〉 denote the eigenstates correspond-
ing to the lattice sites in the unit cell according to the convention we introduced above.
For k in the Brillouin zone B ∼= T3, the Bloch Hamiltonian H(k) acting on H then takes
the form [21]

H(k) =
∑

ij,σ,αα′

tαα
′

ij eik·rijcσ †iα c
σ
jα′ +

∑
i,σσ′,αα′

λi 〈i, α, σ|L · S
∣∣i, α′, σ′〉 cσ †iα cσ′iα′ . (17)

Here i and j label the atomic sites, the indices α and α′ denote the orbital of atom i and
j respectively, and the spin of the electron states is denoted by σ and σ′. The index i
runs over the five atoms in the unit cell, and j runs over all atoms in the neighbourhood
of i, including atoms in adjacent unit cells. As in [17], we assume that there are only
interactions between atoms in the same layer, in the nearest layer, and in the second
nearest layer. This means that for each i, the index j runs over eighteen different atomic
sites. The vector rij denotes the relative vector between the unit cells of atoms i and j.
Finally, cσ †iα and cσiα denote the creation and annihilation operators of electrons with spin
σ at the atomic site i in the orbital α. The parameters tαα′ij are the hopping amplitudes,
and the λi is the strength of the on-site spin-orbit coupling at atom i. The operators L
and S are the orbital angular momentum and spin operators, respectively. The values of
tαα

′
ij can be deduced from the associated Slater-Koster parameters, which are a basic set
of parameters from which the hopping amplitudes can be constructed using the relative
orientations of the atoms in the unit cell. These have been calculated by Kobayashi [17] by
fitting tight-binding band structures to band structures obtained using density functional
theory. The conversion of the parameters in [17] is discussed in appendix B. If we choose
a basis, we can use equation (17) to obtain the matrix-valued map

H : B→ MatN (C)

k 7→ H(k),

where MatN (C) is the algebra of N by N complex matrices. For a given k ∈ B, the
spectrum of H(k) can be computed numerically, from which we can extract the bulk band
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structure of Bi2Se3. The details of the passage from the tight-binding Hamiltonian to the
tight-binding matrix are shown in appendix B. We have used matlab for the computations.
Figure 8 shows the computed band structure of Bi2Se3. Due to the relatively strong spin-
orbit coupling, the top valence band and bottom conduction band are inverted10 at the Γ
point. The band structure computed with this tight-binding model agrees with that of the
literature, shown in figure 2, except for the band gap energy, which is slightly smaller in
our band structure.

Figure 8: Computed band structure of Bi2Se3. The blue line indicates the Fermi level.
A band inversion can be observed at the Γ point. The Brillouin zone is the same as the
one shown in figure 2.

4.3 Z2-index of Bi2Se3 from the Fu-Kane Method

In this subsection we compute the Z2-index using the method proposed by Fu and Kane
[11] for topological insulators with inversion symmetry. The spatial inversion symmetry
that we mentioned earlier is represented by a unitary operator π : H → H. This operator
can be factorized as a tensor product π = πA ⊗ πO ⊗ πS, where each factor acts on one of
the tensor factors of the internal Hilbert space in (16). The subscripts A, O, and S stand
for atom, orbit and spin respectively. As we have seen from the geometry of the unit cell,
inversion has the effect of permuting the sites of the atoms, transposing the pairs (2,3) and
(4,5). Hence, we can write

πA = |1〉 〈1|+ |2〉 〈3|+ |3〉 〈2|+ |4〉 〈5|+ |5〉 〈4| . (18)

The px, py and pz orbitals change sign under inversion, so we have

πO = − |px〉 〈px| − |py〉 〈py| − |pz〉 〈pz| . (19)

Finally, we recall that spin remains invariant under inversion. Therefore, πS is simply the
identity, or

πS = |↑〉 〈↑|+ |↓〉 〈↓| . (20)
10A band inversion occurs when energy bands are pushed into each other by effects such as spin-orbit

coupling. Near the avoided crossing, the eigenstates associated to the two bands switch in a certain sense.
In 8 this can be seen from the small valley at the top of the valence band at the Γ point.
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Taking the tensor product of equations (18), (19), and (20) gives us the full inversion
operator π, where we remark that |i, α, σ〉 = |i〉 ⊗ |α〉 ⊗ |σ〉, and

cσ†iαc
σ′
jα′ ≡ |i, α, σ〉

〈
j, α′, σ′

∣∣ .
Observe that π2 = 1 and that π is self-adjoint, as should be the case for an inversion
operator. We remark, as a minor detail, that there are two different conventions for
the phase factors eik·rij in equation (17), and depending on this convention the inversion
operator may need to be adjusted. In the convention that we have chosen, the inversion
operator must be conjugated by a diagonal unitary matrix D(k) with the phase factors
eik·rj on the diagonal, with j the corresponding label of the atomic site, so

π 7→ D(k)πD(k)−1.

In particular, the inversion operator becomes k-dependent.

From the eigenstates of the Hamiltonian at the time-reversal invariant momenta Γi,
the parity eigenvalues ξn(Γi) ∈ {±1} can be computed. Table 1 shows products of the the
parities of the occupied Kramers pairs at each time-reversal invariant momentum Γi.

Table 1: Products of the parity eigenvalues of the occupied Kramers pairs at the time-
reversal invariant momenta Γ1, . . . ,Γ8. The Γi are expressed as w1w1 +w2w2 +w3w3, and
the corresponding coordinates w1, w2, w3 are shown, together with the conventional names
of the Γi.

Γ1 (Γ) Γ2 (L) Γ3 (L) Γ4 (L) Γ5 (F) Γ6 (F) Γ7 (F) Γ8 (Z)
w1 0 1/2 0 0 1/2 1/2 0 1/2

w2 0 0 1/2 0 1/2 0 1/2 1/2

w3 0 0 0 1/2 0 1/2 1/2 1/2∏
n ξn(Γi) −1 1 1 1 1 1 1 1

Using (14), we compute the Z2-index of Bi2Se3 by taking the product of the numbers
in the bottom row, and we find that∏

i

∏
n

ξn(Γi) = −1 ⇒ ν = 1.

Hence, the Z2-index is 1, and we infer from the bulk-boundary correspondence that Bi2Se3

is indeed a topological insulator. In section 5 we will investigate the surface states of Bi2Se3

to confirm the existence of topologically protected gapless surfaces states.

4.4 Z2-index of Bi2Se3 from the Soluyvanov-Vanderbilt Method

Although we have in principle already computed the Z2-index of Bi2Se3, we relied on a
method that only works for a special class of crystalline solids. In this section we demon-
strate that the same results can be obtained using the Soluyanov-Vanderbilt method, which
works for any three-dimensional crystal. This will also illustrate that this method indeed
works when many energy bands are present.

Our first step is to review the generalization this method to three dimensions [18].
The reciprocal lattice vectors w1/2,w2/2,w3/2 span a parallelepiped in momentum-space,
whose vertices are the time-reversal invariant momenta Γi. This object has six faces,
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and each of these faces can be interpreted as a two-dimensional periodic system if the
Hamiltonian is regarded as a function of two momentum parameters. In particular, each
of these faces can be assigned a Z2-index, which can be computed using the Soluyvanov-
Vanderbilt method. Consider any two opposite faces, so that each of the Γi is the vertex
of precisely one of the chosen faces, and let the Z2-indices of these faces be denoted by νI
and νII. Then the strong Z2-index ν is given by

ν = νI + νII mod 2. (21)

In other words, for ν to be non-trivial one of the faces should be trivial whereas the op-
posite face is non-trivial. We note that the result is independent of the chosen pair of
opposite faces.

Hence, with w1,w2,w3 the primitive reciprocal lattice vectors of the chosen Bi2Se3

unit cell, we compute νI and νII for the faces

kw1 + tw2 and
1

2
w3 + kw1 + tw2 for k, t ∈ [0, 1],

which we will refer to as face 1 and face 2 respectively. The results of the computation are
shown in figure 9.

Figure 9: Wannier charge center (WCC) flow as a function of t during one cycle for
Bi2Se3. Here the crystal momentum in the direction of w2 plays the role of t. The blue
lines show the WCCs, and the red dots show the center of the largest gap between the
WCCs. Note that the coordinates on the vertical axis are angular, so 0.5 ≡ −0.5. (a)
WCC flow at face 1. The WCCs separate and reconnect in a non-trivial way, switching
partners after a cycle. The red line reflects this and shows a single discontinuity in the
half-cycle t ∈ [0, 1/2]. The numerical scheme indeed returns νI = 1. (b) WCC flow at face
2. The WCCs move around but reconnect trivially, and the red line remains continuous.
The numerical scheme returns νII = 0.

Figure 9 shows that one of the faces has a trivial Z2-index whereas the other one is non-
trivial. The Wannier charge centers behave in a similar way as in figure 6. In particular,
note that the time-reversal polarization of face 1 at t = 0 and t = 1/2 is different since
the Wannier centers are positioned differently at these time points. Hence, the Soluyanov-
Vanderbilt method also returns ν = 1 through equation (21), in agreement with the result
we obtained from the Fu-Kane method. This confirms that this method works for realistic
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models of three-dimensional topological insulators. As a final remark we mention that one
of the aims of the Soluyanov-Vanderbilt is to provide a robust computation of the Z2-index
that does not rely on visual inspection of the Wannier charge centers. To make the flow of
the charge centers visible we have used a relatively fine t-grid in figure 9, but the method
gives the same result for coarser grids in which the flow of the charge centers is not directly
apparent, showing that the method succeeds in that regard.
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5 Surface States

In the previous sections we have seen a number of tight-binding models with non-zero Z2-
indices, which indicates that these materials should be in a non-trivial topological phase
and thus host topologically protected surface or edge states. The aim of this section is to
detect and confirm the existence of these surface states. To this end, we will make use of
the formalism of surface Green’s functions, following [8] and [23]. With this formalism one
can compute the local density of states at the surface, which can make the surface states
visible. To keep the discussion general, we shall use the term boundary to refer to either
a surface or an edge. We do not include every detail of the derivation of this method to
keep the discussion concise.

5.1 Surface Green’s Functions

The setup that we consider is a tight-binding model with N internal degrees of freedom
on a semi-infinite lattice of the form B̃ = N × B, where B is a Bravais lattice which we
take to be either just Z or Z ⊕ Z. The difference with an infinite lattice is that there is
one distinct axis in which the lattice only extends in one direction, similar to the geometry
of a half-space. In this way, the system has a single boundary, corresponding to the layer
{1} × B. Note that we use the convention that 0 /∈ N. An illustration of a setup of this
type is given in figure 10.

Figure 10: Two-dimensional semi-infinite square lattice N×Z. The lattice is divided into
layers parallel to the edge, indexed by a natural number i. The boundaries of the layers
{i} × Z are indicated by the dashed lines. The layer at i = 1 is the edge layer.

We subdivide the lattice into layers parallel to the boundary, indexed by i ∈ N. This
means that we decompose the Hilbert space H = `2(B̃)⊗ CN as a direct sum of layers,

H =
∞⊕
i=1

Hi,

where Hi = `2({i}×B)⊗CN is the Hilbert space associated to the ith layer. On each layer
we have translational symmetry parallel to the boundary, so we can use Bloch’s theorem
to label the eigenstates on each layer by a wavevector k parallel to the boundary. In the
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two-dimensional case this is a scalar ky, and in the three-dimensional case k = (kx, ky) is
a vector. We subdivide the total Bloch Hamiltonian H(k) : `2(N) ⊗ CN → `2(N) ⊗ CN
into blocks Hi,j(k) : CN → CN that describe the coupling between the layers i and j. We
assume that we have fixed an orthonormal basis for the internal Hilbert space so that we
can treat the blocks Hi,j(k) as N ×N matrices. From now on we will omit the dependence
on k to make the notation clearer. We consider the case where there are only interactions
inside each layer and between adjacent layers, and that these interactions are identical for
each layer, so that we can write

Hi,i = V, Hi,i−1 = A, Hi,i+1 = A†, and Hi,j = 0 else. (22)

We denote the vector describing the internal structure of the ith layer by ψi ∈ Hi, and
write ψ = (ψ1, ψ2, . . .) ∈ `2(N) ⊗ CN . In what follows, I denotes the identity operator,
where the space on which it acts follows clearly from the context. The Schrödinger equation
describing the system is

(H − εI)ψ = 0,

where ε denotes the energy of the state ψ. With equation (22), this takes the form of a
second-order difference equation

−Aψi−1 +
(
εI − V

)
ψi −A†ψi+1 = 0 for i > 1, (23)(

εI − V
)
ψi −A†ψi+1 = 0 for i = 1, (24)

where the latter equation can be considered as a Dirichlet boundary conditions by taking
equation (23) and formally setting ψ0 = 0. We now consider a Green’s function matrix
G(ε,k) that obeys

(εI −H)G = I.

We remark that when dealing with Green’s functions in physics, it is customary to replace
the energy ε by a complex energy ε+ = ε + iη, where η is a small positive number. In
this case one calls G(ε+,k) the retarded Green’s function. Analytically, the limit η → 0 is
usually taken a later stage, and numerically, we keep η > 0 to allow for numerical compu-
tations. In this context η is referred to as the broadening parameter, because increasing η
has the effect of broadening the peaks near the singularities in the Green’s function.

As we did with the Hamiltonian, we subdivide the Green’s function G into blocks Gi,j .
These blocks then obey the relation

−AGi−1,j +
(
εI − V

)
Gi,j −A†Gi+1,j = δi,jI, i > 1.

where δi,j is the Kronecker delta. The diagonal blocks Gi,i encode the the density of states
of the ith layer. In particular, the density of states at the boundary layer i = 1 can be
extracted from the block G1,1. Therefore, this block is called the surface Green’s function,
denoted by

g(ε,k) = G1,1(ε,k).

We now describe how an expression for the Green’s function blocks Gi,i(ε,k) can be ob-
tained using the solutions to the Schrödinger equation. Because of the translational sym-
metry, we use the Bloch wave solution

ψi+1 = λψi

34



for i > 1 as an ansatz, where λ is any complex number. Inserting this ansatz into equation
(23) leads to the quadratic eigenvalue equation[

−A+ λ
(
εI − V

)
− λ2A†

]
u = 0,

with u ∈ CN . This equation can be solved by rewriting it to an equivalent generalized
eigenvalue problem given by([

I 0
εI − V −A

]
− λ

[
0 I
A† 0

])[
λu
u

]
= 0.

In the at most 2M solutions
{

(λn, un
)
} to this equation, we distinguish left-travelling

waves and right-travelling waves. A first distinction can be made by considering evanescent
waves that decay either to the left or to the right. Left-decaying waves are characterized
by |λn| > 1, whereas right-decaying waves have |λn| < 1. This usually suffices, but if there
are remaining solutions that satisfy |λn| = 1, one can compute the group velocity of the
wave given by

vn ∼ −Im
(
λnu

†
nA
†un

)
,

up to a positive constant factor. Left-travelling waves satisfy vn < 0 and right-travelling
waves satisfy vn > 0. For the purpose of finding surface states, we are only interested in
right-travelling waves, which we denote by

(
λn,R, un,R

)
. Similarly, left-travelling waves are

denoted by
(
λn,L, un,L

)
and we denote the number of left- and right-travelling waves by

NL and NR respectively.

We now collect the left- and right-travelling waves into two matrices UL and UR given by

UL = (u1,L, . . . , uNL,L), UR = (u1,R, . . . , uNR,R),

which are used to construct the so-called Bloch matrices,

FL = ULΛLU
+
L , FR = URΛRU

+
R ,

where ΛL/R = diag(λ1,L/R, . . . , λNL/R,L/R) and M+ denotes the pseudoinverse of a matrix
M . It can be shown [23] that the surface Green’s function is then the N×N matrix-valued
function given by

g(ε,k) =
[
AF+

R

]−1
,

where we recall that the right-hand side depends on k and ε. In the case that the matrix
in brackets is singular, a pseudoinversion is understood. The Green’s function of the ith
layer in the bulk can be expressed as

Gi,i =
[
A†FL −A†FR

]−1
.

The density of states at the ith layer, denoted by ni, is related to the Green’s function
blocks by

ni(ε,k) = − 1

π
Im
(
Tr Gi,i(ε,k)

)
.

In particular, the surface density of states nS = n1 is given by

nS(ε,k) = − 1

π
Im
(
Tr g(ε,k)

)
.

The density of states in the bulk layers encodes the properties of the electrons inside the
bulk, but the surface density of state reveals states that emerge only at the surface.
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5.2 Edge States in the BHZ Model

We now apply the theory of surface Green’s functions reviewed in the previous subsection
to the two-dimensional BHZ model that has been introduced in section 3. In this two-
dimensional context, we refer to g(ε, ky) as the edge Green’s function. Recall that the
Bloch Hamiltonian of the BHZ model is given by

HBHZ(kx, ky) = s0 ⊗
[
(u+ cos kx + cos ky)σz + sin kyσy

]
+ sz ⊗ sin kxσx + sx ⊗ C,

where we set the coupling operator to C = 0.3σy as before. We consider a semi-infinite
square lattice with an edge parallel to the y-direction, as in figure 10. The first step that
we have to take is to reconstruct the lattice Hamiltonian along the x-direction, which is no
longer translationally invariant. This can be done by starting with the Bloch Hamiltonian
for kx and ky describing a fully translationally invariant lattice and using equation (6)
restricted to the x-direction, so that the partial Bloch Hamiltonian for ky is given by

H(ky) =
∑
kx

|kx〉 〈kx| ⊗H(kx, ky),

where kx runs over all plane waves along the x-direction. In appendix C we show that the
expression for the Bloch Hamiltonian H(ky) becomes

H(ky) =
1

2

∑
ix

[
|ix + 1〉 〈ix| ⊗ s0 ⊗ σz + |ix〉 〈ix + 1| ⊗ s0 ⊗ σz

]
+
i

2

∑
ix

[
|ix + 1〉 〈ix| ⊗ sz ⊗ σx − |ix〉 〈ix + 1| ⊗ sz ⊗ σx

]
+
∑
ix

|ix〉 〈ix| ⊗
[
sx ⊗ C + s0 ⊗

[
(u+ cos ky)σz + sin kyσy

]]
,

where ix temporarily denotes the layer index to distinguish it from the imaginary unit.
Comparing to equation (22), we find that the operators V and A acting between the layers
are given by

V = sx ⊗ C + s0 ⊗
[
(u+ cos ky)σz + sin kyσy

]
, A =

1

2
s0 ⊗ σz +

i

2
sz ⊗ σx.

The scheme to compute the density of states described in the previous subsection can now
be carried out numerically. The numerical computations have been done using matlab.

We compute the edge density of states for u = −2.8 and u = −1.2. The results of
these computations are shown in figure 11. (a) and (b) correspond to the case u = −2.8,
for which we have seen that the Z2-index is trivial. Indeed, no gapless edge states are
observed, and the edge density of states resembles the bulk density of states. On the other
hand, for (c) and (d) we have set u = −1.2, which gives a non-trivial Z2-index as we have
seen in the previous section. The edge density of states in (d) indeed shows the existence
of gapless edge states. The two crossing branches near ky = 0 are the signature of two-
dimensional time-reversal symmetric topological insulators. The fact that these states are
truly localized at the edge of the system can be deduced by comparing with (c), which
shows that the bulk layers have a band gap. The branches cross in a Dirac point, where
the dispersion relation ε(ky) is linear.
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Figure 11: Layer-resolved density of states (DOS) n(ε, ky) as a function of energy ε and
wavenumber ky ∈ [−π, π] of the BHZ model. Warmer colors indicate a higher density. (a)
Bulk layer DOS for the trivial case u = −2.8. (b) Edge layer DOS for the trivial case
u = −2.8. (c) Bulk layer DOS for the non-trivial case u = −1.2. (d) Edge layer DOS for
the non-trivial case u = −1.2, showing gapless edge states. The broadening parameter is
set to η = 0.005 in all computations. To visualize the DOS, it is capped at 5. Note that ε
and ky are dimensionless in the BHZ model.

5.3 Surface States in Bi2Se3

Now that we have studied the existence of topologically protected gapless edge states in
a simple model, we move back to our three-dimensional model of Bi2Se3 and analyze the
electronic properties that emerge at the surface. We consider a semi-infinite lattice subdi-
vided into quintuple layers, as in figure 7. In the coordinate system chosen in that figure,
the quintuple layers are stacked in the z-direction, so that the surface is parallel to the
xy-plane. This is not only the most simple surface to study, but also the most natural one,
as the planes separating the quintuple layers are cleavage planes11 of Bi2Se3. It is called
the [111] surface, which refers to the chosen primitive lattice vectors. With regards to the
labelling of the atomic sites in the unit cell that we introduced, each type of atomic site
occurs precisely once in each quintuple layer, ordered as (2, 5, 1, 4, 3). We illustrate the
setup in figure 12.

11The bonds between the quintuple layers are mainly of van der Waals type, and they are relatively
weak so that these bonds are easily broken in Bi2Se3 crystals.
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Figure 12: Subdivision of the crystal structure of Bi2Se3 into quintuple layers(QLs)
stacked along the z-direction. The dashed lines indicate the bounds of the layers. Each
atom in this figure represents an infinite plane of atoms in a triangular lattice, stacked as
in figure 7 in an ABCABC stacking sequence. Note that the blue lines do not represent
the bonds between atoms. Adapted from [15].

The matrix blocks V and A appearing in equation (22) can be extracted from the
Bloch Hamiltonian H(k) considered in section 4 by subdividing the interactions of the
atoms into interactions taking place within the quintuple layers and interactions coupling
two adjacent quintuple layers. From figure 12 we see that the nearest neighbour and second
nearest neighbour interactions between adjacent layers correspond to 3 ↔ 2, 3 ↔ 5 and
4 ↔ 2. Hence, the interaction blocks A and A† are the blocks of H(k) corresponding to
these interactions, and the remaining blocks belong to V . The surface density of states
can now be computed as a function of energy ε and the wavevector k = (kx, ky) parallel to
the surface using the method of surface Green’s functions. The results of the computations
are shown in figure 13.

Figure 13: Layer-resolved density of states (DOS) n(ε,k) of Bi2Se3 as a function of energy
ε (eV) and wavenumber k on the high-symmetry path K-Γ-M. Warmer colors indicate a
higher density. (a) Bulk layer DOS, showing a band gap at the Fermi level. (b) Surface
layer DOS on the [111] surface, with a single surface Dirac cone emerging from the top of
the valence band. The broadening parameter is set to η = 0.005 in all computations. To
visualize the DOS, it is capped at 25.
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Figure 13 confirms that there are topologically protected surface states on the surface
of Bi2Se3, and a Dirac cone can be observed on the surface, traversing the bulk band gap.
In figure 14 we zoom in into the Dirac cone and give a three-dimensional view of the surface
density of states near the Γ point.

Figure 14: Dirac cone on the surface of Bi2Se3 at the Γ-point, encoded in the surface
density of states n(ε,k). (a) Cross section of the Dirac cone, with k tracing a segment
of the high-symmetry path M-Γ-M centered at the Γ-point in units of Å−1. (b) Three-
dimensional view of the Dirac cone. The broadening parameter is set to η = 0.0006 and
the DOS is capped at 1000.

This single Dirac cone on the surface is the signature of a three-dimensional topological
insulator. The linear dispersion relation near the Dirac point accounts for the fact that
the surface electrons can behave like massless particles obeying the Dirac equation. The
Fermi velocity vF of the states in the Dirac cone, determined by the slope of the Dirac
cone using

vF =
1

~
∂ε(k)

∂k

evaluated at the Fermi level, is found to be vF ≈ 1.4 × 105 m s−1, which is in the same
order of magnitude as found in [15]. The spin-momentum locking is not visible in figure
14, and more work is required to extract the spin expectation values of the surface states
from the surface Green’s function.

The results agree qualitatively with experiments, which also show that there is a single
Dirac cone on the surface of Bi2Se3 [14]. Using angle-resolved photoemission spectroscopy
(ARPES), the momentum-space electronic structure on the surface of a sample can be
measured directly. Figure 15 shows the results of ARPES measurements on the [111]
surface of Bi2Se3, which is the same surface as the one that we considered.
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Figure 15: ARPES measurements of the [111] surface of a Bi2Se3 sample, showing the
electronic structure near the Γ point as a function of binding energy EB (eV) and momen-
tum ky (left) and kx (right) (Å−1). From [14].

To conclude this section, this shows that a simple tight-binding model is able to capture
the topological behaviour on the surface of a material in a realistic way. It shows that
the computation of the Z2-index, whose formulation is relatively abstract, indeed allows
one to predict potentially interesting surface phenomena that can be observed directly by
experiments. The principle behind this is the bulk-boundary correspondence, and in the
next section we discuss some of the mathematical principles behind this correspondence.
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6 The Bulk-Edge Correspondence

In the preceding sections we have seen that the topological Z2-index of the bulk Hamilto-
nian determines the existence of topologically protected surface and edge states, by com-
puting Z2-indices of different tight-binding models and calculating the density of states
at the boundary of semi-infinite lattices. This is a manifestation of the bulk-boundary
correspondence. In this section we review a mathematical version of the bulk-boundary
correspondence for two-dimensional time-reversal symmetric topological insulators, and we
outline its proof which is formulated by Graf and Porta [19], who prove the result in a sim-
ilar setting as the one we considered in section 5. In this context the theorem is referred
to as the bulk-edge correspondence. The full proof is quite lengthy and technical, so only
the main steps are given. The aim of this section is to give the reader an overview of the
mathematical ideas behind the bulk-edge correspondence without making the discussion
too formal. We refer the reader who is interested in the detailed proof to [19].

6.1 Setting of the Theorem

We first introduce the setting in which we will formulate the bulk-edge correspondence,
which is similar to that of the previous sections. We consider a lattice Z×Z, which we regard
as the bulk system, and a semi-infinite lattice N×Z, which we view as the edge version of the
latter system. This may seem like a restricted setting, but in principle any two-dimensional
crystal structure can be encoded in this lattice, if we view the lattice sites as labels rather
than locations of atoms. We consider a tight-binding Hamiltonian H with N internal
degrees of freedom on the Z × Z lattice, assuming translational invariance in the second
direction so that we can use Bloch’s theorem to obtain a family of Bloch Hamiltonians
H(k) parametrized by k in the Brillouin zone B = S1 = R/2πZ. This Hamiltonian, which
we will call the bulk Hamiltonian, is assumed to act on states ψ = (ψn)n∈Z ∈ `2(Z)⊗ CN
as

(H(k)ψ)n = A(k)ψn−1 + V (k)ψn +A(k)†ψn+1, (25)

where A(k) and V (k) are N × N complex matrices, with each A(k) invertible and each
V (k) Hermitian. To this Hamiltonian we associate an edge Hamiltonian H](k), which acts
on ψ] = (ψ]n)n∈N ∈ `2(N)⊗ CN as

(H](k)ψ])n = A(k)ψ]n−1 + V (k)ψ]n +A(k)†ψ]n+1, (26)

where the above equation at n = 1 is to be read with ψ]0 = 0, to be interpreted as a
boundary condition. For simplicity we consider the bulk and edge Hamiltonian to be
identical except for the boundary condition on H](k), but in [19] the edge Hamiltonian is
allowed to be different within a finite distance from the edge to incorporate possible edge
effects. Since we are interested in insulators, the bulk Hamiltonian should have a band gap
at the Fermi level, so we assume that

εF /∈ σ(H(k)), for all k ∈ B.

Furthermore, we consider the case where H(k) and H](k) have time-reversal symmetry,
represented by an operator Θ, which is assumed to have the following properties:

(i) Θ is anti-linear and Θ2 = −1;

(ii) Θ†Θ = 1;
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(iii) For all k ∈ B,

H(−k) = ΘH(k)Θ−1. (27)

Within this setup we introduce a bulk index I ∈ {±1} and an edge index I] ∈ {±1}.
The bulk index is equivalent to the Z2-index and is defined in terms of H(k), and I] will
be the parity of the number of pairs of edge states. The bulk-edge correspondence is then
simply expressed as I = I], which is the main result whose proof we will outline in this
section. The next subsection is devoted to the construction of I.

6.2 Three Auxiliary Indices

Here we construct the bulk index I from a given bulk Hamiltonian H(k). Although the
Schrödinger equation

(H(k)− ε)ψ = 0

is an equation in the Hilbert space of the system, we may also regard it as a second-order
difference equation in n ∈ Z, similar to the difference equation considered in section 5, and
consider solutions that live outside `2(Z) ⊗ CN . It can be shown [19] that if ε ∈ C is not
an eigenvalue of the Hamiltonian H(k), then this difference equation still has 2N linearly
independent solutions in Z × CN , of which N decay as n → ∞. Hence, let Eε,k be the
N -dimensional vector space of solutions that decay as n → ∞ for a given wavenumber k
energy ε outside the spectrum of H(k). The time-reversal symmetry of the Hamiltonian
implies that(

H(−k)− ε
)
Θψ = Θ

(
H(k)− ε

)
ψ.

Hence, if ψ solves the Schrödinger equation at (ε, k), then the time-reversed state Θψ
solves the Schrödinger equation at (ε,−k). In other words, the solution spaces are related
by Eε,−k = ΘEε,k. In the following we will consider complex-valued energies, so we change
the notation from ε to z. Now, let γ be a contour in C with γ = γ that encloses the the part
of the bulk spectrum σ(H(k)) below the Fermi energy εF for every k ∈ S1. Such a contour
γ exists because of the assumption that the spectrum is gapped at the Fermi energy. Let
T = γ×S1, which is a torus. Figure 16 shows an illustration of this setup. Because of this
choice of γ, we have an involution12 τ on the torus T given by (z, k) 7→ (z,−k).

12An involution is a map which is equal to its own inverse. In other words, if τ is an involution, then
τ2 = 1.
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Figure 16: Spectrum σ(H(k)) ⊂ C for k on the Brillouin zone circle S1, indicated by
the thick black lines. The circle is cut open at π ≡ −π, so the dashed red loops are to be
identified. Because H(k) is Hermitian, the spectrum lies on the real line. The Fermi energy
εF is represented by the blue line. The contour γ is reflection symmetric and encircles the
part of the bulk spectrum with energies below εF. Adapted from Graf and Porta [19].

We now collect all the solution spaces Ez,k together and set

E =
∐

(z,k)∈T

Ez,k,

where
∐

is the disjoint union13. Together with the canonical projection map E → T that
sends a solution in Ez,k to the basepoint (z, k) ∈ T, this space becomes a vector bundle
with fibers Ez,k. From this bundle we can construct the bulk index I, which we will do
step by step by constructing three auxiliary indices.

Index of Endpoint Degenerate Families

First, we consider an index defined for families of complex numbers that move continuously
over the circle S1 as a function as a function of some parameter with values in [0, π]. These
continuous families are of the form {Z(φ) : φ ∈ [0, π]}, where Z(φ) = (z1(φ), . . . , zN (φ)),
with each zi a continuous map [0, π] → S1. We note that the motion of Wannier charge
centers over the circle is an example of such a continuous family. Generically14, we can
choose a point p on the circle S1 so that the (z1(φ), . . . , zN (φ)) cross p only finitely many
times, i.e. p ∈ Z(φ) for finitely many φ, such that each of the crossings is simple in the
sense that p = zj(φ) for at most one j and z′j(φ) 6= 0. Suppose that we have such a family
Z which is endpoint degenerate, meaning that each point belonging to the endpoints Z(a)
or Z(b) occur an even number of times. We then define an index II for such Z by

II(Z) := (−1)n,

13Intuitively, the disjoint union is a way of taking the union of sets without letting them overlap if they
have common elements.

14The term generic has a precise meaning in this context. A property of some object is called generic
if it satisfied for an open dense subset of the space to which this object belongs. We will not discuss the
proof at this level of formality, so the term can be read loosely.
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where n is the number of times that the lines in Z(φ) cross p. The condition that Z(φ) is
endpoint degenerate makes this index well-defined15. An example of an index degenerate
family is shown in figure 17.

Figure 17: Continuous endpoint degenerate family Z(φ) on the unit circle S1 with φ in
[0, π] (blue and green). The figure takes the shape of a cylinder because it represents a
circle at each φ ∈ [0, π]. Hence, the point p on the circle becomes a line (orange). It is
crossed once, so that n = 1 and II(Z) = −1.

This index is directly related to the flow of the Wannier charge centers over the unit
circle as a function of time, and II captures the same information as the Z2-index.

Index of Kramers Matrix Families

We now introduce a second auxiliary index based on the previous one. Let J be the
anti-symmetric N ×N block-diagonal matrix whose blocks are given by[

0 −1
1 0

]
,

and let K : CN → CN be complex conjugation. We call Θ0 := JK the standard time-
reversal on CN .

Suppose that we have a continuous family of invertible matrices T (φ) ∈ GL(N,C)
parametrized by φ ∈ [0, π]. Then T is said to have the Kramers property if

Θ0T (0) = T (0)−1Θ0 and Θ0T (π) = T (π)−1Θ0. (28)

This property is not to be confused with time-reversal symmetry and Kramers degeneracy,
although it has similar properties. Analogous to Kramers degeneracy, it can be shown that
the eigenvalues of T (0) and T (π) come in pairs λ, λ−1. In the case that λ = λ

−1, these
eigenvalues are doubly degenerate. This means in particular that their phases z = λ/|λ|
are always evenly degenerate. Hence, if we let λi(φ) denote the eigenvalues of T (φ), which
vary continuously with φ, then setting

zi(φ) =
λi(φ)

|λi(φ)|
15We remark that Graf and Porta construct this index in a more robust way using a winding number,

which can also be defined for endpoint degenerate families Z for which such a point p does not exist. This
construction is quite technical and does not significantly contribute to the understanding of the proof.
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gives rise to a continuous endpoint degenerate family Z(φ) = (z1(φ), . . . , zN (φ)) of points
on the unit circle S1. We can therefore define an index III for families of matrices T with
the Kramers property by setting

III(T ) := II(Z),

with Z as above. To give a link with earlier sections we remark that the Wannier charge
centers were also obtained in terms of eigenvalues of a family of matrices, namely the
Wilson loops Λ. We will soon see that this analogy can be pushed further.

Index of Time-Reversal Symmetric Bundles

We now define a topological index for a specific type of vector bundle that we define here.
Let T = S1 × S1 be the torus, whose points we denote by ϕ = (ϕ1, ϕ2). Let τ : T→ T be
the involution ϕ 7→ −ϕ. A vector bundle π : E → T with fibers Eϕ = π−1(ϕ) over the base
space T is called time-reversal symmetric if there is a map Θ : E → E satisfying Θ2 = −1
which maps the fiber Eϕ anti-linearly onto the fiber Eτϕ. In other words, the fibers of E
come in pairs related by time-reversal through the involution τ .

Let F (E) be the frame bundle16 of E, whose elements we denote by v = (v1, . . . , vM ) ∈
F (E)ϕ for a given ϕ. The frame bundle F (E) comes naturally with a right action by the
group GL(N,C) of invertible matrices, given by M : F (E)ϕ → F (E)ϕ, v 7→ vM on the
fibers. Any two frames are related by this action via a unique invertible matrixM , namely
the corresponding change-of-basis matrix. If E is time-reversal invariant, F (E) also admits
a time-reversal map Θ acting as

Θ : F (E)ϕ → F (E)τϕ

v 7→ Θv,

where (Θv)i = Θvi.

For the definition of the third auxiliary index, we now cut the torus along the circle
{π} × S1 to obtain a cut torus T̃ = [−π, π]× S1. Any vector bundle E with base space T
naturally gives rise to a vector bundle Ẽ over T̃. Using a construction based on homotopy
arguments, it can be shown that the frame bundle F (Ẽ) admits a smooth section17 v :
T̃→ F (Ẽ) that satisfies the time-reversal condition

v(τϕ) = Θv(ϕ)J.

Given such a section v, we set v±(ϕ2) = v(±π, ϕ2), referred to as the boundary values.
Because the fibers E−π,ϕ2 and Eπ,ϕ2 are identical, there exists a unique invertible matrix
T (ϕ2) for each ϕ2 that relates the frames v+(ϕ2) and v−(ϕ2). That is, T (ϕ2) satisfies

v+(ϕ2) = v−(ϕ2)T (ϕ2). (29)

We call T (ϕ2) the transition matrix. It is analogous to the Wilson loop, as it relates two
frames at a point on the circle, where one of the frames has been parallel transported

16A frame of a vector space is an ordered basis, and the frame bundle of a given vector bundle is the
bundle whose fibers F (E)ϕ are the spaces containing all frames of Eϕ.

17A section σ of a bundle is a map from the base space into the bundle, such that the points on the
base space are mapped into the fibers directly above it. In other words, π ◦ σ is the identity map. The
existence of a smooth section of the frame bundle means that a continuously varying basis exists for each
fiber, analogous to a smooth gauge of eigenstates.
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around a circle. One can show, relatively straightforwardly, that these transition matrices
T (ϕ2) satisfy

Θ0T (ϕ2) = T (−ϕ2)−1Θ0. (30)

In other words, the family T (ϕ2) has the Kramers property on ϕ2 ∈ [0, π]. This mean that
we can assign the index III to T (ϕ2). A key intermediate result is that the index III(T ) is
actually independent of the chosen time-reversal symmetric section v, which can be shown
using homotopy arguments. Because of this independence, the index III(T ) is intrinsic to
the bundle E, which allows us to define a third index IIII for a time-reversal symmetric
bundle as

IIII(E) := III(T ).

This concludes the preliminaries of the bulk-edge correspondence.

6.3 Bulk Index I and Edge Index I]

With the three auxiliary indices defined we return to the setting of the theorem, where we
had a bundle E over a torus T = γ × S1 whose fibers Ez,k consisted of certain solutions
to the Schrödinger equation. Because of the property Ez,−k = ΘEz,k, the bundle E is in
fact a time-reversal symmetric bundle in the sense of the previous subsection. Therefore,
it has a well defined index IIII. This finally leads to the definition of the bulk index, which
we define to be

I := IIII(E).

As we remarked earlier, this index is equivalent to the Z2-index, as shown in [19]. For the
edge index, consider a small interval I containing the Fermi energy that lies in the band
gap, i.e. σ(H(k)) ∩ I = ∅ for all k. The part of the edge spectrum σ(H](k)) that lies in I
consists of continuous and differentiable eigenvalue branches εi(k), and it may occur that
these eigenvalue branches cross the Fermi level, so εi(k∗) = εF for some k∗ ∈ S1. We may
assume that these eigenvalue crossings are simple, meaning that ε′i(k∗) 6= 0 for the crossing
points k∗. If n is the number of crossing points k∗ in the interval [0, π], with the crossings
at k∗ = 0 and k∗ = π counted half to account for Kramers degeneracy, we define the edge
index to be

I] = (−1)n.

In analogy with our discussion in section 3, I] is the parity of the number of Kramers pairs
of edge states, with I] = −1 indicating the presence of topologically protected edge states.
With the bulk and edge index defined, we can finally formulate the main theorem.

Theorem [Bulk-Edge Correspondence] With the bulk and edge Hamiltonian defined
as in the beginning of this section, assumed to be time-reversal symmetric and spectrally
gapped at the Fermi level, we have

I = I].
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6.4 I = I] - Outline of the Proof

As we remarked, the full proof of the bulk-edge correspondence is too lengthy to discuss
here in detail. Hence, we will give the main steps.

1. Bulk frames and edge solutions

Because the Hamiltonians H(k) and H](k) act identically except for the boundary condi-
tion ψ]0 = 0 for the edge Hamiltonian, a solution ψ ∈ Z × CN to (H(k) − z)ψ = 0 also
satisfies (H](k) − z)ψ = 0 without the boundary condition. A frame Ψ ∈ F (E)z,k is an
ordered set (ψ1, . . . , ψN ) of linearly independent solutions in Ez,k, which we may equiva-
lently view as a sequence of N × N complex matrices Ψ = (Ψn) indexed by n ∈ Z that
satisfies the matrix equation

(H(k)− z)Ψ = 0

with the property that Ψn decays as n→∞. Hence, any edge solution ψ] to

(H](k)− z)ψ] = 0,

with or without boundary condition, can be expressed in terms of a frame Ψ as ψ] = Ψa
for some complex vector a.

2. Edge states in terms of singularity of Ψ0

For edge states, we are interested in eigenvalues of H], which means that we look for edge
solutions ψ] ∈ Z × CN that also satisfy the boundary condition ψ]0 = 0. It can be shown
relatively directly that this boundary condition is satisfied precisely when Ψ0 is singular.
Moreover, the only points (z, k) ∈ T for which this can be the case are those that have
z = εF. Using perturbation theory, it can be shown that the points k∗ in (εF, k∗) for
which the latter holds can be shown to be generically isolated in the Brillouin zone S1.
By generically we mean that this property holds for a dense set of Hamiltonians near the
given one: if the given Hamiltonian does not have this property, then we can approximate
our Hamiltonian arbitrarily closely, and prove the result for the set of approximating
Hamiltonians. The last part of this step amounts to showing that the crossing points
(εF, k∗) are given by simple eigenvalue branches ε(k) of the edge Hamiltonian H](k).

3. Edge states encoded in a family of matrices L(z, k)

If Ψ is a local section of the frame bundle near a crossing point (εF, k∗), we can define a
family of matrices given by

L(z, k) = −Ψ†1(z, k)A(k)Ψ0(z, k).

Using the basic properties of frames Ψ and the difference equation that they satisfy, it can
be shown without too much effort that this family of matrices satisfies L(z, k) = L(z, k)†,
so that it has real eigenvalues if z is real. From what has been shown in the first step,
we see that L(z, k) has zero as an eigenvalue precisely when (z, k) admits an edge state
solution: Ψ1(z, k) and A(k) are invertible for any k, and Ψ0(z, k) is singular if and only if
(z, k) = (εF, k∗) is a crossing point of the edge spectrum with the Fermi line. Generically,
L(z, k) has a single eigenvalue branch l(z, k) that vanishes precisely at the these crossing
points, and the derivatives ∂l/∂z and ∂l/∂k can be shown to be real and non-zero.
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4. Construction of a time-reversal invariant section

The next step is to construct a specific section of frames for any of the generic Hamiltonians
for which the properties of the first step hold. We want this section to have certain
properties for use in later steps. For (z, k) away from any crossing point, we can define a
section Ψ through the condition

Ψ0(z, k) = 1.

In other words, we choose the section Ψ such that the 0th matrix Ψ0 in the sequence
Ψ = (Ψn) is the identity matrix. By the first step, this condition cannot be imposed at
any of the crossing points (εF, k∗). Instead, an alternative local section Ψ̃ can be defined
inside a small disk D ⊂ T containing a crossing point (εF, k∗) in its interior, through the
condition

Ψ̃1(z, k) = 1.

We recall that the bulk index I was defined in terms of a cut torus. Hence, we cut the
torus open along the Fermi line {εF} × S1, obtaining the cut torus T̃. We now want to
extend the section Ψ, which is not yet defined near the crossing points, to the cut torus
T̃. We will extend Ψ based on the section Ψ̃ defined near a crossing point (εF, k∗). Let
(∂D)± = {z ∈ D : ±Im z > 0} denote the upper and lower half boundary of the disk. On
this boundary, both Ψ and Ψ̃ are defined, and since they are frames, they must be related
by

Ψ̃(z, k) = Ψ(z, k)M±(k) for (z, k) ∈ (∂D)±,

where the M±(k) are invertible matrices parametrized by k in the interval I which is the
intersection of the Fermi line with D. By defining

Ψ(z, k) = Ψ̃(z, k)M±(k)−1 for (z, k) ∈ D±,

we obtain a continuous section globally defined on T̃.

5. Making the problem local

To show that the number of edge state crossings is equal to the bulk index, which can be
determined by counting the winding number of the eigenvalues of the transition matrix
parametrized by k ∈ S1, it suffices to prove the claim that at each crossing point, the
winding number changes by ±1. This turns a global problem into a local one. Hence, we
focus on a particular crossing point (εF, k∗).

6. The transition matrices T (k) and the matrices L(z, k)

From the way in which Ψ is defined, we see that the boundary values Ψ±(k) are given by

Ψ±(k) = Ψ̃±(εF, k)M±(k)−1.

The transition matrices T (k) relating the boundary values differ from the identity only
inside the interval I, where they are given by

T (k) = M−(k)M+(k)−1.
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By the construction of this particular section, we have

Ψ̃0(z, k) = M±(k) for (z, k) ∈ (∂D)±,

and since Ψ̃ is defined near the crossing point (εF, k∗), we can apply step 3 to obtain

L(z, k) = −Ψ̃†1(z, k)A(k)Ψ̃0(z, k) = −A(k)Ψ̃0(z, k).

From the above steps we hence see that the transition matrices T (k) and the L(z, k) are
related by

T (k) = A(k)−1L−(k)L+(k)−1A(k),

where L±(k) = L(z, k) for (z, k) ∈ (∂D)±. Since we conjugate by A(k) in the above
equation, the eigenvalues of T (k) are equal to the eigenvalues of L−(k)L+(k)−1. This
establishes the link between the transition matrix T (k), which encodes the bulk index, and
the matrices L(z, k), which encode the edge states as we have seen in step 3.

8. Eigenvalues of T (k) and L(z, k)

The final step of the proof is the most technical, and it consists of relating the winding
number of the eigenvalues of T (k) to L(z, k) near the crossing point (εF, k∗) as k moves
past k∗. By working to first order and considering an arbitrarily small disk D, it can be
shown that as k passes k∗, one of the eigenvalues of T (k) changes its winding number by ±1
whereas the winding number of the other eigenvalues remains zero. This proves the claim
stated in step 5, and therefore this final step proves that I = I], which is the bulk-edge
correspondence.

We conclude this section by remarking that the steps given here are by no means
complete and that many details have been omitted to keep this section moderate in size.
The full proof is given in [19], and this section could provide a guide for a more detailed
study of the proof.
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7 Discussion

In this project we have studied topological insulators in the framework of band theory
using tight-binding models. We have constructed a Slater-Koster tight-binding model for
Bi2Se3, with parameters obtained from first-principles DFT computations [17]. From this
model we obtained a band structure that agrees with the literature [15]. Subsequently,
we have computed the Z2-index of Bi2Se3 using two different methods, showing that they
arrive at the same result: the Z2-index is non-trivial, implying through the bulk-boundary
correspondence that Bi2Se3 is a topological insulator. We have computed and analyzed the
density of states at the surface of Bi2Se3, showing that there are topologically protected
surface states. The resulting surface density of states has been compared to experiments,
showing qualitative agreement in the results: both show the presence of a Dirac cone on
the surface of Bi2Se3. This confirms that the phenomena emerging in topological insulators
can be understood using band theory. As Hasan and Kane wrote in [16]: "It is remarkable
that after more than 80 years, there are still treasures to be uncovered within band theory."

For further work, the tight-binding model that has been constructed for Bi2Se3 can be
generalized to other topological insulators with the same crystal structure, such as bismuth
telluride (Bi2Te3) and antimony telluride (Sb2Te3) [15]. The approach of surface Green’s
functions that has been used can potentially be extended to study the spin-properties of
the topological surface states, which have not been investigated in this work. On the
mathematical side, perhaps more direct proofs of the bulk-edge correspondence can be
found, for instance based on scattering theory as suggested in [19].
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A Review of Quantum Mechanics

In this appendix we give a review of the principles of quantum mechanics that we need to
in the main text of the thesis. This appendix will be brief and is not intended as a first
introduction to the subject. An excellent introduction to the subject is [13]. For a more
mathematical introduction, we refer the reader to [20] for an approach from the viewpoint
of functional analysis and [26] for a treatment that is more focused on the algebra and rep-
resentation theory that underlies quantum theory. One of the aims of this appendix is to
bridge a gap between the different notations used in physical and mathematical literature.

Quantum mechanics emerged in the beginning of the 20th century, when it was realized
that the physics at that time, now called classical physics, was not an adequate description
of nature, especially at microscopic scales. The principles of quantum theory still form the
basis for most microscopic theories today. In order to have a microscopic description of
solid materials, we thus need to work in the framework of quantum mechanics.

A.1 Quantum Systems

A quantum-mechanical system consists of a complex separable Hilbert space H with a
distinguished self-adjoint operator H : H → H, called the Hamiltonian. We adopt the
notational convention that is used throughout the physics literature, where we denote
elements of H by symbols of the form

|ψ〉 ∈ H,

which is called a ket. Through the Riesz representation theorem, we can isometrically
identify H with its dual space H∗ consisting of continuous linear functionals H → C.
In physics, this isomorphism is called Hermitian conjugation, and one writes the Riesz
isomorphism as

H → H∗

|ψ〉 7→
(
|ψ〉
)†

=: 〈ψ| .

The object on the right-hand side is called a bra. The inner product on H is then denoted
by juxtaposition of a dual vector and a vector, i.e.

〈ψ|φ〉 ∈ C.

In the physics literature one also often encounters expressions of the form

P = |ψ〉 〈φ| ,

which is to be interpreted as an operator H → H. This becomes clear if one considers the
action of this operator on an element |χ〉 ∈ H,

P |χ〉 = |ψ〉 〈φ|χ〉 = 〈φ|χ〉 |ψ〉 ∈ H.

A normalized element in H represents a state of the system18. The time evolution
of the state of the system is generated by the Hamiltonian, according to the Schrödinger
equation

i~∂t |ψ(t)〉 = H |ψ(t)〉 .
18Strictly speaking, this works only for pure states. One can also consider mixed states, for which there

is no direct correspondence between vectors in H and quantum states.
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From this equation it follows that the time evolution of eigenvectors of H is particularly
simple: if we consider a state |ψ(0)〉 satisfying

H |ψ(0)〉 = E |ψ(0)〉 ,

then Schrödinger equation is solved by

|ψ(t)〉 = e−iEt/~ |ψ(0)〉 .

For this reason, one is often interested in the spectral decomposition of the Hamiltonian
H. One is then led to diagonalize H by solving the eigenvalue equation, which in this
context is called the time-independent Schrödinger equation.

A.2 Quantization and Second Quantization

Whereas classical observables are smooth functions on the phase space of the system,
quantum observables are represented by operators on the underlying Hilbert space. The
mathematical procedure of turning classical observables into quantum observables is called
quantization.

Although we will not use quantum many-body systems or quantum field theory, it
will be useful to briefly discuss the formalism of second quantization in a single-particle
context. In this formalism one can consider quantum systems in which the number of
particles is not fixed, and operators are expressed using so-called creation and annihilation
operators. A creation operator c†i has the action of adding a particle in the state i to the
state on which it acts, provided that this is allowed by symmetry considerations. Similarly,
the annihilation operator ci removes a particle from the state on which it acts, provided
that there is a particle in this state. To make sense of these operators individually, one
of course needs to work in a Hilbert space that admits states with a non-fixed number
of particles. However, products of the form c†icj can be defined for single-particle Hilbert
spaces. Consider a Hilbert space H spanned by an orthonormal basis {|i〉 : i ∈ I}, where
I is an index set. We define the operator

c†icj : H → H

by setting

c†icj |k〉 = δjk |i〉

on the basis {|i〉 : i ∈ I} and extending linearly. Here δij is the Kronecker delta. This
operator has the interpretation of sending a particle in the state |j〉 to the state |i〉, whereas
it sends all other basis vectors to 0. This is a particularly useful interpretation when one
considers a Hamiltonian with terms that describe particles hopping between different states,
as for example in tight-binding models. Note that if A : H → H is an operator with matrix
elements

〈i|A |j〉 = Aij ,

then one can reconstruct this operator from creation and annihilation operators by

A =
∑

(i,j)∈I×I

Aijc
†
icj , (31)

since the right-hand side has the matrix elements

〈k|
∑

(i,j)∈I×I

Aijc
†
icj |l〉 =

∑
(i,j)∈I×I

Aijδjl 〈k|i〉 = Akl.
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B Details of the Bi2Se3 Tight-Binding Model

In this appendix we elaborate further on the computation of the band structure of Bi2Se3.
We first provide the details of the geometry of the crystal structure and our conventions for
the unit cell. Then we discuss the way in which the tight-binding Hamiltonian in equation
(17) is turned into a 40× 40 matrix-valued function of k in the Brillouin zone.

B.1 Geometry of the Unit Cell

One of the ingredients of equation (17) is the relative vectors rij of all nearest neighbour
and second nearest neighbour pairs of atoms in the crystal. For the convenience of the
reader, the crystal structure and the unit cell are shown again below in figure 18. Based
on this crystal structure and on the distances between the neighbouring atoms as given in
[17], we can obtain the rij by reconstructing the coordinates of all atoms near a given unit
cell. To this end, it is convenient to introduce a third basis {a1,a2,a3}, along with the
Cartesian basis and the basis of primitive lattice vectors. The vectors a1 and a2 lie in the
xy-plane and form the relative vectors between atoms inside the same single-atom layer as
shown in figure 18. The third vector a3 is a vector in the z-direction with a length of 1 Å.

Figure 18: Crystal structure of Bi2Se3 with primitve lattice vectors v1,v2,v3 spanning
the Bravais lattice as well as two vectors a1 and a2 spanning the triangular lattice of the
atomic layers parallel to the xy-plane. Se atoms at inequivalent positions are labelled by
Se1 and Se2. Left: rhombohedral unit cell, showing our convention for the labels of the
atomic sites in the unit cell. Right: full crystal structure in the neighbourhood of a unit
cell. A quintuple layer (QL) is indicated. Adapted from Zhang et al. [15].

The tables below show the relative coordinates of the neighbouring atoms for each atom
in the unit cell, expressed as r = a1a1 + a2a2 + a3a3. We distinguish intralayer neighbours
(IL), nearest neighbours (NN) and second nearest neighbours (SN).
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Table 2: Neighbourhood of atom 1 - Se(2).

IL a1 a2 a3 NN a1 a2 a3 SN a1 a2 a3

1 - Se(2) 1 0 0 1 - Bi 1/3 1/3 h1 1 - Se(1) 2/3 -1/3 h1 + h2

2 - Se(2) 1 -1 0 2 - Bi 1/3 -2/3 h1 2 - Se(1) -1/3 -1/3 h1 + h2

3 - Se(2) 0 -1 0 3 - Bi -2/3 1/3 h1 3 - Se(1) -1/3 2/3 h1 + h2

4 - Se(2) -1 0 0 4 - Bi 2/3 -1/3 −h1 4 - Se(1) 1/3 1/3 −h1 − h2

5 - Se(2) -1 1 0 5 - Bi -1/3 -1/3 −h1 5 - Se(1) 1/3 -2/3 −h1 − h2

6 - Se(2) 0 1 0 6 - Bi -1/3 2/3 −h1 6 - Se(1) -2/3 1/3 −h1 − h2

Table 3: Neighbourhood of atom 2 - Se(1).

IL a1 a2 a3 NN a1 a2 a3 SN a1 a2 a3

1 - Se(1) 1 0 0 1 - Bi 1/3 1/3 h2 1 - Se(2) 2/3 -1/3 h1 + h2

2 - Se(1) 1 -1 0 2 - Bi 1/3 -2/3 h2 2 - Se(2) -1/3 -1/3 h1 + h2

3 - Se(1) 0 -1 0 3 - Bi -2/3 1/3 h2 3 - Se(2) -1/3 2/3 h1 + h2

4 - Se(1) -1 0 0 4 - Se(1) 2/3 -1/3 −h3 4 - Bi 1/3 1/3 −h2 − h3

5 - Se(1) -1 1 0 5 - Se(1) -1/3 -1/3 −h3 5 - Bi 1/3 -2/3 −h2 − h3

6 - Se(1) 0 1 0 6 - Se(1) -1/3 2/3 −h3 6 - Bi -2/3 1/3 −h2 − h3

Table 4: Neighbourhood of atom 3 - Se(1).

IL a1 a2 a3 NN a1 a2 a3 SN a1 a2 a3

1 - Se(1) 1 0 0 1 - Se(1) 1/3 1/3 h3 1 - Bi 2/3 -1/3 h2 + h3

2 - Se(1) 1 -1 0 2 - Se(1) 1/3 -2/3 h3 2 - Bi -1/3 -1/3 h2 + h3

3 - Se(1) 0 -1 0 3 - Se(1) -2/3 1/3 h3 3 - Bi -1/3 2/3 h2 + h3

4 - Se(1) -1 0 0 4 - Bi 2/3 -1/3 −h2 4 - Se(2) 1/3 1/3 −h1 − h2

5 - Se(1) -1 1 0 5 - Bi -1/3 -1/3 −h2 5 - Se(2) 1/3 -2/3 −h1 − h2

6 - Se(1) 0 1 0 6 - Bi -1/3 2/3 −h2 6 - Se(2) -2/3 1/3 −h1 − h2

Table 5: Neighbourhood of atom 4 - Bi.

IL a1 a2 a3 NN a1 a2 a3 SN a1 a2 a3

1 - Bi 1 0 0 1 - Se(1) 1/3 1/3 h2 1 - Se(1) 2/3 -1/3 h2 + h3

2 - Bi 1 -1 0 2 - Se(1) 1/3 -2/3 h2 2 - Se(1) -1/3 -1/3 h2 + h3

3 - Bi 0 -1 0 3 - Se(1) -2/3 1/3 h2 3 - Se(1) -1/3 2/3 h2 + h3

4 - Bi -1 0 0 4 - Se(2) 2/3 -1/3 −h1 4 - Bi 1/3 1/3 −2h1

5 - Bi -1 1 0 5 - Se(2) -1/3 -1/3 −h1 5 - Bi 1/3 -2/3 −2h1

6 - Bi 0 1 0 6 - Se(2) -1/3 2/3 −h1 6 - Bi -2/3 1/3 −2h1
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Table 6: Neighbourhood of atom 5 - Bi.

IL a1 a2 a3 NN a1 a2 a3 SN a1 a2 a3

1 - Bi 1 0 0 1 - Se(2) 1/3 1/3 h1 1 - Bi 2/3 -1/3 2h1

2 - Bi 1 -1 0 2 - Se(2) 1/3 -2/3 h1 2 - Bi -1/3 -1/3 2h1

3 - Bi 0 -1 0 3 - Se(2) -2/3 1/3 h1 3 - Bi -1/3 2/3 2h1

4 - Bi -1 0 0 4 - Se(1) 2/3 -1/3 −h2 4 - Se(1) 1/3 1/3 −h2 − h3

5 - Bi -1 1 0 5 - Se(1) -1/3 -1/3 −h2 5 - Se(1) 1/3 -2/3 −h2 − h3

6 - Bi 0 1 0 6 - Se(1) -1/3 2/3 −h2 6 - Se(1) -2/3 1/3 −h2 − h3

The distance constants in this table are

h1 = 1.881 Å,
h2 = 1.709 Å,
h3 = 2.368 Å,

which are computed from the distances between the atoms as given in [17]. The hopping
parameters tαα′ij appearing in equation (17) are constructed from the so-called Slater-Koster
parameters, obtained by Kobayashi [17]. For each pair of neighbouring atoms the Slater-
Koster parameters for the p-orbitals, denoted by Vppσ and Vppπ, can be defined using
two-center bond integrals of the p-orbitals on the considered atoms [1]. Consider a pair of
atoms labelled by i and j. In the Cartesian basis, we can write

rij = (l,m, n)|rij |.

The numbers l,m, n are called the direction cosines of rij . With this notation, the hopping
parameters associated to i and j are constructed using [1]

tx,x = l2Vppσ + (1− l2)Vppπ,

tx,y = lmVppσ − lmVppπ,
tx,z = lnVppσ − lnVppπ,
ty,y = m2Vppσ + (1−m2)Vppπ,

ty,z = mnVppσ −mnVppπ,
ty,x = mlVppσ −mlVppπ,
tz,z = n2Vppσ + (1− n2)Vppπ,

tz,x = nlVppσ − nlVppπ,
tz,y = nmVppσ − nmVppπ,

where Vppσ and Vppπ are the Slater-Koster parameters associated to the pair (i, j) [1].
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C Partial Bloch Hamiltonian of the BHZ model

In this appendix we derive the expression for the partial Bloch Hamiltonian of the BHZ
model for ky, which is given by

H(ky) =
1

2

∑
ix

[
|ix + 1〉 〈ix| ⊗ s0 ⊗ σz + |ix〉 〈ix + 1| ⊗ s0 ⊗ σz

]
+
i

2

∑
ix

[
|ix + 1〉 〈ix| ⊗ sz ⊗ σx − |ix〉 〈ix + 1| ⊗ sz ⊗ σx

]
+
∑
ix

|ix〉 〈ix| ⊗
[
sx ⊗ C + s0 ⊗

[
(u+ cos ky)σz + sin kyσy

]]
.

As a starting point, we consider the full BHZ Bloch Hamiltonian

HBHZ(kx, ky) = s0 ⊗
[
(u+ cos kx + cos ky)σz + sin kyσy

]
+ sz ⊗ sin kxσx + sx ⊗ C

for a finite lattice B = ZNx ⊕ ZNy with periodic boundary conditions, with Nx sites in
the x-direction and Ny sites in the y-direction. The full Bloch Hamiltonian given above is
related to the partial Bloch Hamiltonian H(ky) by

H(kx, ky) = 〈kx|H(ky) |kx〉 , H(ky) =
∑
kx

|kx〉 〈kx| ⊗H(kx, ky).

To keep the derivation clear, we construct H(ky) term by term. Hence, we define

HI(kx, ky) = s0 ⊗
[
(u+ cos kx + cos ky)σz + sin kyσy

]
,

HII(kx, ky) = sz ⊗ sin kxσx,

HIII(kx, ky) = sx ⊗ C.

We use the conventional abbreviation +H.c. to indicate that the Hermitian conjugate of
the preceding term is to be added. Using the definition of the plane wave |kx〉,

|kx〉 =
1√
Nx

∑
ix

eikxix |ix〉 ,

it follows that

HI(ky) =
∑
kx

|kx〉 〈kx| ⊗HI(kx, ky)

=
∑
kx

|kx〉 〈kx| ⊗
[
s0 ⊗

[
(u+

1

2
(eikx + e−ikx) + cos ky)σz + sin kyσy

]]
=
∑
kx

|kx〉 〈kx| ⊗
[
s0 ⊗

[
(u+

1

2
(eikx + e−ikx) + cos ky)σz + sin kyσy

]]
=

1

2Nx

∑
kx

∑
ix

∑
i′x

eikx(ix+1−i′x) |ix〉
〈
i′x
∣∣⊗ s0 ⊗ σz + H.c.

+
∑
ix

|ix〉 〈ix| ⊗ s0 ⊗
[
(u+ cos ky)σz + sin kyσy

]
=

1

2

∑
ix

|ix + 1〉 〈ix| ⊗ s0 ⊗ σz + H.c.

+
∑
ix

|ix〉 〈ix| ⊗ s0 ⊗
[
(u+ cos ky)σz + sin kyσy

]
,
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where we have used the fact that the identity on `2(B) can be expressed as

1 =
∑
kx

|kx〉 〈kx| =
∑
ix

|ix〉 〈ix| .

For the second term, we have

HII(ky) =
∑
kx

|kx〉 〈kx| ⊗HII(kx, ky)

=
∑
kx

|kx〉 〈kx| ⊗
[
− sz ⊗

i

2
(eikx − e−ikx)σx

]
=

1

Nx

∑
kx

∑
ix

∑
i′x

eikx(ix−i′x) |ix〉
〈
i′x
∣∣⊗ [− sz ⊗ i

2
(eikx − e−ikx)σx

]
=
−i

2Nx

∑
kx

∑
ix

∑
i′x

eikx(ix+1−i′x) |ix〉
〈
i′x
∣∣⊗ sz ⊗ σx

+
i

2Nx

∑
kx

∑
ix

∑
i′x

eikx(ix−1−i′x) |ix〉
〈
i′x
∣∣⊗ sz ⊗ σx

=
i

2

∑
ix

|ix + 1〉 〈ix| ⊗ sz ⊗ σx + H.c.

The transformation of the third term is simply given by

HIII(ky) =
∑
kx

|kx〉 〈kx| ⊗HIII(kx, ky)

=
∑
kx

|kx〉 〈kx| ⊗ sx ⊗ C

=
∑
ix

|ix〉 〈ix| ⊗ sx ⊗ C.

Adding all three terms together, we finally obtain

H(ky) =
1

2

∑
ix

[
|ix + 1〉 〈ix| ⊗ s0 ⊗ σz + |ix〉 〈ix + 1| ⊗ s0 ⊗ σz

]
+
i

2

∑
ix

[
|ix + 1〉 〈ix| ⊗ sz ⊗ σx − |ix〉 〈ix + 1| ⊗ sz ⊗ σx

]
+
∑
ix

|ix〉 〈ix| ⊗
[
sx ⊗ C + s0 ⊗

[
(u+ cos ky)σz + sin kyσy

]]
,

which is the expression that we wanted to derive.
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